1
|
Gruccio P, Girard WS, Badipour AD, Kakande R, Adejayan V, Zulfiqar M, Ndyomugabe M, Ojuman P, Heysell SK, Null M, Sturek J, Thomas T, Mpagama S, Muzoora C, Otoupalova E, Nuwagira E, Moore CC. A narrative review of the pathophysiology of sepsis in sub-Saharan Africa: Exploring the potential for corticosteroid therapy. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0004429. [PMID: 40202999 PMCID: PMC11981229 DOI: 10.1371/journal.pgph.0004429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Sepsis remains a significant global health threat with a disproportionate burden in low-income countries including those in sub-Saharan Africa where case fatality rates are as high as 30% to 50%. Defined as a severe systemic response to infection, sepsis leads to widespread immune dysregulation and organ dysfunction, including adrenal insufficiency. Critical illness-related corticosteroid insufficiency (CIRCI) arises from dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, altered cortisol metabolism, and tissue resistance to glucocorticoids, all of which can occur during sepsis. Clinical trials of corticosteroids for the treatment of patients with sepsis and septic shock have shown improvements in shock reversal, and in some studies, patient survival; however, their role in the treatment of sepsis in sub-Saharan Africa is unknown. The incidence of sepsis in sub-Saharan Africa is compounded by high rates of human immunodeficiency virus (HIV) and co-infections, including tuberculosis (TB), which is the leading cause of sepsis. Both HIV and TB can cause immune dysregulation and adrenal insufficiency, which may exacerbate CIRCI and prolong shock. Existing sepsis research has been predominantly conducted in high-income countries and has largely excluded people living with HIV or TB. Therefore, there is a need to better understand sepsis and CIRCI pathophysiology in the context of specific regional host and pathogen characteristics. In this narrative review, we explored the pathophysiology of sepsis in sub-Saharan Africa including the existing literature on the immune response to sepsis and the prevalence of adrenal insufficiency in patients with HIV and TB, with a focus on the implications for corticosteroid management. We found a compelling need to further evaluate corticosteroids for the treatment of sepsis in Africa.
Collapse
Affiliation(s)
- Phoebe Gruccio
- Division of Infectious Diseases, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - William S. Girard
- Division of Infectious Diseases, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Amelia D. Badipour
- Division of Infectious Diseases, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Reagan Kakande
- Department of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Victor Adejayan
- Division of Infectious Diseases, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Muhammad Zulfiqar
- Division of Infectious Diseases, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael Ndyomugabe
- Department of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Philemon Ojuman
- Department of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Scott K. Heysell
- Division of Infectious Diseases, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Megan Null
- Division of Infectious Diseases, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jeffrey Sturek
- Division of Pulmonology and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Tania Thomas
- Division of Infectious Diseases, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Stellah Mpagama
- Department of Medicine, Kibong’oto Infectious Diseases Hospital, Sanya Juu, United Republic of Tanzania,
| | - Conrad Muzoora
- Department of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Eva Otoupalova
- Division of Pulmonology and Critical Care Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Edwin Nuwagira
- Division of Infectious Diseases, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
- Tuberculosis Treatment Unit, Mbarara Regional Referral Hospital, Mbarara, Uganda
| | - Christopher C. Moore
- Division of Infectious Diseases, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
2
|
Shen YZ, Yao YD, Li HL, Li Y, Hu YC. CTSO and HLA-DQA1 as biomarkers in sepsis-associated ARDS: insights from RNA sequencing and immune infiltration analysis. BMC Infect Dis 2025; 25:326. [PMID: 40055592 PMCID: PMC11887161 DOI: 10.1186/s12879-025-10726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/27/2025] [Indexed: 05/13/2025] Open
Abstract
The onset of sepsis frequently coincides with acute respiratory distress syndrome (ARDS), which constitutes a significant contributor to severe acid-base disturbances in septic patients. In the pathogenesis of sepsis, it conducts a crucial role. lysosomal metabolic disorders and immune imbalance conduct a pivotal role. Despite extensive research into the alterations in immune status during sepsis, few studies have been reported to thoroughly examine the association between lysosomes and sepsis. As a result, this study is predominantly Intended to delve into the link between lysosome-related genes and alterations in the lysosome in the immune microenvironment from the standpoint of bioinformatics in sepsis. The Registration Number was ChiCTR1900021261. Registration Date is 2019/02/04. Method Sepsis data source: Sepsis data was collected from previous clinical data and sequencing results (Originated from BGI Shenzhen Co., Ltd.) and the GO database was utilized for data collection of lysosome-related genes. Differential expression genes (DEGs) were screened on clinical sequencing data by employing IDEP 0.93 software subsequent to quality control. Afterwards, enrichment analysis was conducted by adopting Gene Set Enrichment Analysis (GSEA) and Weighted Gene Co expression Network Analysis (WGCNA), followed by cross referencing of lysosomal genes to identify DEGs associated with lysosomes. GO and KEGG pathway analysis wereperformed subsequently. The genes obtained from PLSGs and WGCNA by Creating a PPI network entails the following steps: the points were intersected at first. Afterwards, CytoHubba and MCODE analysis were performed by utilizing cytoscape software. Next, the intersection was taken to confirm Hub gene sequences, and subsequently the central DEGs tightly associated with existing CTD scores. Notwithstanding the fact that the causes of sepsis are multifaceted, ARDS can often trigger the development of sepsis in numerous cases. Simultaneously, with an aim to predict transcription factor levels in the central nervous system, Cytoscape software was adopted DEGs and to find relevant target miRNAs in the miRWalk database, and a correlated regulatory network was established accordingly. The SEPSIS immune infiltration model was constructed by employing ImmuCellAI software. Afterwards, the association between DEGs and immune microenvironment abundance was constructed by adopting Spearman's method. Last but not least, it is worth noting that single-cell sequencing has been validated as a method to analyze hub gene expression in immune cells of sepsis patients, enabling the selection of key genes that are closely associated with predictive outcomes. Result When acute respiratory distress syndrome (ARDS) is present, the differentially expressed genes (DEGs) are implicated in lysosomal metabolism and the regulation of the immune microenvironment. Six hub DEGs were bound up with sepsis or was attributable to the examinations. On top of that, it was determined that the patients had acute respiratory distress syndrome. The associated immune analysis illustrated a remarkable augment in T cell infiltration in the immune microenvironment of sepsis, while the infiltration relative to DC was reduced at certain level. Positive correlations were found between the two by employing Spearman analysis between hub DEGs and the regulatory role of immune cells. Moreover, it was universally acknowledged that anti-inflammatory immune cells were responsible for the negative correlation. On the basis of single-cell sequencing, it has been determined that CTSO and HLA-DQA1 were expressed in immune cells in sepsis. Aside from that, the survival-death curve direction suggested that they could be utilized as core genes for predicting sepsis-related prognosis analysis. Conclusion An analysis of this study demonstrates the interaction between sepsis lysosome-related metabolism and changes by understanding the pathogenesis of immune cells in the microenvironment. On this basis, we can develop new clinical diagnostics and therapeutic approaches of sepsis and identifying drug targets. Nonetheless, ARDS and sepsis can differ simply by the difference in site of infection; as the etiology of numerous ARDS cases is quite complex, progression to sepsis can occur if infection exacerbates or other complications arise, meeting the diagnostic criteria of sepsis 3.0.
Collapse
Affiliation(s)
- Yu Zhou Shen
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Lu Zhou, People's Republic of China
| | - Yan Dong Yao
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Lu Zhou, People's Republic of China
| | - Hai Li Li
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Lu Zhou, People's Republic of China
| | - Yang Li
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Lu Zhou, People's Republic of China
| | - Ying Chun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Lu Zhou, People's Republic of China.
| |
Collapse
|
3
|
Cavaillon JM, Chousterman BG, Skirecki T. Compartmentalization of the inflammatory response during bacterial sepsis and severe COVID-19. JOURNAL OF INTENSIVE MEDICINE 2024; 4:326-340. [PMID: 39035623 PMCID: PMC11258514 DOI: 10.1016/j.jointm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/23/2024]
Abstract
Acute infections cause local and systemic disorders which can lead in the most severe forms to multi-organ failure and eventually to death. The host response to infection encompasses a large spectrum of reactions with a concomitant activation of the so-called inflammatory response aimed at fighting the infectious agent and removing damaged tissues or cells, and the anti-inflammatory response aimed at controlling inflammation and initiating the healing process. Fine-tuning at the local and systemic levels is key to preventing local and remote injury due to immune system activation. Thus, during bacterial sepsis and Coronavirus disease 2019 (COVID-19), concomitant systemic and compartmentalized pro-inflammatory and compensatory anti-inflammatory responses are occurring. Immune cells (e.g., macrophages, neutrophils, natural killer cells, and T-lymphocytes), as well as endothelial cells, differ from one compartment to another and contribute to specific organ responses to sterile and microbial insult. Furthermore, tissue-specific microbiota influences the local and systemic response. A better understanding of the tissue-specific immune status, the organ immunity crosstalk, and the role of specific mediators during sepsis and COVID-19 can foster the development of more accurate biomarkers for better diagnosis and prognosis and help to define appropriate host-targeted treatments and vaccines in the context of precision medicine.
Collapse
Affiliation(s)
| | - Benjamin G. Chousterman
- Department of Anesthesia and Critical Care, Lariboisière University Hospital, DMU Parabol, APHP Nord, Paris, France
- Inserm U942, University of Paris, Paris, France
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
4
|
Cajander S, Kox M, Scicluna BP, Weigand MA, Mora RA, Flohé SB, Martin-Loeches I, Lachmann G, Girardis M, Garcia-Salido A, Brunkhorst FM, Bauer M, Torres A, Cossarizza A, Monneret G, Cavaillon JM, Shankar-Hari M, Giamarellos-Bourboulis EJ, Winkler MS, Skirecki T, Osuchowski M, Rubio I, Bermejo-Martin JF, Schefold JC, Venet F. Profiling the dysregulated immune response in sepsis: overcoming challenges to achieve the goal of precision medicine. THE LANCET. RESPIRATORY MEDICINE 2024; 12:305-322. [PMID: 38142698 DOI: 10.1016/s2213-2600(23)00330-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 12/26/2023]
Abstract
Sepsis is characterised by a dysregulated host immune response to infection. Despite recognition of its significance, immune status monitoring is not implemented in clinical practice due in part to the current absence of direct therapeutic implications. Technological advances in immunological profiling could enhance our understanding of immune dysregulation and facilitate integration into clinical practice. In this Review, we provide an overview of the current state of immune profiling in sepsis, including its use, current challenges, and opportunities for progress. We highlight the important role of immunological biomarkers in facilitating predictive enrichment in current and future treatment scenarios. We propose that multiple immune and non-immune-related parameters, including clinical and microbiological data, be integrated into diagnostic and predictive combitypes, with the aid of machine learning and artificial intelligence techniques. These combitypes could form the basis of workable algorithms to guide clinical decisions that make precision medicine in sepsis a reality and improve patient outcomes.
Collapse
Affiliation(s)
- Sara Cajander
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Brendon P Scicluna
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei hospital, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Raquel Almansa Mora
- Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Stefanie B Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ignacio Martin-Loeches
- St James's Hospital, Dublin, Ireland; Hospital Clinic, Institut D'Investigacions Biomediques August Pi i Sunyer, Universidad de Barcelona, Barcelona, Spain
| | - Gunnar Lachmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Berlin, Germany
| | - Massimo Girardis
- Department of Intensive Care and Anesthesiology, University Hospital of Modena, Modena, Italy
| | - Alberto Garcia-Salido
- Hospital Infantil Universitario Niño Jesús, Pediatric Critical Care Unit, Madrid, Spain
| | - Frank M Brunkhorst
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Antoni Torres
- Pulmonology Department. Hospital Clinic of Barcelona, University of Barcelona, Ciberes, IDIBAPS, ICREA, Barcelona, Spain
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Guillaume Monneret
- Immunology Laboratory, Hôpital E Herriot - Hospices Civils de Lyon, Lyon, France; Université Claude Bernard Lyon-1, Hôpital E Herriot, Lyon, France
| | | | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | | | - Martin Sebastian Winkler
- Department of Anesthesiology and Intensive Care, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin Osuchowski
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Jesus F Bermejo-Martin
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain; School of Medicine, Universidad de Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabienne Venet
- Immunology Laboratory, Hôpital E Herriot - Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Ecole Normale Supeérieure de Lyon, Universiteé Claude Bernard-Lyon 1, Lyon, France.
| |
Collapse
|
5
|
Chen L, Hua J, He X. Bioinformatics analysis identifies a key gene HLA_DPA1 in severe influenza-associated immune infiltration. BMC Genomics 2024; 25:257. [PMID: 38454348 PMCID: PMC10918912 DOI: 10.1186/s12864-024-10184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Severe influenza is a serious global health issue that leads to prolonged hospitalization and mortality on a significant scale. The pathogenesis of this infectious disease is poorly understood. Therefore, this study aimed to identify the key genes associated with severe influenza patients necessitating invasive mechanical ventilation. METHODS The current study utilized two publicly accessible gene expression profiles (GSE111368 and GSE21802) from the Gene Expression Omnibus database. The research focused on identifying the genes exhibiting differential expression between severe and non-severe influenza patients. We employed three machine learning algorithms, namely the Least Absolute Shrinkage and Selection Operator regression model, Random Forest, and Support Vector Machine-Recursive Feature Elimination, to detect potential key genes. The key gene was further selected based on the diagnostic performance of the target genes substantiated in the dataset GSE101702. A single-sample gene set enrichment analysis algorithm was applied to evaluate the participation of immune cell infiltration and their associations with key genes. RESULTS A total of 44 differentially expressed genes were recognized; among them, we focused on 10 common genes, namely PCOLCE2, HLA_DPA1, LOC653061, TDRD9, MPO, HLA_DQA1, MAOA, S100P, RAP1GAP, and CA1. To ensure the robustness of our findings, we employed overlapping LASSO regression, Random Forest, and SVM-RFE algorithms. By utilizing these algorithms, we were able to pinpoint the aforementioned 10 genes as potential biomarkers for distinguishing between both cases of influenza (severe and non-severe). However, the gene HLA_DPA1 has been recognized as a crucial factor in the pathological condition of severe influenza. Notably, the validation dataset revealed that this gene exhibited the highest area under the receiver operating characteristic curve, with a value of 0.891. The use of single-sample gene set enrichment analysis has provided valuable insights into the immune responses of patients afflicted with severe influenza that have further revealed a categorical correlation between the expression of HLA_DPA1 and lymphocytes. CONCLUSION The findings indicated that the HLA_DPA1 gene may play a crucial role in the immune-pathological condition of severe influenza and could serve as a promising therapeutic target for patients infected with severe influenza.
Collapse
Affiliation(s)
- Liang Chen
- Department of Infectious Diseases, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical College of Nanjing University, No 188, Lingshan North Road, Qixia District, Nanjing, 210046, China.
| | - Jie Hua
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaopu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Cavaillon JM. During Sepsis and COVID-19, the Pro-Inflammatory and Anti-Inflammatory Responses Are Concomitant. Clin Rev Allergy Immunol 2023; 65:183-187. [PMID: 37395985 DOI: 10.1007/s12016-023-08965-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
The most severe forms of COVID-19 share many features with bacterial sepsis and have thus been considered to be a viral sepsis. Innate immunity and inflammation are closely linked. While the immune response aims to get rid of the infectious agent, the pro-inflammatory host response can result in organ injury including acute respiratory distress syndrome. On its side, a compensatory anti-inflammatory response, aimed to dampen the inflammatory reaction, can lead to immunosuppression. Whether these two key events of the host inflammatory response are consecutive or concomitant has been regularly depicted in schemes. Initially proposed from 2001 to 2013 to be two consecutive steps, the concomitant occurrence has been supported since 2013, although it was proposed for the first time in 2001. Despite a consensus was reached, the two consecutive steps were still recently proposed for COVID-19. We discuss why the concomitance view could have been initiated as early as 1995.
Collapse
|
7
|
de Roquetaillade C, Laouenan C, Mira JP, Roy C, Thuong M, Azoulay É, Gruson D, Jacobs F, Chommeloux J, Raffi F, Hocqueloux L, Imbert P, Jeantils V, Delassus JL, Matheron S, Fitting C, Timsit JF, Bruneel F. Cytokine profiles in adults with imported malaria. Sci Rep 2023; 13:10347. [PMID: 37365194 DOI: 10.1038/s41598-023-36212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The increase in worldwide travel is making imported malaria a growing health concern in non-endemic countries. Most data on the pathophysiology of malaria come from endemic areas. Little is known about cytokine profiles during imported malaria. This study aimed at deciphering the relationship between cytokine host response and malaria severity among imported cases in France. This study reports cytokine profiles in adults with Plasmodium falciparum malaria included in the PALUREA prospective study conducted between 2006 and 2010. The patients were classified as having uncomplicated malaria (UM) or severe malaria (SM), with this last further categorized as very severe malaria (VSM) or less severe malaria (LSM). At hospital admission, eight blood cytokines were assayed in duplicate using Luminex® technology: interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-10, tumor necrosis factor (TNF)α, interferon (IFN)γ, and macrophage migration inhibitory factor (MIF). These assays were repeated on days 1 and 2 in the SM group. Of the 278 patients, 134 had UM and 144 SM. At hospital admission, over half the patients had undetectable levels of IL-1α, IL-1β, IL-2, IL-4, IFNγ, and TNFα, while IL-10 and MIF were significantly higher in the SM vs. the UM group. Higher IL-10 was significantly associated with higher parasitemia (R = 0.32 [0.16-0.46]; P = 0.0001). In the SM group, IL-10 elevation persisting from admission to day 2 was significantly associated with subsequent nosocomial infection. Of eight tested cytokines, only MIF and IL-10 were associated with disease severity in adults with imported P. falciparum malaria. At admission, many patients had undetectable cytokine levels, suggesting that circulating cytokine assays may not be helpful as part of the routine evaluation of adults with imported malaria. Persisting high IL-10 concentration was associated with subsequent nosocomial infection, suggesting its possible interest in immune monitoring of most severe patients.
Collapse
Affiliation(s)
- Charles de Roquetaillade
- Department of Anesthesiology and Critical Care, Hôpital Lariboisière, FHU PROMICE, DMU Parabol, AP-HP Nord, Paris, France.
- INSERM UMR 942 MASCOT, Université de Paris-Cité, Paris, France.
| | - Cédric Laouenan
- Département Epidémiologie Biostatistiques et Recherche Clinique, AP-HP, INSERM, Centre d'Investigation Clinique-Epidémiologie Clinique 1425, Hôpital Bichat, Paris, France
- UMR 1137, Université de Paris-Cité, INSERM, IAME, Hôpital Bichat, AP-HP, Paris, France
| | - Jean-Paul Mira
- Service de medecine intensive-reanimation, Hôpital Cochin, AP-HP Centre, Paris, France
- Université Paris Cité, Paris, France
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, AP-HP, Paris, France
| | - Carine Roy
- Département Epidémiologie Biostatistiques et Recherche Clinique, AP-HP, INSERM, Centre d'Investigation Clinique-Epidémiologie Clinique 1425, Hôpital Bichat, Paris, France
- UMR 1137, Université de Paris-Cité, INSERM, IAME, Hôpital Bichat, AP-HP, Paris, France
| | - Marie Thuong
- Service de medecine intensive-reanimation, Centre Hospitalier René Dubos, Pontoise, France
| | - Élie Azoulay
- Service de medecine intensive-reanimation, Hôpital Saint-Louis, Hôpitaux Universitaires Paris-Nord, AP-HP, Paris, France
| | - Didier Gruson
- Service de medecine intensive-reanimation, Hôpital Pellegrin-Tripode, Bordeaux, France
- Centre de Recherche Cardio-Thoracique, CHU Bordeaux, Bordeaux, France
| | - Frédéric Jacobs
- Service de medecine intensive-reanimation, Hôpital Antoine Béclère, Université Paris-Saclay, AP-HP, Clamart, France
| | - Juliette Chommeloux
- Service de medecine intensive reanimation, Institut de Cardiologie, ICAN, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | | | - Laurent Hocqueloux
- Service de maladies infectieuses, Centre Hospitalier Régional d'Orléans, Orléans, France
| | - Patrick Imbert
- Centre de vaccinations internationales, Hôpital d'instruction des armees Bégin, Saint-Mandé, France
| | - Vincent Jeantils
- Service de maladies infectieuses, Hôpital Jean Verdier, AP-HP, Bondy, France
| | - Jean-Luc Delassus
- Service de medecine interne et de maladies infectieuses, Centre hospitalier intercommunal Robert-Ballanger, Aulnay-sous-Bois, France
| | - Sophie Matheron
- Service de maladies infectieuses et tropicales, Hôpital Bichat, GHU Paris Nord, AP-HP, Paris, France
| | | | - Jean-François Timsit
- Service de medecine intensive et reanimation (MI2), Hôpital Bichat, Paris, France
- IAME, Université de Paris, INSERM U1137, AP-HP, Paris, France
| | - Fabrice Bruneel
- Service de reanimation, Centre Hospitalier de Versailles, Hôpital André Mignot, Le Chesnay, France
| |
Collapse
|
8
|
Chen L, Hua J, He X. Co-expression network analysis identifies potential candidate hub genes in severe influenza patients needing invasive mechanical ventilation. BMC Genomics 2022; 23:703. [PMID: 36243706 PMCID: PMC9569050 DOI: 10.1186/s12864-022-08915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Influenza is a contagious disease that affects people of all ages and is linked to considerable mortality during epidemics and occasional outbreaks. Moreover, effective immunological biomarkers are needed for elucidating aetiology and preventing and treating severe influenza. Herein, we aimed to evaluate the key genes linked with the disease severity in influenza patients needing invasive mechanical ventilation (IMV). Three gene microarray data sets (GSE101702, GSE21802, and GSE111368) from blood samples of influenza patients were made available by the Gene Expression Omnibus (GEO) database. The GSE101702 and GSE21802 data sets were combined to create the training set. Hub indicators for IMV patients with severe influenza were determined using differential expression analysis and Weighted correlation network analysis (WGCNA) from the training set. The receiver operating characteristic curve (ROC) was also used to evaluate the hub genes from the test set's diagnostic accuracy. Different immune cells' infiltration levels in the expression profile and their correlation with hub gene markers were examined using single-sample gene set enrichment analysis (ssGSEA). RESULTS In the present study, we evaluated a total of 447 differential genes. WGCNA identified eight co-expression modules, with the red module having the strongest correlation with IMV patients. Differential genes were combined to obtain 3 hub genes (HLA-DPA1, HLA-DRB3, and CECR1). The identified genes were investigated as potential indicators for patients with severe influenza who required IMV using the least absolute shrinkage and selection operator (LASSO) approach. The ROC showed the diagnostic value of the three hub genes in determining the severity of influenza. Using ssGSEA, it has been revealed that the expression of key genes was negatively correlated with neutrophil activation and positively associated with adaptive cellular immune response. CONCLUSION We evaluated three novel hub genes that could be linked to the immunopathological mechanism of severe influenza patients who require IMV treatment and could be used as potential biomarkers for severe influenza prevention and treatment.
Collapse
Affiliation(s)
- Liang Chen
- Department of Infectious Diseases, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Jie Hua
- Department of Gastroenterology, Liyang People's Hospital, Liyang Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| | - Xiaopu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital With Nanjing Medical University, No.300 Guangzhou Road, Nanjing city, 210029, Jiangsu Province, China.
| |
Collapse
|
9
|
Zhou C, Wang Z, Jiang B, Di J, Su X. Monitoring Pre- and Post-Operative Immune Alterations in Patients With Locoregional Colorectal Cancer Who Underwent Laparoscopy by Single-Cell Mass Cytometry. Front Immunol 2022; 13:807539. [PMID: 35185893 PMCID: PMC8850468 DOI: 10.3389/fimmu.2022.807539] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/13/2022] [Indexed: 12/20/2022] Open
Abstract
Surgical excision is currently the principal therapy for locoregional colorectal cancer (CRC). However, surgical trauma leads to controlled tissue damage, causing profound alterations in host immunity and, in turn, affecting post-operative outcomes. Surgery-induced immune alterations in CRC remain poorly defined. Here, single-cell mass cytometry was applied to serial blood samples collected pre-operatively, and on days 1, 3, and 7 post-operatively from 24 patients who underwent laparoscopic surgical resection of CRC to comprehensively monitor the perioperative phenotypic alterations in immune cells and dynamics of immune response. Characterization of immune cell subsets revealed that the post-operative immune response is broad but predominantly suppressive, supported by the decreases in total frequencies of circulating T cells and natural killer (NK) cells, as well as decreased HLA-DR expression on circulating monocytes. The proportion of T cells significantly decreased on day 1 and recovered to the pre-surgical level on day 3 after surgery. The frequency of monocytes was significantly elevated on day 1 after surgery and declined to baseline level on day 3. NK cells temporarily contracted on post-operative day 3. T cells, monocytes, DCs, NK cells, and B cells were partitioned into phenotypically different single-cell clusters. The dynamics of single-cell clusters were different from those of the bulk lineages. T cell clusters in the same response phase fluctuate inconsistently during the perioperative period. Comparing to the baseline levels, the frequencies of CD11b(+)CD33(+)CD14(+)CD16(−) classical monocytes expanded followed by contraction, whereas CD11b(+)CD33(+)CD14(high)CD16(low) intermediate monocytes remained unchanged; HLA-DR expression in monocytes were significantly reduced; the frequencies of intermediate CD56(bright)CD16(+) NK cell subsets increased; and the percentage of memory B lymphocytes were elevated after surgery. Post-operative pro- and anti-inflammatory cytokines were both altered. Furthermore, perioperative immune perturbations in some of the cell subsets were unrecovered within seven days after surgery. Chronological monitoring major immune lineages provided an overview of surgery-caused alterations, including cell augments and contractions and precisely timed changes in immune cell distribution in both innate and adaptive compartments, providing evidence for the interaction between tumor resection and immune modulation.
Collapse
Affiliation(s)
- Chuanyong Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zaozao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Beihai Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiabo Di
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangqian Su
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
10
|
Functional Ex Vivo Testing of Alveolar Monocytes in Patients with Pneumonia-Related ARDS. Cells 2021; 10:cells10123546. [PMID: 34944055 PMCID: PMC8700060 DOI: 10.3390/cells10123546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
Biomarkers of disease severity might help with individualizing the management of patients with acute respiratory distress syndrome (ARDS). During sepsis, a sustained decreased expression of the antigen-presenting molecule human leucocyte antigen-DR (HLA-DR) on circulating monocytes is used as a surrogate marker of immune failure. This study aimed at assessing whether HLA-DR expression on alveolar monocytes in the setting of a severe lung infection is associated with their functional alterations. BAL fluid and blood from immunocompetent patients with pneumonia-related ARDS admitted between 2016 and 2018 were isolated in a prospective monocentric study. Alveolar and blood monocytes were immunophenotyped using flow cytometry. Functional tests were performed on alveolar and blood monocytes after in vitro lipopolysaccharide (LPS) stimulation. Phagocytosis activity and intracellular tumor necrosis factor (TNF) production were quantified using fluorochrome-conjugated-specific antibodies. Ten ARDS and seven non-ARDS control patients were included. Patients with pneumonia-related ARDS exhibited significantly lower HLA-DR expression both on circulating (p < 0.0001) and alveolar (p = 0.0002) monocytes. There was no statistically significant difference observed between patient groups (ARDS vs. non-ARDS) regarding both alveolar and blood monocytes phagocytosis activity. After LPS stimulation, alveolar (p = 0.027) and blood (p = 0.005) monocytes from pneumonia-related ARDS patients had a significantly lower intracellular TNF expression than non-ARDS patients. Monocytes from pneumonia-related ARDS patients have a deactivated status and an impaired TNF production capacity but display potent phagocytic activity. HLA-DR level expression should not be used as a surrogate marker of the phagocytic activity or the TNF production capacity of alveolar monocytes.
Collapse
|
11
|
Verdonk F, Einhaus J, Tsai AS, Hedou J, Choisy B, Gaudilliere D, Kin C, Aghaeepour N, Angst MS, Gaudilliere B. Measuring the human immune response to surgery: multiomics for the prediction of postoperative outcomes. Curr Opin Crit Care 2021; 27:717-725. [PMID: 34545029 PMCID: PMC8585713 DOI: 10.1097/mcc.0000000000000883] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Postoperative complications including infections, cognitive impairment, and protracted recovery occur in one-third of the 300 million surgeries performed annually worldwide. Complications cause personal suffering along with a significant economic burden on our healthcare system. However, the accurate prediction of postoperative complications and patient-targeted interventions for their prevention remain as major clinical challenges. RECENT FINDINGS Although multifactorial in origin, the dysregulation of immunological mechanisms that occur in response to surgical trauma is a key determinant of postoperative complications. Prior research, primarily focusing on inflammatory plasma markers, has provided important clues regarding their pathogenesis. However, the recent advent of high-content, single-cell transcriptomic, and proteomic technologies has considerably improved our ability to characterize the immune response to surgery, thereby providing new means to understand the immunological basis of postoperative complications and to identify prognostic biological signatures. SUMMARY The comprehensive and single-cell characterization of the human immune response to surgery has significantly advanced our ability to predict the risk of postoperative complications. Multiomic modeling of patients' immune states holds promise for the discovery of preoperative predictive biomarkers, ultimately providing patients and surgeons with actionable information to improve surgical outcomes. Although recent studies have generated a wealth of knowledge, laying the foundation for a single-cell atlas of the human immune response to surgery, larger-scale multiomic studies are required to derive robust, scalable, and sufficiently powerful models to accurately predict the risk of postoperative complications in individual patients.
Collapse
Affiliation(s)
- Franck Verdonk
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
| | - Jakob Einhaus
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
| | - Amy S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
| | - Julien Hedou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
| | - Benjamin Choisy
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
| | | | - Cindy Kin
- Department of Surgery, Stanford University School of Medicine
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
- Department of Biomedical Data Science, Stanford University
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
| |
Collapse
|
12
|
Bonnet B, Cosme J, Dupuis C, Coupez E, Adda M, Calvet L, Fabre L, Saint-Sardos P, Bereiziat M, Vidal M, Laurichesse H, Souweine B, Evrard B. Severe COVID-19 is characterized by the co-occurrence of moderate cytokine inflammation and severe monocyte dysregulation. EBioMedicine 2021; 73:103622. [PMID: 34678611 PMCID: PMC8526358 DOI: 10.1016/j.ebiom.2021.103622] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Background SARS-CoV-2 has been responsible for considerable mortality worldwide, owing in particular to pulmonary failures such as ARDS, but also to other visceral failures and secondary infections. Recent progress in the characterization of the immunological mechanisms that result in severe organ injury led to the emergence of two successive hypotheses simultaneously tested here: hyperinflammation with cytokine storm syndrome or dysregulation of protective immunity resulting in immunosuppression and unrestrained viral dissemination. Methods In a prospective observational monocentric study of 134 patients, we analysed a panel of plasma inflammatory and anti-inflammatory cytokines and measured monocyte dysregulation via their membrane expression of HLA-DR. We first compared the results of patients with moderate forms hospitalized in an infectious disease unit with those of patients with severe forms hospitalized in an intensive care unit. In the latter group of patients, we then analysed the differences between the surviving and non-surviving groups and between the groups with or without secondary infections. Findings Higher blood IL-6 levels, lower quantitative expression of HLA-DR on blood monocytes and higher IL-6/mHLA-DR ratios were statistically associated with the risk of severe forms of the disease and among the latter with death and the early onset of secondary infections. Interpretation The unique immunological profile in patients with severe COVID-19 corresponds to a moderate cytokine inflammation associated with severe monocyte dysregulation. Individuals with major CSS were rare in our cohort of hospitalized patients, especially since the use of corticosteroids, but formed a very severe subgroup of the disease. Funding None.
Collapse
Affiliation(s)
- Benjamin Bonnet
- Service d'Immunologie, CHU Gabriel-Montpied, Clermont-Ferrand, France; Laboratoire d'Immunologie, ECREIN, UMR1019 UNH, UFR Médecine de Clermont-Ferrand, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Justine Cosme
- Service d'Immunologie, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Claire Dupuis
- Service de Médecine Intensive et Réanimation, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Elisabeth Coupez
- Service de Médecine Intensive et Réanimation, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Mireille Adda
- Service de Médecine Intensive et Réanimation, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Laure Calvet
- Service de Médecine Intensive et Réanimation, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Laurie Fabre
- Service d'Immunologie, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Pierre Saint-Sardos
- Laboratoire de Bactériologie, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Marine Bereiziat
- Service de Médecine Intensive et Réanimation, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Magali Vidal
- Service de Maladies Infectieuses et Tropicales, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Henri Laurichesse
- Service de Maladies Infectieuses et Tropicales, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Bertrand Souweine
- Service de Médecine Intensive et Réanimation, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Bertrand Evrard
- Service d'Immunologie, CHU Gabriel-Montpied, Clermont-Ferrand, France; Laboratoire d'Immunologie, ECREIN, UMR1019 UNH, UFR Médecine de Clermont-Ferrand, Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
13
|
Lehnert T, Leonhardt I, Timme S, Thomas-Rüddel D, Bloos F, Sponholz C, Kurzai O, Figge MT, Hünniger K. Ex vivo immune profiling in patient blood enables quantification of innate immune effector functions. Sci Rep 2021; 11:12039. [PMID: 34103589 PMCID: PMC8187451 DOI: 10.1038/s41598-021-91362-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
The assessment of a patient's immune function is critical in many clinical situations. In complex clinical immune dysfunction like sepsis, which results from a loss of immune homeostasis due to microbial infection, a plethora of pro- and anti-inflammatory stimuli may occur consecutively or simultaneously. Thus, any immunomodulatory therapy would require in-depth knowledge of an individual patient's immune status at a given time. Whereas lab-based immune profiling often relies solely on quantification of cell numbers, we used an ex vivo whole-blood infection model in combination with biomathematical modeling to quantify functional parameters of innate immune cells in blood from patients undergoing cardiac surgery. These patients experience a well-characterized inflammatory insult, which results in mitigation of the pathogen-specific response patterns towards Staphylococcus aureus and Candida albicans that are characteristic of healthy people and our patients at baseline. This not only interferes with the elimination of these pathogens from blood, but also selectively augments the escape of C. albicans from phagocytosis. In summary, our model could serve as a valuable functional immune assay for recording and evaluating innate responses to infection.
Collapse
Affiliation(s)
- Teresa Lehnert
- grid.418398.f0000 0001 0143 807XResearch Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology ‐ Hans Knöll Institute, Jena, Germany ,grid.275559.90000 0000 8517 6224Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Ines Leonhardt
- grid.275559.90000 0000 8517 6224Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany ,grid.418398.f0000 0001 0143 807XResearch Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology ‐ Hans Knöll Institute, Jena, Germany
| | - Sandra Timme
- grid.418398.f0000 0001 0143 807XResearch Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology ‐ Hans Knöll Institute, Jena, Germany
| | - Daniel Thomas-Rüddel
- grid.275559.90000 0000 8517 6224Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany ,grid.275559.90000 0000 8517 6224Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Frank Bloos
- grid.275559.90000 0000 8517 6224Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany ,grid.275559.90000 0000 8517 6224Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Christoph Sponholz
- grid.275559.90000 0000 8517 6224Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Oliver Kurzai
- grid.275559.90000 0000 8517 6224Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany ,grid.418398.f0000 0001 0143 807XResearch Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology ‐ Hans Knöll Institute, Jena, Germany ,grid.8379.50000 0001 1958 8658Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Marc Thilo Figge
- grid.418398.f0000 0001 0143 807XResearch Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology ‐ Hans Knöll Institute, Jena, Germany ,grid.275559.90000 0000 8517 6224Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany ,grid.9613.d0000 0001 1939 2794Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Kerstin Hünniger
- grid.418398.f0000 0001 0143 807XResearch Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology ‐ Hans Knöll Institute, Jena, Germany ,grid.8379.50000 0001 1958 8658Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Fabri A, Kandara K, Coudereau R, Gossez M, Abraham P, Monard C, Cour M, Rimmelé T, Argaud L, Monneret G, Venet F. Characterization of Circulating IL-10-Producing Cells in Septic Shock Patients: A Proof of Concept Study. Front Immunol 2021; 11:615009. [PMID: 33613540 PMCID: PMC7890231 DOI: 10.3389/fimmu.2020.615009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
Sepsis is a worldwide health priority characterized by the occurrence of severe immunosuppression associated with increased risk of death and secondary infections. Interleukin 10 (IL-10) is a potent immunosuppressive cytokine which plasma concentration is increased in septic patients in association with deleterious outcomes. Despite studies evaluating IL-10 production in specific subpopulations of purified cells, the concomitant description of IL-10 production in monocytes and lymphocytes in septic patients' whole blood has never been performed. In this pilot study, we characterized IL-10 producing leukocytes in septic shock patients through whole blood intracellular staining by flow cytometry. Twelve adult septic shock patients and 9 healthy volunteers were included. Intracellular tumor necrosis factor-α (TNFα) and IL-10 productions after lipopolysaccharide stimulation by monocytes and IL-10 production after PMA/Ionomycine stimulation by lymphocytes were evaluated. Standard immunomonitoring (HLA-DR expression on monocytes, CD4+ T lymphocyte count) of patients was also performed. TNFα expression by stimulated monocytes was reduced in patients compared with controls while IL-10 production was increased. This was correlated with a reduced monocyte HLA-DR expression. B cells, CD4+, and CD4- T lymphocytes were the three circulating IL-10 producing lymphocyte subsets in both patients and controls. No difference in IL-10 production between patients and controls was observed for B and CD4- T cells. However, IL-10 production by CD4+ T lymphocytes significantly increased in patients in parallel with reduced CD4+ T cells number. Parameters reflecting altered monocyte (increased IL-10 production, decreased HLA-DR expression and decreased TNFα synthesis) and CD4+ T lymphocyte (increased IL-10 production, decreased circulating number) responses were correlated. Using a novel technique for intracellular cytokine measurement in whole blood, our results identify monocytes and CD4+ T cells as the main IL-10 producers in septic patients' whole blood and illustrate the development of a global immunosuppressive profile in septic shock. Overall, these preliminary results add to our understanding of the global increase in IL-10 production induced by septic shock. Further research is mandatory to determine the pathophysiological mechanisms leading to such increased IL-10 production in monocytes and CD4+ T cells.
Collapse
Affiliation(s)
- Astrid Fabri
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,Hospices Civils de Lyon-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Khalil Kandara
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,Hospices Civils de Lyon-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Rémy Coudereau
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,Hospices Civils de Lyon-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Morgane Gossez
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,Hospices Civils de Lyon-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Paul Abraham
- Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Céline Monard
- Hospices Civils de Lyon-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon 1, Villeurbanne, France.,Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Martin Cour
- Medical Intensive Care Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Thomas Rimmelé
- Hospices Civils de Lyon-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon 1, Villeurbanne, France.,Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Laurent Argaud
- Medical Intensive Care Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Guillaume Monneret
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,Hospices Civils de Lyon-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Fabienne Venet
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,Hospices Civils de Lyon-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
15
|
Abstract
OBJECTIVES Decreased expression of human leukocyte antigen-DR on monocytes (mHLA-DR) is recognized as the most appropriate marker for the monitoring of immune alterations in septic patients and critically ill subjects. Its measurement has been established for years by flow cytometry, but remains under-used due to pre-analytical constraints. The objectives of the present work were to develop a rapid and robust one-step protocol. METHODS A novel, simplified protocol has been developed to measure mHLA-DR in whole blood using flow cytometry. It is a one-step procedure that includes red cell lysis, antibodies, and fixative reagents. It has been compared to the standardized routine protocol in two consecutive cohorts of septic shock patients (n = 37). Finally, the protocol was applied to a few subjects in point-of-care settings, by collecting capillary blood from fingerpricks. RESULTS Strong correlation was observed between the one-step method and routine protocol in 24 patients. After testing several stabilizing agents, the procedure was further optimized by adding a low-dose formaldehyde to the stain and lyse solution. This improved method was tested in a second cohort of 13 patients, and again strongly correlated to the routine protocol. Finally, the fingerprick and venous puncture samples were shown to provide similar results. CONCLUSIONS The present work demonstrates the feasibility of a bedside protocol for flow cytometry measurement of mHLA-DR in critically ill subjects. This helps overcome pre-analytical constraints previously identified, which have limited wider use of this biomarker in intensive care units. In addition, preliminary results from fingerprick samples are promising.
Collapse
|
16
|
Arriola Benitez PC, Pesce Viglietti AI, Elizalde MM, Giambartolomei GH, Quarleri JF, Delpino MV. Hepatic Stellate Cells and Hepatocytes as Liver Antigen-Presenting Cells during B. abortus Infection. Pathogens 2020; 9:527. [PMID: 32629846 PMCID: PMC7399813 DOI: 10.3390/pathogens9070527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/06/2020] [Accepted: 06/15/2020] [Indexed: 01/18/2023] Open
Abstract
In Brucellosis, the role of hepatic stellate cells (HSCs) in the induction of liver fibrosis has been elucidated recently. Here, we study how the infection modulates the antigen-presenting capacity of LX-2 cells. Brucella abortus infection induces the upregulation of class II transactivator protein (CIITA) with concomitant MHC-I and -II expression in LX-2 cells in a manner that is independent from the expression of the type 4 secretion system (T4SS). In concordance, B. abortus infection increases the phagocytic ability of LX-2 cells and induces MHC-II-restricted antigen processing and presentation. In view of the ability of B. abortus-infected LX-2 cells to produce monocyte-attracting factors, we tested the capacity of culture supernatants from B. abortus-infected monocytes on MHC-I and -II expression in LX-2 cells. Culture supernatants from B. abortus-infected monocytes do not induce MHC-I and -II expression. However, these supernatants inhibit MHC-II expression induced by IFN-γ in an IL-10 dependent mechanism. Since hepatocytes constitute the most abundant epithelial cell in the liver, experiments were conducted to determine the contribution of these cells in antigen presentation in the context of B. abortus infection. Our results indicated that B. abortus-infected hepatocytes have an increased MHC-I expression, but MHC-II levels remain at basal levels. Overall, B. abortus infection induces MHC-I and -II expression in LX-2 cells, increasing the antigen presentation. Nevertheless, this response could be modulated by resident or infiltrating monocytes/macrophages.
Collapse
Affiliation(s)
- Paula Constanza Arriola Benitez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires 1120, Argentina; (P.C.A.B.); (A.I.P.V.); (G.H.G.)
| | - Ayelén Ivana Pesce Viglietti
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires 1120, Argentina; (P.C.A.B.); (A.I.P.V.); (G.H.G.)
| | - María Mercedes Elizalde
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Buenos Aires 1121, Argentina;
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires 1120, Argentina; (P.C.A.B.); (A.I.P.V.); (G.H.G.)
| | - Jorge Fabián Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Buenos Aires 1121, Argentina;
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires 1120, Argentina; (P.C.A.B.); (A.I.P.V.); (G.H.G.)
| |
Collapse
|
17
|
Abstract
It is now recognized that sepsis is not a uniformly proinflammatory state. There is a well-recognized counter anti-inflammatory response that occurs in many patients. The timing and magnitude of this response varies considerably and thus makes its identification and manipulation more difficult. Studies in animals and humans have now identified a small number of biologic responses that characterize this immunosuppressed state, such as lymphocyte death, HLA receptor downregulation, and monocyte exhaustion. Researchers are now trying to use these as markers of individual immunosuppression to predict outcomes and identify patients who would and would not benefit from new immune stimulatory therapies.
Collapse
Affiliation(s)
- Abinav K Misra
- Division of Pulmonary, Critical Care, and Sleep Medicine, Alpert Medical School of Brown University, Physicians Office Building, Suite 224, 110 Lockwood street, Providence, RI 02903, USA
| | - Mitchell M Levy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Alpert Medical School of Brown University, Physicians Office Building, Suite 224, 110 Lockwood street, Providence, RI 02903, USA
| | - Nicholas S Ward
- Division of Pulmonary, Critical Care, and Sleep Medicine, Alpert Medical School of Brown University, Physicians Office Building, Suite 224, 110 Lockwood street, Providence, RI 02903, USA.
| |
Collapse
|
18
|
Srisawat N, Kulvichit W, Tungsanga S, Peerapornratana S, Vorasitchai S, Tangkanakul C, Lumlertgul N, Komaenthammasophon C, Praditpornsilpa K, Tungsanga K, Eiam-Ong S. The role of neutrophil chemotaxis activity as an immunologic biomarker to predict mortality in critically-ill patients with severe sepsis. J Crit Care 2020; 56:215-221. [PMID: 31982695 DOI: 10.1016/j.jcrc.2020.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/09/2019] [Accepted: 01/16/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Innate immunity is an important host response to infection. However, the role of innate immunity as a prognostic biomarker in severe sepsis is still unknown. This study is to evaluate the discriminatory characteristics of these biomarkers on clinical outcome. MATERIALS AND METHODS Retrospective study was conducted in critically ill patients with severe sepsis. Neutrophil function was assessed by neutrophil chemotaxis activity and CD-11b expression. Monocyte function was assessed by measurement of mHLA-DR expression and presepsin level. The primary end point was 28 day-mortality. RESULTS A total of 136 participants were enrolled. Patients were classified into 2 groups as survivors (n = 63, 46.3%) and non-survivors (n = 73, 53.7%). Neutrophil chemotaxis activity was significantly higher in survivors (46.7% vs. 41.2%, p = .023). There was no difference in the remaining biomarker levels between survivors and non-survivors. Only decreased neutrophil chemotaxis activity was associated with 28-day mortality. Combining neutrophil chemotaxis activity with mHLA-DR, CD-11b expression, presepsin, and SOFA score provided the highest AUC of 0.90 (0.84-0.96) in predicting 28-day mortality. CONCLUSION Neutrophil chemotaxis activity appears to be a promising novel immunologic biomarker in predicting clinical outcome in patients with severe sepsis.
Collapse
Affiliation(s)
- Nattachai Srisawat
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Center for Critical Care Nephrology, The CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Academic of Science, Royal Society of Thailand, Bangkok, Thailand; Critical Care Nephrology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Excellence Center for Critical Care Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
| | - Win Kulvichit
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Center for Critical Care Nephrology, The CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Somkanya Tungsanga
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Sadudee Peerapornratana
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Center for Critical Care Nephrology, The CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Excellence Center for Critical Care Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Suttinan Vorasitchai
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chakorn Tangkanakul
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nuttha Lumlertgul
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Excellence Center for Critical Care Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chalermchai Komaenthammasophon
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Kearkiat Praditpornsilpa
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Kriang Tungsanga
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Somchai Eiam-Ong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
19
|
Rubio I, Osuchowski MF, Shankar-Hari M, Skirecki T, Winkler MS, Lachmann G, La Rosée P, Monneret G, Venet F, Bauer M, Brunkhorst FM, Kox M, Cavaillon JM, Uhle F, Weigand MA, Flohé SB, Wiersinga WJ, Martin-Fernandez M, Almansa R, Martin-Loeches I, Torres A, Giamarellos-Bourboulis EJ, Girardis M, Cossarizza A, Netea MG, van der Poll T, Scherag A, Meisel C, Schefold JC, Bermejo-Martín JF. Current gaps in sepsis immunology: new opportunities for translational research. THE LANCET. INFECTIOUS DISEASES 2019; 19:e422-e436. [DOI: 10.1016/s1473-3099(19)30567-5] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022]
|
20
|
Cavaillon JM, Giamarellos-Bourboulis EJ. Immunosuppression is Inappropriately Qualifying the Immune Status of Septic and SIRS Patients. Shock 2019; 52:307-317. [PMID: 30239420 DOI: 10.1097/shk.0000000000001266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunosuppression is the most commonly used concept to qualify the immune status of patients with either sterile systemic inflammatory response syndrome (SIRS) or sepsis. In this review we attempt to demonstrate that the concept of immunosuppression is an oversimplification of the complex anti-inflammatory response that occurs in patients dealing with a severe sterile or infectious insult. Particularly, the immune status of leukocytes varies greatly depending on the compartment from where they are derived from. Furthermore, although certain functions of immune cells present in the blood stream or in the hematopoietic organs can be significantly diminished, other functions are either unchanged or even enhanced. This juxtaposition illustrates that there is no global defect. The mechanisms called reprogramming or trained innate immunity are probably aimed at preventing a generalized deleterious inflammatory reaction, and work to maintain the defense mechanisms at their due levels.
Collapse
|
21
|
Jin H, Yang X, Zhao K, Zhao L, Chen C, Yu J. Glycogen synthase kinase-3 beta inhibitors protectagainst the acute lung injuries resulting from acute necrotizing pancreatitis. Acta Cir Bras 2019; 34:e201900609. [PMID: 31433000 PMCID: PMC6705337 DOI: 10.1590/s0102-865020190060000009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/07/2019] [Indexed: 02/08/2023] Open
Abstract
PURPOSE The research is intended for clarification of the efficacy as well as the underlying mechanism of GSK-3β inhibitors on the advancement of acute lung injuries in acute necrotizing pancreatitis (ANP) in rats. METHODS Seventy-two rats were randomly divided into 6 groups: (1)ANP-vehicle; (2)ANP-TDZD-8;(3)ANP-SB216763;(4)Sham-vehicle;(5)Sham-TDZD-8;(6)Sham-SB216763; Blood biochemical test, histopathological examination and immunohistochemical analysis of rats pancreas and lung tissues were performed. The protein expression of GSK-3β, phospho-GSK-3β (Ser9), iNOS, ICAM-1, TNF-α, and IL-10 were detected in lung tissues by Western-blot. RESULTS The outcomes revealed that the intervention of GSK-3β inhibitors alleviated the pathological damage of pancreas and lung (P<0.01), reduced serum amylase, lipase, hydrothorax and lung Wet-to-Dry Ratio, attenuated serum concentrations of IL-1β and IL-6 (P<0.01), inhibited the activation of NF-κB, and abated expression of iNOS, ICAM-1 and TNF-α protein, but up-regulated IL-10 expression in lung of ANP rats (P<0.01). The inflammatory response and various indicators in ANP-TDZD-8 groups were lower than those in ANP-SB216763 groups. CONCLUSIONS Inhibition of GSK-3β weakens acute lung injury related to ANP via the inhibitory function of NF-κB signaling pathway. Different kinds of GSK-3β inhibitors have different effects to ANP acute lung injury.
Collapse
Affiliation(s)
- Hongzhong Jin
- PhD, Department of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Hubei Province, China. Acquisiton and analysis of data, manuscript writing
| | - Xiaojia Yang
- PhD, Department of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Hubei Province, China. Acquisiton and analysis of data, manuscript writing
| | - Kailiang Zhao
- MD, PhD, Department of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Hubei Province, China. Conception and design of the study, supervised all phases of the study, final approval
| | - Liang Zhao
- MD, PhD, Department of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Hubei Province, China. Statistical analysis, manuscript preparation
| | - Chen Chen
- MD, PhD, Department of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Hubei Province, China. Statistical analysis, manuscript preparation
| | - Jia Yu
- MD, PhD, Department of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Hubei Province, China. Technical procedures, histopathological examinations
| |
Collapse
|
22
|
Houschyar KS, Rein S, Weissenberg K, Duscher D, Philipps HM, Nietzschmann I, Schulz T, Siemers F. [Management of severe sepsis using a Cytokin-adsorber]. Unfallchirurg 2019; 121:174-178. [PMID: 29247319 DOI: 10.1007/s00113-017-0450-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Based on a representative case, which was treated in our center for severe burn injuries, the severity of the Waterhouse-Friderichsen syndrome and the complexity of the prolonged course of treatment are illustrated. Special attention is focused on the new treatment paradigm using the CytoSorb® adsorber.
Collapse
Affiliation(s)
- Khosrow Siamak Houschyar
- Plastic and Reconstructive Surgery, BG Klinikum Bergmannstrost Halle, Merseburger Str.165, 06112, Halle, Deutschland.
| | - Susanne Rein
- Plastic and Reconstructive Surgery, BG Klinikum Bergmannstrost Halle, Merseburger Str.165, 06112, Halle, Deutschland
| | - Kristian Weissenberg
- Plastic and Reconstructive Surgery, BG Klinikum Bergmannstrost Halle, Merseburger Str.165, 06112, Halle, Deutschland
| | | | - Hubertus Maria Philipps
- Plastic and Reconstructive Surgery, BG Klinikum Bergmannstrost Halle, Merseburger Str.165, 06112, Halle, Deutschland
| | - Ina Nietzschmann
- Plastic and Reconstructive Surgery, BG Klinikum Bergmannstrost Halle, Merseburger Str.165, 06112, Halle, Deutschland
| | - Torsten Schulz
- Plastic and Reconstructive Surgery, BG Klinikum Bergmannstrost Halle, Merseburger Str.165, 06112, Halle, Deutschland
| | - Frank Siemers
- Plastic and Reconstructive Surgery, BG Klinikum Bergmannstrost Halle, Merseburger Str.165, 06112, Halle, Deutschland
| |
Collapse
|
23
|
Hall MW. Immune Modulation in Pediatric Sepsis. J Pediatr Intensive Care 2019; 8:42-50. [PMID: 31073507 DOI: 10.1055/s-0038-1676607] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 02/08/2023] Open
Abstract
The initial host immune response to sepsis in children is characterized by a proinflammatory surge that can be associated with fever, capillary leak, and organ dysfunction. There is, however, a concurrent anti-inflammatory response that results in hyporesponsiveness of innate and adaptive immune cells. When severe, this response is termed immunoparalysis and is known to be associated with prolonged organ dysfunction, increased risk for nosocomial infection, and death in septic adults and children. Sepsis-induced immune suppression can be defined in the laboratory by reduced whole blood ex vivo - stimulated cytokine production capacities, reduced expression of human leukocyte antigen (HLA)-DR on circulating monocytes, and reduced absolute cell counts. While anti-inflammatory therapies have largely been unsuccessful at improving outcomes from adult and pediatric sepsis, the use of immunostimulatory therapies such as granulocyte macrophage colony-stimulating factor (GM-CSF) in patients with sepsis-induced immunoparalysis shows promise. A greater understanding of the risk factors for immunoparalysis along with the development and execution of immunophenotype-specific clinical trials of strategies to optimize innate and adaptive immune function are needed to further improve outcomes in septic children.
Collapse
Affiliation(s)
- Mark W Hall
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States.,The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| |
Collapse
|
24
|
Qin M, Qiu Z. Changes in TNF-α, IL-6, IL-10 and VEGF in rats with ARDS and the effects of dexamethasone. Exp Ther Med 2018; 17:383-387. [PMID: 30651808 PMCID: PMC6307422 DOI: 10.3892/etm.2018.6926] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/19/2018] [Indexed: 01/13/2023] Open
Abstract
Changes in tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-10 and vascular endothelial growth factor (VEGF) in serum and bronchoalveolar lavage fluid (BALF) in rats with acute respiratory distress syndrome (ARDS) and the intervention effect of dexamethasone were observed to explore the theoretical basis of dexamethasone in the treatment of ARDS. Seventy-two rats were randomly divided into normal control group (group N, n=24), ARDS model group (group L, n=24) and dexamethasone group (group D, n=24). The ARDS rat model was established by jointly injecting oleic acid and lipopolysaccharide via the caudal vein, while rats in group D received intervention with dexamethasone. The wet/dry weight ratios of lung tissues were measured, and the levels of TNF-α, IL-6, IL-10 and VEGF in serum and BALF were measured via enzyme-linked immunosorbent assay. The wet/dry weight ratio of lung tissues of rats in group D was significantly decreased compared with that in group L (P<0.05 or P<0.01). The levels of TNF-α, IL-6 and VEGF in serum and BALF of rats in group L and D were obviously increased compared with those in group N at each time point (P<0.01). The levels of TNF-α, IL-6 and VEGF in serum and BALF of rats in group D were significantly decreased compared with those in group L (P<0.01). In conclusion, there is a serious imbalance between anti-inflammatory response and inflammatory response in rats with ARDS induced by oleic acid combined with lipopolysaccharide of Escherichia coli, whereas dexamethasone can alleviate lung injury through inhibiting expression levels of inflammatory factors and promoting expression levels of anti-inflammatory factors.
Collapse
Affiliation(s)
- Mengting Qin
- Department of Critical Care Medicine, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Zhongpeng Qiu
- Department of Orthopedics, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
25
|
Qi Z, An L, Liu B, Zhang Q, Yin W, Yu H, Li C. Patients with out-of-hospital cardiac arrest show decreased human leucocyte antigen-DR expression on monocytes and B and T lymphocytes after return of spontaneous circulation. Scand J Immunol 2018; 88:e12707. [PMID: 30270439 DOI: 10.1111/sji.12707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/15/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
Abstract
Immune disorders are an important feature of patients with out-of-hospital cardiac arrest (OHCA) after return of spontaneous circulation (ROSC). However, the precise immune alterations in patients with OHCA that occur immediately after ROSC are unclear. In this study, we investigated human leucocyte antigen-DR (HLA-DR) expression on circulatory monocytes and B and T lymphocytes. Sixty-eight consecutive patients with OHCA with ROSC >12 hours were enrolled. Clinical data and 28-day survival were recorded. Peripheral blood samples after ROSC days 1 and 3 were analysed to evaluate HLA-DR expression. Fifty healthy individuals were enrolled as controls. Compared with levels in healthy individuals, HLA-DR expression on monocytes and B lymphocytes, but not on T lymphocytes, decreased on days 1 and 3 after ROSC. No significant difference in HLA-DR expression was detected between survivors and non-survivors on day 1. For 41 patients with expression data for days 1 and 3, HLA-DR expression on monocytes and B lymphocytes in non-survivors was lower than that in survivors on day 3. In non-survivors, the mean fluorescence intensities of HLA-DR on B lymphocytes and percentages of HLA-DR+ T lymphocytes were lower on day 3 than on day 1. On days 1 and 3, there were significant correlations between HLA-DR expression on monocytes and B lymphocytes and clinical indicators, such as time to ROSC, adrenaline dose, acute physiology, chronic health evaluation II and the sequential organ failure assessment. The decreases in HLA-DR expression on circulatory monocytes and B and T lymphocytes after ROSC may be involved in the observed immunosuppression in patients with OHCA.
Collapse
Affiliation(s)
- Zhijiang Qi
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Le An
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Bo Liu
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wenpeng Yin
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Han Yu
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Chunsheng Li
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Xu H, Xu J, Xu L, Jin S, Turnquist HR, Hoffman R, Loughran P, Billiar TR, Deng M. Interleukin-33 contributes to ILC2 activation and early inflammation-associated lung injury during abdominal sepsis. Immunol Cell Biol 2018; 96:935-947. [PMID: 29672927 PMCID: PMC10116412 DOI: 10.1111/imcb.12159] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/07/2018] [Accepted: 04/07/2018] [Indexed: 02/05/2023]
Abstract
Sepsis is defined as infection with organ dysfunction due to a dysregulated immune response. The lung is one of the most vulnerable organs at the onset of sepsis. Interleukin (IL)-33 can be released by injured epithelial and endothelial cells in the lung and regulate immune activation and infiltration. Therefore, we postulated that IL-33 would contribute to the immune response in the lung during sepsis. Using the cecal ligation and puncture (CLP) sepsis model, we show here that IL-33 contributes significantly to both sepsis-induced inflammation in the lung and systemic inflammatory response in the early phase of sepsis. Despite the higher intra-peritoneal bacterial burden, the absence of IL-33 resulted in less infiltration of neutrophils and monocytes into the lungs in association with lower circulating, lung and liver cytokine levels as well as reduced lung injury at 6 h after sepsis. IL-33 was required for the upregulation of IL-5 in type 2 Innate Lymphoid Cells (ILC2), while IL-5 neutralization suppressed neutrophil and monocyte infiltration in the lungs during CLP sepsis. This reduction in leukocyte infiltration in IL-33-deficient mice was reversed by administration of recombinant IL-5. These results indicate that IL-33 plays a major role in the local inflammatory changes in the lung, in part, by regulating IL-5 and this axis contributes to lung injury early after the onset of sepsis.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jing Xu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Li Xu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Emergency, Union Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, 430022, China
| | - Shuqing Jin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Anesthesia, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Heth R Turnquist
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Rosemary Hoffman
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
27
|
Torrance HDT, Longbottom ER, Vivian ME, Lalabekyan B, Abbott TEF, Ackland GL, Hinds CJ, Pearse RM, O’Dwyer MJ. Post-operative immune suppression is mediated via reversible, Interleukin-10 dependent pathways in circulating monocytes following major abdominal surgery. PLoS One 2018; 13:e0203795. [PMID: 30212506 PMCID: PMC6136775 DOI: 10.1371/journal.pone.0203795] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/28/2018] [Indexed: 12/04/2022] Open
Abstract
Introduction Post-operative infections occur frequently following major surgery. The magnitude of the post-operative immune response is associated with an increased risk of post-operative infections, although the mechanisms driving post-operative immune-dysfunction and the potential reversibility of this response with immune stimulants are not well understood. This study aims to describe the immediate immune response to major surgery and establish links to both post-operative infection and functional aspects of immune dysregulation. We also investigate the potential of clinically available immune stimulants to reverse features of post-operative immune-dysfunction. Methods Patients over 45 years old undergoing elective gastro-intestinal surgery with planned post-operative surgical ICU admission were recruited. The expression of selected genes was determined pre-operatively and at 2, 24 and 48 hours post-operatively using qRT-PCR. Circulating levels of Interleukin-10 protein were determined by ELISA. Peri-operative cell surface monocyte HLA-DR (mHLA-DR) expression was determined using flow cytometry. Gene expression and mHLA-DR levels were determined in healthy monocytes cultured in peri-operative serum with and without neutralising antibodies and immune stimulants. Results 119 patients were recruited; 44 developed a post-operative infection. Interleukin-10 mRNA and protein increased 4-fold post-operatively (P<0.0001), peaking within 2 hours of the procedure. Higher post-operative Interleukin-10 mRNA (P = 0.007) and protein (P = 0.001) levels were associated with an increased risk of infection. Cell surface mHLA-DR expression fell post-operatively (P<0.0001). Reduced production, rather than intracellular sequestration, accounted for the post-operative decline in cell surface mHLA-DR expression. Interleukin-10 antibody prevented the decrease in mHLA-DR expression observed when post-operative serum was added to healthy monocytes. GM-CSF and IFN-γ prevented the decline in mHLA-DR production through distinct pathways. Conclusions Monocyte dysfunction and features of immune suppression occur frequently after major surgery. Greater post-operative Interleukin-10 production is associated with later infection. Interleukin-10 is an important mediator of post-operative reductions in mHLA-DR expression, while clinically available immune stimulants can restore mHLA-DR levels.
Collapse
Affiliation(s)
- Hew D. T. Torrance
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
- Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - E. Rebecca Longbottom
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Mark E. Vivian
- Cambridge University Division of Anaesthesia, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Bagrat Lalabekyan
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Tom E. F. Abbott
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Gareth L. Ackland
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Charles J. Hinds
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Rupert M. Pearse
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
- Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Michael J. O’Dwyer
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
- Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Hibbert JE, Currie A, Strunk T. Sepsis-Induced Immunosuppression in Neonates. Front Pediatr 2018; 6:357. [PMID: 30555806 PMCID: PMC6281766 DOI: 10.3389/fped.2018.00357] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Neonates, especially those born preterm, are at increased risk of sepsis and adverse long-term effects associated with infection-related inflammation. Distinct neonatal immune responses and dysregulated inflammation are central to this unique susceptibility. The traditional separation of sepsis into an initial hyper-inflammatory response followed by hypo-inflammation is continually under review with new developments in this area of research. There is evidence to support the association of mortality in the early acute phase of sepsis with an overwhelming hyper-inflammatory immune response. Emerging evidence from adults suggests that hypo- and hyper-inflammation can occur during any phase of sepsis and that sepsis-immunosuppression is associated with increased mortality, morbidity, and risk to subsequent infection. In adults, sepsis-induced immunosuppression (SII) is characterised by alterations of innate and adaptive immune responses, including, but not limited to, a prominent bias toward anti-inflammatory cytokine secretion, diminished antigen presentation to T cells, and reduced activation and proliferation of T cells. It is unclear if sepsis-immunosuppression also plays a role in the adverse outcomes associated with neonatal sepsis. This review will focus on exploring if key characteristics associated with SII in adults are observed in neonates with sepsis.
Collapse
Affiliation(s)
- Julie E Hibbert
- Centre for Neonatal Research and Education, University of Western Australia, Perth, WA, Australia
| | - Andrew Currie
- Centre for Neonatal Research and Education, University of Western Australia, Perth, WA, Australia.,School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Tobias Strunk
- Centre for Neonatal Research and Education, University of Western Australia, Perth, WA, Australia.,Neonatal Directorate, King Edward Memorial Hospital for Women, Subiaco, WA, Australia
| |
Collapse
|
29
|
Poujol F, Monneret G, Gallet-Gorius E, Pachot A, Textoris J, Venet F. Ex vivo Stimulation of Lymphocytes with IL-10 Mimics Sepsis-Induced Intrinsic T-Cell Alterations. Immunol Invest 2017; 47:154-168. [PMID: 29182416 DOI: 10.1080/08820139.2017.1407786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Profound T-cell alterations are observed in septic patients in association with increased risk of secondary infection and mortality. The pathophysiological mechanisms leading to such dysfunctions are not completely understood and direct and indirect mechanisms have been described. In this study we evaluated whether ex vivo stimulation of lymphocytes with IL-10, an immunosuppressive cytokine released at the systemic level during sepsis, could mimic sepsis-induced intrinsic T-cell alterations. We showed that recombinant human IL-10 priming of T cells altered their proliferative response to anti-CD2/CD3/CD28 antibody-coated beads and PHA stimulations, in a dose-dependent manner independently of accessory cells. This priming also significantly decreased T-cell secretion of IL-2 and IFNγ following stimulation. Furthermore, we demonstrated that IL-10 reduction of T-cell functionality was associated with increased FOXP3 expression in CD4+CD25+CD127- regulatory T cells as observed in sepsis. Finally, we found that blocking the increased IL-10 concentration in plasma from septic shock patients increased the proliferative response of responding T cells from healthy controls. We describe here an ex vivo model recapitulating features of sepsis-induced intrinsic T-cell alterations. This should help, in further studies, to decipher the pathophysiological mechanisms of T-cell alterations induced after septic shock.
Collapse
Affiliation(s)
- Fanny Poujol
- a Joint Research Unit, EA 7426 bioMérieux/Hospices Civils de Lyon/UCBL1 "Pathophysiology of injury induced immunosuppression (PI3)", Edouard Herriot Hospital , Lyon , France.,b Immunology Laboratory, Joint Research Unit (BioMérieux/Hospices Civils de Lyon/UCBL1), Edouard Herriot Hospital , Lyon , France
| | - Guillaume Monneret
- a Joint Research Unit, EA 7426 bioMérieux/Hospices Civils de Lyon/UCBL1 "Pathophysiology of injury induced immunosuppression (PI3)", Edouard Herriot Hospital , Lyon , France.,c Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Immunology Laboratory, Edouard Herriot Hospital , Lyon , France
| | - Emmanuelle Gallet-Gorius
- a Joint Research Unit, EA 7426 bioMérieux/Hospices Civils de Lyon/UCBL1 "Pathophysiology of injury induced immunosuppression (PI3)", Edouard Herriot Hospital , Lyon , France.,b Immunology Laboratory, Joint Research Unit (BioMérieux/Hospices Civils de Lyon/UCBL1), Edouard Herriot Hospital , Lyon , France
| | - Alexandre Pachot
- a Joint Research Unit, EA 7426 bioMérieux/Hospices Civils de Lyon/UCBL1 "Pathophysiology of injury induced immunosuppression (PI3)", Edouard Herriot Hospital , Lyon , France.,b Immunology Laboratory, Joint Research Unit (BioMérieux/Hospices Civils de Lyon/UCBL1), Edouard Herriot Hospital , Lyon , France
| | - Julien Textoris
- a Joint Research Unit, EA 7426 bioMérieux/Hospices Civils de Lyon/UCBL1 "Pathophysiology of injury induced immunosuppression (PI3)", Edouard Herriot Hospital , Lyon , France.,b Immunology Laboratory, Joint Research Unit (BioMérieux/Hospices Civils de Lyon/UCBL1), Edouard Herriot Hospital , Lyon , France.,d Anesthesia and Critical Care Medicine Department , Hospices Civils de Lyon, Burn ICU, Edouard Herriot Hospital , Lyon , France
| | - Fabienne Venet
- a Joint Research Unit, EA 7426 bioMérieux/Hospices Civils de Lyon/UCBL1 "Pathophysiology of injury induced immunosuppression (PI3)", Edouard Herriot Hospital , Lyon , France.,c Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Immunology Laboratory, Edouard Herriot Hospital , Lyon , France
| |
Collapse
|
30
|
Abstract
Sepsis is caused by a dysregulated host response to infection. Immune responses determine the characteristics of sepsis. The body's protection against infection involves danger signal surveillance and recognition from nonself, effector functions in response to sensing danger signals, homeostatic regulation, and generation of immunologic memory. During sepsis, the immune system is activated by pathogen-associated and host-derived molecular patterns. Detecting these molecular patterns generates multisystem responses. Impaired organ function remote to the site of infection is the unifying feature. The processes by which an appropriate response to a microbial invader change from adaptive to maladaptive and dysregulated remain unclear.
Collapse
|
31
|
Abstract
Although many forms of critical illness are initiated by a proinflammatory stimulus, a compensatory anti-inflammatory response can occur with systemic inflammation. Immunoparalysis, an important form of acquired immunodeficiency, affects the innate and adaptive arms of the immune system. Immunoparalysis has been associated with increased risks for nosocomial infection and death in a variety of pediatric critical illnesses. Evidence suggests that immunoparalysis is reversible with immunostimulants. Highly standardized, prospective immune monitoring regimens are needed to better understand the immunologic effects of critical care treatment regimens and to enrich clinical trials with subjects most likely to benefit from immunostimulatory therapies.
Collapse
|
32
|
Smoking, Gender, and Overweight Are Important Influencing Factors on Monocytic HLA-DR before and after Major Cancer Surgery. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5216562. [PMID: 29104871 PMCID: PMC5591895 DOI: 10.1155/2017/5216562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/24/2017] [Accepted: 07/09/2017] [Indexed: 12/30/2022]
Abstract
Background Monocytic human leukocyte antigen D related (mHLA-DR) is essential for antigen-presentation. Downregulation of mHLA-DR emerged as a general biomarker of impaired immunity seen in patients with sepsis and pneumonia and after major surgery. Influencing factors of mHLA-DR such as age, overweight, diabetes, smoking, and gender remain unclear. Methods We analyzed 20 patients after esophageal or pancreatic resection of a prospective, randomized, placebo-controlled, double-blind trial (placebo group). mHLA-DR was determined from day of surgery (od) until postoperative day (pod) 5. Statistical analyses were performed using multivariate generalized estimating equation analyses (GEE), nonparametric multivariate analysis of longitudinal data, and univariate post hoc nonparametric Mann–Whitney tests. Results In GEE, smoking and gender were confirmed as significant influencing factors over time. Univariate analyses of mHLA-DR between smokers and nonsmokers showed lower preoperative levels (p = 0.010) and a trend towards lower levels on pod5 (p = 0.056) in smokers. Lower mHLA-DR was seen in men on pod3 (p = 0.038) and on pod5 (p = 0.026). Overweight patients (BMI > 25 kg/m2) had lower levels of mHLA-DR on pod3 (p = 0.039) and pod4 (p = 0.047). Conclusion Smoking is an important influencing factor on pre- and postoperative immune function while postoperative immune function was influenced by gender and overweight. Clinical trial registered with ISRCTN27114642.
Collapse
|
33
|
Features of Postoperative Immune Suppression Are Reversible With Interferon Gamma and Independent of Interleukin-6 Pathways. Ann Surg 2017; 264:370-7. [PMID: 26445474 DOI: 10.1097/sla.0000000000001484] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the role of interleukin (IL)-6 pathways in postoperative immune suppression and to assess the reversibility of this phenomenon. BACKGROUND The postoperative period is characterized by increased IL-6 production and features of immune suppression. In vitro, IL-6 mediates anti-inflammatory effects through inhibition of interferon gamma (IFN-γ) pathways. The significance of the immunomodulatory effects of IL-6 in the clinical setting of postoperative immune suppression remains unclear. METHODS Patients over 45 years old undergoing elective surgery, involving the gastrointestinal tract, were recruited. IL-6 levels were assayed using an enzyme linked immunosorbent assay preoperatively, and at 24 and 48 hours. Peripheral blood mononuclear cells from healthy volunteers were cultured in perioperative serum and CD14Human Leukocyte Antigen-DR (HLA-DR) [monocyte HLA-DR (mHLA-DR)] geometric mean florescent intensity was measured in the presence and absence of IL-6 neutralizing antibody and recombinant IFN-γ. RESULTS Of the 108 patients, 41 developed a postoperative infection. The IL-6 levels increased 19-fold from the preoperative sample to 24 hours postoperatively (P < 0.0001). Higher IL-6 levels at 24 (P = 0.0002) and 48 hours (P = 0.003) were associated with subsequent postoperative infectious complications. mHLA-DR mean florescent intensity fell when healthy peripheral blood mononuclear cells were cultured with postoperative serum compared with preoperative serum (P = 0.008). This decrease was prevented by the presence of IFN-γ in the culture media, but not by the presence of IL-6-neutralizing antibody. CONCLUSIONS IL-6 levels increase after a major surgery and are associated with an increased susceptibility to postoperative infections. Serum obtained from postoperative patients induces an immunosuppressive response, reflected in reduced mHLA-DR levels, mediated through IL-6 independent pathways and is reversible with IFN-γ. These data may have therapeutic implications for the prevention of infection in patients undergoing major surgery.
Collapse
|
34
|
Martins P. Glutamine in critically ill patients: is it a fundamental nutritional supplement? Rev Bras Ter Intensiva 2017; 28:100-3. [PMID: 27410403 PMCID: PMC4943045 DOI: 10.5935/0103-507x.20160022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/28/2016] [Indexed: 11/20/2022] Open
Affiliation(s)
- Paulo Martins
- Serviço de Medicina Intensiva, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| |
Collapse
|
35
|
The diffuse reduction in spleen density: an indicator of severe acute pancreatitis? Biosci Rep 2017; 37:BSR20160418. [PMID: 27920277 PMCID: PMC5322749 DOI: 10.1042/bsr20160418] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
We observed that acute pancreatitis (AP) was associated with diffuse reduction in spleen density (DROSD) in some patients. Furthermore, the condition of these patients was more serious, and the potential relationship between DROSD and structural and functional injury of the spleen remained unclear. Therefore, we performed a preliminary exploration of these factors. We analysed pertinent clinical data for AP patients with normal spleen density (control group) and for those with DROSD (reduction group) at the First Affiliated Hospital of Harbin Medical University (June 2013–June 2015). We measured the immunoglobulin M (IgM) B-cells of the AP patients and examined pancreatic and splenic tissues from AP rats with optical microscopy and TEM. The reduction group had a higher acute physiology and chronic health evaluation II (APACHE II) score, a longer length of stay (LOS) and lower serum calcium than the control group. The levels of triglycerides (TG) and total cholesterol (TC) did not differ significantly between the two groups. The percentage of IgM memory B-cells was significantly lower in the DROSD group than in the control group. TEM revealed that the spleen T-lymphocytes were normal in AP rats, but pyroptotic and necrotic spleen B-cells were observed in the severe AP rats. In AP, DROSD was an independent indicator of more severe conditions. Furthermore, spleen B-lymphocytes showed obvious damage at the cellular level, and the immunological function of the spleen was down-regulated when AP was associated with DROSD.
Collapse
|
36
|
Heftrig D, Sturm R, Oppermann E, Kontradowitz K, Jurida K, Schimunek L, Woschek M, Marzi I, Relja B. Impaired Surface Expression of HLA-DR, TLR2, TLR4, and TLR9 in Ex Vivo-In Vitro Stimulated Monocytes from Severely Injured Trauma Patients. Mediators Inflamm 2017; 2017:2608349. [PMID: 28255201 PMCID: PMC5309437 DOI: 10.1155/2017/2608349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/08/2016] [Accepted: 11/27/2016] [Indexed: 12/14/2022] Open
Abstract
Objective. Trauma patients (TP) frequently develop an imbalanced immune response that often causes infectious postinjury complications. Monocytes show a diminished capability of both producing proinflammatory cytokines and antigen presentation after trauma. TLR2, TLR4, and TLR9 recognize pathogens and subsequently activate monocytes. While there are conflictive data about TLR2 and TLR4 expression after trauma, no studies about the expression of TLR2, TLR4, TLR9, and HLA-DR on monocytes from TP after their secondary ex vivo-in vitro "hit" have been reported. Methods/Results. Ex vivo-in vitro lipopolysaccharide- (LPS-) stimulated blood from TP showed diminished interleukin- (IL-) 1β-release in TP for five postinjury days compared to healthy volunteers (HV). The recovery was observed at day 5. In parallel, monocytes from TP showed an impaired capability of TLR2, TLR4, and TLR9 expression after secondary stimulation compared to HV, while the measurement of unstimulated samples showed significant reduction of TLR4 and TLR9 at ED. Furthermore, HLA-DR decreased after trauma and was even more profound by stimulation of monocytes. Ratio of monocytes to leukocytes was significantly increased at days 6 and 7 after trauma compared to HV. Conclusion. Impaired expression of TLRs and HLA-DR in acute inflammatory conditions may be responsible for the well-described monocyte paralysis after severe trauma.
Collapse
Affiliation(s)
- David Heftrig
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Ramona Sturm
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Elsie Oppermann
- Department of General and Visceral Surgery, Goethe University, Frankfurt, Germany
| | - Kerstin Kontradowitz
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Katrin Jurida
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Lukas Schimunek
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Mathias Woschek
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| |
Collapse
|
37
|
Faivre V, Lukaszewicz AC, Payen D. Downregulation of Blood Monocyte HLA-DR in ICU Patients Is Also Present in Bone Marrow Cells. PLoS One 2016; 11:e0164489. [PMID: 27893741 PMCID: PMC5125574 DOI: 10.1371/journal.pone.0164489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022] Open
Abstract
Background The downregulation of blood monocyte HLA-DR expression also occurs in tissue infiltrative cells in a context of acute clinical inflammation, especially sepsis. This context favors the development of secondary infections and results from various mechanisms. Little is known about HLA-DR expression on bone marrow (BM) cells of the monocyte lineage, the source of circulating monocytes. This study analyzed the BM HLA-DR expression in ICU patients compared to BM monocytes from non-ICU patients and to blood monocytes of control healthy donors. A potential dysfunction of myeloid differentiation was investigated in a sub-population of these ICU patients to characterize the phenotype of the immature forms of monocytes and granulocytes in BM. Methods and Findings BM and blood were drawn from 33 ICU and 9 non-ICU patients having a BM analysis to precise the etiology of abnormal low count in blood cells. The data were compared with blood cells of 28 control donors. Flow cytometry was used for both HLA-DR expression and phenotyping of immature forms of monocytes and granulocytes. HLA-DR expression was downregulated in both blood and BM monocyte in ICU patients compared to BM of non-ICU patients and blood of control donors. Amplitude of HLA-DR downregulation was comparable in septic and non-septic ICU patients. The phenotype of immature forms of monocytes and granulocytes in BM (n = 11) did not show abnormal myeloid (monocyte + granulocyte) differentiation. Conclusion The downregulation of HLA-DR in BM monocyte lineage is present in ICU patients without major changes in myeloid cells. It may result from a regulation mediated by soluble and/or neuro-endocrine factors present in BM cell microenvironment.
Collapse
Affiliation(s)
- Valérie Faivre
- Inserm, U 1160, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anne-Claire Lukaszewicz
- Inserm, U 1160, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
- AP-HP, Hôpital Lariboisière, Département d’Anesthésie - Réanimation - SMUR, Paris, France
| | - Didier Payen
- Inserm, U 1160, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
- AP-HP, Hôpital Lariboisière, Département d’Anesthésie - Réanimation - SMUR, Paris, France
- * E-mail:
| |
Collapse
|
38
|
Cavaillon JM, Annane D. Invited review: Compartmentalization of the inflammatory response in sepsis and SIRS. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120030301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sepsis and systemic inflammatory response syndrome (SIRS) are associated with an exacerbated production of both pro- and anti-inflammatory mediators that are mainly produced within tissues. Although a systemic process, the pathophysiological events differ from organ to organ, and from organ to peripheral blood, leading to the concept of compartmentalization. The nature of the insult ( e.g. burn, hemorrhage, trauma, peritonitis), the cellular composition of each compartment ( e.g . nature of phagocytes, nature of endothelial cells), and its micro-environment ( e.g. local presence of granulocyte-macrophage colony stimulating factor [GM-CSF] in the lungs, low levels of arginine in the liver, release of endotoxin from the gut), and leukocyte recruitment, have a great influence on local inflammation and on tissue injury. High levels of pro-inflammatory mediators ( e.g. interleukin-1 [IL-1], tumor necrosis factor [TNF], gamma interferon [IFN-γ], high mobility group protein-1 [HMGB1], macrophage migration inhibitory factor [MIF]) produced locally and released into the blood stream initiate remote organ injury as a consequence of an organ cross-talk. The inflammatory response within the tissues is greatly influenced by the local delivery of neuromediators by the cholinergic and sympathetic neurons. Acetylcholine and epinephrine contribute with IL-10 and other mediators to the anti-inflammatory compensatory response initiated to dampen the inflammatory process. Unfortunately, this regulatory response leads to an altered immune status of leukocytes that can increase the susceptibility to further infection. Again, the nature of the insult, the nature of the leukocytes, the presence of circulating microbial components, and the nature of the triggering agent employed to trigger cells, greatly influence the immune status of the leukocytes that may differ from one compartment to another. While anti-inflammatory mediators predominate within the blood stream to avoid igniting new inflammatory foci, their presence within tissues may not always be sufficient to prevent the initiation of a deleterious inflammatory response in the different compartments.
Collapse
Affiliation(s)
| | - Djillali Annane
- Service de Réanimation, Hôpital Raymond Poincaré, Assistance Publique - Hôpitaux de Paris, Faculté de Médecine Paris Ile de France Ouest, Université de Versailles Saint-Quentin-en-Yvelines, Garches, France
| |
Collapse
|
39
|
Calderón-Garcidueñas L, Franco-Lira M, Torres-Jardón R, Henriquez-Roldán C, Barragán-Mejía G, Valencia-Salazar G, González-Maciel A, Reynoso-Robles R, Villarreal-Calderón R, Reed W. Pediatric Respiratory and Systemic Effects of Chronic Air Pollution Exposure: Nose, Lung, Heart, and Brain Pathology. Toxicol Pathol 2016; 35:154-62. [PMID: 17325984 DOI: 10.1080/01926230601059985] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Exposures to particulate matter and gaseous air pollutants have been associated with respiratory tract inflammation, disruption of the nasal respiratory and olfactory barriers, systemic inflammation, production of mediators of inflammation capable of reaching the brain and systemic circulation of particulate matter. Mexico City (MC) residents are exposed to significant amounts of ozone, particulate matter and associated lipopolysaccharides. MC dogs exhibit brain inflammation and an acceleration of Alzheimer’s-like pathology, suggesting that the brain is adversely affected by air pollutants. MC children, adolescents and adults have a significant upregulation of cyclooxygenase-2 (COX2) and interleukin-1β (IL-1β) in olfactory bulb and frontal cortex, as well as neuronal and astrocytic accumulation of the 42 amino acid form of β-amyloid peptide (Aβ42), including diffuse amyloid plaques in frontal cortex. The pathogenesis of Alzheimer’s disease (AD) is characterized by brain inflammation and the accumulation of Aβ42, which precede the appearance of neuritic plaques and neurofibrillary tangles, the pathological hallmarks of AD. Our findings of nasal barrier disruption, systemic inflammation, and the upregulation of COX2 and IL-1β expression and Aβ42 accumulation in brain suggests that sustained exposures to significant concentrations of air pollutants such as particulate matter could be a risk factor for AD and other neurodegenerative diseases.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW The purpose of review is to highlight the inflammatory response in critical illness and the importance of immune monitoring and modulation in the diagnosis and treatment of critical illness-induced innate immune suppression. RECENT FINDINGS The pro and anti-inflammatory responses are known to be concurrently activated in many patients requiring intensive care, with innate immune suppression emerging as an important, and potentially reversible, complication of critical illness. SUMMARY The initial inflammatory response to critical illness is typically driven by innate immune cells, including neutrophils, monocytes, and macrophages. The proinflammatory mediators made by these cells are responsible for many of the pathophysiologic features of critical illness. Concurrent with this, however, is a compensatory anti-inflammatory response, including the elaboration of anti-inflammatory mediators and impairment of innate immune cell function. This includes reduction of monocyte human leukocyte antigen-DR expression and impairment of the ability of innate immune cells to produce tumor necrosis factor alpha when stimulated ex vivo. In its most severe form this is referred to as immunoparalysis, and is associated with markedly increased risks for secondary infection and death in the ICU. Prospective testing can detect this phenomenon, and immunostimulatory strategies, including the use of granulocyte macrophage-colony stimulating factor, have the potential to restore innate immune function in this setting.
Collapse
|
41
|
Abstract
Determine what clinical role, if any, GM-CSF may have in the clinical treatment of sepsis in the adult patient. Advancements in the management of sepsis have led to significant decreases in early mortality; however, sepsis remains a significant source of long-term mortality and disability which places strain on healthcare resources with a substantial growing economic impact. Historically, early multiple organ failure (MOF) and death in patients with severe sepsis was thought to result from an exaggerated proinflammatory response called the systemic inflammatory response syndrome (SIRS). Numerous prospective randomized controlled trials (PRCTs) tested therapies aimed at decreasing the organ injury associated with an exaggerated inflammatory response. With few exceptions, the results from these PRCTs have been disappointing, and currently no specific therapeutic agent is approved to counteract the early SIRS response in patients with severe sepsis. It has long been recognized that there is a delayed immunosuppressive state that contributes to long-term morbidity. However, recent findings now support a concurrent proinflammatory and anti-inflammatory response present throughout sepsis. Multiple immunomodulating agents have been studied to combat the immunosuppressive phase of sepsis with the goal of decreasing secondary infection, reducing organ dysfunction, decreasing ICU stays, and improving survival. Granulocyte-macrophage colony stimulating factor (GM-CSF), a myelopoietic growth factor currently used in patients with neutropenia secondary to chemotherapy-induced myelosuppression, has been studied as a potential immune-activating agent. The applicability of GM-CSF as a standard therapy for generalized sepsis is still largely understudied; however, small-scale studies available have demonstrated some improved recovery from infection, decreased hospital length of stay, decreased days requiring mechanical ventilation, and decreased medical costs.
Collapse
Affiliation(s)
- Brittany Mathias
- From the Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | | | | | | | | |
Collapse
|
42
|
Chenouard A, Chesneau M, Braza F, Dejoie T, Cinotti R, Roquilly A, Brouard S, Asehnoune K. Phenotype and functions of B cells in patients with acute brain injuries. Mol Immunol 2015; 68:350-6. [PMID: 26364142 DOI: 10.1016/j.molimm.2015.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/29/2015] [Accepted: 09/01/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Brain injuries (BI) induce a state of systemic immunosuppression, leading to a high risk of pneumonia. In this pilot study, we investigated the status of B cell compartment in BI patients. METHODS A prospective observational study was performed in 2 intensive care units in a university hospital. Blood samples were collected in 14 patients at day 1 and day 7 after acute BI. The phenotype and the ability of B cells to secrete IL-10 were compared to 11 healthy volunteers (HV). RESULTS Among the circulating lymphocytes, the frequency of B cells was significantly higher in BI patients compared to HV (p<0.001). B cells from BI patients displayed an activated profil on day 7 after BI, reflected by a significantly higher proportion of CD27(+) memory (p=0.01) and CD27(+) IgD(-) switched memory B cells (p=0.02), as well as a significantly higher blood level of IgA (p=0.001) and IgM (p<0.001) as compared to day 1. The frequency of IL-10 secreting B cells (IL-10(+) B cells) on day 1 and day 7 was significantly lower in BI patients compared to HV (p<0.05). Interestingly, we observed that all BI patients with high frequency of IL-10(+) B cells on day 1 displayed an episode of pneumonia, and had a longer duration of mechanical ventilation and ICU stay compared to BI patients with low proportion of IL-10(+) B cells. CONCLUSION This study provides an extensive description of the phenotype and function of B cells in BI patients. Our results suggest that IL-10(+) B cells could play a major role in immunosuppression after BI.
Collapse
Affiliation(s)
- Alexis Chenouard
- INSERM, UMR 1064, Nantes F-44093, France; CHU de Nantes, ITUN, Nantes F-44093, France
| | - Mélanie Chesneau
- INSERM, UMR 1064, Nantes F-44093, France; CHU de Nantes, ITUN, Nantes F-44093, France
| | - Faouzi Braza
- INSERM, UMR 1064, Nantes F-44093, France; CHU de Nantes, ITUN, Nantes F-44093, France
| | - Thomas Dejoie
- Biochemistry Laboratory, Nantes University Hospital, Nantes, France
| | - Raphael Cinotti
- Intensive Care Unit, Anesthesia and Critical Care Department, Nantes University Hospital, Nantes, France
| | - Antoine Roquilly
- Intensive Care Unit, Anesthesia and Critical Care Department, Nantes University Hospital, Nantes, France; Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826 Nantes, France
| | - Sophie Brouard
- INSERM, UMR 1064, Nantes F-44093, France; CHU de Nantes, ITUN, Nantes F-44093, France; CIC biothérapie, Nantes F-44035, France
| | - Karim Asehnoune
- Intensive Care Unit, Anesthesia and Critical Care Department, Nantes University Hospital, Nantes, France; Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826 Nantes, France.
| |
Collapse
|
43
|
|
44
|
Sordi R, Chiazza F, Johnson FL, Patel NSA, Brohi K, Collino M, Thiemermann C. Inhibition of IκB Kinase Attenuates the Organ Injury and Dysfunction Associated with Hemorrhagic Shock. Mol Med 2015; 21:563-75. [PMID: 26101953 DOI: 10.2119/molmed.2015.00049] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/16/2015] [Indexed: 12/21/2022] Open
Abstract
Nuclear factor-kappa B (NF-κB) activation is widely implicated in multiple organ failure (MOF); however, a direct inhibitor of IκB kinase (IKK), which plays a pivotal role in the activation of NF-κB, has not been investigated in shock. Thus, the aim of the present work was to investigate the effects of an IKK inhibitor on the MOF associated with hemorrhagic shock (HS). Therefore, rats were subjected to HS and were resuscitated with the shed blood. Rats were treated with the inhibitor of IKK or vehicle at resuscitation. Four hours later, blood and organs were assessed for organ injury and signaling events involved in the activation of NF-κB. Additionally, survival following serum deprivation was assessed in HK-2 cells treated with the inhibitor of IKK. HS resulted in renal dysfunction, lung, liver and muscular injury, and increases in serum inflammatory cytokines. Kidney and liver tissue from HS rats revealed increases in phosphorylation of IKKαβ and IκBα, nuclear translocation of NF-κB and expression of inducible isoform of nitric oxide synthase (iNOS). IKK16 treatment upon resuscitation attenuated NF-κB activation and activated the Akt survival pathway, leading to a significant attenuation of all of the above parameters. Furthermore, IKK16 exhibited cytoprotective effects in human kidney cells. In conclusion, the inhibitor of IKK complex attenuated the MOF associated with HS. This effect may be due to the inhibition of the NF-κB pathway and activation of the survival kinase Akt. Thus, the inhibition of the IKK complex might be an effective strategy for the prevention of MOF associated with HS.
Collapse
Affiliation(s)
- Regina Sordi
- The William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom.,Capes Foundation, Ministry of Education of Brazil, Brasilia, DF, Brazil
| | - Fausto Chiazza
- University of Turin, Department of Drug Science and Technology, Turin, Italy
| | - Florence L Johnson
- The William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nimesh S A Patel
- The William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Karim Brohi
- Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Massimo Collino
- University of Turin, Department of Drug Science and Technology, Turin, Italy
| | - Christoph Thiemermann
- The William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
45
|
Parlato M, Cavaillon JM. Host response biomarkers in the diagnosis of sepsis: a general overview. Methods Mol Biol 2015; 1237:149-211. [PMID: 25319788 DOI: 10.1007/978-1-4939-1776-1_15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Critically ill patients who display a systemic inflammatory response syndrome (SIRS) are prone to develop nosocomial infections. The challenge remains to distinguish as early as possible among SIRS patients those who are developing sepsis. Following a sterile insult, damage-associated molecular patterns (DAMPs) released by damaged tissues and necrotic cells initiate an inflammatory response close to that observed during sepsis. During sepsis, pathogen-associated molecular patterns (PAMPs) trigger the release of host mediators involved in innate immunity and inflammation through identical receptors as DAMPs. In both clinical settings, a compensatory anti-inflammatory response syndrome (CARS) is concomitantly initiated. The exacerbated production of pro- or anti-inflammatory mediators allows their detection in biological fluids and particularly within the bloodstream. Some of these mediators can be used as biomarkers to decipher among the patients those who developed sepsis, and eventually they can be used as prognosis markers. In addition to plasma biomarkers, the analysis of some surface markers on circulating leukocytes or the study of mRNA and miRNA can be helpful. While there is no magic marker, a combination of few biomarkers might offer a high accuracy for diagnosis.
Collapse
Affiliation(s)
- Marianna Parlato
- Unit of Cytokines and Inflammation, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris Cedex 15, France
| | | |
Collapse
|
46
|
Kjaergaard AG, Nielsen JS, Tønnesen E, Krog J. Expression of NK cell and monocyte receptors in critically ill patients--potential biomarkers of sepsis. Scand J Immunol 2015; 81:249-58. [PMID: 25619264 DOI: 10.1111/sji.12272] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/13/2015] [Indexed: 01/14/2023]
Abstract
UNLABELLED Sepsis is characterized by activation of both the innate and adaptive immune systems as a response to infection. During sepsis, the expression of surface receptors expressed on immune competent cells, such as NKG2D and NKp30 on NK cells and TLR4 and CD14 on monocytes, is partly regulated by pro- and anti-inflammatory mediators. In this observational study, we aimed to explore whether the expression of these receptors could be used as diagnostic and/or prognostic biomarkers in sepsis. Patients with severe sepsis or septic shock (n = 21) were compared with critically ill non-septic patients (n = 15). Healthy volunteers (n = 15) served as controls. To elucidate variations over time, all patients were followed for 4 days. Cell surface expression of NKG2D, NKp30, TLR4 and CD14 and serum levels of IL-1β, IL-6, IFN-γ, TNF-α, IL-4 and IL-10 was estimated by flow cytometry. We found that NK cell expression of NKG2D and monocyte expression of CD14 were lower in the septic patients compared with the non-septic patients, both at ICU admission and during the observation period (P < 0.01 for all comparisons). Both at ICU admission, and during the observation period, levels of IL-6 and IL-10 were higher in the septic patients compared with the non-septic patients (P < 0.001 for all comparisons). CONCLUSION As both NKG2D and CD14 levels appear to distinguish between septic and non-septic patients, both NKG2D and CD14 may be considered potential diagnostic biomarkers of severe sepsis and septic shock.
Collapse
Affiliation(s)
- A G Kjaergaard
- Department of Anaesthesiology and Intensive Care, Aarhus University Hospital, Aarhus C, Denmark; Department of Anaesthesiology and Intensive Care, Randers Regional Hospital, Randers, Denmark
| | | | | | | |
Collapse
|
47
|
Hydrocortisone prevents immunosuppression by interleukin-10+ natural killer cells after trauma-hemorrhage. Crit Care Med 2015; 42:e752-61. [PMID: 25289930 DOI: 10.1097/ccm.0000000000000658] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Trauma induces a state of immunosuppression, which is responsible for the development of nosocomial infections. Hydrocortisone reduces the rate of pneumonia in patients with trauma. Because alterations of dendritic cells and natural killer cells play a central role in trauma-induced immunosuppression, we investigated whether hydrocortisone modulates the dendritic cell/natural killer cell cross talk in the context of posttraumatic pneumonia. DESIGN Experimental study. SETTINGS Research laboratory from an university hospital. SUBJECTS Bagg Albino/cJ mice (weight, 20-24 g). INTERVENTIONS First, in an a priori substudy of a multicenter, randomized, double-blind, placebo-controlled trial of hydrocortisone (200 mg/d for 7 d) in patients with severe trauma, we have measured the blood levels of five cytokines (tumor necrosis factor-α, interleukin-6, interleukin-10, interleukin-12, interleukin-17) at day 1 and day 8. In a second step, the effects of hydrocortisone on dendritic cell/natural killer cell cross talk were studied in a mouse model of posttraumatic pneumonia. Hydrocortisone (0.6 mg/mice i.p.) was administered immediately after hemorrhage. Twenty-four hours later, the mice were challenged with Staphylococcus aureus (7 × 10 colony-forming units). MEASUREMENTS AND MAIN RESULTS Using sera collected during a multicenter study in patients with trauma, we found that hydrocortisone decreased the blood level of interleukin-10, a cytokine centrally involved in the regulation of dendritic cell/natural killer cell cluster. In a mouse model of trauma-hemorrhage-induced immunosuppression, splenic natural killer cells induced an interleukin-10-dependent elimination of splenic dendritic cell. Hydrocortisone treatment reduced this suppressive function of natural killer cells and increased survival of mice with posthemorrhage pneumonia. The reduction of the interleukin-10 level in natural killer cells by hydrocortisone was partially dependent on the up-regulation of glucocorticoid-induced tumor necrosis factor receptor-ligand (TNFsf18) on dendritic cell. CONCLUSIONS These data demonstrate that trauma-induced immunosuppression is characterized by an interleukin-10-dependent elimination of dendritic cell by natural killer cells and that hydrocortisone improves outcome by limiting this immunosuppressive feedback loop.
Collapse
|
48
|
Uhel F, Tadié JM, Le Tulzo Y. Choc septique : mécanismes du décès. MEDECINE INTENSIVE REANIMATION 2015. [DOI: 10.1007/s13546-015-1019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Beurskens CJ, Horn J, de Boer AMT, Schultz MJ, van Leeuwen EM, Vroom MB, Juffermans NP. Cardiac arrest patients have an impaired immune response, which is not influenced by induced hypothermia. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:R162. [PMID: 25078879 PMCID: PMC4261599 DOI: 10.1186/cc14002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/26/2014] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Induced hypothermia is increasingly applied as a therapeutic intervention in ICUs. One of the underlying mechanisms of the beneficial effects of hypothermia is proposed to be reduction of the inflammatory response. However, a fear of reducing the inflammatory response is an increased infection risk. Therefore, we studied the effect of induced hypothermia on immune response after cardiac arrest. METHODS A prospective observational cohort study in a mixed surgical-medical ICU. Patients admitted at the ICU after surviving cardiac arrest were included and during 24 hours body temperature was strictly regulated at 33°C or 36°C. Blood was drawn at three time points: after reaching target temperature, at the end of the target temperature protocol and after rewarming to 37°C. Plasma cytokine levels and response of blood leucocytes to stimulation with toll-like receptor (TLR) ligands lipopolysaccharide (LPS) from Gram-negative bacteria and lipoteicoic acid (LTA) from Gram-positive bacteria were measured. Also, monocyte HLA-DR expression was determined. RESULTS In total, 20 patients were enrolled in the study. Compared to healthy controls, cardiac arrest patients kept at 36°C (n = 9) had increased plasma cytokines levels, which was not apparent in patients kept at 33°C (n = 11). Immune response to TLR ligands in patients after cardiac arrest was generally reduced and associated with lower HLA-DR expression. Patients kept at 33°C had preserved ability of immune cells to respond to LPS and LTA compared to patients kept at 36°C. These differences disappeared over time. HLA-DR expression did not differ between 33°C and 36°C. CONCLUSIONS Patients after cardiac arrest have a modest systemic inflammatory response compared to healthy controls, associated with lower HLA-DR expression and attenuated immune response to Gram-negative and Gram-positive antigens, the latter indicative of an impaired immune response to bacteria. Patients with a body temperature of 33°C did not differ from patients with a body temperature of 36°C, suggesting induced hypothermia does not affect immune response in patients with cardiac arrest. TRIAL REGISTRATION ClinicalTrials.gov NCT01020916, registered 25 November 2009.
Collapse
|
50
|
Khaidukov SV, Zurochka AV. OPPORTUNITIES OF FLOW CYTOMETRY IN DIAGNOSTICS OF INFECTIOUS DISEASES. PART 1. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2014. [DOI: 10.15789/2220-7619-2011-1-59-66] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|