1
|
Kamel R, Kassouf S, Nasser SM, Mcheik A, Hayeck N, Abi-Ramia E, ElKazzaz H, Khalil C, Abi-Gerges A. Pulmonary effects of waterpipe generated smoke in adult diabetic rats. Toxicol Appl Pharmacol 2025; 499:117319. [PMID: 40185287 DOI: 10.1016/j.taap.2025.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Waterpipe smoking (WPS) is associated with pulmonary inflammation and DNA damage. Tobacco use among diabetic patients adds substantial clinical and public health burden. This study aims to investigate the combined pulmonary effects of diabetes and smoking. To achieve this goal, type 1 diabetes (T1D) was induced in adult male rats by Streptozotocin (65 mg/kg) injection. Rats were then exposed either to fresh air or WPS for one hour daily over five weeks (five days/week). Lung remodeling was evaluated by histology. Changes affecting inflammation, oxidative stress, apoptosis and survival pathways were characterized by real-time quantitative PCR and Western blot. Our findings showed that T1D was associated with pulmonary remodeling characterized by increases in lung weight/BW ratio, exacerbated by WPS, and elevated alveolar count. Both T1D and WPS exposure led to an accumulation of alveolar foamy macrophages and decreased alveolar septal thickness. Upregulation in the transcript levels of pro-inflammatory cytokine, TNF-α and anti-inflammatory marker, IL-10, were reported in diabetic lungs irrespective of WPS exposure. Moreover, diabetic lungs also displayed significant changes in the expression of mitochondrial complexes III and IV and antioxidant enzyme, SOD2, irrespective of the exposure condition. We also noted significant downregulation in the expression of caspases 3 and 9, p-P53/P53 ratio and JNK protein in diabetic lungs compared to control irrespective of the exposure condition. Lastly, diabetes and WPS exposure triggered significant decreases in EGFR expression. In conclusion, we show for the first time pulmonary remodeling and damages caused by the combined effects of T1D and smoking. Our findings highlight the pressing need for future better management of waterpipe consumption among patients with diabetes.
Collapse
Affiliation(s)
- Rima Kamel
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Sibelle Kassouf
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Selim M Nasser
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Amale Mcheik
- Department of Physical Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| | - Nathalie Hayeck
- Department of Physical Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| | - Elias Abi-Ramia
- Animal Facility, Institutional Review Board Office, Graduate Studies and Research, Lebanese American University, Lebanon
| | - Hanan ElKazzaz
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Christian Khalil
- School of Arts and Sciences, Department of Biological Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Aniella Abi-Gerges
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon.
| |
Collapse
|
2
|
Sangamesh VC, Jayaswamy PK, Krishnaraj VM, Kuriakose NK, Hosmane GB, Shetty JK, Patil P, Shetty S, Bhandary R, Shetty P. AnxA2-EGFR pro-inflammatory signaling potentiates EMT-induced fibrotic stress and its modulation by short-chain fatty acid butyrate in idiopathic pulmonary fibrosis. Toxicol Appl Pharmacol 2025; 499:117342. [PMID: 40239744 DOI: 10.1016/j.taap.2025.117342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating lung disease characterized by excessive extracellular matrix deposition, leading to irreversible lung scarring. This study explores the underlying molecular mechanisms of IPF and delves into membrane-anchored synergism between EGFR and AnxA2, which amplifies fibrotic stress and plays a pivotal role in promoting pulmonary fibroblast activation and fibrosis. Indeed, these interactions create a synergistic effect that promotes the loss of epithelial traits and the transition to a mesenchymal phenotype, thereby contributing to fibrotic stress and disease progression. In addition, this study also explores the potential of butyrate, a short-chain fatty acid, as a therapeutic agent in reducing fibrotic stress by modulating AnxA2-EGFR signaling. Pre-treatment with butyrate significantly dampens AnxA2-EGFR signaling and Galectin-3 expression, effectively curbing prolonged EGFR phosphorylation. The suppression of upstream signaling leads to a reduction in the angiogenic marker VEGF and a decrease in pro-inflammatory mediators such as TNF-α and IL-6. Collectively, our findings highlight the critical role of EGFR-AnxA2 signaling and Galectin 3 in the pathogenesis of IPF, and highlight butyrate as a potential therapeutic agent for alleviating fibrotic stress.
Collapse
Affiliation(s)
- Vinay C Sangamesh
- NITTE (Deemed to be University), Nitte University Center for Science Education and Research, Deralakatte, Mangalore 575018, Karnataka, India
| | - Pavan K Jayaswamy
- NITTE (Deemed to be University), Central Research Laboratory, KS. Hegde Medical Academy, Deralakatte, Mangalore 575018, Karnataka, India
| | - Vijay M Krishnaraj
- NITTE (Deemed to be University), Central Research Laboratory, KS. Hegde Medical Academy, Deralakatte, Mangalore 575018, Karnataka, India
| | - Nithin K Kuriakose
- NITTE (Deemed to be University), Nitte University Center for Science Education and Research, Deralakatte, Mangalore 575018, Karnataka, India
| | - Giridhar B Hosmane
- NITTE (Deemed to be University), Department of Pulmonary Medicine, KS. Hegde Medical Academy, Deralakatte, Mangalore 575018, Karnataka, India
| | - Jayaprakash K Shetty
- NITTE (Deemed to be University), Department of Pathology, K. S. Hegde Medical Academy, Deralakatte, Mangalore 575018, Karnataka, India
| | - Prakash Patil
- NITTE (Deemed to be University), Central Research Laboratory, KS. Hegde Medical Academy, Deralakatte, Mangalore 575018, Karnataka, India
| | - Sukanya Shetty
- NITTE (Deemed to be University), Department of Biochemistry, K.S. Hegde Medical Academy, Deralakatte, Mangalore 575018, Karnataka, India
| | - Roopa Bhandary
- NITTE (Deemed to be University), Department of Biochemistry, K.S. Hegde Medical Academy, Deralakatte, Mangalore 575018, Karnataka, India
| | - Praveenkumar Shetty
- NITTE (Deemed to be University), Central Research Laboratory, KS. Hegde Medical Academy, Deralakatte, Mangalore 575018, Karnataka, India; NITTE (Deemed to be University), Department of Biochemistry, K.S. Hegde Medical Academy, Deralakatte, Mangalore 575018, Karnataka, India.
| |
Collapse
|
3
|
Velázquez-Enríquez JM, Santos-Álvarez JC, Ramírez-Hernández AA, Reyes-Jiménez E, Pérez-Campos Mayoral L, Romero-Tlalolini MDLÁ, Jiménez-Martínez C, Arellanes-Robledo J, Villa-Treviño S, Vásquez-Garzón VR, Baltiérrez-Hoyos R. Chlorogenic acid attenuates idiopathic pulmonary fibrosis: An integrated analysis of network pharmacology, molecular docking, and experimental validation. Biochem Biophys Res Commun 2024; 734:150672. [PMID: 39260206 DOI: 10.1016/j.bbrc.2024.150672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
AIMS Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung condition, the cause of which remains unknown and for which no effective therapeutic treatment is currently available. Chlorogenic acid (CGA), a natural polyphenolic compound found in different plants and foods, has emerged as a promising agent due to its anti-inflammatory, antioxidant, and antifibrotic properties. However, the molecular mechanisms underlying the therapeutic effect of CGA in IPF remain unclear. The purpose of this study was to analyze the pharmacological impact and underlying mechanisms of CGA in IPF. MAIN METHODS Using network pharmacology analysis, genes associated with IPF and potential molecular targets of CGA were identified through specialized databases, and a protein-protein interaction (PPI) network was constructed. Molecular docking was performed to accurately select potential therapeutic targets. To investigate the effects of CGA on lung histology and key gene expression, a murine model of bleomycin-induced lung fibrosis was used. KEY FINDINGS Network pharmacology analysis identified 384 were overlapped between CGA and IPF. Key targets including AKT1, TP53, JUN, CASP3, BCL2, MMP9, NFKB1, EGFR, HIF1A, and IL1B were identified. Pathway analysis suggested the involvement of cancer, atherosclerosis, and inflammatory processes. Molecular docking confirmed the stable binding between CGA and targets. CGA regulated the expression mRNA of EGFR, MMP9, AKT1, BCL2 and IL1B and attenuated pulmonary fibrosis in the mouse model. SIGNIFICANCE CGA is a promising multi-target therapeutic agent for IPF, which is supported by its efficacy in reducing fibrosis through the modulation of key pathways. This evidence provides a basis to further investigate CGA as an IPF potential treatment.
Collapse
Affiliation(s)
- Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico.
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - Edilburga Reyes-Jiménez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - Laura Pérez-Campos Mayoral
- Facultad Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - María de Los Ángeles Romero-Tlalolini
- CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City, 07738, Mexico
| | - Jaime Arellanes-Robledo
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica - INMEGEN, México City, 14610, Mexico; Dirección Adjunta de Investigación Humanística y Científica, Consejo Nacional de Humanidades, Ciencias y Tecnologías - CONAHCYT, México City, 03940, Mexico
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, C.P. 07360, Mexico
| | - Verónica Rocío Vásquez-Garzón
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico; CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - Rafael Baltiérrez-Hoyos
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico; CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico.
| |
Collapse
|
4
|
Deng Y, Ma L, Du Z, Ma H, Xia Y, Ping L, Chen Z, Zhang Y. The Notch1/Hes1 pathway regulates Neuregulin 1/ErbB4 and participates in microglial activation in rats with VPA-induced autism. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110947. [PMID: 38242426 DOI: 10.1016/j.pnpbp.2024.110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The core clinical characteristics of autism, which is a neurodevelopmental disease, involve repetitive behavior and impaired social interactions. Studies have shown that the Notch and Neuregulin1 (NRG1) signaling pathways are abnormally activated in autism, but the mechanism by which these two signaling pathways interact to contribute to the progression of autism has not been determined. Our results suggest that the levels of Notch1, Hes1, NRG1, and phosphorylated ErbB4 in the cerebellum (CB), hippocampus (HC), and prefrontal cortex (PFC) were increased in rats with valproic acid (VPA)-induced autism compared to those in the Con group. However, 3, 5-difluorophenyl-L-alanyl-L-2-phenylglycine tert-butyl (DAPT), which is a Notch pathway inhibitor, ameliorated autism-like behavioral abnormalities and decreased the protein levels of NRG1 and phosphorylated ErbB4 in rats with VPA-induced autism; these results demonstrated that the Notch1/Hes1 pathway could participate in the pathogenesis of autism by regulating the NRG1/ErbB4 signaling pathway. Studies have shown that the Notch pathway regulates microglial differentiation and activation during the onset of neurological disorders and that microglia affect autism-like behavior via synaptic pruning. Therefore, we hypothesized that the Notch1/Hes1 pathway could regulate the NRG1/ErbB4 pathway and thus participate in the development of autism by regulating microglial functions. The present study showed that AG1478, which is an ErbB4 inhibitor, ameliorated the autism-like behaviors in a VPA-induced autism rat model, reduced abnormal microglial activation, and decreased NRG1 and Iba-1 colocalization; however, AG1478 did not alter Notch1/Hes1 activity. These results demonstrated that Notch1/Hes1 may participate in the microglial activation in autism by regulating NRG1/ErbB4, revealing a new mechanism underlying the pathogenesis of autism.
Collapse
Affiliation(s)
- Yanan Deng
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Liping Ma
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Ziwei Du
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Huixin Ma
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Yuxi Xia
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Liran Ping
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Zhaoxing Chen
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Yinghua Zhang
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China.
| |
Collapse
|
5
|
Mansour HM. The interference between SARS-COV-2 and Alzheimer's disease: Potential immunological and neurobiological crosstalk from a kinase perspective reveals a delayed pandemic. Ageing Res Rev 2024; 94:102195. [PMID: 38244862 DOI: 10.1016/j.arr.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Coronavirus disease 2019 (COVID-19) has infected over 700 million people, with up to 30% developing neurological manifestations, including dementias. However, there is a lack of understanding of common molecular brain markers causing Alzheimer's disease (AD). COVID-19 has etiological cofactors with AD, making patients with AD a vulnerable population at high risk of experiencing more severe symptoms and worse consequences. Both AD and COVID-19 have upregulated several shared kinases, leading to the repositioning of kinase inhibitors (KIs) for the treatment of both diseases. This review provides an overview of the interactions between the immune system and the nervous system in relation to receptor tyrosine kinases, including epidermal growth factor receptors, vascular growth factor receptors, and non-receptor tyrosine kinases such as Bruton tyrosine kinase, spleen tyrosine kinase, c-ABL, and JAK/STAT. We will discuss the promising results of kinase inhibitors in pre-clinical and clinical studies for both COVID-19 and Alzheimer's disease (AD), as well as the challenges in repositioning KIs for these diseases. Understanding the shared kinases between AD and COVID-19 could help in developing therapeutic approaches for both.
Collapse
Affiliation(s)
- Heba M Mansour
- General Administration of Innovative Products, Central Administration of Biological, Innovative Products, and Clinical Studies (Bio-INN), Egyptian Drug Authority (EDA), Giza, Egypt.
| |
Collapse
|
6
|
Saul S, Karim M, Ghita L, Huang PT, Chiu W, Durán V, Lo CW, Kumar S, Bhalla N, Leyssen P, Alem F, Boghdeh NA, Tran DH, Cohen CA, Brown JA, Huie KE, Tindle C, Sibai M, Ye C, Khalil AM, Chiem K, Martinez-Sobrido L, Dye JM, Pinsky BA, Ghosh P, Das S, Solow-Cordero DE, Jin J, Wikswo JP, Jochmans D, Neyts J, De Jonghe S, Narayanan A, Einav S. Anticancer pan-ErbB inhibitors reduce inflammation and tissue injury and exert broad-spectrum antiviral effects. J Clin Invest 2023; 133:e169510. [PMID: 37581931 PMCID: PMC10541190 DOI: 10.1172/jci169510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
Targeting host factors exploited by multiple viruses could offer broad-spectrum solutions for pandemic preparedness. Seventeen candidates targeting diverse functions emerged in a screen of 4,413 compounds for SARS-CoV-2 inhibitors. We demonstrated that lapatinib and other approved inhibitors of the ErbB family of receptor tyrosine kinases suppress replication of SARS-CoV-2, Venezuelan equine encephalitis virus (VEEV), and other emerging viruses with a high barrier to resistance. Lapatinib suppressed SARS-CoV-2 entry and later stages of the viral life cycle and showed synergistic effect with the direct-acting antiviral nirmatrelvir. We discovered that ErbB1, ErbB2, and ErbB4 bind SARS-CoV-2 S1 protein and regulate viral and ACE2 internalization, and they are required for VEEV infection. In human lung organoids, lapatinib protected from SARS-CoV-2-induced activation of ErbB-regulated pathways implicated in non-infectious lung injury, proinflammatory cytokine production, and epithelial barrier injury. Lapatinib suppressed VEEV replication, cytokine production, and disruption of blood-brain barrier integrity in microfluidics-based human neurovascular units, and reduced mortality in a lethal infection murine model. We validated lapatinib-mediated inhibition of ErbB activity as an important mechanism of antiviral action. These findings reveal regulation of viral replication, inflammation, and tissue injury via ErbBs and establish a proof of principle for a repurposed, ErbB-targeted approach to combat emerging viruses.
Collapse
Affiliation(s)
- Sirle Saul
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Marwah Karim
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Luca Ghita
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Pei-Tzu Huang
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Winston Chiu
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Verónica Durán
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Chieh-Wen Lo
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Sathish Kumar
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Nishank Bhalla
- National Center for Biodefense and Infectious Disease, Biomedical Research Laboratory, and
| | - Pieter Leyssen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Farhang Alem
- Institute for Biohealth Innovation, George Mason University, Manassas, Virginia, USA
| | - Niloufar A. Boghdeh
- Institute for Biohealth Innovation, George Mason University, Manassas, Virginia, USA
| | - Do H.N. Tran
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Courtney A. Cohen
- US Army Medical Research Institute of Infectious Diseases, Viral Immunology Branch, Frederick, Maryland, USA
| | - Jacquelyn A. Brown
- Department of Physics and Astronomy, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA
| | - Kathleen E. Huie
- US Army Medical Research Institute of Infectious Diseases, Viral Immunology Branch, Frederick, Maryland, USA
| | - Courtney Tindle
- Department of Cellular and Molecular Medicine and
- HUMANOID Center of Research Excellence, UCSD, San Diego, California, USA
| | - Mamdouh Sibai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Chengjin Ye
- Disease Prevention and Intervention, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ahmed Magdy Khalil
- Disease Prevention and Intervention, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Kevin Chiem
- Disease Prevention and Intervention, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Luis Martinez-Sobrido
- Disease Prevention and Intervention, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - John M. Dye
- US Army Medical Research Institute of Infectious Diseases, Viral Immunology Branch, Frederick, Maryland, USA
| | - Benjamin A. Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine and
- HUMANOID Center of Research Excellence, UCSD, San Diego, California, USA
- Department of Medicine and
| | - Soumita Das
- HUMANOID Center of Research Excellence, UCSD, San Diego, California, USA
- Department of Pathology, UCSD, San Diego, California, USA
| | | | - Jing Jin
- Vitalant Research Institute, San Francisco, California, USA
| | - John P. Wikswo
- Department of Biomedical Engineering, Department of Molecular Physiology and Biophysics, and Department of Physics and Astronomy, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Disease, Biomedical Research Laboratory, and
- School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
| |
Collapse
|
7
|
Ishikane S, Arioka M, Takahashi-Yanaga F. Promising small molecule anti-fibrotic agents: Newly developed or repositioned drugs targeting myofibroblast transdifferentiation. Biochem Pharmacol 2023; 214:115663. [PMID: 37336252 DOI: 10.1016/j.bcp.2023.115663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Fibrosis occurs in all organs and tissues except the brain, and its progression leads to dysfunction of affected organs. Fibrosis-induced organ dysfunction results from the loss of elasticity, strength, and functionality of tissues due to the extracellular matrix secreted by myofibroblasts that express smooth muscle-type actin as a marker. Myofibroblasts, which play a major role in fibrosis, were once thought to originate exclusively from activated fibroblasts; however, it is now clear that myofibroblasts are diverse in origin, from epithelial cells, endothelial cells, adipocytes, macrophages, and other cells. Fibrosis of vital organs, such as the heart, lungs, kidneys, and liver, is a serious chronic disease that ultimately leads to death. Currently, anti-cancer drugs have made remarkable progress, as evidenced by the development of many molecular-targeted drugs, and are making a significant contribution to improving the prognosis of cancer treatment. However, the development of anti-fibrotic agents, which also play an important role in prognosis, has lagged. In this review, the current knowledge regarding myofibroblasts is summarized, with particular attention given to their origin and transdifferentiation signaling pathways (e.g., TGF-β, Wnt/β-catenin, YAP/TAZ and AMPK signaling pathways). The development of new small molecule anti-fibrotic agents and the repositioning of existing drugs targeting myofibroblast transdifferentiation are discussed.
Collapse
Affiliation(s)
- Shin Ishikane
- Department of Pharmacology, Faculty of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Masaki Arioka
- Department of Pharmacology, Faculty of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Fumi Takahashi-Yanaga
- Department of Pharmacology, Faculty of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
8
|
Xue Y, Mei H, Chen Y, Griffin JD, Liu Q, Weisberg E, Yang J. Repurposing clinically available drugs and therapies for pathogenic targets to combat SARS-CoV-2. MedComm (Beijing) 2023; 4:e254. [PMID: 37193304 PMCID: PMC10183156 DOI: 10.1002/mco2.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/11/2023] [Accepted: 03/07/2023] [Indexed: 05/18/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected a large portion of the global population, both physically and mentally. Current evidence suggests that the rapidly evolving coronavirus subvariants risk rendering vaccines and antibodies ineffective due to their potential to evade existing immunity, with enhanced transmission activity and higher reinfection rates that could lead to new outbreaks across the globe. The goal of viral management is to disrupt the viral life cycle as well as to relieve severe symptoms such as lung damage, cytokine storm, and organ failure. In the fight against viruses, the combination of viral genome sequencing, elucidation of the structure of viral proteins, and identifying proteins that are highly conserved across multiple coronaviruses has revealed many potential molecular targets. In addition, the time- and cost-effective repurposing of preexisting antiviral drugs or approved/clinical drugs for these targets offers considerable clinical advantages for COVID-19 patients. This review provides a comprehensive overview of various identified pathogenic targets and pathways as well as corresponding repurposed approved/clinical drugs and their potential against COVID-19. These findings provide new insight into the discovery of novel therapeutic strategies that could be applied to the control of disease symptoms emanating from evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yiying Xue
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
- University of Science and Technology of ChinaHefeiAnhuiChina
| | - Yisa Chen
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - James D. Griffin
- Department of Medical Oncology, Dana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
- University of Science and Technology of ChinaHefeiAnhuiChina
- Hefei Cancer HospitalChinese Academy of SciencesHefeiChina
| | - Ellen Weisberg
- Department of Medical Oncology, Dana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jing Yang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
| |
Collapse
|
9
|
Saul S, Karim M, Ghita L, Huang PT, Chiu W, Durán V, Lo CW, Kumar S, Bhalla N, Leyssen P, Alem F, Boghdeh NA, Tran DH, Cohen CA, Brown JA, Huie KE, Tindle C, Sibai M, Ye C, Khalil AM, Martinez-Sobrido L, Dye JM, Pinsky BA, Ghosh P, Das S, Solow-Cordero DE, Jin J, Wikswo JP, Jochmans D, Neyts J, Jonghe SD, Narayanan A, Einav S. Anticancer pan-ErbB inhibitors reduce inflammation and tissue injury and exert broad-spectrum antiviral effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2021.05.15.444128. [PMID: 34159337 PMCID: PMC8219101 DOI: 10.1101/2021.05.15.444128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Targeting host factors exploited by multiple viruses could offer broad-spectrum solutions for pandemic preparedness. Seventeen candidates targeting diverse functions emerged in a screen of 4,413 compounds for SARS-CoV-2 inhibitors. We demonstrated that lapatinib and other approved inhibitors of the ErbB family receptor tyrosine kinases suppress replication of SARS-CoV-2, Venezuelan equine encephalitis virus (VEEV), and other emerging viruses with a high barrier to resistance. Lapatinib suppressed SARS-CoV-2 entry and later stages of the viral life cycle and showed synergistic effect with the direct-acting antiviral nirmatrelvir. We discovered that ErbB1, 2 and 4 bind SARS-CoV-2 S1 protein and regulate viral and ACE2 internalization, and they are required for VEEV infection. In human lung organoids, lapatinib protected from SARS-CoV-2-induced activation of ErbB-regulated pathways implicated in non-infectious lung injury, pro-inflammatory cytokine production, and epithelial barrier injury. Lapatinib suppressed VEEV replication, cytokine production and disruption of the blood-brain barrier integrity in microfluidic-based human neurovascular units, and reduced mortality in a lethal infection murine model. We validated lapatinib-mediated inhibition of ErbB activity as an important mechanism of antiviral action. These findings reveal regulation of viral replication, inflammation, and tissue injury via ErbBs and establish a proof-of-principle for a repurposed, ErbB-targeted approach to combat emerging viruses.
Collapse
|
10
|
Wang S, Rao W, Hoffman A, Lin J, Li J, Lin T, Liew AA, Vincent M, Mertens TCJ, Karmouty-Quintana H, Crum CP, Metersky ML, Schwartz DA, Davies PJA, Stephan C, Jyothula SSK, Sheshadri A, Suarez EE, Huang HJ, Engelhardt JF, Dickey BF, Parekh KR, McKeon FD, Xian W. Cloning a profibrotic stem cell variant in idiopathic pulmonary fibrosis. Sci Transl Med 2023; 15:eabp9528. [PMID: 37099633 PMCID: PMC10794039 DOI: 10.1126/scitranslmed.abp9528] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 02/28/2023] [Indexed: 04/28/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, and rapidly fatal interstitial lung disease marked by the replacement of lung alveoli with dense fibrotic matrices. Although the mechanisms initiating IPF remain unclear, rare and common alleles of genes expressed in lung epithelia, combined with aging, contribute to the risk for this condition. Consistently, single-cell RNA sequencing (scRNA-seq) studies have identified lung basal cell heterogeneity in IPF that might be pathogenic. We used single-cell cloning technologies to generate "libraries" of basal stem cells from the distal lungs of 16 patients with IPF and 10 controls. We identified a major stem cell variant that was distinguished from normal stem cells by its ability to transform normal lung fibroblasts into pathogenic myofibroblasts in vitro and to activate and recruit myofibroblasts in clonal xenografts. This profibrotic stem cell variant, which was shown to preexist in low quantities in normal and even fetal lungs, expressed a broad network of genes implicated in organ fibrosis and showed overlap in gene expression with abnormal epithelial signatures identified in previously published scRNA-seq studies of IPF. Drug screens highlighted specific vulnerabilities of this profibrotic variant to inhibitors of epidermal growth factor and mammalian target of rapamycin signaling as prospective therapeutic targets. This profibrotic stem cell variant in IPF was distinct from recently identified profibrotic stem cell variants in chronic obstructive pulmonary disease and may extend the notion that inappropriate accrual of minor and preexisting stem cell variants contributes to chronic lung conditions.
Collapse
Affiliation(s)
- Shan Wang
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Wei Rao
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Ashley Hoffman
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Jennifer Lin
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Justin Li
- AccuraScience, Johnston, IA 50131, USA
| | - Tao Lin
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Audrey-Ann Liew
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | | | - Tinne C. J. Mertens
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Christopher P. Crum
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Mark L. Metersky
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - David A. Schwartz
- Departments of Medicine and Microbiology and Immunology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Clifford Stephan
- Texas A&M Health Institute of Biotechnology, Houston, TX 77030, USA
| | - Soma S. K. Jyothula
- Lung Transplant Center at Memorial Hermann-Texas Medical Center, Houston, TX 77030, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erik Eddie Suarez
- Department of Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Howard J. Huang
- Department of Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Burton F. Dickey
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kalpaj R. Parekh
- Department of Surgery, Division of Cardiothoracic Surgery, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Frank D. McKeon
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Wa Xian
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| |
Collapse
|
11
|
Tan S, Yang S, Kang H, Zhou K, Wang H, Zhang Y, Chen S. Atractylenolide III Ameliorated Autophagy Dysfunction via Epidermal Growth Factor Receptor-Mammalian Target of Rapamycin Signals and Alleviated Silicosis Fibrosis in Mice. J Transl Med 2023; 103:100024. [PMID: 37039148 DOI: 10.1016/j.labinv.2022.100024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 01/11/2023] Open
Abstract
Atractylenolide III (ATL-III) is a major active constituent of the natural plant Atractylodes rhizome. Our previous study has shown that ATL-III may alleviate alveolar macrophage apoptosis via the inhibition of the mammalian target of rapamycin (mTOR)-mediated autophagy of human silicosis. Therefore, we aimed to further explore the function of ATL-III in autophagy, apoptosis, and pulmonary fibrosis by establishing the ATL-III-intervened silicosis mouse model in this study. Meanwhile, we sought and then verified potential autophagy-related signaling pathways by matching differentially expressed genes (attained by RNA sequencing) and the autophagy database. In this study, RNA-sequencing results implied that the epidermal growth factor receptor, the crucial upstream activator of mTOR, was seen as a potential autophagy-regulatory molecule in the ATL-III-intervened silicosis mouse model. The finding of this study was that ATL-III might improve the disorder of autophagic degradation via the activation of epidermal growth factor receptor-mTOR signals in the pulmonary tissue of the silicosis mouse model. ATL-III also alleviated cell apoptosis and silicotic fibrosis. Overall, we supposed that ATL-III might be a potential protective medicine, which had a regulatory effect on autophagy, for the intervention of silicotic fibrosis. In the future, the therapeutic drugs for silicosis should be further focused on the development and application of such natural autophagy agents.
Collapse
|
12
|
Martin JG, Azuelos I. Fibrogenic Effects of Heparin-Binding Epidermal Growth Factor-like Growth Factor: Myeloid or Epithelial Origin? Am J Respir Cell Mol Biol 2022; 67:611-612. [PMID: 36154637 PMCID: PMC9743182 DOI: 10.1165/rcmb.2022-0348ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- James G. Martin
- McGill University Health Center Research InstituteMcGill UniversityMontreal, Quebec, Canada,Department of MedicineMcGill UniversityMontreal, Quebec, Canada
| | - Ilan Azuelos
- McGill University Health Center Research InstituteMcGill UniversityMontreal, Quebec, Canada,Department of MedicineMcGill UniversityMontreal, Quebec, Canada
| |
Collapse
|
13
|
Perrotta F, Chino V, Allocca V, D’Agnano V, Bortolotto C, Bianco A, Corsico AG, Stella GM. Idiopathic pulmonary fibrosis and lung cancer: targeting the complexity of the pharmacological interconnection. Expert Rev Respir Med 2022; 16:1043-1055. [DOI: 10.1080/17476348.2022.2145948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Fabio Perrotta
- - Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131, Napoli, Italy
- - U.O.C. Clinica Pneumologica “L. Vanvitelli”, A.O. dei Colli, Ospedale Monaldi, 80131, Napoli, Italy
| | - Vittorio Chino
- - University of Pavia Medical School, 27100 Pavia, Italy
- - Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Pavia, Italy
| | - Valentino Allocca
- - Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131, Napoli, Italy
- - U.O.C. Clinica Pneumologica “L. Vanvitelli”, A.O. dei Colli, Ospedale Monaldi, 80131, Napoli, Italy
| | - Vito D’Agnano
- - Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131, Napoli, Italy
- - U.O.C. Clinica Pneumologica “L. Vanvitelli”, A.O. dei Colli, Ospedale Monaldi, 80131, Napoli, Italy
| | - Chandra Bortolotto
- - Dept. of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia Medical School, Pavia, Italy
- - Department of Intensive Medicine, Unit of Radiology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Andrea Bianco
- - Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131, Napoli, Italy
- - U.O.C. Clinica Pneumologica “L. Vanvitelli”, A.O. dei Colli, Ospedale Monaldi, 80131, Napoli, Italy
| | - Angelo Guido Corsico
- - Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Pavia, Italy
- - Dept. of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
| | - Giulia Maria Stella
- - Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Pavia, Italy
- - Dept. of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
| |
Collapse
|
14
|
Harris ZM, Sun Y, Joerns J, Clark B, Hu B, Korde A, Sharma L, Shin HJ, Manning EP, Placek L, Unutmaz D, Stanley G, Chun H, Sauler M, Rajagopalan G, Zhang X, Kang MJ, Koff JL. Epidermal Growth Factor Receptor Inhibition Is Protective in Hyperoxia-Induced Lung Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9518592. [PMID: 36193076 PMCID: PMC9526641 DOI: 10.1155/2022/9518592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/01/2023]
Abstract
AIMS Studies have linked severe hyperoxia, or prolonged exposure to very high oxygen levels, with worse clinical outcomes. This study investigated the role of epidermal growth factor receptor (EGFR) in hyperoxia-induced lung injury at very high oxygen levels (>95%). RESULTS Effects of severe hyperoxia (100% oxygen) were studied in mice with genetically inhibited EGFR and wild-type littermates. Despite the established role of EGFR in lung repair, EGFR inhibition led to improved survival and reduced acute lung injury, which prompted an investigation into this protective mechanism. Endothelial EGFR genetic knockout did not confer protection. EGFR inhibition led to decreased levels of cleaved caspase-3 and poly (ADP-ribosyl) polymerase (PARP) and decreased terminal dUTP nick end labeling- (TUNEL-) positive staining in alveolar epithelial cells and reduced ERK activation, which suggested reduced apoptosis in vivo. EGFR inhibition decreased hyperoxia (95%)-induced apoptosis and ERK in murine alveolar epithelial cells in vitro, and CRISPR-mediated EGFR deletion reduced hyperoxia-induced apoptosis and ERK in human alveolar epithelial cells in vitro. Innovation. This work defines a protective role of EGFR inhibition to decrease apoptosis in lung injury induced by 100% oxygen. This further characterizes the complex role of EGFR in acute lung injury and outlines a novel hyperoxia-induced cell death pathway that warrants further study. CONCLUSION In conditions of severe hyperoxia (>95% for >24 h), EGFR inhibition led to improved survival, decreased lung injury, and reduced cell death. These findings further elucidate the complex role of EGFR in acute lung injury.
Collapse
Affiliation(s)
- Zachary M Harris
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Ying Sun
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - John Joerns
- Division of Pulmonary and Critical Care; Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Brian Clark
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Buqu Hu
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Asawari Korde
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Hyeon Jun Shin
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Edward P Manning
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Lindsey Placek
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Derya Unutmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Gail Stanley
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Hyung Chun
- Section of Cardiovascular Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Maor Sauler
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Govindarajan Rajagopalan
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Xuchen Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Min-Jong Kang
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Jonathan L Koff
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| |
Collapse
|
15
|
Jiang Y, Xie YZ, Peng CW, Yao KN, Lin XY, Zhan SF, Zhuang HF, Huang HT, Liu XH, Huang XF, Li H. Modeling Kaempferol as a Potential Pharmacological Agent for COVID-19/PF Co-Occurrence Based on Bioinformatics and System Pharmacological Tools. Front Pharmacol 2022; 13:865097. [PMID: 35754492 PMCID: PMC9214245 DOI: 10.3389/fphar.2022.865097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: People suffering from coronavirus disease 2019 (COVID-19) are prone to develop pulmonary fibrosis (PF), but there is currently no definitive treatment for COVID-19/PF co-occurrence. Kaempferol with promising antiviral and anti-fibrotic effects is expected to become a potential treatment for COVID-19 and PF comorbidities. Therefore, this study explored the targets and molecular mechanisms of kaempferol against COVID-19/PF co-occurrence by bioinformatics and network pharmacology. Methods: Various open-source databases and Venn Diagram tool were applied to confirm the targets of kaempferol against COVID-19/PF co-occurrence. Protein-protein interaction (PPI), MCODE, key transcription factors, tissue-specific enrichment, molecular docking, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to clarify the influential molecular mechanisms of kaempferol against COVID-19 and PF comorbidities. Results: 290 targets and 203 transcription factors of kaempferol against COVID-19/PF co-occurrence were captured. Epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein kinase SRC (SRC), mitogen-activated protein kinase 3 (MAPK3), mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase 8 (MAPK8), RAC-alpha serine/threonine-protein kinase (AKT1), transcription factor p65 (RELA) and phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA) were identified as the most critical targets, and kaempferol showed effective binding activities with the above critical eight targets. Further, anti-COVID-19/PF co-occurrence effects of kaempferol were associated with the regulation of inflammation, oxidative stress, immunity, virus infection, cell growth process and metabolism. EGFR, interleukin 17 (IL-17), tumor necrosis factor (TNF), hypoxia inducible factor 1 (HIF-1), phosphoinositide 3-kinase/AKT serine/threonine kinase (PI3K/AKT) and Toll-like receptor signaling pathways were identified as the key anti-COVID-19/PF co-occurrence pathways. Conclusion: Kaempferol is a candidate treatment for COVID-19/PF co-occurrence. The underlying mechanisms may be related to the regulation of critical targets (EGFR, SRC, MAPK3, MAPK1, MAPK8, AKT1, RELA, PIK3CA and so on) and EGFR, IL-17, TNF, HIF-1, PI3K/AKT and Toll-like receptor signaling pathways. This study contributes to guiding development of new drugs for COVID-19 and PF comorbidities.
Collapse
Affiliation(s)
- Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Yi-Zi Xie
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen-Wen Peng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai-Nan Yao
- Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xue-Ying Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shao-Feng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Fa Zhuang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Ting Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Hong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiu-Fang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hang Li
- Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
16
|
Gefitinib and fostamatinib target EGFR and SYK to attenuate silicosis: a multi-omics study with drug exploration. Signal Transduct Target Ther 2022; 7:157. [PMID: 35551173 PMCID: PMC9098425 DOI: 10.1038/s41392-022-00959-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Silicosis is the most prevalent and fatal occupational disease with no effective therapeutics, and currently used drugs cannot reverse the disease progress. Worse still, there are still challenges to be addressed to fully decipher the intricated pathogenesis. Thus, specifying the essential mechanisms and targets in silicosis progression then exploring anti-silicosis pharmacuticals are desperately needed. In this work, multi-omics atlas was constructed to depict the pivotal abnormalities of silicosis and develop targeted agents. By utilizing an unbiased and time-resolved analysis of the transcriptome, proteome and phosphoproteome of a silicosis mouse model, we have verified the significant differences in transcript, protein, kinase activity and signaling pathway level during silicosis progression, in which the importance of essential biological processes such as macrophage activation, chemotaxis, immune cell recruitment and chronic inflammation were emphasized. Notably, the phosphorylation of EGFR (p-EGFR) and SYK (p-SYK) were identified as potential therapeutic targets in the progression of silicosis. To inhibit and validate these targets, we tested fostamatinib (targeting SYK) and Gefitinib (targeting EGFR), and both drugs effectively ameliorated pulmonary dysfunction and inhibited the progression of inflammation and fibrosis. Overall, our drug discovery with multi-omics approach provides novel and viable therapeutic strategies for the treatment of silicosis.
Collapse
|
17
|
Londres HD, Armada JJ, Martínez AH, Abdo Cuza AA, Sánchez YH, Rodríguez AG, Figueroa SS, Llanez Gregorich EM, Torres Lahera ML, Peire FG, González TM, González YZ, Añé Kouri AL, Palomo AG, Concepción MT, Pérez LM, Luaces-Alvarez PL, Iglesias DE, Hernández DS, Suzarte MR, Ramos TC. Blocking EGFR with nimotuzumab: a novel strategy for COVID-19 treatment. Immunotherapy 2022; 14:521-530. [PMID: 35306855 PMCID: PMC8936166 DOI: 10.2217/imt-2022-0027] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Lung injury and STAT1 deficit induce EGFR overexpression in SARS-CoV-2 infection. Patients & methods: A phase I/II trial was done to evaluate the safety and preliminary effect of nimotuzumab, an anti-EGFR antibody, in COVID-19 patients. Patients received from one to three infusions together with other drugs included in the national guideline. Results: 41 patients (31 severe and 10 moderate) received nimotuzumab. The median age was 62 years and the main comorbidities were hypertension, diabetes and cardiovascular disease. The antibody was very safe and the 14-day recovery rate was 82.9%. Inflammatory markers decreased over time. Patients did not show signs of fibrosis. Conclusion: Nimotuzumab is a safe antibody that might reduce inflammation and prevent fibrosis in severe and moderate COVID-19 patients. Clinical Trial Registration: RPCEC00000369 (rpcec.sld.cu). Background: After SARS-CoV-2 infection, many cells in the lung express a new receptor called EGFR. Overexpression of EGFR can worsen the pulmonary disease and provoke fibrosis. Patients & methods: The initial impact of using a drug that blocks EGFR, nimotuzumab, was evaluated in COVID-19 patients. Results: 41 patients received nimotuzumab by the intravenous route together with other medications. The median age was 62 years, and patients had many chronic conditions including hypertension, diabetes and cardiac problems. Treatment was well tolerated and 82.9% of the patients were discharged by day 14. Serial laboratory tests, x-rays and CT scan evaluations showed the improvement of the patients. Conclusion: Nimotuzumab is a safe drug that can be useful to treat COVID-19 patients.
Collapse
|
18
|
EGFR Signaling in Lung Fibrosis. Cells 2022; 11:cells11060986. [PMID: 35326439 PMCID: PMC8947373 DOI: 10.3390/cells11060986] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022] Open
Abstract
In this review article, we will first provide a brief overview of the ErbB receptor-ligand system and its importance in developmental and physiological processes. We will then review the literature regarding the role of ErbB receptors and their ligands in the maladaptive remodeling of lung tissue, with special emphasis on idiopathic pulmonary fibrosis (IPF). Here we will focus on the pathways and cellular processes contributing to epithelial-mesenchymal miscommunication seen in this pathology. We will also provide an overview of the in vivo studies addressing the efficacy of different ErbB signaling inhibitors in experimental models of lung injury and highlight how such studies may contribute to our understanding of ErbB biology in the lung. Finally, we will discuss what we learned from clinical applications of the ErbB1 signaling inhibitors in cancer in order to advance clinical trials in IPF.
Collapse
|
19
|
Wang L, Zhu W, Sun R, Liu J, Ma Q, Zhang B, Shi Y. Network Pharmacology Prediction and Molecular Docking-Based Strategy to Discover the Potential Pharmacological Mechanism of Wen-Yu-Jin against Pulmonary Fibrosis in a Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7753508. [PMID: 35186103 PMCID: PMC8853792 DOI: 10.1155/2022/7753508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a devastating lung disease, resulting in gas exchange dysfunction until death. The two drugs approved by the FDA, pirfenidone and nintedanib, have obvious side effects. Wen-yu-jin (WYJ), one of the commonly used herbs in China, can treat respiratory diseases. The potential effects and the underlying mechanism of WYJ against PF are unclear. PURPOSE Employing network pharmacology, molecular docking, and in vivo and in vitro experiments to explore the potential effects and underlying mechanisms of WYJ in the treatment of PF. METHODS Ultra-high pressure liquid chromatography combined with linear ion trap-orbital tandem mass spectrometry (UHPLC-LTQ-orbital trap) was used to identify compounds of WYJ. We got PF-related targets and WYJ compounds-related targets from public databases and further completed critical targets exploration, network construction, and pathway analysis by network pharmacology. Molecular docking predicted binding activity of WYJ compounds and critical targets. Based on the above results, in vivo and in vitro experiments validated the potential effects and mechanisms of WYJ against PF. RESULTS 23 major compositions of WYJ were identified based on UHPLC-LTQ-Orbitrap. According to the results of network pharmacology, STAT3, SRC, IL6, MAPK1, AKT1, EGFR, MAPK8, MAPK14, and IL1B are critical therapeutic targets. Molecular docking results showed that most of the compounds have good binding activities with critical targets. The results of in vivo and in vitro experiments showed that WYJ alleviated the process of fibrosis by targeting MAPK and STAT3 pathways. CONCLUSION Network pharmacology, molecular docking, and in vivo and in vitro experiments showed the potential effects and mechanisms of WYJ against PF, which provides a theoretical basis for the treatment of WYJ with PF.
Collapse
Affiliation(s)
- Lu Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wenxiang Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Rui Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qihong Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Binbin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
20
|
Identifying potential novel insights for COVID-19 pathogenesis and therapeutics using an integrated bioinformatics analysis of host transcriptome. Int J Biol Macromol 2022; 194:770-780. [PMID: 34826456 PMCID: PMC8610562 DOI: 10.1016/j.ijbiomac.2021.11.124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Accepted: 11/17/2021] [Indexed: 01/24/2023]
Abstract
The molecular mechanisms underlying the pathogenesis of COVID-19 have not been fully discovered. This study aims to decipher potentially hidden parts of the pathogenesis of COVID-19, potential novel drug targets, and identify potential drug candidates. Two gene expression profiles were analyzed, and overlapping differentially expressed genes (DEGs) were selected for which top enriched transcription factors and kinases were identified, and pathway analysis was performed. Protein-protein interaction (PPI) of DEGs was constructed, hub genes were identified, and module analysis was also performed. DGIdb database was used to identify drugs for the potential targets (hub genes and the most enriched transcription factors and kinases for DEGs). A drug-potential target network was constructed, and drugs were ranked according to the degree. L1000FDW was used to identify drugs that can reverse transcriptional profiles of COVID-19. We identified drugs currently in clinical trials, others predicted by different methods, and novel potential drug candidates Entrectinib, Omeprazole, and Exemestane for combating COVID-19. Besides the well-known pathogenic pathways, it was found that axon guidance is a potential pathogenic pathway. Sema7A, which may exacerbate hypercytokinemia, is considered a potential novel drug target. Another potential novel pathway is related to TINF2 overexpression, which may induce potential telomere dysfunction and damage DNA that may exacerbate lung fibrosis. This study identified new potential insights regarding COVID-19 pathogenesis and treatment, which might help us improve our understanding of the mechanisms of COVID-19.
Collapse
|
21
|
Abdo Cuza AA, Ávila JP, Martínez RM, González JJ, Aspuro GP, Gutiérrez Martínez JA, Suzarte MR, Hernández DS, Añé-Kouri AL, Ramos TC. Nimotuzumab for COVID-19: case series. Immunotherapy 2021; 14:185-193. [PMID: 34806405 PMCID: PMC8628863 DOI: 10.2217/imt-2021-0269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background: In COVID-19, EGFR production is upregulated in the alveolar epithelial cells. EGFR overexpression further activates STAT-3 and increases lung pathology. The EGFR pathway is also one of the major nodes in pulmonary fibrosis. Methods: Nimotuzumab, a humanized anti-EGFR antibody, was used to treat three patients with severe or moderate COVID-19. The antibody was administered in combination with other drugs included in the national COVID-19 protocol. Results: Nimotuzumab was well tolerated. IL-6 decreased from the first antibody infusion. Clinical symptoms significantly improved after nimotuzumab administration, and the CT scans at discharge showed major resolution of the lung lesions and no signs of fibrosis. Conclusion: Safe anti-EGFR antibodies like nimotuzumab may modulate COVID-19-associated hyperinflammation and prevent fibrosis. Clinical Trial Registration: RPCEC00000369 (RPCEC rpcec.sld.cu).
Collapse
Affiliation(s)
- Anselmo A Abdo Cuza
- Intensive Care Unit. Medical & Surgical Research Center (CIMEQ), Havana, Cuba
| | - Jonathan Pi Ávila
- Intensive Care Unit. Medical & Surgical Research Center (CIMEQ), Havana, Cuba
| | | | | | | | | | - Mayra Ramos Suzarte
- Clinical Research Direction. Center of Molecular Immunology (CIM), Havana, Cuba
| | | | - Ana L Añé-Kouri
- Clinical Research Direction. Center of Molecular Immunology (CIM), Havana, Cuba
| | - Tania Crombet Ramos
- Clinical Research Direction. Center of Molecular Immunology (CIM), Havana, Cuba
| |
Collapse
|
22
|
Chang CJ, Lin CF, Chen BC, Lin PY, Chen CL. SHP2: The protein tyrosine phosphatase involved in chronic pulmonary inflammation and fibrosis. IUBMB Life 2021; 74:131-142. [PMID: 34590785 DOI: 10.1002/iub.2559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 09/11/2021] [Indexed: 12/19/2022]
Abstract
Chronic respiratory diseases (CRDs), including pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), lung cancer, and asthma, are significant global health problems due to their prevalence and rising incidence. The roles of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) in controlling tyrosine phosphorylation of targeting proteins modulate multiple physiological cellular responses and contribute to the pathogenesis of CRDs. Src homology-2 domain-containing PTP2 (SHP2) plays a pivotal role in modulating downstream growth factor receptor signaling and cytoplasmic PTKs, including MAPK/ERK, PI3K/AKT, and JAK/STAT pathways, to regulate cell survival and proliferation. In addition, SHP2 mutation and activation are commonly implicated in tumorigenesis. However, little is known about SHP2 in chronic pulmonary inflammation and fibrosis. This review discusses the potential involvement of SHP2 deregulation in chronic pulmonary inflammation and fibrosis, as well as the therapeutic effects of targeting SHP2 in CRDs.
Collapse
Affiliation(s)
- Chun-Jung Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Yun Lin
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
23
|
Bai Y, Zhang Y, Chu P, Wang C, Li L, Qi Y, Han X, Zhang B, Sun H, Li Y, Chen L, Ma X. Synthesis and biological evaluation of selenogefitinib for reducing bleomycin-induced pulmonary fibrosis. Bioorg Med Chem Lett 2021; 48:128238. [PMID: 34216747 DOI: 10.1016/j.bmcl.2021.128238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022]
Abstract
Selenium has demonstrated effectiveness in the reduction of oxidative stress and inflammation in vitro and in vivo, both of which are key indicators of the pathogenesis of pulmonary fibrosis. Gefitinib, an FDA-approved EGFR inhibitor, effectively reverses the deterioration of bleomycin-induced pulmonary fibrosis. Based on this, we proposed introducing a selenium atom into the structure of gefitinib, resulting in the generation of selenogefitinib. Compared to gefitinib, selenogefitinib was significantly less hepatotoxic and cytotoxic in cells. The results of the H&E staining of lung tissue validated that Selenogefitinib effectively protected the structure of the alveolar tissue and mitigated the infiltration of inflammatory cells in bleomycin-induced pulmonary fibrosis models. The reduction in the deposition of collagen fibers in lung tissue determined by Masson staining and hydroxyproline (HYP) content also corroborated the efficacy of selenogefitinib in the treatment of pulmonary fibrosis. Furthermore, Selenogefitinib decreased the levels of pro-inflammatory markers IL-4, IL-6, and TNF-α more significantly than gefitinib, which indicated that it exhibited a higher anti-inflammatory activity. In addition, the presence of selenium manifested a greater reduction in oxidative stress based on the decrease in the levels of MDA in mice blood. These results suggested that Selenogefitinib may be a potential candidate for the treatment of IPF.
Collapse
Affiliation(s)
- Yue Bai
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Yunhao Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Peng Chu
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Changyuan Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Lei Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Baojing Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Yanxia Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Lixue Chen
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China.
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China.
| |
Collapse
|
24
|
Banerjee U, Baloni P, Singh A, Chandra N. Immune Subtyping in Latent Tuberculosis. Front Immunol 2021; 12:595746. [PMID: 33897680 PMCID: PMC8059438 DOI: 10.3389/fimmu.2021.595746] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Latent tuberculosis infection (LTBI) poses a major roadblock in the global effort to eradicate tuberculosis (TB). A deep understanding of the host responses involved in establishment and maintenance of TB latency is required to propel the development of sensitive methods to detect and treat LTBI. Given that LTBI individuals are typically asymptomatic, it is challenging to differentiate latently infected from uninfected individuals. A major contributor to this problem is that no clear pattern of host response is linked with LTBI, as molecular correlates of latent infection have been hard to identify. In this study, we have analyzed the global perturbations in host response in LTBI individuals as compared to uninfected individuals and particularly the heterogeneity in such response, across LTBI cohorts. For this, we constructed individualized genome-wide host response networks informed by blood transcriptomes for 136 LTBI cases and have used a sensitive network mining algorithm to identify top-ranked host response subnetworks in each case. Our analysis indicates that despite the high heterogeneity in the gene expression profiles among LTBI samples, clear patterns of perturbation are found in the immune response pathways, leading to grouping LTBI samples into 4 different immune-subtypes. Our results suggest that different subnetworks of molecular perturbations are associated with latent tuberculosis.
Collapse
Affiliation(s)
- Ushashi Banerjee
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Priyanka Baloni
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Amit Singh
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
25
|
Lung gene expression and single cell analyses reveal two subsets of idiopathic pulmonary fibrosis (IPF) patients associated with different pathogenic mechanisms. PLoS One 2021; 16:e0248889. [PMID: 33755690 PMCID: PMC7987152 DOI: 10.1371/journal.pone.0248889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/07/2021] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive and debilitating lung disease with large unmet medical need and few treatment options. We describe an analysis connecting single cell gene expression with bulk gene expression-based subsetting of patient cohorts to identify IPF patient subsets with different underlying pathogenesis and cellular changes. We reproduced earlier findings indicating the existence of two major subsets in IPF and showed that these subsets display different alterations in cellular composition of the lung. We developed classifiers based on the cellular changes in disease to distinguish subsets. Specifically, we showed that one subset of IPF patients had significant increases in gene signature scores for myeloid cells versus a second subset that had significantly increased gene signature scores for ciliated epithelial cells, suggesting a differential pathogenesis among IPF subsets. Ligand-receptor analyses suggested there was a monocyte-macrophage chemoattractant axis (including potentially CCL2-CCR2 and CCL17-CCR4) among the myeloid-enriched IPF subset and a ciliated epithelium-derived chemokine axis (e.g. CCL15) among the ciliated epithelium-enriched IPF subset. We also found that these IPF subsets had differential expression of pirfenidone-responsive genes suggesting that our findings may provide an approach to identify patients with differential responses to pirfenidone and other drugs. We believe this work is an important step towards targeted therapies and biomarkers of response.
Collapse
|
26
|
Immune Stroma in Lung Cancer and Idiopathic Pulmonary Fibrosis: A Common Biologic Landscape? Int J Mol Sci 2021; 22:ijms22062882. [PMID: 33809111 PMCID: PMC8000622 DOI: 10.3390/ijms22062882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) identifies a specific entity characterized by chronic, progressive fibrosing interstitial pneumonia of unknown cause, still lacking effective therapies. Growing evidence suggests that the biologic processes occurring in IPF recall those which orchestrate cancer onset and progression and these findings have already been exploited for therapeutic purposes. Notably, the incidence of lung cancer in patients already affected by IPF is significantly higher than expected. Recent advances in the knowledge of the cancer immune microenvironment have allowed a paradigm shift in cancer therapy. From this perspective, recent experimental reports suggest a rationale for immune checkpoint inhibition in IPF. Here, we recapitulate the most recent knowledge on lung cancer immune stroma and how it can be translated into the IPF context, with both diagnostic and therapeutic implications.
Collapse
|
27
|
Molecular and Clinical Features of EGFR-TKI-Associated Lung Injury. Int J Mol Sci 2021; 22:ijms22020792. [PMID: 33466795 PMCID: PMC7829873 DOI: 10.3390/ijms22020792] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
The tyrosine kinase activity of epidermal growth factor receptors (EGFRs) plays critical roles in cell proliferation, regeneration, tumorigenesis, and anticancer resistance. Non-small-cell lung cancer patients who responded to EGFR-tyrosine kinase inhibitors (EGFR-TKIs) and obtained survival benefits had somatic EGFR mutations. EGFR-TKI-related adverse events (AEs) are usually tolerable and manageable, although serious AEs, including lung injury (specifically, interstitial lung disease (ILD), causing 58% of EGFR-TKI treatment-related deaths), occur infrequently. The etiopathogenesis of EGFR-TKI-induced ILD remains unknown. Risk factors, such as tobacco exposure, pre-existing lung fibrosis, chronic obstructive pulmonary disease, and poor performance status, indicate that lung inflammatory circumstances may worsen with EGFR-TKI treatment because of impaired epithelial healing of lung injuries. There is limited evidence from preclinical and clinical studies of the mechanisms underlying EGFR-TKI-induced ILD in the available literature. Herein, we evaluated the relationship between EGFR-TKIs and AEs, especially ILD. Recent reports on mechanisms inducing lung injury or resistance in cytokine-rich circumstances were reviewed. We discussed the relevance of cytotoxic agents or immunotherapeutic agents in combination with EGFR-TKIs as a potential mechanism of EGFR-TKI-related lung injury and reviewed recent developments in diagnostics and therapeutics that facilitate recovery from lung injury or overcoming resistance to anti-EGFR treatment.
Collapse
|
28
|
Sato T, Shimizu T, Fujita H, Imai Y, Drucker DJ, Seino Y, Yamada Y. GLP-1 Receptor Signaling Differentially Modifies the Outcomes of Sterile vs Viral Pulmonary Inflammation in Male Mice. Endocrinology 2020; 161:5943674. [PMID: 33125041 PMCID: PMC7678414 DOI: 10.1210/endocr/bqaa201] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 02/07/2023]
Abstract
A number of disease states, including type 2 diabetes (T2D), are associated with an increased risk of pulmonary infection. Glucagon-like peptide-1 (GLP-1) receptor agonists are used to treat T2D and exert anti-inflammatory actions through a single, well-defined GLP-1 receptor (GLP-1R). Although highly expressed in the lung, little is known about the role of the GLP-1R in the context of pulmonary inflammation. Here we examined the consequences of gain or loss of GLP-1R activity in infectious and noninfectious lung inflammation. We studied wild-type mice treated with a GLP-1R agonist, and Glp1r-/- mice, in the setting of bleomycin-induced noninfectious lung injury and influenza virus infection. Loss of the GLP-1R attenuated the severity of bleomycin-induced lung injury, whereas activation of GLP-1R signaling increased pulmonary inflammation via the sympathetic nervous system. In contrast, GLP-1R agonism reduced the pathogen load in mice with experimental influenza virus infection in association with increased expression of intracellular interferon-inducible GTPases. Notably, the GLP-1 receptor agonist liraglutide improved the survival rate after influenza virus infection. Our results reveal context-dependent roles for the GLP-1 system in the response to lung injury. Notably, the therapeutic response of GLP-1R agonism in the setting of experimental influenza virus infection may have relevance for ongoing studies of GLP-1R agonism in people with T2D susceptible to viral lung injury.
Collapse
Affiliation(s)
- Takehiro Sato
- Department of Endocrinology, Diabetes, and Geriatric Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Tatsunori Shimizu
- Department of Endocrinology, Diabetes, and Geriatric Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroki Fujita
- Department of Endocrinology, Diabetes, and Geriatric Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Yumiko Imai
- Laboratory of Regulation for Intractable Infectious Diseases, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation Health and Nutrition, Osaka, Japan
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Canada
| | - Yutaka Seino
- Kansai Electric Power Medical Research Institute, Osaka, Japan
| | - Yuichiro Yamada
- Department of Endocrinology, Diabetes, and Geriatric Medicine, Akita University Graduate School of Medicine, Akita, Japan
- Kansai Electric Power Medical Research Institute, Osaka, Japan
| |
Collapse
|
29
|
Weisberg E, Parent A, Yang PL, Sattler M, Liu Q, Liu Q, Wang J, Meng C, Buhrlage SJ, Gray N, Griffin JD. Repurposing of Kinase Inhibitors for Treatment of COVID-19. Pharm Res 2020; 37:167. [PMID: 32778962 PMCID: PMC7417114 DOI: 10.1007/s11095-020-02851-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
The outbreak of COVID-19, the pandemic disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spurred an intense search for treatments by the scientific community. In the absence of a vaccine, the goal is to target the viral life cycle and alleviate the lung-damaging symptoms of infection, which can be life-threatening. There are numerous protein kinases associated with these processes that can be inhibited by FDA-approved drugs, the repurposing of which presents an alluring option as they have been thoroughly vetted for safety and are more readily available for treatment of patients and testing in clinical trials. Here, we characterize more than 30 approved kinase inhibitors in terms of their antiviral potential, due to their measured potency against key kinases required for viral entry, metabolism, or reproduction. We also highlight inhibitors with potential to reverse pulmonary insufficiency because of their anti-inflammatory activity, cytokine suppression, or antifibrotic activity. Certain agents are projected to be dual-purpose drugs in terms of antiviral activity and alleviation of disease symptoms, however drug combination is also an option for inhibitors with optimal pharmacokinetic properties that allow safe and efficacious co-administration with other drugs, such as antiviral agents, IL-6 blocking agents, or other kinase inhibitors.
Collapse
Affiliation(s)
- Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Alexander Parent
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Priscilla L Yang
- Department of Cancer Cell Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Qingwang Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Nathanael Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Saberian N, Peyvandipour A, Donato M, Ansari S, Draghici S. A new computational drug repurposing method using established disease-drug pair knowledge. Bioinformatics 2020; 35:3672-3678. [PMID: 30840053 DOI: 10.1093/bioinformatics/btz156] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 01/15/2019] [Accepted: 03/04/2019] [Indexed: 12/23/2022] Open
Abstract
MOTIVATION Drug repurposing is a potential alternative to the classical drug discovery pipeline. Repurposing involves finding novel indications for already approved drugs. In this work, we present a novel machine learning-based method for drug repurposing. This method explores the anti-similarity between drugs and a disease to uncover new uses for the drugs. More specifically, our proposed method takes into account three sources of information: (i) large-scale gene expression profiles corresponding to human cell lines treated with small molecules, (ii) gene expression profile of a human disease and (iii) the known relationship between Food and Drug Administration (FDA)-approved drugs and diseases. Using these data, our proposed method learns a similarity metric through a supervised machine learning-based algorithm such that a disease and its associated FDA-approved drugs have smaller distance than the other disease-drug pairs. RESULTS We validated our framework by showing that the proposed method incorporating distance metric learning technique can retrieve FDA-approved drugs for their approved indications. Once validated, we used our approach to identify a few strong candidates for repurposing. AVAILABILITY AND IMPLEMENTATION The R scripts are available on demand from the authors. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nafiseh Saberian
- Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Azam Peyvandipour
- Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Michele Donato
- Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Sahar Ansari
- Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
31
|
Synthesis and biological activity of thieno[3,2-d]pyrimidines as potent JAK3 inhibitors for the treatment of idiopathic pulmonary fibrosis. Bioorg Med Chem 2019; 28:115254. [PMID: 31866272 DOI: 10.1016/j.bmc.2019.115254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/30/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a serious and fatal lung disease, with a median survival of only 3-5 years from diagnosis. Janus kinase 3 (JAK3) has a well-established role in the pathogenesis of various autoimmune diseases, including rheumatoid arthritis (RA) and autoimmune-related pulmonary fibrosis. In this study, through the use of a conformationally-constrained design strategy, a series of thieno[3,2-d]pyrimidines were synthesized as potent JAK3 inhibitors for the treatment of IPF. Among them, the most potent JAK3 inhibitor, namely 8e (IC50 = 1.38 nM), significantly reduced the degree of airsacculitis and fibrosis according to hematoxylin-eosin (HE) staining assay for the lung tissue in the bleomycin (BLM)-induced pulmonary fibrosis mouse model. The clear reduction of the lung collagen deposition by the determination of Masson and hydroxyproline (HYP) content also demonstrated its efficacy in the treatment of fibrosis. In addition, 8e also reduced the expression of the inflammatory markers IL-6, IL-17A, TNF-α and malondialdehyde (MDA) in lung tissue, which indicated its higher anti-inflammatory activity compared with that of the reference agents (nintedanib and gefitinib). Furthermore, it possessed low cytotoxicity against normal human bronchial epithelia (HBE) cells (IC50 > 39.0 μM) and C57BL mice. All these evaluated biological properties suggest that 8e may be a potential JAK3 inhibitor for the treatment of IPF.
Collapse
|
32
|
Sun B, Liu X, Zheng X, Wang C, Meng Q, Sun H, Shu X, Liu K, Sun X, Li Y, Ma X. Novel Pyrimidines as Multitarget Protein Tyrosine Kinase Inhibitors for the Treatment of Idiopathic Pulmonary Fibrosis (IPF). ChemMedChem 2019; 15:182-187. [PMID: 31755225 DOI: 10.1002/cmdc.201900606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/17/2019] [Indexed: 12/11/2022]
Abstract
A new class of pyrimidine derivatives were identified as potent protein tyrosine kinase (PTK) inhibitors for the treatment of idiopathic pulmonary fibrosis (IPF). Most of these small-molecule inhibitors displayed strong enzymatic activity against BTK and JAK3 kinases at concentrations lower than 10 nM. The representative compound N-(3-((5-chloro-2-(4-((1-morpholino)acetylamino)phenylamino)-4-pyrimidinyl)amino)phenyl)acrylamide (6 a) also exhibited high inhibitory potency toward both BTK and JAK kinase families, as well as ErbB4, at a concentration of 10 nM, achieving rates of inhibition higher than 57 %. Additionally, in vivo biological evaluations showed that 6 a can remarkably decrease the severity of IPF disease. All these investigations suggested that the multi-PTK inhibitor 6 a may serve as a promising agent for the treatment of IPF.
Collapse
Affiliation(s)
- Bo Sun
- Department Institute of Respiratory Diseases, Department of Hematology, No. 222 Zhongshan Road, Dalian, 116022, China
| | - Xiaowen Liu
- College of Pharmacy, College of Basic Medical Science, No. 9, West section of Lvshun South Road, Dalian, Liaoning Provence, 116044, China
| | - Xu Zheng
- College of Pharmacy, College of Basic Medical Science, No. 9, West section of Lvshun South Road, Dalian, Liaoning Provence, 116044, China
| | - Changyuan Wang
- College of Pharmacy, College of Basic Medical Science, No. 9, West section of Lvshun South Road, Dalian, Liaoning Provence, 116044, China
| | - Qiang Meng
- College of Pharmacy, College of Basic Medical Science, No. 9, West section of Lvshun South Road, Dalian, Liaoning Provence, 116044, China
| | - Huijun Sun
- College of Pharmacy, College of Basic Medical Science, No. 9, West section of Lvshun South Road, Dalian, Liaoning Provence, 116044, China
| | - Xiaohong Shu
- College of Pharmacy, College of Basic Medical Science, No. 9, West section of Lvshun South Road, Dalian, Liaoning Provence, 116044, China
| | - Kexin Liu
- College of Pharmacy, College of Basic Medical Science, No. 9, West section of Lvshun South Road, Dalian, Liaoning Provence, 116044, China
| | - Xiuli Sun
- Department Institute of Respiratory Diseases, Department of Hematology, No. 222 Zhongshan Road, Dalian, 116022, China
| | - Yanxia Li
- Department Institute of Respiratory Diseases, Department of Hematology, No. 222 Zhongshan Road, Dalian, 116022, China
| | - Xiaodong Ma
- College of Pharmacy, College of Basic Medical Science, No. 9, West section of Lvshun South Road, Dalian, Liaoning Provence, 116044, China
| |
Collapse
|
33
|
Ruan H, Lv Z, Liu S, Zhang L, Huang K, Gao S, Gan W, Liu X, Zhang S, Helian K, Li X, Zhou H, Yang C. Anlotinib attenuated bleomycin-induced pulmonary fibrosis via the TGF-β1 signalling pathway. J Pharm Pharmacol 2019; 72:44-55. [PMID: 31659758 DOI: 10.1111/jphp.13183] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/23/2019] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Anlotinib hydrochloride (AL3818) is a novel multitarget tyrosine kinase inhibitor which has the same targets as nintedanib, an effective drug has been approved for the treatment of idiopathic pulmonary fibrosis. Here, we examined whether anlotinib could also attenuate bleomycin-induced pulmonary fibrosis in mice and explored the antifibrosis mechanism. METHODS We have evaluated the effect of anlotinib on bleomycin-induced pulmonary fibrosis in mice. Inflammatory cytokines in alveolar lavage fluid including IL-1β, IL-4, IL-6 and TNF-α were determined by ELISA. Biomarkers of oxidative stress were measured by corresponding kit. Histopathologic examination was analysed by H&E staining and immunohistochemistry. In vitro, we investigated whether anlotinib inhibited TGFβ/Smad3 and non-Smad pathways by luciferase assay or Western blotting. We also evaluated whether anlotinib inhibited TGF-β1-induced epithelial-mesenchymal transition (EMT) and promoted myofibroblast apoptosis in order to explore the possible molecular mechanism. KEY FINDINGS The results indicated that anlotinib treatment remarkably attenuated inflammation, oxidative stress and pulmonary fibrosis in mouse lungs. Anlotinib could inhibit the TGF-β1 signalling pathway. Additionally, anlotinib not only profoundly inhibited TGF-β1-induced EMT in alveolar epithelial cells, but also simultaneously reduced the proliferation and promoted the apoptosis in fibroblasts. CONCLUSIONS In summary, the results suggest that anlotinib-mediated suppression of pulmonary fibrosis is related to the inhibition of TGF-β1 signalling pathway.
Collapse
Affiliation(s)
- Hao Ruan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ziwei Lv
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shuaishuai Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Liang Zhang
- Department of Thoracic Surgery, Tian Jin First Central Hospital, Tianjin, China
| | - Kai Huang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shaoyan Gao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Wenhua Gan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiaowei Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shanshan Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Kaiyue Helian
- College of Health and Medicine and College of Science, Australian National University, Canberra, ACT, Australia
| | - Xiaohe Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Honggang Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
34
|
Reversal of EGFR inhibitors' resistance by co-delivering EGFR and integrin αvβ3 inhibitors with nanoparticles in non-small cell lung cancer. Biosci Rep 2019; 39:BSR20181259. [PMID: 31316001 PMCID: PMC6712436 DOI: 10.1042/bsr20181259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose: Tumor cells, with drug resistance, are associated with failed treatment and poor prognosis. Our aim was to explore potential strategy to overcome the epidermal growth factor receptor (EGFR) inhibitors resistance in non-small cell lung cancer (NSCLC).Materials and methods: Flow cytometry was used to examine and sort cells. Using MTT assay, we detected the cell viability under different conditions. Using RT-qPCR and Western blot, we determined the targeted gene expression in mRNA and protein levels. The morphology of the prepared nanoparticles was pictured by transmission electron microscopy. We also performed immunohistochemistry (IHC) and immunofluorescence (IF) to detect the proteins expression. Subcutaneous cancer models in nude mice were constructed to evaluate the anti-cancer effects in vivo Results: Here, we observed enhanced expression of integrin αvβ3 in tumor tissues from EGFR inhibitors resistant patients. Also, integrin αvβ3-positive NSCLC cells revealed significant EGFR inhibitors resistance, resulting from the activation of Galectin-3/KRAS/RalB/TBK1/NF-κB signaling pathway. Co-encapsulating integrin αvβ3 inhibitor and EGFR inhibitor further improved the drug delivery system, leading to superior anti-cancer effects and reduced systemic toxicity.Conclusion: Our results demonstrated that co-encapsulation of erlotinib and cilengitide by MPEG-PLA (Erlo+Cilen/PP) nanoparticles revealed enhanced tumor suppression along with reduced organ damages, providing an innovative approach for NSCLC treatment.
Collapse
|
35
|
Epstein Shochet G, Brook E, Eyal O, Edelstein E, Shitrit D. Epidermal growth factor receptor paracrine upregulation in idiopathic pulmonary fibrosis fibroblasts is blocked by nintedanib. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1025-L1034. [PMID: 30810067 DOI: 10.1152/ajplung.00526.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although present in normal cells, epidermal growth factor receptor (EGFR) is overexpressed in a variety of tumors and has been associated with decreased survival. Because activated fibroblasts are considered key effectors in fibrosis and because metastatic and fibrotic processes were shown to share similar signaling pathways, we investigated the contribution of EGFR signaling to idiopathic pulmonary fibrosis (IPF) progression in lung fibroblasts derived from patients with IPF (IPF-HLF). EGFR expression and EGFR-related signaling were evaluated by Western blot and immunohistochemistry. Supernatants (SN) from cultured IPF-HLF and N-HLF were added to N-HLF, and their effect on cell phenotype was tested. Growth factor levels in the SN were measured by ELISA-based arrays. EGFR activity was blocked by erlotinib (Tarceva, 0.1-0.5 µM). Expression of EGFR, phosphorylated (p)EGFR-1068 and pAkt-473 was significantly higher in IPF-HLF compared with lung fibroblasts from control donors (N-HLF) (P < 0.05). Apparent expression of p/total EGFR and pAkt-473 was found in the myofibroblastic foci of IPF patients. Erlotinib significantly inhibited IPF-HLF but not N-HLF proliferation. IPF-HLF-SN elevated N-HLF cell number, viability, EGFR expression, and pAkt-473 and ERK1/2 phosphorylation (P < 0.05). Because high basic fibroblast growth factor levels were found in the IPF-HLF-SN, nintedanib (10-100 nM) was used to inhibit fibroblast growth factor receptor (FGFR) activation. Unlike erlotinib, nintedanib completely blocked IPF-HLF-SNs' effects on the N-HLF cells in a concentration-dependent manner. In summary, IPF-HLF paracrine signaling elevates EGFR expression, which in turn, affects N-HLF survival. The FGF-EGFR interplay facilitates cellular responses that could potentially promote fibrotic disease. This interplay was successfully blocked by nintedanib.
Collapse
Affiliation(s)
- Gali Epstein Shochet
- Pulmonary Department, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Elizabetha Brook
- Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Omer Eyal
- Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Evgeny Edelstein
- Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel.,Pathology Department, Meir Medical Center, Kfar Saba, Israel
| | - David Shitrit
- Pulmonary Department, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
36
|
Ballester B, Milara J, Cortijo J. Idiopathic Pulmonary Fibrosis and Lung Cancer: Mechanisms and Molecular Targets. Int J Mol Sci 2019; 20:ijms20030593. [PMID: 30704051 PMCID: PMC6387034 DOI: 10.3390/ijms20030593] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial pulmonary disease with a median survival of 2–4 years after diagnosis. A significant number of IPF patients have risk factors, such as a history of smoking or concomitant emphysema, both of which can predispose the patient to lung cancer (LC) (mostly non-small cell lung cancer (NSCLC)). In fact, IPF itself increases the risk of LC development by 7% to 20%. In this regard, there are multiple common genetic, molecular, and cellular processes that connect lung fibrosis with LC, such as myofibroblast/mesenchymal transition, myofibroblast activation and uncontrolled proliferation, endoplasmic reticulum stress, alterations of growth factors expression, oxidative stress, and large genetic and epigenetic variations that can predispose the patient to develop IPF and LC. The current approved IPF therapies, pirfenidone and nintedanib, are also active in LC. In fact, nintedanib is approved as a second line treatment in NSCLC, and pirfenidone has shown anti-neoplastic effects in preclinical studies. In this review, we focus on the current knowledge on the mechanisms implicated in the development of LC in patients with IPF as well as in current IPF and LC-IPF candidate therapies based on novel molecular advances.
Collapse
Affiliation(s)
- Beatriz Ballester
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain.
- CIBERES, Health Institute Carlos III, 28029 Valencia, Spain.
| | - Javier Milara
- CIBERES, Health Institute Carlos III, 28029 Valencia, Spain.
- Pharmacy Unit, University Clinic Hospital of Valencia, 46010 Valencia, Spain.
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain.
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain.
- CIBERES, Health Institute Carlos III, 28029 Valencia, Spain.
- Research and teaching Unit, University General Hospital Consortium, 46014 Valencia, Spain.
| |
Collapse
|
37
|
Chen HY, Lin CH, Chen BC. ADAM17/EGFR-dependent ERK activation mediates thrombin-induced CTGF expression in human lung fibroblasts. Exp Cell Res 2018; 370:39-45. [DOI: 10.1016/j.yexcr.2018.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 10/14/2022]
|
38
|
Gu N, Xing S, Chen S, Zhou Y, Jiang T, Jiao Y, Gao Y, Yu W, He Z, Wen D. Lipopolysaccharide induced the proliferation of mouse lung fibroblasts by suppressing FoxO3a/p27 pathway. Cell Biol Int 2018; 42:1311-1320. [PMID: 29907991 DOI: 10.1002/cbin.11016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/09/2018] [Indexed: 12/23/2022]
Abstract
Aberrant aggregation and activation of lung fibroblasts is a key process in pulmonary fibrosis, but the underlying mechanism remains enigmatic. Forkhead Box O3a (FoxO3a) is considered to be an important transcription factor that could regulate both cell cycle and cell viability. To investigate the role of FoxO3a on LPS-induced lung fibroblast proliferation, we transfected FoxO3a-SiRNA or FoxO3a-OE lentivirus into cultured mouse lung fibroblasts to knockdown or overexpress FoxO3a and pretreated mouse lung fibroblasts with gefitinib to enhance FoxO3a activity. The proliferation of lung fibroblasts was evaluated by CCK8 assay, the expression of FoxO3a, phosphorylated FoxO3a (p-FoxO3a) and p27 were measured by Western blot. We found that the proliferation of mouse lung fibroblasts mediated by LPS is accompanied by the inactivation of FoxO3a. The knockdown of FoxO3a could further decreased the expression of p27 mediated by LPS, while the overexpression of FoxO3a significantly increased the expression of p27 and suppressed LPS-induced lung fibroblast proliferation. Upon treating fibroblasts with gefitinib, the phosphorylation of FoxO3a was reduced and FoxO3a translocated into the nucleus, the expression of p27 was significantly increased and the proliferation of lung fibroblasts mediated by LPS could also be inhibited effectively. The results indicate that overexpression and reduced phosphatase activity of FoxO3a inhibit LPS-induced lung fibroblast proliferation through the activation of FoxO3a/p27 signaling pathways. Thus, to enhance FoxO3a activity could be a potential therapeutic target for LPS-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Nannan Gu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shunpeng Xing
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sihan Chen
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuxi Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Jiang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengyu He
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Daxiang Wen
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Gefitinib Inhibits Bleomycin-Induced Pulmonary Fibrosis via Alleviating the Oxidative Damage in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8249693. [PMID: 29849916 PMCID: PMC5924979 DOI: 10.1155/2018/8249693] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/24/2017] [Accepted: 11/26/2017] [Indexed: 01/09/2023]
Abstract
Pulmonary fibrosis (PF) is a life-threatening interstitial lung disease. In this study, we tried to reveal the model of action between high-mobility group box 1 (HMGB1) and α-smooth muscle actin (α-SMA) and the protective role of gefitinib in pulmonary fibrosis induced by the administration of bleomycin aerosol in mice. For the mechanism study, lung tissues were harvested two weeks after modeling to detect the coexpression of HMGB1 and α-SMA by immunohistochemistry and immunofluorescence staining. Protein-DNA interactions were analyzed using a pulldown assay to study the relationship between HMGB1 and α-SMA. For the gefitinib treatment study, the mice were divided into three groups: phosphate-buffered saline (PBS) control group, PBS-treated PF group, and gefitinib-treated PF group. Gavage of gefitinib or PBS (20 mg/kg/day) was performed after bleomycin treatment for two weeks until the mice were sacrificed. Lung and blood samples were collected to assess the histological changes, oxidative stress, and expression of NOXs, HMGB1, EGFR, MAPKs, AP-1, and NF-κB to determine the curative effect and related molecular mechanisms. The results revealed the high coexpression of α-SMA and HMGB1 in some interstitial cells in the fibrotic lung. The DNA-protein pulldown analysis proved that HMGB34367 acted as a novel transcriptional factor for the α-SMA promoter and participated in the eventual development of pulmonary fibrosis. Second, gefitinib could significantly decrease lung fibrotic changes and the level of MDA and recover the T-AOC level. Meanwhile, gefitinib could also reduce the NOX1/2/4, HMGB1, p-EGFR, p-ERK, p-JNK, p-P38, p-NF-κB, p-c-Jun, and p-c-Fos expression levels in fibrotic lungs. The present study suggested that gefitinib could alleviate lung fibrosis through the HMGB1/NOXs-ROS/EGFR-MAPKs-AP-1/NF-κB signal in bleomycin-induced pulmonary fibrosis.
Collapse
|
40
|
Overactive Epidermal Growth Factor Receptor Signaling Leads to Increased Fibrosis after Severe Acute Respiratory Syndrome Coronavirus Infection. J Virol 2017; 91:JVI.00182-17. [PMID: 28404843 DOI: 10.1128/jvi.00182-17] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) is a highly pathogenic respiratory virus that causes morbidity and mortality in humans. After infection with SARS-CoV, the acute lung injury caused by the virus must be repaired to regain lung function. A dysregulation in this wound healing process leads to fibrosis. Many survivors of SARS-CoV infection develop pulmonary fibrosis (PF), with higher prevalence in older patients. Using mouse models of SARS-CoV pathogenesis, we have identified that the wound repair pathway, controlled by the epidermal growth factor receptor (EGFR), is critical to recovery from SARS-CoV-induced tissue damage. In mice with constitutively active EGFR [EGFR(DSK5) mice], we find that SARS-CoV infection causes enhanced lung disease. Importantly, we show that during infection, the EGFR ligands amphiregulin and heparin-binding EGF-like growth factor (HB-EGF) are upregulated, and exogenous addition of these ligands during infection leads to enhanced lung disease and altered wound healing dynamics. Our data demonstrate a key role of EGFR in the host response to SARS-CoV and how it may be implicated in lung disease induced by other highly pathogenic respiratory viruses.IMPORTANCE PF has many causative triggers, including severe respiratory viruses such as SARS-CoV. Currently there are no treatments to prevent the onset or limit the progression of PF, and the molecular pathways underlying the development of PF are not well understood. In this study, we identified a role for the balanced control of EGFR signaling as a key factor in progression to PF. These data demonstrate that therapeutic treatment modulating EGFR activation could protect against PF development caused by severe respiratory virus infection.
Collapse
|
41
|
Venkataraman T, Frieman MB. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis. Antiviral Res 2017; 143:142-150. [PMID: 28390872 PMCID: PMC5507769 DOI: 10.1016/j.antiviral.2017.03.022] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/28/2017] [Indexed: 12/30/2022]
Abstract
Many survivors of the 2003 outbreak of severe acute respiratory syndrome (SARS) developed residual pulmonary fibrosis with increased severity seen in older patients. Autopsies of patients that died from SARS also showed fibrosis to varying extents. Pulmonary fibrosis can be occasionally seen as a consequence to several respiratory viral infections but is much more common after a SARS coronavirus (SARS-CoV) infection. Given the threat of future outbreaks of severe coronavirus disease, including Middle East respiratory syndrome (MERS), it is important to understand the mechanisms responsible for pulmonary fibrosis, so as to support the development of therapeutic countermeasures and mitigate sequelae of infection. In this article, we summarize pulmonary fibrotic changes observed after a SARS-CoV infection, discuss the extent to which other respiratory viruses induce fibrosis, describe available animal models to study the development of SARS-CoV induced fibrosis and review evidence that pulmonary fibrosis is caused by a hyperactive host response to lung injury mediated by epidermal growth factor receptor (EGFR) signaling. We summarize work from our group and others indicating that inhibiting EGFR signaling may prevent an excessive fibrotic response to SARS-CoV and other respiratory viral infections and propose directions for future research. Patients who survived SARS coronavirus infection often developed pulmonary fibrosis. Mouse models of SARS-CoV infection recapitulate fibrotic lesions seen in humans. Epidermal growth factor receptor (EGFR) may modulate the wound healing response to SARS-CoV. The EGFR pathway is a prime target for therapeutic interventions to reduce fibrosis after respiratory virus infection.
Collapse
Affiliation(s)
- Thiagarajan Venkataraman
- Department of Microbiology and Immunology, University of Maryland at Baltimore, 685 West Baltimore St. Room 380, Baltimore, MD, 21201, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland at Baltimore, 685 West Baltimore St. Room 380, Baltimore, MD, 21201, USA.
| |
Collapse
|
42
|
Scheving LA, Zhang X, Threadgill DW, Russell WE. Hepatocyte ERBB3 and EGFR are required for maximal CCl4-induced liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2016; 311:G807-G816. [PMID: 27586651 PMCID: PMC5130544 DOI: 10.1152/ajpgi.00423.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 08/18/2016] [Indexed: 01/31/2023]
Abstract
Epidermal growth factor receptor (EGFR) and its ligands have been implicated in liver fibrosis. However, it has not been directly shown that hepatocellular genetic ablation of either this receptor tyrosine kinase or ERBB3, its interactive signaling partner, affects hepatic fibrosis. Carbon tetrachloride (CCl4)-induced liver fibrosis in hepatocyte-specific (HS) mouse models of EGFR and ERBB3 ablation was evaluated in both single gene knockouts and an HS-EGFR-ERBB3 double knockout (DKO). Loss of hepatocellular EGFR or ERBB3 did not impact cytochrome P450-2E1 expression, the extent of centrilobular injury, or the initial regenerative response, but it did diminish liver fibrosis induced by chronic intraperitoneal administration of CCl4 The reduction of liver fibrosis correlated with reduced α-smooth muscle actin expression. Maximal impact to fibrogenesis occurred in the ERBB3 and EGFR-ERBB3 DKO models, suggesting that EGFR-ERBB3 heterodimeric signaling in damaged hepatocytes may play a more important role in liver fibrosis than EGFR-EGFR homodimeric signaling. Immunohistochemical analyses of phospho-EGFR and phospho-ERBB3 isoforms revealed clear staining in hepatocytes, activated stellate cells, and macrophages. Our results support a role for the hepatocellular ERBB tyrosine kinases in fibrogenesis and suggest that pharmacologic inhibition of EGFR-ERBB3 signaling may reverse or retard hepatic fibrosis.
Collapse
Affiliation(s)
- Lawrence A. Scheving
- 1Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Xiuqi Zhang
- 1Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - David W. Threadgill
- 6Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas; and ,7Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas
| | - William E. Russell
- 1Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee; ,2Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee; ,3Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee; ,4Vanderbilt Diabetes Center, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee;
| |
Collapse
|
43
|
Tabata K, Sugano E, Murakami F, Yamashita T, Ozaki T, Tomita H. Improved transduction efficiencies of adeno-associated virus vectors by synthetic cell-permeable peptides. Biochem Biophys Res Commun 2016; 478:1732-8. [PMID: 27614311 DOI: 10.1016/j.bbrc.2016.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 12/01/2022]
Abstract
Various serotypes of adeno-associated virus (AAV) vectors have been used for gene therapy and as research tools. Among these serotypes, the AAV type 2 vector has been used successfully in human gene therapies. However, the transduction efficiency of AAV2 depends on the cell type, and this poses a problem in the efficacy of gene therapy. To improve the transduction efficiency of AAV2, we designed a small peptide consisting of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor peptide and the HIV-Tat sequence Tat-Y1068. Pre- or co-treatment of CYNOM-K1 cells from cynomolgus monkey embryo skin with Tat-Y1068 increased the transduction efficiencies in a dose-dependent manner and caused p38 phosphorylation. The transduction efficiency of AAV2 into the rat fibroblast cell line RAT-1 highly expressing EGFR was less than the transduction efficiency of AAV2 into CYNOM-K1 cells. Tat-Y1068 increased the transduction efficiency in RAT-1 cells in the same manner as in CYNOM-K1 cells. In conclusion, cell-permeable peptides possessing the EGFR tyrosine kinase inhibitor function might serve as a useful ingredient of AAV2 vector solution for increasing the transduction efficiency of gene therapies.
Collapse
Affiliation(s)
- Kitako Tabata
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan.
| | - Eriko Sugano
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan; Soft-Path Engineering Research Center (SPERC), Faculty of Engineering, Iwate University, Morioka, 020-8551, Japan.
| | - Fumika Murakami
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan.
| | - Tetsuro Yamashita
- Soft-Path Engineering Research Center (SPERC), Faculty of Engineering, Iwate University, Morioka, 020-8551, Japan; Department of Biological Chemistry, Iwate University Faculty of Agriculture, Morioka, Japan.
| | - Taku Ozaki
- Soft-Path Engineering Research Center (SPERC), Faculty of Engineering, Iwate University, Morioka, 020-8551, Japan.
| | - Hiroshi Tomita
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan; Soft-Path Engineering Research Center (SPERC), Faculty of Engineering, Iwate University, Morioka, 020-8551, Japan; Clinical Research, Innovation and Education Center, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi 980-8574, Japan.
| |
Collapse
|
44
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Gordon GM, LaGier AJ, Ponchel C, Bauskar A, Itakura T, Jeong S, Patel N, Fini ME. A cell-based screening assay to identify pharmaceutical compounds that enhance the regenerative quality of corneal repair. Wound Repair Regen 2016; 24:89-99. [PMID: 26646714 DOI: 10.1111/wrr.12390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/27/2015] [Indexed: 01/21/2023]
Abstract
The goal of this study was to develop and validate a simple but quantitative cell-based assay to identify compounds that might be used pharmaceutically to give tissue repair a more regenerative character. The cornea was used as the model, and some specific aspects of repair in this organ were incorporated into assay design. A quantitative cell-based assay was developed based on transcriptional promoter activity of fibrotic marker genes ACT2A and TGFB2. Immortalized corneal stromal cells (HTK) or corneal epithelial cells (HCLE) were tested and compared to primary corneal stromal cells. Cells were transiently transfected with constructs containing the firefly luciferase reporter gene driven by transcriptional promoters for the selected fibrotic marker genes. A selected panel of seven chemical test compounds was used, containing three known fibrosis inhibitors: lovastatin (LOV), tyrphostin AG 1296 (6,7-dimethoxy-3-phenylquinoxaline) and SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole), and four potential fibrosis inhibitors: 5-iodotubercidin (4-amino-5-iodo-7-(β-D-ribofuranosyl)-pyrrolo(2,3-d)pyrimidine), anisomycin, DRB (5,6-dichloro-1-β-D-ribofuranosyl-benzimidazole) and latrunculin B. Transfected cells were treated with TGFB2 in the presence or absence of one of the test compounds. To validate the assay, compounds were tested for their direct effects on gene expression in the immortalized cell lines and primary human corneal keratocytes using RT-PCR and immunohistochemistry. Three "hits" were validated LOV, SB203580 and anisomycin. This assay, which can be applied in a high throughput format to screen large libraries of uncharacterized compounds, or known compounds that might be repurposed, offers a valuable tool for identifying new treatments to address a major unmet medical need. Anisomycin has not previously been characterized as antifibrotic, thus, this is a novel finding of the study.
Collapse
Affiliation(s)
- Gabriel M Gordon
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California.,Department of Ophthalmology and Graduate Program in Molecular Cell and Developmental Biology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Adriana J LaGier
- Department of Biology, Grand View University, Des Moines, Iowa.,Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Corinne Ponchel
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Aditi Bauskar
- USC Institute for Genetic Medicine and Graduate Program in Integrative Biology of Disease, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Tatsuo Itakura
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| | - Shinwu Jeong
- Department of Ophthalmology, USC Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Nitin Patel
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| | - M Elizabeth Fini
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida.,Department of Cell and Neurobiology and Department of Ophthalmology, USC Institute for Genetic Medicine, USC Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
46
|
Yang Q, Zhou Y, Li FY, Mao H, Shrestha A, Ma WJ, Cheng NS, Zhang W. Effects of epidermal growth factor receptor inhibitor on proliferative cholangitis in hepatolithiasis. Hepatobiliary Pancreat Dis Int 2015; 14:509-15. [PMID: 26459727 DOI: 10.1016/s1499-3872(15)60395-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND There is currently no effective medication to prevent stone recurrence after choledochoscopic lithotomy or to treat proliferative cholangitis (PC), which is the pathologic basis of hepatolithiasis. This study aimed to investigate whether gefitinib, an epidermal growth factor receptor (EGFR) inhibitor, inhibited cholangio hyperplasia and lithogenesis in PC. METHODS After cholangioscopic lithotomy, indwelling catheters were placed in the diseased bile duct lumens in 94 patients with hepatolithiasis. Subsequently, 49 of the 94 patients were treated with 250 mg gefitinib solution via a catheter twice a week, and they were subjected to choledochoscopic biopsy at 6 and 12 weeks. The rest 45 hepatolithiasis patients without gefitinib treatment served as controls. RESULTS The expressions of EGFR, PCNA and procollagen I were significantly reduced in the patients treated with gefitinib in 12 weeks compared with those in the control group. Patients in the gefitinib group had a much lower degree of hyperplasia of the biliary epithelium, submucosal glands and collagen fibers compared with those in the control group. Gefitinib treatment significantly decreased mucin 3 expression and beta-glucuronidase activity. CONCLUSION Postoperative gefitinib treatment could significantly inhibit PC-mediated hyperplasia and lithogenesis, which might provide a novel strategy for the prevention of biliary restenosis and stone recurrence in patients with hepatolithiasis.
Collapse
Affiliation(s)
- Qin Yang
- Department of Hepatobiliary Surgery, West China Hospital of Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Della Latta V, Cecchettini A, Del Ry S, Morales MA. Bleomycin in the setting of lung fibrosis induction: From biological mechanisms to counteractions. Pharmacol Res 2015; 97:122-30. [PMID: 25959210 DOI: 10.1016/j.phrs.2015.04.012] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 12/13/2022]
Abstract
Bleomycin (BLM) is a drug used to treat different types of neoplasms. BLM's most severe adverse effect is lung toxicity, which induces remodeling of lung architecture and loss of pulmonary function, rapidly leading to death. While its clinical role as an anticancer agent is limited, its use in experimental settings is widespread since BLM is one of the most widely used drugs for inducing lung fibrosis in animals, due to its ability to provoke a histologic lung pattern similar to that described in patients undergoing chemotherapy. This pattern is characterized by patchy parenchymal inflammation, epithelial cell injury with reactive hyperplasia, epithelial-mesenchymal transition, activation and differentiation of fibroblasts to myofibroblasts, basement membrane and alveolar epithelium injuries. Several studies have demonstrated that BLM damage is mediated by DNA strand scission producing single- or double-strand breaks that lead to increased production of free radicals. Up to now, the mechanisms involved in the development of pulmonary fibrosis have not been fully understood; several studies have analyzed various potential biological molecular factors, such as transforming growth factor beta 1, tumor necrosis factor alpha, components of the extracellular matrix, chaperones, interleukins and chemokines. The aim of this paper is to review the specific characteristics of BLM-induced lung fibrosis in different animal models and to summarize modalities and timing of in vivo drug administration. Understanding the mechanisms of BLM-induced lung fibrosis and of commonly used therapies for counteracting fibrosis provides an opportunity for translating potential molecular targets from animal models to the clinical arena.
Collapse
Affiliation(s)
- Veronica Della Latta
- CNR Clinical Physiology Institute, Pisa, Italy; University of Siena, Siena, Italy.
| | - A Cecchettini
- CNR Clinical Physiology Institute, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Del Ry
- CNR Clinical Physiology Institute, Pisa, Italy
| | - M A Morales
- CNR Clinical Physiology Institute, Pisa, Italy
| |
Collapse
|
48
|
Grimminger F, Günther A, Vancheri C. The role of tyrosine kinases in the pathogenesis of idiopathic pulmonary fibrosis. Eur Respir J 2015; 45:1426-33. [PMID: 25745048 DOI: 10.1183/09031936.00149614] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/06/2014] [Indexed: 12/23/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with a median survival time from diagnosis of 2-3 years. Although the pathogenic pathways have not been fully elucidated, IPF is believed to be caused by persistent epithelial injury in genetically susceptible individuals. Tyrosine kinases are involved in a range of signalling pathways that are essential for cellular homeostasis. However, there is substantial evidence from in vitro studies and animal models that receptor tyrosine kinases, such as the platelet-derived growth factor receptor, vascular endothelial growth factor receptor and fibroblast growth factor receptor, and non-receptor tyrosine kinases, such as the Src family, play critical roles in the pathogenesis of pulmonary fibrosis. For example, the expression and release of tyrosine kinases are altered in patients with IPF, while specific tyrosine kinases stimulate the proliferation of lung fibroblasts in vitro. Agents that inhibit tyrosine kinases have shown anti-fibrotic and anti-inflammatory effects in animal models of pulmonary fibrosis. Recently, the tyrosine kinase inhibitor nintedanib has shown positive results in two phase III trials in patients with IPF. Here, we summarise the evidence for involvement of specific tyrosine kinases in the pathogenesis of IPF and the development of tyrosine kinase inhibitors as treatments for IPF.
Collapse
Affiliation(s)
- Friedrich Grimminger
- Dept of Hematology/Oncology, University Hospital of Giessen and Marburg, Marburg, Germany
| | - Andreas Günther
- Dept of Pulmonary and Critical Care Medicine, ILD Program, University Hospital of Giessen and Marburg, Marburg, Germany
| | - Carlo Vancheri
- "Regional Centre for Rare Lung Diseases", Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
49
|
Chan SL, Umesalma S, Baumbach GL. Epidermal growth factor receptor is critical for angiotensin II-mediated hypertrophy in cerebral arterioles. Hypertension 2015; 65:806-12. [PMID: 25733240 DOI: 10.1161/hypertensionaha.114.04794] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II (Ang II) is a major determinant of vascular remodeling in the cerebral circulation during chronic hypertension, which is an important risk factor for stroke. We examined the molecular mechanism of Ang II-mediated cerebrovascular remodeling that involves the epidermal growth factor receptor (EGFR) pathway. Mutant EGFR mice (waved-2), their heterozygous control (wild-type [WT]), and C57BL/6J mice were infused with Ang II (1000 ng kg(-1) min(-1)) or saline via osmotic minipumps for 28 days (n=8 per group). Eight of the Ang II-infused C57BL/6J mice were cotreated with AG1478 (12 mg/kg per day, IP), a specific EGFR tyrosine kinase inhibitor. Systolic arterial pressure was measured by a tail-cuff method. Pressure and diameter of cerebral arterioles were measured through an open cranial window in anesthetized mice. Cross-sectional area of the wall was determined in pressurized fixed cerebral arterioles. Expression of phosphorylated EGFR (p-EGFR), caveolin-1 (Cav-1), and c-Src was determined by western blotting and immunohistochemistry. Mutation of EGFR or AG1478 treatment did not affect Ang II-induced hypertension. Ang II increased the expression of p-EGFR in WT mice, confirming the activation of EGFR. Ang II induced hypertrophy and inward remodeling of cerebral arterioles in WT mice. Hypertrophy, but not remodeling, was prevented in waved-2 and AG1478-treated C57BL/6J mice. Ang II increased p-EGFR, Cav-1, and c-Src expression in WT but not in waved-2 or AG1478-treated C57BL/6J mice. These results suggest that Ang II-induced hypertrophy in cerebral arterioles involves EGFR-dependent signaling and may include Cav-1 and nonreceptor tyrosine kinase c-Src. This signaling pathway seems to be limited to Ang II-induced hypertrophy, but not inward remodeling, and is independent of blood pressure.
Collapse
Affiliation(s)
- Siu-Lung Chan
- From the Department of Pathology, University of Iowa College of Medicine, Iowa City
| | - Shaikamjad Umesalma
- From the Department of Pathology, University of Iowa College of Medicine, Iowa City
| | - Gary L Baumbach
- From the Department of Pathology, University of Iowa College of Medicine, Iowa City.
| |
Collapse
|
50
|
Abstract
Anti-fibrotic effect of dasatinib, a platelet-derived growth factor receptor (PDGFR) and Src-kinase inhibitor, was tested on pulmonary fibrosis (PF). Adult mice were divided into four groups: mice dissected 21 d after the bleomycin (BLM) instillation (0.08 mg/kg in 200 µl) (I) and their controls (II), and mice treated with dasatinib (8 mg/kg in 100 µl, gavage) for one week 14 d after BLM instillation and dissected 21 d after instillation (III) and their controls (IV). The fibrosis score and the levels of fibrotic markers were analyzed in lungs. BLM treatment-induced cell proliferation and increased the levels of collagen-1, alpha smooth muscle actin, phospho (p)-PDGFR-alpha, p-Src, p-extracellular signal-regulated kinases1/2 and p-cytoplasmic-Abelson-kinase (c-Abl) in lungs, and down-regulated PTEN expression. Dasatinib reversed these alterations in the fibrotic lung. Dasatinib limited myofibroblast activation and collagen-1 accumulation by the inhibition of PDGFR-alpha, and Src and c-Abl activations. In conclusion, dasatinib may be a novel tyrosine and Src-kinase inhibitor for PF regression in mice.
Collapse
Affiliation(s)
- Oznur Yilmaz
- a Department of Biology , Faculty of Science, Istanbul University , 34134 Vezneciler, Istanbul , Turkey
| | - Fusun Oztay
- a Department of Biology , Faculty of Science, Istanbul University , 34134 Vezneciler, Istanbul , Turkey
| | - Ozgecan Kayalar
- a Department of Biology , Faculty of Science, Istanbul University , 34134 Vezneciler, Istanbul , Turkey
| |
Collapse
|