1
|
Bezirganoglu H, Okur N, Buyuktiryaki M, Oguz SS, Dizdar EA, Sari FN. Comparison of Assist/Control Ventilation with and without Volume Guarantee in Term or Near-Term Infants. Am J Perinatol 2024; 41:e174-e179. [PMID: 35613941 DOI: 10.1055/a-1862-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVES This study aimed to compare the effects of volume guarantee (VG) combined with assist/control (AC) ventilation to AC alone on hypocarbia episodes and extubation success in infants born at or near term. METHODS In this prospective cohort study, infants >34 weeks of gestation at birth, who were born in our hospital supported by synchronized, time-cycled, pressure limited, assist/control ventilation (AC) or assist-controlled VG mechanical ventilation (AC + VG) were included. After admission, infants received either AC or VG + AC using by Leoni Plus ventilator. The ventilation mode was left to the clinician. In the AC group, peak airway pressure was set clinically. In the VG + AC group, desired tidal volume was set at 5 mL/kg, with the ventilator adjusting peak inspiratory pressure to deliver this volume. The study was completed once the patient extubated. RESULTS There were 35 patients in each group. Incidence of hypocarbia was lower in the VG + AC compared with AC (%17.1 and 22.8%, respectively) but statistically not significant. Out-of-range partial pressure of carbon dioxide (PCO2) levels were lower in the VG + AC group and it reached borderline statistical significance (p = 0.06). The median extubation time was 70 (42-110) hours in the VG + AC group, 89.5 (48.5-115.5) hours in the AC group, and it did not differ between groups (p = 0.47). CONCLUSION We found combining AC and VG ventilation compared with AC ventilation alone yielded similar hypocarbia episodes and extubation time for infants of >34 gestational weeks with borderline significance lower out-of-range PCO2 incidence. KEY POINTS · Underlying lung pathology requiring mechanical ventilation support in term infant is heterogeneous.. · VG ventilation compared with conventional modes yielded similar hypocarbia episodes in term infants.. · Combining VG ventilation lead to borderline significance lower out-of-range PCO2 incidence..
Collapse
Affiliation(s)
- Handan Bezirganoglu
- Division of Neonatology, Department of Pediatrics, University of Health Sciences, Ankara City Hospital, Ankara, Türkiye
- Division of Neonatology, Trabzon Kanuni Training and Research Hospital, Trabzon, Türkiye
| | - Nilufer Okur
- Division of Neonatology, Department of Pediatrics, University of Health Sciences, Ankara City Hospital, Ankara, Türkiye
- Division of Neonatology, Diyarbakir Gazi Yasargil Training and Research Hospital, Diyarbakir, Türkiye
| | - Mehmet Buyuktiryaki
- Division of Neonatology, Department of Pediatrics, University of Health Sciences, Ankara City Hospital, Ankara, Türkiye
- Division of Neonatology, Department of Pediatrics, İstanbul Medipol University Medical School, İstanbul, Türkiye
| | - Serife S Oguz
- Division of Neonatology, Department of Pediatrics, University of Health Sciences, Ankara City Hospital, Ankara, Türkiye
| | - Evrim A Dizdar
- Division of Neonatology, Department of Pediatrics, University of Health Sciences, Ankara City Hospital, Ankara, Türkiye
| | - Fatma N Sari
- Division of Neonatology, Department of Pediatrics, University of Health Sciences, Ankara City Hospital, Ankara, Türkiye
| |
Collapse
|
2
|
Maamar A, Delamaire F, Reizine F, Lesouhaitier M, Painvin B, Quelven Q, Coirier V, Guillot P, Tulzo YL, Tadié JM, Gacouin A. Impact of Arterial CO 2 Retention in Patients With Moderate or Severe ARDS. Respir Care 2023; 68:582-591. [PMID: 36977590 PMCID: PMC10171350 DOI: 10.4187/respcare.10507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
BACKGROUND Lung-protective ventilation (reduced tidal volume and limited plateau pressure) may lead to CO2 retention. Data about the impact of hypercapnia in patients with ARDS are scarce and conflicting. METHODS We performed a non-interventional cohort study with subjects with ARDS admitted from 2006 to 2021 and with PaO2 /FIO2 ≤ 150 mm Hg. We examined the association between severe hypercapnia (PaCO2 ≥ 50 mm Hg) on the first 5 days after the diagnosis of ARDS and death in ICU for 930 subjects. All the subjects received lung-protective ventilation. RESULTS Severe hypercapnia was noted in 552 subjects (59%) on the first day of ARDS (day 1); 323/930 (34.7%) died in the ICU. Severe hypercapnia on day 1 was associated with mortality in the unadjusted (odds ratio 1.54, 95% CI 1.16-1.63; P = .003) and adjusted (odds ratio 1.47, 95% CI 1.08-2.43; P = .004) models. In the Bayesian analysis, the posterior probability that severe hypercapnia was associated with ICU death was > 90% in 4 different priors, including a septic prior for this association. Sustained severe hypercapnia on day 5, defined as severe hypercapnia present from day 1 to day 5, was noted in 93 subjects (12%). After propensity score matching, severe hypercapnia on day 5 remained associated with ICU mortality (odds ratio 1.73, 95% CI 1.02-2.97; P = .047). CONCLUSIONS Severe hypercapnia was associated with mortality in subjects with ARDS who received lung-protective ventilation. Our results deserve further evaluation of the strategies and treatments that aim to control CO2 retention.
Collapse
Affiliation(s)
- Adel Maamar
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
| | - Flora Delamaire
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
| | - Florian Reizine
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
- Inserm-CIC-1414, Faculté de Médecine, Université Rennes I, Rennes, France
| | - Mathieu Lesouhaitier
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
- Inserm-CIC-1414, Faculté de Médecine, Université Rennes I, Rennes, France
| | - Benoit Painvin
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
| | - Quentin Quelven
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
| | - Valentin Coirier
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
| | - Pauline Guillot
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
| | - Yves Le Tulzo
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
- Inserm-CIC-1414, Faculté de Médecine, Université Rennes I, Rennes, France
| | - Jean Marc Tadié
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
- Inserm-CIC-1414, Faculté de Médecine, Université Rennes I, Rennes, France
| | - Arnaud Gacouin
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France.
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
- Inserm-CIC-1414, Faculté de Médecine, Université Rennes I, Rennes, France
| |
Collapse
|
3
|
Zhou D, Lv Y, Lin Q, Wang C, Fei S, He W. Association between rate of change in PaCO 2 and functional outcome for patients with hypercapnia after out-of-hospital cardiac arrest: Secondary analysis of a randomized clinical trial. Am J Emerg Med 2023; 65:139-145. [PMID: 36634567 DOI: 10.1016/j.ajem.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/10/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Normocapnia is suggested for post resuscitation care. For patients with hypercapnia after cardiac arrest, the relationship between rate of change in partial pressure of carbon dioxide (PaCO2) and functional outcome was unknown. METHODS This was the secondary analysis of Resuscitation Outcomes Consortium (ROC) amiodarone, lidocaine, and placebo (ALPS) trial. Patients with at least 2 PaCO2 recorded and the first indicating hypercapnia (PaCO2 > 45 mmHg) after return of spontaneous circulation (ROSC) were included. The rate of change in PaCO2 was calculated as the ratio of the difference between the second and first PaCO2 to the time interval. The primary outcome was modified Rankin Score (mRS), dichotomized to good (mRS 0-3) and poor (mRS 4-6) outcomes at hospital discharge. The independent relationship between rate of change in PaCO2 and outcome was investigated with multivariable logistic regression model. RESULTS A total of 746 patients with hypercapnia were included for analysis, of which 264 (35.4%) patients had good functional outcome. The median rate of change in PaCO2 was 4.7 (interquartile range [IQR] 1.7-12) mmHg per hour. After adjusting for confounders, the rate of change in PaCO2 (odds ratio [OR] 0.994, confidence interval [CI] 0.985-1.004, p = 0.230) was not associated the functional outcome. However, rate of change in PaCO2 (OR 1.010, CI 1.001-1.019, p = 0.029) was independently associated with hospital mortality. CONCLUSIONS For OHCA patients with hypercapnia on admission, the rate of change in PaCO2 was not independently associated with functional outcome; however, there was a significant trend that higher decreased rate was associated with increased hospital mortality.
Collapse
Affiliation(s)
- Dawei Zhou
- Department of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Yi Lv
- Department of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qing Lin
- Department of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chao Wang
- Department of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shuyang Fei
- Department of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei He
- Department of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Mao X, Tretter V, Zhu Y, Kraft F, Vigl B, Poglitsch M, Ullrich R, Abraham D, Krenn K. Combined angiotensin-converting enzyme and aminopeptidase inhibition for treatment of experimental ventilator-induced lung injury in mice. Front Physiol 2023; 14:1109452. [PMID: 37064885 PMCID: PMC10097933 DOI: 10.3389/fphys.2023.1109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/16/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction: Ventilator-induced lung injury (VILI) may aggravate critical illness. Although angiotensin-converting enzyme (ACE) inhibition has beneficial effects in ventilator-induced lung injury, its clinical application is impeded by concomitant hypotension. We hypothesized that the aminopeptidase inhibitor ALT-00 may oppose the hypotension induced by an angiotensin-converting enzyme inhibitor, and that this combination would activate the alternative renin-angiotensin system (RAS) axis to counteract ventilator-induced lung injury. Methods: In separate experiments, C57BL/6 mice were mechanically ventilated with low (LVT, 6 mL/kg) and high tidal volumes (HVT, 30 mL/kg) for 4 h or remained unventilated (sham). High tidal volume-ventilated mice were treated with lisinopril (0.15 μg/kg/min) ± ALT-00 at 2.7, 10 or 100 μg/kg/min. Blood pressure was recorded at baseline and after 4 h. Lung histology was evaluated for ventilator-induced lung injury and the angiotensin (Ang) metabolite profile in plasma (equilibrium levels of Ang I, Ang II, Ang III, Ang IV, Ang 1-7, and Ang 1-5) was measured with liquid chromatography tandem mass spectrometry at the end of the experiment. Angiotensin concentration-based markers for renin, angiotensin-converting enzyme and alternative renin-angiotensin system activities were calculated. Results: High tidal volume-ventilated mice treated with lisinopril showed a significant drop in the mean arterial pressure at 4 h compared to baseline, which was prevented by adding ALT-00 at 10 and 100 μg/kg/min. Ang I, Ang II and Ang 1-7 plasma equilibrium levels were elevated in the high tidal volumes group versus the sham group. Lisinopril reduced Ang II and slightly increased Ang I and Ang 1-7 levels versus the untreated high tidal volumes group. Adding ALT-00 at 10 and 100 μg/kg/min increased Ang I and Ang 1-7 levels versus the high tidal volume group, and partly prevented the downregulation of Ang II levels caused by lisinopril. The histological lung injury score was higher in the high tidal volume group versus the sham and low tidal volume groups, and was attenuated by lisinopril ± ALT-00 at all dose levels. Conclusion: Combined angiotensin-converting enzyme plus aminopeptidase inhibition prevented systemic hypotension and maintained the protective effect of lisinopril. In this study, a combination of lisinopril and ALT-00 at 10 μg/kg/min appeared to be the optimal approach, which may represent a promising strategy to counteract ventilator-induced lung injury that merits further exploration.
Collapse
Affiliation(s)
- Xinjun Mao
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
- Department of Anesthesiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Verena Tretter
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Yi Zhu
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Felix Kraft
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | - Roman Ullrich
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
- Department of Anesthesiology and Intensive Care Medicine, AUVA Trauma Center Vienna, Vienna, Austria
- *Correspondence: Roman Ullrich,
| | - Dietmar Abraham
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Katharina Krenn
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Csoma B, Vulpi MR, Dragonieri S, Bentley A, Felton T, Lázár Z, Bikov A. Hypercapnia in COPD: Causes, Consequences, and Therapy. J Clin Med 2022; 11:3180. [PMID: 35683563 PMCID: PMC9181664 DOI: 10.3390/jcm11113180] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 12/18/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder that may lead to gas exchange abnormalities, including hypercapnia. Chronic hypercapnia is an independent risk factor of mortality in COPD, leading to epithelial dysfunction and impaired lung immunity. Moreover, chronic hypercapnia affects the cardiovascular physiology, increases the risk of cardiovascular morbidity and mortality, and promotes muscle wasting and musculoskeletal abnormalities. Noninvasive ventilation is a widely used technique to remove carbon dioxide, and several studies have investigated its role in COPD. In the present review, we aim to summarize the causes and effects of chronic hypercapnia in COPD. Furthermore, we discuss the use of domiciliary noninvasive ventilation as a treatment option for hypercapnia while highlighting the controversies within the evidence. Finally, we provide some insightful clinical recommendations and draw attention to possible future research areas.
Collapse
Affiliation(s)
- Balázs Csoma
- Department of Pulmonology, Semmelweis University, 25-29 Tömő Str., 1083 Budapest, Hungary; (B.C.); (Z.L.)
| | - Maria Rosaria Vulpi
- School of Medicine: Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, 11 Piazza G. Cesare-Bari, 70124 Bari, Italy; (M.R.V.); (S.D.)
| | - Silvano Dragonieri
- School of Medicine: Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, 11 Piazza G. Cesare-Bari, 70124 Bari, Italy; (M.R.V.); (S.D.)
| | - Andrew Bentley
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Manchester M23 9LT, UK; (A.B.); (T.F.)
| | - Timothy Felton
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Manchester M23 9LT, UK; (A.B.); (T.F.)
| | - Zsófia Lázár
- Department of Pulmonology, Semmelweis University, 25-29 Tömő Str., 1083 Budapest, Hungary; (B.C.); (Z.L.)
| | - Andras Bikov
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Manchester M23 9LT, UK; (A.B.); (T.F.)
| |
Collapse
|
6
|
Almanza-Hurtado A, Polanco Guerra C, Martínez-Ávila MC, Borré-Naranjo D, Rodríguez-Yanez T, Dueñas-Castell C. Hypercapnia from Physiology to Practice. Int J Clin Pract 2022; 2022:2635616. [PMID: 36225533 PMCID: PMC9525762 DOI: 10.1155/2022/2635616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/28/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Acute hypercapnic ventilatory failure is becoming more frequent in critically ill patients. Hypercapnia is the elevation in the partial pressure of carbon dioxide (PaCO2) above 45 mmHg in the bloodstream. The pathophysiological mechanisms of hypercapnia include the decrease in minute volume, an increase in dead space, or an increase in carbon dioxide (CO2) production per sec. They generate a compromise at the cardiovascular, cerebral, metabolic, and respiratory levels with a high burden of morbidity and mortality. It is essential to know the triggers to provide therapy directed at the primary cause and avoid possible complications.
Collapse
|
7
|
Carbon dioxide levels in neonates: what are safe parameters? Pediatr Res 2022; 91:1049-1056. [PMID: 34230621 PMCID: PMC9122818 DOI: 10.1038/s41390-021-01473-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/01/2023]
Abstract
There is no consensus on the optimal pCO2 levels in the newborn. We reviewed the effects of hypercapnia and hypocapnia and existing carbon dioxide thresholds in neonates. A systematic review was conducted in accordance with the PRISMA statement and MOOSE guidelines. Two hundred and ninety-nine studies were screened and 37 studies included. Covidence online software was employed to streamline relevant articles. Hypocapnia was associated with predominantly neurological side effects while hypercapnia was linked with neurological, respiratory and gastrointestinal outcomes and Retinpathy of prematurity (ROP). Permissive hypercapnia did not decrease periventricular leukomalacia (PVL), ROP, hydrocephalus or air leaks. As safe pCO2 ranges were not explicitly concluded in the studies chosen, it was indirectly extrapolated with reference to pCO2 levels that were found to increase the risk of neonatal disease. Although PaCO2 ranges were reported from 2.6 to 8.7 kPa (19.5-64.3 mmHg) in both term and preterm infants, there are little data on the safety of these ranges. For permissive hypercapnia, parameters described for bronchopulmonary dysplasia (BPD; PaCO2 6.0-7.3 kPa: 45.0-54.8 mmHg) and congenital diaphragmatic hernia (CDH; PaCO2 ≤ 8.7 kPa: ≤65.3 mmHg) were identified. Contradictory findings on the effectiveness of permissive hypercapnia highlight the need for further data on appropriate CO2 parameters and correlation with outcomes. IMPACT: There is no consensus on the optimal pCO2 levels in the newborn. There is no consensus on the effectiveness of permissive hypercapnia in neonates. A safe range of pCO2 of 5-7 kPa was inferred following systematic review.
Collapse
|
8
|
Ergun DD, Dursun S, Ozsobaci NP, Naziroglu M, Ozcelik D. Response of TRPM2 Channel to Hypercapnic Acidosis and Role of Zn, Se, and GSH. Biol Trace Elem Res 2022; 200:147-155. [PMID: 33689144 DOI: 10.1007/s12011-021-02652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022]
Abstract
Hypercapnia can increase the production of reactive oxygen species (ROS) by inducing oxidative stress in cells. Transient receptor potential melastatin 2 (TRPM2) channel activation that is realized by ROS plays a critical role in the cellular mechanism. It was shown that antioxidants such as zinc (Zn), selenium (Se), and glutathione (GSH) can partake in the structures of enzymes and create a protective effect against oxidative stress. This study revealed the relationship between TRPM2 channel and hypercapnia, and the interaction of zinc, selenium, and glutathione. In our study, normoxia, hypercapnia, hypercapnia + Zn, hypercapnia + Se, and hypercapnia + GSH were created, in transfected HEK293 cells. The cells were exposed to normoxia or hypercapnia gasses in two different times (30 min and 60 min), while Zn, Se, and GSH were applied to the cells in the other groups before being exposed to the gas mixtures. The statistical evaluation showed a significant increase in lipid peroxidation (LPO) level and lactate dehydrogenase (LDH)% in the hypercapnia 30 min and 60 min groups, compared to the normoxia 30 min and 60 min groups, and an increase in LPO level and LDH% in the hypercapnia groups that Zn, Se, and GSH were applied. It was determined that in comparison with the normoxia 30 min and 60 min groups, the amount of inward Ca+2 current across TRPM2 channels and mean current density increased in the groups that were exposed to hypercapnia for 30 min and 60 min, while the same values significantly decreased in the hypercapnia groups that Zn, Se, and GSH were applied. Also, it was shown that oxidative stress rose as the duration of hypercapnia exposure increased. It was concluded that hypercapnia increased oxidative stress and caused cellular membrane damage, while the addition of Zn, Se, and GSH could protect the cell membrane from these damaging effects.
Collapse
Affiliation(s)
- D Duzgun Ergun
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - S Dursun
- Department of Biophysics, Faculty of Medicine, Uskudar University, Istanbul, Turkey
| | - N Pastaci Ozsobaci
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - M Naziroglu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
- Drug Discovery Unit, BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture, Industry LTD. Inc., Göller Bölgesi Teknokenti, Isparta, Turkey
| | - D Ozcelik
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
9
|
Fabre M, Fehlmann CA, Boczar KE, Gartner B, Zimmermann-Ivol CG, Sarasin F, Suppan L. Association between prehospital arterial hypercapnia and mortality in acute heart failure: a retrospective cohort study. BMC Emerg Med 2021; 21:130. [PMID: 34742243 PMCID: PMC8571671 DOI: 10.1186/s12873-021-00527-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Acute Heart Failure (AHF) is a potentially lethal pathology and is often encountered in the prehospital setting. Although an association between prehospital arterial hypercapnia in AHF patients and admission in high-dependency and intensive care units has been previously described, there is little data to support an association between prehospital arterial hypercapnia and mortality in this population. METHODS This was a retrospective study based on electronically recorded prehospital medical files. All adult patients with AHF were included. Records lacking arterial blood gas data were excluded. Other exclusion criteria included the presence of a potentially confounding diagnosis, prehospital cardiac arrest, and inter-hospital transfers. Hypercapnia was defined as a PaCO2 higher than 6.0 kPa. The primary outcome was in-hospital mortality, and secondary outcomes were 7-day mortality and emergency room length of stay (ER LOS). Univariable and multivariable logistic regression models were used. RESULTS We included 225 patients in the analysis. Prehospital hypercapnia was found in 132 (58.7%) patients. In-hospital mortality was higher in patients with hypercapnia (17.4% [23/132] versus 6.5% [6/93], p = 0.016), with a crude odds-ratio of 3.06 (95%CI 1.19-7.85). After adjustment for pre-specified covariates, the adjusted OR was 3.18 (95%CI 1.22-8.26). The overall 7-day mortality was also higher in hypercapnic patients (13.6% versus 5.5%, p = 0.044), and ER LOS was shorter in this population (5.6 h versus 7.1 h, p = 0.018). CONCLUSION Prehospital hypercapnia is associated with an increase in in-hospital and 7-day mortality in patient with AHF.
Collapse
Affiliation(s)
- Mathias Fabre
- Division of Emergency, Department of Anaesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine University of Geneva, Geneva, Switzerland.
| | - Christophe A Fehlmann
- Division of Emergency, Department of Anaesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine University of Geneva, Geneva, Switzerland
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, K1G 5Z3, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, ON K1Y 4E9, Canada
| | - Kevin E Boczar
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, K1G 5Z3, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, ON K1Y 4E9, Canada
| | - Birgit Gartner
- Division of Emergency, Department of Anaesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine University of Geneva, Geneva, Switzerland
| | - Catherine G Zimmermann-Ivol
- Division of Medicine Laboratory, Department of Diagnostics, Geneva University Hospitals and Faculty of Medicine University of Geneva, Geneva, Switzerland
| | - François Sarasin
- Division of Emergency, Department of Anaesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine University of Geneva, Geneva, Switzerland
| | - Laurent Suppan
- Division of Emergency, Department of Anaesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Chen Y, Wang S, Huang J, Fu Y, Wen J, Zhou C, Fu Y, Liu L. Application of extracorporeal carbon dioxide removal combined with continuous blood purification therapy in ARDS with hypercapnia in patients with critical COVID-19. Clin Hemorheol Microcirc 2021; 78:199-207. [PMID: 33554895 DOI: 10.3233/ch-201080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Coronavirus disease-19 (COVID-19) is a new type of epidemic pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The population is generally susceptible to COVID-19, which mainly causes lung injury. Some cases may develop severe acute respiratory distress syndrome (ARDS). Currently, ARDS treatment is mainly mechanical ventilation, but mechanical ventilation often causes ventilator-induced lung injury (VILI) accompanied by hypercapnia in 14% of patients. Extracorporeal carbon dioxide removal (ECCO2R) can remove carbon dioxide from the blood of patients with ARDS, correct the respiratory acidosis, reduce the tidal volume and airway pressure, and reduce the incidence of VILI. CASE REPORT Two patients with critical COVID-19 combined with multiple organ failure undertook mechanical ventilation and suffered from hypercapnia. ECCO2R, combined with continuous renal replacement therapy (CRRT), was conducted concomitantly. In both cases (No. 1 and 2), the tidal volume and positive end-expiratory pressure (PEEP) were down-regulated before the treatment and at 1.5 hours, one day, three days, five days, eight days, and ten days after the treatment, together with a noticeable decrease in PCO2 and clear increase in PO2, while FiO2 decreased to approximately 40%. In case No 2, compared with the condition before treatment, the PCO2 decreased significantly with down-regulation in the tidal volume and PEEP and improvement in the pulmonary edema and ARDS after the treatment. CONCLUSION ECCO2R combined with continuous blood purification therapy in patients with COVID-19 who are criti-cally ill and have ARDS and hypercapnia might gain both time and opportunity in the treatment, down-regulate the ventilator parameters, reduce the incidence of VILI and achieve favorable therapeutic outcomes.
Collapse
Affiliation(s)
- Ye Chen
- Department of Hemopurification Center, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shouhong Wang
- Department of Critical Care Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jianrong Huang
- Department of Hemopurification Center, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yingyun Fu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Juanmin Wen
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong, China
| | - Chengbin Zhou
- Department of Cardiovascular Surgery, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Liu
- National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Ding X, Chen H, Zhao H, Zhang H, He H, Cheng W, Wang C, Jiang W, Ma J, Qin Y, Liu Z, Wang J, Yan X, Li T, Zhou X, Long Y, Zhang S. ECCO 2R in 12 COVID-19 ARDS Patients With Extremely Low Compliance and Refractory Hypercapnia. Front Med (Lausanne) 2021; 8:654658. [PMID: 34307397 PMCID: PMC8295461 DOI: 10.3389/fmed.2021.654658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: A phenotype of COVID-19 ARDS patients with extremely low compliance and refractory hypercapnia was found in our ICU. In the context of limited number of ECMO machines, feasibility of a low-flow extracorporeal carbon dioxide removal (ECCO2R) based on the renal replacement therapy (RRT) platform in these patients was assessed. Methods: Single-center, prospective study. Refractory hypercapnia patients with COVID-19-associated ARDS were included and divided into the adjusted group and unadjusted group according to the level of PaCO2 after the application of the ECCO2R system. Ventilation parameters [tidal volume (VT), respiratory rate, and PEEP], platform pressure (Pplat) and driving pressure (DP), respiratory system compliance, arterial blood gases, and ECCO2R system characteristics were collected. Results: Twelve patients with refractory hypercapnia were enrolled, and the PaCO2 was 64.5 [56-88.75] mmHg. In the adjusted group, VT was significantly reduced from 5.90 ± 0.16 to 5.08 ± 0.43 ml/kg PBW; DP and Pplat were also significantly reduced from 23.5 ± 2.72 mmHg and 29.88 ± 3.04 mmHg to 18.5 ± 2.62 mmHg and 24.75 ± 3.41 mmHg, respectively. In the unadjusted group, PaCO2 decreased from 94 [86.25, 100.3] mmHg to 80 [67.50, 85.25] mmHg but with no significant difference, and the DP and Pplat were not decreased after weighing the pros and cons. Conclusions: A low-flow ECCO2R system based on the RRT platform enabled CO2 removal and could also decrease the DP and Pplat significantly, which provided a new way to treat these COVID-19 ARDS patients with refractory hypercapnia and extremely low compliance. Clinical Trial Registration: https://www.clinicaltrials.gov/, identifier NCT04340414.
Collapse
Affiliation(s)
- Xin Ding
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huan Chen
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hua Zhao
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongmin Zhang
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huaiwu He
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Cheng
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chunyao Wang
- Department of Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Jiang
- Department of Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jie Ma
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yan Qin
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhengyin Liu
- Department of Infectious Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinglan Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaowei Yan
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Taisheng Li
- Department of Infectious Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiang Zhou
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shuyang Zhang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Kahl U, Yu Y, Nierhaus A, Frings D, Sensen B, Daubmann A, Kluge S, Fischer M. Cerebrovascular autoregulation and arterial carbon dioxide in patients with acute respiratory distress syndrome: a prospective observational cohort study. Ann Intensive Care 2021; 11:47. [PMID: 33725209 PMCID: PMC7962086 DOI: 10.1186/s13613-021-00831-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/01/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Early hypercapnia is common in patients with acute respiratory distress syndrome (ARDS) and is associated with increased mortality. Fluctuations of carbon dioxide have been associated with adverse neurological outcome in patients with severe respiratory failure requiring extracorporeal organ support. The aim of this study was to investigate whether early hypercapnia is associated with impaired cerebrovascular autoregulation during the acute phase of ARDS. METHODS Between December 2018 and November 2019, patients who fulfilled the Berlin criteria for ARDS, were enrolled. Patients with a history of central nervous system disorders, cerebrovascular disease, chronic hypercapnia, or a life expectancy of less than 24 h were excluded from study participation. During the acute phase of ARDS, cerebrovascular autoregulation was measured over two time periods for at least 60 min. Based on the values of mean arterial blood pressure and near-infrared spectroscopy, a cerebral autoregulation index (COx) was calculated. The time with impaired cerebral autoregulation was calculated for each measurement and was compared between patients with and without early hypercapnia [defined as an arterial partial pressure of carbon dioxide (PaCO2) ≥ 50 mmHg with a corresponding arterial pH < 7.35 within the first 24 h of ARDS diagnosis]. RESULTS Of 66 patients included, 117 monitoring episodes were available. The mean age of the study population was 58.5 ± 16 years. 10 patients (15.2%) had mild, 28 (42.4%) moderate, and 28 (42.4%) severe ARDS. Nineteen patients (28.8%) required extracorporeal membrane oxygenation. Early hypercapnia was present in 39 patients (59.1%). Multivariable analysis did not show a significant association between early hypercapnia and impaired cerebrovascular autoregulation (B = 0.023 [95% CI - 0.054; 0.100], p = 0.556). Hypocapnia during the monitoring period was significantly associated with impaired cerebrovascular autoregulation [B = 0.155 (95% CI 0.014; 0.296), p = 0.032]. CONCLUSION Our results suggest that moderate permissive hypercapnia during the acute phase of ARDS has no adverse effect on cerebrovascular autoregulation and may be tolerated to a certain extent to achieve low tidal volumes. In contrast, episodes of hypocapnia may compromise cerebral blood flow regulation. Trial registration ClinicalTrials.gov; registration number: NCT03949738; date of registration: May 14, 2019.
Collapse
Affiliation(s)
- Ursula Kahl
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Yuanyuan Yu
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Axel Nierhaus
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Frings
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barbara Sensen
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Daubmann
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Fischer
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
13
|
Abstract
Carbon dioxide (CO2), a primary product of oxidative metabolism, can be sensed by eukaryotic cells eliciting unique responses via specific signalling pathways. Severe lung diseases such as chronic obstructive pulmonary disease are associated with hypoventilation that can lead to the elevation of CO2 levels in lung tissues and the bloodstream (hypercapnia). However, the pathophysiological effects of hypercapnia on the lungs and specific lung cells are incompletely understood. We have recently reported using combined unbiased molecular approaches with studies in mice and cell culture systems on the mechanisms by which hypercapnia alters airway smooth muscle contractility. In this review, we provide a pathophysiological and mechanistic perspective on the effects of hypercapnia on the lung airways and discuss the recent understanding of high CO2 modulation of the airway contractility.
Collapse
Affiliation(s)
- Masahiko Shigemura
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
14
|
Shigemura M, Welch LC, Sznajder JI. Hypercapnia Regulates Gene Expression and Tissue Function. Front Physiol 2020; 11:598122. [PMID: 33329047 PMCID: PMC7715027 DOI: 10.3389/fphys.2020.598122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/26/2020] [Indexed: 01/20/2023] Open
Abstract
Carbon dioxide (CO2) is produced in eukaryotic cells primarily during aerobic respiration, resulting in higher CO2 levels in mammalian tissues than those in the atmosphere. CO2 like other gaseous molecules such as oxygen and nitric oxide, is sensed by cells and contributes to cellular and organismal physiology. In humans, elevation of CO2 levels in tissues and the bloodstream (hypercapnia) occurs during impaired alveolar gas exchange in patients with severe acute and chronic lung diseases. Advances in understanding of the biology of high CO2 effects reveal that the changes in CO2 levels are sensed in cells resulting in specific tissue responses. There is accumulating evidence on the transcriptional response to elevated CO2 levels that alters gene expression and activates signaling pathways with consequences for cellular and tissue functions. The nature of hypercapnia-responsive transcriptional regulation is an emerging area of research, as the responses to hypercapnia in different cell types, tissues, and species are not fully understood. Here, we review the current understanding of hypercapnia effects on gene transcription and consequent cellular and tissue functions.
Collapse
Affiliation(s)
- Masahiko Shigemura
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, United States
| | - Lynn C Welch
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, United States
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
15
|
Hypercapnia: An Aggravating Factor in Asthma. J Clin Med 2020; 9:jcm9103207. [PMID: 33027886 PMCID: PMC7599850 DOI: 10.3390/jcm9103207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Asthma is a common chronic respiratory disorder with relatively good outcomes in the majority of patients with appropriate maintenance therapy. However, in a small minority, patients can experience severe asthma with respiratory failure and hypercapnia, necessitating intensive care unit admission. Hypercapnia occurs due to alveolar hypoventilation and insufficient removal of carbon dioxide (CO2) from the blood. Although mild hypercapnia is generally well tolerated in patients with asthma, there is accumulating evidence that elevated levels of CO2 can act as a gaso-signaling molecule, triggering deleterious effects in various organs such as the lung, skeletal muscles and the innate immune system. Here, we review recent advances on pathophysiological response to hypercapnia and discuss potential detrimental effects of hypercapnia in patients with asthma.
Collapse
|
16
|
Redant S, De Bels D, Barbance O, Loulidi G, Honoré PM. Extracorporeal CO2 Removal Integrated within a Continuous Renal Replacement Circuit Offers Multiple Advantages. Blood Purif 2020; 50:9-16. [PMID: 32585671 DOI: 10.1159/000507875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/13/2020] [Indexed: 11/19/2022]
Abstract
Extracorporeal CO2 removal within a continuous renal replacement therapy circuit offers multiple advantages for the regulation of the CO2 extraction. The authors review the impact of the dialysate solution, the buffer, and the anticoagulation on CO2 removal. They propose a theoretical model of the ideal circuit for the optimization of CO2 extraction.
Collapse
Affiliation(s)
- Sébastien Redant
- ICU Department, Brugmann University Hospital, Brussels, Belgium,
| | - David De Bels
- ICU Department, Brugmann University Hospital, Brussels, Belgium
| | - Oceane Barbance
- ICU Department, Brugmann University Hospital, Brussels, Belgium
| | - Ghalil Loulidi
- ICU Department, Brugmann University Hospital, Brussels, Belgium
| | | |
Collapse
|
17
|
Pre-Treatment with Ten-Minute Carbon Dioxide Inhalation Prevents Lipopolysaccharide-Induced Lung Injury in Mice via Down-Regulation of Toll-Like Receptor 4 Expression. Int J Mol Sci 2019; 20:ijms20246293. [PMID: 31847115 PMCID: PMC6940754 DOI: 10.3390/ijms20246293] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 12/29/2022] Open
Abstract
Various animal studies have shown beneficial effects of hypercapnia in lung injury. However, in patients with acute respiratory distress syndrome (ARDS), there is controversial information regarding the effect of hypercapnia on outcomes. The duration of carbon dioxide inhalation may be the key to the protective effect of hypercapnia. We investigated the effect of pre-treatment with inhaled carbon dioxide on lipopolysaccharide (LPS)-induced lung injury in mice. C57BL/6 mice were randomly divided into a control group or an LPS group. Each LPS group received intratracheal LPS (2 mg/kg); the LPS groups were exposed to hypercapnia (5% carbon dioxide) for 10 min or 60 min before LPS. Bronchoalveolar lavage fluid (BALF) and lung tissues were collected to evaluate the degree of lung injury. LPS significantly increased the ratio of lung weight to body weight; concentrations of BALF protein, tumor necrosis factor-α, and CXCL2; protein carbonyls; neutrophil infiltration; and lung injury score. LPS induced the degradation of the inhibitor of nuclear factor-κB-α (IκB-α) and nuclear translocation of NF-κB. LPS increased the surface protein expression of toll-like receptor 4 (TLR4). Pre-treatment with inhaled carbon dioxide for 10 min, but not for 60 min, inhibited LPS-induced pulmonary edema, inflammation, oxidative stress, lung injury, and TLR4 surface expression, and, accordingly, reduced NF-κB signaling. In summary, our data demonstrated that pre-treatment with 10-min carbon dioxide inhalation can ameliorate LPS-induced lung injury. The protective effect may be associated with down-regulation of the surface expression of TLR4 in the lungs.
Collapse
|
18
|
Morales-Quinteros L, Camprubí-Rimblas M, Bringué J, Bos LD, Schultz MJ, Artigas A. The role of hypercapnia in acute respiratory failure. Intensive Care Med Exp 2019; 7:39. [PMID: 31346806 PMCID: PMC6658637 DOI: 10.1186/s40635-019-0239-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022] Open
Abstract
The biological effects and physiological consequences of hypercapnia are increasingly understood. The literature on hypercapnia is confusing, and at times contradictory. On the one hand, it may have protective effects through attenuation of pulmonary inflammation and oxidative stress. On the other hand, it may also have deleterious effects through inhibition of alveolar wound repair, reabsorption of alveolar fluid, and alveolar cell proliferation. Besides, hypercapnia has meaningful effects on lung physiology such as airway resistance, lung oxygenation, diaphragm function, and pulmonary vascular tree. In acute respiratory distress syndrome, lung-protective ventilation strategies using low tidal volume and low airway pressure are strongly advocated as these have strong potential to improve outcome. These strategies may come at a price of hypercapnia and hypercapnic acidosis. One approach is to accept it (permissive hypercapnia); another approach is to treat it through extracorporeal means. At present, it remains uncertain what the best approach is.
Collapse
Affiliation(s)
- Luis Morales-Quinteros
- Intensive Care Unit, Hospital Universitario Sagrado Corazón, Carrer de Viladomat, 288, 08029, Barcelona, Spain.
| | - Marta Camprubí-Rimblas
- Department of Medicine, Universitat Autònoma de Barcelona, Bellatera, Spain.,Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
| | - Josep Bringué
- Department of Medicine, Universitat Autònoma de Barcelona, Bellatera, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Lieuwe D Bos
- Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
| | - Antonio Artigas
- Intensive Care Unit, Hospital Universitario Sagrado Corazón, Carrer de Viladomat, 288, 08029, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellatera, Spain.,Critical Care Center, Corporació Sanitària I Universitària Parc Taulí, Sabadell, Spain.,Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
19
|
Hypercapnia Alters Alveolar Epithelial Repair by a pH-Dependent and Adenylate Cyclase-Mediated Mechanism. Sci Rep 2019; 9:349. [PMID: 30674971 PMCID: PMC6344503 DOI: 10.1038/s41598-018-36951-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
Lung cell injury and repair is a hallmark of the acute respiratory distress syndrome (ARDS). Lung protective mechanical ventilation strategies in these patients may lead to hypercapnia (HC). Although HC has been explored in the clinical context of ARDS, its effect upon alveolar epithelial cell (AEC) wounding and repair remains poorly understood. We have previously reported that HC alters the likelihood of AEC repair by a pH-sensitive but otherwise unknown mechanism. Adenylate cyclase (AC) is an attractive candidate as a putative AEC CO2 sensor and effector as it is bicarbonate sensitive and controls key mediators of AEC repair. The effect of HC on AC activity and plasma membrane (PM) wound repair was measured in AEC type 1 exposed to normocapnia (NC, 40 Torr) or HC (80 Torr), ± tromethamine (THAM) or sodium bicarbonate (HCO3) ± AC probes in a micropuncture model of AEC injury relevant to ARDS. Intracellular pH and AC activity were measured and correlated with repair. HC decreased intracellular pH 0.56, cAMP by 37%, and absolute PM repair rate by 26%. Buffering or pharmacologic manipulation of AC reduced or reversed the effects of HC on AC activity (THAM 103%, HCO3 113% of NC cAMP, ns; Forskolin 168%, p < 0.05) and PM repair (THAM 87%, HCO3 108% of NC likelihood to repair, ns; Forskolin 160%, p < 0.01). These findings suggest AC to be a putative AEC CO2 sensor and modulator of AEC repair, and may have implications for future pharmacologic targeting of downstream messengers of the AC-cAMP axis in experimental models of ARDS.
Collapse
|
20
|
Ansari B, Parotto M. Mechanical ventilation guidelines in lung lobectomy surgery and the quest to improve outcomes. J Thorac Dis 2018; 10:6396-6398. [PMID: 30746173 DOI: 10.21037/jtd.2018.11.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bilal Ansari
- Department of Anesthesia, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Matteo Parotto
- Department of Anesthesia, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Morales-Quinteros L, Artigas A. Extracorporeal membrane oxygenation in acute respiratory distress syndrome: does it really help? J Thorac Dis 2018; 10:S3166-S3168. [PMID: 30370105 DOI: 10.21037/jtd.2018.07.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Luis Morales-Quinteros
- Intensive Care Unit, Hospital Universitario Sagrado Corazón, Barcelona, Spain.,Intensive Care Unit, Hospital Universitario Vall d'Hebron, Barcelona, Spain.,Critical Care Centre-Corporació Sanitària i Universitària Parc Taulí, Sabadell, Spain
| | - Antonio Artigas
- Intensive Care Unit, Hospital Universitario Sagrado Corazón, Barcelona, Spain.,Critical Care Centre-Corporació Sanitària i Universitària Parc Taulí, Sabadell, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
22
|
Roberts BW, Mohr NM, Ablordeppey E, Drewry AM, Ferguson IT, Trzeciak S, Kollef MH, Fuller BM. Association Between Partial Pressure of Arterial Carbon Dioxide and Survival to Hospital Discharge Among Patients Diagnosed With Sepsis in the Emergency Department. Crit Care Med 2018; 46:e213-e220. [PMID: 29261567 PMCID: PMC5825256 DOI: 10.1097/ccm.0000000000002918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The objective of this study was to test the association between the partial pressure of arterial carbon dioxide and survival to hospital discharge among mechanically ventilated patients diagnosed with sepsis in the emergency department. DESIGN Retrospective cohort study of a single center trial registry. SETTING Academic medical center. PATIENTS Mechanically ventilated emergency department patients. INCLUSION CRITERIA age 18 years and older, diagnosed with sepsis in the emergency department, and mechanical ventilation initiated in the emergency department. INTERVENTIONS Arterial blood gases obtained after initiation of mechanical ventilation were analyzed. The primary outcome was survival to hospital discharge. We tested the association between partial pressure of arterial carbon dioxide and survival using multivariable logistic regression adjusting for potential confounders. Sensitivity analyses, including propensity score matching were also performed. MEASUREMENTS AND MAIN RESULTS Six hundred subjects were included, and 429 (72%) survived to hospital discharge. The median (interquartile range) partial pressure of arterial carbon dioxide was 42 (34-53) mm Hg for the entire cohort and 44 (35-57) and 39 (31-45) mm Hg among survivors and nonsurvivors, respectively (p < 0.0001 Wilcox rank-sum test). On multivariable analysis, a 1 mm Hg rise in partial pressure of arterial carbon dioxide was associated with a 3% increase in odds of survival (adjusted odds ratio, 1.03; 95% CI, 1.01-1.04) after adjusting for tidal volume and other potential confounders. These results remained significant on all sensitivity analyses. CONCLUSION In this sample of mechanically ventilated sepsis patients, we found an association between increasing levels of partial pressure of arterial carbon dioxide and survival to hospital discharge. These findings justify future studies to determine the optimal target partial pressure of arterial carbon dioxide range for mechanically ventilated sepsis patients.
Collapse
Affiliation(s)
- Brian W. Roberts
- The Department of Emergency Medicine, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, New Jersey
| | - Nicholas M. Mohr
- Departments of Emergency Medicine and Anesthesiology, Division of Critical Care Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Enyo Ablordeppey
- Department of Emergency Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Department of Anesthesiology, Division of Critical Care, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Anne M. Drewry
- Department of Emergency Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Ian T. Ferguson
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Stephen Trzeciak
- The Department of Emergency Medicine, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, New Jersey
- The Department of Medicine, Division of Critical Care Medicine, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, New Jersey
| | - Marin H. Kollef
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Brian M. Fuller
- Department of Emergency Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Department of Anesthesiology, Division of Critical Care, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| |
Collapse
|
23
|
Morales Quinteros L, Bringué Roque J, Kaufman D, Artigas Raventós A. Importance of carbon dioxide in the critical patient: Implications at the cellular and clinical levels. Med Intensiva 2018; 43:234-242. [PMID: 29486904 DOI: 10.1016/j.medin.2018.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 01/22/2023]
Abstract
Important recent insights have emerged regarding the cellular and molecular role of carbon dioxide (CO2) and the effects of hypercapnia. The latter may have beneficial effects in patients with acute lung injury, affording reductions in pulmonary inflammation, lessened oxidative alveolar damage, and the regulation of innate immunity and host defenses by inhibiting the expression of inflammatory cytokines. However, other studies suggest that CO2 can have deleterious effects upon the lung, reducing alveolar wound repair in lung injury, decreasing the rate of reabsorption of alveolar fluid, and inhibiting alveolar cell proliferation. Clearly, hypercapnia has both beneficial and harmful consequences, and it is important to determine the net effect under specific conditions. The purpose of this review is to describe the immunological and physiological effects of carbon dioxide, considering their potential consequences in patients with acute respiratory failure.
Collapse
Affiliation(s)
| | | | - David Kaufman
- Division of Pulmonary, Critical Care & Sleep, NYU School of Medicine, New York, NY, Estados Unidos
| | - Antonio Artigas Raventós
- Servicio de Medicina Intensiva, Hospital Universitario Sagrat Cor, Barcelona, España; Universidad Autónoma de Barcelona, Sabadell, Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, España
| |
Collapse
|
24
|
Liu J, Wang W, Liu F, Li Z. Pediatric acute respiratory distress syndrome - current views. Exp Ther Med 2018; 15:1775-1780. [PMID: 29434764 PMCID: PMC5776650 DOI: 10.3892/etm.2017.5628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) mainly involves acute respiratory failure. In addition to this affected patients feel progressive arterial hypoxemia, dyspnea, and a marked increase in the work of breathing. The only clinical solution for the above pathological state is ventilation. Mechanical ventilation is necessary to support life in ARDs but it itself worsen lung injury and the term is known clinically as ‘ventilation induced lung injury’ (VILI). At the cellular level, respiratory epithelial cells are subjected to cyclic stretch, i.e. repeated cycles of positive and negative strain, during normal tidal ventilation. In aerated areas of diseased lungs, or even normal lungs subjected to injurious positive pressure mechanical ventilation, the cells are at risk of being over distended, and worsening injury by disrupting the alveolar epithelial barrier. Further, hypercapnic acidosis (HCA) in itself confers protection from stretch injury, potentially via a mechanisms involving inhibition of nuclear factor κB (NF-κB), a transcription factor central to inflammation, injury and repair. Mesenchymal stem cells are the latest in the field and are being investigated as a possible therapy for ARDS.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Neonatology, Xuzhou Chlidren's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Wei Wang
- Department of Neonatology, Xuzhou Chlidren's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Fengli Liu
- Department of Neonatology, Xuzhou Chlidren's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Zhenguang Li
- Department of Neonatology, Xuzhou Chlidren's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
25
|
Nin N, Angulo M, Briva A. Effects of hypercapnia in acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:37. [PMID: 29430454 PMCID: PMC5799147 DOI: 10.21037/atm.2018.01.09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 01/11/2023]
Abstract
In patients with acute respiratory distress syndrome (ARDS) hypercapnia is a marker of poor prognosis, however there is controversial information regarding the effect of hypercapnia on outcomes. Recently two studies in a large population of mechanical ventilation patients showed higher mortality associated independently to hypercapnia. Key roles responsible for the poor clinical outcomes observed in critically ill patients exposed to hypercapnia are not well known, two possible mechanisms involved are the effect of CO2 on the muscle and the alveolar epithelium. Hypercapnia frequently coexists with muscle atrophy and dysfunction, moreover patients surviving ARDS present reduced muscle strength and decreased physical quality of life. One of the possible mechanisms responsible for these abnormalities could be the effects of hypercapnia during the course of ARDS. More over controversy persists about the hypercapnia role in the alveolar space, in the last years there is abundant experimental information on its deleterious effects on essential functions of the alveolar epithelium.
Collapse
Affiliation(s)
- Nicolás Nin
- Unidad de Cuidados Intensivos, Hospital Español, Montevideo, Uruguay
| | - Martín Angulo
- Unidad de Cuidados Intensivos, Hospital de Clínicas, Montevideo, Uruguay
| | - Arturo Briva
- Unidad de Cuidados Intensivos, Hospital Español, Montevideo, Uruguay
- Unidad de Cuidados Intensivos, Hospital de Clínicas, Montevideo, Uruguay
| |
Collapse
|
26
|
Thome UH, Dreyhaupt J, Genzel-Boroviczeny O, Bohnhorst B, Schmid M, Fuchs H, Rohde O, Avenarius S, Topf HG, Zimmermann A, Faas D, Timme K, Kleinlein B, Buxmann H, Schenk W, Segerer H, Teig N, Ackermann B, Hentschel R, Heckmann M, Schlösser R, Peters J, Rossi R, Rascher W, Böttger R, Seidenberg J, Hansen G, Bode H, Zernickel M, Muche R, Hummler HD. Influence of PCO2 Control on Clinical and Neurodevelopmental Outcomes of Extremely Low Birth Weight Infants. Neonatology 2018; 113:221-230. [PMID: 29298438 DOI: 10.1159/000485828] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/28/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Levels or fluctuations in the partial pressure of CO2 (PCO2) may affect outcomes for extremely low birth weight infants. OBJECTIVES In an exploratory analysis of a randomized trial, we hypothesized that the PCO2 values achieved could be related to significant outcomes. METHODS On each treatment day, infants were divided into 4 groups: relative hypocapnia, normocapnia, hypercapnia, or fluctuating PCO2. Ultimate assignment to a group for the purpose of this analysis was made according to the group in which an infant spent the most days. Statistical analyses were performed with analysis of variance (ANOVA), the Kruskal-Wallis test, the χ2 test, and the Fisher exact test as well as by multiple logistic regression. RESULTS Of the 359 infants, 57 were classified as hypocapnic, 230 as normocapnic, 70 as hypercapnic, and 2 as fluctuating PCO2. Hypercapnic infants had a higher average product of mean airway pressure and fraction of inspired oxygen (MAP × FiO2). For this group, mortality was higher, as was the likelihood of having moderate/severe bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), and poorer neurodevelopment. Multiple logistic regression analyses showed an increased risk for BPD or death associated with birth weight (p < 0.001) and MAP × FiO2 (p < 0.01). The incidence of adverse neurodevelopment was associated with birth weight (p < 0.001) and intraventricular hemorrhage (IVH; p < 0.01). CONCLUSIONS Birth weight and respiratory morbidity, as measured by MAP × FiO2, were the most predictive of death or BPD and NEC, whereas poor neurodevelopmental outcome was associated with low birth weight and IVH. Univariate models also identified PCO2. Thus, hypercapnia seems to reflect greater disease severity, a likely contributor to differences in outcomes.
Collapse
Affiliation(s)
- Ulrich H Thome
- Division of Neonatology, University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Barnes T, Zochios V, Parhar K. Re-examining Permissive Hypercapnia in ARDS: A Narrative Review. Chest 2017; 154:185-195. [PMID: 29175086 DOI: 10.1016/j.chest.2017.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/20/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
Lung-protective ventilation (LPV) has become the cornerstone of management in patients with ARDS. A subset of patients is unable to tolerate LPV without significant CO2 elevation. In these patients, permissive hypercapnia is used. Although thought to be benign, it is becoming increasingly evident that elevated CO2 levels have significant physiological effects. In this narrative review, we highlight clinically relevant end-organ effects in both animal models and clinical studies. We also explore the association between elevated CO2, acute cor pulmonale, and ICU mortality. We conclude with a brief review of alternative therapies for CO2 management currently under investigation in patients with moderate to severe ARDS.
Collapse
Affiliation(s)
- Tavish Barnes
- Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada
| | - Vasileios Zochios
- Department of Critical Care Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, College of Medical and Dental Sciences, University of Birmingham, Birmingham, England
| | - Ken Parhar
- Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
28
|
Tiruvoipati R, Pilcher D, Buscher H, Botha J, Bailey M. Effects of Hypercapnia and Hypercapnic Acidosis on Hospital Mortality in Mechanically Ventilated Patients. Crit Care Med 2017; 45:e649-e656. [PMID: 28406813 DOI: 10.1097/ccm.0000000000002332] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Lung-protective ventilation is used to prevent further lung injury in patients on invasive mechanical ventilation. However, lung-protective ventilation can cause hypercapnia and hypercapnic acidosis. There are no large clinical studies evaluating the effects of hypercapnia and hypercapnic acidosis in patients requiring mechanical ventilation. DESIGN Multicenter, binational, retrospective study aimed to assess the impact of compensated hypercapnia and hypercapnic acidosis in patients receiving mechanical ventilation. SETTINGS Data were extracted from the Australian and New Zealand Intensive Care Society Centre for Outcome and Resource Evaluation Adult Patient Database over a 14-year period where 171 ICUs contributed deidentified data. PATIENTS Patients were classified into three groups based on a combination of pH and carbon dioxide levels (normocapnia and normal pH, compensated hypercapnia [normal pH with elevated carbon dioxide], and hypercapnic acidosis) during the first 24 hours of ICU stay. Logistic regression analysis was used to identify the independent association of hypercapnia and hypercapnic acidosis with hospital mortality. INTERVENTIONS Nil. MEASUREMENTS AND MAIN RESULTS A total of 252,812 patients (normocapnia and normal pH, 110,104; compensated hypercapnia, 20,463; and hypercapnic acidosis, 122,245) were included in analysis. Patients with compensated hypercapnia and hypercapnic acidosis had higher Acute Physiology and Chronic Health Evaluation III scores (49.2 vs 53.2 vs 68.6; p < 0.01). The mortality was higher in hypercapnic acidosis patients when compared with other groups, with the lowest mortality in patients with normocapnia and normal pH. After adjusting for severity of illness, the adjusted odds ratio for hospital mortality was higher in hypercapnic acidosis patients (odds ratio, 1.74; 95% CI, 1.62-1.88) and compensated hypercapnia (odds ratio, 1.18; 95% CI, 1.10-1.26) when compared with patients with normocapnia and normal pH (p < 0.001). In patients with hypercapnic acidosis, the mortality increased with increasing PCO2 until 65 mm Hg after which the mortality plateaued. CONCLUSIONS Hypercapnic acidosis during the first 24 hours of intensive care admission is more strongly associated with increased hospital mortality than compensated hypercapnia or normocapnia.
Collapse
Affiliation(s)
- Ravindranath Tiruvoipati
- 1Department of Intensive Care Medicine, Frankston Hospital, Frankston, VIC, Australia.2Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.3ANZIC-RC, Department of Epidemiology & Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, The Alfred Centre, Melbourne, VIC, Australia.4Department of Intensive Care Medicine, St Vincent's Hospital, Sydney, NSW, Australia.5University of New South Wales, Kensington, NSW, Australia
| | | | | | | | | |
Collapse
|
29
|
Fuchs H, Rossmann N, Schmid MB, Hoenig M, Thome U, Mayer B, Klotz D, Hummler HD. Permissive hypercapnia for severe acute respiratory distress syndrome in immunocompromised children: A single center experience. PLoS One 2017. [PMID: 28632754 PMCID: PMC5478142 DOI: 10.1371/journal.pone.0179974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Controlled hypoventilation while accepting hypercapnia has been advocated to reduce ventilator-induced lung injury. The aim of the study was to analyze outcomes of a cohort of immunocompromised children with acute respiratory distress syndrome (ARDS) ventilated with a strategy of stepwise increasing PCO2 targets up to 140 mm Hg. METHODS Retrospective analysis of outcomes of a cohort of children with oncologic disease or after stem cell transplantation and severe respiratory failure in comparison with a historical control cohort. RESULTS Out of 150 episodes of admission to the PICU 88 children underwent invasive mechanical ventilation for >24h (overall survival 75%). In a subgroup of 38 children with high ventilator requirements the PCO2 target ranges were increased stepwise. Fifteen children survived and were discharged from the PICU. Severe pulmonary hypertension was seen in two patients and no case of cerebral edema was observed. Long term outcome was available in 15 patients and 10 of these patients survived without adverse neurological sequelae. With introduction of this strategy survival of immunocompromised children undergoing mechanical ventilation for >24h increased to 48% compared to 32% prior to introduction (historical cohort). CONCLUSIONS A ventilation strategy incorporating very high carbon dioxide levels to allow for low tidal volumes and limited inspiratory pressures is feasible in children. Even severe hypercapnia may be well tolerated. No severe side effects associated with hypercapnia were observed. This strategy could potentially increase survival in immunocompromised children with severe ARDS.
Collapse
Affiliation(s)
- Hans Fuchs
- Center for Pediatrics, Department of Neonatology and Pediatric Intensive Care, Medical Center – Albert Ludwig University of Freiburg, Faculty of Medicine, Freiburg, Germany
- * E-mail:
| | - Nicola Rossmann
- Division of Neonatology and Pediatric Critical Care, Department for Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Manuel B. Schmid
- Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Manfred Hoenig
- Oncology and stem cell transplantation, Department for Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Ulrich Thome
- Division of Neonatology, University Hospital of Leipzig, Leipzig, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Daniel Klotz
- Center for Pediatrics, Department of Neonatology and Pediatric Intensive Care, Medical Center – Albert Ludwig University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Helmut D. Hummler
- Division of Neonatology and Pediatric Critical Care, Department for Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
30
|
Repessé X, Vieillard-Baron A. Hypercapnia during acute respiratory distress syndrome: the tree that hides the forest! J Thorac Dis 2017; 9:1420-1425. [PMID: 28740647 DOI: 10.21037/jtd.2017.05.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xavier Repessé
- Intensive Care Unit, Section Thorax-Vascular Disease-Abdomen-Metabolism, University Hospital Ambroise Paré, Boulogne-Billancourt, France
| | - Antoine Vieillard-Baron
- Intensive Care Unit, Section Thorax-Vascular Disease-Abdomen-Metabolism, University Hospital Ambroise Paré, Boulogne-Billancourt, France.,Faculty of Medicine Paris Ile-de-France Ouest, University of Versailles Saint-Quentin en Yvelines, Saint-Quentin en Yvelines, France.,INSERM U-1018, CESP, Team 5 (EpReC, Renal and Cardiovascular Epidemiology), UVSQ, Villejuif, France
| |
Collapse
|
31
|
Gwoździńska P, Buchbinder BA, Mayer K, Herold S, Morty RE, Seeger W, Vadász I. Hypercapnia Impairs ENaC Cell Surface Stability by Promoting Phosphorylation, Polyubiquitination and Endocytosis of β-ENaC in a Human Alveolar Epithelial Cell Line. Front Immunol 2017; 8:591. [PMID: 28588583 PMCID: PMC5440515 DOI: 10.3389/fimmu.2017.00591] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/04/2017] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury is associated with formation of pulmonary edema leading to impaired gas exchange. Patients with acute respiratory distress syndrome (ARDS) require mechanical ventilation to improve oxygenation; however, the use of relatively low tidal volumes (to minimize further injury of the lung) often leads to further accumulation of carbon dioxide (hypercapnia). Hypercapnia has been shown to impair alveolar fluid clearance (AFC), thereby causing retention of pulmonary edema, and may lead to worse outcomes; however, the underlying molecular mechanisms remain incompletely understood. AFC is critically dependent on the epithelial sodium channel (ENaC), which drives the vectorial transport of Na+ across the alveolar epithelium. Thus, in the current study, we investigated the mechanisms by which hypercapnia effects ENaC cell surface stability in alveolar epithelial cells (AECs). Elevated CO2 levels led to polyubiquitination of β-ENaC and subsequent endocytosis of the α/β-ENaC complex in AECs, which were prevented by silencing the E3 ubiquitin ligase, Nedd4-2. Hypercapnia-induced ubiquitination and cell surface retrieval of ENaC were critically dependent on phosphorylation of the Thr615 residue of β-ENaC, which was mediated by the extracellular signal-regulated kinase (ERK)1/2. Furthermore, activation of ERK1/2 led to subsequent activation of AMP-activated protein kinase (AMPK) and c-Jun N-terminal kinase (JNK)1/2 that in turn phosphorylated Nedd4-2 at the Thr899 residue. Importantly, mutation of Thr899 to Ala markedly inhibited the CO2-induced polyubiquitination of β-ENaC and restored cell surface stability of the ENaC complex, highlighting the critical role of Nedd4-2 phosphorylation status in targeting ENaC. Collectively, our data suggest that elevated CO2 levels promote activation of the ERK/AMPK/JNK axis in a human AEC line, in which ERK1/2 phosphorylates β-ENaC whereas JNK mediates phosphorylation of Nedd4-2, thereby facilitating the channel-ligase interaction. The hypercapnia-induced ENaC dysfunction may contribute to impaired alveolar edema clearance and thus, interfering with these molecular mechanisms may improve alveolar fluid balance and lead to better outcomes in patients with ARDS.
Collapse
Affiliation(s)
- Paulina Gwoździńska
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Benno A Buchbinder
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
32
|
Cong X, Hubmayr RD, Li C, Zhao X. Plasma membrane wounding and repair in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2017; 312:L371-L391. [PMID: 28062486 PMCID: PMC5374305 DOI: 10.1152/ajplung.00486.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Various pathophysiological conditions such as surfactant dysfunction, mechanical ventilation, inflammation, pathogen products, environmental exposures, and gastric acid aspiration stress lung cells, and the compromise of plasma membranes occurs as a result. The mechanisms necessary for cells to repair plasma membrane defects have been extensively investigated in the last two decades, and some of these key repair mechanisms are also shown to occur following lung cell injury. Because it was theorized that lung wounding and repair are involved in the pathogenesis of acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF), in this review, we summarized the experimental evidence of lung cell injury in these two devastating syndromes and discuss relevant genetic, physical, and biological injury mechanisms, as well as mechanisms used by lung cells for cell survival and membrane repair. Finally, we discuss relevant signaling pathways that may be activated by chronic or repeated lung cell injury as an extension of our cell injury and repair focus in this review. We hope that a holistic view of injurious stimuli relevant for ARDS and IPF could lead to updated experimental models. In addition, parallel discussion of membrane repair mechanisms in lung cells and injury-activated signaling pathways would encourage research to bridge gaps in current knowledge. Indeed, deep understanding of lung cell wounding and repair, and discovery of relevant repair moieties for lung cells, should inspire the development of new therapies that are likely preventive and broadly effective for targeting injurious pulmonary diseases.
Collapse
Affiliation(s)
- Xiaofei Cong
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Rolf D Hubmayr
- Emerius, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota; and
| | - Changgong Li
- Department of Pediatrics, University of Southern California, Los Angeles, California
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia;
| |
Collapse
|
33
|
Shigemura M, Lecuona E, Sznajder JI. Effects of hypercapnia on the lung. J Physiol 2017; 595:2431-2437. [PMID: 28044311 DOI: 10.1113/jp273781] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 01/22/2023] Open
Abstract
Gases are sensed by lung cells and can activate specific intracellular signalling pathways, and thus have physiological and pathophysiological effects. Carbon dioxide (CO2 ), a primary product of oxidative metabolism, can be sensed by eukaryotic cells eliciting specific responses via recently identified signalling pathways. However, the physiological and pathophysiological effects of high CO2 (hypercapnia) on the lungs and specific lung cells, which are the primary site of CO2 elimination, are incompletely understood. In this review, we provide a physiological and mechanistic perspective on the effects of hypercapnia on the lungs and discuss the recent understanding of CO2 modulation of the alveolar epithelial function (lung oedema clearance), epithelial cell repair, innate immunity and airway function.
Collapse
Affiliation(s)
- Masahiko Shigemura
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Emilia Lecuona
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
34
|
Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Med 2017; 43:200-208. [PMID: 28108768 DOI: 10.1007/s00134-016-4611-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE To analyze the relationship between hypercapnia developing within the first 48 h after the start of mechanical ventilation and outcome in patients with acute respiratory distress syndrome (ARDS). PATIENTS AND METHODS We performed a secondary analysis of three prospective non-interventional cohort studies focusing on ARDS patients from 927 intensive care units (ICUs) in 40 countries. These patients received mechanical ventilation for more than 12 h during 1-month periods in 1998, 2004, and 2010. We used multivariable logistic regression and a propensity score analysis to examine the association between hypercapnia and ICU mortality. MAIN OUTCOMES We included 1899 patients with ARDS in this study. The relationship between maximum PaCO2 in the first 48 h and mortality suggests higher mortality at or above PaCO2 of ≥50 mmHg. Patients with severe hypercapnia (PaCO2 ≥50 mmHg) had higher complication rates, more organ failures, and worse outcomes. After adjusting for age, SAPS II score, respiratory rate, positive end-expiratory pressure, PaO2/FiO2 ratio, driving pressure, pressure/volume limitation strategy (PLS), corrected minute ventilation, and presence of acidosis, severe hypercapnia was associated with increased risk of ICU mortality [odds ratio (OR) 1.93, 95% confidence interval (CI) 1.32 to 2.81; p = 0.001]. In patients with severe hypercapnia matched for all other variables, ventilation with PLS was associated with higher ICU mortality (OR 1.58, CI 95% 1.04-2.41; p = 0.032). CONCLUSIONS Severe hypercapnia appears to be independently associated with higher ICU mortality in patients with ARDS. TRIAL REGISTRATION Clinicaltrials.gov identifier, NCT01093482.
Collapse
|
35
|
Gentner S, Laube M, Uhlig U, Yang Y, Fuchs HW, Dreyhaupt J, Hummler HD, Uhlig S, Thome UH. Inflammatory Mediators in Tracheal Aspirates of Preterm Infants Participating in a Randomized Trial of Permissive Hypercapnia. Front Pediatr 2017; 5:246. [PMID: 29209598 PMCID: PMC5702441 DOI: 10.3389/fped.2017.00246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/06/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Ventilator-induced lung injury is considered to be a main factor in the pathogenesis of bronchopulmonary dysplasia (BPD). Optimizing ventilator strategies may reduce respiratory morbidities in preterm infants. Permissive hypercapnia has been suggested to attenuate lung injury. We aimed to determine if a higher PCO2 target range results in less lung injury compared to the control target range and possibly reduces pro-inflammatory cytokines and acid sphingomyelinase (ASM) in tracheal aspirates (TA), which has not been addressed before. METHODS During a multicenter trial of permissive hypercapnia in extremely low birthweight infants (PHELBI), preterm infants (birthweight 400-1,000 g, gestational age 23 0/7-28 6/7 weeks) requiring mechanical ventilation within 24 h of birth were randomly assigned to a high PCO2 target or a control group. The high target group aimed at PCO2 values of 55-65, 60-70, and 65-75 mmHg and the control group at PCO2 values of 40-50, 45-55 and 50-60 mmHg on postnatal days 1-3, 4-6, and 7-14, respectively. TA was analyzed for pro-inflammatory cytokines from postnatal day 2-21. BPD was determined at a postmenstrual age of 36 weeks ± 2 days. MAIN FINDINGS Levels of inflammatory cytokines and ASM were similar in both groups: interleukin (IL)-6 (p = 0.14), IL-8 (p = 0.43), IL-10 (p = 0.24), IL-1β (p = 0.11), macrophage inflammatory protein 1α (p = 0.44), albumin (p = 0.41), neuropeptide Y (p = 0.52), leukotriene B4 (p = 0.11), transforming growth factor-β1 (p = 0.68), nitrite (p = 0.15), and ASM (p = 0.94). Furthermore, most inflammatory mediators were strongly affected by the age of the infants and increased from postnatal day 2 to 21. BPD or death was observed in 14 out of 62 infants, who were distributed evenly between both groups. CONCLUSION The results suggest that high PCO2 target levels did not result in lower pulmonary inflammatory activity and thus reflect clinical results. This indicates that high PCO2 target ranges are not effective in reducing ventilator-induced lung injury in preterm infants, as compared to control targets. TRIAL REGISTRATION ISRCTN56143743.
Collapse
Affiliation(s)
- Sarah Gentner
- Division of Vascular Surgery, University of Ulm, Ulm, Germany
| | - Mandy Laube
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany
| | - Ulrike Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Yang Yang
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Hans W Fuchs
- Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Dreyhaupt
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Helmut D Hummler
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics, University of Ulm, Ulm, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Ulrich H Thome
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
36
|
Yao Y, Mak AF. Strengthening of C2C12 mouse myoblasts against compression damage by mild cyclic compressive stimulation. J Biomech 2016; 49:3956-3961. [PMID: 27884430 DOI: 10.1016/j.jbiomech.2016.11.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 11/28/2022]
Abstract
Deep tissue injury (DTI) is a severe kind of pressure ulcers formed by sustained deformation of muscle tissues over bony prominences. As a major clinical issue, DTI affects people with physical disabilities, and is obviously related to the load-bearing capacity of muscle cells in various in-vivo conditions. It is important to provide a preventive approach to help muscle cells from being damaged by compressive stress. In this study, we hypothesized that cyclic compressive stimulation could strengthen muscle cells against compressive damage and enhance the cell plasma membrane resealing capability. Monolayer of myoblasts was cultured in the cell culture dish covered by a cylinder 0.5% agarose gel. The platen indenter was applied with 20% strain on the agarose gel in the Mach-1 micromechanical system. The vibration was 1Hz sinusoidal function with amplitude 0.2% strain based on 20% gel strain. Cyclic compressive stimulation for 2h could enhance the compressive stress damage threshold of muscle cells, the muscle cell plasma membrane resealing ratio and viability of muscle cell under static loading as preventive approach. This approach might help to reduce the risk of DTI in clinic.
Collapse
Affiliation(s)
- Yifei Yao
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Arthur Ft Mak
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
37
|
Horie S, Ansari B, Masterson C, Devaney J, Scully M, O'Toole D, Laffey JG. Hypercapnic acidosis attenuates pulmonary epithelial stretch-induced injury via inhibition of the canonical NF-κB pathway. Intensive Care Med Exp 2016; 4:8. [PMID: 27001525 PMCID: PMC4801837 DOI: 10.1186/s40635-016-0081-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypercapnia, with its associated acidosis (HCA), is a consequence of respiratory failure and is also seen in critically ill patients managed with conventional "protective" ventilation strategies. Nuclear factor kappa-B (NF-κB), a pivotal transcription factor, is activated in the setting of injury and repair and is central to innate immunity. We have previously established that HCA protects against ventilation-induced lung injury in vivo, potentially via a mechanism involving inhibition of NF-κB signaling. We wished to further elucidate the role and mechanism of HCA-mediated inhibition of the NF-κB pathway in attenuating stretch-induced injury in vitro. METHODS Initial experiments examined the effect of HCA on cyclic stretch-induced inflammation and injury in human bronchial and alveolar epithelial cells. Subsequent experiments examined the role of the canonical NF-κB pathway in mediating stretch-induced injury and the mechanism of action of HCA. The contribution of pH versus CO2 in mediating this effect of HCA was also examined. RESULTS Pulmonary epithelial high cyclic stretch (22 % equibiaxial strain) activated NF-κB, enhanced interleukin-8 (IL-8) production, caused cell injury, and reduced cell survival. In contrast, physiologic stretch (10 % strain) did not activate inflammation or cause cell injury. HCA reduced cyclic mechanical stretch-induced NF-κB activation, attenuated IL-8 production, reduced injury, and enhanced survival, in bronchial and alveolar epithelial cells, following shorter (24 h) and longer (120 h) cyclic mechanical stretch. Pre-conditioning with HCA was less effective than when HCA was applied after commencement of cell stretch. HCA prevented the stretch-induced breakdown of the NF-κB cytosolic inhibitor IκBα, while IκBα overexpression "occluded" the effect of HCA. These effects were mediated by a pH-dependent mechanism rather than via CO2 per se. CONCLUSIONS HCA attenuates adverse mechanical stretch-induced epithelial injury and death, via a pH-dependent mechanism that inhibits the canonical NF-κB activation by preventing IκBα breakdown.
Collapse
Affiliation(s)
- Shahd Horie
- Discipline of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Bilal Ansari
- Discipline of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Claire Masterson
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland.,Department of Anesthesia, Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science, St Michael's Hospital, University of Toronto, Toronto, Canada
| | - James Devaney
- Discipline of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Michael Scully
- Discipline of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Daniel O'Toole
- Discipline of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - John G Laffey
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland. .,Department of Anesthesia, Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science, St Michael's Hospital, University of Toronto, Toronto, Canada.
| |
Collapse
|
38
|
Hummler HD, Banke K, Wolfson MR, Buonocore G, Ebsen M, Bernhard W, Tsikas D, Fuchs H. The Effects of Lung Protective Ventilation or Hypercapnic Acidosis on Gas Exchange and Lung Injury in Surfactant Deficient Rabbits. PLoS One 2016; 11:e0147807. [PMID: 26840779 PMCID: PMC4739580 DOI: 10.1371/journal.pone.0147807] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/08/2016] [Indexed: 01/11/2023] Open
Abstract
Background Permissive hypercapnia has been shown to reduce lung injury in subjects with surfactant deficiency. Experimental studies suggest that hypercapnic acidosis by itself rather than decreased tidal volume may be a key protective factor. Objectives To study the differential effects of a lung protective ventilatory strategy or hypercapnic acidosis on gas exchange, hemodynamics and lung injury in an animal model of surfactant deficiency. Methods 30 anesthetized, surfactant-depleted rabbits were mechanically ventilated (FiO2 = 0.8, PEEP = 7cmH2O) and randomized into three groups: Normoventilation-Normocapnia (NN)-group: tidal volume (Vt) = 7.5 ml/kg, target PaCO2 = 40 mmHg; Normoventilation-Hypercapnia (NH)-group: Vt = 7.5 ml/kg, target PaCO2 = 80 mmHg by increasing FiCO2; and a Hypoventilation-Hypercapnia (HH)-group: Vt = 4.5 ml/kg, target PaCO2 = 80 mmHg. Plasma lactate and interleukin (IL)-8 were measured every 2 h. Animals were sacrificed after 6 h to perform bronchoalveolar lavage (BAL), to measure lung wet-to-dry weight, lung tissue IL-8, and to obtain lung histology. Results PaO2 was significantly higher in the HH-group compared to the NN-group (p<0.05), with values of the NH-group between the HH- and NN-groups. Other markers of lung injury (wet-dry-weight, BAL-Protein, histology-score, plasma-IL-8 and lung tissue IL-8) resulted in significantly lower values for the HH-group compared to the NN-group and trends for the NH-group towards lower values compared to the NN-group. Lactate was significantly lower in both hypercapnia groups compared to the NN-group. Conclusion Whereas hypercapnic acidosis may have some beneficial effects, a significant effect on lung injury and systemic inflammatory response is dependent upon a lower tidal volume rather than resultant arterial CO2 tensions and pH alone.
Collapse
Affiliation(s)
- Helmut D. Hummler
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics, Children’s Hospital, Ulm University, 89070 Ulm, Germany
- * E-mail:
| | - Katharina Banke
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics, Children’s Hospital, Ulm University, 89070 Ulm, Germany
| | - Marla R. Wolfson
- Departments of Physiology, Medicine and Pediatrics, CENTRe: Collaborative for Environmental and Neonatal Therapeutics Research; Temple Lung Center; Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Giuseppe Buonocore
- Pediatric Neonatology Unit, Department of Molecular and Developmental Medicine, University Hospital of Siena, Siena, Italy
| | - Michael Ebsen
- Institute for Pathology, Medizinisches Versorgungszentrum, Staedtisches Krankenhaus Kiel, Germany
| | - Wolfgang Bernhard
- Department of Neonatology, Children’s Hospital, University of Tuebingen, Tuebingen, Germany
| | - Dimitrios Tsikas
- Centre of Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Hans Fuchs
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics, Children’s Hospital, Ulm University, 89070 Ulm, Germany
| |
Collapse
|
39
|
Bharat A, Graf N, Mullen A, Kanter J, Andrei AC, Sporn PHS, DeCamp MM, Sznajder JI. Pleural Hypercarbia After Lung Surgery Is Associated With Persistent Alveolopleural Fistulae. Chest 2016; 149:220-7. [PMID: 26402303 DOI: 10.1378/chest.15-1591] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/11/2015] [Accepted: 09/01/2015] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Persistent air leak (PAL) > 5 days due to alveolopleural fistulae is a leading cause of morbidity following surgical resection. Elevated CO2 levels reportedly inhibit alveolar epithelial cell proliferation and impair wound healing in vitro. Because the injured lung surface is in direct communication with the pleural cavity, we investigated whether the pleural gaseous milieu affected lung healing. METHODS Oxygen and CO2 levels in pleural gas were determined prospectively in consecutive patients (N = 116) undergoing lung resection by using an infrared spectroscopy-based analyzer. Poisson and logistic regression analyses were used to determine the relationship between time to resolution of air leaks and pleural oxygen and CO2. In addition, patients with pleural CO2 concentrations ? 6% on postoperative day 1 (n = 20) were alternatively treated with supplemental oxygen and extrapleural suction to reduce the pleural CO2 levels. RESULTS Poisson analyses revealed that every 1% increase in CO2 was associated with a delay in resolution of air leak by 9 h (95% CI, 7.1 to 10.8; P < .001). Linear regression showed that every 1% increase in CO2 increased the odds of PAL by 10-fold (95% CI, 2.2 to 47.8; P = .003). In patients with pleural CO2 ? 6%, a reduction in CO2 promoted resolution of air leak (6.0 ± 1.2 vs 3.4 ± 1.1 days; P < .001). CONCLUSIONS Pleural hypercarbia seems to be associated with persistent alveolopleural fistulae following lung resection. Analysis of pleural gases could allow for better chest tube management following lung resection. Patients with intrapleural hypercarbia seem to benefit from supplemental oxygen and suction, whereas patients who do not have hypercarbia can be maintained on water seal drainage.
Collapse
Affiliation(s)
- Ankit Bharat
- Division of Thoracic Surgery, Department of Surgery, Northwestern University, Chicago, IL.
| | - Nicole Graf
- Division of Thoracic Surgery, Department of Surgery, Northwestern University, Chicago, IL
| | - Andrew Mullen
- Division of Thoracic Surgery, Department of Surgery, Northwestern University, Chicago, IL
| | - Jacob Kanter
- Division of Thoracic Surgery, Department of Surgery, Northwestern University, Chicago, IL
| | | | - Peter H S Sporn
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern Medicine, Northwestern University, Chicago, IL; Jesse Brown Veterans Affairs Medical Center, Chicago, IL
| | - Malcolm M DeCamp
- Division of Thoracic Surgery, Department of Surgery, Northwestern University, Chicago, IL
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
40
|
Romagnoli S, Ricci Z, Ronco C. Novel Extracorporeal Therapies for Combined Renal-Pulmonary Dysfunction. Semin Nephrol 2016; 36:71-7. [DOI: 10.1016/j.semnephrol.2016.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
41
|
Thome UH, Genzel-Boroviczeny O, Bohnhorst B, Schmid M, Fuchs H, Rohde O, Avenarius S, Topf HG, Zimmermann A, Faas D, Timme K, Kleinlein B, Buxmann H, Schenk W, Segerer H, Teig N, Gebauer C, Hentschel R, Heckmann M, Schlösser R, Peters J, Rossi R, Rascher W, Böttger R, Seidenberg J, Hansen G, Zernickel M, Alzen G, Dreyhaupt J, Muche R, Hummler HD. Permissive hypercapnia in extremely low birthweight infants (PHELBI): a randomised controlled multicentre trial. THE LANCET RESPIRATORY MEDICINE 2015; 3:534-43. [PMID: 26088180 DOI: 10.1016/s2213-2600(15)00204-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/08/2015] [Accepted: 05/14/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND Tolerating higher partial pressure of carbon dioxide (pCO2) in mechanically ventilated, extremely low birthweight infants might reduce ventilator-induced lung injury and bronchopulmonary dysplasia. We aimed to test the hypothesis that higher target ranges for pCO2 decrease the rate of bronchopulmonary dysplasia or death. METHODS In this randomised multicentre trial, we recruited infants from 16 tertiary care perinatal centres in Germany with birthweight between 400 g and 1000 g and gestational age 23-28 weeks plus 6 days, who needed endotracheal intubation and mechanical ventilation within 24 h of birth. Infants were randomly assigned to either a high target or control group. The high target group aimed at pCO2 values of 55-65 mm Hg on postnatal days 1-3, 60-70 mm Hg on days 4-6, and 65-75 mm Hg on days 7-14, and the control target at pCO2 40-50 mmHg on days 1-3, 45-55 mm Hg on days 4-6, and 50-60 mm Hg on days 7-14. The primary outcome was death or moderate to severe bronchopulmonary dysplasia, defined as need for mechanical pressure support or supplemental oxygen at 36 weeks postmenstrual age. Cranial ultrasonograms were assessed centrally by a masked paediatric radiologist. This trial is registered with the ISRCTN registry, number ISRCTN56143743. RESULTS Between March 1, 2008, and July 31, 2012, we recruited 362 patients of whom three dropped out, leaving 179 patients in the high target and 180 in the control group. The trial was stopped after an interim analysis (n=359). The rate of bronchopulmonary dysplasia or death in the high target group (65/179 [36%]) did not differ significantly from the control group (54/180 [30%]; p=0·18). Mortality was 25 (14%) in the high target group and 19 (11%; p=0·32) in the control group, grade 3-4 intraventricular haemorrhage was 26 (15%) and 21 (12%; p=0·30), and the rate of severe retinopathy recorded was 20 (11%) and 26 (14%; p=0·36). INTERPRETATION Targeting a higher pCO2 did not decrease the rate of bronchopulmonary dysplasia or death in ventilated preterm infants. The rates of mortality, intraventricular haemorrhage, and retinopathy did not differ between groups. These results suggest that higher pCO2 targets than in the slightly hypercapnic control group do not confer increased benefits such as lung protection. FUNDING Deutsche Forschungsgemeinschaft.
Collapse
Affiliation(s)
- Ulrich H Thome
- Division of Neonatology, University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany.
| | - Orsolya Genzel-Boroviczeny
- Division of Neonatology, Dr. von Hauner University Children's Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Bettina Bohnhorst
- Division of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Manuel Schmid
- Division of Neonatology and Pediatric Critical Care, University Hospital for Children and Adolescents, University of Ulm, Ulm, Germany
| | - Hans Fuchs
- Division of Neonatology and Pediatric Critical Care, University Hospital for Children and Adolescents, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Oliver Rohde
- Division of Neonatology and Pediatric Critical Care, Elisabeth Children's Hospital, Klinikum Oldenburg, Medical Campus, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Stefan Avenarius
- Hospital for General Pediatrics and Neonatology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hans-Georg Topf
- Division of Neonatology, University Hospital for Children and Adolescents, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Andrea Zimmermann
- Mutter-Kind-Zentrum, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dirk Faas
- University Hospital for General Pediatrics and Neonatology, Justus Liebig University Giessen, Giessen, Germany
| | - Katharina Timme
- Division of Neonatology, Hospital for Children and Adolescents, Vivantes-Hospital Neukölln, Berlin, Berlin, Germany
| | - Barbara Kleinlein
- Hospital for Children and Adolescents, Children's Hospital of the Third Order, Munich, Germany
| | - Horst Buxmann
- Division of Neonatology, University Hospital for Children and Adolescents of the J.W. Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Wilfried Schenk
- Hospital for Children and Adolescents, Central Hospital Augsburg, Augsburg, Germany
| | - Hugo Segerer
- St. Hedwig Hospital, University of Regensburg, Regensburg, Germany
| | - Norbert Teig
- Department of Neonatology and Pediatric Intensive Care, Katholisches Klinikum, Ruhr University Bochum, Bochum, Germany
| | - Corinna Gebauer
- Division of Neonatology, University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Roland Hentschel
- Division of Neonatology and Pediatric Critical Care, University Hospital for Children and Adolescents, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Matthias Heckmann
- Division of Neonatology and Pediatric Critical Care, University Hospital for Children and Adolescents, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Rolf Schlösser
- Division of Neonatology, University Hospital for Children and Adolescents of the J.W. Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Jochen Peters
- Hospital for Children and Adolescents, Children's Hospital of the Third Order, Munich, Germany
| | - Rainer Rossi
- Division of Neonatology, Hospital for Children and Adolescents, Vivantes-Hospital Neukölln, Berlin, Berlin, Germany
| | - Wolfgang Rascher
- Division of Neonatology, University Hospital for Children and Adolescents, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Ralf Böttger
- Hospital for General Pediatrics and Neonatology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Jürgen Seidenberg
- Division of Neonatology and Pediatric Critical Care, Elisabeth Children's Hospital, Klinikum Oldenburg, Medical Campus, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Gesine Hansen
- Division of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Maria Zernickel
- Division of Neonatology and Pediatric Critical Care, University Hospital for Children and Adolescents, University of Ulm, Ulm, Germany
| | - Gerhard Alzen
- Division of Pediatric Radiology, University Hospital of the Justus Liebig University Giessen, Giessen, Germany
| | - Jens Dreyhaupt
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Rainer Muche
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Helmut D Hummler
- Division of Neonatology and Pediatric Critical Care, University Hospital for Children and Adolescents, University of Ulm, Ulm, Germany
| | | |
Collapse
|
42
|
Jaitovich A, Angulo M, Lecuona E, Dada LA, Welch LC, Cheng Y, Gusarova G, Ceco E, Liu C, Shigemura M, Barreiro E, Patterson C, Nader GA, Sznajder JI. High CO2 levels cause skeletal muscle atrophy via AMP-activated kinase (AMPK), FoxO3a protein, and muscle-specific Ring finger protein 1 (MuRF1). J Biol Chem 2015; 290:9183-94. [PMID: 25691571 DOI: 10.1074/jbc.m114.625715] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Indexed: 12/20/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease, acute lung injury, and critical care illness may develop hypercapnia. Many of these patients often have muscle dysfunction which increases morbidity and impairs their quality of life. Here, we investigated whether hypercapnia leads to skeletal muscle atrophy. Mice exposed to high CO2 had decreased skeletal muscle wet weight, fiber diameter, and strength. Cultured myotubes exposed to high CO2 had reduced fiber diameter, protein/DNA ratios, and anabolic capacity. High CO2 induced the expression of MuRF1 in vivo and in vitro, whereas MuRF1(-/-) mice exposed to high CO2 did not develop muscle atrophy. AMP-activated kinase (AMPK), a metabolic sensor, was activated in myotubes exposed to high CO2, and loss-of-function studies showed that the AMPKα2 isoform is necessary for muscle-specific ring finger protein 1 (MuRF1) up-regulation and myofiber size reduction. High CO2 induced AMPKα2 activation, triggering the phosphorylation and nuclear translocation of FoxO3a, and leading to an increase in MuRF1 expression and myotube atrophy. Accordingly, we provide evidence that high CO2 activates skeletal muscle atrophy via AMPKα2-FoxO3a-MuRF1, which is of biological and potentially clinical significance in patients with lung diseases and hypercapnia.
Collapse
Affiliation(s)
- Ariel Jaitovich
- From the Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Martín Angulo
- From the Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, Departamento de Fisiopatología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Emilia Lecuona
- From the Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Laura A Dada
- From the Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Lynn C Welch
- From the Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yuan Cheng
- From the Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Galina Gusarova
- From the Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Ermelinda Ceco
- From the Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Chang Liu
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Masahiko Shigemura
- From the Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Esther Barreiro
- Pulmonology Department-Muscle and Respiratory System Research Unit, Molecular Mechanisms of Lung Cancer Predisposition Research Group (IMIM)-Hospital del Mar-IMIM, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, The Barcelona Biomedical Research Park, Barcelona, Spain, and Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain, and
| | - Cam Patterson
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Gustavo A Nader
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Jacob I Sznajder
- From the Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611,
| |
Collapse
|
43
|
|
44
|
Cordioli RL, Park M, Costa ELV, Gomes S, Brochard L, Amato MBP, Azevedo LCP. Moderately high frequency ventilation with a conventional ventilator allows reduction of tidal volume without increasing mean airway pressure. Intensive Care Med Exp 2014; 2:13. [PMID: 26266914 PMCID: PMC4512987 DOI: 10.1186/2197-425x-2-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/21/2014] [Indexed: 11/10/2022] Open
Abstract
Background The aim of this study was to explore if positive-pressure ventilation delivered by a conventional ICU ventilator at a moderately high frequency (HFPPV) allows a safe reduction of tidal volume (VT) below 6 mL/kg in a porcine model of severe acute respiratory distress syndrome (ARDS) and at a lower mean airway pressure than high-frequency oscillatory ventilation (HFOV). Methods This is a prospective study. In eight pigs (median weight 34 [29,36] kg), ARDS was induced by pulmonary lavage and injurious ventilation. The animals were ventilated with a randomized sequence of respiratory rates: 30, 60, 90, 120, 150, followed by HFOV at 5 Hz. At each step, VT was adjusted to allow partial pressure of arterial carbon dioxide (PaCO2) to stabilize between 57 and 63 mmHg. Data are shown as median [P25th,P75th]. Results After lung injury, the PaO2/FiO2 (P/F) ratio was 92 [63,118] mmHg, pulmonary shunt 26 [17,31]%, and static compliance 11 [8,14] mL/cmH2O. Positive end-expiratory pressure (PEEP) was 14 [10,17] cmH2O. At 30 breaths/min, VT was higher than 6 (7.5 [6.8,10.2]) mL/kg, but at all higher frequencies, VT could be reduced and PaCO2 maintained, leading to reductions in plateau pressures and driving pressures. For frequencies of 60 to 150/min, VT progressively fell from 5.2 [5.1,5.9] to 3.8 [3.7,4.2] mL/kg (p < 0.001). There were no detrimental effects in terms of lung mechanics, auto-PEEP generation, hemodynamics, or gas exchange. Mean airway pressure was maintained constant and was increased only during HFOV. Conclusions During protective mechanical ventilation, HFPPV delivered by a conventional ventilator in a severe ARDS swine model safely allows further tidal volume reductions. This strategy also allowed decreasing airway pressures while maintaining stable PaCO2 levels.
Collapse
Affiliation(s)
- Ricardo Luiz Cordioli
- Research and Education Institute, Hospital Sírio-Libanês, Rua Dona Adma Jafet, 91, Bela Vista, São Paulo, 01308-050, Brazil,
| | | | | | | | | | | | | |
Collapse
|
45
|
Hwang JH. Optimal Ventilatory Strategies in Preterm Infants: Permissive Hypercapnia. NEONATAL MEDICINE 2014. [DOI: 10.5385/nm.2014.21.2.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Jong Hee Hwang
- Department of Pediatrics, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| |
Collapse
|
46
|
Curley GF, Laffey JG, Kavanagh BP. CrossTalk proposal: there is added benefit to providing permissive hypercapnia in the treatment of ARDS. J Physiol 2013; 591:2763-5. [PMID: 23729790 DOI: 10.1113/jphysiol.2013.252601] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Gerard F Curley
- Department of Anesthesia, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
47
|
Wagner JJ, Bedarf JR, Russ M, Grosch-Ott S, Keckel T, Hiebl B, Schell H, Unger JK. Adverse influence of mixed acidemia on the biocompatibility of continuous veno-venous hemofiltration with respect to the lungs. Artif Organs 2013; 37:1049-58. [PMID: 23738674 DOI: 10.1111/aor.12104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Experimental data indicate that hypercapnic adidosis has anti-inflammatory effects. These anti-inflammatory effects may even be a beneficial property in case of low tidal volume ventilation with consecutive hypercapnic acidosis. It is unclear whether these anti-inflammatory effects predominate in critically ill patients who suffer from multiple pro- and anti-inflammatory insults like extracorporeal organ support (pro-inflammatory), metabolic acidosis (pro- and anti-inflammatory), as well as hypoxia (pro-inflammatory). Eighteen pigs were randomized into three groups, mechanically ventilated and connected to a continuous veno-venous hemofiltration (CVVH) as pro-inflammatory insult. A reference group with normal acid-base state obtained normoventilation; a normoxemic acidemia group obtained normoxemic, mixed acidemia due to infusion of lactic and hyperchloremic acid and low tidal volume ventilation, and in a hypoxemic acidemia group the mixed acidemia was paralleled by hypoxemia. Lung histology including pulmonary leukocyte invasion, blood gases, blood cell counts, and hemodynamics were examined. The histological examination of the lungs of acidemic pigs showed a suppressed invasion of leukocytes and thinner alveolar walls compared with normoventilated and with hypoxemic pigs. Enhanced congestion and alveolar red blood cells (RBCs) combined with an increase of the pulmonary artery pressure were observed in acidemic pigs in comparison with the reference group. Normoxemic acidemia reduced the pro-inflammatory reaction to the CVVH and mechanical ventilation in the ventilated lung areas in the form of pulmonary leukocyte invasion. However, this did not result in reduced scores for lung injury. Instead, an increased score for criteria which represent lung injury (congestion and alveolar RBCs) was observed in acidemic pigs.
Collapse
|
48
|
Tiruvoipati R, Botha JA, Pilcher D, Bailey M. Carbon dioxide clearance in critical care. Anaesth Intensive Care 2013; 41:157-162. [PMID: 23530782 DOI: 10.1177/0310057x1304100129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lung protective ventilation limiting tidal volumes and airway pressures were proven to reduce mortality in patients with acute severe respiratory failure. Hypercapnia and hypercapnic acidosis is often noted with lung protective ventilation. While the protective effects of lung protective ventilation are well recognised, the role of hypercapnia and hypercapnic acidosis remains debatable. Some clinicians argue that hypercapnia and hypercapnic acidosis protect the lungs and may be associated with improved outcomes. To the contrary, some clinicians do not tolerate hypercapnic acidosis and use various techniques including extracorporeal carbon dioxide elimination to treat hypercapnia and acidosis. This review aims at defining the effects of hypercapnia and hypercapnic acidosis with a focus on the pros and cons of clearing carbon dioxide and the modalities that may enhance carbon dioxide clearance.
Collapse
Affiliation(s)
- R Tiruvoipati
- Department of Intensive Care Medicine, Frankston Hospital, Frankston, Victoria, Australia.
| | | | | | | |
Collapse
|
49
|
Hypercapnic acidosis attenuates ventilation-induced lung injury by a nuclear factor-κB–dependent mechanism. Crit Care Med 2012; 40:2622-30. [DOI: 10.1097/ccm.0b013e318258f8b4] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Abstract
Experimental and clinical data indicate that ventilator strategies with permissive hypercapnia may reduce lung injury by a variety of mechanisms. Seven randomized controlled trials in preterm neonates suggest that permissive hypercapnia started early, before the initiation of mechanical ventilation (in conjunction with continuous positive airway pressure), followed by prolonged permissive hypercapnia if mechanical ventilation is needed is an alternative to early ventilation and surfactant. Permissive hypercapnia may improve pulmonary outcomes and survival.
Collapse
Affiliation(s)
- Julie Ryu
- Department of Pediatrics, Rady Children's Hospital, University of California San Diego, 9500 Gilman Drive, MC 0735, La Jolla, CA 92093, USA
| | | | | |
Collapse
|