1
|
Bu W, Yu M, Ma X, Shen Z, Ruan J, Qu Y, Huang R, Xue P, Ma Y, Tang J, Zhao X. Gender-specific effects of prenatal polystyrene nanoparticle exposure on offspring lung development. Toxicol Lett 2025; 407:1-16. [PMID: 40088994 DOI: 10.1016/j.toxlet.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/21/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Nanoplastics are widely present in the environment. Exposure to environmental pollutants during pregnancy can have adverse effects on fetal development and health. Establishing a link between nanoplastics and Bronchopulmonary Dysplasia (BPD) requires further investigation. In this study, we examined the impact of prenatal exposure to 80 nm polystyrene nanoparticles (PS-NPs) on offspring lung development, taking into account potential gender-specific effects. Pregnant female mice were exposed to PS-NPs through oropharyngeal aspiration, and critical data on lung development were collected at postnatal days 1, 7, and 21. We found that exposure to PS-NPs reduced birth weight in female offspring and significantly increased lung weight in both male and female offspring by PND 21. Maternal exposure led to a reduction in alveolar numbers across offspring, with distinct underlying mechanisms observed between sexes. In female offspring, the reduction in alveolar numbers was linked to disrupted surfactant protein expression, significant inflammation, and increased apoptosis and fibrosis. In male offspring, impaired angiogenesis was the primary factor contributing to the increased risk of BPD. The impact on alveolar development was substantial in both genders. This study underscores the gender-specific impacts of prenatal nanoplastic exposure on lung development and offers new evidence and direction for future research on the cross-generational respiratory toxicity of PS-NPs.
Collapse
Affiliation(s)
- Wenxia Bu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Mengjiao Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xinyi Ma
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Zhaoping Shen
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Jialing Ruan
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yi Qu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Ruiyao Huang
- Department of Clinical Medicine, Nantong University Xinglin College, Nantong 226000, China
| | - Peng Xue
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yuanyuan Ma
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
2
|
Hagman C, Björklund L, Hansen Pupp I, Tufvesson E. Inflammatory imbalance in tracheal aspirate of very preterm newborns is associated with airway obstruction and lung function deficiencies at school age: a cohort study. BMJ Paediatr Open 2024; 8:e002643. [PMID: 38862162 PMCID: PMC11168145 DOI: 10.1136/bmjpo-2024-002643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 06/13/2024] Open
Abstract
OBJECTIVE A low expression of club cell secretory protein (CC16) and high levels of proinflammatory cytokines at preterm birth are associated with airway inflammation and more severe neonatal lung disease. The present study aimed to investigate if low levels of CC16, proinflammatory cytokines and vascular endothelial growth factors (VEGF) in tracheal aspirate early after birth were associated with lung function impairment at school age. PATIENTS AND METHODS Participants were 20 children, born very preterm (median gestational age 25+3 weeks+days, IQR: 24+1-27+0 weeks+days), who had tracheal aspirates collected during mechanical ventilation in their first day of life. CC16, cytokines, VEGF and matrix metalloproteinase-9 were measured in the tracheal aspirate and later correlated to results from advanced lung function measurements at 12 years of age. RESULTS Low levels of CC16 and high levels of the proinflammatory cytokines IL-1β and TNF-α in tracheal aspirate were associated with airway obstruction at school age but not with other lung function parameters. The correlation with airway obstruction was even stronger when the ratio between the respective proinflammatory cytokine and CC16 was used. In addition, low levels of VEGF and CC16 were associated with impaired diffusion capacity of the lung. CONCLUSIONS An imbalance in inflammatory mediators and growth factors in the lungs at birth may have consequences for airway function and vasculature at school age in preterm born children.
Collapse
Affiliation(s)
- Cecilia Hagman
- Paediatric Surgery and Neonatology, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences, Lund, Paediatrics, Lund University, Lund, Sweden
| | - Lars Björklund
- Paediatric Surgery and Neonatology, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences, Lund, Paediatrics, Lund University, Lund, Sweden
| | - Ingrid Hansen Pupp
- Paediatric Surgery and Neonatology, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences, Lund, Paediatrics, Lund University, Lund, Sweden
| | - Ellen Tufvesson
- Department of Clinical Sciences, Lund, Respiratory medicine, allergology and palliative medicine, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Marega M, El-Merhie N, Gökyildirim MY, Orth V, Bellusci S, Chao CM. Stem/Progenitor Cells and Related Therapy in Bronchopulmonary Dysplasia. Int J Mol Sci 2023; 24:11229. [PMID: 37446407 DOI: 10.3390/ijms241311229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/18/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease commonly seen in preterm infants, and is triggered by infection, mechanical ventilation, and oxygen toxicity. Among other problems, lifelong limitations in lung function and impaired psychomotor development may result. Despite major advances in understanding the disease pathologies, successful interventions are still limited to only a few drug therapies with a restricted therapeutic benefit, and which sometimes have significant side effects. As a more promising therapeutic option, mesenchymal stem cells (MSCs) have been in focus for several years due to their anti-inflammatory effects and their secretion of growth and development promoting factors. Preclinical studies provide evidence in that MSCs have the potential to contribute to the repair of lung injuries. This review provides an overview of MSCs, and other stem/progenitor cells present in the lung, their identifying characteristics, and their differentiation potential, including cytokine/growth factor involvement. Furthermore, animal studies and clinical trials using stem cells or their secretome are reviewed. To bring MSC-based therapeutic options further to clinical use, standardized protocols are needed, and upcoming side effects must be critically evaluated. To fill these gaps of knowledge, the MSCs' behavior and the effects of their secretome have to be examined in more (pre-) clinical studies, from which only few have been designed to date.
Collapse
Affiliation(s)
- Manuela Marega
- German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Pediatrics, Centre for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Natalia El-Merhie
- Institute for Lung Health (ILH), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Mira Y Gökyildirim
- Department of Pediatrics, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany
| | - Valerie Orth
- Department of Pediatrics, Centre for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Saverio Bellusci
- German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Cho-Ming Chao
- German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Pediatrics, Centre for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| |
Collapse
|
4
|
Bonadies L, Moschino L, Valerio E, Giordano G, Manzoni P, Baraldi E. Early Biomarkers of Bronchopulmonary Dysplasia: A Quick Look to the State of the Art. Am J Perinatol 2022; 39:S26-S30. [PMID: 36470296 DOI: 10.1055/s-0042-1758867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is one of the most common pulmonary sequelae of extreme preterm birth, with long-lasting respiratory symptoms and reduced lung function. A reliable predictive tool of BPD development is urgent and its search remains one of the major challenges for neonatologists approaching the upcoming arrival of possible new preventive therapies. Biomarkers, identifying an ongoing pathogenetic pathway, could allow both the selection of preterm infants with an evolving disease and potentially the therapeutic targets of the indicted pathogenesis. The "omic" sciences represent well-known promising tools for this objective. In this review, we resume the current laboratoristic, metabolomic, proteomic, and microbiomic evidence in the prediction of BPD. KEY POINTS: · The early prediction of BPD development would allow the targeted implementation of new preventive therapies.. · BPD is a multifactorial disease consequently it is unlikely to find a single disease biomarker.. · "Omic" sciences offer a promising insight in BPD pathogenesis and its development's fingerprints..
Collapse
Affiliation(s)
- Luca Bonadies
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, University Hospital of Padova, Padova, Italy.,Department of Woman's and Child's Health, Institute of Pediatric Research "Città della Speranza," Padova, Italy
| | - Laura Moschino
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, University Hospital of Padova, Padova, Italy.,Department of Woman's and Child's Health, Institute of Pediatric Research "Città della Speranza," Padova, Italy
| | - Enrico Valerio
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, University Hospital of Padova, Padova, Italy.,Department of Woman's and Child's Health, Institute of Pediatric Research "Città della Speranza," Padova, Italy
| | - Giuseppe Giordano
- Department of Woman's and Child's Health, Institute of Pediatric Research "Città della Speranza," Padova, Italy.,Department of Woman's and Child's Health, Mass Spectrometry and Metabolomic Laboratory, University of Padova, Padova, Italy
| | - Paolo Manzoni
- Division of Pediatrics and Neonatology, Department of Maternal, Neonatal and Infant Medicine, University Hospital "Degli Infermi," Ponderano, Italy.,Department of Sciences of Public Health and Pediatrics, University of Turin School of Medicine, Turin, Italy
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, University Hospital of Padova, Padova, Italy.,Department of Woman's and Child's Health, Institute of Pediatric Research "Città della Speranza," Padova, Italy.,Department of Woman's and Child's Health, Mass Spectrometry and Metabolomic Laboratory, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Warren R, Dylag AM, Behan M, Domm W, Yee M, Mayer-Pröschel M, Martinez-Sobrido L, O'Reilly MA. Ataxia telangiectasia mutated is required for efficient proximal airway epithelial cell regeneration following influenza A virus infection. Am J Physiol Lung Cell Mol Physiol 2022; 322:L581-L592. [PMID: 35196880 PMCID: PMC8993527 DOI: 10.1152/ajplung.00378.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/11/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022] Open
Abstract
Children and young adults with mutant forms of ataxia telangiectasia mutated (ATM), a kinase involved in DNA damage signaling and mitochondrial homeostasis, suffer from recurrent respiratory infections, immune deficiencies, and obstructive airways disease associated with disorganized airway epithelium. We previously showed in mice how Atm was required to mount a protective immune memory response to influenza A virus [IAV; Hong Kong/X31 (HKx31), H3N2]. Here, Atm wildtype (WT) and knockout (Atm-null) mice were used to investigate how Atm is required to regenerate the injured airway epithelium following IAV infection. When compared with WT mice, naive Atm-null mice had increased airway resistance and reduced lung compliance that worsened during infection before returning to naïve levels by 56 days postinfection (dpi). Although Atm-null lungs appeared pathologically normal before infection by histology, they developed an abnormal proximal airway epithelium after infection that contained E-cadherin+, Sox2+, and Cyp2f2+ cells lacking secretoglobin family 1 A member 1 (Scgb1a1) protein expression. Patchy and low expression of Scgb1a1 were eventually observed by 56 dpi. Genetic lineage tracing in HKx31-infected mice revealed club cells require Atm to rapidly and efficiently restore Scgb1a1 expression in proximal airways. Since Scgb1a1 is an immunomodulatory protein that protects the lung against a multitude of respiratory challenges, failure to efficiently restore its expression may contribute to the respiratory diseases seen in individuals with ataxia telangiectasia.
Collapse
Affiliation(s)
- Rachel Warren
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Andrew M Dylag
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Molly Behan
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - William Domm
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Min Yee
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Margot Mayer-Pröschel
- Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| |
Collapse
|
6
|
Sakaria RP, Dhanireddy R. Pharmacotherapy in Bronchopulmonary Dysplasia: What Is the Evidence? Front Pediatr 2022; 10:820259. [PMID: 35356441 PMCID: PMC8959440 DOI: 10.3389/fped.2022.820259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary Dysplasia (BPD) is a multifactorial disease affecting over 35% of extremely preterm infants born each year. Despite the advances made in understanding the pathogenesis of this disease over the last five decades, BPD remains one of the major causes of morbidity and mortality in this population, and the incidence of the disease increases with decreasing gestational age. As inflammation is one of the key drivers in the pathogenesis, it has been targeted by majority of pharmacological and non-pharmacological methods to prevent BPD. Most extremely premature infants receive a myriad of medications during their stay in the neonatal intensive care unit in an effort to prevent or manage BPD, with corticosteroids, caffeine, and diuretics being the most commonly used medications. However, there is no consensus regarding their use and benefits in this population. This review summarizes the available literature regarding these medications and aims to provide neonatologists and neonatal providers with evidence-based recommendations.
Collapse
Affiliation(s)
- Rishika P. Sakaria
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ramasubbareddy Dhanireddy
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
7
|
Club Cell Protein, CC10, Attenuates Acute Respiratory Distress Syndrome Induced by Smoke Inhalation. Shock 2021; 53:317-326. [PMID: 31045988 DOI: 10.1097/shk.0000000000001365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To evaluate the dose effects of Recombinant human Club cell 10-kDa protein (rhCC10) on lung function in a well-characterized ovine model of acute respiratory distress syndrome (ARDS) induced by smoke inhalation injury (SII); specifically, the potential of rhCC10 protein to control the inflammatory response and protect pulmonary tissue and function following SII. DESIGN Randomized, controlled, prospective, and large animal translational studies. SETTING University large animal intensive care unit. SUBJECTS Thirty-six adult female sheep were surgically prepared and allocated into five groups (Sham (no SII), n = 6; 1 mg/kg/d CC10, n = 8; 3 mg/kg/d CC10, n = 7; 10 mg/kg/d CC10, n = 8; Control SII, n = 7). INTERVENTIONS All groups except the sham group were subjected to SII with cooled cotton smoke. Then, the animals were placed on a ventilator, treated with 1, 3, and 10 mg/kg/d of intravenous rhCC10 or vehicle, divided evenly into two administrations per day every 12 h, fluid resuscitated, and monitored for 48 h in a conscious state. MEASUREMENTS AND MAIN RESULTS The group treated with 10 mg/kg/d rhCC10 attenuated changes in the following variables: PaO2/FiO2 ratio, oxygenation index, and peak inspiratory pressure; neutrophil content in the airway and myeloperoxidase levels; obstruction of the large and small airways; systemic leakage of fluid and proteins, and pulmonary edema. CONCLUSIONS In this study, high-dose rhCC10 significantly attenuated ARDS progression and lung dysfunction and significantly reduced systemic extravasation of fluid and proteins, normalizing fluid balance. Based on these results, rhCC10 may be considered a novel therapeutic option for the treatment of SII-induced ARDS.
Collapse
|
8
|
Simon-Szabo Z, Fogarasi E, Nemes-Nagy E, Denes L, Croitoru M, Szabo B. Oxidative stress and peripartum outcomes (Review). Exp Ther Med 2021; 22:771. [PMID: 34055070 DOI: 10.3892/etm.2021.10203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022] Open
Abstract
Pregnancy, labor and childbirth are accompanied by excessive oxidative aggression. The excessive formation of free radicals [reactive oxygen species (ROS), reactive nitrogen species (RNS), chlorine reactive species (CRS)] causes cellular oxidative damage, which can be scavenged by enzymatic or non-enzymatic antioxidants in normal healthy pregnancy, physiological labor and delivery without any complications. An imbalance between the pro-oxidant and antioxidant factors may lead to oxidative stress, which contributes to the development of many diseases. This oxidative aggression can be a precursor for pathologies in the pregnant woman including eclampsia, miscarriage, preterm labor, and intrauterine growth retardation; in the offspring it may lead to bronchopulmonary dysplasia/chronic lung disease, necrotizing enterocolitis, retinopathy of prematurity, and periventricular leukomalacia. This review summarizes the studies conducted to identify the mechanisms of oxidative stress and the effect of cell membrane oxidation, the mechanisms that are behind oxidative stress-related diseases, and also those studies which have demonstrated the effect of antioxidants in preventing diseases or diminishing the effects of oxidative stress in the body, in obstetrics and neonatology.
Collapse
Affiliation(s)
- Zsuzsanna Simon-Szabo
- Department of Obstetrics-Gynecology, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology, 540142 Targu-Mures, Romania
| | - Erzsebet Fogarasi
- Department of Toxicology and Biopharmacy, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology, 540142 Targu-Mures, Romania
| | - Eniko Nemes-Nagy
- Department of Chemistry and Medical Biochemistry, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology, 540142 Targu-Mures, Romania
| | - Lorand Denes
- Department of Anatomy, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology, 540142 Targu-Mures, Romania
| | - Mircea Croitoru
- Department of Toxicology and Biopharmacy, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology, 540142 Targu-Mures, Romania
| | - Bela Szabo
- Department of Obstetrics-Gynecology, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology, 540142 Targu-Mures, Romania
| |
Collapse
|
9
|
Letunica N, Cai T, Cheong JLY, Doyle LW, Monagle P, Ignjatovic V. The use of proteomics for blood biomarker research in premature infants: a scoping review. Clin Proteomics 2021; 18:13. [PMID: 33853516 PMCID: PMC8048323 DOI: 10.1186/s12014-021-09316-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Over the last decade, the use of proteomics in the setting of prematurity has increased and has enabled researchers to successfully identify biomarkers for an array of associated morbidities. The objective of this scoping review was to identify the existing literature, as well as any knowledge gaps related to proteomic biomarker discoveries in the setting of prematurity. A scoping review was conducted using PubMed, Embase and Medline databases following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. The study selection process yielded a total of 700 records, of which 13 studies were included in this review. Most studies used a tandem Mass Spectrometry (MS/MS) proteomics approach to identify key biomarkers. The corresponding studies identified proteins associated with retinopathy of prematurity (ROP), bronchopulmonary dysplasia (BPD), necrotising enterocolitis (NEC), late onset sepsis (LOS) and gestational age. This scoping review demonstrates the limited use of proteomics to identify biomarkers associated with severe complications of prematurity. Further research is warranted to identify biomarkers of other important morbidities associated with prematurity, such as intraventricular haemorrhage (IVH) and cerebral palsy, and to investigate the mechanisms associated with these outcomes.
Collapse
Affiliation(s)
- Natasha Letunica
- Haematology Research Laboratory, Murdoch Children's Research Institute, Parkville, Australia
| | - Tengyi Cai
- Haematology Research Laboratory, Murdoch Children's Research Institute, Parkville, Australia
| | - Jeanie L Y Cheong
- Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Parkville, Australia
- Department of Obstetrics and Gynecology, The Royal Women's Hospital, Parkville, Australia
- Newborn Research, The Royal Women's Hospital, Parkville, Australia
| | - Lex W Doyle
- Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, 50 Flemington Road, Parkville, Australia
- Department of Obstetrics and Gynecology, The Royal Women's Hospital, Parkville, Australia
- Newborn Research, The Royal Women's Hospital, Parkville, Australia
| | - Paul Monagle
- Haematology Research Laboratory, Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, 50 Flemington Road, Parkville, Australia
- Department of Clinical Haematology, Royal Children's Hospital, Parkville, Australia
| | - Vera Ignjatovic
- Haematology Research Laboratory, Murdoch Children's Research Institute, Parkville, Australia.
- Department of Paediatrics, The University of Melbourne, 50 Flemington Road, Parkville, Australia.
| |
Collapse
|
10
|
Yue H, Ji X, Ku T, Li G, Sang N. Sex difference in bronchopulmonary dysplasia of offspring in response to maternal PM 2.5 exposure. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122033. [PMID: 32004849 DOI: 10.1016/j.jhazmat.2020.122033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
The adverse effects of fine particulate matters (PM2.5) on respiratory diseases start in utero. In order to investigate whether maternal PM2.5 exposure could lead to bronchopulmonary dysplasia (BPD) in offspring, PM2.5 was collected in Taiyuan, Shanxi, China during the annual heating period. Mice were mated and gestation day 0 (GD0) was considered the day on which a vaginal plug was observed. The plug-positive mice received 3 mg/kg b.w. PM2.5 by oropharyngeal aspiration every other day starting on GD0 and throughout the gestation period. Offspring were sacrificed at postnatal days (PNDs) 1, 7, 14 and 21. We assessed some typical BPD-like symptoms in offspring. The results showed that maternal PM2.5 exposure caused low birth weight, hypoalveolarization, decreased angiogenesis, suppressed production of secretory and surfactant proteins, and increased inflammation in the lungs of male offspring. However, maternal PM2.5 exposure induced only hypoalveolarization and inflammation in the lungs of female offspring. Furthermore, these alterations were reversed during postnatal development. Our results demonstrated that maternal exposure to PM2.5 caused reversible BPD-related consequences in offspring, and male offspring were more sensitive than females. However, these alterations were reversed during postnatal development.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
11
|
Davis JM, Pilon AL, Shenberger J, Breeze JL, Terrin N, Mazela J, Gulszinka E, Lauderbach R, Parad R. The role of recombinant human CC10 in the prevention of chronic pulmonary insufficiency of prematurity. Pediatr Res 2019; 86:254-260. [PMID: 31086287 PMCID: PMC9487981 DOI: 10.1038/s41390-019-0419-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/16/2019] [Accepted: 04/21/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Preterm neonates can develop chronic pulmonary insufficiency of prematurity (CPIP) later in infancy. Recombinant human CC10 protein (rhCC10) is an anti-inflammatory agent that could potentially prevent CPIP. METHODS The safety and efficacy of a single intratracheal dose of rhCC10 in reducing CPIP at 12 months corrected gestational age (CGA) was evaluated in a Phase II double-blind, randomized, placebo-controlled, multisite clinical trial. Eighty-eight neonates were randomized: 22 to placebo and 22 to 1.5 mg/kg rhCC10 in the first cohort and 21 to placebo and 23 to 5 mg/kg rhCC10 in the second cohort. Neonates were followed to 12 months CGA. RESULTS With CPIP defined as signs/symptoms, medical visits, hospital readmissions, and use of medications for respiratory complications at 12 months CGA, no significant differences were observed between rhCC10 or placebo groups. Only 5% of neonates had no evidence of CPIP at 12 months CGA. CONCLUSIONS A single dose of rhCC10 was not effective in reducing CPIP at 12 CGA. Since most neonates had evidence of CPIP using these exploratory endpoints, it is essential to develop more robust outcome measures for clinical trials of respiratory medications in high-risk premature neonates.
Collapse
Affiliation(s)
- Jonathan M. Davis
- Department of Pediatrics, The Floating Hospital for Children at Tufts Medical Center, Boston, MA,Tufts Clinical and Translational Science Institute, Tufts University, and the Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston MA
| | | | | | - Janis L. Breeze
- Tufts Clinical and Translational Science Institute, Tufts University, and the Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston MA
| | - Norma Terrin
- Tufts Clinical and Translational Science Institute, Tufts University, and the Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston MA
| | - Jan Mazela
- Ginekologiczno-Położniczy Szpital Kliniczny UM, Poznan, Poland
| | | | - Ryszard Lauderbach
- Samodzielny Publiczny Zakład Opieki Zdrowotnej Szpital Uniwersytecki w Krakowie, Krakow, Poland
| | - Richard Parad
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
12
|
Warren R, O'Reilly MA. An Elusive Fox that Suppresses Scgb1a1 in Asthma Has Been Found. Am J Respir Cell Mol Biol 2019; 60:615-617. [PMID: 30726101 PMCID: PMC6543739 DOI: 10.1165/rcmb.2019-0019ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Rachel Warren
- 1 School of Medicine and Dentistry University of Rochester Rochester, New York
| | - Michael A O'Reilly
- 1 School of Medicine and Dentistry University of Rochester Rochester, New York
| |
Collapse
|
13
|
Preventing bronchopulmonary dysplasia: new tools for an old challenge. Pediatr Res 2019; 85:432-441. [PMID: 30464331 DOI: 10.1038/s41390-018-0228-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/12/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is the most prevalent chronic lung disease in infants and presents as a consequence of preterm birth. Due to the lack of effective preventive and treatment strategies, BPD currently represents a major therapeutic challenge that requires continued research efforts at the basic, translational, and clinical levels. However, not all very low birth weight premature babies develop BPD, which suggests that in addition to known gestational age and intrauterine and extrauterine risk factors, other unknown factors must be involved in this disease's development. One of the main goals in BPD research is the early prediction of very low birth weight infants who are at risk of developing BPD in order to initiate the adequate preventive strategies. Other benefits of determining the risk of BPD include providing prognostic information and stratifying infants for clinical trial enrollment. In this article, we describe new opportunities to address BPD's complex pathophysiology by identifying prognostic biomarkers and develop novel, complex in vitro human lung models in order to develop effective therapies. These therapies for protecting the immature lung from injury can be developed by taking advantage of recent scientific progress in -omics, 3D organoids, and regenerative medicine.
Collapse
|
14
|
Raffaeli G, Ghirardello S, Passera S, Mosca F, Cavallaro G. Oxidative Stress and Neonatal Respiratory Extracorporeal Membrane Oxygenation. Front Physiol 2018; 9:1739. [PMID: 30564143 PMCID: PMC6288438 DOI: 10.3389/fphys.2018.01739] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is a frequent condition in critically ill patients, especially if exposed to extracorporeal circulation, and it is associated with worse outcomes and increased mortality. The inflammation triggered by the contact of blood with a non-endogenous surface, the use of high volumes of packed red blood cells and platelets transfusion, the risk of hyperoxia and the impairment of antioxidation systems contribute to the increase of reactive oxygen species and the imbalance of the redox system. This is responsible for the increased production of superoxide anion, hydrogen peroxide, hydroxyl radicals, and peroxynitrite resulting in increased lipid peroxidation, protein oxidation, and DNA damage. The understanding of the pathophysiologic mechanisms leading to redox imbalance would pave the way for the future development of preventive approaches. This review provides an overview of the clinical impact of the oxidative stress during neonatal extracorporeal support and concludes with a brief perspective on the current antioxidant strategies, with the aim to focus on the potential oxidative stress-mediated cell damage that has been implicated in both short and long-term outcomes.
Collapse
Affiliation(s)
- Genny Raffaeli
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Stefano Ghirardello
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sofia Passera
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Fabio Mosca
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Giacomo Cavallaro
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
15
|
Hagman C, Björklund LJ, Hellgren G, Tufvesson E, Hansen-Pupp I. Club cell secretory protein (CC16) in gastric fluid at birth and subsequent lung disease in preterm infants. Pediatr Pulmonol 2018; 53:1399-1406. [PMID: 29992757 DOI: 10.1002/ppul.24128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/31/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Club cell secretory protein (CC16) probably has a role in protecting the lung from inflammation. AIM To evaluate if low levels of CC16 in gastric fluid at birth, reflecting low levels of CC16 in the lung, would be associated with lung inflammation and respiratory morbidity. METHODS A study of 64 infants with mean gestational age 26.1 weeks. CC16 was analyzed in gastric fluid at birth. CC16, pro-inflammatory cytokines, and MMP-9 were analyzed in tracheal aspirate within 24 h from birth. RESULTS CC16 in gastric fluid increased with gestational age (P = 0.033). Lower concentrations of CC16 in gastric fluid at birth were associated with higher concentrations of IL-1β (P = 0.028), TNF-α (P = 0.034), and MMP-9 (P = 0.015) in tracheal aspirate. Infants who needed mechanical ventilation at 24 and 72 h of age had lower CC16 in gastric fluid than those not ventilated at these ages (P = 0.011 and P = 0.024, respectively). Lower CC16 in gastric fluid was associated with higher FiO2 at 6 h (P = 0.009), higher PaCO2 at 24 h (P = 0.03), more ventilator days (P = 0.012) and more days with supplemental oxygen (P = 0.03). Infants who had either died or were still treated with supplemental oxygen at 36 weeks postmenstrual age had lower CC16 in gastric fluid than infants with none of these outcomes (P = 0.049). CONCLUSION A low CC16 concentration in gastric fluid at birth was associated with increased inflammation in the trachea within the first 24 h of life and with more need for respiratory support in the neonatal period.
Collapse
Affiliation(s)
- Cecilia Hagman
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Pediatrics, Lund, Sweden
| | - Lars J Björklund
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Pediatrics, Lund, Sweden
| | - Gunnel Hellgren
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ellen Tufvesson
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund, Sweden
| | - Ingrid Hansen-Pupp
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Pediatrics, Lund, Sweden
| |
Collapse
|
16
|
Hogmalm A, Bry M, Bry K. Pulmonary IL-1β expression in early life causes permanent changes in lung structure and function in adulthood. Am J Physiol Lung Cell Mol Physiol 2018; 314:L936-L945. [DOI: 10.1152/ajplung.00256.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chorioamnionitis, mechanical ventilation, oxygen therapy, and postnatal infection promote inflammation in the newborn lung. The long-term consequences of pulmonary inflammation during infancy have not been well characterized. The aim of this study was to examine the impact of inflammation during the late saccular to alveolar stages of lung development on lung structure and function in adulthood. To induce IL-1β expression in the pulmonary epithelium of mice with a tetracycline-inducible human IL-1β transgene, doxycycline was administered via intraperitoneal injections to bitransgenic pups and their littermate controls on postnatal days (PN) 0, 0.5, and 1. Lung structure, inflammation, and airway reactivity were studied in adulthood. IL-1β production in early life resulted in increased numbers of macrophages and neutrophils on PN21, but inflammation subsided by PN42. Permanent changes in alveolar structure, i.e., larger alveoli and thicker alveolar walls, were present from PN21 to PN84. Lack of alveolar septation thus persisted after IL-1β production and inflammation had ceased. Early IL-1β production caused goblet cell hyperplasia, enhanced calcium-activated chloride channel 3 (CLCA3) protein expression, and increased airway reactivity in response to methacholine on PN42. Lymphoid follicles were present adjacent to small airways in the lungs of adult bitransgenic mice, and levels of the B cell chemoattractant CXC-motif ligand (CXCL) 13 were elevated in the lungs of bitransgenic mice compared with controls. In conclusion, IL-1β-induced pulmonary inflammation in early life causes a chronic lung disease in adulthood.
Collapse
Affiliation(s)
- Anna Hogmalm
- Department of Pediatrics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maija Bry
- The Queen Silvia Children’s Hospital, Gothenburg, Sweden
| | - Kristina Bry
- Department of Pediatrics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- The Queen Silvia Children’s Hospital, Gothenburg, Sweden
| |
Collapse
|
17
|
Laguna TA, Williams CB, Nunez MG, Welchlin-Bradford C, Moen CE, Reilly CS, Wendt CH. Biomarkers of inflammation in infants with cystic fibrosis. Respir Res 2018; 19:6. [PMID: 29310632 PMCID: PMC5759377 DOI: 10.1186/s12931-017-0713-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/29/2017] [Indexed: 11/17/2022] Open
Abstract
Background There are urgent needs for clinically relevant biomarkers to identify children with cystic fibrosis (CF) at risk for more progressive lung disease and to serve as outcome measures for clinical trials. Our objective was to investigate three targeted biomarkers in a population of asymptomatic CF infants. Methods Urine, blood and lung function data were collected for 2 years from clinically stable infants diagnosed with CF by newborn screening. A subset of CF infants had bronchoscopy with lavage performed at 6 months and 1 year. Urine was collected quarterly from healthy control infants. Expectorated sputum and urine were collected quarterly for 2 years from clinically stable CF adults. Desmosine, club cell secretory protein (CCSP) and cathepsin B concentrations were measured and compared. Mixed effects models were used to identify associations between biomarker concentrations and clinical characteristics. Receiver operator characteristic curves were generated to investigate the sensitivity and specificity of the biomarkers. Results Urinary cathepsin B was significantly higher in CF infants compared to healthy infants (p = 0.005). CF infant airway and urinary cathepsin B concentrations were significantly lower compared to adult CF subjects (p = 0.002 & p = 0.022, respectively). CF infant airway CCSP was significantly higher than adult CF subjects (p < 0.001). There was a significant correlation between CF infant plasma CCSP and BALF CCSP (p = 0.046). BALF CCSP was negatively associated with IL-8 (p = 0.017). There was no correlation between biomarker concentration and FEV0.5. Conclusions Cathepsin B and CCSP show promise as biomarkers of inflammation in CF infants. Further study is needed. Electronic supplementary material The online version of this article (10.1186/s12931-017-0713-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Theresa A Laguna
- Minnesota CF Center, Department of Pediatrics, University of Minnesota Masonic Children's Hospital, 420 Delaware St. SE; MMC-742, Minneapolis, MN, 55455, USA.
| | - Cynthia B Williams
- Minnesota CF Center, Department of Pediatrics, University of Minnesota Masonic Children's Hospital, 420 Delaware St. SE; MMC-742, Minneapolis, MN, 55455, USA
| | - Myra G Nunez
- Minnesota CF Center, Department of Pediatrics, University of Minnesota Masonic Children's Hospital, 420 Delaware St. SE; MMC-742, Minneapolis, MN, 55455, USA
| | - Cole Welchlin-Bradford
- Minnesota CF Center, Department of Pediatrics, University of Minnesota Masonic Children's Hospital, 420 Delaware St. SE; MMC-742, Minneapolis, MN, 55455, USA
| | - Catherine E Moen
- Minnesota CF Center, Department of Pediatrics, University of Minnesota Masonic Children's Hospital, 420 Delaware St. SE; MMC-742, Minneapolis, MN, 55455, USA
| | - Cavan S Reilly
- School of Public Health, Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Chris H Wendt
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota and Veterans Administration Medical Center, Minneapolis, MN, USA
| |
Collapse
|
18
|
Clara Cell Protein Expression in Mechanically Ventilated Term and Preterm Infants with Respiratory Distress Syndrome and at Risk of Bronchopulmonary Dysplasia: A Pilot Study. Can Respir J 2017; 2017:8074678. [PMID: 28487624 PMCID: PMC5405359 DOI: 10.1155/2017/8074678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/25/2017] [Accepted: 03/16/2017] [Indexed: 11/24/2022] Open
Abstract
The aim of this pilot study was to determine Clara cell protein (CC16) concentration in bronchoalveolar lavages (BAL) fluid from full-term and preterm (<37 weeks' gestational age) neonates requiring respiratory support, having symptoms of neonatal respiratory distress syndrome, and at risk of bronchopulmonary dysplasia (BPD). We hypothesized that CC16 may be predictive of BPD diagnosis regardless of gestational age. BAL fluid CC16 was measured by ELISA at birth and at day 7 of life. Both groups that developed BPD showed significantly decreased BAL fluid CC16 levels compared to those infants that did not develop the disease. CC16 positively correlated with diagnosis of BPD and negatively with the severity of the disease. These results suggest that BAL fluid CC16 levels may have a diagnostic value at day 7 for BPD in both term and preterm infants. This study demonstrates the potential utility of BAL fluid CC16 levels as a biomarker for BPD in term infants.
Collapse
|
19
|
Ling R, Greenough A. Advances in emerging treatment options to prevent bronchopulmonary dysplasia. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1281736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Gorji N, Pilon AL, Winn ME, Newsome M, Davis JM. Evaluation of Club Cell 10-kDa Protein (CC10) Levels in Full-Term Infants. Neonatology 2017; 111:247-252. [PMID: 27902984 DOI: 10.1159/000452267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/06/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The club cell 10-kDa protein (CC10) is a homeostatic protein that is produced in the lung, diffuses into the blood, and is then excreted into the urine and stool. CC10 is known to have anti-inflammatory properties and to have lower endogenous production in preterm infants. OBJECTIVES As recombinant human CC10 (rhCC10) is being studied in preterm infants to reduce lung injury, understanding CC10 levels in term infants with normal lungs is needed to establish appropriate target dosing ranges. METHODS Serum, urine, and stool samples were collected from 24 healthy full-term infants, and CC10 levels were measured. Levels in term infants were then compared to those in preterm infants who were examined in our previous studies. RESULTS The mean gestational age and birth weight of the term infants were 38.8 ±1.1 weeks and 3,257 ± 513 g, respectively. The mean gestational age of the preterm infants was 26.8 ± 1.4 weeks. The median serum [CC10] levels with minimum and maximum values in term infants (214.2 ng/mL [34.1, 428.1]) were >7-fold higher than in preterm infants (27.5 ng/mL [8.0, 760.0]; p < 0.05). A significant correlation was found between [CC10] in urine and stool as well as between gestational age and stool [CC10] (p < 0.05). CONCLUSIONS CC10 is detectable in serum, urine, and stool in healthy term infants, with levels significantly higher than in preterm infants. This provides important data for ongoing therapeutic intervention trials with rhCC10 in high-risk preterm infants.
Collapse
Affiliation(s)
- Nasim Gorji
- Division of Newborn Medicine, The Floating Hospital for Children, Tufts Medical Center, Boston, MA, USA
| | | | | | | | | |
Collapse
|
21
|
Höhn A, Weber D, Jung T, Ott C, Hugo M, Kochlik B, Kehm R, König J, Grune T, Castro JP. Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol 2016; 11:482-501. [PMID: 28086196 PMCID: PMC5228102 DOI: 10.1016/j.redox.2016.12.001] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022] Open
Abstract
Aging is a complex phenomenon and its impact is becoming more relevant due to the rising life expectancy and because aging itself is the basis for the development of age-related diseases such as cancer, neurodegenerative diseases and type 2 diabetes. Recent years of scientific research have brought up different theories that attempt to explain the aging process. So far, there is no single theory that fully explains all facets of aging. The damage accumulation theory is one of the most accepted theories due to the large body of evidence found over the years. Damage accumulation is thought to be driven, among others, by oxidative stress. This condition results in an excess attack of oxidants on biomolecules, which lead to damage accumulation over time and contribute to the functional involution of cells, tissues and organisms. If oxidative stress persists, cellular senescence is a likely outcome and an important hallmark of aging. Therefore, it becomes crucial to understand how senescent cells function and how they contribute to the aging process. This review will cover cellular senescence features related to the protein pool such as morphological and molecular hallmarks, how oxidative stress promotes protein modifications, how senescent cells cope with them by proteostasis mechanisms, including antioxidant enzymes and proteolytic systems. We will also highlight the nutritional status of senescent cells and aged organisms (including human clinical studies) by exploring trace elements and micronutrients and on their importance to develop strategies that might increase both, life and health span and postpone aging onset.
Collapse
Affiliation(s)
- Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany
| | - Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany
| | - Martin Hugo
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Bastian Kochlik
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Richard Kehm
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Jeannette König
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; Faculty of Medicine, Department of Biomedicine, University of Porto, 4200-319, Portugal; Institute for Innovation and Health Research (I3S), Aging and Stress Group, R. Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
22
|
Lal CV, Travers C, Aghai ZH, Eipers P, Jilling T, Halloran B, Carlo WA, Keeley J, Rezonzew G, Kumar R, Morrow C, Bhandari V, Ambalavanan N. The Airway Microbiome at Birth. Sci Rep 2016; 6:31023. [PMID: 27488092 PMCID: PMC4973241 DOI: 10.1038/srep31023] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/13/2016] [Indexed: 12/29/2022] Open
Abstract
Alterations of pulmonary microbiome have been recognized in multiple respiratory disorders. It is critically important to ascertain if an airway microbiome exists at birth and if so, whether it is associated with subsequent lung disease. We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more diverse and different from that of older preterm infants with established chronic lung disease (bronchopulmonary dysplasia). Consistent temporal dysbiotic changes in the airway microbiome were seen from birth to the development of bronchopulmonary dysplasia in extremely preterm infants. Genus Lactobacillus was decreased at birth in infants with chorioamnionitis and in preterm infants who subsequently went on to develop lung disease. Our results, taken together with previous literature indicating a placental and amniotic fluid microbiome, suggest fetal acquisition of an airway microbiome. We speculate that the early airway microbiome may prime the developing pulmonary immune system, and dysbiosis in its development may set the stage for subsequent lung disease.
Collapse
Affiliation(s)
- Charitharth Vivek Lal
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, AL, USA.,Translational Research in Normal and Disordered Development Program (TReNDD) University of Alabama at Birmingham, AL, USA.,Program in Protease and Matrix Biology, University of Alabama at Birmingham, AL, USA
| | - Colm Travers
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, AL, USA
| | - Zubair H Aghai
- Department of Pediatrics, Thomas Jefferson University/Nemours, Philadelphia, PA, USA
| | - Peter Eipers
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, AL, USA
| | - Tamas Jilling
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, AL, USA.,Translational Research in Normal and Disordered Development Program (TReNDD) University of Alabama at Birmingham, AL, USA
| | - Brian Halloran
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, AL, USA.,Translational Research in Normal and Disordered Development Program (TReNDD) University of Alabama at Birmingham, AL, USA
| | - Waldemar A Carlo
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, AL, USA
| | - Jordan Keeley
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, AL, USA
| | - Gabriel Rezonzew
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, AL, USA
| | - Ranjit Kumar
- Center for Clinical and Translational Sciences, University of Alabama at Birmingham, AL, USA
| | - Casey Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, AL, USA
| | - Vineet Bhandari
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, AL, USA.,Translational Research in Normal and Disordered Development Program (TReNDD) University of Alabama at Birmingham, AL, USA.,Center for Clinical and Translational Sciences, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
23
|
Laucho-Contreras ME, Polverino F, Tesfaigzi Y, Pilon A, Celli BR, Owen CA. Club Cell Protein 16 (CC16) Augmentation: A Potential Disease-modifying Approach for Chronic Obstructive Pulmonary Disease (COPD). Expert Opin Ther Targets 2016; 20:869-83. [PMID: 26781659 DOI: 10.1517/14728222.2016.1139084] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Club cell protein 16 (CC16) is the most abundant protein in bronchoalveolar lavage fluid. CC16 has anti-inflammatory properties in smoke-exposed lungs, and chronic obstructive pulmonary disease (COPD) is associated with CC16 deficiency. Herein, we explored whether CC16 is a therapeutic target for COPD. AREAS COVERED We reviewed the literature on the factors that regulate airway CC16 expression, its biologic functions and its protective activities in smoke-exposed lungs using PUBMED searches. We generated hypotheses on the mechanisms by which CC16 limits COPD development, and discuss its potential as a new therapeutic approach for COPD. EXPERT OPINION CC16 plasma and lung levels are reduced in smokers without airflow obstruction and COPD patients. In COPD patients, airway CC16 expression is inversely correlated with severity of airflow obstruction. CC16 deficiency increases smoke-induced lung pathologies in mice by its effects on epithelial cells, leukocytes, and fibroblasts. Experimental augmentation of CC16 levels using recombinant CC16 in cell culture systems, plasmid and adenoviral-mediated over-expression of CC16 in epithelial cells or smoke-exposed murine airways reduces inflammation and cellular injury. Additional studies are necessary to assess the efficacy of therapies aimed at restoring airway CC16 levels as a new disease-modifying therapy for COPD patients.
Collapse
Affiliation(s)
- Maria E Laucho-Contreras
- a Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital/Harvard Medical School , Boston , MA , USA
| | - Francesca Polverino
- a Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital/Harvard Medical School , Boston , MA , USA.,b COPD Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA.,c Department of Medicine , University of Parma , Parma , Italy
| | - Yohannes Tesfaigzi
- b COPD Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Aprile Pilon
- d Therabron Therapeutics Inc. , Rockville , MD , USA
| | - Bartolome R Celli
- a Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital/Harvard Medical School , Boston , MA , USA.,b COPD Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Caroline A Owen
- a Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital/Harvard Medical School , Boston , MA , USA.,b COPD Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| |
Collapse
|
24
|
Correlation of serum KL-6 and CC16 levels with neurodevelopmental outcome in premature infants at 12 months corrected age. Sci Rep 2015; 5:8121. [PMID: 25631862 PMCID: PMC4309974 DOI: 10.1038/srep08121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/06/2015] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to evaluate KL-6 and CC16 levels and their correlation with neurodevelopmental outcome among very low birth weight pre-term infants at 12 months corrected age. This prospective cohort study was performed from 2011 to 2013 by enrolling pre-term neonates of gestational age ≤ 32 weeks and birth weight ≤ 1500 g. Serum KL-6 and CC16 levels were determined 7 days after birth and their correlation with neurodevelopment was evaluated using Gesell Mental Developmental Scales. Of the 86 eligible pre-term infants, 63 completed follow-up, of which 15 had bronchopulmonary dysplasia. At 12 months corrected age, 49 infants had favorable outcomes and 14 infants had poor neurodevelopmental outcome. KL-6 levels were higher and CC16 levels were lower in infants with poor neurodevelopmental outcome compared with those infants who had favourable neurodevelopmental outcome. Serum KL-6 levels less than 90.0 ng/ml and CC16 levels greater than 320.0 pg/ml at 7 days of life were found to be predictive of a favourable outcome at 12 months corrected age. These biological markers could predict neurodevelopmental outcome at 12 months corrected age in very low birth weight premature infants, and help the clinician plan early therapeutic interventions to minimize or avoid poor neurodevelopmental outcome.
Collapse
|
25
|
Sputum club cell protein concentration is associated with pulmonary exacerbation in cystic fibrosis. J Cyst Fibros 2014; 14:334-40. [PMID: 25456770 DOI: 10.1016/j.jcf.2014.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/22/2014] [Accepted: 10/12/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) patients exhibit a progressive decline in lung function accelerated by intermittent pulmonary exacerbations. There are urgent needs for clinically relevant biomarkers to aid in the diagnosis and management of a CF pulmonary exacerbation, in addition to providing insight into its pathophysiology. Club cell secretory protein (CCSP) is produced by bronchial epithelial cells, known to have anti-inflammatory properties and may play a role in CF pulmonary exacerbations. Our objective was to measure sputum CCSP concentration during hospitalizations for CF pulmonary exacerbation and during quarterly outpatient clinic visits for 2 years. We explored the correlations between CCSP concentration, lung function and markers of inflammation and infection. METHODS In this prospective, longitudinal cohort study, expectorated sputum, blood and lung function data were collected from 45 CF patients during 68 hospitalizations for pulmonary exacerbation and 193 clinic visits. Sputum CCSP concentration was measured and sputum and blood were assayed with a panel of inflammatory cytokines. We used a repeated measures model to compare log transformed sputum CCSP concentrations across multiple time points and to correlate those concentrations with related clinical variables. RESULTS Our population had a mean age of 29 (16-58 years), and a median FEV(1) %predicted of 60% (18-105%). Sputum CCSP concentration was significantly lower in the initial, interim and final exacerbation samples (p=0.0021, p=0.0005 and p=0.0274, respectively) compared to outpatient visits. Sputum CCSP concentration was negatively associated with sputum neutrophil elastase concentration (p=0.0373). Patients with Pseudomonas aeruginosa mucoid had a significantly lower sputum CCSP concentration (p=0.0129). CONCLUSION Sputum CCSP concentration is associated with CF pulmonary exacerbation.
Collapse
|
26
|
The airway microbiome of intubated premature infants: characteristics and changes that predict the development of bronchopulmonary dysplasia. Pediatr Res 2014; 76:294-301. [PMID: 24941215 DOI: 10.1038/pr.2014.85] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/19/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is associated with perinatal inflammatory triggers. Methods targeting bacterial rRNA may improve detection of microbial colonization in premature infants. We hypothesize that respiratory microbiota differs between preterm infants who develop BPD and those unaffected and correlates with inflammatory mediator concentrations. METHODS Twenty-five infants, born at ≤32 wk of gestation and intubated in the first 24 h, were enrolled. Tracheal aspirates were obtained at intubation and on days 3, 7, and 28. Bacterial DNA was extracted, and 16S rRNA genes were amplified and sequenced. Concentrations of interleukins (IL-1β, IL-6, IL-8, IL-10, and IL-12), tumor necrosis factor-α, interferon-γ, lipopolysaccharide (LPS), and lipoteichoic acid (LTA) were measured. Chorioamnionitis was diagnosed by histology. BPD was defined as an oxygen requirement at 36 wk postmenstrual age. RESULTS Acinetobacter was the predominant genus in the airways of all infants at birth. Ten infants developed BPD and showed reduced bacterial diversity at birth. No differences were detected in bacterial diversity, cytokines, LPS, and LTA from infants with and without exposure to chorioamnionitis. CONCLUSION The airways of premature infants are not sterile at birth. Reduced diversity of the microbiome may be an important factor in the development of BPD and is not associated with differences in inflammatory mediators.
Collapse
|
27
|
Zhang ZQ, Huang XM, Lu H. Early biomarkers as predictors for bronchopulmonary dysplasia in preterm infants: a systematic review. Eur J Pediatr 2014; 173:15-23. [PMID: 23996017 DOI: 10.1007/s00431-013-2148-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/04/2013] [Accepted: 08/09/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is usually diagnosed in preterm infants at least 28 days after birth. Great interest lies in the potential to identify biomarkers that predict development of the disease and future neurodevelopmental outcomes. We have reviewed the existing literature on early biomarkers as predictors for BPD in preterm infants. METHODS Two reviewers independently searched the databases of PubMed, EMBASE, and Google Scholar for studies pertaining to biomarkers for BPD. Studies were assessed using Quality Assessment of Diagnostic Accuracy Studies criteria. RESULTS We identified 46 relevant articles that are summarized in the review. These studies assessed over 30 potential biomarkers. Sensitivity and specificity of biomarkers were reported or could be calculated for only 16 articles, and ranged from 0 to 100 %. Based on the nine highest quality studies, serum KL-6, CC16, neutrophil gelatinase-associated lipocalin, and end-tidal carbon monoxide (etCO) perform extremely well in predicting the early diagnosis of established BPD, highlighting these biomarkers as promising candidates for future research. CONCLUSIONS Published data from studies on serum biomarkers and etCO suggest that biomarkers may have great potential to predict the subsequent BPD and neurodevelopmental outcomes. These biomarkers need validation in larger studies, and the generalizability of biomarkers for predicting BPD, as well as the neurodevelopmental outcomes, needs to be further explored.
Collapse
Affiliation(s)
- Zhi-Qun Zhang
- Division of Neonatology, Department of Pediatrics, Hangzhou First People's Hospital, No. 261 Huansha Road, Hangzhou, Zhejiang, 310002, China
| | | | | |
Collapse
|
28
|
Neonatal hyperoxic exposure persistently alters lung secretoglobins and annexin A1. BIOMED RESEARCH INTERNATIONAL 2013; 2013:408485. [PMID: 24187664 PMCID: PMC3804154 DOI: 10.1155/2013/408485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 11/17/2022]
Abstract
Altered functions of the lung epithelial surface likely contribute to the respiratory morbidities in infants with bronchopulmonary dysplasia (BPD). Infants with BPD exhibit decreased expressions of secretoglobins (SCGBs), including Clara cell secretory protein (CCSP). Expression of lung SCGB and annexin A1 (ANXA1) is persistently altered in CCSP knockout mice suggesting that CCSP indirectly influences innate immune responses. The present studies tested the hypothesis that neonatal hyperoxic exposure induces deficits in CCSP expression that are associated with persistent alterations in lung SCGB and ANXA1 expression. Newborn C3H/HeN mice were exposed to room air (RA) or 85% O2 from birth and were sacrificed at 14 d or returned to RA for 14 d. Neonatal hyperoxia followed by RA recovery was associated with decreased lung CCSP and SCGB3A1 protein but not mRNA expression. Hyperoxia-induced alterations in the charge characteristics of ANXA1 were unchanged by RA recovery and were associated with elevated lung macrophage numbers. These findings support a model in which hyperoxia-induced alterations in Clara cell function influence lung innate immune function through effects on immunomodulatory proteins. Studies to determine the mechanism(s) by which CCSP alterations affect SCGBs, ANXA1, and innate immune responses in BPD are warranted.
Collapse
|
29
|
Van Winkle LS, Murphy SR, Boetticher MV, VandeVoort CA. Fetal exposure of rhesus macaques to bisphenol a alters cellular development of the conducting airway by changing epithelial secretory product expression. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:912-8. [PMID: 23757601 PMCID: PMC3734491 DOI: 10.1289/ehp.1206064] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 06/07/2013] [Indexed: 05/12/2023]
Abstract
BACKGROUND Bisphenol A (BPA) exposure early in life results in organizational changes in reproductive organs, but the effect of BPA on conducting airway cellular maturation has not been studied. Late gestation is characterized by active differentiation of secretory cells in the lung epithelium. OBJECTIVE We evaluated the hypothesis that BPA exposure disrupts epithelial secretory cell development in the fetal conducting airway of the rhesus macaque. METHODS We exposed animals to BPA during either the second (early term) or the third (late term) trimester. There were four treatment groups: a) sham control early term, b) sham control late term, c) BPA early term (BPA-early), and d) BPA late term (BPA-late). Because cellular maturation occurs nonuniformly in the lung, we defined mRNA and protein expression by airway level using microdissection. RESULTS BPA exposure of the dam during late term significantly accelerated secretory cell maturation in the proximal airways of the fetus; both Clara cell secretory protein (CCSP) and MUC5AC/5B mRNA and protein expression increased. CONCLUSIONS BPA exposure during late gestation accelerates secretory cell maturation in the proximal conducting airways. We identified a critical window of fetal susceptibility for BPA effects on lung epithelial cell maturation in the third trimester. This is of environmental health importance because increases in airway mucins are hallmarks of a number of childhood lung diseases that may be affected by BPA exposure.
Collapse
Affiliation(s)
- Laura S Van Winkle
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
30
|
Singh SP, Gundavarapu S, Smith KR, Chand HS, Saeed AI, Mishra NC, Hutt J, Barrett EG, Husain M, Harrod KS, Langley RJ, Sopori ML. Gestational exposure of mice to secondhand cigarette smoke causes bronchopulmonary dysplasia blocked by the nicotinic receptor antagonist mecamylamine. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:957-64. [PMID: 23757602 PMCID: PMC3734504 DOI: 10.1289/ehp.1306611] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/07/2013] [Indexed: 05/10/2023]
Abstract
BACKGROUND Cigarette smoke (CS) exposure during gestation may increase the risk of bronchopulmonary dysplasia (BPD)-a developmental lung condition primarily seen in neonates that is characterized by hypoalveolarization, decreased angiogenesis, and diminished surfactant protein production and may increase the risk of chronic obstructive pulmonary disease. OBJECTIVE We investigated whether gestational exposure to secondhand CS (SS) induced BPD and sought to ascertain the role of nicotinic acetylcholine receptors (nAChRs) in this response. METHODS We exposed BALB/c and C57BL/6 mice to filtered air (control) or SS throughout the gestation period or postnatally up to 10 weeks. Lungs were examined at 7 days, 10 weeks, and 8 months after birth. RESULTS Gestational but not postnatal exposure to SS caused a typical BPD-like condition: suppressed angiogenesis [decreased vascular endothelial growth factor (VEGF), VEGF receptor, and CD34/CD31 (hematopoietic progenitor cell marker/endothelial cell marker)], irreversible hypoalveolarization, and significantly decreased levels of Clara cells, Clara cell secretory protein, and surfactant proteins B and C, without affecting airway ciliated cells. Importantly, concomitant exposure to SS and the nAChR antagonist mecamylamine during gestation blocked the development of BPD. CONCLUSIONS Gestational exposure to SS irreversibly disrupts lung development leading to a BPD-like condition with hypoalveolarization, decreased angiogenesis, and diminished lung secretory function. Nicotinic receptors are critical in the induction of gestational SS-induced BPD, and the use of nAChR antagonists during pregnancy may block CS-induced BPD.
Collapse
Affiliation(s)
- Shashi P Singh
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Derscheid RJ, Ackermann MR. The Innate Immune System of the Perinatal Lung and Responses to Respiratory Syncytial Virus Infection. Vet Pathol 2013; 50:827-41. [DOI: 10.1177/0300985813480216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The response of the preterm and newborn lung to airborne pathogens, particles, and other insults is initially dependent on innate immune responses since adaptive responses may not fully mature and require weeks for sufficient responses to antigenic stimuli. Foreign material and microbial agents trigger soluble, cell surface, and cytoplasmic receptors that activate signaling cascades that invoke release of surfactant proteins, defensins, interferons, lactoferrin, oxidative products, and other innate immune substances that have antimicrobial activity, which can also influence adaptive responses. For viral infections such as respiratory syncytial virus (RSV), the pulmonary innate immune responses has an essential role in defense as there are no fully effective vaccines or therapies for RSV infections of humans and reinfections are common. Understanding the innate immune response by the preterm and newborn lung may lead to preventive strategies and more effective therapeutic regimens.
Collapse
Affiliation(s)
- R. J. Derscheid
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - M. R. Ackermann
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
32
|
A Relationship between Epithelial Maturation, Bronchopulmonary Dysplasia, and Chronic Obstructive Pulmonary Disease. Pulm Med 2012; 2012:196194. [PMID: 23320163 PMCID: PMC3540891 DOI: 10.1155/2012/196194] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 11/17/2022] Open
Abstract
Premature infants frequently develop bronchopulmonary dysplasia (BPD). Lung immaturity and impaired epithelial differentiation contribute together with invasive oxygen treatment to BPD onset and disease progression. Substantial evidence suggests that prematurity is associated with long term pulmonary consequences. Moreover, there is increasing concern that lung immaturity at birth may increase the risk of developing chronic obstructive pulmonary disease (COPD). The mechanisms contributing to this phenomenon remains unknown, largely as a consequence of inadequate experimental models and clinical follow-up studies. Recent evidence suggests that defective transcriptional regulation of epithelial differentiation and maturation may contribute to BPD pathogenesis as well as early onset of COPD. The transcriptional regulators CCAAT/enhancer-binding protein (C/EBP)α and C/EBPβ, SMAD family member (Smad)3, GATA binding protein (GATA)6, and NK2 homeobox (NKX)2-1 are reported to be involved in processes contributing to pathogenesis of both BPD and COPD. Increased knowledge of the mechanisms contributing to early onset COPD among BPD survivors could translate into improved treatment strategies and reduced frequency of respiratory disorders among adult survivors of BPD. In this paper, we introduce critical transcriptional regulators in epithelial differentiation and summarize the current knowledge on the contribution of impaired epithelial maturation to the pathogenesis of inflammatory lung disorders.
Collapse
|
33
|
Löfqvist C, Hellgren G, Niklasson A, Engström E, Ley D, Hansen‐Pupp I. Low postnatal serum IGF-I levels are associated with bronchopulmonary dysplasia (BPD). Acta Paediatr 2012; 101:1211-6. [PMID: 22924869 PMCID: PMC3569611 DOI: 10.1111/j.1651-2227.2012.02826.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Aim: To characterize postnatal changes in serum insulin-like growth factor-1 (IGF-I) in relation to development of bronchopulmonary dysplasia (BPD) in very preterm infants. Methods: Longitudinal study of 108 infants with mean (SD) gestational age (GA) 27.2 (2.2) weeks. Weekly serum samples of IGF-I were analysed from birth until postmenstrual age (PMA) 36 weeks. Multivariate models were developed to identify independent predictors of BPD. Results: Postnatal mean IGF-I levels at postnatal day (PND) 3–21 were lower in infants with BPD compared with infants with no BPD (16 vs. 26 μg/L, p < 0.001). Longitudinal postnatal change in IGF-I levels (IGF-I regression coefficient (β)), PNDs 3–21, was lower in infants with BPD compared with infants with no BPD (0.28 vs. 0.97, p = 0.002) and mean IGF-I during PMA 30–33 weeks was lower in infants with BPD as compared with infants without BPD (22 vs. 29 μg/L, p < 0.001). In a binomial multiple regression model, lower GA, male gender and lower mean serum IGF-I levels during PND 3–21 were the most predictive risk factors associated with BPD (r2 = 0.634, p < 0.001). Conclusion: Lower IGF-I concentrations during the first weeks after very preterm birth are associated with later development of BPD.
Collapse
Affiliation(s)
- Chatarina Löfqvist
- .Department of Ophthalmology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Gunnel Hellgren
- .Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Aimon Niklasson
- .Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Eva Engström
- .Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - David Ley
- .Division of Pediatrics, Department of Clinical Sciences Lund, Lund University Hospital, Lund, Sweden
| | - Ingrid Hansen‐Pupp
- .Division of Pediatrics, Department of Clinical Sciences Lund, Lund University Hospital, Lund, Sweden
| | | |
Collapse
|
34
|
Alphonse RS, Rajabali S, Thébaud B. Lung injury in preterm neonates: the role and therapeutic potential of stem cells. Antioxid Redox Signal 2012; 17:1013-40. [PMID: 22400813 DOI: 10.1089/ars.2011.4267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Continuous improvements in perinatal care have allowed the survival of ever more premature infants, making the task of protecting the extremely immature lung from injury increasingly challenging. Premature infants at risk of developing chronic lung disease or bronchopulmonary dysplasia (BPD) are now born at the late canalicular stage of lung development, just when the airways become juxtaposed to the lung vasculature and when gas-exchange becomes possible. Readily available strategies, including improved antenatal management (education, regionalization, steroids, and antibiotics), together with exogenous surfactant and exclusive/early noninvasive ventilatory support, will likely decrease the incidence/severity of BPD over the next few years. Nonetheless, because of the extreme immaturity of the developing lung, the extent to which disruption of lung growth after prematurity and neonatal management lead to an earlier or more aggravated decline in respiratory function in later life is a matter of concern. Consequently, much more needs to be learned about the mechanisms of lung development, injury, and repair. Recent insight into stem cell biology has sparked interest for stem cells to repair damaged organs. This review summarizes the exciting potential of stem cell-based therapies for lung diseases in general and BPD in particular.
Collapse
|
35
|
Jelliffe-Pawlowski LL, Shaw GM, Stevenson DK, Oehlert JW, Quaintance C, Santos AJ, Baer RJ, Currier RJ, O’Brodovich HM, Gould JB. Risk of bronchopulmonary dysplasia by second-trimester maternal serum levels of α-fetoprotein, human chorionic gonadotropin, and unconjugated estriol. Pediatr Res 2012; 71:399-406. [PMID: 22391642 PMCID: PMC3616500 DOI: 10.1038/pr.2011.73] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Although maternal serum α-fetoprotein (AFP), human chorionic gonandotropin (hCG), and estriol play important roles in immunomodulation and immunoregulation during pregnancy, their relationship with the development of bronchopulmonary dysplasia (BPD) in young infants is unknown despite BPD being associated with pre- and postnatal inflammatory factors. RESULTS We found that these serum biomarkers were associated with an increased risk of BPD. Risks were especially high when AFP and/or hCG levels were above the 95th percentile and/or when unconjugated estriol (uE3) levels were below the 5th percentile (relative risks (RRs) 3.1-6.7). Risks increased substantially when two or more biomarker risks were present (RRs 9.9-75.9). DISCUSSION Data suggested that pregnancies that had a biomarker risk and yielded an offspring with BPD were more likely to have other factors present that suggested early intrauterine fetal adaptation to stress, including maternal hypertension and asymmetric growth restriction. METHODS The objective of this population-based study was to examine whether second-trimester levels of AFP, hCG, and uE3 were associated with an increased risk of BPD.
Collapse
Affiliation(s)
- Laura L. Jelliffe-Pawlowski
- Genetic Disease Screening Program [L.L.J, R.J.B., R.J.C], California Department of Public Health, Richmond, CA, 94804, USA;
| | - Gary M. Shaw
- Department of Pediatrics [G.M.S., D.K.S, J.W.O., C.Q., A.J.S, H.M.O, J.B.G.], Stanford University School of Medicine, Palo Alto, CA, 94305, USA;
| | - David K. Stevenson
- Department of Pediatrics [G.M.S., D.K.S, J.W.O., C.Q., A.J.S, H.M.O, J.B.G.], Stanford University School of Medicine, Palo Alto, CA, 94305, USA;
| | - John W. Oehlert
- Department of Pediatrics [G.M.S., D.K.S, J.W.O., C.Q., A.J.S, H.M.O, J.B.G.], Stanford University School of Medicine, Palo Alto, CA, 94305, USA;
| | - Cele Quaintance
- Department of Pediatrics [G.M.S., D.K.S, J.W.O., C.Q., A.J.S, H.M.O, J.B.G.], Stanford University School of Medicine, Palo Alto, CA, 94305, USA;
| | - Allan J. Santos
- Department of Pediatrics [G.M.S., D.K.S, J.W.O., C.Q., A.J.S, H.M.O, J.B.G.], Stanford University School of Medicine, Palo Alto, CA, 94305, USA;
| | - Rebecca J. Baer
- Genetic Disease Screening Program [L.L.J, R.J.B., R.J.C], California Department of Public Health, Richmond, CA, 94804, USA;
| | - Robert J. Currier
- Genetic Disease Screening Program [L.L.J, R.J.B., R.J.C], California Department of Public Health, Richmond, CA, 94804, USA;
| | - Hugh M. O’Brodovich
- Department of Pediatrics [G.M.S., D.K.S, J.W.O., C.Q., A.J.S, H.M.O, J.B.G.], Stanford University School of Medicine, Palo Alto, CA, 94305, USA;
| | - Jeffrey B. Gould
- Department of Pediatrics [G.M.S., D.K.S, J.W.O., C.Q., A.J.S, H.M.O, J.B.G.], Stanford University School of Medicine, Palo Alto, CA, 94305, USA;
| |
Collapse
|
36
|
Roos AB, Berg T, Barton JL, Didon L, Nord M. Airway epithelial cell differentiation during lung organogenesis requires C/EBPα and C/EBPβ. Dev Dyn 2012; 241:911-23. [PMID: 22411169 DOI: 10.1002/dvdy.23773] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND CCAAT/enhancer-binding protein (C/EBP)α is crucial for lung development and differentiation of the pulmonary epithelium. Conversely, no lung defects have been observed in C/EBPβ-deficient mice, although C/EBPβ trans-activate pulmonary genes by binding to virtually identical DNA-sequences as C/EBPα. Thus, the pulmonary phenotype of mice lacking C/EBPβ could be explained by functional replacement with C/EBPα. We investigated whether C/EBPα and C/EBPβ have overlapping functions in regulating lung epithelial differentiation during organogenesis. Epithelial differentiation was assessed in mice with a lung epithelial-specific (SFTPC-Cre-mediated) deletion of C/EBPα (Cebpa(ΔLE) ), C/EBPβ (Cebpb(ΔLE) ), or both genes (Cebpa(ΔLE) ; Cebpb(ΔLE) ). RESULTS Both Cebpa(ΔLE) mice and Cebpa(ΔLE) ; Cebpb(ΔLE) mice demonstrated severe pulmonary immaturity compared to wild-type littermates, while no differences in lung histology or epithelial differentiation were observed in Cebpb(ΔLE) mice. In contrast to Cebpa(ΔLE) mice, Cebpa(ΔLE) ; Cebpb(ΔLE) mice also displayed undifferentiated Clara cells with markedly impaired protein and mRNA expression of Clara cell secretory protein (SCGB1A1), compared to wild-type littermates. In addition, ectopic mucus-producing cells were observed in the conducting airways of Cebpa(ΔLE) ; Cebpb(ΔLE) mice. CONCLUSIONS Our findings demonstrate that C/EBPα and C/EBPβ play pivotal, and partly overlapping roles in determining airway epithelial differentiation, with possible implications for tissue regeneration in lung homeostasis and disease.
Collapse
Affiliation(s)
- Abraham B Roos
- Department of Medicine, Respiratory Medicine Unit, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
37
|
Hackett NR, Butler MW, Shaykhiev R, Salit J, Omberg L, Rodriguez-Flores JL, Mezey JG, Strulovici-Barel Y, Wang G, Didon L, Crystal RG. RNA-Seq quantification of the human small airway epithelium transcriptome. BMC Genomics 2012; 13:82. [PMID: 22375630 PMCID: PMC3337229 DOI: 10.1186/1471-2164-13-82] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/29/2012] [Indexed: 01/04/2023] Open
Abstract
Background The small airway epithelium (SAE), the cell population that covers the human airway surface from the 6th generation of airway branching to the alveoli, is the major site of lung disease caused by smoking. The focus of this study is to provide quantitative assessment of the SAE transcriptome in the resting state and in response to chronic cigarette smoking using massive parallel mRNA sequencing (RNA-Seq). Results The data demonstrate that 48% of SAE expressed genes are ubiquitous, shared with many tissues, with 52% enriched in this cell population. The most highly expressed gene, SCGB1A1, is characteristic of Clara cells, the cell type unique to the human SAE. Among other genes expressed by the SAE are those related to Clara cell differentiation, secretory mucosal defense, and mucociliary differentiation. The high sensitivity of RNA-Seq permitted quantification of gene expression related to infrequent cell populations such as neuroendocrine cells and epithelial stem/progenitor cells. Quantification of the absolute smoking-induced changes in SAE gene expression revealed that, compared to ubiquitous genes, more SAE-enriched genes responded to smoking with up-regulation, and those with the highest basal expression levels showed most dramatic changes. Smoking had no effect on SAE gene splicing, but was associated with a shift in molecular pattern from Clara cell-associated towards the mucus-secreting cell differentiation pathway with multiple features of cancer-associated molecular phenotype. Conclusions These observations provide insights into the unique biology of human SAE by providing quantit-ative assessment of the global transcriptome under physiological conditions and in response to the stress of chronic cigarette smoking.
Collapse
Affiliation(s)
- Neil R Hackett
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Loughran-Fowlds AS, Lin JW, Oei J, Michalowski J, Henry R, Lui K. Early postnatal surge of serum Clara cell secretory protein in newborn infants. Neonatology 2012; 101:125-31. [PMID: 21952535 DOI: 10.1159/000329557] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 05/24/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Clara cell secretory protein (CCSP) is an anti-inflammatory mediator, but its role in neonatal lung adaptation and diseases is uncertain. OBJECTIVE To characterize postnatal changes in serum CCSP in relation to gestation, respiratory disease (RDS) and bronchopulmonary dysplasia (BPD) in comparison with other anti-inflammatory cytokines (IL-4, -10 and -13). METHODS Blood was collected from 76 infants (26 of 23-29 weeks' gestation, 33 of 30-36 weeks' gestation and 17 term infants) at birth (preterm cord blood); on admission; at 12, 24 and 48 h; and on days 3-4 and 7 of life. CCSP was assayed by ELISA and cytokines by Bio-Plex. RESULTS Median serum CCSP in extremely and moderately preterm infants rose from a baseline of 13.6 and 15.9 to 33.4 ng/ml (p = 0.04) and 59.8 ng/ml (p = 0.03) at 12 h of age, respectively. CCSP levels were highest in term infants (80.7 ng/ml at 12 h). CCSP then decreased to 22.5 ng/ml on days 3-4 (p = 0.001). CCSP of 37 RDS infants fell to a lower baseline on days 4 and 7 than that of the 22 non-RDS preterms. The 8 infants who developed BPD had persistently low serum CCSP (12.7 ng/ml at 12 h). In contrast, early postnatal changes were not seen in IL-4, -10 and -13 levels, but low IL-10 and -13 levels were found on day 7 in BPD infants. CONCLUSIONS Serum CCSP levels were characterized by an early postnatal surge. This apparent gestation-influenced surge may represent an initiation of a protective cascade against postnatal lung injury during extrauterine adaptation.
Collapse
Affiliation(s)
- A S Loughran-Fowlds
- Leslie Stevens Newborn Research Laboratory, Royal Hospital for Women, Randwick, NSW, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Stichel H, Bäckström E, Hafström O, Nilsson S, Lappalainen U, Bry K. Inflammatory cytokines in gastric fluid at birth and the development of bronchopulmonary dysplasia. Acta Paediatr 2011; 100:1206-12. [PMID: 21438921 DOI: 10.1111/j.1651-2227.2011.02286.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To assess whether the levels of inflammatory and anti-inflammatory proteins in gastric fluid of premature infants shortly after birth are associated with the development of bronchopulmonary dysplasia (BPD). METHODS Gastric fluid retrieved within 1 h of birth of premature infants (gestational age <29 weeks) was analysed for interleukin (IL)-8, growth-related oncogene (Gro)-α, epithelial cell-derived neutrophil-activating peptide (ENA)-78, IL-1β and Clara cell secretory protein with ELISA. RESULTS Of 51 enrolled infants, 86% had BPD. Of these, 54% had mild BPD, 30% had moderate BPD and 16% had severe BPD. Clinical chorioamnionitis was associated with high levels of IL-8, Gro-α, Epithelial cell-derived neutrophil-activating peptide-78 (ENA-78) and IL-1β in gastric fluid. Gastric fluid levels of IL-8, Gro-α, ENA-78 and IL-1β were higher in infants with moderate or severe BPD than in those with no or mild BPD. Ligation of the patent ductus arteriosus was associated with the development of moderate or severe BPD. These associations were no longer significant after adjustment for gestational age. CONCLUSION The levels of inflammatory mediators in gastric fluid samples retrieved soon after birth from intubated or nonintubated infants can be used to assess the infants' perinatal exposure to inflammatory mediators and its association with neonatal outcome.
Collapse
Affiliation(s)
- H Stichel
- Division of Neonatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
40
|
Wright CJ, Kirpalani H. Targeting inflammation to prevent bronchopulmonary dysplasia: can new insights be translated into therapies? Pediatrics 2011; 128:111-26. [PMID: 21646264 PMCID: PMC3124103 DOI: 10.1542/peds.2010-3875] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) frequently complicates preterm birth and leads to significant long-term morbidity. Unfortunately, few therapies are known to effectively prevent or treat BPD. Ongoing research has been focusing on potential therapies to limit inflammation in the preterm lung. In this review we highlight recent bench and clinical research aimed at understanding the role of inflammation in the pathogenesis of BPD. We also critically assess currently used therapies and promising developments in the field.
Collapse
Affiliation(s)
- Clyde J. Wright
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; ,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; and
| | - Haresh Kirpalani
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; ,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; and ,Department of Clinical Epidemiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
41
|
Abdel‐Latif ME, Osborn DA, Cochrane Neonatal Group. Intratracheal Clara cell secretory protein (CCSP) administration in preterm infants with or at risk of respiratory distress syndrome. Cochrane Database Syst Rev 2011; 2011:CD008308. [PMID: 21563168 PMCID: PMC6464311 DOI: 10.1002/14651858.cd008308.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Clara cell secretary protein (CCSP) is an immune-modulating and anti-inflammatory agent. CCSP is available synthetically as recombinant human Clara cell protein (rhCC10). It has been shown in animal models to reduce lung injury, improve pulmonary compliance and oxygenation, decrease systemic inflammation and up-regulate surfactant protein and vascular endothelial growth factor expression. These properties makes intratracheally administered CCSP a potential agent in prevention of chronic lung disease (CLD). OBJECTIVES To determine the effect of intratracheal CCSP administration compared to placebo or no treatment on morbidity and mortality in preterm infants with or at risk of respiratory distress syndrome (RDS). SEARCH STRATEGY We searched CENTRAL (The Cochrane Library, October 2010), MEDLINE and PREMEDLINE (1950 to October 2010), EMBASE (1980 to October 2010) and CINAHL (1982 to October 2010). We searched proceedings of scientific meetings, Google Scholar and reference lists of identified studies, and contacted expert informants and surfactant manufacturers. SELECTION CRITERIA Published, unpublished and ongoing randomised controlled, cluster-randomised or quasi-randomised trials of intratracheal CCSP administration, compared to placebo or no treatment on morbidity and mortality in preterm infants at risk of RDS. DATA COLLECTION AND ANALYSIS Two authors independently assessed studies for eligibility and quality, and extracted data. MAIN RESULTS One pilot study was identified and included. This study enrolled 22 preterm infants 700 to 1300g with established RDS who required ventilation for surfactant administration. Infants received one intratracheal dose of placebo (n = 7), 1.5 mg/kg (n = 8) or 5 mg/kg (n = 7) rhCC10 within four hours of surfactant treatment. At either dose of rhCC10, no significant difference was reported in CLD (36 weeks postmenstrual age or 28 days), mortality, intraventricular haemorrhage, periventricular leukomalacia, patent ductus arteriosus, necrotising enterocolitis, sepsis or days supplemental oxygen compared to placebo. A significant increase in days mechanical ventilation was reported for infants receiving rhCC10 5mg/kg (mean difference 12.00, 95% confidence interval 0.39 to 23.61) but not at the lower dose. The study reported that a single intratracheal dose of rhCC10 was well tolerated and resulted in a significant reduction in tracheal aspirate neutrophil and total cell count, and lung protein concentration. There was no significant difference reported in tracheal aspirate cytokine levels between groups. AUTHORS' CONCLUSIONS There are insufficient data to determine the role of rhCC10 in clinical practice. Further studies are required to determine if rhCC10 reduces lung inflammation in infants at risk of CLD, and to determine dose and dosing strategy.
Collapse
Affiliation(s)
- Mohamed E Abdel‐Latif
- Australian National UniversityDiscipline of Neonatology, Medical School, College of Medicine, Biology & Environment54 Mills RoadActon, CanberraACTAustralia2601
- Centenary Hospital for Women and Children, Canberra HospitalDepartment of NeonatologyBuilding 11, Level 2, 77 Yamba DriveGarranACTAustralia2605
| | - David A Osborn
- University of SydneyCentral Clinical School, Discipline of Obstetrics, Gynaecology and NeonatologySydneyNSWAustralia2050
| | | |
Collapse
|
42
|
Secretory phospholipase A₂ pathway during pediatric acute respiratory distress syndrome: a preliminary study. Pediatr Crit Care Med 2011; 12:e20-4. [PMID: 20351613 DOI: 10.1097/pcc.0b013e3181dbe95e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To verify if secretory phospholipase A2 (sPLA2) is increased in pediatric acute respiratory distress syndrome (ARDS) triggered or not by respiratory syncytial virus infection and to clarify how the enzyme may influence the disease severity and the degree of ventilatory support. DESIGN Prospective pilot study. SETTING Two academic pediatric intensive care units. PATIENTS All infants < 6 months old hospitalized for severe respiratory syncytial virus bronchiolitis, who developed ARDS (respiratory syncytial virus-ARDS group); all infants < 6 months old diagnosed with ARDS secondary to other causes (ARDS group); and infants < 6 months old who needed ventilation for reasons other than any lung disease (control group). INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We enrolled six respiratory syncytial virus -ARDS babies, five ARDS babies, and six control infants. The sPLA2 activity and tumor necrosis factor (TNF)-α were significantly higher in the bronchoalveolar lavage of ARDS infants. Worst oxygenation, ventilation, and longer pediatric intensive care unit stay and ventilation time were present in ARDS babies. No differences were found in Clara cell secretory protein and in serum cytokines levels. Because there is no correlation between bronchoalveolar lavage protein content (a marker of permeability) and sPLA2, the enzyme seems mainly produced in the alveoli. TNF-α, the main inductor of sPLA2 expression, significantly correlates with the enzyme level in the bronchoalveolar lavage. Significant positive correlations exist between sPLA2, TNF-α and oxygen need, mean airway pressure, ventilatory index, and the Murray's lung injury score. Negative correlations were also found between sPLA2, TNF-α, and Pao2/Fio2 ratio. CONCLUSIONS The sPLA2 and TNF-α are increased in ARDS and seem correlated with clinical severity, higher oxygen requirement, and more aggressive ventilation. This correlation confirms findings from adult experience and should guide further investigations on pediatric ARDS pathophysiology.
Collapse
|
43
|
Coppens JT, Plopper CG, Murphy SR, Van Winkle LS. Postnatal lung development of rhesus monkey airways: cellular expression of Clara cell secretory protein. Dev Dyn 2010; 238:3016-24. [PMID: 19877270 DOI: 10.1002/dvdy.22132] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Clara cell secretory protein (CCSP) is a protective lung protein that is believed to have antioxidant, immunomodulatory, and anticarcinogenic properties. Evidence suggests that CCSP is involved in mitigating many lung disease states during development including asthma. This study's rationale is to define the distribution and abundance of CCSP in the airway epithelium of the rhesus monkey during postnatal lung development using carefully controlled site-specific morphometric approaches in defined airway regions. Immunoreactive CCSP was found in nonciliated cells and mucous cells, including glands, throughout the airway epithelium at all ages, with proximal and mid-level airways having the highest labeling. Overall airway CCSP levels were low at 1 week and 1 month, doubled between 1 and 3 months, and changed little from 3 months to 3 years. Thus, the critical developmental window for CCSP expression to reach adult levels in the rhesus conducting airways occurs between 1 and 3 months of age.
Collapse
Affiliation(s)
- John T Coppens
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
44
|
Abstract
For nearly 100 y, pediatricians have regularly used oxygen to treat neonatal and childhood diseases. During this time, it has become clear that oxygen is toxic and that overzealous use can lead to significant morbidity. As we have learned more about the appropriate clinical indications for oxygen therapy, studies at the bench have begun to elucidate the molecular mechanisms by which cells respond to hyperoxia. In this review, we discuss transcription factors whose activity is regulated by oxygen, including nuclear factor, erythroid 2-related factor 2 (Nrf2), activator protein 1 (AP-1), p53, nuclear factor kappaB (NF-kappaB), signal transducers and activators of transcription protein (STAT), and ccat/enhancer binding protein (CEBP). Special attention is paid to the mechanisms by which hyperoxia affects these transcription factors in the lung. Finally, we identify downstream targets of these transcription factors, with a focus on heme oxygenase-1. A better understanding of how oxygen affects various signaling pathways could lead to interventions aimed at preventing hyperoxic injury.
Collapse
Affiliation(s)
- Clyde J Wright
- Division of Neonatology, Children's Hospital of Philadelphia, 34th and Civic Center Blvd., Philadelphia, PA 19104, USA
| | | |
Collapse
|
45
|
Abstract
Bronchopulmonary dysplasia is a chronic lung disease associated with premature birth and characterized by early lung injury. In this review we discuss some pitfalls, problems, and progress in this condition over the last decade, focusing mainly on the last 5 years, limited to studies in human neonates. Changes in the definition, pathogenesis, genetic susceptibility, and recent biomarkers associated with bronchopulmonary dysplasia will be discussed. Progress in current management strategies, along with novel approaches/therapies, will be critically appraised. Finally, recent data on long-term pulmonary and neurodevelopmental outcomes of infants with bronchopulmonary dysplasia will be summarized.
Collapse
Affiliation(s)
- Anita Bhandari
- Division of Pediatric Pulmonology, Connecticut Children's Medical Center, Hartford, Connecticut, USA
| | | |
Collapse
|
46
|
Clara cell secretory protein and bronchopulmonary dysplasia in prematurely born infants. Eur J Pediatr 2008; 167:1347-8. [PMID: 18496712 DOI: 10.1007/s00431-008-0746-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 04/16/2008] [Indexed: 10/22/2022]
|
47
|
Cord blood Clara cell protein CC16 predicts the development of bronchopulmonary dysplasia. Eur J Pediatr 2008; 167:1305-12. [PMID: 18521627 DOI: 10.1007/s00431-008-0713-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 03/05/2008] [Indexed: 11/26/2022]
Abstract
Clara cell protein (CC16) is an anti-inflammatory protein and a biomarker of pulmonary epithelial cells and alveolocapillary membrane injury in adults. We investigated whether low cord blood concentrations of CC16 are associated with the development of respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD) in preterm infants and the relationship between CC16 and its pro-inflammatory counterpart, the secretory phospholipase A(2) (sPLA(2)) enzyme. CC16 concentration, sPLA(2) activity and IL-6 concentration were measured in cord blood plasma from 79 preterm infants (25 controls, 37 infants who developed RDS and 17 infants who developed BPD). After adjustment for gestational age and Apgar score at 5 min, the CC16 concentration was lower in BPD infants than in preterm controls (p<0.01). sPLA(2) activity was similar in all groups and the IL-6 concentrations were increased in both RDS and BPD infants (p<0.01 and p<0.05, respectively, vs. controls). We conclude that low cord blood CC16 concentrations in preterm infants independently predict the development of BPD. Low CC16 levels may reflect early lung injury, which contributes to the severity of RDS and progress towards BPD. Future studies are needed to assess whether the early administration of recombinant human CC16 in preterm infants with low cord blood CC16 prevents the development of BPD.
Collapse
|
48
|
Abstract
Bronchopulmonary dysplasia, or BPD, is a chronic pulmonary disorder of premature infants, commonly defined as having an oxygen requirement at 36 weeks postmenstrual age. It is an important source of morbidity and mortality in premature neonates. Its' etiology appears to be multifactorial with the most common associations being prematurity, need for mechanical ventilation, and oxygen exposure. Implied in the pathogenesis of BPD is the role of cytokines which are immune mediators produced by most cell types. This is evidenced by studies in which there exist alterations in the levels of "pro-inflammatory" and "anti-inflammatory" cytokines. The imbalance of these cytokines have either heralded the onset or predicted the presence of BPD, or indicated a decreased propensity to developing this chronic respiratory disorder of preterm infants. Many other pulmonary markers have been shown to be altered in patients with BPD. These include markers indicative of altered lung repair processes, decreased endothelial integrity, oxidative damage and abnormal fibrinolytic activity, all of which are thought to be mechanisms contributing to the development of BPD.In this review, we will discuss the physiologic role of specific biomarkers in the pulmonary tract of the human premature neonate, the perturbations that enable them to be deranged, and their proposed association with BPD.
Collapse
Affiliation(s)
- Alecia Thompson
- Department of Pediatrics, Division of Perinatal Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Vineet Bhandari
- Department of Pediatrics, Division of Perinatal Medicine, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
49
|
Loughran-Fowlds A, Oei J, Wang H, Xu H, Wimalasundera N, Egan C, Henry R, Lui K. The influence of gestation and mechanical ventilation on serum clara cell secretory protein (CC10) concentrations in ventilated and nonventilated newborn infants. Pediatr Res 2006; 60:103-8. [PMID: 16690962 DOI: 10.1203/01.pdr.0000219388.56608.77] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Clara cell secretory protein (CC10) is an important anti-inflammatory mediator in the adult lung, but its role in newborn pulmonary protection is uncertain. We examined the early postnatal behavior of CC10 in newborn serum and tracheal fluid and hypothesized that CC10 production is positively influenced by gestation. Blood from 165 infants from the first, third/fourth, and seventh days of life (gestational ages: 23-29 wk, 30-36 wk, >36 wk) and tracheal fluid (TF) from the first day of life from 32 ventilated infants were analyzed for CC10. Surfactant proteins A (SPA) and B (SPB) were also analyzed from the blood of a subgroup of infants. Serum CC10 on day 1 was highest in term infants (69.4 ng/mL), followed by moderately preterm (55.8 ng/mL), and then extremely preterm infants (median 42.1 ng/mL). Term infants also had higher tracheal fluid CC10 than preterm infants. (20.152 ng/mL versus 882 ng/mL). Mechanical ventilation increased serum CC10 only in moderately preterm infants, and only on d 1 [68.4 ng/mL versus 42.1 ng/mL (nonventilated moderately preterm infants)]. Serum CC10 decreased progressively by the end of the first week in all infants, in contrast to SPA and SPB, which increased. Our results show that CC10 is detectable in the blood of newborn infants and that a production surge occurs at birth. This surge is more pronounced in term infants and may confer them with superior extrauterine pulmonary protection compared with preterm infants.
Collapse
|
50
|
Shashikant BN, Miller TL, Welch RW, Pilon AL, Shaffer TH, Wolfson MR. Dose response to rhCC10-augmented surfactant therapy in a lamb model of infant respiratory distress syndrome: physiological, inflammatory, and kinetic profiles. J Appl Physiol (1985) 2005; 99:2204-11. [PMID: 16081627 DOI: 10.1152/japplphysiol.00246.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
While surfactant (SF) therapy alone improves respiratory distress syndrome (RDS)-associated gas exchange and lung stability, absence of anti-inflammatory proteins limits efficacy with respect to inflammation. Clara cell secretory protein (CC10), deficient in preterm infants, prevents SF degradation and has anti-inflammatory properties. In this study, intratracheal recombinant human (rh) CC10 (Claragen)-augmented SF (Survanta, Ross) therapy was examined in a premature lamb model of RDS with respect to inflammation and kinetic dose-response profiles. Preterm lambs (n = 24; gestational age: 126 +/- 3 days) were delivered via cesarean section, sedated, ventilated, and randomized into groups: 100 mg/kg SF, 100 mg/kg SF followed by 0.5 mg/kg rhCC10, 100 mg/kg SF followed by 1.5 mg/kg rhCC10, and 100 mg/kg SF followed by 5.0 mg/kg rhCC10. Arterial blood chemistry and lung mechanics were monitored; lungs were lavaged and snap-frozen after 4 h. TNF-alpha, IL-8 in plasma; TNF-alpha, IL-6, IL-8, myeloperoxidase in lung; and rhCC10 in plasma, urine, bronchoalveolar lavage, and lung were analyzed. Improvement in compliance, peak inspiratory pressure, and ventilatory efficiency index were greatest (P < 0.05) with SF + 5.0 mg/kg rhCC10. Plasma, urine, bronchoalveolar lavage, and lung [rhCC10] (where brackets denote concentration) increased (P < 0.01) with dose. Plasma [IL-8] was lower (P < 0.05) with rhCC10 than SF alone. Treatment with at least 1.5 mg/kg rhCC10 resulted in lower (P < 0.05) lung [TNF-alpha], [IL-8], and [myeloperoxidase]; SF + 1.5 mg/kg rhCC10 group had lower (P < 0.05) lung [IL-6], compared with all other groups. Compared with SF alone, SF augmented with at least 1.5 mg/kg rhCC10 decreased RDS-induced lung and systemic inflammation. Given that inflammation may lead to functional compromise, these data suggest that early intervention with rhCC10 may enhance SF therapy and warrant longer duration studies to determine its role to decrease long-term complications of ventilator management.
Collapse
Affiliation(s)
- Beth N Shashikant
- Dept. of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|