1
|
Alewel DI, Kodavanti UP. Neuroendocrine contribution to sex-related variations in adverse air pollution health effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:287-314. [PMID: 39075643 PMCID: PMC12032588 DOI: 10.1080/10937404.2024.2383637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Air pollution exposure is ranked as a leading environmental risk factor for not only cardiopulmonary diseases but also for systemic health ailments including diabetes, reproductive abnormalities, and neuropsychiatric disorders, likely mediated by central neural stress mechanisms. Current experimental evidence links many air pollution health outcomes with activation of neuroendocrine sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal (HPA) stress axes associated with resultant increases in adrenal-derived hormone levels acting as circulating mediators of multi-organ stress reactions. Epidemiological and experimental investigations also demonstrated sex-specific responses to air pollutant inhalation, which may be attributed to hormonal interactions within the stress and reproductive axes. Sex hormones (androgens and estrogens) interact with neuroendocrine functions to influence hypothalamic responses, subsequently augmenting stress-mediated metabolic and immune changes. These neurohormonal interactions may contribute to innate sex-specific responses to inhaled irritants, inducing differing individual susceptibility. The aim of this review was to: (1) examine neuroendocrine co-regulation of the HPA axis by gonadal hormones, (2) provide experimental evidence demonstrating sex-specific respiratory and systemic effects attributed to air pollutant inhalation exposure, and (3) postulate proposed mechanisms of stress and sex hormone interactions during air pollution-related stress.
Collapse
Affiliation(s)
- Devin I. Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
2
|
García-Muñoz Rodrigo F, Urquía Martí L, Zozaya Nieto C, Galán Henríquez G, Reyes Suárez D, Avila-Alvarez A, Figueras Aloy J, Vento M. Morbidity and Mortality of Very-Low-Birthweight Twin Infants according to Their Sex and the Sex of the Co-Twin: A Retrospective Cohort Study. Neonatology 2023; 120:718-726. [PMID: 37619541 DOI: 10.1159/000531106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 08/26/2023]
Abstract
INTRODUCTION The concept of male disadvantage regarding the prognosis of premature newborns was introduced more than half a century ago, and it has been corroborated over time. However, the influence of the sex of one twin on the outcomes of the other has yielded contradictory results. OBJECTIVE The aim of the study was to determine if, in twin pregnancies of VLBW infants, the outcomes of one twin are modified by the sex of the co-twin. METHODS A multicentre retrospective study of a cohort of infants admitted to the collaborating units of the Spanish SEN1500 neonatal network was conducted. Liveborn VLBW twin infants, from 23+0 to 31+6 weeks of gestational age (GA), admitted from 2011 to 2020 were included. Outborn patients, infants with major congenital anomalies, and cases with only one twin admitted were excluded. The main outcomes were survival until first hospital discharge, survival without moderate or severe bronchopulmonary dysplasia (BPD), survival without major brain damage (MBD), and survival without major morbidity. Incidence rate ratios (IRR) and 95% confidence intervals (CI) were calculated. RESULTS 2,111 twin pairs were included. Male infants exhibited worse outcomes than females (IRR; 95% CI) regarding survival (0.96; 0.94, 0.98), survival without moderate or severe BPD (0.89; 0.86, 0.93), survival without MBD (0.94; 0.91, 0.97), and survival without major morbidity (0.87; 0.81, 0.93). Differences disappeared when the co-twin was a female infant: survival (1.00; 0.97, 1.03), survival without moderate or severe BPD (0.96; 0.91, 1.01), survival without MBD (0.99; 0.95, 1.04), and survival without major morbidity (0.94; 0.85, 1.03). Results for female infants did not change significantly with co-twin sex. CONCLUSIONS Among VLBW twins from 23+0 to 31+6 weeks of GA, male infants have higher risk of morbidity and mortality overall. In cases of pregnancies with different-sex foetuses, males seem to improve their results, while these do not change for females. The underlying mechanism of this influence deserves further investigation.
Collapse
Affiliation(s)
| | - Lourdes Urquía Martí
- Department of Neonatology, Hospital Universitario Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | | | - Gloria Galán Henríquez
- Department of Neonatology, Hospital Universitario Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Desiderio Reyes Suárez
- Department of Neonatology, Hospital Universitario Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Alejandro Avila-Alvarez
- Division of Neonatology, Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, A Coruña, Spain
| | | | - Maximo Vento
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| |
Collapse
|
3
|
Leach DA, Brooke GN, Bevan CL. Roles of steroid receptors in the lung and COVID-19. Essays Biochem 2021; 65:1025-1038. [PMID: 34328182 PMCID: PMC8628186 DOI: 10.1042/ebc20210005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
COVID-19 symptoms and mortality are largely due to its devastating effects in the lungs. The disease is caused by the SARS (Severe Acute Respiratory Syndrome)-CoV-2 coronavirus, which requires host cell proteins such as ACE2 (angiotensin-converting enzyme 2) and TMPRSS2 (transmembrane serine protease 2) for infection of lung epithelia. The expression and function of the steroid hormone receptor family is important in many aspects that impact on COVID-19 effects in the lung - notably lung development and function, the immune system, and expression of TMPRSS2 and ACE2. This review provides a brief summary of current knowledge on the roles of the steroid hormone receptors [androgen receptor (AR), glucocorticoid receptor (GR), progesterone receptor (PR), mineralocorticoid receptor (MR) and oestrogen receptor (ER)] in the lung, their effects on host cell proteins that facilitate SARS-CoV-2 uptake, and provides a snapshot of current clinical trials investigating the use of steroid receptor (SR) ligands to treat COVID-19.
Collapse
Affiliation(s)
- Damien A. Leach
- Division of Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, U.K
| | - Greg N. Brooke
- Division of Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, U.K
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, U.K
| | - Charlotte L. Bevan
- Division of Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, U.K
| |
Collapse
|
4
|
Sex and Gender Differences in Lung Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:227-258. [PMID: 34019273 DOI: 10.1007/978-3-030-68748-9_14] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sex differences in the anatomy and physiology of the respiratory system have been widely reported. These intrinsic sex differences have also been shown to modulate the pathophysiology, incidence, morbidity, and mortality of several lung diseases across the life span. In this chapter, we describe the epidemiology of sex differences in respiratory diseases including neonatal lung disease (respiratory distress syndrome, bronchopulmonary dysplasia) and pediatric and adult disease (including asthma, cystic fibrosis, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, lung cancer, lymphangioleiomyomatosis, obstructive sleep apnea, pulmonary arterial hypertension, and respiratory viral infections such as respiratory syncytial virus, influenza, and SARS-CoV-2). We also discuss the current state of research on the mechanisms underlying the observed sex differences in lung disease susceptibility and severity and the importance of considering both sex and gender variables in research studies' design and analysis.
Collapse
|
5
|
Tremblay Y, Morin-Labbé A. Neonatal Lung Diseases: A Clinical Potential for Sex Steroids and a Novel Intracrine Organ. Front Med (Lausanne) 2021; 8:664969. [PMID: 34026792 PMCID: PMC8131950 DOI: 10.3389/fmed.2021.664969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yves Tremblay
- Reproduction Axis, Perinatal and Child Health, CRCHU de Québec, Québec, QC, Canada.,Department of Obstetric, Gynecology & Reproduction, Faculty of Medicine, Laval University, Québec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Laval University, Québec, QC, Canada
| | - Alexia Morin-Labbé
- Reproduction Axis, Perinatal and Child Health, CRCHU de Québec, Québec, QC, Canada
| |
Collapse
|
6
|
Adamowicz J, Juszczak K, Drewa T. May patients receiving 5-alpha-reductase inhibitors be in higher risk of COVID-19 complications? Med Hypotheses 2020; 140:109751. [PMID: 32344304 PMCID: PMC7175887 DOI: 10.1016/j.mehy.2020.109751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/21/2020] [Indexed: 01/19/2023]
Abstract
COVID-19 pandemic is a major challenge for global and national healthcare providers. Number of new cases is continuously increasing with an emerging trend showing worse prognosis in males in comparison to females. Based on this observation, our proposed hypothesis is that 5-alpha-reductase inhibitors, that are commonly used for BPH treatment, may be one of the factors contributing to poorer prognosis in males.
Collapse
Affiliation(s)
- Jan Adamowicz
- Department of Urology, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85 094 Bydgoszcz, Poland.,Reconstructive Urology Working Group, Young Academic Urologists, European Association of Urology, Poland
| | - Kajetan Juszczak
- Department of Urology, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85 094 Bydgoszcz, Poland
| | - Tomasz Drewa
- Department of Urology, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85 094 Bydgoszcz, Poland
| |
Collapse
|
7
|
Carbajal-García A, Reyes-García J, Montaño LM. Androgen Effects on the Adrenergic System of the Vascular, Airway, and Cardiac Myocytes and Their Relevance in Pathological Processes. Int J Endocrinol 2020; 2020:8849641. [PMID: 33273918 PMCID: PMC7676939 DOI: 10.1155/2020/8849641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Androgen signaling comprises nongenomic and genomic pathways. Nongenomic actions are not related to the binding of the androgen receptor (AR) and occur rapidly. The genomic effects implicate the binding to a cytosolic AR, leading to protein synthesis. Both events are independent of each other. Genomic effects have been associated with different pathologies such as vascular ischemia, hypertension, asthma, and cardiovascular diseases. Catecholamines play a crucial role in regulating vascular smooth muscle (VSM), airway smooth muscle (ASM), and cardiac muscle (CM) function and tone. OBJECTIVE The aim of this review is an updated analysis of the role of androgens in the adrenergic system of vascular, airway, and cardiac myocytes. Body. Testosterone (T) favors vasoconstriction, and its concentration fluctuation during life stages can affect the vascular tone and might contribute to the development of hypertension. In the VSM, T increases α1-adrenergic receptors (α 1-ARs) and decreases adenylyl cyclase expression, favoring high blood pressure and hypertension. Androgens have also been associated with asthma. During puberty, girls are more susceptible to present asthma symptoms than boys because of the increment in the plasmatic concentrations of T in young men. In the ASM, β 2-ARs are responsible for the bronchodilator effect, and T augments the expression of β 2-ARs evoking an increase in the relaxing response to salbutamol. The levels of T are also associated with an increment in atherosclerosis and cardiovascular risk. In the CM, activation of α 1A-ARs and β 2-ARs increases the ionotropic activity, leading to the development of contraction, and T upregulates the expression of both receptors and improves the myocardial performance. CONCLUSIONS Androgens play an essential role in the adrenergic system of vascular, airway, and cardiac myocytes, favoring either a state of health or disease. While the use of androgens as a therapeutic tool for treating asthma symptoms or heart disease is proposed, the vascular system is warmly affected.
Collapse
Affiliation(s)
- Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| |
Collapse
|
8
|
Sallon C, Provost PR, LeBlanc D, Soulet D, Tremblay Y. Essential Intracrine Androgenic Action in Lung Development for Both Sexes. J Steroid Biochem Mol Biol 2018; 183:184-191. [PMID: 29940312 DOI: 10.1016/j.jsbmb.2018.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/30/2018] [Accepted: 06/19/2018] [Indexed: 11/22/2022]
Abstract
Albeit their recognized negative effects on lung maturation, androgens have been proposed to play an essential positive role in lung development. This work aimed to evaluate the impact of blocking endogenous androgen and estrogen actions and to study the effect of an excess of androgen and estrogen during the end of saccular stage and the beginning of the alveolar stage on lung development. This was performed with normal oxygen atmosphere and with hyperoxia, a model of alveolar simplification, which is observed in new bronchopulmonary dysplasia. Mouse lung samples were collected on postnatal day 9 after exposure to 21% or 80% oxygen (postnatal days 1 to 4), and after administration (postnatal days 3 to 8) of vehicle, pure antiandrogen (flutamide), dihydrotestosterone, pure antiestrogen (fulvestrant), or 17β-estradiol. With 21% oxygen, the major effects on morphometric parameters were induced by flutamide. In contrast, with hyperoxia, both flutamide and dihydrotestosterone had similar effects on several morphometric parameters. For instance, a decrease in the relative frequency of closed areas (mainly composed of saccules/alveoli) < 1000 μm2 and an increase for those > 2500 μm2 were observed after flutamide administration. In conclusion, during the junction between the saccular and the alveolar stages, endogenous androgens play an essential intracrine role in lung development for both sexes while an excess of androgens are deleterious when combined with a hyperoxia treatment, but not with normal oxygen levels. Endogenous estrogens have no effects on the lungs during the developmental window studied, while exogenous estrogens had only isolated effects on some morphometric parameters.
Collapse
Affiliation(s)
- Céline Sallon
- Axe reproduction, santé de la mère et de l'enfant, Centre de recherche du CHU de Québec, Québec, QC, Canada; Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Pierre R Provost
- Axe reproduction, santé de la mère et de l'enfant, Centre de recherche du CHU de Québec, Québec, QC, Canada; Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Faculté de médecine, Université Laval, Québec, QC, Canada; Département d'obstétrique/gynécologie & reproduction, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Danahé LeBlanc
- Axe neuroscience, Centre de recherche du CHU de Québec, Québec, QC, Canada
| | - Denis Soulet
- Axe neuroscience, Centre de recherche du CHU de Québec, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Québec, QC, Canada
| | - Yves Tremblay
- Axe reproduction, santé de la mère et de l'enfant, Centre de recherche du CHU de Québec, Québec, QC, Canada; Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Faculté de médecine, Université Laval, Québec, QC, Canada; Département d'obstétrique/gynécologie & reproduction, Faculté de médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
9
|
Campbell B, Davis SR, Abramson MJ, Mishra G, Handelsman DJ, Perret JL, Dharmage SC. Menopause, lung function and obstructive lung disease outcomes: a systematic review. Climacteric 2017; 21:3-12. [DOI: 10.1080/13697137.2017.1392504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- B. Campbell
- Allergy and Lung Health Unit, Centre for Epidemiology & Biostatistics, Melbourne School of Population & Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - S. R. Davis
- School of Public Health & Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - M. J. Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - G. Mishra
- School of Public Health, The University of Queensland, Brisbane, Australia
| | - D. J. Handelsman
- ANZAC Research Institute, University of Sydney, Concord Hospital, Concord, NSW, Australia
| | - J. L. Perret
- Allergy and Lung Health Unit, Centre for Epidemiology & Biostatistics, Melbourne School of Population & Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - S. C. Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology & Biostatistics, Melbourne School of Population & Global Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Bouhaddioui W, Provost PR, Tremblay Y. CYP21A2 expression is localized in the developing distal epithelium of the human perinatal lung and is compatible with in situ production and intracrine actions of active glucocorticoids. J Steroid Biochem Mol Biol 2016; 163:12-9. [PMID: 27004467 DOI: 10.1016/j.jsbmb.2016.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 11/29/2022]
Abstract
Glucocorticoids play essential roles in lung development. We investigated for expression of CYP21A2 (21-hydroxylase) as well as for the presence of the corresponding protein and identification of CYP21A2-expressing cells in several human developing lungs. Expression of some related genes was also assessed. CYP21A2 and CYP17A1 (P450c17) mRNAs were found in all the 34 lung samples from 17 to 40 weeks' gestation at variable levels. No correlation was found according to sex but a correlation with age was detected for CYP17A1 only. In contrast, CYP11B1 (11β-hydroxylase)- and CYP11B2 (aldosterone synthase)-mRNAs were not detected. Significant levels of the CYP21A2 protein were detected in all the analyzed samples, while only very low signals were detected for CYP17A1 protein. In situ hybridization revealed that CYP21A2 was almost exclusively expressed in the distal epithelium. It was reported that the lung distal epithelium of human fetuses also express 11β-hydroxysteroid dehydrogenase type 2, which catalyzes cortisol inactivation into cortisone. Based on this information, intracrine glucocorticoid actions should take place from CYP21A2 products through the glucocorticoid receptor in the absence of cortisol. In contrast, mineralocorticoid receptor activation did not seem to depend on deoxycorticosterone produced from local activity of CYP21A2 because of the reported circulating amounts of aldosterone.
Collapse
Affiliation(s)
- Wafae Bouhaddioui
- Reproduction, Mother and Youth Health, Centre de recherche CHU de Québec, Québec, QC, Canada; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Pierre R Provost
- Reproduction, Mother and Youth Health, Centre de recherche CHU de Québec, Québec, QC, Canada; Department of Obstetrics/Gynecology & Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Yves Tremblay
- Reproduction, Mother and Youth Health, Centre de recherche CHU de Québec, Québec, QC, Canada; Department of Obstetrics/Gynecology & Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
11
|
Bouhaddioui W, Provost PR, Tremblay Y. Expression profile of androgen-modulated microRNAs in the fetal murine lung. Biol Sex Differ 2016; 7:20. [PMID: 27042289 PMCID: PMC4818395 DOI: 10.1186/s13293-016-0072-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/21/2016] [Indexed: 11/14/2022] Open
Abstract
Background Androgens are known to delay lung development. As a consequence, the incidence and morbidity of respiratory distress syndrome of the neonate are higher for male than for female premature infants. We previously reported that many genes were expressed with a sex difference in the mouse developing lung and that several genes were under the control of androgens in the male fetal lung. microRNAs are small non-coding RNAs known to negatively regulate the expression of specific genes. In this study, we examined whether murine miRNAs are under the control of androgens in the male developing lung. Methods Expression profiling of microRNAs was performed by microarrays using RNA extracted from male fetal lungs isolated on gestational day (GD) 17.0 and GD 18.0 after daily injection of pregnant mice from GD 10.0 with the antiandrogen flutamide or vehicle only. To identify putative miRNA target genes, the data obtained here were combined with gene profiling data reported previously using the same RNA preparations. qPCR was used to confirm microarray data with fetal lungs from other litters than those used in microarrays. Results Flutamide induced downregulation and upregulation of several miRNAs on GD 17.0 and GD 18.0. Of the 43 mature miRNAs modulated by flutamide on GD 17.0, 60 % were downregulated, whereas this proportion was only of 34 % for the 35 mature miRNAs modulated on GD 18.0. For 29 and 26 flutamide-responsive miRNAs, we found a corresponding target inversely regulated by androgens on GD 17.0 and 18.0, respectively. The androgen-regulated target genes were involved in several biological processes (lipid metabolism, cell proliferation, and lung development) and molecular functions, mainly transcription factor binding. Conclusions Regulation of male lung development involves several miRNAs that are under androgen modulation in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13293-016-0072-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wafae Bouhaddioui
- Reproduction, Mother and Youth Health, Centre de Recherche du CHU de Québec, 2705 Laurier Boulevard, Rm T-3-67, Québec City, Québec Canada ; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec City, Québec Canada
| | - Pierre R Provost
- Reproduction, Mother and Youth Health, Centre de Recherche du CHU de Québec, 2705 Laurier Boulevard, Rm T-3-67, Québec City, Québec Canada ; Department of Obstetrics/Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec Canada ; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec City, Québec Canada
| | - Yves Tremblay
- Reproduction, Mother and Youth Health, Centre de Recherche du CHU de Québec, 2705 Laurier Boulevard, Rm T-3-67, Québec City, Québec Canada ; Department of Obstetrics/Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec Canada ; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec City, Québec Canada
| |
Collapse
|
12
|
Sathish V, Prakash Y. Sex Differences in Pulmonary Anatomy and Physiology. SEX DIFFERENCES IN PHYSIOLOGY 2016:89-103. [DOI: 10.1016/b978-0-12-802388-4.00006-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
13
|
Sex steroid signaling: implications for lung diseases. Pharmacol Ther 2015; 150:94-108. [PMID: 25595323 DOI: 10.1016/j.pharmthera.2015.01.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/09/2015] [Indexed: 12/12/2022]
Abstract
There is increasing recognition that sex hormones (estrogen, progesterone, and testosterone) have biological and pathophysiological actions in peripheral, non-reproductive organs, including the lung. Clinically, sex differences in the incidence, morbidity and mortality of lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, lung cancer and pulmonary hypertension have been noted, although intrinsic sex differences vs. the roles of sex steroids are still not well-understood. Accordingly, it becomes important to ask the following questions: 1) Which sex steroids are involved? 2) How do they affect different components of the lung under normal circumstances? 3) How does sex steroid signaling change in or contribute to lung disease, and in this regard, are sex steroids detrimental or beneficial? As our understanding of sex steroid signaling in the lung improves, it is important to consider whether such information can be used to develop new therapeutic strategies to target lung diseases, perhaps in both sexes or in a sex-specific manner. In this review, we focus on the basics of sex steroid signaling, and the current state of knowledge regarding how they influence structure and function of specific lung components across the life span and in the context of some important lung diseases. We then summarize the potential for sex steroids as useful biomarkers and therapeutic targets in these lung diseases as a basis for future translational research in the area of gender and individualized medicine.
Collapse
|
14
|
Bouhaddioui W, Provost PR, Tremblay Y. Identification of most stable endogenous control genes for microRNA quantification in the developing mouse lung. PLoS One 2014; 9:e111855. [PMID: 25368994 PMCID: PMC4219792 DOI: 10.1371/journal.pone.0111855] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/07/2014] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous small non coding RNAs acting as negative regulators. miRNA are involved in lung development and pulmonary diseases. Measurement of their levels by qPCR is directly influenced by the stability of normalization gene(s), which can be affected by the experimental conditions. The developing lung is a changing tissue and one normalization gene showing stability on one developmental day may be modulated over time. Moreover, some developmental events are affected by sex, which also has to be considered. In this study, we compared stability of five putative control genes in the lung between sexes from the pseudoglandular to the alveolar stages and in adult lungs. Expression of sno135, sno142, sno202, sno234, and sno251 was studied by qPCR in male and female lung samples collected at seven time points from GD 15.5 to PN 30. Cq values of sno251 showed the highest variation across the different developmental stages, while sno234 was the most stable gene. Gene expression stability was studied by geNorm, NormFinder and BestKeeper. Our data showed that ranking of genes based on expression stability changed according to developmental time and sex. sno135/sno234 and sno142/sno234 were proposed as best combinations of normalization genes when both sexes and all the studied developmental stages are considered. Normalization of let7-a RNA levels with different pairs of control genes proposed by geNorm and NormFinder gave similar data, while the use of less stable genes introduced a statistically significant difference on PN 0. In conclusion, variations in stability of normalization gene expression are observed over time and according to sex during lung development. Best pairs of normalization genes are presented for specific developmental stages, and for the period extending from the pseudoglandular to the alveolar stages. The use of normalization genes selected for their expression stability is essential in lung development studies.
Collapse
Affiliation(s)
- Wafae Bouhaddioui
- Reproduction, Mother and Youth Health, Centre de recherche CHU de Québec, Québec, QC, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Pierre R. Provost
- Reproduction, Mother and Youth Health, Centre de recherche CHU de Québec, Québec, QC, Canada
- Department of Obstetrics/Gynecology & Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Yves Tremblay
- Reproduction, Mother and Youth Health, Centre de recherche CHU de Québec, Québec, QC, Canada
- Department of Obstetrics/Gynecology & Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec, QC, Canada
- * E-mail:
| |
Collapse
|
15
|
Provost PR, Boucher E, Tremblay Y. Glucocorticoid metabolism in the developing lung: adrenal-like synthesis pathway. J Steroid Biochem Mol Biol 2013; 138:72-80. [PMID: 23537622 DOI: 10.1016/j.jsbmb.2013.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 03/05/2013] [Accepted: 03/18/2013] [Indexed: 12/25/2022]
Abstract
Glucocorticoids (GCs) are essential to normal lung development. They participate in the regulation of important developmental events including morphological changes, and lung maturation leading to the surge of surfactant synthesis by type II epithelial cells. Antenatal GC is administered to mothers at risk of premature delivery to reduce the risk of respiratory distress syndrome (RDS). Sex differences were reported in RDS, in the efficiency of antenatal GC treatment independently of surfactant levels, and in surfactant lipid synthesis. Type II epithelial cell maturation is regulated by epithelial-fibroblast cell-cell communication and involves paracrine factors secreted by fibroblasts under the stimulatory effect of GC. This positive action of GC can be inhibited by androgens through the androgen receptor (AR) present in fibroblasts. In fact, lung development is regulated not only by GC and androgens but also by GC and androgen metabolisms within the developing lung. We recently reviewed the metabolism of androgens in the fetal lung [45]. Here, we review multiple aspects of GC metabolism in the developing lung including inactivation and re-activation by 11β-HSDs, synthesis from the adrenal-like synthesis pathway expressed within the lung and the putative role of CRH and ACTH originating from lung in the regulation of this pathway. This article is part of a Special Issue entitled 'Pregnancy and Steroids'.
Collapse
Affiliation(s)
- Pierre R Provost
- Reproduction Axis, Perinatal and Child Health, Rm T-1-49, CHUQ Research Center, Québec City, Québec, Canada; Department of Obstetrics/Gynecology & Reproduction, Faculty of Medicine, Laval University, Québec City, Québec, Canada; Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Québec City, Québec, Canada
| | | | | |
Collapse
|
16
|
Tremblay Y, Provost PR. Major enzymes controlling the androgenic pressure in the developing lung. J Steroid Biochem Mol Biol 2013; 137:93-8. [PMID: 23542660 DOI: 10.1016/j.jsbmb.2013.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 01/08/2023]
Abstract
A sex difference is observed in the incidence and morbidity of respiratory distress syndrome (RDS) of the neonate and in bronchopulmonary dysplasia (BPD). The involvement of androgens is well evidenced in RDS and it is suspected in BPD. Interestingly, the developing lung is not an inert tissue just exposed to circulating androgens, but is rather an active androgen metabolizing tissue, expressing enzymes involved in both androgen synthesis and inactivation. The present review focuses on the major enzymes involved in androgen metabolism within the developing lung. Testosterone synthesis and inactivation by AKR1C3/Akr1c6 (human/mouse 17β-hydroxysteroid dehydrogenases (HSDs) type 5) and HSD17B2 (17β-HSD type 2), respectively, play an important role in the developing lung. Akr1c14 (3α-HSD) shows a strong increase in expression according to developmental time. The canalicular stage of lung development corresponding to the surge of surfactant lipid synthesis, which is linked to RDS, as well as saccularization/alveolarization, which are linked to BPD, are covered by this review for the mouse and human species. The androgen metabolizing enzymes expressed within the developing lung can become potential pharmaceutical targets in the objective of accelerating lung maturation by specific treatments. The classic deleterious effects of androgens on lung maturation and the surge of surfactant synthesis in males are well known. Conversely, androgens also have positive impacts on the development of both male and female lungs. Steroidogenic enzymes are key regulators of these positive effects. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Affiliation(s)
- Yves Tremblay
- Reproduction Axis, Perinatal and Child Health, Rm T-1-49, CHUQ Research Center, Canada; Department of Obstetrics/Gynecology & Reproduction, Faculty of Medicine, Laval University, Québec City, Québec, Canada; Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Québec City, Québec, Canada.
| | | |
Collapse
|
17
|
Tondreau MY, Boucher E, Simard M, Tremblay Y, Bilodeau JF. Sex-specific perinatal expression of glutathione peroxidases during mouse lung development. Mol Cell Endocrinol 2012; 355:87-95. [PMID: 22326323 DOI: 10.1016/j.mce.2012.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 01/25/2012] [Indexed: 02/07/2023]
Abstract
Reports indicate that antioxidant enzymes like the glutathione peroxidases (GPx) can be regulated by sex steroids. The GPx, a major class of antioxidants involved in H(2)O(2) and lipid hydroperoxides neutralization, showed an age- and sex-specific expression in many adult organs including the lung. High levels of androgens in the male lung are known to delay the surge of surfactant synthesis during gestation in several species. However, the impact of male androgens on antioxidant GPx early in life remains to be determined. The objective was to study the lung sex-specific expression of GPx during BALB/c mouse perinatal development. The mRNA expression of four seleno-dependent Gpx (Gpx1 to 4) in the lung of both sexes was characterized by real-time PCR from gestational day 15 to postnatal day 30, covering the entire canalicular, saccular and alveolar stages. Immunohistochemistry of GPx-1, -3 and -4, and seleno-dependent GPx enzymatic assays were also performed in the lung. We found a transient lower Gpx1 mRNA level in male than in female lungs during the first 5 days after birth, corresponding to the saccular phase. This dimorphic expression was concomitant to a sex difference in GPx enzymatic activity corrected for blood. It is, to our knowledge, the first report of a sex dimorphism for murine lung enzymatic antioxidant defenses during the perinatal period.
Collapse
Affiliation(s)
- Maxime Y Tondreau
- Axe reproduction, santé périnatale et santé de l'enfant, Centre de Recherche en Biologie de la Reproduction, Centre de Recherche du Centre Hospitalier de l'Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
18
|
SEABORN T, MOULIN JA, CÔTÉ M, TREMBLAY Y. Promoting the "3Rs" Principle in Developmental Biology with Early and Convenient Diagnosis of Pregnancy in Mice. J Reprod Dev 2011; 57:655-9. [DOI: 10.1262/jrd.11-073a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Tommy SEABORN
- Reproduction, Perinatal and Child Health Axis, Centre Hospitalier Universitaire de Quebec (CHUQ), Centre Hospitalier de l'Université Laval (CHUL), Québec, QC, Canada, G1V 4G2
- Centre de Recherche en Biologie de la Reproduction (CRBR), Centre Hospitalier Universitaire de Québec (CHUQ), Centre Hospitalier de l'Université Laval (CHUL), Québec, QC, Canada, G1V 4G2
| | - Julie-Alexandra MOULIN
- Reproduction, Perinatal and Child Health Axis, Centre Hospitalier Universitaire de Quebec (CHUQ), Centre Hospitalier de l'Université Laval (CHUL), Québec, QC, Canada, G1V 4G2
- Centre de Recherche en Biologie de la Reproduction (CRBR), Centre Hospitalier Universitaire de Québec (CHUQ), Centre Hospitalier de l'Université Laval (CHUL), Québec, QC, Canada, G1V 4G2
| | - Mélissa CÔTÉ
- Reproduction, Perinatal and Child Health Axis, Centre Hospitalier Universitaire de Quebec (CHUQ), Centre Hospitalier de l'Université Laval (CHUL), Québec, QC, Canada, G1V 4G2
- Centre de Recherche en Biologie de la Reproduction (CRBR), Centre Hospitalier Universitaire de Québec (CHUQ), Centre Hospitalier de l'Université Laval (CHUL), Québec, QC, Canada, G1V 4G2
| | - Yves TREMBLAY
- Reproduction, Perinatal and Child Health Axis, Centre Hospitalier Universitaire de Quebec (CHUQ), Centre Hospitalier de l'Université Laval (CHUL), Québec, QC, Canada, G1V 4G2
- Department of Obstetrics and Gynecology, Centre Hospitalier Universitaire de Quebec (CHUQ), Centre Hospitalier de l'Université Laval (CHUL), Québec, QC, Canada, G1V 4G2
- Centre de Recherche en Biologie de la Reproduction (CRBR), Centre Hospitalier Universitaire de Québec (CHUQ), Centre Hospitalier de l'Université Laval (CHUL), Québec, QC, Canada, G1V 4G2
| |
Collapse
|
19
|
Seaborn T, Simard M, Provost PR, Piedboeuf B, Tremblay Y. Sex hormone metabolism in lung development and maturation. Trends Endocrinol Metab 2010; 21:729-38. [PMID: 20971653 DOI: 10.1016/j.tem.2010.09.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/31/2010] [Accepted: 09/03/2010] [Indexed: 12/22/2022]
Abstract
Sex hormones are increasingly recognized as regulators of lung development. Respiratory distress syndrome (RDS) is the leading cause of morbidity in preterm neonates and occurs with a higher incidence in males. The mechanisms underlying the effects of androgens on lung development and the occurrence of RDS are only partially deciphered, and positive roles of estrogens on surfactant production and alveologenesis are relevant to our understanding of pulmonary diseases. This manuscript reviews current knowledge on androgen and estrogen metabolism and on relevant hormone targets in the fetal lung. Further investigations are needed to elucidate mechanisms orchestrating sex hormone effects on lung development. These studies aim to decrease mortality and morbidity associated with RDS and other pathologies related to lung immaturity at birth.
Collapse
Affiliation(s)
- Tommy Seaborn
- Laboratory of Ontogeny and Reproduction, Centre de Recherche en Biologie de la Reproduction, Centre Hospitalier Universitaire de Québec, Faculty of Medicine, Laval University, Québec, Québec, Canada
| | | | | | | | | |
Collapse
|
20
|
Simard M, Côté M, Provost PR, Tremblay Y. Expression of genes related to the hypothalamic-pituitary-adrenal axis in murine fetal lungs in late gestation. Reprod Biol Endocrinol 2010; 8:134. [PMID: 21050473 PMCID: PMC2989976 DOI: 10.1186/1477-7827-8-134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/04/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung maturation is modulated by several factors, including glucocorticoids. Expression of hypothalamic-pituitary-adrenal (HPA) axis-related components, with proposed or described local regulatory systems analogous to the HPA axis, was reported in peripheral tissues. Here, HPA axis-related genes were studied in the mouse developing lung during a period overlapping the surge of surfactant production. METHODS Expression of genes encoding for corticotropin-releasing hormone (CRH), CRH receptors (CRHR) 1 and 2beta, CRH-binding protein, proopiomelanocortin (POMC), melanocortin receptor 2 (MC2R), and glucocorticoid receptor was quantified by real-time PCR and localized by in situ hydridization in fetal lungs at gestational days (GD) 15.5, 16.5, and 17.5, and was also quantified in primary mesenchymal- and epithelial cell-enriched cultures. In addition, the capability of CRH and adrenocorticotropic hormone (ACTH) to stimulate pulmonary expression of enzymes involved in the adrenal pathway of glucocorticoid synthesis was addressed, as well as the glucocorticoid production by fetal lung explants. RESULTS We report that all the studied genes are expressed in fetal lungs according to different patterns. On GD 15.5, Mc2r showed peaks in expression in samples that have previously presented high mRNA levels for glucocorticoid synthesizing enzymes, including 11beta-hydroxylase (Cyp11b1). Crhr1 mRNA co-localized with Pomc mRNA in cells surrounding the proximal epithelium on GD 15.5 and 16.5. A transition in expression sites toward distal epithelial cells was observed between GD 15.5 and 17.5 for all the studied genes. CRH or ACTH stimulation of genes involved in the adrenal pathway of glucocorticoid synthesis was not observed in lung explants on GD 15.5, whereas CRH significantly increased expression of 21-hydroxylase (Cyp21a1) on GD 17.5. A deoxycorticosterone production by fetal lung explants was observed. CONCLUSIONS Temporal and spatial modulations of expression of HPA axis-related genes in late gestation are consistent with roles for these genes in lung development. Our data are likely to lead to valuable insights in relation to lung diseases originating from lung immaturity.
Collapse
Affiliation(s)
- Marc Simard
- Reproduction, Perinatal Health, and Child Health, CHUQ Research Center, Québec City, Québec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Québec City, Québec, Canada
| | - Mélissa Côté
- Reproduction, Perinatal Health, and Child Health, CHUQ Research Center, Québec City, Québec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Québec City, Québec, Canada
| | - Pierre R Provost
- Reproduction, Perinatal Health, and Child Health, CHUQ Research Center, Québec City, Québec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Québec City, Québec, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, Laval University, Québec City, Québec, Canada
| | - Yves Tremblay
- Reproduction, Perinatal Health, and Child Health, CHUQ Research Center, Québec City, Québec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Québec City, Québec, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, Laval University, Québec City, Québec, Canada
| |
Collapse
|
21
|
Provost PR, Lima PH, Tremblay Y, Blomquist CH. A useful cell system for studying the regulation of 17HSD/KSR type 2 activity and expression in ovarian epithelial cancer. J Steroid Biochem Mol Biol 2010; 122:295-301. [PMID: 20600897 DOI: 10.1016/j.jsbmb.2010.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 06/08/2010] [Accepted: 06/10/2010] [Indexed: 01/07/2023]
Abstract
17β-Hydroxysteroid dehydrogenase/17-ketosteroid reductase (17HSD/KSR) activity and 17HSD/KSR types 1, 2, 4, and 5 mRNA levels were characterized in ovarian cancer cell lines derived from patients unexposed to radiation or chemotherapy. Activity was at the limit of detection in TOV-112D and TOV-21G cells. Activity in OV-90 was comparable to that in human placental tissue, was predominantly microsomal and was 17HSD/KSR type 2-like in substrate specificity and inhibition patterns. In monolayers, conversion of testosterone (T) to androstenedione (A) was 12-fold greater than that of A to T. Reduction of fetal bovine serum to 0.3% in the culture medium had no effect on 17β-HSD activity. Significant levels of type 1 and type 2 mRNAs were observed in OV-90 while only trace amounts were detected in TOV-21G. In contrast, type 4 mRNA levels were comparable for OV-90 and TOV-21G. Type 5 mRNA was detected in both cell lines but its level in OV-90 was twice that of TOV-21G. In OV-90, the type 2-like activity was predominant even though the type 5 mRNA level was 2.5-fold higher than that of the type 2. OV-90 cells may be a useful system for studying the regulation of 17HSD/KSR type 2 activity and expression in ovarian epithelial cancer.
Collapse
Affiliation(s)
- Pierre R Provost
- Reproduction Axis, Perinatal and Child Health, CHUQ, PCHUL, Department of Obstetrics, Gynecology and CRBR, Laval University, Québec City, Québec, Canada
| | | | | | | |
Collapse
|
22
|
Provost PR, Tremblay Y. Elevated expression of four apolipoprotein genes during the 32-35 week gestation window in the human developing lung. Early Hum Dev 2010; 86:529-34. [PMID: 20675083 DOI: 10.1016/j.earlhumdev.2010.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 05/27/2010] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Co-expression of four apolipoproteins with a sex difference was observed in the mouse developing lung with an increase during the day of the surge of surfactant synthesis and a causal relationship was proposed. AIMS To determine whether these apolipoproteins and lipoprotein lipase (LPL) are expressed in the human fetal lung. To compare the distribution patterns of apoC-II and LPL proteins at different developmental ages. STUDY DESIGN Real-time PCR with RNA samples and immunohistochemistry with tissues from lungs of fetuses deceased between 19 and 40 weeks' pregnancy. RESULTS Elevated apolipoprotein A-I (apoA-I), apoA-II, apoC-II, and apoH expression was observed only during a short gestation time window from 32 to 35 weeks' gestation. LPL was expressed at relatively constant levels over gestation time. The gene encoding for the essential co-factor of LPL, apoC-II, was expressed at similar levels than LPL gene only during the 32-35 week gestation window. ApoC-II and LPL protein distribution vary according to gestation time, with obvious co-localization in capillaries at 32 weeks' gestation, but not in samples collected at 22-24 weeks' gestation. CONCLUSIONS ApoA-I, apoA-II, apoC-II, and apoH genes are expressed with a human-specific narrow peak of elevated expression in late gestation. Specific and developmental time-dependent distribution profiles were observed for apoC-II and LPL proteins. The 32-35 weeks' gestation window, where high levels of expression of apolipoproteins and co-localization of apoC-II and LPL protein were observed, correlates with the reported decrease in the incidence and severity of respiratory distress syndrome (RDS) consequently to the surge of surfactant synthesis.
Collapse
Affiliation(s)
- Pierre R Provost
- Reproduction Axis, Perinatal and Child Health, Room T-1-49, CHUQ Research Center, Québec City, Québec, Canada
| | | |
Collapse
|
23
|
Boucher E, Provost PR, Devillers A, Tremblay Y. Levels of Dihydrotestosterone, Testosterone, Androstenedione, and Estradiol in Canalicular, Saccular, and Alveolar Mouse Lungs. Lung 2010; 188:229-33. [DOI: 10.1007/s00408-010-9231-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 01/26/2010] [Indexed: 11/29/2022]
|
24
|
Bresson E, Seaborn T, Côté M, Cormier G, Provost PR, Piedboeuf B, Tremblay Y. Gene expression profile of androgen modulated genes in the murine fetal developing lung. Reprod Biol Endocrinol 2010; 8:2. [PMID: 20064212 PMCID: PMC2822783 DOI: 10.1186/1477-7827-8-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/08/2010] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Accumulating evidences suggest that sex affects lung development. Indeed, a higher incidence of respiratory distress syndrome is observed in male compared to female preterm neonates at comparable developmental stage and experimental studies demonstrated an androgen-related delay in male lung maturation. However, the precise mechanisms underlying these deleterious effects of androgens in lung maturation are only partially understood. METHODS To build up a better understanding of the effect of androgens on lung development, we analyzed by microarrays the expression of genes showing a sexual difference and those modulated by androgens. Lungs of murine fetuses resulting from a timely mating window of 1 hour were studied at gestational day 17 (GD17) and GD18, corresponding to the period of surge of surfactant production. Using injections of the antiandrogen flutamide to pregnant mice, we hunted for genes in fetal lungs which are transcriptionally modulated by androgens. RESULTS Results revealed that 1844 genes were expressed with a sexual difference at GD17 and 833 at GD18. Many genes were significantly modulated by flutamide: 1597 at GD17 and 1775 at GD18. Datasets were analyzed by using in silico tools for reconstruction of cellular pathways. Between GD17 and GD18, male lungs showed an intensive transcriptional activity of proliferative pathways along with the onset of lung differentiation. Among the genes showing a sex difference or an antiandrogen modulation of their expression, we specifically identified androgen receptor interacting genes, surfactant related genes in particularly those involved in the pathway leading to phospholipid synthesis, and several genes of lung development regulator pathways. Among these latter, some genes related to Shh, FGF, TGF-beta, BMP, and Wnt signaling are modulated by sex and/or antiandrogen treatment. CONCLUSION Our results show clearly that there is a real delay in lung maturation between male and female in this period, the latter pursuing already lung maturation while the proper is not yet fully engaged in the differentiation processes at GD17. In addition, this study provides a list of genes which are under the control of androgens within the lung at the moment of surge of surfactant production in murine fetal lung.
Collapse
Affiliation(s)
- Eva Bresson
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
| | - Tommy Seaborn
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
- INSERM U413/EA4310, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP), International Associated Laboratory Samuel de Champlain, University of Rouen, France
| | - Mélissa Côté
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
| | - Geneviève Cormier
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
| | - Pierre R Provost
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
| | - Bruno Piedboeuf
- Department of Pediatrics, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Yves Tremblay
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
25
|
Boucher E, Provost PR, Plante J, Tremblay Y. Androgen receptor and 17beta-HSD type 2 regulation in neonatal mouse lung development. Mol Cell Endocrinol 2009; 311:109-19. [PMID: 19576262 DOI: 10.1016/j.mce.2009.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/08/2009] [Accepted: 06/19/2009] [Indexed: 01/29/2023]
Abstract
A QPCR analysis of androgen receptor and several androgen metabolizing genes was performed during the saccular and alveolar stages of mouse lung development. Androgen receptor expression showed a statistically significant increase during the alveolar stage while levels of 17beta-hydroxysteroid dehydrogenase type 2 (17beta-HSD 2) expression significantly decreased at the end of the saccular stage and remained low throughout the alveolar period. 17beta-HSD 1, 17beta-HSD 5, 5alpha-reductase type 1, and mouse 3alpha-HSD did not present such a regulation. The androgen receptor protein was primarily detected in the nucleus of airway epithelial cells and of a subset of respiratory epithelial cells. 17beta-HSD 2 mRNA co-localized with androgen receptor protein during saccularization, but was absent from airway epithelium during alveolarization. Taken together, our results demonstrate temporal and spatial regulation of androgen receptor and 17beta-HSD 2 during the sacculo-alveolar transition period of mouse lung development suggesting control of androgen action.
Collapse
Affiliation(s)
- Eric Boucher
- Laboratory of Ontogeny and Reproduction, Centre Hospitalier Universitaire de Québec (CHUQ), Pavillon Centre Hospitalier de l'Université Laval (CHUL), Québec City, Québec, Canada
| | | | | | | |
Collapse
|
26
|
Plante J, Simard M, Rantakari P, Côté M, Provost PR, Poutanen M, Tremblay Y. Epithelial cells are the major site of hydroxysteroid (17beta) dehydrogenase 2 and androgen receptor expression in fetal mouse lungs during the period overlapping the surge of surfactant. J Steroid Biochem Mol Biol 2009; 117:139-45. [PMID: 19737616 DOI: 10.1016/j.jsbmb.2009.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/24/2009] [Accepted: 08/28/2009] [Indexed: 10/20/2022]
Abstract
Many genes involved in the peripheral metabolism of androgens, including hydroxysteroid (17beta) dehydrogenases (HSD17B) 2 and 5, steroid 5alpha reductase 1, and 3alpha-HSD, are expressed in the developing lung. Because lung development is delayed by androgens and pathologies related to lung immaturity are major concerns for preterm neonates, we are interested in the elucidation of the androgen metabolism in developing lung. In the present report we have identified the cell types expressing HSD17B2 (testosterone into androstenedione) and androgen receptor in normal male and female mouse developing lung between the gestation days 15.5 and 17.5. In situ hybridization and immunohistochemistry revealed that HSD17B2 is expressed in epithelial cells of respiratory and conducting zones, and in mesenchymal cells. The androgen receptor protein was observed in the same cell types that HSD17B2, and in alpha-smooth muscle actin-positive cells surrounding arteries. No difference was observed for the location of HSD17B2 and androgen receptor expression at any time points studied, or according to sex. Taken together, our results are in concordance with the hypothesis that in mouse fetal lungs the level of androgen receptor occupancy is finely tuned by local HSD17B2 expression.
Collapse
Affiliation(s)
- Julie Plante
- Laboratory of Ontogeny and Reproduction, Centre Hospitalier Universitaire de Québec (CHUQ), Pavillon CHUL, Faculty of Medicine, Laval University, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Apnea-hypopnea index in nonobese women with polycystic ovary syndrome. Int J Gynaecol Obstet 2009; 105:226-9. [DOI: 10.1016/j.ijgo.2009.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/09/2009] [Accepted: 02/02/2009] [Indexed: 11/21/2022]
|
28
|
Chura JC, Ryu HS, Simard M, Poirier D, Tremblay Y, Brooker DC, Blomquist CH, Argenta PA. Steroid-converting enzymes in human ovarian carcinomas. Mol Cell Endocrinol 2009; 301:51-8. [PMID: 18723074 DOI: 10.1016/j.mce.2008.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 07/23/2008] [Accepted: 07/24/2008] [Indexed: 11/24/2022]
Abstract
Anti-estrogen therapies for treating ovarian carcinoma have had mixed outcomes suggesting some tumors may be estrogen-dependent. We assayed the activity levels of 17beta-hydroxysteroid dehydrogenase (17beta-HSD), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD/3-KSR) and estrone sulfatase in a series of ovarian epithelial carcinomas. 17beta-HSD activity ratios with estradiol (E(2)) and testosterone (T), and inhibition by isoform-specific inhibitors were used to estimate the contributions of 17beta-HSD isoforms. Activity levels were highest for estrone sulfatase, followed, respectively by 17beta-HSD, 3alpha-HSD/3-KSR, and 3beta-HSD. E(2)/T activity ratios varied widely between samples. A 17beta-HSD type 1 inhibition pattern was observed in 23% of the samples and a type 2 pattern in 25%. E(2) formation from estrone sulfate (E(1)S) was detected in 98% (47/48) of the samples. 17beta-HSD type 1, type 2 and type 5 mRNA was detected in matched primary tumor and metastases. Evaluation of 17beta-HSD and sulfatase activity levels, activity ratios and inhibition patterns may help predict tumor response to endocrine therapy.
Collapse
Affiliation(s)
- Justin C Chura
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
A cross-talk between the androgen receptor and the epidermal growth factor receptor leads to p38MAPK-dependent activation of mTOR and cyclinD1 expression in prostate and lung cancer cells. Int J Biochem Cell Biol 2008; 41:603-14. [PMID: 18692155 DOI: 10.1016/j.biocel.2008.07.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Revised: 07/14/2008] [Accepted: 07/16/2008] [Indexed: 11/20/2022]
Abstract
In androgen sensitive LNCaP prostate cancer cells, the proliferation induced by the epidermal growth factor (EGF) involves a cross-talk between the EGF receptor (EGFR) and the androgen receptor (AR). In lung cancer the role of the EGF-EGFR transduction pathway has been documented, whereas androgen activity has received less attention. Here we demonstrate that in LNCaP and A549 non-small cell lung cancer (NSCLC), AR and EGFR are required for either 5alpha-dihydrotestosterone (DHT) or EGF-stimulated cell growth. Only EGF activated ERK signaling and up-regulated early gene expression, while DHT triggered the expression of classical AR-responsive genes with the exception of the EGF-induced PSA transcript in A549 cells. DHT and EGF up-regulated cyclinD1 (CD1) at both mRNA and protein levels in A549 cells, while in LNCaP cells each mitogen increased only CD1 protein expression. In both cell contexts, CD1 up-regulation was prevented by selective inhibitors as well as by knock-down of either AR or EGFR and also inhibiting p38MAPK and the mammalian target of rapamycin (mTOR) pathways. Interestingly, p38MAPK and mTOR repression prevented the activation of the mTOR target ribosomal p70S6 kinase induced by DHT and EGF, indicating that p38MAPK acts as an upstream mTOR regulator. In addition, the proliferative effects promoted by both DHT and EGF in LNCaP and A549 cancer cells were no longer observed blocking either p38MAPK or mTOR activity. Hence, our data suggest that p38MAPK-dependent activation of the mTOR/CD1 pathway may represent a mechanism through which AR and EGFR cross-talk contributes to prostate and lung cancer progression.
Collapse
|
30
|
Drolet R, Simard M, Plante J, Laberge P, Tremblay Y. Human type 2 17 beta-hydroxysteroid dehydrogenase mRNA and protein distribution in placental villi at mid and term pregnancy. Reprod Biol Endocrinol 2007; 5:30. [PMID: 17623101 PMCID: PMC1947994 DOI: 10.1186/1477-7827-5-30] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 07/10/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During human pregnancy, the placental villi produces high amounts of estradiol. This steroid is secreted by the syncytium, which is directly in contact with maternal blood. Estradiol has to cross placental foetal vessels to reach foetal circulation. The enzyme 17beta-hydroxysteroid dehydrogenase type 2 (17beta-HSD2) was detected in placental endothelial cells of foetal vessels inside the villi. This enzyme catalyzes the conversion of estradiol to estrone, and of testosterone to androstenedione. It was proposed that estradiol level into foetal circulation could be regulated by 17beta-HSD2. METHODS We obtained placentas from 10 to 26 6/7 weeks of pregnancy from women undergoing voluntary termination of pregnancy, term placentas were collected after normal spontaneous vaginal deliveries. We quantified 17beta-HSD2 mRNA levels in mid-gestation and term human placenta by RT-QPCR. We produced a new anti-17beta-HSD2 antibody to study its spatio-temporal expression by immunohistochemistry. We also compared steroid levels (testosterone, estrone and estradiol) and 17beta-HSD2 mRNA and protein levels between term placenta and endometrium. RESULTS High 17beta-HSD2 mRNA and protein levels were found in both mid-gestation and term placentas. However, we showed that 17beta-HSD2 mRNA levels increase by 2.27 fold between mid-gestation and term. This period coincides with a transitional phase in the development of the villous vasculature. In mid-gestation placenta, high levels of 17beta-HSD2 were found in mesenchymal villi and immature intermediate villi, more precisely in endothelial cells of the stromal channel. At term, high levels of 17beta-HSD2 were found in the numerous sinusoidal capillaries of terminal villi. 17beta-HSD2 mRNA and protein levels in term placentas were respectively 25.4 fold and 30 to 60 fold higher than in the endometrium. Steroid levels were also significantly higher in term placenta than in the endometrium. CONCLUSION The spatial and temporal expression of 17beta-HSD2 in the placenta during pregnancy and the comparison of 17beta-HSD2 expression and steroid levels between placental villi and endometrium are compatible with a role in the modulation of active and inactive forms of estrogens. Our observations strongly support the hypothesis that 17beta-HSD2 acts as a barrier decreasing estradiol secretion rates in the foetal circulation.
Collapse
Affiliation(s)
- Renée Drolet
- Ontogeny and Reproduction Unit, Centre Hospitalier Universitaire de Québec, Centre de recherche du CHUL, Canada
- Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, Canada
| | - Marc Simard
- Ontogeny and Reproduction Unit, Centre Hospitalier Universitaire de Québec, Centre de recherche du CHUL, Canada
- Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, Canada
| | - Julie Plante
- Ontogeny and Reproduction Unit, Centre Hospitalier Universitaire de Québec, Centre de recherche du CHUL, Canada
- Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, Canada
| | - Philippe Laberge
- Department of Obstetrics and Gynecology, Faculty of Medicine, Université Laval, Canada
| | - Yves Tremblay
- Ontogeny and Reproduction Unit, Centre Hospitalier Universitaire de Québec, Centre de recherche du CHUL, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, Université Laval, Canada
- Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, Canada
| |
Collapse
|
31
|
Carey MA, Card JW, Voltz JW, Germolec DR, Korach KS, Zeldin DC. The impact of sex and sex hormones on lung physiology and disease: lessons from animal studies. Am J Physiol Lung Cell Mol Physiol 2007; 293:L272-8. [PMID: 17575008 DOI: 10.1152/ajplung.00174.2007] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Numerous animal studies have revealed significant effects of sex and sex hormones on normal lung development, lung physiology, and various lung diseases. The primary goal of this review is to summarize knowledge to date on the effects of sex and sex hormones on lung development, physiology, and disease in animals. Specific emphasis will be placed on fibrosis, allergic airway disease, acute lung injury models, respiratory infection, and lung toxicology studies.
Collapse
Affiliation(s)
- Michelle A Carey
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
32
|
Simard M, Boucher E, Provost PR, Tremblay Y. Minimization of PCR efficiency differences between standards and samples through dilution of PCR amplicons in reverse transcription buffer. Anal Biochem 2007; 362:142-4. [PMID: 17239339 DOI: 10.1016/j.ab.2006.12.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/18/2006] [Accepted: 12/20/2006] [Indexed: 11/25/2022]
Affiliation(s)
- Marc Simard
- Ontogeny and Reproduction Unit, Centre Hospitalier Universitaire de Québec, Pavillon Centre Hospitalier de l'Université Laval, Sainte-Foy, Qué., Canada
| | | | | | | |
Collapse
|
33
|
Provost PR, Tremblay Y. Mouse 3alpha-hydroxysteroid dehydrogenase mRNA: a marker of lung maturity. J Steroid Biochem Mol Biol 2007; 103:61-4. [PMID: 17064890 DOI: 10.1016/j.jsbmb.2006.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 07/17/2006] [Indexed: 11/30/2022]
Abstract
Lung maturation is delayed in male fetuses compared to females and androgens are responsible of this delay. On the other hand, a normal role was proposed for androgens in the developing lung based on a correlation between expression of type 5 17beta-hydroxysteroid dehydrogenase (HSD), which catalyzes testosterone synthesis, and the emergence of mature type II pneumonocytes, a developmental event associated with the surge of surfactant synthesis. All these observations underline the importance of the metabolism of androgens in the developing lung. Here, we report a study on the expression of genes involved in the metabolism of the most potent androgen, 5alpha-dihydrotestosterone, in the mouse fetal lung between gestation days 15.5 and 18.5. Synthesis and inactivation of 5alpha-dihydrotestosterone occur through 5alpha-reductase and 3alpha-HSD activities, respectively. Type 1 5alpha-reductase was expressed throughout the gestation time window analyzed at fairly constant levels with no gender difference, except that a slight decrease was observed on gestation day 18.5. In contrast, expression of m3alpha-HSD presented a marked increase on gestation day 17.5, when the maturation of type II pneumonocytes occurs, and followed its progression at least until gestation day 18.5. In conclusion, our data show that m3alpha-HSD mRNA is a reliable marker of lung maturity in normal pregnancy.
Collapse
Affiliation(s)
- Pierre R Provost
- Laboratory of Ontogeny and Reproduction, CHUQ, CRCHUL, Department of Obstetrics and Gynecology and Centre de Recherche en Biologie de la Reproduction (CRBR), Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | | |
Collapse
|
34
|
Tremblay Y. Notice of Duplicate Publication. Am J Respir Crit Care Med 2006; 174:1055. [PMID: 17060671 DOI: 10.1164/ajrccm.174.9.1055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
35
|
Simard M, Provost PR, Tremblay Y. Sexually dimorphic gene expression that overlaps maturation of type II pneumonocytes in fetal mouse lungs. Reprod Biol Endocrinol 2006; 4:25. [PMID: 16674826 PMCID: PMC1513230 DOI: 10.1186/1477-7827-4-25] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 05/04/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In human, respiratory distress of the neonates, which occurs in prematurity, is prevalent in male. Late in gestation, maturation of type II pneumonocytes, and consequently the surge of surfactant synthesis are delayed in male fetuses compared with female fetuses. Although the presence of higher levels of androgens in male fetuses is thought to explain this sex difference, the identity of genes involved in lung maturation that are differentially modulated according to fetal sex is unknown. We have studied the sex difference in developing mouse lung by gene profiling during a three-day gestational window preceding and including the emergence of mature PTII cells (the surge of surfactant synthesis in the mouse occurs on GD 17.5). METHODS Total RNA was extracted from lungs of male and female fetal mice (gestation days 15.5, 16.5, and 17.5), converted to cRNA, labeled with biotin, and hybridized to oligonucleotide microarrays (Affymetrix MOE430A). Analysis of data was performed using MAS5.0, LFCM and Genesis softwares. RESULTS Many genes involved in lung maturation were expressed with no sex difference. Of the approximative 14,000 transcripts covered by the arrays, only 83 genes presented a sex difference at one or more time points between GDs 15.5 and 17.5. They include genes involved in hormone metabolism and regulation (i.e. steroidogenesis pathways), apoptosis, signal transduction, transcriptional regulation, and lipid metabolism with four apolipoprotein genes. Genes involved in immune functions and other metabolisms also displayed a sex difference. CONCLUSION Among these sexually dimorphic genes, some may be candidates for a role in lung maturation. Indeed, on GD 17.5, the sex difference in surfactant lipids correlates with the sex difference in pulmonary expression of apolipoprotein genes, which are involved in lipid transport. This suggests a role for these genes in the surge of surfactant synthesis. Our results would help to identify novel genes involved in the physiopathology of the respiratory distress of the neonates.
Collapse
Affiliation(s)
- Marc Simard
- Laboratory of Ontogeny and Reproduction, CHUQ, PCHUL, Faculty of Medicine, Laval University, Québec City, Québec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Québec City, Québec, Canada
| | - Pierre R Provost
- Laboratory of Ontogeny and Reproduction, CHUQ, PCHUL, Faculty of Medicine, Laval University, Québec City, Québec, Canada
- Ob/Gyn Department, Faculty of Medicine, Laval University, Québec City, Québec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Québec City, Québec, Canada
| | - Yves Tremblay
- Laboratory of Ontogeny and Reproduction, CHUQ, PCHUL, Faculty of Medicine, Laval University, Québec City, Québec, Canada
- Ob/Gyn Department, Faculty of Medicine, Laval University, Québec City, Québec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Québec City, Québec, Canada
| |
Collapse
|
36
|
Tremblay Y, Provost PR. 17Beta-HSD type 5 expression and the emergence of differentiated epithelial Type II cells in fetal lung: a novel role for androgen during the surge of surfactant. Mol Cell Endocrinol 2006; 248:118-25. [PMID: 16337335 DOI: 10.1016/j.mce.2005.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lung maturation is delayed in male fetuses compared to female fetuses. This has been attributed to higher levels of androgens in the male lung. We previously showed that the genes encoding for the 17beta-hydroxysteroid dehydrogenase (HSD) type 5 (conversion of androstenedione in testosterone) and type 2 (the opposite reaction) are, respectively, expressed in the human epithelial Type II (PTII)-like A549 cells and in human lung fibroblasts. Here, we aim to explain the physiological relevance of androgen synthesis by PTII cells. We showed that 17beta-HSD type 2 and type 5 genes are both up-regulated in correlation with the emergence of mature PTII cells in both male and female developing lungs of the fetal mouse. In contrast, the androgen receptor gene is expressed at similar levels in both sexes with no temporal regulation. In conclusion, the expression profile of the 17beta-HSD type 5 gene does not explain the presence of higher levels of androgens in the male fetal lung but that androgen synthesis must be a normal characteristic of mature PTII cells for both sexes. The production of androgens after the emergence of mature PTII cells should negatively regulate PTII cell maturation and thus, a novel and normal role for androgens in cell reprogramming is proposed.
Collapse
Affiliation(s)
- Yves Tremblay
- Laboratory of Ontogeny and Reproduction, Laval University Medical Center, Centre de Recherche en Biologie de la Reproduction (CRBR), Department of Obstetrics and Gynecology, Laval University, Que., Canada G1V 4G2.
| | | |
Collapse
|
37
|
Bush A, Accurso F, Macnee W, Lazarus SC, Abraham E. Cystic fibrosis, pediatrics, control of breathing, pulmonary physiology and anatomy, and surfactant biology in AJRCCM in 2004. Am J Respir Crit Care Med 2005; 171:545-53. [PMID: 15753484 DOI: 10.1164/rccm.2412007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Andrew Bush
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Box C272, Room 5503, Denver, CO 80262-0001, USA
| | | | | | | | | |
Collapse
|
38
|
Provost PR, Tremblay Y. Genes involved in the adrenal pathway of glucocorticoid synthesis are transiently expressed in the developing lung. Endocrinology 2005; 146:2239-45. [PMID: 15677754 DOI: 10.1210/en.2005-0077] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have studied the expression of genes involved in glucocorticoid synthesis in the developing lungs of male and female mouse fetuses on gestation days (GD) 15-18 (surge of surfactant, GD 17; term, GD 19). High levels of steroidogenic acute regulatory protein, cytochrome P450 cholesterol side chain cleavage, 3beta-hydroxysteroid dehydrogenase type 1, 21-hydroxylase, and 11 beta-hydroxylase mRNAs were observed in three of the six litters studied on GD 15 and in none of the 14 litters analyzed between GD 16 and 18. Of these three litters, two showed high expression levels for these five genes in lung tissues from female fetuses only, whereas in the remaining litter, only tissues from male fetuses presented high expression of these genes. In contrast, 11 beta-hydroxysteroid dehydrogenase type 1 mRNA level was very low on GD 15 and presented a gradual increase between GD 15 and 18 with no sex difference. Our data indicate that, like the mature adrenal, the fetal lung expresses all genes required in glucocorticoid synthesis from cholesterol. In addition, our results demonstrate that transient expression of these genes on GD 15 in the fetal lung occurs for both male and female fetuses, 2 d before the surge of surfactant synthesis, which is stimulated by glucocorticoids.
Collapse
Affiliation(s)
- Pierre R Provost
- Laboratory of Ontogeny and Reproduction, Centre Hospitalier de l'Universitairé de Québec, Canada
| | | |
Collapse
|