1
|
Montani D, McLaughlin VV, Gibbs JSR, Gomberg-Maitland M, Hoeper MM, Preston IR, Souza R, Waxman AB, Escribano Subias P, Feldman J, Meyer GM, Olsson KM, Coulet F, Manimaran S, Zhao Y, Lau A, de Oliveira Pena J, Badesch DB, Humbert M. Consistent Safety and Efficacy of Sotatercept for Pulmonary Arterial Hypertension in BMPR2 Mutation Carriers and Noncarriers: A Planned Analysis of a Phase II, Double-Blind, Placebo-controlled Clinical Trial (PULSAR). Am J Respir Crit Care Med 2025; 211:1028-1037. [PMID: 40035659 DOI: 10.1164/rccm.202409-1698oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/04/2025] [Indexed: 03/06/2025] Open
Abstract
Rationale: It is unclear whether carriers of pathogenic variants in PAH-associated genes have a distinct response to PAH treatment. Objectives: To evaluate the effect of genetic variant status on the efficacy of sotatercept and the effect of sotatercept treatment on biomarkers in pulmonary arterial hypertension. Methods: PULSAR (A Study of Sotatercept for the Treatment of Pulmonary Arterial Hypertension; NCT03496207) was a phase II, randomized controlled study of sotatercept versus placebo added to background therapy for pulmonary arterial hypertension. Participants underwent DNA sequencing at baseline to detect genetic variants in disease-associated genes (ACVRL1, BMPR2, CAV1, EIF2AK4, ENG, KCNA3, KCNK3, and SMAD9). Safety (adverse events) and efficacy (pulmonary vascular resistance, 6-min-walk distance) were assessed by variant status and treatment at 24 weeks. Serum concentrations of BMPR2 mRNA and N-terminal prohormone B-type natriuretic peptide were assessed at baseline and 24 weeks by treatment and variant status. Analysis of covariance was used to compare the change from baseline by treatment and variant status. Measurements and Main Results: Among 76 participants included, pathogenic variants were detected in 25 (23 BMPR2, 2 other), and 51 had no variants or variants of uncertain significance. BMPR2 mutation carriers were younger and more frequently on triple therapy but had less severe clinical characteristics at baseline. Changes at 24 weeks in pulmonary vascular resistance and 6-minute-walk distance did not differ by variant status. BMPR2 gene expression varied less than twofold from baseline over time, irrespective of treatment or variant status. The adverse event profile was generally consistent with that seen in the parent PULSAR study. Conclusions: These results suggest consistent safety and clinical efficacy of sotatercept for treatment of pulmonary arterial hypertension, irrespective of BMPR2 variant status.
Collapse
Affiliation(s)
- David Montani
- Université Paris-Saclay, INSERM Unité Mixte de Recherche en Santé 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique (HPPIT), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre (Assistance Publique-Hôpitaux de Paris), European Reference Network for Rare Respiratory Diseases (ERN-LUNG), Le Kremlin-Bicêtre, France
| | - Vallerie V McLaughlin
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - J Simon R Gibbs
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Mardi Gomberg-Maitland
- Division of Cardiology, Department of Medicine, George Washington University, Washington, District of Columbia
| | - Marius M Hoeper
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School and German Center for Lung Research, Hannover, Germany
| | - Ioana R Preston
- Lahey Hospital and Medical Center, Burlington, Massachusetts
| | - Rogerio Souza
- Pulmonary Division, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Aaron B Waxman
- Division of Pulmonary Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Pilar Escribano Subias
- Department of Cardiology, Centro de Investigación Biomédica en Red Enfermedades Cardiovaculares, Instituto de Investigación del Hospital Universitario 12 de Octubre, Universidad Complutense, Madrid, Spain
| | | | - Gisela M Meyer
- Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Brazil
| | - Karen M Olsson
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School and German Center for Lung Research, Hannover, Germany
| | - Florence Coulet
- Genetics Department, Pitié-Salpêtrière Hospital, Sorbonne Universitè, Paris, France
| | | | - Yujie Zhao
- MRL, Merck & Company, Inc., Rahway, New Jersey; and
| | - Anna Lau
- MRL, Merck & Company, Inc., Rahway, New Jersey; and
| | | | | | - Marc Humbert
- Université Paris-Saclay, INSERM Unité Mixte de Recherche en Santé 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique (HPPIT), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre (Assistance Publique-Hôpitaux de Paris), European Reference Network for Rare Respiratory Diseases (ERN-LUNG), Le Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Flores CV, Chan SY. Therapeutic targets for pulmonary arterial hypertension: insights into the emerging landscape. Expert Opin Ther Targets 2025:1-17. [PMID: 40368635 DOI: 10.1080/14728222.2025.2507034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/21/2025] [Accepted: 05/13/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a progressive, life-threatening disease driven by vascular remodeling, right ventricular (RV) dysfunction, and metabolic and inflammatory dysregulation. Current therapies primarily target vasodilation to relieve symptoms but do not reverse disease progression. The recent approval of sotatercept, which modulates BMP/TGF-β signaling, marks a shift toward anti-remodeling therapies. Building on this, recent preclinical advances have identified promising therapeutic targets and potentially disease-modifying treatments. AREAS COVERED This review synthesizes the evolving preclinical landscape of emerging PAH therapeutic targets and drugs, highlighting innovative approaches aimed at addressing the underlying mechanisms of disease progression. Additionally, we discuss novel therapeutic strategies under development. EXPERT OPINION Recent advances in PAH research have identified novel therapeutic targets beyond vasodilators, including modulation of BMP/TGF-β signaling, metabolic programs, epigenetics, cancer-related signaling, the extracellular matrix, and immune pathways, among others. Sotatercept represents a significant advance in therapies that go beyond vasodilation, and long-term safety, efficacy, and durability are being assessed. Future treatment strategies will focus on precision approaches, noninvasive technologies, and regenerative biology to improve outcomes and reverse vascular remodeling.
Collapse
Affiliation(s)
- Christopher V Flores
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Martín de Miguel I, Cruz Utrilla A, Segura de La Cal T, Sarnago Cebada F, Velázquez Martín M, Jiménez López-Guarch C, Arribas Ynsaurriaga F, Escribano Subías P. Haemodynamic spectrum in heritable pulmonary arterial hypertension: a continuum from pre-capillary to combined pulmonary hypertension-case series. Eur Heart J Case Rep 2025; 9:ytaf109. [PMID: 40103798 PMCID: PMC11913607 DOI: 10.1093/ehjcr/ytaf109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/11/2024] [Accepted: 02/20/2025] [Indexed: 03/20/2025]
Abstract
Background Heritable pulmonary arterial hypertension (PAH) is a rare form of pre-capillary pulmonary hypertension that typically affects young patients. With increased survival and subsequent ageing of these patients, newly acquired cardiovascular conditions may influence the pulmonary haemodynamic profile and impact management. Case summary We report a case series of four patients with mutations in genes associated with PAH to illustrate the spectrum of pulmonary haemodynamics under the influence of superimposed acquired conditions. The first two cases involve patients with a long-standing diagnosis of heritable PAH and severe pre-capillary pulmonary hypertension, who developed overt left-sided diastolic dysfunction later in follow-up due to the acquisition of multiple cardiovascular comorbidities. The second two cases describe patients with a genetic pre-disposition to develop PAH and conditions that are risk factors for left heart disease, with mild elevation of resting pulmonary pressures, in whom exercise right heart catheterization unmasked occult left-sided diastolic dysfunction. Discussion Pulmonary haemodynamics are complex and dynamic over time, even in patients with or at risk of heritable PAH, when additional acquired cardiovascular conditions emerge. Correct phenotyping at diagnosis and during follow-up of patients at risk of heritable PAH, along with a clear understanding of the underlying pulmonary haemodynamic profile, is crucial for appropriate management.
Collapse
Affiliation(s)
- Irene Martín de Miguel
- Cardiology Department, Pulmonary Hypertension Multidisciplinary Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba s/n, 28041 Madrid, Spain
- Servicio Madrileño de Salud, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), C. de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Av. de Córdoba s/n, 28041 Madrid, Spain
| | - Alejandro Cruz Utrilla
- Cardiology Department, Pulmonary Hypertension Multidisciplinary Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba s/n, 28041 Madrid, Spain
- Servicio Madrileño de Salud, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), C. de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Av. de Córdoba s/n, 28041 Madrid, Spain
| | - Teresa Segura de La Cal
- Cardiology Department, Pulmonary Hypertension Multidisciplinary Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba s/n, 28041 Madrid, Spain
- Servicio Madrileño de Salud, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), C. de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Av. de Córdoba s/n, 28041 Madrid, Spain
| | - Fernando Sarnago Cebada
- Servicio Madrileño de Salud, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), C. de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Av. de Córdoba s/n, 28041 Madrid, Spain
- Interventional Cardiology Unit, Cardiology Department, Hospital Universitario 12 de Octubre, Av. de Córdoba s/n, 28041 Madrid, Spain
| | - Maite Velázquez Martín
- Servicio Madrileño de Salud, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), C. de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Av. de Córdoba s/n, 28041 Madrid, Spain
- Interventional Cardiology Unit, Cardiology Department, Hospital Universitario 12 de Octubre, Av. de Córdoba s/n, 28041 Madrid, Spain
| | - Carmen Jiménez López-Guarch
- Servicio Madrileño de Salud, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), C. de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Av. de Córdoba s/n, 28041 Madrid, Spain
- Cardiac Imaging Unit, Cardiology Department, Hospital Universitario 12 de Octubre, Av. de Córdoba s/n, 28041 Madrid, Spain
| | - Fernando Arribas Ynsaurriaga
- Servicio Madrileño de Salud, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), C. de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Av. de Córdoba s/n, 28041 Madrid, Spain
- Cardiology Department, Hospital Universitario 12 de Octubre, Av. de Córdoba s/n, 28041 Madrid, Spain
| | - Pilar Escribano Subías
- Cardiology Department, Pulmonary Hypertension Multidisciplinary Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba s/n, 28041 Madrid, Spain
- Servicio Madrileño de Salud, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), C. de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Av. de Córdoba s/n, 28041 Madrid, Spain
- ERN-LUNG (European Reference Network on rare respiratory diseases), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
4
|
Stourm L, Grynblat J, Savale L, Lacoste-Palasset T, Jaïs X, Coulet F, Levy M, Meyrignac O, Ghigna MR, Cottin V, Sitbon O, Bonnet D, Goupil F, Humbert M, Gagnadoux F, Montani D. Pulmonary hypertension in patients carrying FLNA loss-of-function variants. Eur Respir J 2025; 65:2401132. [PMID: 39510553 DOI: 10.1183/13993003.01132-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is an unusual complication of X-linked disease caused by loss-of-function (LOF) variants in the filamin A (FLNA) gene. Patients with FLNA LOF may also present dysmorphic facial features, aortic dilation, thrombocytopenia and periventricular nodular heterotopia (PVNH). METHODS We reported the clinical, functional, haemodynamic and radiological characteristics of patients with FLNA LOF variants and PH from the French PH Network. RESULTS Nine patients were identified with a female:male ratio of 8:1. PH was diagnosed at a median (range) age of 36 (0-69) years. Associated conditions included epilepsy (n=5), PVNH (n=7), valvular heart disease (n=8), congenital heart diseases (n=4), thrombocytopenia (n=4) and hyperlaxity (n=4). Right heart catheterisation confirmed moderate-to-severe pre-capillary PH with a median (range) mean pulmonary arterial pressure of 33 (22-49) mmHg and pulmonary vascular resistance of 4.7 (2.4-8.0) WU. The median (range) diffusing capacity of the lung for carbon monoxide corrected for haemoglobin was markedly decreased (48% (22-64%) of predicted values) and five patients had obstructive ventilatory disorder. High-resolution computed tomography showed heterogeneous parenchyma (n=8), emphysema (n=3), presence of a peripheral hyperclear band (n=3) and aortic ectasia (n=4). Pathological assessment available in one patient revealed significant remodelling of small pulmonary arteries, interstitial oedema and irregular alveoli shapes. During follow-up, three patients died, including two from right heart failure. No patient died from aortic rupture. CONCLUSIONS Pre-capillary PH, likely due to multiple mechanisms, may complicate the course of patients with FLNA LOF variants and may be the presenting symptom leading to diagnosis. The combination of PH with parenchymal involvement and extrapulmonary symptoms (epilepsy, congenital heart diseases, valvular and aortic involvement, and thrombocytopenia) should prompt genetic screening for FLNA.
Collapse
Affiliation(s)
- Laura Stourm
- Department of Respiratory Diseases, Le Mans General Hospital, Le Mans, France
- Department of Respiratory and Sleep Medicine, Angers University Hospital, Angers, France
- L. Stourm and J. Grynblat contributed equally
| | - Julien Grynblat
- M3C-Necker, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Cardiologie Congénitale et Pédiatrique, Paris, France
- University of Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Kremlin-Bicêtre, France
- L. Stourm and J. Grynblat contributed equally
| | - Laurent Savale
- University of Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Kremlin-Bicêtre, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Thomas Lacoste-Palasset
- University of Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Kremlin-Bicêtre, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Xavier Jaïs
- University of Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Kremlin-Bicêtre, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Florence Coulet
- Sorbonne Université, Département de Génétique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marilyne Levy
- M3C-Necker, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Cardiologie Congénitale et Pédiatrique, Paris, France
| | - Olivier Meyrignac
- Service de Radiologie Diagnostique et Interventionnelle Adulte, Biomaps - Laboratoire d'Imagerie Multimodale - CEA-INSERM-CNRS, Hôpital de Bicêtre, DMU 14 Smart Imaging, AP-HP, Le Kremlin-Bicêtre, France
| | - Maria-Rosa Ghigna
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Kremlin-Bicêtre, France
- Department of Pathology, International Centre for Thoracic Cancers (CICT), Gustave Roussy, Villejuif, France
| | - Vincent Cottin
- National Reference Centre for Rare Pulmonary Diseases and Centre for Pulmonary Hypertension, Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG, UMR 754, INRAE, Claude Bernard University Lyon 1, Lyon, France
| | - Olivier Sitbon
- University of Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Kremlin-Bicêtre, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Damien Bonnet
- M3C-Necker, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Cardiologie Congénitale et Pédiatrique, Paris, France
| | - Francois Goupil
- Department of Respiratory Diseases, Le Mans General Hospital, Le Mans, France
| | - Marc Humbert
- University of Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Kremlin-Bicêtre, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Frederic Gagnadoux
- Department of Respiratory and Sleep Medicine, Angers University Hospital, Angers, France
| | - David Montani
- University of Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Kremlin-Bicêtre, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| |
Collapse
|
5
|
Wu J, Huang Q, Zhang Y, De Z, Fu H, Zhan Y, Gu Y, Xie J. Impact of BMPR2 mutation on the severity of pulmonary arterial hypertension: a systematic review and meta-analysis. Respir Res 2025; 26:74. [PMID: 40022182 PMCID: PMC11871596 DOI: 10.1186/s12931-025-03145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/09/2025] [Indexed: 03/03/2025] Open
Abstract
OBJECTIVE To evaluate the association between PAH severity in patients with and without BMPR2 mutation. Additionally, subgroup analyses were also performed to investigate whether differences existed among different ethnicities. METHODS A literature search of the PubMed-MEDLINE, EMBASE, Web of Science, Scopus, and Cochrane Central Register of Controlled Trials databases was conducted from inception through June, 2024, to identify eligible studies. Analyses were performed using Stata. RESULTS Seventeen nonrandomized studies comprising a total of 2,190 patients were included in the analysis. Among the hemodynamic variables, the mPAP (WMD = 6.41, 95% CI: 5.07 ~ 7.76, P = 0.000), PVR (WMD = 3.66, 95% CI: 2.79 ~ 4.53, P = 0.000), CI (WMD=-0.38, 95% CI: -0.45 ~ -0.32, P = 0.000), and CO (WMD=-0.60, 95% CI: -0.99 ~ -0.21, P = 0.003) were significantly different at diagnosis between patients with and without BMPR2 mutations. No significant differences were found in RAP and PAWP. Furthermore, subgroup analysis was conducted on data showing significant differences, revealing no significant differences in mPAP and PVR between Asian and Caucasian patients with BMPR2 mutations. However, significant differences in CI and CO were observed between these two ethnic groups, with CI and CO in Caucasians being more affected by BMPR2 mutations and decreasing more than in Asians. CONCLUSION There is a statistically significant difference in the hemodynamic variables of PAH between BMPR2 mutation carriers and non-carriers, highlighting the mutation's impact on PAH severity. This influence is not associated with ethnicity in mPAP and PVR; however, it is associated with ethnicity in CI and CO, with Caucasians being more affected by BMPR2 mutations than Asians. This suggests that Caucasians may be more sensitive to BMPR2 mutations. These findings underscore the necessity of genetic testing for PAH patients, particularly among the Caucasian population. Given the poorer clinical phenotype and prognosis of BMPR2 mutation carriers, closer follow-up may be required.
Collapse
Affiliation(s)
- Jixing Wu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yating Zhang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhesong De
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hao Fu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
6
|
D'Alto M, Badagliacca R, Airò E, Ameri P, Argiento P, Garascia A, Lombardi CM, Mulè M, Raineri C, Scelsi L, Vizza CD, Ghio S. Gaps in evidence in the management of patients with intermediate-risk pulmonary arterial hypertension: Considerations following the ESC/ERS 2022 guidelines. Vascul Pharmacol 2024; 155:107374. [PMID: 38642596 DOI: 10.1016/j.vph.2024.107374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/22/2024]
Abstract
A comprehensive evaluation of risk, using multiple indices, is necessary to provide reliable prognostic information and guide therapy in pulmonary arterial hypertension (PAH). The current ESC/ERS guidelines suggest using a three-strata model for incident (newly diagnosed) patients and a four-strata model for prevalent patients with PAH. The four-strata model serves as a fundamental risk-stratification tool and relies on a minimal dataset of indicators that must be considered during follow-up. Nevertheless, there are still areas of vagueness and ambiguity when classifying and managing patients in the intermediate-risk category. For these patients, considerations should include right heart imaging, hemodynamics, as well as individual factors such as age, sex, genetic profile, disease type, comorbidities, and kidney function. The aim of this report is to present case studies, with a specific focus on patients ultimately classified as intermediate risk. We aim to emphasize the challenges and complexities encountered in the realms of diagnosis, classification, and treatment for these particular patients.
Collapse
Affiliation(s)
- Michele D'Alto
- Department of Cardiology, Monaldi Hospital, Naples, Italy
| | - Roberto Badagliacca
- Department of Scienze Cliniche Internistiche, Anestesiologiche e Cardiologiche, Università "La Sapienza", Roma, Italy
| | - Edoardo Airò
- UO Pneumologia - Fondazione Toscana "G.Monasterio" - CNR/Regione Toscana, Pisa, Italy
| | - Pietro Ameri
- Department of Internal Medicine, University of Genova, Genova, Italy; Cardiac, Thoracic and Vascular Department, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paola Argiento
- U.O.C. Cardiologia pediatrica e UTIC, A.O.R.N. dei colli - Ospedale Monaldi, Napoli, Italy
| | - Andrea Garascia
- Cardiologia 2 Insufficienza Cardiaca e Trapianti, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Carlo Mario Lombardi
- Institute of Cardiology, ASST Spedali Civili, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Massimiliano Mulè
- Clinical Cardiology and Heart Failure Unit, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - Claudia Raineri
- Department of Cardiology, Città della salute- Molinette Hospital, Turin, Italy
| | - Laura Scelsi
- Fondazione I.R.C.C.S. Policlinico San Matteo Pavia, Pavia, Italy
| | - Carmine Dario Vizza
- Department of Scienze Cliniche Internistiche, Anestesiologiche e Cardiologiche, Università "La Sapienza", Roma, Italy
| | - Stefano Ghio
- UOC Cardiologia 1, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy.
| |
Collapse
|
7
|
Wang MT, Weng KP, Chang SK, Huang WC, Chen LW. Hemodynamic and Clinical Profiles of Pulmonary Arterial Hypertension Patients with GDF2 and BMPR2 Variants. Int J Mol Sci 2024; 25:2734. [PMID: 38473983 DOI: 10.3390/ijms25052734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Asians have a higher carrier rate of pulmonary arterial hypertension (PAH)-related genetic variants than Caucasians do. This study aimed to identify PAH-related genetic variants using whole exome sequencing (WES) in Asian idiopathic and heritable PAH cohorts. A WES library was constructed, and candidate variants were further validated by polymerase chain reaction and Sanger sequencing in the PAH cohort. In a total of 69 patients, the highest incidence of variants was found in the BMPR2, ATP13A3, and GDF2 genes. Regarding the BMPR2 gene variants, there were two nonsense variants (c.994C>T, p. Arg332*; c.1750C>T, p. Arg584*), one missense variant (c.1478C>T, p. Thr493Ile), and one novel in-frame deletion variant (c.877_888del, p. Leu293_Ser296del). Regarding the GDF2 variants, there was one likely pathogenic nonsense variant (c.259C>T, p. Gln87*) and two missense variants (c.1207G>A, p. Val403Ile; c.38T>C, p. Leu13Pro). The BMPR2 and GDF2 variant subgroups had worse hemodynamics. Moreover, the GDF2 variant patients were younger and had a significantly lower GDF2 value (135.6 ± 36.2 pg/mL, p = 0.002) in comparison to the value in the non-BMPR2/non-GDF2 mutant group (267.8 ± 185.8 pg/mL). The BMPR2 variant carriers had worse hemodynamics compared to the patients with the non-BMPR2/non-GDF2 mutant group. Moreover, there was a significantly lower GDF2 value in the GDF2 variant carriers compared to the control group. GDF2 may be a protective or corrected modifier in certain genetic backgrounds.
Collapse
Affiliation(s)
- Mei-Tzu Wang
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Ken-Pen Weng
- Congenital Structural Heart Disease Center, Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | | | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Physical Therapy, Fooyin University, Kaohsiung 813, Taiwan
| | - Lee-Wei Chen
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 813, Taiwan
| |
Collapse
|
8
|
Alghamdi B, Aljuhani S, Alansari G, BinHumaid NM, Alkahtani A. Heritable Pulmonary Arterial Hypertension in a Patient With Empty Sella Syndrome: A Case Report. Cureus 2024; 16:e54632. [PMID: 38524058 PMCID: PMC10959505 DOI: 10.7759/cureus.54632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease with multiple contributing factors. Genetics, epigenetics, hormonal, and immune factors all contribute to the development and progression of the disease. A number of endocrine disorders and metabolic syndromes are being studied for their potential role in the development of PAH. We report to you a case of a 32-year-old female with a rare presentation of a non-BMPR2 mutation heritable PAH complicated with empty sella syndrome and panhypopituitarism.
Collapse
Affiliation(s)
| | - Shahad Aljuhani
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Ghaday Alansari
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Nouf M BinHumaid
- Pulmonology, King Faisal Specialist Hospital & Research Centre, Jeddah, SAU
| | - Abdulkareem Alkahtani
- Medical Imaging, King Abdulaziz Medical City, Jeddah, SAU
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, SAU
| |
Collapse
|
9
|
Durmus N, Chen WC, Park SH, Marsh LM, Kwon S, Nolan A, Grunig G. Resistin-like Molecule α and Pulmonary Vascular Remodeling: A Multi-Strain Murine Model of Antigen and Urban Ambient Particulate Matter Co-Exposure. Int J Mol Sci 2023; 24:11918. [PMID: 37569308 PMCID: PMC10418630 DOI: 10.3390/ijms241511918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Pulmonary hypertension (PH) has a high mortality and few treatment options. Adaptive immune mediators of PH in mice challenged with antigen/particulate matter (antigen/PM) has been the focus of our prior work. We identified key roles of type-2- and type-17 responses in C57BL/6 mice. Here, we focused on type-2-response-related cytokines, specifically resistin-like molecule (RELM)α, a critical mediator of hypoxia-induced PH. Because of strain differences in the immune responses to type 2 stimuli, we compared C57BL/6J and BALB/c mice. A model of intraperitoneal antigen sensitization with subsequent, intranasal challenges with antigen/PM (ovalbumin and urban ambient PM2.5) or saline was used in C57BL/6 and BALB/c wild-type or RELMα-/- mice. Vascular remodeling was assessed with histology; right ventricular (RV) pressure, RV weights and cytokines were quantified. Upon challenge with antigen/PM, both C57BL/6 and BALB/c mice developed pulmonary vascular remodeling; these changes were much more prominent in the C57BL/6 strain. Compared to wild-type mice, RELMα-/- had significantly reduced pulmonary vascular remodeling in BALB/c, but not in C57BL/6 mice. RV weights, RV IL-33 and RV IL-33-receptor were significantly increased in BALB/c wild-type mice, but not in BALB/c-RELMα-/- or in C57BL/6-wild-type or C57BL/6-RELMα-/- mice in response to antigen/PM2.5. RV systolic pressures (RVSP) were higher in BALB/c compared to C57BL/6J mice, and RELMα-/- mice were not different from their respective wild-type controls. The RELMα-/- animals demonstrated significantly decreased expression of RELMβ and RELMγ, which makes these mice comparable to a situation where human RELMβ levels would be significantly modified, as only humans have this single RELM molecule. In BALB/c mice, RELMα was a key contributor to pulmonary vascular remodeling, increase in RV weight and RV cytokine responses induced by exposure to antigen/PM2.5, highlighting the significance of the genetic background for the biological role of RELMα.
Collapse
Affiliation(s)
- Nedim Durmus
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA; (N.D.); (W.-C.C.); (S.-H.P.); (A.N.)
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA;
| | - Wen-Chi Chen
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA; (N.D.); (W.-C.C.); (S.-H.P.); (A.N.)
| | - Sung-Hyun Park
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA; (N.D.); (W.-C.C.); (S.-H.P.); (A.N.)
| | - Leigh M. Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Otto Loewi Research Centre, Division of Physiology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria;
| | - Sophia Kwon
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA;
| | - Anna Nolan
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA; (N.D.); (W.-C.C.); (S.-H.P.); (A.N.)
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA;
| | - Gabriele Grunig
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA; (N.D.); (W.-C.C.); (S.-H.P.); (A.N.)
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA;
| |
Collapse
|
10
|
Varghese NP, Padhye AA, Magoulas PL, Mallory GB, Ruiz FE, Sahay S. The cascade screening in heritable forms of pulmonary arterial hypertension. Pulm Circ 2023; 13:e12259. [PMID: 37397234 PMCID: PMC10307792 DOI: 10.1002/pul2.12259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/04/2023] Open
Abstract
Heritable pulmonary artery hypertension (HPAH) is an increasingly recognized type of pulmonary arterial hypertension, in both pediatric and adult population. Intrinsic to hereditary disease, screening for genetic mutations within families is an important component of diagnosis and understanding burden of disease. Recently, consensus guidelines are published for genetic screening in PAH. These guidelines include recommendations for screening at diagnosis, noting individuals with presumed PAH due to familial, or idiopathic etiologies. Cascade genetic testing is specifically recommended as a testing paradigm to screen relatives for detection of mutation carriers, who may be asymptomatic. Without targeted genetic testing, familial mutation carriers may only come to attention when pulmonary vascular disease burden is high enough to cause symptoms, suggesting more advanced disease. Here, we present our collective experience with HPAH in five distinct families, specifically to report on the clinical courses of patients who were diagnosed with genetic mutation at diagnosis versus those who were offered genetic screening. In three families, asymptomatic mutation carriers were identified and monitored for clinical worsening. In two families, screening was not done and affected family members presented with advanced disease.
Collapse
Affiliation(s)
- Nidhy P. Varghese
- Department of Pediatrics, Division of Pulmonology, Baylor College of MedicineTexas Children's HospitalHoustonTexasUSA
| | - Akhilesh A. Padhye
- Department of Internal MedicineHouston Methodist HospitalHoustonTexasUSA
| | - Pilar L. Magoulas
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
| | - George B. Mallory
- Department of Pediatrics, Division of Pulmonology, Baylor College of MedicineTexas Children's HospitalHoustonTexasUSA
| | - Fadel E. Ruiz
- Department of Pediatrics, Division of Pulmonology, Baylor College of MedicineTexas Children's HospitalHoustonTexasUSA
| | - Sandeep Sahay
- Division of Pulmonary, Critical Care and Sleep MedicineHouston Methodist Lung CenterHoustonTexasUSA
- Weill Cornell Medical CollegeNew YorkNew YorkUSA
| |
Collapse
|
11
|
Zhao Q, Zhang R, Shi J, Xie H, Zhang L, Li F, Jiang R, Wu W, Luo C, Qiu H, Li H, He J, Yuan P, Liu J, Gong S, Wang L. Imaging Features in BMPR2 Mutation-associated Pulmonary Arterial Hypertension. Radiology 2023; 307:e222488. [PMID: 37191488 DOI: 10.1148/radiol.222488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Background Germline mutation in the BMPR2 gene is common in patients with pulmonary arterial hypertension (PAH). However, its association with imaging findings in these patients is, to the knowledge of the authors, unknown. Purpose To characterize distinctive pulmonary vascular abnormalities at CT and pulmonary artery angiography in patients with and without BMPR2 mutation. Materials and Methods In this retrospective study, chest CT scans, pulmonary artery angiograms, and genetic test data were acquired for patients diagnosed with idiopathic PAH (IPAH) or heritable PAH (HPAH) between January 2010 and December 2021. Perivascular halo, neovascularity, centrilobular ground-glass opacity (GGO), and panlobular GGO were evaluated at CT and graded on a four-point severity scale by four independent readers. Clinical characteristics and imaging features between patients with BMPR2 mutation and noncarriers were analyzed using the Kendall rank-order coefficient and the Kruskal-Wallis test. Results This study included 82 patients with BMPR2 mutation (mean age, 38 years ± 15 [SD]; 34 men; 72 patients with IPAH and 10 patients with HPAH) and 193 patients without the mutation, all with IPAH (mean age, 41 years ± 15; 53 men). A total of 115 patients (42%; 115 of 275) had neovascularity, and 56 patients (20%; 56 of 275) had perivascular halo at CT, and so-called frost crystals were observed on pulmonary artery angiograms in 14 of 53 (26%) patients. Compared with patients without BMPR2 mutation, patients with BMPR2 mutation more frequently showed two distinctive radiographic manifestations, perivascular halo and neovascularity (38% [31 of 82] vs 13% [25 of 193] in perivascular halo [P < .001] and 60% [49 of 82] vs 34% [66 of 193] in neovascularity [P < .001], respectively). "Frost crystals" were more frequent in patients with BMPR2 mutation compared with noncarriers (53% [10 of 19] vs 12% [four of 34]; P < .01). Severe perivascular halo frequently coexisted with severe neovascularity in patients with BMPR2 mutation. Conclusion Patients with PAH with BMPR2 mutation showed distinctive features at CT, specifically perivascular halo and neovascularity. This suggested a link between the genetic, pulmonary, and systemic manifestations that underly the pathogenesis of PAH. © RSNA, 2023 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Qinhua Zhao
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Rui Zhang
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Jingyun Shi
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Huikang Xie
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Liping Zhang
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Fei Li
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Rong Jiang
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Wenhui Wu
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Cijun Luo
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Hongling Qiu
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Huiting Li
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Jing He
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Ping Yuan
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - JinMing Liu
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Sugang Gong
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Lan Wang
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| |
Collapse
|
12
|
DÜZGÜN Z, KAYIKÇIOĞLU M, AKTAN Ç, BARA B, EROĞLU Z, YAĞMUR B, BOZOK ÇETİNTAŞ V, BAYINDIR M, NALBANTGİL S, ı TETİK VARDARLI A. Decreased circulating microRNA-21 and microRNA-143 are associated to pulmonary hypertension. Turk J Med Sci 2023; 53:130-141. [PMID: 36945942 PMCID: PMC10388131 DOI: 10.55730/1300-0144.5566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/22/2023] [Accepted: 10/10/2022] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized by maladaptation of pulmonary vasculature which is leading to right ventricular hypertrophy and heart failure. miRNAs play a crucial role in the regulation of many diseases such as viral infection, cancer, cardiovascular diseases, and pulmonary hypertension (PH). In this study, we aimed to investigate the expression pattern of eight human plasma miRNAs (hsa-miR-21-3p, hsa-miR-143- 3p, hsa-miR-138-5p, hsa-miR-145-3p, hsa-miR-190a, hsa-miR-204-3p, hsamiR-206, hsa-miR-210-3p) in mild-to-severe PH patients and healthy controls. METHODS : miRNAs were extracted from the peripheral plasma of the PH patients (n: 44) and healthy individuals (n: 30) by using the miRNA Isolation Kit. cDNA was synthesized using All in-One First strand cDNA Synthesis Kit. Expression of the human plasma hsa-miR- 21-3p, hsa-miR-143-3p, hsa-miR-138-5p, hsa-miR-145-3p, hsa-miR-190a, hsa-miR-204- 3p, hsa-miR-206, hsa-miR210-3p, and miRNAs were analyzed by qRT-PCR. RESULTS According to our results, in PH patients hsa-miR-21-3p and hsa-miR-143-3p expression levels were decreased by 4.7 and 2.3 times, respectively. No significant changes were detected in hsa-miR-138-5p, hsa-miR-145-3p, hsa-miR-190a, hsa-miR-204-3p, hsamiR-206, and hsa-miR-210-3p expression levels between PH and control groups. In addition, considering the severity of the disease, it was observed that the decrease in miR-138, miR-143, miR-145, miR-190, mir-204, mir-206 and miR-208 expressions was significant in patients with severe PH. DISCUSSION : In the early diagnosis of PAH, hsa-miR-21-3p and especially hsa-miR-143-3p in peripheral plasma can be considered as potential biomarkers.
Collapse
Affiliation(s)
- Zekeriya DÜZGÜN
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun,
Turkey
| | - Meral KAYIKÇIOĞLU
- Department of Cardiology, Faculty of Medicine, Ege University, İzmir,
Turkey
| | - Çağdaş AKTAN
- Department of Medical Biology, Beykent University School of Medicine, İstanbul,
Turkey
| | - Busra BARA
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir,
Turkey
| | - Zuhal EROĞLU
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir,
Turkey
| | - Burcu YAĞMUR
- Department of Cardiology, Faculty of Medicine, Ege University, İzmir,
Turkey
| | | | - Melike BAYINDIR
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir,
Turkey
| | - Sanem NALBANTGİL
- Department of Cardiology, Faculty of Medicine, Ege University, İzmir,
Turkey
| | - As ı TETİK VARDARLI
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir,
Turkey
| |
Collapse
|
13
|
Montani D, Lechartier B, Girerd B, Eyries M, Ghigna MR, Savale L, Jaïs X, Seferian A, Jevnikar M, Boucly A, Riou M, Traclet J, Chaouat A, Levy M, Le Pavec J, Fadel E, Perros F, Soubrier F, Remy-Jardin M, Sitbon O, Bonnet D, Humbert M. An emerging phenotype of pulmonary arterial hypertension patients carrying SOX17 variants. Eur Respir J 2022; 60:2200656. [PMID: 35618278 PMCID: PMC10436756 DOI: 10.1183/13993003.00656-2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/17/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The phenotype of pulmonary arterial hypertension (PAH) patients carrying SOX17 pathogenic variants remains mostly unknown. METHODS We report the genetic analysis findings, characteristics and outcomes of patients with heritable PAH carrying SOX17 variants from the French Pulmonary Hypertension Network. RESULTS 20 patients and eight unaffected relatives were identified. The median (range) age at diagnosis was 17 (2-53) years, with a female:male ratio of 1.5. At diagnosis, most of the patients (74%) were in New York Heart Association Functional Class III or IV with severe haemodynamic compromise, including a median pulmonary vascular resistance of 14.0 (4.2-31.5) WU. An associated congenital heart disease (CHD) was found in seven PAH patients (35%). Patients with CHD-associated PAH were significantly younger at diagnosis than PAH patients without CHD. Four patients (20%) suffered from recurrent haemoptysis requiring repeated arterial embolisations. 13 out of 16 patients (81%) for whom imaging was available displayed chest computed tomography abnormalities, including dilated, tortuous pulmonary vessels, ground-glass opacities as well as anomalies of the bronchial and nonbronchial arteries. After a median (range) follow-up of 47 (1-591) months, 10 patients underwent lung transplantation and one patient benefited from a heart-lung transplantation due to associated CHD. Histopathological analysis of lung explants showed a congested lung architecture with severe pulmonary arterial remodelling, subpleural vessel dilation and numerous haemorrhagic foci. CONCLUSIONS PAH due to SOX17 pathogenic variants is a severe phenotype, frequently associated with CHD, haemoptysis and radiological abnormalities. Pathological assessment reveals severe pulmonary arterial remodelling and malformations affecting pulmonary vessels and thoracic systemic arteries.
Collapse
Affiliation(s)
- David Montani
- AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- D. Montani and B. Lechartier contributed equally to this work
| | - Benoit Lechartier
- AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- D. Montani and B. Lechartier contributed equally to this work
| | - Barbara Girerd
- AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Mélanie Eyries
- Dépt de Génétique, Hôpital Pitié-Salpêtrière, AP-HP and UMR_S 1166 Sorbonne Université, Paris, France
| | - Maria-Rosa Ghigna
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Service d'Anatomopathologie, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Laurent Savale
- AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Xavier Jaïs
- AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Andrei Seferian
- AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Mitja Jevnikar
- AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Athénais Boucly
- AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Marianne Riou
- Dépt de Pneumologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Julie Traclet
- Université Lyon 1, Hospices Civils de Lyon, Centre de Référence des Maladies Pulmonaires Rares, Centre de Compétences de l'Hypertension Pulmonaire, Hôpital Louis Pradel, Lyon, France
| | - Ari Chaouat
- Université de Lorraine, CHU de Nancy, Pôle des Spécialités Médicales, Dépt de Pneumologie, Vandoeuvre-lès-Nancy, France
| | - Maryline Levy
- Service de Cardiologie Congénitale et Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Université de Paris, Paris, France
| | - Jerome Le Pavec
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Elie Fadel
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Frédéric Perros
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Florent Soubrier
- Dépt de Génétique, Hôpital Pitié-Salpêtrière, AP-HP and UMR_S 1166 Sorbonne Université, Paris, France
| | - Martine Remy-Jardin
- CHU de Lille, Service d'Imagerie Thoracique, Hôpital Albert Calmette, Lille, France
| | - Olivier Sitbon
- AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Damien Bonnet
- Service de Cardiologie Congénitale et Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Université de Paris, Paris, France
| | - Marc Humbert
- AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
14
|
Liang KW, Chang SK, Chen YW, Lin WW, Tsai WJ, Wang KY. Whole Exome Sequencing of Patients With Heritable and Idiopathic Pulmonary Arterial Hypertension in Central Taiwan. Front Cardiovasc Med 2022; 9:911649. [PMID: 35811711 PMCID: PMC9256950 DOI: 10.3389/fcvm.2022.911649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Genetic variants could be identified in subjects with idiopathic and heritable pulmonary arterial hypertension (PAH). The 6th World Symposium on Pulmonary Hypertension (WSPH) provided a list of genes with evidence of association with PAH. However, reports using whole exome sequencing (WES) from southeastern Asian PAH cohorts were scarce. Methods Subjects with idiopathic and heritable PAH (N = 45) from two medical centers in central Taiwan were screened for PAH related gene variants. The genomic DNA was prepared from peripheral blood lymphocytes. We performed WES for all patients enrolled in this study. All identified gene variants were validated by polymerase-chain reaction and Sanger sequencing. The clinical and hemodynamic data were compared between bone morphogenetic protein receptor type-2 (BMPR2) gene variants carriers vs. non-carriers. Results Eight patients (8/45 = 17.8%) was identified carrying BMPR2 gene variants and 8 patients (8/45 = 17.8%) had other WSPH-listed PAH-related gene variants (1 with ACVRL1, 1 with ENG, 1 with SMAD9, 1 with SMAD1, 1 with ATP13A3 and 3 with AQP1). In addition, a total of 14 non-WSPH-listed PAH-related genetic variant sites (ABCC8, NOTCH1, NOTCH2, NOTCH3, JAG1, BMP10, GGCX, FBLN2, ABCA3 and PTGIS) were found in this PAH cohort. Subjects carrying BMPR2 gene variant (N = 8) were younger at diagnosis of PAH (30 ± 11 vs 49 ± 13 years, p = 0.001) than the non-carrier group (N = 37). BMPR2 variant carriers had a trend toward having higher mean pulmonary arterial pressure (PAP) (61 ± 19 vs. 51 ± 13 mmHg, p = 0.076) than the non-carriers upon initial diagnosis. Pulmonary vascular resistance, right atrial pressure, cardiac output, as well as functional class were similar between BMPR2 variant carriers and non-carriers at initial diagnosis. Conclusions We identified 17.8% of patients with BMPR2 gene variants and 17.8% subjects with other 6th WSPH-listed PAH-related gene variants in a Taiwanese idiopathic and heritable PAH cohort. PAH patients carrying BMPR2 variants presented at a younger age with a trend toward having higher mean PAP at initial diagnosis.
Collapse
Affiliation(s)
- Kae-Woei Liang
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Clinical Medicine and Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine and School of Life Science, National Chung Hsing University, Taichung, Taiwan
| | | | - Yu-Wei Chen
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Clinical Medicine and Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine and School of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Wen Lin
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Wan-Jane Tsai
- Center for Pulmonary Arterial Hypertension and Pulmonary Vascular Disease, China Medical University Hospital, Taichung, Taiwan
| | - Kuo-Yang Wang
- Center for Pulmonary Arterial Hypertension and Pulmonary Vascular Disease, China Medical University Hospital, Taichung, Taiwan
- *Correspondence: Kuo-Yang Wang
| |
Collapse
|
15
|
Aldred MA, Morrell NW, Guignabert C. New Mutations and Pathogenesis of Pulmonary Hypertension: Progress and Puzzles in Disease Pathogenesis. Circ Res 2022; 130:1365-1381. [PMID: 35482831 PMCID: PMC9897592 DOI: 10.1161/circresaha.122.320084] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a complex multifactorial disease with poor prognosis characterized by functional and structural alterations of the pulmonary circulation causing marked increase in pulmonary vascular resistance, ultimately leading to right heart failure and death. Mutations in the gene encoding BMPRII-a receptor for the TGF-β (transforming growth factor-beta) superfamily-account for over 70% of families with PAH and ≈20% of sporadic cases. In recent years, however, less common or rare mutations in other genes have been identified. This review will consider how these newly discovered PAH genes could help to provide a better understanding of the molecular and cellular bases of the maintenance of the pulmonary vascular integrity, as well as their role in the PAH pathogenesis underlying occlusion of arterioles in the lung. We will also discuss how insights into the genetic contributions of these new PAH-related genes may open up new therapeutic targets for this, currently incurable, cardiopulmonary disorder.
Collapse
Affiliation(s)
- Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicholas W Morrell
- University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, UK
| | - Christophe Guignabert
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France,Université Paris-Saclay, Faculté de Médecine, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
16
|
Abstract
IMPORTANCE Pulmonary arterial hypertension (PAH) is a subtype of pulmonary hypertension (PH), characterized by pulmonary arterial remodeling. The prevalence of PAH is approximately 10.6 cases per 1 million adults in the US. Untreated, PAH progresses to right heart failure and death. OBSERVATIONS Pulmonary hypertension is defined by a mean pulmonary artery pressure greater than 20 mm Hg and is classified into 5 clinical groups based on etiology, pathophysiology, and treatment. Pulmonary arterial hypertension is 1 of the 5 groups of PH and is hemodynamically defined by right heart catheterization demonstrating a mean pulmonary artery pressure greater than 20 mm Hg, a pulmonary artery wedge pressure of 15 mm Hg or lower, and a pulmonary vascular resistance of 3 Wood units or greater. Pulmonary arterial hypertension is further divided into subgroups based on underlying etiology, consisting of idiopathic PAH, heritable PAH, drug- and toxin-associated PAH, pulmonary veno-occlusive disease, PAH in long-term responders to calcium channel blockers, and persistent PH of the newborn, as well as PAH associated with other medical conditions including connective tissue disease, HIV, and congenital heart disease. Early presenting symptoms are nonspecific and typically consist of dyspnea on exertion and fatigue. Currently approved therapy for PAH consists of drugs that enhance the nitric oxide-cyclic guanosine monophosphate biological pathway (sildenafil, tadalafil, or riociguat), prostacyclin pathway agonists (epoprostenol or treprostinil), and endothelin pathway antagonists (bosentan and ambrisentan). With these PAH-specific therapies, 5-year survival has improved from 34% in 1991 to more than 60% in 2015. Current treatment consists of combination drug therapy that targets more than 1 biological pathway, such as the nitric oxide-cyclic guanosine monophosphate and endothelin pathways (eg, ambrisentan and tadalafil), and has shown demonstrable improvement in morbidity and mortality compared with the previous conventional single-pathway targeted monotherapy. CONCLUSIONS AND RELEVANCE Pulmonary arterial hypertension affects an estimated 10.6 per 1 million adults in the US and, without treatment, typically progresses to right heart failure and death. First-line therapy with drug combinations that target multiple biological pathways are associated with improved survival.
Collapse
Affiliation(s)
- Nicole F Ruopp
- Pulmonary, Critical Care, and Sleep Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Barbara A Cockrill
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Zhang X, Zhang C, Li Q, Gu H. TGF‐β receptor mutations and clinical prognosis in Chinese Pediatric Patients with idiopathic/hereditary Pulmonary Arterial Hypertension. Pulm Circ 2022; 12:e12076. [PMID: 35514780 PMCID: PMC9063954 DOI: 10.1002/pul2.12076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/30/2021] [Accepted: 04/03/2022] [Indexed: 11/23/2022] Open
Abstract
The relationship between clinical prognosis and transforming growth factor‐β (TGF‐β) receptor mutations in Chinese pediatric patients with idiopathic/hereditary pulmonary arterial hypertension (IPAH/HPAH) remains unclear. We retrospectively studied the clinical characteristics and outcomes of pediatric patients with IPAH/HPAH who visited our Hospital from September 2008 to December 2020. One hundred and five pediatric patients with IPAH/HPAH were included, 46 of whom carried TGF‐β receptor mutations with a mean age at diagnosis of 82.8 ± 52.7 months, and 67 of them underwent right cardiac catheterization examinations and acute vasodilator testing. The result showed that mutation carriers demonstrated higher pulmonary vascular resistance (p = 0.012), higher right atrial pressure (p = 0.026), and lower cardiac index (p = 0.003). The 1‐, 2‐, and 3‐year survival rates of mutation carriers were 79.4%, 61.5% and 55.6%, respectively, compared with 96.6%, 91.1%, and 85.4% for nonmutation carriers (p = 0.0001). The prognosis of mutation carriers was significantly worse than that of nonmutation carriers. TGF‐β receptor gene mutation is an independent risk factor for death (p = 0.049, odd raito = 3.809, 95% confidence interval 1.006−14.429). In conclusion, TGF‐β receptor mutation is an important genetic factor for the onset of IPAH/PAH in Chinese pediatric patients. Those who carrying TGF‐β receptor mutations have a poor clinical prognosis. Therefore, TGF‐β receptor gene screening for pediatric patients with PAH and more aggressive treatment for mutation carriers are recommended.
Collapse
Affiliation(s)
- Xinyu Zhang
- Beijing Anzhen Hospital Capital Medical University Beijing China
| | - Chen Zhang
- Beijing Anzhen Hospital Capital Medical University Beijing China
| | - Qiangqiang Li
- Beijing Anzhen Hospital Capital Medical University Beijing China
| | - Hong Gu
- Beijing Anzhen Hospital Capital Medical University Beijing China
| |
Collapse
|
18
|
Kabwe JC, Sawada H, Mitani Y, Oshita H, Tsuboya N, Zhang E, Maruyama J, Miyasaka Y, Ko H, Oya K, Ito H, Yodoya N, Otsuki S, Ohashi H, Okamoto R, Dohi K, Nishimura Y, Mashimo T, Hirayama M, Maruyama K. CRISPR-mediated Bmpr2 point mutation exacerbates late pulmonary vasculopathy and reduces survival in rats with experimental pulmonary hypertension. Respir Res 2022; 23:87. [PMID: 35395852 PMCID: PMC8994407 DOI: 10.1186/s12931-022-02005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Patients with pulmonary arterial hypertension (PAH) carrying bone morphogenetic protein receptor type 2 (Bmpr2) mutations present earlier with severe hemodynamic compromise and have poorer survival outcomes than those without mutation. The mechanism underlying the worsening clinical phenotype of PAH with Bmpr2 mutations has been largely unaddressed in rat models of pulmonary hypertension (PH) because of the difficulty in reproducing progressive PH in mice and genetic modification in rats. We tested whether a clinically-relevant Bmpr2 mutation affects the progressive features of monocrotaline (MCT) induced-PH in rats. Methods A monoallelic single nucleotide insertion in exon 1 of Bmpr2 (+/44insG) was generated in rats using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9, then PH, pulmonary vascular disease (PVD) and survival after MCT injection with or without a phosphodiesterase type 5 inhibitor, tadalafil, administration were assessed. Results The +/44insG rats had reduced BMPR2 signalling in the lungs compared with wild-type. PH and PVD assessed at 3-weeks after MCT injection were similar in wild-type and +/44insG rats. However, survival at 4-weeks after MCT injection was significantly reduced in +/44insG rats. Among the rats surviving at 4-weeks after MCT administration, +/44insG rats had increased weight ratio of right ventricle to left ventricle plus septum (RV/[LV + S]) and % medial wall thickness (MWT) in pulmonary arteries (PAs). Immunohistochemical analysis showed increased vessels with Ki67-positive cells in the lungs, decreased mature and increased immature smooth muscle cell phenotype markers in the PAs in +/44insG rats compared with wild-type at 3-weeks after MCT injection. Contraction of PA in response to prostaglandin-F2α and endothelin-1 were significantly reduced in the +/44insG rats. The +/44insG rats that had received tadalafil had a worse survival with a significant increase in RV/(LV + S), %MWT in distal PAs and RV myocardial fibrosis compared with wild-type. Conclusions The present study demonstrates that the Bmpr2 mutation promotes dedifferentiation of PA smooth muscle cells, late PVD and RV myocardial fibrosis and adversely impacts both the natural and post-treatment courses of MCT-PH in rats with significant effects only in the late stages and warrants preclinical studies using this new genetic model to optimize treatment outcomes of heritable PAH. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02005-w.
Collapse
Affiliation(s)
- Jane Chanda Kabwe
- The Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu city, Mie, 514-8507, Japan
| | - Hirofumi Sawada
- The Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu city, Mie, 514-8507, Japan. .,The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan.
| | - Yoshihide Mitani
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Hironori Oshita
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan.,The Department of Pediatrics, Nagoya City University School of Medicine, Aichi, Japan
| | - Naoki Tsuboya
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Erquan Zhang
- The Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu city, Mie, 514-8507, Japan.,The Department of Neonatology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University, Fujian, China
| | - Junko Maruyama
- The Department of Clinical Engineering, Suzuka University of Medical Science, Mie, Japan
| | - Yoshiki Miyasaka
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideyoshi Ko
- The Department of Clinical Engineering, Suzuka University of Medical Science, Mie, Japan
| | - Kazunobu Oya
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiromasa Ito
- The Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Noriko Yodoya
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Shoichiro Otsuki
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiroyuki Ohashi
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Ryuji Okamoto
- The Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kaoru Dohi
- The Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yuhei Nishimura
- The Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Mie, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine, Osaka, Japan.,Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masahiro Hirayama
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Kazuo Maruyama
- The Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu city, Mie, 514-8507, Japan
| |
Collapse
|
19
|
Xanthouli P, Eichstaedt CA, Ewinger M, Marra AM, Grünig E. Pulmonalarterielle Hypertonie bei Frauen. AKTUELLE KARDIOLOGIE 2022. [DOI: 10.1055/a-1692-1006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ZusammenfassungDie pulmonalarterielle Hypertonie (PAH) ist eine seltene Erkrankung mit vielen
Untergruppen. Frauen sind wesentlich häufiger betroffen bei der „klassischen“
idiopathischen Form, der hereditären und bei der Kollagenose-assoziierten PAH. Es wird
vermutet, dass der höhere Östrogenspiegel bei Frauen die Pathophysiologie mit Einengung
der kleinen Pulmonalarteriolen als Ursache der PAH zumindest bei den Mutationsträgerinnen
begünstigt. PAH-Patientinnen haben ähnliche Symptome wie betroffene Männer, sprechen aber
möglicherweise anders auf gezielte PAH-Therapien an. Sie haben im Mittel ein längeres
Überleben im Vergleich zu männlichen Patienten. In dieser Arbeit werden wir
Collapse
Affiliation(s)
- Panagiota Xanthouli
- Zentrum für pulmonale Hypertonie, Thoraxklinik am Universitätsklinikum
Heidelberg, Heidelberg, Deutschland
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für
Lungenforschung (DZL), Heidelberg, Deutschland
| | - Christina A. Eichstaedt
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für
Lungenforschung (DZL), Heidelberg, Deutschland
- Institut für Humangenetik, Labor für Molekulargenetische Diagnostik,
Universität Heidelberg, Heidelberg, Deutschland
- Zentrum für pulmonale Hypertonie, Thoraxklinik am Universitätsklinikum
Heidelberg, Heidelberg, Deutschland
| | - Max Ewinger
- Zentrum für pulmonale Hypertonie, Thoraxklinik am Universitätsklinikum
Heidelberg, Heidelberg, Deutschland
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für
Lungenforschung (DZL), Heidelberg, Deutschland
| | - Alberto M. Marra
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für
Lungenforschung (DZL), Heidelberg, Deutschland
- Zentrum für pulmonale Hypertonie, Thoraxklinik am Universitätsklinikum
Heidelberg, Heidelberg, Deutschland
| | - Ekkehard Grünig
- Zentrum für pulmonale Hypertonie, Thoraxklinik am Universitätsklinikum
Heidelberg, Heidelberg, Deutschland
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für
Lungenforschung (DZL), Heidelberg, Deutschland
| |
Collapse
|
20
|
Bisserier M, Mathiyalagan P, Zhang S, Elmastour F, Dorfmüller P, Humbert M, David G, Tarzami S, Weber T, Perros F, Sassi Y, Sahoo S, Hadri L. Regulation of the Methylation and Expression Levels of the BMPR2 Gene by SIN3a as a Novel Therapeutic Mechanism in Pulmonary Arterial Hypertension. Circulation 2021; 144:52-73. [PMID: 34078089 PMCID: PMC8293289 DOI: 10.1161/circulationaha.120.047978] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 03/17/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Epigenetic mechanisms are critical in the pathogenesis of pulmonary arterial hypertension (PAH). Previous studies have suggested that hypermethylation of the BMPR2 (bone morphogenetic protein receptor type 2) promoter is associated with BMPR2 downregulation and progression of PAH. Here, we investigated for the first time the role of SIN3a (switch-independent 3a), a transcriptional regulator, in the epigenetic mechanisms underlying hypermethylation of BMPR2 in the pathogenesis of PAH. METHODS We used lung samples from PAH patients and non-PAH controls, preclinical mouse and rat PAH models, and human pulmonary arterial smooth muscle cells. Expression of SIN3a was modulated using a lentiviral vector or a siRNA in vitro and a specific adeno-associated virus serotype 1 or a lentivirus encoding for human SIN3a in vivo. RESULTS SIN3a is a known transcriptional regulator; however, its role in cardiovascular diseases, especially PAH, is unknown. It is interesting that we detected a dysregulation of SIN3 expression in patients and in rodent models, which is strongly associated with decreased BMPR2 expression. SIN3a is known to regulate epigenetic changes. Therefore, we tested its role in the regulation of BMPR2 and found that BMPR2 is regulated by SIN3a. It is interesting that SIN3a overexpression inhibited human pulmonary arterial smooth muscle cells proliferation and upregulated BMPR2 expression by preventing the methylation of the BMPR2 promoter region. RNA-sequencing analysis suggested that SIN3a downregulated the expression of DNA and histone methyltransferases such as DNMT1 (DNA methyltransferase 1) and EZH2 (enhancer of zeste 2 polycomb repressive complex 2) while promoting the expression of the DNA demethylase TET1 (ten-eleven translocation methylcytosine dioxygenase 1). Mechanistically, SIN3a promoted BMPR2 expression by decreasing CTCF (CCCTC-binding factor) binding to the BMPR2 promoter. Last, we identified intratracheal delivery of adeno-associated virus serotype human SIN3a to be a beneficial therapeutic approach in PAH by attenuating pulmonary vascular and right ventricle remodeling, decreasing right ventricle systolic pressure and mean pulmonary arterial pressure, and restoring BMPR2 expression in rodent models of PAH. CONCLUSIONS All together, our study unveiled the protective and beneficial role of SIN3a in pulmonary hypertension. We also identified a novel and distinct molecular mechanism by which SIN3a regulates BMPR2 in human pulmonary arterial smooth muscle cells. Our study also identified lung-targeted SIN3a gene therapy using adeno-associated virus serotype 1 as a new promising therapeutic strategy for treating patients with PAH.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prabhu Mathiyalagan
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shihong Zhang
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Firas Elmastour
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Dorfmüller
- Hôpital Marie Lannelongue, Department of Pathology, Le Plessis Robinson, France
| | - Marc Humbert
- Université Paris-Sud, and Université Paris-Saclay, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France
- Service de Pneumologie et Soins Intensifs Respiratoires and INSERM U999, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, Paris, France
| | - Gregory David
- New York University School of Medicine, New York, NY, USA
| | - Sima Tarzami
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington DC, USA
| | - Thomas Weber
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Yassine Sassi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
21
|
Metabolics of PH - an update. Curr Opin Pulm Med 2021; 27:329-334. [PMID: 34127621 DOI: 10.1097/mcp.0000000000000794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW While there has been a longstanding interest in metabolic disease in pulmonary hypertension, publications in the last several years have translated basic science findings to human disease and even led to recently published studies of metabolic therapy in pulmonary arterial hypertension that are discussed here. RECENT FINDINGS Progress has been made in four key areas including mechanisms of insulin resistance in pulmonary arterial hypertension, the role of obesity in pulmonary vascular disease, novel clinical trials targeting metabolism in pulmonary hypertension, and the role of metabolism in chronic thromboembolic pulmonary hypertension. SUMMARY : Insulin resistance in pulmonary arterial hypertension is primarily in the lipid axis. There are systemic manifestations of insulin resistance including right ventricular lipotoxicity. Obesity is associated with elevation of right ventricular systolic pressure even in a healthy population and therapies in pulmonary arterial hypertension that target metabolism hold promise for improving exercise, right ventricular function, and visceral adiposity. Finally, there are emerging data that chronic thromboembolic pulmonary hypertension is similarly characterized by metabolic alterations, though the specific metabolites may be different from pulmonary arterial hypertension.
Collapse
|
22
|
Tatius B, Wasityastuti W, Astarini FD, Nugrahaningsih DAA. Significance of BMPR2 mutations in pulmonary arterial hypertension. Respir Investig 2021; 59:397-407. [PMID: 34023242 DOI: 10.1016/j.resinv.2021.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/03/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a debilitating disease that results from progressive remodeling and inflammation of pulmonary arteries. PAH develops gradually, is difficult to diagnose, and has a high mortality rate. Although mutation in the bone morphogenetic protein receptor 2 (BMPR2) gene has been identified as the main genetic cause of PAH, the underlying pathways involving the pathophysiology of PAH are complex and still not fully understood. Endothelial dysfunction has been observed in PAH development that results in a multitude of disturbances in the cellular processes in pulmonary vessels. Changes in the pulmonary vasculature caused by the disruption of BMPR2 signaling are observed in three main vascular components; endothelial cells, smooth muscle cells, and fibroblasts. BMPR2 also has a prominent role in maintenance of the immune system. The disruption of BMPR2 signaling pathway causes an increased degree of inflammation and decreases the ability of the immune system to resolve it. Inflammatory processes and changes in pulmonary vasculature interact with one another, resulting in the progression of chronic PAH. In this review, we highlight the various components of vascular remodeling and immune response that are caused by disruption of BMPR2 signaling, including the clinical evidence and the prospects of these components as a potential target for PAH therapy. Indeed, development of drugs to target the pathogenic pathways involved in PAH may complement existing treatment regimens and improve patient prognosis.
Collapse
Affiliation(s)
- Bintang Tatius
- Master in Biomedical Sciences, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, 55281, Indonesia; Biomedical Laboratory, Medicine Faculty, Universitas Muhammadiyah, Semarang, 50272, Indonesia
| | - Widya Wasityastuti
- Department of Physiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
| | - Fajar Dwi Astarini
- Master in Biomedical Sciences, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, 55281, Indonesia
| | - Dwi Aris Agung Nugrahaningsih
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
23
|
The Role of JAK/STAT Molecular Pathway in Vascular Remodeling Associated with Pulmonary Hypertension. Int J Mol Sci 2021; 22:ijms22094980. [PMID: 34067108 PMCID: PMC8124199 DOI: 10.3390/ijms22094980] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Pulmonary hypertension is defined as a group of diseases characterized by a progressive increase in pulmonary vascular resistance (PVR), which leads to right ventricular failure and premature death. There are multiple clinical manifestations that can be grouped into five different types. Pulmonary artery remodeling is a common feature in pulmonary hypertension (PH) characterized by endothelial dysfunction and smooth muscle pulmonary artery cell proliferation. The current treatments for PH are limited to vasodilatory agents that do not stop the progression of the disease. Therefore, there is a need for new agents that inhibit pulmonary artery remodeling targeting the main genetic, molecular, and cellular processes involved in PH. Chronic inflammation contributes to pulmonary artery remodeling and PH, among other vascular disorders, and many inflammatory mediators signal through the JAK/STAT pathway. Recent evidence indicates that the JAK/STAT pathway is overactivated in the pulmonary arteries of patients with PH of different types. In addition, different profibrotic cytokines such as IL-6, IL-13, and IL-11 and growth factors such as PDGF, VEGF, and TGFβ1 are activators of the JAK/STAT pathway and inducers of pulmonary remodeling, thus participating in the development of PH. The understanding of the participation and modulation of the JAK/STAT pathway in PH could be an attractive strategy for developing future treatments. There have been no studies to date focused on the JAK/STAT pathway and PH. In this review, we focus on the analysis of the expression and distribution of different JAK/STAT isoforms in the pulmonary arteries of patients with different types of PH. Furthermore, molecular canonical and noncanonical JAK/STAT pathway transactivation will be discussed in the context of vascular remodeling and PH. The consequences of JAK/STAT activation for endothelial cells and pulmonary artery smooth muscle cells’ proliferation, migration, senescence, and transformation into mesenchymal/myofibroblast cells will be described and discussed, together with different promising drugs targeting the JAK/STAT pathway in vitro and in vivo.
Collapse
|
24
|
Egom EEA, Moyou-Somo R, Essame Oyono JL, Kamgang R. Identifying Potential Mutations Responsible for Cases of Pulmonary Arterial Hypertension. APPLICATION OF CLINICAL GENETICS 2021; 14:113-124. [PMID: 33732008 PMCID: PMC7958998 DOI: 10.2147/tacg.s260755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
Pulmonary Arterial Hypertension (PAH) is a progressive and devastating disease for which there is an escalating body of genetic and related pathophysiological information on disease pathobiology. Nevertheless, the success to date in identifying susceptibility genes, genetic variants and epigenetic processes has been limited due to PAH clinical multi-faceted variations. A number of germline gene candidates have been proposed but demonstrating consistently the association with PAH has been problematic, at least partly due to the reduced penetrance and variable expressivity. Although the data for bone morphogenetic protein receptor type 2 (BMPR2) and related genes remains undoubtedly the most extensive, recent advanced gene sequencing technologies have facilitated the discovery of further gene candidates with mutations among those with and without familial forms of PAH. An in depth understanding of the multitude of biologic variations associated with PAH may provide novel opportunities for therapeutic intervention in the coming years. This knowledge will irrevocably provide the opportunity for improved patient and family counseling as well as improved PAH diagnosis, risk assessment, and personalized treatment.
Collapse
Affiliation(s)
- Emmanuel Eroume-A Egom
- Institut du Savoir Montfort (ISM), Hôpital Montfort, Ottawa, ON, Canada.,Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon.,Reflex Medical Centre Cardiac Diagnostics, Reflex Medical Centre, Mississauga, ON, Canada
| | - Roger Moyou-Somo
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| | - Jean Louis Essame Oyono
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| | - Rene Kamgang
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| |
Collapse
|
25
|
Guignabert C, Humbert M. Targeting transforming growth factor-β receptors in pulmonary hypertension. Eur Respir J 2021; 57:2002341. [PMID: 32817256 DOI: 10.1183/13993003.02341-2020] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
The transforming growth factor-β (TGF-β) superfamily includes several groups of multifunctional proteins that form two major branches, namely the TGF-β-activin-nodal branch and the bone morphogenetic protein (BMP)-growth differentiation factor (GDF) branch. The response to the activation of these two branches, acting through canonical (small mothers against decapentaplegic (Smad) 2/3 and Smad 1/5/8, respectively) and noncanonical signalling pathways, are diverse and vary for different environmental conditions and cell types. An extensive body of data gathered in recent years has demonstrated a central role for the cross-talk between these two branches in a number of cellular processes, which include the regulation of cell proliferation and differentiation, as well as the transduction of signalling cascades for the development and maintenance of different tissues and organs. Importantly, alterations in these pathways, which include heterozygous germline mutations and/or alterations in the expression of several constitutive members, have been identified in patients with familial/heritable pulmonary arterial hypertension (PAH) or idiopathic PAH (IPAH). Consequently, loss or dysfunction in the delicate, finely-tuned balance between the TGF-β-activin-nodal branch and the BMP-GDF branch are currently viewed as the major molecular defect playing a critical role in PAH predisposition and disease progression. Here we review the role of the TGF-β-activin-nodal branch in PAH and illustrate how this knowledge has not only provided insight into understanding its pathogenesis, but has also paved the way for possible novel therapeutic approaches.
Collapse
Affiliation(s)
- Christophe Guignabert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 (Pulmonary Hypertension: Pathophysiology and Novel Therapies), Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Marc Humbert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 (Pulmonary Hypertension: Pathophysiology and Novel Therapies), Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Dept of Respiratory and Intensive Care Medicine, French Pulmonary Hypertension Reference Center, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| |
Collapse
|
26
|
Amin EK, Austin ED, Parker C, Colglazier E, Nawaytou H, Leary PJ, Hemnes AR, Teitel D, Fineman JR. Novel Documentation of Onset and Rapid Advancement of Pulmonary Arterial Hypertension without Symptoms in BMPR2 Mutation Carriers: Cautionary Tales? Am J Respir Crit Care Med 2020; 202:1587-1589. [PMID: 32692583 DOI: 10.1164/rccm.202005-1611le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Elena K Amin
- University of California San Francisco, San Francisco, California
| | - Eric D Austin
- Vanderbilt University School of Medicine, Nashville, Tennessee and
| | - Claire Parker
- University of California San Francisco, San Francisco, California
| | | | - Hythem Nawaytou
- University of California San Francisco, San Francisco, California
| | | | - Anna R Hemnes
- Vanderbilt University School of Medicine, Nashville, Tennessee and
| | - David Teitel
- University of California San Francisco, San Francisco, California
| | | |
Collapse
|
27
|
Epigenetic Regulation of Pulmonary Arterial Hypertension-Induced Vascular and Right Ventricular Remodeling: New Opportunities? Int J Mol Sci 2020; 21:ijms21238901. [PMID: 33255338 PMCID: PMC7727715 DOI: 10.3390/ijms21238901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary artery hypertension (PAH) is a rare chronic disease with high impact on patients’ quality of life and currently no available cure. PAH is characterized by constant remodeling of the pulmonary artery by increased proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), fibroblasts (FBs) and endothelial cells (ECs). This remodeling eventually leads to increased pressure in the right ventricle (RV) and subsequent right ventricle hypertrophy (RVH) which, when left untreated, progresses into right ventricle failure (RVF). PAH can not only originate from heritable mutations, but also develop as a consequence of congenital heart disease, exposure to drugs or toxins, HIV, connective tissue disease or be idiopathic. While much attention was drawn into investigating and developing therapies related to the most well understood signaling pathways in PAH, in the last decade, a shift towards understanding the epigenetic mechanisms driving the disease occurred. In this review, we reflect on the different epigenetic regulatory factors that are associated with the pathology of RV remodeling, and on their relevance towards a better understanding of the disease and subsequently, the development of new and more efficient therapeutic strategies.
Collapse
|
28
|
At the X-Roads of Sex and Genetics in Pulmonary Arterial Hypertension. Genes (Basel) 2020; 11:genes11111371. [PMID: 33233517 PMCID: PMC7699559 DOI: 10.3390/genes11111371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
Group 1 pulmonary hypertension (pulmonary arterial hypertension; PAH) is a rare disease characterized by remodeling of the small pulmonary arteries leading to progressive elevation of pulmonary vascular resistance, ultimately leading to right ventricular failure and death. Deleterious mutations in the serine-threonine receptor bone morphogenetic protein receptor 2 (BMPR2; a central mediator of bone morphogenetic protein (BMP) signaling) and female sex are known risk factors for the development of PAH in humans. In this narrative review, we explore the complex interplay between the BMP and estrogen signaling pathways, and the potentially synergistic mechanisms by which these signaling cascades increase the risk of developing PAH. A comprehensive understanding of these tangled pathways may reveal therapeutic targets to prevent or slow the progression of PAH.
Collapse
|
29
|
van der Bruggen CE, Handoko ML, Bogaard HJ, Marcus JT, Oosterveer FPT, Meijboom LJ, Westerhof BE, Vonk Noordegraaf A, de Man FS. The Value of Hemodynamic Measurements or Cardiac MRI in the Follow-up of Patients With Idiopathic Pulmonary Arterial Hypertension. Chest 2020; 159:1575-1585. [PMID: 33197401 PMCID: PMC8039009 DOI: 10.1016/j.chest.2020.10.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022] Open
Abstract
Background Treatment of patients with pulmonary arterial hypertension (PAH) is conventionally based on functional plus invasive measurements obtained during right heart catheterization (RHC). Whether risk assessment during repeated measurements could also be performed on the basis of imaging parameters is unclear, as a direct comparison of strategies is lacking. Research Question How does the predictive value of noninvasive parameters compare with that of invasive hemodynamic measurements 1 year after the diagnosis of idiopathic PAH? Study Design and Methods One hundred and eighteen patients with idiopathic PAH who underwent RHC and cardiac MRI (CMR) were included in this study (median time between baseline evaluation and first parameter measures, 1.0 [0.8-1.2] years). Forty-four patients died or underwent lung transplantation. Forward Cox regression analyses were done to determine the best predictive functional, hemodynamic, and/or imaging model. Patients were classified as high risk if the event occurred < 5 years after diagnosis (n = 24), whereas patients without event were classified as low risk. Results A prognostic model based on age, sex, and absolute values at follow-up of functional parameters (6-min walk distance) performed well (Akaike information criterion [AIC], 279; concordance, 0.67). Predictive models with only hemodynamic (right atrial pressure, mixed venous oxygen saturation; AIC, 322; concordance, 0.66) or imaging parameters (right ventricular ejection fraction; AIC, 331; concordance, 0.63) at 1 year of follow-up performed similarly. The predictive value improved when functional data were combined with either hemodynamic data (AIC, 268; concordance, 0.69) or imaging data (AIC, 273; concordance, 0.70). A model composed of functional, hemodynamic, and imaging data performed only marginally better (AIC, 266; concordance, 0.69). Finally, changes between baseline and 1-year follow-up were observed for multiple hemodynamic and CMR parameters; only a change in CMR parameters was of prognostic predictive value. Interpretation At 1 year of follow-up, risk assessment based on CMR is at least equal to risk assessment based on RHC. In this study, only changes in CMR, but not hemodynamic parameters, were of prognostic predictive value during the first year of follow-up.
Collapse
Affiliation(s)
- Cathelijne Emma van der Bruggen
- Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martin Louis Handoko
- Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Harm Jan Bogaard
- Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Johannes Timotheus Marcus
- Radiology and Nuclear Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Lilian Jacoba Meijboom
- Radiology and Nuclear Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Berend Eric Westerhof
- Cardiovascular and Respiratory Physiology, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede, The Netherlands
| | - Anton Vonk Noordegraaf
- Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frances S de Man
- Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Theilmann AL, Hawke LG, Hilton LR, Whitford MKM, Cole DV, Mackeil JL, Dunham-Snary KJ, Mewburn J, James PD, Maurice DH, Archer SL, Ormiston ML. Endothelial BMPR2 Loss Drives a Proliferative Response to BMP (Bone Morphogenetic Protein) 9 via Prolonged Canonical Signaling. Arterioscler Thromb Vasc Biol 2020; 40:2605-2618. [PMID: 32998516 PMCID: PMC7571847 DOI: 10.1161/atvbaha.119.313357] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Supplemental Digital Content is available in the text. Pulmonary arterial hypertension is a disease of proliferative vascular occlusion that is strongly linked to mutations in BMPR2—the gene encoding the BMPR-II (BMP [bone morphogenetic protein] type II receptor). The endothelial-selective BMPR-II ligand, BMP9, reverses disease in animal models of pulmonary arterial hypertension and suppresses the proliferation of healthy endothelial cells. However, the impact of BMPR2 loss on the antiproliferative actions of BMP9 has yet to be assessed.
Collapse
Affiliation(s)
- Anne L Theilmann
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - Lindsey G Hawke
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - L Rhiannon Hilton
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - Mara K M Whitford
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - Devon V Cole
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - Jodi L Mackeil
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - Kimberly J Dunham-Snary
- Department of Medicine (K.J.D.-S., J.M., P.D.J., S.L.A., M.L.O.), Queen's University, Kingston, Canada
| | - Jeffrey Mewburn
- Department of Medicine (K.J.D.-S., J.M., P.D.J., S.L.A., M.L.O.), Queen's University, Kingston, Canada
| | - Paula D James
- Department of Medicine (K.J.D.-S., J.M., P.D.J., S.L.A., M.L.O.), Queen's University, Kingston, Canada
| | - Donald H Maurice
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - Stephen L Archer
- Department of Medicine (K.J.D.-S., J.M., P.D.J., S.L.A., M.L.O.), Queen's University, Kingston, Canada
| | - Mark L Ormiston
- Department of Surgery (M.L.O.), Queen's University, Kingston, Canada
| |
Collapse
|
31
|
Jang AY, Kim BG, Kwon S, Seo J, Kim HK, Chang HJ, Chang SA, Cho GY, Rhee SJ, Jung HO, Kim KH, Seo HS, Kim KH, Shin J, Lee JS, Kim M, Lee YJ, Chung WJ. Prevalence and clinical features of bone morphogenetic protein receptor type 2 mutation in Korean idiopathic pulmonary arterial hypertension patients: The PILGRIM explorative cohort. PLoS One 2020; 15:e0238698. [PMID: 32966279 PMCID: PMC7510973 DOI: 10.1371/journal.pone.0238698] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 08/19/2020] [Indexed: 11/18/2022] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a progressive chronic disease with poor outcomes. One reason for poor prognosis is the lack of understanding regarding individual variability in response to treatment. Idiopathic PAH (IPAH) patients with bone morphogenetic protein receptor type 2 (BMPR2) mutations have distinct phenotypes that are crucial for individualized therapy but evidence regarding their prevalence and clinical features in the Korean population is lacking. Therefore, the present study aimed to screen Korean IPAH patients for BMPR2 mutations and analyze their clinical phenotypes. Methods We enrolled 73 unrelated IPAH patients for BMPR2 mutation screening between March 2010 to November 2015 from 11 hospitals in Korea. Thirty-three lineal family members from 6 families of BMPR2 mutation carriers were also screened. Results Among 73 patients, 16 (22%) had BMPR2 mutations. Mutation carriers were younger (27 vs. 47 years; p = 0.02) and had a higher mean pulmonary arterial pressure (mPAP) than non-carriers (64 vs. 51 mmHg; p<0.05). Of the 16 individuals with mutations, 5 deletion, 2 splice-site, 6 nonsense, and 3 missense mutations were found, among which, 9 were newly identified mutation types. Patients less than 30 years old had more BMPR2 mutations (44 vs. 14%; p = 0.04) and a higher mPAP (64 vs. 50 mmHg; p = 0.04) compared with those equaled to or over 30 years old. There were no differences in hemodynamic profiles or the proportion of BMPR2 mutation carriers between groups according to sex. Conclusion The prevalence of BMPR2 mutations in Korean IPAH patients was 22%. Mutation carriers were younger and had a poorer hemodynamic profile compared with the non-carriers. Clinical trial registration Clinicaltrials.gov NCT01054105
Collapse
Affiliation(s)
- Albert Youngwoo Jang
- Department of Cardiovascular Medicine, Gachon University Gil Medical Center, Incheon, Korea
- Gachon Cardiovascular Research Institute, Gachon University, Incheon, Korea
| | - Bo-Gyeong Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Sunkoo Kwon
- Department of Cardiovascular Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Jiyoung Seo
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Hyung Kwan Kim
- Division of Cardiology, Section of Cardiovascular Imaging, Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Hyuk-Jae Chang
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Sung-A Chang
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Goo-Yeong Cho
- Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea
| | - Sang Jae Rhee
- Department of Cardiovascular Medicine, Wonkwang University Hospital, Iksan, Korea
| | - Hae Ok Jung
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Kyung-Hee Kim
- Division of Cardiology, Department of Internal Medicine, Sejong General Hospital, Bucheon, Korea
| | - Hye Sun Seo
- Department of Cardiology, Soonchunhyang University Hospital, Bucheon, Korea
| | - Kye Hun Kim
- The Heart Center of Chonnam National University Hospital, Gwangju, Korea
| | - Jinho Shin
- Division of Cardiology, Department of Internal Medicine, Hanyang University Medical Center, Seoul, Korea
| | - Jun Soo Lee
- Department of Cardiovascular Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Minsu Kim
- Department of Cardiovascular Medicine, Gachon University Gil Medical Center, Incheon, Korea
- Gachon Cardiovascular Research Institute, Gachon University, Incheon, Korea
| | - Young Jae Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- * E-mail: (WJC); (YJL)
| | - Wook-Jin Chung
- Department of Cardiovascular Medicine, Gachon University Gil Medical Center, Incheon, Korea
- Gachon Cardiovascular Research Institute, Gachon University, Incheon, Korea
- * E-mail: (WJC); (YJL)
| |
Collapse
|
32
|
Lyu ZC, Wang L, Lin JH, Li SQ, Wu DC, Lian TY, Liu SF, Ye J, Jiang X, Wang XJ, Jing ZC. The features of rare pathogenic BMPR2 variants in pulmonary arterial hypertension: Comparison between patients and reference population. Int J Cardiol 2020; 318:138-143. [PMID: 32634488 DOI: 10.1016/j.ijcard.2020.06.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/02/2020] [Accepted: 06/29/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Mutations in the gene encoding bone morphogenetic protein receptor type 2 (BMPR2) are the most common genetic risk factors underlying pulmonary arterial hypertension (PAH). However, the features of PAH-related BMPR2 rare variants remain unclear. We propose that the discrepancy of BMPR2 rare variants landscape between patients with PAH and reference population would be important to address the genetic background of PAH-related variants. METHODS We genotyped BMPR2 rare variants in 670 Chinese patients with pulmonary arterial hypertension. The BMPR2 rare variants were screened in 10,508 reference people from two exome databases. RESULTS The prevalence of rare BMPR2 variants in patients with PAH was significantly higher compared to the reference population (21.5%, 144/670 vs 0.87%, 91/10508, p = 1.3 × 10-118). In patients with PAH, 49% of identified BMPR2 rare variants were loss-of-function or splicing. These BMPR2 rare variants were only observed in 1% of the reference population (p = 9.0 × 10-12). Arg491, which is absent in the reference population, represented as hot-spot site (14.6%, 21/144) in PAH patients. BMPR2 missense mutations in PAH patients were more likely distributed in extracellular ligand-binding domain (ECD, 29.7% vs 11.1%, p < 0.001). Compared with Non-PAH-related variations, PAH-related missense variants tend to alter the amino acid electric status (51.4% vs 23.3%, p < 0.001). CONCLUSIONS BMPR2 variants located in extracellular ligand-binding domain or altered the amino acid electric status are more pathogenic.
Collapse
Affiliation(s)
- Zi-Chao Lyu
- Key Laboratory of Pulmonary Vascular Medicine, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian-Hui Lin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Su-Qi Li
- Key Laboratory of Pulmonary Vascular Medicine, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan-Chen Wu
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Tian-Yu Lian
- Laboratory of Clinical Genetics, Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shao-Fei Liu
- Key Laboratory of Pulmonary Vascular Medicine, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jue Ye
- Key Laboratory of Pulmonary Vascular Medicine, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Jiang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Jian Wang
- Key Laboratory of Pulmonary Vascular Medicine, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
33
|
Affiliation(s)
- Florent Soubrier
- Genetics Department, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, UMR_S 1166-ICAN, Sorbonne-Université, INSERM, Paris, France
| |
Collapse
|
34
|
Karnes JH, Wiener HW, Schwantes-An TH, Natarajan B, Sweatt AJ, Chaturvedi A, Arora A, Batai K, Nair V, Steiner HE, Giles JB, Yu J, Hosseini M, Pauciulo MW, Lutz KA, Coleman AW, Feldman J, Vanderpool R, Tang H, Garcia JGN, Yuan JXJ, Kittles R, de Jesus Perez V, Zamanian RT, Rischard F, Tiwari HK, Nichols WC, Benza RL, Desai AA. Genetic Admixture and Survival in Diverse Populations with Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2020; 201:1407-1415. [PMID: 31916850 PMCID: PMC7258627 DOI: 10.1164/rccm.201907-1447oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Rationale: Limited information is available on racial/ethnic differences in pulmonary arterial hypertension (PAH).Objectives: Determine effects of race/ethnicity and ancestry on mortality and disease outcomes in diverse patients with PAH.Methods: Patients with Group 1 PAH were included from two national registries with genome-wide data and two local cohorts, and further incorporated in a global meta-analysis. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated for transplant-free, all-cause mortality in Hispanic patients with non-Hispanic white (NHW) patients as the reference group. Odds ratios (ORs) for inpatient-specific mortality in patients with PAH were also calculated for race/ethnic groups from an additional National Inpatient Sample dataset not included in the meta-analysis.Measurements and Main Results: After covariate adjustment, self-reported Hispanic patients (n = 290) exhibited significantly reduced mortality versus NHW patients (n = 1,970) after global meta-analysis (HR, 0.60 [95% CI, 0.41-0.87]; P = 0.008). Although not significant, increasing Native American genetic ancestry appeared to account for part of the observed mortality benefit (HR, 0.48 [95% CI, 0.23-1.01]; P = 0.053) in the two national registries. Finally, in the National Inpatient Sample, an inpatient mortality benefit was also observed for Hispanic patients (n = 1,524) versus NHW patients (n = 8,829; OR, 0.65 [95% CI, 0.50-0.84]; P = 0.001). An inpatient mortality benefit was observed for Native American patients (n = 185; OR, 0.38 [95% CI, 0.15-0.93]; P = 0.034).Conclusions: This study demonstrates a reproducible survival benefit for Hispanic patients with Group 1 PAH in multiple clinical settings. Our results implicate contributions of genetic ancestry to differential survival in PAH.
Collapse
Affiliation(s)
| | - Howard W. Wiener
- Department of Biostatistics, University of Alabama–Birmingham, Birmingham, Alabama
| | | | - Balaji Natarajan
- Department of Cardiology, University of California Riverside School of Medicine, Riverside, California
| | - Andrew J. Sweatt
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, California,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, California
| | | | - Amit Arora
- Department of Epidemiology and Biostatistics
| | | | - Vineet Nair
- Department of Medicine, University of Arizona, Tucson, Arizona
| | | | | | - Jeffrey Yu
- Department of Pharmacy Practice and Science
| | - Maryam Hosseini
- Department of Medicine, University of Arizona, Tucson, Arizona
| | - Michael W. Pauciulo
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Katie A. Lutz
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Anna W. Coleman
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | | | - Haiyang Tang
- Department of Medicine, University of Arizona, Tucson, Arizona
| | | | - Jason X.-J. Yuan
- Department of Medicine, University of California–San Diego, La Jolla, California; and
| | - Rick Kittles
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Vinicio de Jesus Perez
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, California,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, California
| | - Roham T. Zamanian
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, California,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, California
| | - Franz Rischard
- Department of Medicine, University of Arizona, Tucson, Arizona
| | - Hemant K. Tiwari
- Department of Biostatistics, University of Alabama–Birmingham, Birmingham, Alabama
| | - William C. Nichols
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Ankit A. Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| |
Collapse
|
35
|
Novel Molecular Mechanisms of Pulmonary Hypertension: A Search for Biomarkers and Novel Drug Targets-From Bench to Bed Site. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7265487. [PMID: 32566097 PMCID: PMC7261339 DOI: 10.1155/2020/7265487] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022]
Abstract
Pulmonary hypertension (PH) is defined as increased mean pulmonary artery pressure (mPAP) above 25 mmHg, measured at rest by right heart catheterization. The exact global prevalence of PH is difficult to estimate, mainly due to the complex aetiology, and its spread may be underestimated. To date, numerous studies on the aetiology and pathophysiology of PH at molecular level were conducted. Simultaneously, some clinical studies have shown potential usefulness of well-known and widely recognized cardiovascular biomarkers, but their potential clinical usefulness in diagnosis and management of PH is poor due to their low specificity accompanied with numerous other cardiovascular comorbidities of PH subjects. On the other hand, a large body of basic research-based studies provides us with novel molecular pathomechanisms, biomarkers, and drug targets, according to the evidence-based medicine principles. Unfortunately, the simple implementation of these results to clinical practice is impossible due to a large heterogeneity of the PH pathophysiology, where the clinical symptoms constitute only a common denominator and a final result of numerous crosstalking metabolic pathways. Therefore, future studies, based mostly on translational medicine, are needed in order to both organize better the pathophysiological classification of various forms of PH and define precisely the optimal diagnostic markers and therapeutic targets in particular forms of PH. This review paper summarizes the current state of the art regarding the molecular background of PH with respect to its current classification. Novel therapeutic strategies and potential biomarkers are discussed with respect to their limitations in use in common clinical practice.
Collapse
|
36
|
Gorr MW, Sriram K, Muthusamy A, Insel PA. Transcriptomic analysis of pulmonary artery smooth muscle cells identifies new potential therapeutic targets for idiopathic pulmonary arterial hypertension. Br J Pharmacol 2020; 177:3505-3518. [PMID: 32337710 DOI: 10.1111/bph.15074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/25/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary arterial hypertension (PAH, type 1 pulmonary hypertension) has a 3-year survival of ~50% and is in need of new, effective therapies. In PAH, remodelling of the pulmonary artery (PA) increases pulmonary vascular resistance and can result in right heart dysfunction and failure. Genetic mutations can cause PAH but it can also be idiopathic (IPAH). Enhanced contractility and proliferation of PA smooth muscle cells (PASMCs) are key contributors to the pathophysiology of PAH, but the underlying mechanisms are not well understood. EXPERIMENTAL APPROACH We utilized RNA-sequencing (RNA-seq) of IPAH and control patient-derived PASMCs as an unbiased approach to define differentially expressed (DE) genes that may identify new biology and potential therapeutic targets. KEY RESULTS Analysis of DE genes for shared gene pathways revealed increases in genes involved in cell proliferation and mitosis and decreases in a variety of gene sets, including response to cytokine signalling. ADGRG6/GPR126, an adhesion G protein-coupled receptor (GPCR), was increased in IPAH-PASMCs compared to control-PASMCs. Increased expression of this GPCR in control-PASMCs decreased their proliferation; siRNA knockdown of ADGRG6/GPR126 in IPAH-PASMCs tended to increase proliferation. CONCLUSION AND IMPLICATIONS These data provide insights regarding the expression of current and experimental PAH drug targets, GPCRs and GPCR-related genes as potentially new therapeutic targets in PAH-PASMCs. Overall, the findings identify genes and pathways that may contribute to IPAH-PASMC function and suggest that ADGRG6/GPR126 is a novel therapeutic target for IPAH.
Collapse
Affiliation(s)
- Matthew W Gorr
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA.,Colleges of Nursing and Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Krishna Sriram
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Abinaya Muthusamy
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
37
|
Swietlik EM, Gräf S, Morrell NW. The role of genomics and genetics in pulmonary arterial hypertension. Glob Cardiol Sci Pract 2020; 2020:e202013. [PMID: 33150157 PMCID: PMC7590931 DOI: 10.21542/gcsp.2020.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Emilia M Swietlik
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Addenbrooke's Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom.,NIHR BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Addenbrooke's Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom.,NIHR BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
38
|
Thoré P, Girerd B, Jaïs X, Savale L, Ghigna MR, Eyries M, Levy M, Ovaert C, Servettaz A, Guillaumot A, Dauphin C, Chabanne C, Boiffard E, Cottin V, Perros F, Simonneau G, Sitbon O, Soubrier F, Bonnet D, Remy-Jardin M, Chaouat A, Humbert M, Montani D. Phenotype and outcome of pulmonary arterial hypertension patients carrying a TBX4 mutation. Eur Respir J 2020; 55:13993003.02340-2019. [DOI: 10.1183/13993003.02340-2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
Abstract
IntroductionTBX4 mutation causes small patella syndrome (SPS) and/or pulmonary arterial hypertension (PAH). The characteristics and outcomes of PAH associated with TBX4 mutations are largely unknown.MethodsWe report the clinical, functional, radiologic, histologic and haemodynamic characteristics and outcomes of heritable PAH patients carrying a TBX4 mutation from the French pulmonary hypertension (PH) network.Results20 patients were identified in 17 families. They were characterised by a median age at diagnosis of 29 years (0–76 years) and a female to male ratio of three. Most of the patients (70%) were in New York Heart Association (NYHA) functional class III or IV with a severe haemodynamic impairment (median pulmonary vascular resistance (PVR) of 13.6 (6.2–41.8) Wood units). Skeletal signs of SPS were present in 80% of cases. Half of the patients had mild restrictive or obstructive limitation and diffusing capacity of the lung for carbon monoxide (DLCO) was decreased in all patients. High-resolution computed tomography (HRCT) showed bronchial abnormalities, peri-bronchial cysts, mosaic distribution and mediastinal lymphadenopathies. PAH therapy was associated with significant clinical improvement. At follow-up (median 76 months), two patients had died and two had undergone lung transplantation. One-year, three-year and five-year event-free survival rates were 100%, 94% and 83%, respectively. Histologic examination of explanted lungs revealed alveolar growth abnormalities, major pulmonary vascular remodelling similar to that observed in idiopathic pulmonary arterial hypertension (IPAH) and accumulation of cholesterol crystals within the lung parenchyma.ConclusionPAH due to TBX4 mutations may occur with or without skeletal abnormalities across a broad age range from birth to late adulthood. PAH is usually severe and associated with bronchial and parenchymal abnormalities.
Collapse
|
39
|
Ge X, Zhu T, Zhang X, Liu Y, Wang Y, Zhang W. Gender differences in pulmonary arterial hypertension patients with BMPR2 mutation: a meta-analysis. Respir Res 2020; 21:44. [PMID: 32028950 PMCID: PMC7006426 DOI: 10.1186/s12931-020-1309-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To investigate the differences in the proportions of BMPR2 mutations in familial hereditary pulmonary arterial hypertension (HPAH) and idiopathic pulmonary arterial hypertension (IPAH) between males and females and the relationship between BMPR2 mutation and PAH severity. METHODS A computer was used to search the electronic Cochrane Library, PubMed/MEDLINE, and EMBASE databases for clinical trials containing information on the relationship between PAH prognosis and BMPR2 mutations through March 2019. After obtaining the data, a meta-analysis was performed using Review Manager Version 5.3 and Stata. RESULTS A meta-analysis was performed on 17 clinical trials (2198 total patients: 644 male, 1554 female). The results showed that among patients with HPAH and IPAH, the BMPR2 mutation rate is higher in male than in female patients [male group (224/644, 34.78%), female group (457/1554, 29.41%), OR = 1.30, 95% CI: 1.06~1.60, P = 0.01, I2 = 10%]. Furthermore, haemodynamic and functional parameters were more severe in IPAH and HPAH patients with BMPR2 mutations than in those without, and those with BMPR2 mutation were diagnosed at a younger age. The risk of death or transplantation was higher in PAH patients with BMPR2 mutations than in those without (OR = 2.51, 95% CI: 1.29~3.57, P = 0.003, I2 = 24%). Furthermore, the difference was significant only in male patients (OR = 5.58, 95% CI: 2.16~14.39, P = 0.0004, I2 = 0%) and not in female patients (OR = 1.41, 95% CI: 0.75~2.67, P = 0.29, I2 = 0%). CONCLUSION Among patients with HPAH and IPAH, men are more likely to have BMPR2 mutations, which may predict more severe PAH indications and prognosis.
Collapse
Affiliation(s)
- Xiaoyue Ge
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Tiantian Zhu
- Teaching and Research Office of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xinyi Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ye Liu
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yonglong Wang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Weifang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
40
|
Hemnes AR, Fessel JP, Chen X, Zhu S, Fortune NL, Jetter C, Freeman M, Newman JH, West JD, Talati MH. BMPR2 dysfunction impairs insulin signaling and glucose homeostasis in cardiomyocytes. Am J Physiol Lung Cell Mol Physiol 2020; 318:L429-L441. [PMID: 31850803 PMCID: PMC7052666 DOI: 10.1152/ajplung.00555.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 11/04/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
Insulin resistance and right ventricular (RV) dysfunction are associated with lipotoxicity in heritable forms of pulmonary arterial hypertension (PAH), commonly due to mutations in bone morphogenetic protein receptor type 2 (BMPR2). How BMPR2 dysfunction in cardiomyocytes alters glucose metabolism and the response of these cells to insulin are unknown. We hypothesized that BMPR2 mutation in cardiomyocytes alters glucose-supported mitochondrial respiration and impairs cellular responses to insulin, including glucose and lipid uptake. We performed metabolic assays, immunofluorescence and Western analysis, RNA profiling, and radioactive isotope uptake studies in H9c2 cardiomyocyte cell lines with and without patient-derived BMPR2 mutations (mutant cells), with and without insulin. Unlike control cells, BMPR2 mutant cardiomyocytes have reduced metabolic plasticity as indicated by reduced mitochondrial respiration with increased mitochondrial superoxide production. These mutant cells show enhanced baseline phosphorylation of insulin-signaling protein as indicated by increased Akt, AMPK, and acetyl-CoA carboxylase phosphorylation that may negatively influence fatty acid oxidation and enhance lipid uptake, and are insulin insensitive. Furthermore, mutant cells demonstrate an increase in milk fat globule-EGF factor-8 protein (MFGE8), which influences the insulin-signaling pathway by phosphorylating AktSer473 via phosphatidylinositol 3-kinase and mammalian target of rapamycin. In conclusion, BMPR2 mutant cardiomyocytes have reduced metabolic plasticity and fail to respond to glucose. These cells have enhanced baseline insulin-signaling pattern favoring insulin resistance with failure to augment this pattern in response to insulin. BMPR2 mutation possibly blunts glucose uptake and enhances lipid uptake in these cardiomyocytes. The MFGE8-driven signaling pathway may suggest a new mechanism underlying RV lipotoxicity in PAH.
Collapse
Affiliation(s)
- Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Joshua P Fessel
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Xinping Chen
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Shijun Zhu
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Niki L Fortune
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Christopher Jetter
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Michael Freeman
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John H Newman
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James D West
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Megha H Talati
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
41
|
Badlam JB, Badesch D, Brittain E, Cordell S, Ding T, Fox K, Hemnes A, Loyd J, Pugh M, Robbins I, Yu C, Austin ED. Sex hormone exposure and reproductive factors in pulmonary arterial hypertension: a case-control study. Pulm Circ 2020; 10:2045894020908786. [PMID: 32166018 PMCID: PMC7052472 DOI: 10.1177/2045894020908786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/03/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a sexually dimorphic disease that for unknown reasons affects women more than men. The role of estrogens, both endogenous and exogenous, and reproductive factors in this female susceptibility is still poorly understood. It has been strongly suggested that sex hormones may influence the development and progression of the disease. We sought to determine whether sex hormone exposures and reproductive factors associate with PAH patients compared to control subjects, using a questionnaire and interview to obtain information regarding these potential risk factors. We conducted a single-center unmatched case-control study. Six hundred and thirty-four women and men with PAH, as well as 27 subjects with BMPR2 mutations but no PAH and 132 healthy population controls were enrolled from the Vanderbilt Pulmonary Hypertension Research Cohort and researchmatch.org. Questionnaires and nurse-led interviews were conducted to obtain information regarding sex hormone exposures and reproductive factors. Additional history was obtained on enrolled patients including disease severity variables and comorbidities. Responses to the questionnaires were analyzed to describe these exposures in this population as well as assess the association between disease severity variables and sex hormone exposures. Reproductive and endogenous factors that determine lifelong estrogen exposure were similar between PAH cases and controls. Patients with associated PAH were significantly more likely to be postmenopausal compared to controls. There were similar rates of "ever-use" and duration of use of oral contraceptive pills and hormone replacement therapy in patients when compared to controls. Disease severity variables were not significantly affected by any exposure after adjusting for PAH sub-group. In contrast to our hypothesis, that a greater exposure to exogenous sources of female sex hormones associates with PAH case status, we found similar rates of endogenous and exogenous sex hormone exposure between PAH patients and unmatched controls.
Collapse
Affiliation(s)
- Jessica B. Badlam
- Department of Medicine, Division of
Pulmonary and Critical Care Medicine,
University
of Vermont, Burlington, USA
| | - David Badesch
- Department of Medicine, Pulmonary
Hypertension Center,
University
of Colorado, Aurora, USA
| | - Evan Brittain
- Department of Medicine, Division of
Cardiovascular Medicine,
Vanderbilt
University Medical Center, Nashville,
USA
| | - Shannon Cordell
- Department of Medicine, Pulmonary
Vascular Center,
Vanderbilt
University Medical Center, Nashville,
USA
| | - Tan Ding
- Department of Biostatistics,
Vanderbilt
University School of Medicine, Nashville,
USA
| | - Kelly Fox
- Department of Medicine, Pulmonary
Vascular Center,
Vanderbilt
University Medical Center, Nashville,
USA
| | - Anna Hemnes
- Department of Medicine, Pulmonary
Vascular Center,
Vanderbilt
University Medical Center, Nashville,
USA
| | - James Loyd
- Department of Medicine, Pulmonary
Vascular Center,
Vanderbilt
University Medical Center, Nashville,
USA
| | - Meredith Pugh
- Department of Medicine, Pulmonary
Vascular Center,
Vanderbilt
University Medical Center, Nashville,
USA
| | - Ivan Robbins
- Department of Medicine, Pulmonary
Vascular Center,
Vanderbilt
University Medical Center, Nashville,
USA
| | - Chang Yu
- Department of Biostatistics,
Vanderbilt
University School of Medicine, Nashville,
USA
| | - Eric D. Austin
- Department of Pediatrics, Vanderbilt
Pediatric Pulmonary Hypertension Program,
Vanderbilt
University Medical Center, Nashville,
USA
| |
Collapse
|
42
|
Genotypes and Phenotypes of Chinese Pediatric Patients With Idiopathic and Heritable Pulmonary Arterial Hypertension—A Single-Center Study. Can J Cardiol 2019; 35:1851-1856. [DOI: 10.1016/j.cjca.2019.07.628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/26/2022] Open
|
43
|
Jang AY, Chung WJ. Current status of pulmonary arterial hypertension in Korea. Korean J Intern Med 2019; 34:696-707. [PMID: 31272141 PMCID: PMC6610200 DOI: 10.3904/kjim.2019.185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/14/2019] [Indexed: 01/18/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by remodeling of the distal pulmonary arteries resulting in high pulmonary vascular resistance and, eventually, right ventricular heart failure. Although current advances in PAH therapy have improved outcomes, poor survival remains a reality worldwide, including Korea. One of the most important issues in PAH is the late diagnosis, since screening or diagnostic efforts are often overlooked due to the rarity of disease. Data from Korean registries and observational cohorts show that delayed detection leads to increased morbidity. Additionally, low percentages of Korean patients are committed to intensive PAH-targeted therapy. Current Korean health insurance policies' lack of coverage for new PAH-targeted drugs and upfront combination therapy may also hamper the improvement of treatment outcomes. Understanding individual variability in response to therapeutics through deep phenotyping is a novel strategy that should be considered when treating PAH. Overall, early detection of PAH by proactive screening together with early, intensive, individualized PAH therapy using deep phenotyping is crucial for improving prognoses for PAH patients in Korea.
Collapse
Affiliation(s)
- Albert Youngwoo Jang
- Gachon Cardiovascular Research Institute, Gachon University, Incheon, Korea
- Department of Cardiovascular Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Wook-Jin Chung
- Gachon Cardiovascular Research Institute, Gachon University, Incheon, Korea
- Department of Cardiovascular Medicine, Gachon University Gil Medical Center, Incheon, Korea
| |
Collapse
|
44
|
Elliott CG, Austin ED, Badesch D, Badlam J, Benza RL, Chung WK, Farber HW, Feldkircher K, Frost AE, Poms AD, Lutz KA, Pauciulo MW, Yu C, Nichols WC. United States Pulmonary Hypertension Scientific Registry (USPHSR): rationale, design, and clinical implications. Pulm Circ 2019; 9:2045894019851696. [PMID: 31099303 PMCID: PMC6540712 DOI: 10.1177/2045894019851696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Diagnostic World Health Organization (WHO) Group 1 pulmonary arterial hypertension (PAH) and Diagnostic Group 1' pulmonary veno-occlusive disease (PVOD) and/or pulmonary capillary hemangiomatosis (PCH) are progressive and fatal disorders. Past registries provided important insights into these disorders, but did not include hormonal exposures or genomic data. The United States Pulmonary Hypertension Scientific Registry (USPHSR) will provide demographic, physiologic, anorexigen and hormone exposure, genomic, and survival data in the current therapeutic era for 499 patients diagnosed with PAH, PVOD, or PCH. The USPHSR also will explore the relationship between pharmacologic, non-pharmacologic, and dietary hormonal exposures and the increased risk for women to develop idiopathic or heritable PAH.
Collapse
Affiliation(s)
- C Gregory Elliott
- 1 Intermountain Medical Center Department of Medicine and the University of Utah, Pulmonary Division, Salt Lake City, UT, USA
| | - Eric D Austin
- 2 Vanderbilt University Medical Center Department of Pediatrics, Nashville, TN, USA
| | | | | | | | - Wendy K Chung
- 6 Columbia University Medical Center, New York, NY, USA
| | | | | | - Adaani E Frost
- 9 Houston Methodist Hospital Lung Center, Houston, TX, USA
| | - Abby D Poms
- 9 Houston Methodist Hospital Lung Center, Houston, TX, USA
| | - Katie A Lutz
- 10 Division of Human Genetics, Cincinnati Children's Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael W Pauciulo
- 10 Division of Human Genetics, Cincinnati Children's Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chang Yu
- 11 Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| | - William C Nichols
- 10 Division of Human Genetics, Cincinnati Children's Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
45
|
Kanwar M, Raina A, Lohmueller L, Kraisangka J, Benza R. The Use of Risk Assessment Tools and Prognostic Scores in Managing Patients with Pulmonary Arterial Hypertension. Curr Hypertens Rep 2019; 21:45. [PMID: 31025123 PMCID: PMC6756754 DOI: 10.1007/s11906-019-0950-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Pulmonary arterial hypertension (PAH) is a chronic, progressive, and incurable disease with significant morbidity and mortality. Despite increasingly available treatment options, PAH patients continue to experience disease progression and increased rates of hospitalizations due to right heart failure. Physician's ability to comprehensively assess PAH patients, determine prognosis, and monitor disease progression and response to treatment remains critical in optimizing outcomes. RECENT FINDINGS Risk assessment in PAH should include a range of clinical, hemodynamic, and exercise parameters, performed in a serial fashion over the course of treatment. Approaches to risk assessment in PAH patients include the use of risk variables, scores, and equations that stratify the impact of both modifiable (e.g., 6-min walk distance, functional class, brain natriuretic peptide), and non-modifiable (e.g., age, gender, PAH etiology) risk factors. Such tools allow physicians to better determine prognosis, allocate treatment resources, and enhance the consistency of treatment approaches across providers. Comprehensive and accurate risk prediction is essential to make individualized treatment decisions and optimizing outcomes in PAH.
Collapse
Affiliation(s)
- Manreet Kanwar
- Department of Cardiovascular Disease, Allegheny General Hospital, 320 East North Avenue, Pittsburgh, PA, 15212, USA
| | - Amresh Raina
- Department of Cardiovascular Disease, Allegheny General Hospital, 320 East North Avenue, Pittsburgh, PA, 15212, USA
| | | | | | - Raymond Benza
- Department of Cardiovascular Disease, Allegheny General Hospital, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| |
Collapse
|
46
|
Tielemans B, Delcroix M, Belge C, Quarck R. TGFβ and BMPRII signalling pathways in the pathogenesis of pulmonary arterial hypertension. Drug Discov Today 2019; 24:703-716. [DOI: 10.1016/j.drudis.2018.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/06/2018] [Accepted: 12/04/2018] [Indexed: 01/23/2023]
|
47
|
Morrell NW, Aldred MA, Chung WK, Elliott CG, Nichols WC, Soubrier F, Trembath RC, Loyd JE. Genetics and genomics of pulmonary arterial hypertension. Eur Respir J 2019; 53:13993003.01899-2018. [PMID: 30545973 PMCID: PMC6351337 DOI: 10.1183/13993003.01899-2018] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
Since 2000 there have been major advances in our understanding of the genetic and genomics of pulmonary arterial hypertension (PAH), although there remains much to discover. Based on existing knowledge, around 25-30% of patients diagnosed with idiopathic PAH have an underlying Mendelian genetic cause for their condition and should be classified as heritable PAH (HPAH). Here, we summarise the known genetic and genomic drivers of PAH, the insights these provide into pathobiology, and the opportunities afforded for development of novel therapeutic approaches. In addition, factors determining the incomplete penetrance observed in HPAH are discussed. The currently available approaches to genetic testing and counselling, and the impact of a genetic diagnosis on clinical management of the patient with PAH, are presented. Advances in DNA sequencing technology are rapidly expanding our ability to undertake genomic studies at scale in large cohorts. In the future, such studies will provide a more complete picture of the genetic contribution to PAH and, potentially, a molecular classification of this disease.
Collapse
Affiliation(s)
- Nicholas W Morrell
- University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, UK
| | | | - Wendy K Chung
- Columbia University Medical Center, New York, NY, USA
| | - C Gregory Elliott
- Intermountain Medical Center and University of Utah, Salt Lake City, UT, USA
| | | | | | - Richard C Trembath
- Division of Genetics and Molecular Medicine, School of Basic and Medical Biosciences, King's College London, London, UK
| | - James E Loyd
- Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
48
|
Abbasi Y, Jabbari J, Jabbari R, Glinge C, Izadyar S, Spiekerkoetter E, Zamanian RT, Carlsen J, Tfelt‐Hansen J. Exome data clouds the pathogenicity of genetic variants in Pulmonary Arterial Hypertension. Mol Genet Genomic Med 2018; 6:835-844. [PMID: 30084161 PMCID: PMC6160702 DOI: 10.1002/mgg3.452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 04/25/2018] [Accepted: 06/03/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We aimed to provide a set of previously reported PAH-associated missense and nonsense variants, and evaluate the pathogenicity of those variants. METHODS The Human Gene Mutation Database, PubMed, and Google Scholar were searched for previously reported PAH-associated genes and variants. Thereafter, both exome sequencing project and exome aggregation consortium as background population searched for previously reported PAH-associated missense and nonsense variants. The pathogenicity of previously reported PAH-associated missense variants evaluated by using four in silico prediction tools. RESULTS In total, 14 PAH-associated genes and 180 missense and nonsense variants were gathered. The BMPR2, the most frequent reported gene, encompasses 135 of 180 missense and nonsense variants. The exome sequencing project comprised 9, and the exome aggregation consortium counted 25 of 180 PAH-associated missense and nonsense variants. The TOPBP1 and ENG genes are unlikely to be the monogenic cause of PAH pathogenesis based on allele frequency in background population and prediction analysis. CONCLUSION This is the first evaluation of previously reported PAH-associated missense and nonsense variants. The BMPR2 identified as the major gene out of 14 PAH-associated genes. Based on findings, the ENG and TOPBP1 gene are not likely to be the monogenic cause of PAH.
Collapse
Affiliation(s)
- Yeganeh Abbasi
- Heart CentreDepartment of CardiologyCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
- Department of CardiologySection for Pulmonary Hypertension and Right Heart FailureCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | | | - Reza Jabbari
- Heart CentreDepartment of CardiologyCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
- Department of CardiologySection for Pulmonary Hypertension and Right Heart FailureCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Charlotte Glinge
- Heart CentreDepartment of CardiologyCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Seyed Bahador Izadyar
- Heart CentreDepartment of CardiologyCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Edda Spiekerkoetter
- Division of Pulmonary and Critical CareStanford University School of MedicineCalifornia
| | - Roham T. Zamanian
- Division of Pulmonary and Critical CareStanford University School of MedicineCalifornia
| | - Jørn Carlsen
- Heart CentreDepartment of CardiologyCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
- Department of CardiologySection for Pulmonary Hypertension and Right Heart FailureCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Jacob Tfelt‐Hansen
- Heart CentreDepartment of CardiologyCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
- Department of CardiologySection for Pulmonary Hypertension and Right Heart FailureCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
- Department of Forensic MedicineFaculty of Medical SciencesUniversity of CopenhagenDenmark
| |
Collapse
|
49
|
Consequences of BMPR2 Deficiency in the Pulmonary Vasculature and Beyond: Contributions to Pulmonary Arterial Hypertension. Int J Mol Sci 2018; 19:ijms19092499. [PMID: 30149506 PMCID: PMC6165502 DOI: 10.3390/ijms19092499] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/18/2022] Open
Abstract
Since its association with familial pulmonary arterial hypertension (PAH) in 2000, Bone Morphogenetic Protein Receptor II (BMPR2) and its related signaling pathway have become recognized as a key regulator of pulmonary vascular homeostasis. Herein, we define BMPR2 deficiency as either an inactivation of the receptor, decreased receptor expression, or an impairment of the receptor’s downstream signaling pathway. Although traditionally the phenotypic consequences of BMPR2 deficiency in PAH have been thought to be limited to the pulmonary vasculature, there is evidence that abnormalities in BMPR2 signaling may have consequences in many other organ systems and cellular compartments. Revisiting how BMPR2 functions throughout health and disease in cells and organs beyond the lung vasculature may provide insight into the contribution of these organ systems to PAH pathogenesis as well as the potential systemic manifestation of PAH. Here we review our knowledge of the consequences of BMPR2 deficiency across multiple organ systems.
Collapse
|
50
|
Miklashevich IM, Shkolnikova МA, Gorbachevsky SV, Shmalts AA, Groznova ОS, Sadykova DI, Yakovleva LV, Degtyarev DN, Burov AA, Ovsyannikov DY, Volkov AV. CONTEMPORARY STRATEGY OF PULMONARY HYPERTENSION MANAGEMENT IN PEDIATRICS. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2018. [DOI: 10.15829/1728-8800-2018-2-101-124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Pulmonary hypertension (PH) in pediatrics is a polygenic multifactorial condition with extremely adverse prognosis. Selection of optimal management is a severe task. In absence of treatment the mean life duration in children is not higher one year. Last two decades, revolution in approaches to treatment improved the survival of this patients group. Recently, pediatricians and pediatric cardiologists have three drugs groups that act on the main pathogenetic chains of PH: endothelin pathway, nitric oxide pathway and prostacyclin pathway. At the moment, approaches to pediatric PH are based on the data obtained in the trials on adult patients. However, not long ago there were first randomized trials on children performed. The group of authors of current article presents a modern view on the problem of PH in children, and expert recommendations on children management. Class of recommendations and evidence level were set by the data obtained in pediatric population or on adult population with at least 10% of children included. To the strategy, developed by the Russian clinicians, laid the analysis of experience of the pathology treatment in Russian Federation, as the current practics and clinical guidelines on pediatric PH in Europe, and the recent trials published.
Collapse
Affiliation(s)
- I. M. Miklashevich
- Veltishchev ScientificResearch Clinical Institute of Pediatrics of the Pirogov RNRMU
| | - М. A. Shkolnikova
- Veltishchev ScientificResearch Clinical Institute of Pediatrics of the Pirogov RNRMU
| | | | | | - О. S. Groznova
- Veltishchev ScientificResearch Clinical Institute of Pediatrics of the Pirogov RNRMU
| | | | | | - D. N. Degtyarev
- Kulakov Scientific Center of Obstetrics, Gynecology and Perinatology
| | - A. A. Burov
- Kulakov Scientific Center of Obstetrics, Gynecology and Perinatology
| | | | - A. V. Volkov
- Nasonova ScientificResearch Center of Rheumatology
| |
Collapse
|