1
|
Wang JY, Michki SN, Sitaraman S, Banaschewski BJ, Jamal R, Gokey JJ, Lin SM, Katzen JB, Basil MC, Cantu E, Kropski JA, Zepp JA, Frank DB, Young LR. Dysregulated alveolar epithelial cell progenitor function and identity in Hermansky-Pudlak syndrome. JCI Insight 2024; 10:e183483. [PMID: 39699958 PMCID: PMC11948584 DOI: 10.1172/jci.insight.183483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a genetic disorder of endosomal protein trafficking associated with pulmonary fibrosis in specific subtypes, including HPS-1 and HPS-2. Single-mutant HPS1 and HPS2 mice display increased fibrotic sensitivity while double-mutant HPS1/2 mice exhibit spontaneous fibrosis with aging, which has been attributed to HPS mutations in alveolar epithelial type II (AT2) cells. We utilized HPS mouse models and human lung tissue to investigate mechanisms of AT2 cell dysfunction driving fibrotic remodeling in HPS. Starting at 8 weeks of age, HPS mice exhibited progressive loss of AT2 cell numbers. HPS AT2 cell function was impaired ex vivo and in vivo. Incorporating AT2 cell lineage tracing in HPS mice, we observed aberrant differentiation with increased AT2-derived alveolar epithelial type I cells. Transcriptomic analysis of HPS AT2 cells revealed elevated expression of genes associated with aberrant differentiation and p53 activation. Lineage-tracing and organoid-modeling studies demonstrated that HPS AT2 cells were primed to persist in a Keratin-8-positive reprogrammed transitional state, mediated by p53 activity. Intrinsic AT2 progenitor cell dysfunction and p53 pathway dysregulation are mechanisms of disease in HPS-related pulmonary fibrosis, with the potential for early targeted intervention before the onset of fibrotic lung disease.
Collapse
Affiliation(s)
- Joanna Y. Wang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sylvia N. Michki
- Division of Cardiology, Department of Pediatrics, and
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sneha Sitaraman
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Brandon J. Banaschewski
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Reshma Jamal
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jason J. Gokey
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Susan M. Lin
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
| | - Jeremy B. Katzen
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
| | - Maria C. Basil
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward Cantu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jarod A. Zepp
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
| | - David B. Frank
- Division of Cardiology, Department of Pediatrics, and
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lisa R. Young
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
| |
Collapse
|
2
|
Wang JY, Michki SN, Sitaraman S, Banaschewski BJ, Jamal R, Gokey JJ, Lin SM, Katzen JB, Basil MC, Cantu E, Kropski JA, Zepp JA, Frank DB, Young LR. Dysregulated alveolar epithelial cell progenitor function and identity in Hermansky-Pudlak syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.17.545390. [PMID: 38496421 PMCID: PMC10942273 DOI: 10.1101/2023.06.17.545390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Hermansky-Pudlak syndrome (HPS) is a genetic disorder of endosomal protein trafficking associated with pulmonary fibrosis in specific subtypes, including HPS-1 and HPS-2. Single mutant HPS1 and HPS2 mice display increased fibrotic sensitivity while double mutant HPS1/2 mice exhibit spontaneous fibrosis with aging, which has been attributed to HPS mutations in alveolar epithelial type II (AT2) cells. We utilized HPS mouse models and human lung tissue to investigate mechanisms of AT2 cell dysfunction driving fibrotic remodeling in HPS. Starting at 8 weeks of age, HPS mice exhibited progressive loss of AT2 cell numbers. HPS AT2 cell function was impaired ex vivo and in vivo . Incorporating AT2 cell lineage tracing in HPS mice, we observed aberrant differentiation with increased AT2-derived alveolar epithelial type I cells. Transcriptomic analysis of HPS AT2 cells revealed elevated expression of genes associated with aberrant differentiation and p53 activation. Lineage tracing and organoid modeling studies demonstrated that HPS AT2 cells were primed to persist in a Krt8 + reprogrammed transitional state, mediated by p53 activity. Intrinsic AT2 progenitor cell dysfunction and p53 pathway dysregulation are novel mechanisms of disease in HPS-related pulmonary fibrosis, with the potential for early targeted intervention before the onset of fibrotic lung disease.
Collapse
|
3
|
Hu X, Wei Z, Wu Y, Zhao M, Zhou L, Lin Q. Pathogenesis and Therapy of Hermansky-Pudlak Syndrome (HPS)-Associated Pulmonary Fibrosis. Int J Mol Sci 2024; 25:11270. [PMID: 39457053 PMCID: PMC11508683 DOI: 10.3390/ijms252011270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Hermansky-Pudlak syndrome (HPS)-associated pulmonary fibrosis (HPS-PF) is a progressive lung disease that is a major cause of morbidity and mortality in HPS patients. Previous studies have demonstrated that the HPS proteins play an essential role in the biogenesis and function of lysosome-related organelles (LROs) in alveolar epithelial type II (AT2) cells and found that HPS-PF is associated with dysfunction of AT2 cells and abnormal immune reactions. Despite recent advances in research on HPS and the pathology of HPS-PF, the pathological mechanisms underlying HPS-PF remain poorly understood, and no effective treatment has been established. Therefore, it is necessary to refresh the progress in the pathogenesis of HPS-PF to increase our understanding of the pathogenic mechanism of HPS-PF and develop targeted therapeutic strategies. This review summarizes the recent progress in the pathogenesis of HPS-PF provides information about the current treatment strategies for HPS-PF, and hopefully increases our understanding of the pathogenesis of HPS-PF and offers thoughts for new therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Lin
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (X.H.); (Z.W.); (Y.W.); (M.Z.); (L.Z.)
| |
Collapse
|
4
|
Carroz KP, Urrutia-Royo B, Marin A, Pons LR, Millán-Billi P, Rosell A, Moran-Mendoza O. Rare interstitial lung diseases: a narrative review. J Thorac Dis 2024; 16:6320-6338. [PMID: 39444900 PMCID: PMC11494586 DOI: 10.21037/jtd-24-450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/07/2024] [Indexed: 10/25/2024]
Abstract
Background and Objective Interstitial lung diseases (ILDs) encompass over 200 entities. Among them, fibrosing lung diseases, have recently generated special interest due to the emerging therapies for their management. However, it is important to deepen our knowledge of other less prevalent ILD, since many of them are associated with a poor prognosis. This narrative review aims to provide a practical and up-to-date description of some poorly recognized ILD. It covers rare idiopathic interstitial pneumonias and their histologic patterns, genetic disorders with interstitial lung involvement (Hermansky-Pudlak syndrome), and ILD associated with benign proliferation of pulmonary lymphoid tissue, namely follicular bronchiolitis and granulomatous-lymphocytic interstitial lung disease. Methods Electronic searches of PubMed and Google Scholar using specific keywords were conducted. Articles underwent screening for relevance, covering review articles, meta-analyses, systematic reviews, case series, prospective studies, society guidelines, editorials in peer-reviewed journals; scientific books on the subject. The data included was limited to English and Spanish publications. Key Content and Findings Despite the low prevalence of these diseases, the increased recognition of radiological patterns, pathological features, and diagnostic procedures, have permitted their better characterization. This review highlights epidemiology, clinical presentation, diagnosis, natural history, and treatment. Conclusions Lesser-studied ILD represent a diagnostic and therapeutic challenge and can be frequently misdiagnosed. Also, due to the lack of randomized controlled trials, there are no well-established therapeutic options. Further studies or registries are needed to improve accurate diagnosis and management.
Collapse
Affiliation(s)
- Karina Portillo Carroz
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Research Network (BRN), Barcelona, Spain
| | | | - Antonio Marin
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Laura Rodriguez Pons
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paloma Millán-Billi
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoni Rosell
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Research Network (BRN), Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Onofre Moran-Mendoza
- Division of Respirology and Sleep Medicine, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
5
|
Nakamura Y, Shimizu Y, Fujimaki-Shiraishi M, Uchida N, Takemasa A, Niho S. A Protective Effect of Pirfenidone in Lung Fibroblast-Endothelial Cell Network via Inhibition of Rho-Kinase Activity. Biomedicines 2023; 11:2259. [PMID: 37626755 PMCID: PMC10452915 DOI: 10.3390/biomedicines11082259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Pulmonary fibrosis is a life-threatening disease that has been attributed to several causes. Specifically, vascular injury is thought to be involved in the pathogenesis of fibrosis. The effects of the antifibrotic drug pirfenidone on angiogenesis have not been fully elucidated. This study aimed to investigate the effects of pirfenidone in human lung fibroblast-endothelial cell co-culture network formation and to analyze the underlying molecular mechanisms. Human lung fibroblasts were co-cultured with human umbilical vein endothelial cells to establish a co-culture network cell sheet. The influence of pirfenidone was evaluated for protective effect on the endothelial network in cell sheets stimulated with transforming growth factor β (TGF-β). Results indicated that TGF-β disrupted the network formation. Pirfenidone and Y27632 (Rho-associated coiled-coil containing protein kinase [Rho-kinase or ROCK] inhibitor) protected against the TGF-β-induced endothelial network disruption. TGF-β activated Rho-kinase signaling in cells composing the co-culture cell sheet, whereas pirfenidone and Y27632 inhibited these effects. In conclusion, TGF-β-induced Rho-kinase activation and disrupted endothelial network formation. Pirfenidone suppressed TGF-β-induced Rho-kinase activity in cell sheets, thereby enabling vascular endothelial cells networks to be preserved in the cell sheets. These findings suggest that pirfenidone has potential vascular network-preserving effect via inhibiting Rho-kinase activity in vascular injury, which is a precursor to pulmonary fibrosis.
Collapse
Affiliation(s)
| | - Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu 321-0293, Tochigi, Japan; (Y.N.); (M.F.-S.); (N.U.); (A.T.); (S.N.)
| | | | | | | | | |
Collapse
|
6
|
Cellular and Molecular Control of Lipid Metabolism in Idiopathic Pulmonary Fibrosis: Clinical Application of the Lysophosphatidic Acid Pathway. Cells 2023; 12:cells12040548. [PMID: 36831215 PMCID: PMC9954511 DOI: 10.3390/cells12040548] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a representative disease that causes fibrosis of the lungs. Its pathogenesis is thought to be characterized by sustained injury to alveolar epithelial cells and the resultant abnormal tissue repair, but it has not been fully elucidated. IPF is currently difficult to cure and is known to follow a chronic progressive course, with the patient's survival period estimated at about three years. The disease occasionally exacerbates acutely, leading to a fatal outcome. In recent years, it has become evident that lipid metabolism is involved in the fibrosis of lungs, and various reports have been made at the cellular level as well as at the organic level. The balance among eicosanoids, sphingolipids, and lipid composition has been reported to be involved in fibrosis, with particularly close attention being paid to a bioactive lipid "lysophosphatidic acid (LPA)" and its pathway. LPA signals are found in a wide variety of cells, including alveolar epithelial cells, vascular endothelial cells, and fibroblasts, and have been reported to intensify pulmonary fibrosis via LPA receptors. For instance, in alveolar epithelial cells, LPA signals reportedly induce mitochondrial dysfunction, leading to epithelial damage, or induce the transcription of profibrotic cytokines. Based on these mechanisms, LPA receptor inhibitors and the metabolic enzymes involved in LPA formation are now considered targets for developing novel means of IPF treatment. Advances in basic research on the relationships between fibrosis and lipid metabolism are opening the path to new therapies targeting lipid metabolism in the treatment of IPF.
Collapse
|
7
|
Papiris SA, Kannengiesser C, Borie R, Kolilekas L, Kallieri M, Apollonatou V, Ba I, Nathan N, Bush A, Griese M, Dieude P, Crestani B, Manali ED. Genetics in Idiopathic Pulmonary Fibrosis: A Clinical Perspective. Diagnostics (Basel) 2022; 12:2928. [PMID: 36552935 PMCID: PMC9777433 DOI: 10.3390/diagnostics12122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Unraveling the genetic background in a significant proportion of patients with both sporadic and familial IPF provided new insights into the pathogenic pathways of pulmonary fibrosis. AIM The aim of the present study is to overview the clinical significance of genetics in IPF. PERSPECTIVE It is fascinating to realize the so-far underestimated but dynamically increasing impact that genetics has on aspects related to the pathophysiology, accurate and early diagnosis, and treatment and prevention of this devastating disease. Genetics in IPF have contributed as no other in unchaining the disease from the dogma of a "a sporadic entity of the elderly, limited to the lungs" and allowed all scientists, but mostly clinicians, all over the world to consider its many aspects and "faces" in all age groups, including its co-existence with several extra pulmonary conditions from cutaneous albinism to bone-marrow and liver failure. CONCLUSION By providing additional evidence for unsuspected characteristics such as immunodeficiency, impaired mucus, and surfactant and telomere maintenance that very often co-exist through the interaction of common and rare genetic variants in the same patient, genetics have created a generous and pluralistic yet unifying platform that could lead to the understanding of the injurious and pro-fibrotic effects of many seemingly unrelated extrinsic and intrinsic offending factors. The same platform constantly instructs us about our limitations as well as about the heritability, the knowledge and the wisdom that is still missing.
Collapse
Affiliation(s)
- Spyros A. Papiris
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Caroline Kannengiesser
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
- INSERM UMR 1152, Université de Paris, 75018 Paris, France
| | - Raphael Borie
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Lykourgos Kolilekas
- 7th Pulmonary Department, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece
| | - Maria Kallieri
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Vasiliki Apollonatou
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Ibrahima Ba
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
| | - Nadia Nathan
- Peditric Pulmonology Department and Reference Centre for Rare Lung Diseases RespiRare, INSERM UMR_S933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Sorbonne University and APHP, 75012 Paris, France
| | - Andrew Bush
- Paediatrics and Paediatric Respirology, Imperial College, Imperial Centre for Paediatrics and Child Health, Royal Brompton Harefield NHS Foundation Trust, London SW3 6NP, UK
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, 80337 Munich, Germany
| | - Philippe Dieude
- Department of Rheumatology, INSERM U1152, APHP Hôpital Bichat-Claude Bernard, Université de Paris, 75018 Paris, France
| | - Bruno Crestani
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Effrosyni D. Manali
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
8
|
Keppler-Noreuil KM, Burton-Akright J, Kleiner DE, Sapp JC, Lindhurst MJ, Han CG, Biesecker LG, Gochuico BR. Phenotypic Features of Cystic Lung Disease in Proteus Syndrome: A Clinical Trial. Ann Am Thorac Soc 2022; 19:1871-1880. [PMID: 35839129 PMCID: PMC9667804 DOI: 10.1513/annalsats.202111-1214oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 07/15/2022] [Indexed: 12/15/2022] Open
Abstract
Rationale: Limited information is available regarding cystic lung disease in Proteus syndrome, a rare overgrowth disorder caused by a somatic activating variant in AKT1. Objectives: To define the phenotype of cystic lung disease in Proteus syndrome. Methods: Medical records, pulmonary function tests, and chest computed tomography of 39 individuals with Proteus syndrome evaluated at a single center were retrospectively reviewed. Lung histopathology from five affected individuals was examined. Results: Cystic lung disease affected 26 (67%) of 39 individuals. The mean age of affected individuals was 17.1 years. The lung cysts varied in size and location. Focal regions of heterogeneous lung parenchyma resembling emphysema were found in 81% of affected individuals. Mass effect was seen in 12% of affected individuals; pneumothorax occurred in one. Dyspnea and respiratory infections were reported by 38% and 35% of affected individuals, respectively. Abnormal pulmonary function and scoliosis were found in 96% of affected individuals. Lung disease progressed in seven of 10 affected individuals, and all five affected individuals younger than 20 years of age had progressive cystic lung disease. Three affected individuals had symptomatic improvement after lung resection. Histopathology showed cystic air space enlargement of varying severity. Conclusions: Cystic lung disease is common in Proteus syndrome and is likely to progress in affected individuals younger than 20 years of age. Screening asymptomatic individuals with Proteus syndrome for cystic lung disease is indicated. Surgical lung resection is a therapeutic option for affected individuals with severe disease. Clinical trial registered with www.clinicaltrials.gov (NCT00001403).
Collapse
Affiliation(s)
| | | | - David E. Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | - Chen G. Han
- Medical Genetics Branch, National Human Genome Research Institute, and
| | | | | |
Collapse
|
9
|
Nieto-Alamilla G, Behan M, Hossain M, Gochuico BR, Malicdan MCV. Hermansky-Pudlak syndrome: Gene therapy for pulmonary fibrosis. Mol Genet Metab 2022; 137:187-191. [PMID: 36088816 DOI: 10.1016/j.ymgme.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
Abstract
Pulmonary fibrosis is a progressive and often fatal lung disease that manifests in most patients with Hermansky-Pudlak syndrome (HPS) type 1. Although the pathobiology of HPS pulmonary fibrosis is unknown, several studies highlight the pathogenic roles of different cell types, including type 2 alveolar epithelial cells, alveolar macrophages, fibroblasts, myofibroblasts, and immune cells. Despite the identification of the HPS1 gene and progress in understanding the pathobiology of HPS pulmonary fibrosis, specific treatment for HPS pulmonary fibrosis is not available, emphasizing the need to identify cellular and molecular targets and to develop therapeutic strategies for this devastating disease. This commentary summarizes recent advances and aims to provide insights into gene therapy for HPS pulmonary fibrosis.
Collapse
Affiliation(s)
- Gustavo Nieto-Alamilla
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Molly Behan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Mahin Hossain
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America; Undergraduate Scholarship Program, Office of the Director, National Institutes of Health, Bethesda, MD, United States of America
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America.
| | - May Christine V Malicdan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America; Undiagnosed Diseases Program, Office of the Director, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
10
|
Wang JY, Young LR. Insights into the Pathogenesis of Pulmonary Fibrosis from Genetic Diseases. Am J Respir Cell Mol Biol 2022; 67:20-35. [PMID: 35294321 PMCID: PMC9273221 DOI: 10.1165/rcmb.2021-0557tr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Pulmonary fibrosis is a disease process associated with significant morbidity and mortality, with limited therapeutic options owing to an incomplete understanding of the underlying pathophysiology. Mechanisms driving the fibrotic cascade have been elucidated through studies of rare and common variants in surfactant-related and telomere-related genes in familial and sporadic forms of pulmonary fibrosis, as well as in multisystem Mendelian genetic disorders that present with pulmonary fibrosis. In this translational review, we outline insights into the pathophysiology of pulmonary fibrosis derived from genetic forms of the disease, with a focus on model systems, shared cellular and molecular mechanisms, and potential targets for therapy.
Collapse
Affiliation(s)
- Joanna Y. Wang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Lisa R. Young
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; and
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Abudi-Sinreich S, Bodine SP, Yokoyama T, Tolman NJ, Tyrlik M, Testa LC, Han CG, Dorward HM, Wincovitch SM, Anikster Y, Gahl WA, Cinar R, Gochuico BR, Malicdan MCV. Progressive pulmonary fibrosis in a murine model of Hermansky-Pudlak syndrome. Respir Res 2022; 23:112. [PMID: 35509004 PMCID: PMC9066931 DOI: 10.1186/s12931-022-02002-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HPS-1 is a genetic type of Hermansky-Pudlak syndrome (HPS) with highly penetrant pulmonary fibrosis (HPSPF), a restrictive lung disease that is similar to idiopathic pulmonary fibrosis (IPF). Hps1ep/ep (pale ear) is a naturally occurring HPS-1 mouse model that exhibits high sensitivity to bleomycin-induced pulmonary fibrosis (PF). Traditional methods of administering bleomycin as an intratracheal (IT) route to induce PF in this model often lead to severe acute lung injury and high mortality rates, complicating studies focusing on pathobiological mechanisms or exploration of therapeutic options for HPSPF. METHODS To develop a murine model of HPSPF that closely mimics the progression of human pulmonary fibrosis, we investigated the pulmonary effects of systemic delivery of bleomycin in Hps1ep/ep mice using a subcutaneous minipump and compared results to oropharyngeal delivery of bleomycin. RESULTS Our study revealed that systemic delivery of bleomycin induced limited, acute inflammation that resolved. The distinct inflammatory phase preceded a slow, gradually progressive fibrogenesis that was shown to be both time-dependent and dose-dependent. The fibrosis phase exhibited characteristics that better resembles human disease with focal regions of fibrosis that were predominantly found in peribronchovascular areas and in subpleural regions; central lung areas contained relatively less fibrosis. CONCLUSION This model provides a preclinical tool that will allow researchers to study the mechanism of pulmonary fibrosis in HPS and provide a platform for the development of therapeutics to treat HPSPF. This method can be applied on studies of IPF or other monogenic disorders that lead to pulmonary fibrosis.
Collapse
Affiliation(s)
- Shachar Abudi-Sinreich
- Human Biochemical Genetics Section, National Human Genome Research Institute (NHGRI), National Institute of Health (NIH), Bethesda, MD, 20892, USA
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Steven P Bodine
- Human Biochemical Genetics Section, National Human Genome Research Institute (NHGRI), National Institute of Health (NIH), Bethesda, MD, 20892, USA
| | - Tadafumi Yokoyama
- Human Biochemical Genetics Section, National Human Genome Research Institute (NHGRI), National Institute of Health (NIH), Bethesda, MD, 20892, USA
| | - Nathanial J Tolman
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Michal Tyrlik
- Human Biochemical Genetics Section, National Human Genome Research Institute (NHGRI), National Institute of Health (NIH), Bethesda, MD, 20892, USA
| | - Lauren C Testa
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Chen G Han
- Human Biochemical Genetics Section, National Human Genome Research Institute (NHGRI), National Institute of Health (NIH), Bethesda, MD, 20892, USA
| | - Heidi M Dorward
- Human Biochemical Genetics Section, National Human Genome Research Institute (NHGRI), National Institute of Health (NIH), Bethesda, MD, 20892, USA
| | - Stephen M Wincovitch
- National Human Genome Research Institute (NHGRI) Cytogenetics and Microscopy Core, National Institute of Health (NIH), Bethesda, MD, 20892, USA
| | - Yair Anikster
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - William A Gahl
- Human Biochemical Genetics Section, National Human Genome Research Institute (NHGRI), National Institute of Health (NIH), Bethesda, MD, 20892, USA
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institute of Health (NIH), Rockville, MD, 20852, USA
| | - Bernadette R Gochuico
- Human Biochemical Genetics Section, National Human Genome Research Institute (NHGRI), National Institute of Health (NIH), Bethesda, MD, 20892, USA
| | - May Christine V Malicdan
- Human Biochemical Genetics Section, National Human Genome Research Institute (NHGRI), National Institute of Health (NIH), Bethesda, MD, 20892, USA.
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Kühnapfel A, Horn K, Klotz U, Kiehntopf M, Rosolowski M, Loeffler M, Ahnert P, Suttorp N, Witzenrath M, Scholz M. Genetic Regulation of Cytokine Response in Patients with Acute Community-Acquired Pneumonia. Genes (Basel) 2022; 13:genes13010111. [PMID: 35052452 PMCID: PMC8774373 DOI: 10.3390/genes13010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Community-acquired pneumonia (CAP) is an acute disease condition with a high risk of rapid deteriorations. We analysed the influence of genetics on cytokine regulation to obtain a better understanding of patient’s heterogeneity. Methods: For up to N = 389 genotyped participants of the PROGRESS study of hospitalised CAP patients, we performed a genome-wide association study of ten cytokines IL-1β, IL-6, IL-8, IL-10, IL-12, MCP-1 (MCAF), MIP-1α (CCL3), VEGF, VCAM-1, and ICAM-1. Consecutive secondary analyses were performed to identify independent hits and corresponding causal variants. Results: 102 SNPs from 14 loci showed genome-wide significant associations with five of the cytokines. The most interesting associations were found at 6p21.1 for VEGF (p = 1.58 × 10−20), at 17q21.32 (p = 1.51 × 10−9) and at 10p12.1 (p = 2.76 × 10−9) for IL-1β, at 10p13 for MIP-1α (CCL3) (p = 2.28 × 10−9), and at 9q34.12 for IL-10 (p = 4.52 × 10−8). Functionally plausible genes could be assigned to the majority of loci including genes involved in cytokine secretion, granulocyte function, and cilial kinetics. Conclusion: This is the first context-specific genetic association study of blood cytokine concentrations in CAP patients revealing numerous biologically plausible candidate genes. Two of the loci were also associated with atherosclerosis with probable common or consecutive pathomechanisms.
Collapse
Affiliation(s)
- Andreas Kühnapfel
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany; (K.H.); (U.K.); (M.R.); (M.L.); (P.A.); (M.S.)
- Correspondence:
| | - Katrin Horn
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany; (K.H.); (U.K.); (M.R.); (M.L.); (P.A.); (M.S.)
| | - Ulrike Klotz
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany; (K.H.); (U.K.); (M.R.); (M.L.); (P.A.); (M.S.)
| | - Michael Kiehntopf
- Institute for Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, 07740 Jena, Germany;
| | - Maciej Rosolowski
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany; (K.H.); (U.K.); (M.R.); (M.L.); (P.A.); (M.S.)
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany; (K.H.); (U.K.); (M.R.); (M.L.); (P.A.); (M.S.)
| | - Peter Ahnert
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany; (K.H.); (U.K.); (M.R.); (M.L.); (P.A.); (M.S.)
| | - Norbert Suttorp
- Division of Infectiology and Pneumonology, Medical Department, Charité—Berlin University Medicine, 13353 Berlin, Germany; (N.S.); (M.W.)
| | - Martin Witzenrath
- Division of Infectiology and Pneumonology, Medical Department, Charité—Berlin University Medicine, 13353 Berlin, Germany; (N.S.); (M.W.)
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany; (K.H.); (U.K.); (M.R.); (M.L.); (P.A.); (M.S.)
| |
Collapse
|
13
|
Suezawa T, Kanagaki S, Korogi Y, Nakao K, Hirai T, Murakami K, Hagiwara M, Gotoh S. Modeling of lung phenotype of Hermansky-Pudlak syndrome type I using patient-specific iPSCs. Respir Res 2021; 22:284. [PMID: 34736469 PMCID: PMC8570015 DOI: 10.1186/s12931-021-01877-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023] Open
Abstract
Background Somatic cells differentiated from patient-specific human induced pluripotent stem cells (iPSCs) could be a useful tool in human cell-based disease research. Hermansky–Pudlak syndrome (HPS) is an autosomal recessive genetic disorder characterized by oculocutaneous albinism and a platelet dysfunction. HPS patients often suffer from lethal HPS associated interstitial pneumonia (HPSIP). Lung transplantation has been the only treatment for HPSIP. Lysosome-related organelles are impaired in HPS, thereby disrupting alveolar type 2 (AT2) cells with lamellar bodies. HPSIP lungs are characterized by enlarged lamellar bodies. Despite species differences between human and mouse in HPSIP, most studies have been conducted in mice since culturing human AT2 cells is difficult. Methods We generated patient-specific iPSCs from patient-derived fibroblasts with the most common bi-allelic variant, c.1472_1487dup16, in HPS1 for modeling severe phenotypes of HPSIP. We then corrected the variant of patient-specific iPSCs using CRISPR-based microhomology-mediated end joining to obtain isogenic controls. The iPSCs were then differentiated into lung epithelial cells using two different lung organoid models, lung bud organoids (LBOs) and alveolar organoids (AOs), and explored the phenotypes contributing to the pathogenesis of HPSIP using transcriptomic and proteomic analyses. Results The LBOs derived from patient-specific iPSCs successfully recapitulated the abnormalities in morphology and size. Proteomic analysis of AOs involving iPSC-derived AT2 cells and primary lung fibroblasts revealed mitochondrial dysfunction in HPS1 patient-specific alveolar epithelial cells. Further, giant lamellar bodies were recapitulated in patient-specific AT2 cells. Conclusions The HPS1 patient-specific iPSCs and their gene-corrected counterparts generated in this study could be a new research tool for understanding the pathogenesis of HPSIP caused by HPS1 deficiency in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01877-8.
Collapse
Affiliation(s)
- Takahiro Suezawa
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Shuhei Kanagaki
- Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Yohei Korogi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhisa Nakao
- Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Murakami
- Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
14
|
O'Brien KJ, Parisi X, Shelman NR, Merideth MA, Introne WJ, Heller T, Gahl WA, Malicdan MCV, Gochuico BR. Inflammatory bowel disease in Hermansky-Pudlak syndrome: a retrospective single-centre cohort study. J Intern Med 2021; 290:129-140. [PMID: 33423334 DOI: 10.1111/joim.13224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Knowledge about inflammatory bowel disease (IBD) in patients with Hermansky-Pudlak syndrome (HPS), a rare autosomal recessive disorder characterized by defective biogenesis of lysosome-related organelles, could provide insights into IBD in general. OBJECTIVE To expand the understanding of IBD in patients with HPS. METHODS Retrospective review of records from patients with HPS evaluated at the National Institutes of Health Clinical Center from 1995 to 2019 was conducted. Clinical features of IBD, genotyping results and histologic findings of colectomy specimens were analysed. RESULTS IBD affected 37 (14.2%; 12 male, 25 female) of 261 patients with HPS. Median age of onset was 17 years; range was 1 to 52 years. The most common symptoms of HPS IBD were hematochezia, abdominal pain and loose stools. Fistulae or extra-intestinal manifestations developed in 30% or 22%, respectively. Genotyping showed that patients with biallelic variants in HPS1, HPS3, HPS4 or HPS6 were diagnosed with IBD. Six children had very early-onset IBD. Patients with HPS-3 had mild manifestations of IBD. Medical therapy and bowel resection were utilized to treat 73% and 35% of patients with HPS IBD, respectively; 7 of 13 patients receiving anti-tumor necrosis factor alpha therapy had prolonged clinical responses. Active cryptitis, chronic inflammatory changes, granulomas and ceroid lipofuscinosis were histopathologic findings in three colectomy specimens. CONCLUSIONS IBD resembling Crohn's disease affects some patients with HPS; genetic heterogeneity is a feature of HPS IBD. HPS3 is a new gene associated with human IBD. Very early-onset IBD can develop in HPS.
Collapse
Affiliation(s)
- K J O'Brien
- From the, Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - X Parisi
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Medical Research Scholars Program, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - N R Shelman
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - M A Merideth
- From the, Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - W J Introne
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - T Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - W A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, Bethesda, MD, USA
| | - M C V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, Bethesda, MD, USA
| | - B R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Cinar R, Park JK, Zawatsky CN, Coffey NJ, Bodine SP, Abdalla J, Yokoyama T, Jourdan T, Jay L, Zuo MXG, O'Brien KJ, Huang J, Mackie K, Alimardanov A, Iyer MR, Gahl WA, Kunos G, Gochuico BR, Malicdan MCV. CB 1 R and iNOS are distinct players promoting pulmonary fibrosis in Hermansky-Pudlak syndrome. Clin Transl Med 2021; 11:e471. [PMID: 34323400 PMCID: PMC8255071 DOI: 10.1002/ctm2.471] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder which, in its most common and severe form, HPS-1, leads to fatal adult-onset pulmonary fibrosis (PF) with no effective treatment. We evaluated the role of the endocannabinoid/CB1 R system and inducible nitric oxide synthase (iNOS) for dual-target therapeutic strategy using human bronchoalveolar lavage fluid (BALF), lung samples from patients with HPS and controls, HPS-PF patient-derived lung fibroblasts, and bleomycin-induced PF in pale ear mice (HPS1ep/ep ). We found overexpression of CB1 R and iNOS in fibrotic lungs of HPSPF patients and bleomycin-infused pale ear mice. The endocannabinoid anandamide was elevated in BALF and negatively correlated with pulmonary function parameters in HPSPF patients and pale ear mice with bleomycin-induced PF. Simultaneous targeting of CB1 R and iNOS by MRI-1867 yielded greater antifibrotic efficacy than inhibiting either target alone by attenuating critical pathologic pathways. Moreover, MRI-1867 treatment abrogated bleomycin-induced increases in lung levels of the profibrotic interleukin-11 via iNOS inhibition and reversed mitochondrial dysfunction via CB1 R inhibition. Dual inhibition of CB1 R and iNOS is an effective antifibrotic strategy for HPSPF.
Collapse
Affiliation(s)
- Resat Cinar
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthMarylandUSA
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Joshua K. Park
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Charles N. Zawatsky
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Nathan J. Coffey
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Steven P. Bodine
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Jasmina Abdalla
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Tadafumi Yokoyama
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
- Present address:
Department of PediatricsKanazawa UniversityKanazawaJapan
| | - Tony Jourdan
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
- Present address:
INSERM Lipids, Nutrition, Cancer UMR1231University of Burgundy and Franche‐ComtéDijonFrance
| | - Lindsey Jay
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Mei Xing G. Zuo
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Kevin J. O'Brien
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Junfeng Huang
- Therapeutics Development BranchDivision of Preclinical InnovationNational Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | - Ken Mackie
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
| | - Asaf Alimardanov
- Therapeutics Development BranchDivision of Preclinical InnovationNational Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | - Malliga R. Iyer
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - William A. Gahl
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
- NIH Undiagnosed Diseases Program and Office of the Clinical DirectorNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - George Kunos
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Bernadette R. Gochuico
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - May Christine V. Malicdan
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
- NIH Undiagnosed Diseases Program and Office of the Clinical DirectorNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
16
|
Testa LC, Jule Y, Lundh L, Bertotti K, Merideth MA, O'Brien KJ, Nathan SD, Venuto DC, El-Chemaly S, Malicdan MCV, Gochuico BR. Automated Digital Quantification of Pulmonary Fibrosis in Human Histopathology Specimens. Front Med (Lausanne) 2021; 8:607720. [PMID: 34211981 PMCID: PMC8240807 DOI: 10.3389/fmed.2021.607720] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis is characterized by abnormal interstitial extracellular matrix and cellular accumulations. Methods quantifying fibrosis severity in lung histopathology samples are semi-quantitative, subjective, and analyze only portions of sections. We sought to determine whether automated computerized imaging analysis shown to continuously measure fibrosis in mice could also be applied in human samples. A pilot study was conducted to analyze a small number of specimens from patients with Hermansky-Pudlak syndrome pulmonary fibrosis (HPSPF) or idiopathic pulmonary fibrosis (IPF). Digital images of entire lung histological serial sections stained with picrosirius red and alcian blue or anti-CD68 antibody were analyzed using dedicated software to automatically quantify fibrosis, collagen, and macrophage content. Automated fibrosis quantification based on parenchymal tissue density and fibrosis score measurements was compared to pulmonary function values or Ashcroft score. Automated fibrosis quantification of HPSPF lung explants was significantly higher than that of IPF lung explants or biopsies and was also significantly higher in IPF lung explants than in IPF biopsies. A high correlation coefficient was found between some automated quantification measurements and lung function values for the three sample groups. Automated quantification of collagen content in lung sections used for digital image analyses was similar in the three groups. CD68 immunolabeled cell measurements were significantly higher in HPSPF explants than in IPF biopsies. In conclusion, computerized image analysis provides access to accurate, reader-independent pulmonary fibrosis quantification in human histopathology samples. Fibrosis, collagen content, and immunostained cells can be automatically and individually quantified from serial sections. Robust automated digital image analysis of human lung samples enhances the available tools to quantify and study fibrotic lung disease.
Collapse
Affiliation(s)
- Lauren C Testa
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Linnea Lundh
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Melissa A Merideth
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kevin J O'Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Steven D Nathan
- Advanced Lung Disease and Lung Transplant Program, Inova Fairfax Hospital, Falls Church, VA, United States
| | - Drew C Venuto
- Advanced Lung Disease and Lung Transplant Program, Inova Fairfax Hospital, Falls Church, VA, United States
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - May Christine V Malicdan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States.,Undiagnosed Diseases Program, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Velázquez-Díaz P, Nakajima E, Sorkhdini P, Hernandez-Gutierrez A, Eberle A, Yang D, Zhou Y. Hermansky-Pudlak Syndrome and Lung Disease: Pathogenesis and Therapeutics. Front Pharmacol 2021; 12:644671. [PMID: 33841163 PMCID: PMC8028140 DOI: 10.3389/fphar.2021.644671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
Hermansky-Pudlak Syndrome (HPS) is a rare, genetic, multisystem disorder characterized by oculocutaneous albinism (OCA), bleeding diathesis, immunodeficiency, granulomatous colitis, and pulmonary fibrosis. HPS pulmonary fibrosis (HPS-PF) occurs in 100% of patients with subtype HPS-1 and has a similar presentation to idiopathic pulmonary fibrosis. Upon onset, individuals with HPS-PF have approximately 3 years before experiencing signs of respiratory failure and eventual death. This review aims to summarize current research on HPS along with its associated pulmonary fibrosis and its implications for the development of novel treatments. We will discuss the genetic basis of the disease, its epidemiology, and current therapeutic and clinical management strategies. We continue to review the cellular processes leading to the development of HPS-PF in alveolar epithelial cells, lymphocytes, mast cells, and fibrocytes, along with the molecular mechanisms that contribute to its pathogenesis and may be targeted in the treatment of HPS-PF. Finally, we will discuss emerging new cellular and molecular approaches for studying HPS, including lentiviral-mediated gene transfer, induced pluripotent stem cells (iPSCs), organoid and 3D-modelling, and CRISPR/Cas9-based gene editing approaches.
Collapse
Affiliation(s)
| | - Erika Nakajima
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | | | - Adam Eberle
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Dongqin Yang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
18
|
Fu J, Lu L, Wang H, Hou Y, Dou H. Hirsutella sinensis mycelium regulates autophagy of alveolar macrophages via TLR4/NF-κB signaling pathway. Int J Med Sci 2021; 18:1810-1823. [PMID: 33746598 PMCID: PMC7976595 DOI: 10.7150/ijms.51654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Hirsutella sinensis mycelium (HSM) has potent anti-pulmonary fibrotic activities and has been proposed as an effective treatment for idiopathic pulmonary fibrosis. Macrophages are the main innate immune cells in the lung tissue, playing key roles in pulmonary fibrosis repair and homeostasis. Excessive macrophage autophagy plays a vital role in pulmonary fibrosis. The protective effect of HSM on macrophages of bleomycin (BLM)-induced pulmonary fibrotic mice remain unclear. Methods: In this study, we collected lung tissue and bronchoalveolar lavage fluid (BALF) samples from pulmonary fibrotic mice. Meanwhile, alveolar macrophages were isolated and murine macrophage RAW264.7 cell line was cultured for further study of HSM autophagy. Results: First, we found that HSM decreased the number of autophagosomes, as well as the levels of LC3B and ATG5, and increased the protein level of P62 during the development of pulmonary fibrosis. Meanwhile, HSM reduced alveolar macrophages infiltration into the BALF and inhibited their accumulation in the fibrotic lung tissue. Flow cytometry analysis showed that HSM administration inhibited the autophagy marker LC3B expression in CD11bloCD11chi alveolar macrophages in BLM-induced lung fibrosis without affecting CD11bhiCD11clo interstitial macrophages. Transmission electron microscopy and JC-1 staining for mitochondrial membrane potential of alveolar macrophages also verified that the HSM significantly decreased autophagy in the alveolar macrophages of BLM-treated mice. In vitro, autophagosomes-lysosome fusion inhibitor chloroquine (CQ) was pre-incubated with RAW264.7 cells, and HSM reduced CQ-induced autophagosomes accumulation. TLR4 signaling inhibitor CLI095 reversed the above effects, suggesting HSM could reduce the cumulation of autophagosomes dependent on TLR4. Furthermore, lipopolysaccharide (LPS)-stimulated TLR4-related autophagy was significantly inhibited by HSM treatment. In addition, the protein expressions of TLR4 and phospho-NF-κB p65 were markedly inhibited in cells treated with HSM. Conclusions: These results indicated that HSM could inhibit the autophagy of alveolar macrophages through TLR4/NF-κB signaling pathway to achieve anti-fibrotic effect.
Collapse
Affiliation(s)
- Juanhua Fu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Li Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Haining Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| |
Collapse
|
19
|
Yokoyama T, Gochuico BR. Hermansky-Pudlak syndrome pulmonary fibrosis: a rare inherited interstitial lung disease. Eur Respir Rev 2021; 30:30/159/200193. [PMID: 33536261 DOI: 10.1183/16000617.0193-2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis is a progressive interstitial lung disease of unknown aetiology with a poor prognosis. Studying genetic diseases associated with pulmonary fibrosis provides insights into the pathogenesis of the disease. Hermansky-Pudlak syndrome (HPS), a rare autosomal recessive disorder characterised by abnormal biogenesis of lysosome-related organelles, manifests with oculocutaneous albinism and excessive bleeding of variable severity. Pulmonary fibrosis is highly prevalent in three out of 10 genetic types of HPS (HPS-1, HPS-2 and HPS-4). Thus, genotyping of individuals with HPS is clinically relevant. HPS-1 tends to affect Puerto Rican individuals due to a genetic founder effect. HPS pulmonary fibrosis shares some clinical features with idiopathic pulmonary fibrosis (IPF), including dyspnoea, cough, restrictive lung physiology and computed tomography (CT) findings of fibrosis. In contrast to IPF, HPS pulmonary fibrosis generally affects children (HPS-2) or middle-aged adults (HPS-1 or HPS-4) and may be associated with ground-glass opacification in CT scans. Histopathology of HPS pulmonary fibrosis, and not IPF, shows vacuolated hyperplastic type II cells with enlarged lamellar bodies and alveolar macrophages with lipofuscin-like deposits. Antifibrotic drugs approved as treatment for IPF are not approved for HPS pulmonary fibrosis. However, lung transplantation has been performed in patients with severe HPS pulmonary fibrosis. HPS pulmonary fibrosis serves as a model for studying fibrotic lung disease and fibrosis in general.
Collapse
Affiliation(s)
- Tadafumi Yokoyama
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Dept of Pediatrics, Kanazawa University, Kanazawa, Japan
| | - Bernadette R Gochuico
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Homma S, Ebina M, Kuwano K, Goto H, Sakai F, Sakamoto S, Johkoh T, Sugino K, Tachibana T, Terasaki Y, Nishioka Y, Hagiwara K, Hashimoto N, Hasegawa Y, Hebisawa A. Intractable diffuse pulmonary diseases: Manual for diagnosis and treatment. Respir Investig 2021; 59:8-33. [PMID: 32622842 DOI: 10.1016/j.resinv.2020.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
This manual has been compiled by a joint production committee with the Diffuse Lung Disease Assembly of the Japanese Respiratory Society (JRS) to provide a practical manual for the epidemiology, diagnosis, and treatment of intractable diffuse pulmonary diseases. The contents are based upon the results of research into these diseases by the Diffuse Pulmonary Diseases Study Group (principal researcher: Sakae Homma) supported by the FY2014-FY2016 Health and Labor Sciences Research Grant on Intractable Diseases. This manual focuses on: 1) pulmonary alveolar microlithiasis, 2) bronchiolitis obliterans, and 3) Hermansky-Pudlak Syndrome with interstitial pneumonia. As these are rare/intractable diffuse lung diseases (2 and 3 were first recognized as specified intractable diseases in 2015), there have not been sufficient epidemiological studies made, and there has been little progress in formulating diagnostic criteria and severity scales; however, the results of Japan's first surveys and research into such details are presented herein. In addition, the manual provides treatment guidance and actual cases for each disease, aiming to assist in the establishment of future modalities. The manual was produced with the goal of enabling clinicians specialized in respiratory apparatus to handle these diseases in clinical settings and of further advancing future research and treatment.
Collapse
Affiliation(s)
- Sakae Homma
- Department of Advanced and Integrated Interstitial Lung Diseases Research, School of Medicine, Toho University, Tokyo, Japan.
| | - Masahito Ebina
- Department of Respiratory Medicine in the 1st Internal Medicine, Tohoku Medical and Pharmaceutical University School of Medicine, Sendai, Japan.
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Hisatsugu Goto
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| | - Fumikazu Sakai
- Department of Diagnostic Radiology, Saitama International Medical Center, Saitama Medical University, Saitama, Japan.
| | - Susumu Sakamoto
- Department of Respiratory Medicine, Toho University Omori Medical Center, Tokyo, Japan.
| | - Takeshi Johkoh
- Department of Radiology, Kinki Central Hospital of Mutual Aid Association of Public School Teachers, Hyogo, Japan.
| | - Keishi Sugino
- Department of Respiratory Medicine, Toho University Omori Medical Center, Tokyo, Japan.
| | - Teruo Tachibana
- Department of Internal Medicine, Aizenbashi Hospital, Osaka, Japan.
| | - Yasahiro Terasaki
- Department of Pathology (Analytic Human Pathology), Nippon Medical School, Tokyo, Japan.
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| | - Koichi Hagiwara
- Division of Pulmonary Medicine, Jichi Medical University, Saitama, Japan.
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan.
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan.
| | - Akira Hebisawa
- National Hospital Organization Tokyo Medical Center, Tokyo, Japan.
| |
Collapse
|
21
|
Davidson KR, Ha DM, Schwarz MI, Chan ED. Bronchoalveolar lavage as a diagnostic procedure: a review of known cellular and molecular findings in various lung diseases. J Thorac Dis 2020; 12:4991-5019. [PMID: 33145073 PMCID: PMC7578496 DOI: 10.21037/jtd-20-651] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bronchoalveolar lavage (BAL) is a commonly used procedure in the evaluation of lung disease as it allows for sampling of the lower respiratory tract. In many circumstances, BAL differential cell counts have been reported to be typical of specific lung disorders. In addition, more specific diagnostic tests including molecular assays such as polymerase chain reaction (PCR) or enzyme-linked immunosorbent assay, special cytopathologic stains, or particular microscopic findings have been described as part of BAL fluid analysis. This review focuses on common cellular and molecular findings of BAL in a wide range of lung diseases. Since the performance of the first lung irrigation in 1927, BAL has become a common and important diagnostic tool. While some pulmonary disorders have a highly characteristic signature of BAL findings, BAL results alone often lack specificity and require interpretation along with other clinical and radiographic details. Development of new diagnostic assays is certain to reinforce the utility of BAL in the future. Our review of the BAL literature is intended to serve as a resource to assist clinicians in the care of patients with lung disorders.
Collapse
Affiliation(s)
- Kevin R Davidson
- Division of Pulmonary Sciences & Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Duc M Ha
- Division of Pulmonary Sciences & Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA.,Institute for Health Research, Kaiser Permanente Colorado, Aurora, Colorado, USA
| | - Marvin I Schwarz
- Division of Pulmonary Sciences & Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Edward D Chan
- Division of Pulmonary Sciences & Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA.,National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
22
|
Ruwanpura SM, Thomas BJ, Bardin PG. Pirfenidone: Molecular Mechanisms and Potential Clinical Applications in Lung Disease. Am J Respir Cell Mol Biol 2020; 62:413-422. [PMID: 31967851 DOI: 10.1165/rcmb.2019-0328tr] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pirfenidone (PFD) is a pharmacological compound with therapeutic efficacy in idiopathic pulmonary fibrosis. It has been chiefly characterized as an antifibrotic agent, although it was initially developed as an antiinflammatory compound because of its ability to diminish the accumulation of inflammatory cells and cytokines. Despite recent studies that have elucidated key mechanisms, the precise molecular activities of PFD remain incompletely understood. PFD modulates fibrogenic growth factors, thereby attenuating fibroblast proliferation, myofibroblast differentiation, collagen and fibronectin synthesis, and deposition of extracellular matrix. This effect is mediated by suppression of TGF-β1 (transforming growth factor-β1) and other growth factors. Here, we appraise the impact of PFD on TGF-β1 production and its downstream pathways. Accumulating evidence indicates that PFD also downregulates inflammatory pathways and therefore has considerable potential as a viable and innovative antiinflammatory compound. We examine the effects of PFD on inflammatory cells and the production of pro- and antiinflammatory cytokines in the lung. In this context, recent evidence that PFD can target inflammasome pathways and ensuing lung inflammation is highlighted. Finally, the antioxidant properties of PFD, such as its ability to inhibit redox reactions and regulate oxidative stress-related genes and enzymes, are detailed. In summary, this narrative review examines molecular mechanisms underpinning PFD and its recognized benefits in lung fibrosis. We highlight preclinical data that demonstrate the potential of PFD as a nonsteroidal antiinflammatory agent and outline areas for future research.
Collapse
Affiliation(s)
- Saleela M Ruwanpura
- Monash Lung and Sleep, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia; and
| | - Belinda J Thomas
- Monash Lung and Sleep, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia; and.,Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Philip G Bardin
- Monash Lung and Sleep, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia; and.,Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
23
|
Huizing M, Malicdan MCV, Wang JA, Pri-Chen H, Hess RA, Fischer R, O'Brien KJ, Merideth MA, Gahl WA, Gochuico BR. Hermansky-Pudlak syndrome: Mutation update. Hum Mutat 2020; 41:543-580. [PMID: 31898847 DOI: 10.1002/humu.23968] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is a group of 10 autosomal recessive multisystem disorders, each defined by the deficiency of a specific gene. HPS-associated genes encode components of four ubiquitously expressed protein complexes: Adaptor protein-3 (AP-3) and biogenesis of lysosome-related organelles complex-1 (BLOC-1) through -3. All individuals with HPS exhibit albinism and a bleeding diathesis; additional features occur depending on the defective protein complex. Pulmonary fibrosis is associated with AP-3 and BLOC-3 deficiency, immunodeficiency with AP-3 defects, and gastrointestinal symptoms are more prevalent and severe in BLOC-3 deficiency. Therefore, identification of the HPS subtype is valuable for prognosis, clinical management, and treatment options. The prevalence of HPS is estimated at 1-9 per 1,000,000. Here we summarize 264 reported and novel variants in 10 HPS genes and estimate that ~333 Puerto Rican HPS subjects and ~385 with other ethnicities are reported to date. We provide pathogenicity predictions for missense and splice site variants and list variants with high minor allele frequencies. Current cellular and clinical aspects of HPS are also summarized. This review can serve as a manifest for molecular diagnostics and genetic counseling aspects of HPS.
Collapse
Affiliation(s)
- Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - May C V Malicdan
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Jennifer A Wang
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Hadass Pri-Chen
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Richard A Hess
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Roxanne Fischer
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Kevin J O'Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Melissa A Merideth
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - William A Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Bernadette R Gochuico
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
24
|
Kook S, Qi A, Wang P, Meng S, Gulleman P, Young LR, Guttentag SH. Gene-edited MLE-15 Cells as a Model for the Hermansky-Pudlak Syndromes. Am J Respir Cell Mol Biol 2019; 58:566-574. [PMID: 29190429 DOI: 10.1165/rcmb.2017-0324ma] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Defining the mechanisms of cellular pathogenesis in rare lung diseases such as Hermansky-Pudlak syndrome (HPS) is often complicated by loss of the differentiated phenotype of cultured primary alveolar type 2 (AT2) cells, as well as by a lack of durable cell lines that are faithful to both AT2-cell and rare disease phenotypes. We used CRISPR/Cas9 gene editing to generate a series of HPS-specific mutations in the MLE-15 cell line. The resulting MLE-15/HPS cell lines exhibit preservation of AT2 cellular functions, including formation of lamellar body-like organelles, complete processing of surfactant protein B, and known features of HPS specific to each trafficking complex, including loss of protein targeting to lamellar bodies. MLE-15/HPS1 and MLE-15/HPS2 (with a mutation in Ap3β1) express increased macrophage chemotactic protein-1, a well-described mediator of alveolitis in patients with HPS and in mouse models. We show that MLE-15/HPS9 and pallid AT2 cells (with a mutation in Bloc1s6) also express increased macrophage chemotactic protein-1, suggesting that mice and humans with BLOC-1 mutations may also be susceptible to alveolitis. In addition to providing a flexible platform to examine the role of HPS-specific mutations in trafficking AT2 cells, MLE-15/HPS cell lines provide a durable resource for high-throughput screening and studies of cellular pathophysiology that are likely to accelerate progress toward developing novel therapies for this rare lung disease.
Collapse
Affiliation(s)
| | - Aidong Qi
- 2 Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | - Peter Gulleman
- 2 Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Lisa R Young
- 2 Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | |
Collapse
|
25
|
Power B, Ferreira CR, Chen D, Zein WM, O'Brien KJ, Introne WJ, Stephen J, Gahl WA, Huizing M, Malicdan MCV, Adams DR, Gochuico BR. Hermansky-Pudlak syndrome and oculocutaneous albinism in Chinese children with pigmentation defects and easy bruising. Orphanet J Rare Dis 2019; 14:52. [PMID: 30791930 PMCID: PMC6385472 DOI: 10.1186/s13023-019-1023-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/04/2019] [Indexed: 11/28/2022] Open
Abstract
Background Determining the etiology of oculocutaneous albinism is important for proper clinical management and to determine prognosis. The purpose of this study was to genotype and phenotype eight adopted Chinese children who presented with oculocutaneous albinism and easy bruisability. Results The patients were evaluated at a single center; their ages ranged from 3 to 8 years. Whole exome or direct sequencing showed that two of the children had Hermansky-Pudlak syndrome (HPS) type-1 (HPS-1), one had HPS-3, one had HPS-4, and four had non-syndromic oculocutaneous albinism associated with TYR variants (OCA1). Two frameshift variants in HPS1 (c.9delC and c.1477delA), one nonsense in HPS4 (c.416G > A), and one missense variant in TYR (c.1235C > T) were unreported. The child with HPS-4 is the first case with this subtype reported in the Chinese population. Hypopigmentation in patients with HPS was mild compared to that in OCA1 cases, who had severe pigment defects. Bruises, which may be more visible in patients with hypopigmentation, were found in all cases with either HPS or OCA1. Whole mount transmission electron microscopy demonstrated absent platelet dense granules in the HPS cases; up to 1.9 mean dense granules per platelet were found in those with OCA1. Platelet aggregation studies in OCA1 cases were inconclusive. Conclusions Clinical manifestations of oculocutaneous albinism and easy bruisability may be observed in children with HPS or OCA1. Establishing definitive diagnoses in children presenting with these phenotypic features is facilitated by genetic testing. Non-syndromic oculocutaneous albinism and various HPS subtypes, including HPS-4, are found in children of Chinese ancestry.
Collapse
Affiliation(s)
- Bradley Power
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA
| | - Carlos R Ferreira
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA
| | - Dong Chen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Wadih M Zein
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kevin J O'Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wendy J Introne
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshi Stephen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA.,Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Undiagnosed Diseases Program, NIH Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Marjan Huizing
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA
| | - May Christine V Malicdan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA.,Undiagnosed Diseases Program, NIH Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - David R Adams
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA.,Undiagnosed Diseases Program, NIH Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA.
| |
Collapse
|
26
|
Han CG, O'Brien KJ, Coon LM, Majerus JA, Huryn LA, Haroutunian SG, Moka N, Introne WJ, Macnamara E, Gahl WA, Malicdan MCV, Chen D, Krishnan K, Gochuico BR. Severe bleeding with subclinical oculocutaneous albinism in a patient with a novel HPS6 missense variant. Am J Med Genet A 2018; 176:2819-2823. [PMID: 30369044 DOI: 10.1002/ajmg.a.40514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 11/10/2022]
Abstract
Heřmanský-Pudlák syndrome (HPS), a rare autosomal recessive disorder, manifests with oculocutaneous albinism and a bleeding diathesis. However, severity of disease can be variable and is typically related to the genetic subtype of HPS; HPS type 6 (HPS-6) is an uncommon subtype generally associated with mild disease. A Caucasian adult female presented with a history of severe bleeding; ophthalmologic examination indicated occult oculocutaneous albinism. The patient was diagnosed with a platelet storage pool disorder, and platelet whole mount electron microscopy demonstrated absent delta granules. Genome-wide SNP analysis showed regions of homozygosity that included the HPS1 and HPS6 genes. Full length HPS1 transcript was amplified by PCR of genomic DNA. Targeted next-generation sequencing identified a novel homozygous missense variant in HPS6 (c.383 T > C; p.V128A); this was associated with significantly reduced HPS6 mRNA and protein expression in the patient's fibroblasts compared to control cells. These findings highlight the variable severity of disease manifestations in patients with HPS, and illustrate that HPS can be diagnosed in patients with excessive bleeding and occult oculocutaneous albinism. Genetic analysis and platelet electron microscopy are useful diagnostic tests in evaluating patients with suspected HPS. Clinical Trial registration: Registrar: ClinicalTrials.gov Website: www.clinicaltrials.gov Registration Numbers: NCT00001456 and NCT00084305.
Collapse
Affiliation(s)
- Chen G Han
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Kevin J O'Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Lea M Coon
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota
| | - Julie A Majerus
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota
| | - Laryssa A Huryn
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Sara G Haroutunian
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Nagabhishek Moka
- Division of Hematology-Oncology, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Wendy J Introne
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ellen Macnamara
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland
| | - May Christine V Malicdan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland
| | - Dong Chen
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota
| | - Koyamangalath Krishnan
- Division of Hematology-Oncology, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
27
|
O'Brien KJ, Introne WJ, Akal O, Akal T, Barbu A, McGowan MP, Merideth MA, Seward SL, Gahl WA, Gochuico BR. Prolonged treatment with open-label pirfenidone in Hermansky-Pudlak syndrome pulmonary fibrosis. Mol Genet Metab 2018; 125:168-173. [PMID: 30055995 DOI: 10.1016/j.ymgme.2018.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 11/17/2022]
Abstract
PURPOSE Limited information is available regarding chronic treatment with pirfenidone, an anti-fibrotic drug. Effects of long-term open-label pirfenidone were evaluated in a small cohort with Hermansky-Pudlak syndrome (HPS), a rare autosomal recessive disorder with highly penetrant pulmonary fibrosis. RESULTS Three patients with HPS pulmonary fibrosis treated with open-label pirfenidone and twenty-one historical controls randomized to placebo were studied at a single center. Mean duration of treatment with pirfenidone for 3 patients with HPS pulmonary fibrosis was 13.1 years. Annual changes in FVC and DLCO with pirfenidone treatment were 0.46 and - 0.93% predicted, respectively. In comparison, historical controls randomized to receive placebo experienced mean annual changes in FVC and DLCO of -4.4 and - 2.3% predicted, respectively. High-resolution computed tomography (HRCT) scans revealed improved ground glass opacities with development of minimal interstitial reticulations in 1 patient after 12.8 years of treatment with pirfenidone. Slowly progressive increase in bilateral interstitial fibrosis developed in a different patient, who received pirfenidone for 18.1 years and died at 73 years of age due to HPS pulmonary fibrosis. Another patient treated with pirfenidone for 8.4 years had attenuated ground glass opacification on HRCT scan and improved oxygenation; this patient died due to chronic complications from colitis, and not pulmonary fibrosis. Adverse effects were generally limited to mild gastrointestinal discomfort and transient elevations of alanine aminotransferase in one patient. CONCLUSIONS Chronic treatment with pirfenidone may provide clinical benefit with few adverse effects for some patients with HPS pulmonary fibrosis. These results suggest that compassionate use of pirfenidone could be considered on a case-by-case basis for patients with HPS pulmonary fibrosis.
Collapse
Affiliation(s)
- Kevin J O'Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wendy J Introne
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Orhan Akal
- Department of Mathematics, Florida State University, Tallahassee, FL, USA
| | - Tulay Akal
- Department of Statistics, Middle East Technical University, Ankara, Turkey
| | - Adrian Barbu
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Melissa P McGowan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Melissa A Merideth
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Samuel L Seward
- Department of Medicine, Mount Sinai St. Luke's and Mount Sinai West, New York, NY, USA
| | - William A Gahl
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
28
|
Haroutunian SG, O'Brien KJ, Estrada-Veras JI, Yao J, Boyd LC, Mathur K, Gahl WA, Mirmomen SM, Malayeri AA, Kleiner DE, Jaffe ES, Gochuico BR. Clinical and Histopathologic Features of Interstitial Lung Disease in Erdheim⁻Chester Disease. J Clin Med 2018; 7:jcm7090243. [PMID: 30154360 PMCID: PMC6162862 DOI: 10.3390/jcm7090243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022] Open
Abstract
Limited information is available regarding interstitial lung disease (ILD) in Erdheim⁻Chester disease (ECD), a rare multisystemic non-Langerhans cell histiocytosis. Sixty-two biopsy-confirmed ECD patients were divided into those with no ILD (19.5%), minimal ILD (32%), mild ILD (29%), and moderate/severe ILD (19.5%), based on computed tomography (CT) findings. Dyspnea affected at least half of the patients with mild or moderate/severe ILD. Diffusion capacity was significantly reduced in ECD patients with minimal ILD. Disease severity was inversely correlated with pulmonary function measurements; no correlation with BRAF V600E mutation status was seen. Reticulations and ground-glass opacities were the predominant findings on CT images. Automated CT scores were significantly higher in patients with moderate/severe ILD, compared to those in other groups. Immunostaining of lung biopsies was consistent with ECD. Histopathology findings included subpleural and septal fibrosis, with areas of interspersed normal lung, diffuse interstitial fibrosis, histiocytes with foamy cytoplasm embedded in fibrosis, lymphoid aggregates, and focal type II alveolar cell hyperplasia. In conclusion, ILD of varying severity may affect a high proportion of ECD patients. Histopathology features of ILD in ECD can mimic interstitial fibrosis patterns observed in idiopathic ILD.
Collapse
Affiliation(s)
- Sara G Haroutunian
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Kevin J O'Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Juvianee I Estrada-Veras
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jianhua Yao
- Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Louisa C Boyd
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Kavya Mathur
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - S Mojdeh Mirmomen
- Laboratory of Diagnostic Radiology Research, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ashkan A Malayeri
- Laboratory of Diagnostic Radiology Research, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Elaine S Jaffe
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Klay D, Hoffman TW, Harmsze AM, Grutters JC, van Moorsel CHM. Systematic review of drug effects in humans and models with surfactant-processing disease. Eur Respir Rev 2018; 27:27/149/170135. [PMID: 29997245 DOI: 10.1183/16000617.0135-2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/12/2018] [Indexed: 12/14/2022] Open
Abstract
Fibrotic interstitial pneumonias are a group of rare diseases characterised by distortion of lung interstitium. Patients with mutations in surfactant-processing genes, such as surfactant protein C (SFTPC), surfactant protein A1 and A2 (SFTPA1 and A2), ATP binding cassette A3 (ABCA3) and Hermansky-Pudlak syndrome (HPS1, 2 and 4), develop progressive pulmonary fibrosis, often culminating in fatal respiratory insufficiency. Although many mutations have been described, little is known about the optimal treatment strategy for fibrotic interstitial pneumonia patients with surfactant-processing mutations.We performed a systematic literature review of studies that described a drug effect in patients, cell or mouse models with a surfactant-processing mutation. In total, 73 articles were selected, consisting of 55 interstitial lung disease case reports/series, two clinical trials and 16 cell or mouse studies. Clinical effect parameters included lung function, radiological characteristics and clinical symptoms, while experimental outcome parameters included chemokine/cytokine expression, surfactant trafficking, necrosis and apoptosis. SP600125, a c-jun N-terminal kinase (JNK) inhibitor, hydroxychloroquine and 4-phenylbutyric acid were most frequently studied in disease models and lead to variable outcomes, suggesting that outcome is mutation dependent.This systematic review summarises effect parameters for future studies on surfactant-processing disorders in disease models and provides directions for future trials in affected patients.
Collapse
Affiliation(s)
- Dymph Klay
- Interstitial Lung Disease Center of Excellence, Dept of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Thijs W Hoffman
- Interstitial Lung Disease Center of Excellence, Dept of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Ankie M Harmsze
- Dept of Clinical Pharmacy, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Jan C Grutters
- Interstitial Lung Disease Center of Excellence, Dept of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands.,Division of Heart and Lung, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Coline H M van Moorsel
- Interstitial Lung Disease Center of Excellence, Dept of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands .,Division of Heart and Lung, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
30
|
Partida-Zavala N, Ponce-Gallegos MA, Buendía-Roldán I, Falfán-Valencia R. Type 2 macrophages and Th2 CD4+ cells in interstitial lung diseases (ILDs): an overview. SARCOIDOSIS, VASCULITIS, AND DIFFUSE LUNG DISEASES : OFFICIAL JOURNAL OF WASOG 2018; 35:98-108. [PMID: 32476888 PMCID: PMC7170082 DOI: 10.36141/svdld.v35i2.6691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/06/2018] [Indexed: 12/23/2022]
Abstract
Interstitial lung diseases (ILDs) are a heterogeneous group characterized mainly by damage to pulmonary parenchyma, through histopathological processes such as granulomatous pneumopathy, inflammation and fibrosis. Factors that generate susceptibility to ILDs include age, exposure to occupational and environmental compounds, genetic, family history, radiation and chemotherapy/immunomodulatory and cigarette smoke. IFN-γ, IL-1β, and LPS are necessary to induce a classical activation of macrophages, whereas cytokines as IL-4 and IL-13 can induce an alternative activation in macrophages, through the JAK-STAT mediated signal transduction. M2 macrophages are identified based on the gene transcription or protein expression of a set of M2 markers. These markers include transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. Fibrotic lung disorders may have a M2 polarization background. The Th2 pathway with an elevated CCL-18 (marker of M2) concentration in the bronchoalveolar lavage fluid (BALF) is linked to fibrosis in ILDs. Besides the role of M2 in tissue repair and ECM remodeling, activated fibroblasts summon and stimulate macrophages by producing MCP-1, M-CSF and other chemokines, as well as activated macrophages secrete cytokines that attract and stimulate proliferation, survival and migration of fibroblast mediated by platelet-derived growth factor (PDGF). (Sarcoidosis Vasc Diffuse Lung Dis 2018; 35: 98-108).
Collapse
Affiliation(s)
- Neftali Partida-Zavala
- Universidad Autónoma de Nayarit, Unidad Académica de Medicina. Tepic, Nayarit. México. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Ciudad de México, Mexico
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas City, Mexico
| | - Marco Antonio Ponce-Gallegos
- Universidad Autónoma de Nayarit, Unidad Académica de Medicina. Tepic, Nayarit. México. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Ciudad de México, Mexico
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas City, Mexico
| | - Ivette Buendía-Roldán
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas City, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas City, Mexico
| |
Collapse
|
31
|
El-Chemaly S, O’Brien KJ, Nathan SD, Weinhouse GL, Goldberg HJ, Connors JM, Cui Y, Astor TL, Camp PC, Rosas IO, Lemma M, Speransky V, Merideth MA, Gahl WA, Gochuico BR. Clinical management and outcomes of patients with Hermansky-Pudlak syndrome pulmonary fibrosis evaluated for lung transplantation. PLoS One 2018; 13:e0194193. [PMID: 29547626 PMCID: PMC5856338 DOI: 10.1371/journal.pone.0194193] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 02/19/2018] [Indexed: 11/18/2022] Open
Abstract
Pulmonary fibrosis is a progressive, fatal manifestation of Hermansky-Pudlak syndrome (HPS). Some patients with advanced HPS pulmonary fibrosis undergo lung transplantation despite their disease-associated bleeding tendency; others die while awaiting donor organs. The objective of this study is to determine the clinical management and outcomes of a cohort with advanced HPS pulmonary fibrosis who were evaluated for lung transplantation. Six patients with HPS-1 pulmonary fibrosis were evaluated at the National Institutes of Health Clinical Center and one of two regional lung transplant centers. Their median age was 41.5 years pre-transplant. Three of six patients died without receiving a lung transplant. One of these was referred with end-stage pulmonary fibrosis and died before a donor organ became available, and donor organs were not identified for two other patients sensitized from prior blood product transfusions. Three of six patients received bilateral lung transplants; they did not have a history of excessive bleeding. One patient received peri-operative desmopressin, one was transfused with intra-operative platelets, and one received extracorporeal membrane oxygenation and intra-operative prothrombin complex concentrate, platelet transfusion, and desmopressin. One transplant recipient experienced acute rejection that responded to pulsed steroids. No evidence of chronic lung allograft dysfunction or recurrence of HPS pulmonary fibrosis was detected up to 6 years post-transplant in these three lung transplant recipients. In conclusion, lung transplantation and extracorporeal membrane oxygenation are viable options for patients with HPS pulmonary fibrosis. Alloimmunization in HPS patients is an important and potentially preventable barrier to lung transplantation; interventions to limit alloimmunization should be implemented in HPS patients at risk of pulmonary fibrosis to optimize their candidacy for future lung transplants.
Collapse
Affiliation(s)
- Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Kevin J. O’Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Steven D. Nathan
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, Virginia, United States of America
| | - Gerald L. Weinhouse
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Hilary J. Goldberg
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Jean M. Connors
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Ye Cui
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Todd L. Astor
- Division of Pulmonary & Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Philip C. Camp
- Division of Thoracic Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Ivan O. Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Merte Lemma
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, Virginia, United States of America
| | - Vladislav Speransky
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Melissa A. Merideth
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William A. Gahl
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bernadette R. Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
32
|
El-Chemaly S, Cheung F, Kotliarov Y, O'Brien KJ, Gahl WA, Chen J, Perl SY, Biancotto A, Gochuico BR. The Immunome in Two Inherited Forms of Pulmonary Fibrosis. Front Immunol 2018; 9:76. [PMID: 29445374 PMCID: PMC5797737 DOI: 10.3389/fimmu.2018.00076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/11/2018] [Indexed: 02/01/2023] Open
Abstract
The immunome (immune cell phenotype, gene expression, and serum cytokines profiling) in pulmonary fibrosis is incompletely defined. Studies focusing on inherited forms of pulmonary fibrosis provide insights into mechanisms of fibrotic lung disease in general. To define the cellular and molecular immunologic phenotype in peripheral blood, high-dimensional flow cytometry and large-scale gene expression of peripheral blood mononuclear cells and serum proteomic multiplex analyses were performed and compared in a cohort with familial pulmonary fibrosis (FPF), an autosomal dominant disorder with incomplete penetrance; Hermansky-Pudlak syndrome pulmonary fibrosis (HPSPF), a rare autosomal recessive disorder; and their unaffected relatives. Our results showed high peripheral blood concentrations of activated central memory helper cells in patients with FPF. Proportions of CD38+ memory CD27- B-cells, IgA+ memory CD27+ B-cells, IgM+ and IgD+ B-cells, and CD39+ T helper cells were increased whereas those of CD39- T helper cells were reduced in patients affected with either familial or HPSPF. Gene expression and serum proteomic analyses revealed enrichment of upregulated genes associated with mitosis and cell cycle control in circulating mononuclear cells as well as altered levels of several analytes, including leptin, cytokines, and growth factors. In conclusion, dysregulation of the extra-pulmonary immunome is a phenotypic feature of FPF or HPSPF. Further studies investigating the blood immunome are indicated to determine the role of immune system dysregulation in the pathogenesis of pulmonary fibrosis. Clinical Trial Registration www.ClinicalTrials.gov, identifiers NCT00968084, NCT01200823, NCT00001456, and NCT00084305.
Collapse
Affiliation(s)
- Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Foo Cheung
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), National Institutes of Health, Bethesda, MD, United States
| | - Yuri Kotliarov
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), National Institutes of Health, Bethesda, MD, United States
| | - Kevin J O'Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - William A Gahl
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States.,Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jinguo Chen
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), National Institutes of Health, Bethesda, MD, United States
| | - Shira Y Perl
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), National Institutes of Health, Bethesda, MD, United States
| | - Angélique Biancotto
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), National Institutes of Health, Bethesda, MD, United States
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
33
|
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive genetic disorder characterized by oculocutaneous albinism and a bleeding diathesis due to platelet dysfunction. More than 50% of cases worldwide are diagnosed on the Caribbean island of Puerto Rico. Genetic testing plays a growing role in diagnosis; however, not all patients with HPS have identified genetic mutations. In Puerto Rico, patients with HPS are often identified shortly after birth by their albinism, although the degree of hypopigmentation is highly variable. Ten subtypes have been described. Patients with HPS-1, HPS-2, and HPS-4 tend to develop pulmonary fibrosis in Puerto Rico; 100% of patients with HPS-1 develop HPS-PF. HPS-PF and idiopathic pulmonary fibrosis are considered similar entities (albeit with distinct causes) because both can show similar histological disease patterns. However, in contrast to idiopathic pulmonary fibrosis, HPS-PF manifests much earlier, often at 30-40 years of age. The progression of HPS-PF is characterized by the development of dyspnea and increasingly debilitating hypoxemia. No therapeutic interventions are currently approved by the U.S. Food and Drug Administration for the treatment of HPS and HPS-PF. However, the approval of two new antifibrotic drugs, pirfenidone and nintedanib, has prompted new interest in identifying drugs capable of reversing or halting the progression of HPS-PF. Thus, lung transplantation remains the only potentially life-prolonging treatment. At present, two clinical trials are recruiting patients with HPS-PF to identify biomarkers for disease progression. Advances in the diagnosis and management of these patients will require the establishment of multidisciplinary centers of excellence staffed by experts in this disease.
Collapse
|
34
|
Krotova K, Marek GW, Wang RL, Aslanidi G, Hoffman BE, Khodayari N, Rouhani FN, Brantly ML. Alpha-1 Antitrypsin-Deficient Macrophages Have Increased Matriptase-Mediated Proteolytic Activity. Am J Respir Cell Mol Biol 2017; 57:238-247. [PMID: 28362108 DOI: 10.1165/rcmb.2016-0366oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Alpha-1 antitrypsin (AAT) deficiency-associated emphysema is largely attributed to insufficient inhibition of neutrophil elastase released from neutrophils. Correcting AAT levels using augmentation therapy only slows disease progression, and that suggests a more complex process of lung destruction. Because alveolar macrophages (Mɸ) express AAT, we propose that the expression and intracellular accumulation of mutated Z-AAT (the most common mutation) compromises Mɸ function and contributes to emphysema development. Extracellular matrix (ECM) degradation is a hallmark of emphysema pathology. In this study, Mɸ from individuals with Z-AAT (Z-Mɸ) have greater proteolytic activity on ECM than do normal Mɸ. This abnormal Z-Mɸ activity is not abrogated by supplementation with exogenous AAT and is likely the result of cellular dysfunction induced by intracellular accumulation of Z-AAT. Using pharmacologic inhibitors, we show that several classes of proteases are involved in matrix degradation by Z-Mɸ. Importantly, compared with normal Mɸ, the membrane-bound serine protease, matriptase, is present in Z-Mɸ at higher levels and contributes to their proteolytic activity on ECM. In addition, we identified matrix metalloproteinase (MMP)-14, a membrane-anchored metalloproteinase, as a novel substrate for matriptase, and showed that matriptase regulates the levels of MMP-14 on the cell surface. Thus, high levels of matriptase may contribute to increased ECM degradation by Z-Mɸ, both directly and through MMP-14 activation. In summary, the expression of Z-AAT in Mɸ confers increased proteolytic activity on ECM. This proteolytic activity is not rescued by exogenous AAT supplementation and could thus contribute to augmentation resistance in AAT deficiency-associated emphysema.
Collapse
Affiliation(s)
- Karina Krotova
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - George W Marek
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - Rejean L Wang
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - George Aslanidi
- 2 Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Brad E Hoffman
- 2 Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Nazli Khodayari
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - Farshid N Rouhani
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - Mark L Brantly
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| |
Collapse
|
35
|
Cinar R, Gochuico BR, Iyer MR, Jourdan T, Yokoyama T, Park JK, Coffey NJ, Pri-Chen H, Szanda G, Liu Z, Mackie K, Gahl WA, Kunos G. Cannabinoid CB1 receptor overactivity contributes to the pathogenesis of idiopathic pulmonary fibrosis. JCI Insight 2017; 2:92281. [PMID: 28422760 DOI: 10.1172/jci.insight.92281] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease without effective treatment, highlighting the need for identifying new targets and treatment modalities. The pathogenesis of IPF is complex, and engaging multiple targets simultaneously might improve therapeutic efficacy. To assess the role of the endocannabinoid/cannabinoid receptor 1 (endocannabinoid/CB1R) system in IPF and its interaction with inducible nitric oxide synthase (iNOS) as dual therapeutic targets, we analyzed lung fibrosis and the status of the endocannabinoid/CB1R system and iNOS in mice with bleomycin-induced pulmonary fibrosis (PF) and in lung tissue and bronchoalveolar lavage fluid (BALF) from patients with IPF, as well as controls. In addition, we investigated the antifibrotic efficacy in the mouse PF model of an orally bioavailable and peripherally restricted CB1R/iNOS hybrid inhibitor. We report that increased activity of the endocannabinoid/CB1R system parallels disease progression in the lungs of patients with idiopathic PF and in mice with bleomycin-induced PF and is associated with increased tissue levels of interferon regulatory factor-5. Furthermore, we demonstrate that simultaneous engagement of the secondary target iNOS by the hybrid CB1R/iNOS inhibitor has greater antifibrotic efficacy than inhibition of CB1R alone. This hybrid antagonist also arrests the progression of established fibrosis in mice, thus making it a viable candidate for future translational studies in IPF.
Collapse
Affiliation(s)
- Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Malliga R Iyer
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Tony Jourdan
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Tadafumi Yokoyama
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Joshua K Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Nathan J Coffey
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Hadass Pri-Chen
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Gergő Szanda
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Ziyi Liu
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| |
Collapse
|
36
|
Bryan MM, Tolman NJ, Simon KL, Huizing M, Hufnagel RB, Brooks BP, Speransky V, Mullikin JC, Gahl WA, Malicdan MCV, Gochuico BR. Clinical and molecular phenotyping of a child with Hermansky-Pudlak syndrome-7, an uncommon genetic type of HPS. Mol Genet Metab 2017; 120:378-383. [PMID: 28259707 PMCID: PMC5395203 DOI: 10.1016/j.ymgme.2017.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 01/22/2023]
Abstract
PURPOSE Hermansky-Pudlak syndrome (HPS) is a rare inherited disorder with ten reported genetic types; each type has defects in subunits of either Adaptor Protein-3 complex or Biogenesis of Lysosome-related Organelles Complex (BLOC)-1, -2, or -3. Very few patients with BLOC-1 deficiency (HPS-7, -8, and -9 types) have been diagnosed. We report results of comprehensive clinical testing and molecular analyses of primary fibroblasts from a new case of HPS-7. RESULTS A 6-year old Paraguayan male presented with hypopigmentation, ocular albinism, nystagmus, reduced visual acuity, and easy bruising. He also experienced delayed motor and language development as a very young child; head and chest trauma resulted in intracranial hemorrhage with subsequent right hemiparesis and lung scarring. There was no clinical evidence of immunodeficiency or colitis. Whole mount transmission electron microscopy revealed absent platelet delta granules; platelet aggregation testing was abnormal. Exome sequencing revealed a homozygous nonsense mutation in the Dystrobrevin binding protein 1 (DTNBP1) gene [NM_032122.4: c.307C>T; p.Gln103*], previously reported in a Portuguese adult. The gene encodes the dysbindin subunit of BLOC-1. Dysbindin protein expression was negligible in our patient's dermal fibroblasts, while his DTNBP1 mRNA level was similar to that of a normal control. CONCLUSIONS Comprehensive clinical evaluation of the first pediatric case reported with HPS-7 reveals oculocutaneous albinism and platelet storage pool deficiency; his phenotype is consistent with findings in other patients with BLOC-1 disorders. This patient's markedly reduced Dysbindin protein expression in HPS-7 resulted from a mechanism other than nonsense mediated decay.
Collapse
Affiliation(s)
- Melanie M Bryan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Nathanial J Tolman
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Karen L Simon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Marjan Huizing
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Vladislav Speransky
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - James C Mullikin
- NIH Intramural Sequencing Center, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
37
|
Stephen J, Yokoyama T, Tolman NJ, O’Brien KJ, Nicoli ER, Brooks BP, Huryn L, Titus SA, Adams DR, Chen D, Gahl WA, Gochuico BR, Malicdan MCV. Cellular and molecular defects in a patient with Hermansky-Pudlak syndrome type 5. PLoS One 2017; 12:e0173682. [PMID: 28296950 PMCID: PMC5351877 DOI: 10.1371/journal.pone.0173682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 02/24/2017] [Indexed: 02/05/2023] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a heterogeneous group of genetic disorders typically manifesting with tyrosinase-positive oculocutaneous albinism, bleeding diathesis, and pulmonary fibrosis, in some subtypes. Most HPS subtypes are associated with defects in Biogenesis of Lysosome-related Organelle Complexes (BLOCs), which are groups of proteins that function together in the formation and/or trafficking of lysosomal-related endosomal compartments. BLOC-2, for example, consists of the proteins HPS3, HPS5, and HPS6. Here we present an HPS patient with defective BLOC-2 due to a novel intronic mutation in HPS5 that activates a cryptic acceptor splice site. This mutation leads to the insertion of nine nucleotides in-frame and results in a reduced amount of HPS5 at the transcript and protein level. In studies using skin fibroblasts derived from the proband and two other individuals with HPS-5, we found a perinuclear distribution of acidified organelles in patient cells compared to controls. Our results suggest the role of HPS5 in the endo-lysosomal dynamics of skin fibroblasts.
Collapse
Affiliation(s)
- Joshi Stephen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tadafumi Yokoyama
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nathanial J. Tolman
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kevin J. O’Brien
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elena-Raluca Nicoli
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian P. Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laryssa Huryn
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Steven A. Titus
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - David R. Adams
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dong Chen
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - William A. Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bernadette R. Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - May Christine V. Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
38
|
Saito Y, Azuma A, Matsuda K, Kamio K, Abe S, Gemma A. Pirfenidone exerts a suppressive effect on CCL18 expression in U937-derived macrophages partly by inhibiting STAT6 phosphorylation. Immunopharmacol Immunotoxicol 2016; 38:464-471. [PMID: 27788604 DOI: 10.1080/08923973.2016.1247852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONTEXT CC chemokine ligand 18 (CCL18) is suggested to play a role in the development of pulmonary fibrosis. Macrophages are thought to be the main source of CCL18, and the effect of pirfenidone, an anti-fibrotic agent for idiopathic pulmonary fibrosis, on the expression of CCL18 in macrophages warrants investigation. OBJECTIVE The purpose of this study was to investigate the effect of pirfenidone on the expression of CCL18 in macrophages. MATERIALS AND METHODS U937 cells were differentiated into macrophages by phorbol myristate acetate and then stimulated with recombinant IL-4 to induce the production of CCL18. The cells were treated with pirfenidone, and the mRNA and protein levels for CCL18 were measured by a reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The effects of pirfenidone on the IL-4 receptor (IL-4R) expression and STAT6 activation were investigated and on the JAK kinase activity were measured using the Z'-LYTE™ kinase assay. RESULTS Pirfenidone significantly suppressed the expression of CCL18 when the cells were treated with concentrations of 50-250 μg/mL. Pirfenidone did not affect the expression of the IL-4R components. The selective STAT6 inhibitor AS1517499 suppressed CCL18 expression. Both AS1517499 and pirfenidone suppressed STAT6 phosphorylation (p < .05), although the effect of pirfenidone was less marked than that of AS1517499. The Z'-LYTE™ kinase assay showed a reduction in the activities of JAK1, JAK3 and TYK2 by pirfenidone. CONCLUSION Pirfenidone suppresses CCL18 expression in macrophages and this effect is thought to be attributed partly to the inhibition of STAT6 phosphorylation.
Collapse
Affiliation(s)
- Yoshinobu Saito
- a Department of Pulmonary Medicine and Oncology , Graduate School of Medicine, Nippon Medical School , Tokyo , Japan
| | - Arata Azuma
- a Department of Pulmonary Medicine and Oncology , Graduate School of Medicine, Nippon Medical School , Tokyo , Japan
| | - Kuniko Matsuda
- a Department of Pulmonary Medicine and Oncology , Graduate School of Medicine, Nippon Medical School , Tokyo , Japan
| | - Koichiro Kamio
- a Department of Pulmonary Medicine and Oncology , Graduate School of Medicine, Nippon Medical School , Tokyo , Japan
| | - Shinji Abe
- a Department of Pulmonary Medicine and Oncology , Graduate School of Medicine, Nippon Medical School , Tokyo , Japan
| | - Akihiko Gemma
- a Department of Pulmonary Medicine and Oncology , Graduate School of Medicine, Nippon Medical School , Tokyo , Japan
| |
Collapse
|
39
|
Young LR, Gulleman PM, Short CW, Tanjore H, Sherrill T, Qi A, McBride AP, Zaynagetdinov R, Benjamin JT, Lawson WE, Novitskiy SV, Blackwell TS. Epithelial-macrophage interactions determine pulmonary fibrosis susceptibility in Hermansky-Pudlak syndrome. JCI Insight 2016; 1:e88947. [PMID: 27777976 DOI: 10.1172/jci.insight.88947] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alveolar epithelial cell (AEC) dysfunction underlies the pathogenesis of pulmonary fibrosis in Hermansky-Pudlak syndrome (HPS) and other genetic syndromes associated with interstitial lung disease; however, mechanisms linking AEC dysfunction and fibrotic remodeling are incompletely understood. Since increased macrophage recruitment precedes pulmonary fibrosis in HPS, we investigated whether crosstalk between AECs and macrophages determines fibrotic susceptibility. We found that AECs from HPS mice produce excessive MCP-1, which was associated with increased macrophages in the lungs of unchallenged HPS mice. Blocking MCP-1/CCR2 signaling in HPS mice with genetic deficiency of CCR2 or targeted deletion of MCP-1 in AECs normalized macrophage recruitment, decreased AEC apoptosis, and reduced lung fibrosis in these mice following treatment with low-dose bleomycin. We observed increased TGF-β production by HPS macrophages, which was eliminated by CCR2 deletion. Selective deletion of TGF-β in myeloid cells or of TGF-β signaling in AECs through deletion of TGFBR2 protected HPS mice from AEC apoptosis and bleomycin-induced fibrosis. Together, these data reveal a feedback loop in which increased MCP-1 production by dysfunctional AECs results in recruitment and activation of lung macrophages that produce TGF-β, thus amplifying the fibrotic cascade through AEC apoptosis and stimulation of fibrotic remodeling.
Collapse
Affiliation(s)
- Lisa R Young
- Department of Pediatrics, Division of Pulmonary Medicine, and.,Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Chelsi W Short
- Department of Pediatrics, Division of Pulmonary Medicine, and
| | - Harikrishna Tanjore
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Taylor Sherrill
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Aidong Qi
- Department of Pediatrics, Division of Pulmonary Medicine, and
| | | | - Rinat Zaynagetdinov
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - John T Benjamin
- Department of Pediatrics, Division of Neonatology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - William E Lawson
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sergey V Novitskiy
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Timothy S Blackwell
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.,Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
40
|
Abstract
Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder that is associated with oculocutaneous albinism, bleeding diatheses, granulomatous colitis, and highly penetrant pulmonary fibrosis in some subtypes, including HPS-1, HPS-2, and HPS-4. HPS pulmonary fibrosis shows many of the clinical, radiologic, and histologic features found in idiopathic pulmonary fibrosis, but occurs at a younger age. Despite knowledge of the underlying genetic defects, there are currently no definitive therapeutic or preventive approaches for HPS pulmonary fibrosis other than lung transplant.
Collapse
Affiliation(s)
- Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Lisa R Young
- Division of Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, 2200 Children's Way, Doctor's Office Tower 11215, Nashville, TN 37232, USA; Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, 1161 21st Avenue South, B-1220 Medical Center North, Nashville, TN 37232, USA.
| |
Collapse
|
41
|
Zhou Y, He CH, Herzog EL, Peng X, Lee CM, Nguyen TH, Gulati M, Gochuico BR, Gahl WA, Slade ML, Lee CG, Elias JA. Chitinase 3-like-1 and its receptors in Hermansky-Pudlak syndrome-associated lung disease. J Clin Invest 2015; 125:3178-92. [PMID: 26121745 DOI: 10.1172/jci79792] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 05/21/2015] [Indexed: 12/20/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS) comprises a group of inherited disorders caused by mutations that alter the function of lysosome-related organelles. Pulmonary fibrosis is the major cause of morbidity and mortality in patients with subtypes HPS-1 and HPS-4, which both result from defects in biogenesis of lysosome-related organelle complex 3 (BLOC-3). The prototypic chitinase-like protein chitinase 3-like-1 (CHI3L1) plays a protective role in the lung by ameliorating cell death and stimulating fibroproliferative repair. Here, we demonstrated that circulating CHI3L1 levels are higher in HPS patients with pulmonary fibrosis compared with those who remain fibrosis free, and that these levels associate with disease severity. Using murine HPS models, we also determined that these animals have a defect in the ability of CHI3L1 to inhibit epithelial apoptosis but exhibit exaggerated CHI3L1-driven fibroproliferation, which together promote HPS fibrosis. These divergent responses resulted from differences in the trafficking and effector functions of two CHI3L1 receptors. Specifically, the enhanced sensitivity to apoptosis was due to abnormal localization of IL-13Rα2 as a consequence of dysfunctional BLOC-3-dependent membrane trafficking. In contrast, the fibrosis was due to interactions between CHI3L1 and the receptor CRTH2, which trafficked normally in BLOC-3 mutant HPS. These data demonstrate that CHI3L1-dependent pathways exacerbate pulmonary fibrosis and suggest CHI3L1 as a potential biomarker for pulmonary fibrosis progression and severity in HPS.
Collapse
|
42
|
Luo C, Ji X, Fan J, Hou Z, Wang T, Wu B, Ni C. Annexin A5 promotes macrophage activation and contributes to pulmonary fibrosis induced by silica particles. Toxicol Ind Health 2015; 32:1628-38. [PMID: 25757482 DOI: 10.1177/0748233715572744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the contributions and underlying molecular mechanisms of annexin A5 toward silica-induced pulmonary fibrosis. METHODS Male C57BL/6 mice were randomly divided into three groups and instilled intratracheally with silica, saline, or air. Mice were euthanized at 3, 7, 14, or 28 days following treatment. Annexin A5 levels in serum and lung tissues were detected by enzyme-linked immunosorbant assay (ELISA) assays or Western blots. The association of annexin A5 levels with silica-induced lung fibrosis was further investigated in the macrophage cell line, RAW264.7. Following exposure of these cells to silica at a concentration of 200 μg/ml for 6 or 12 h, the expression levels of transforming growth factor β1 (TGF-β1), interleukin 1α (IL-1α), Fas ligand (FasL), and their downstream targets were evaluated by Western blots. Furthermore, annexin A5 and FasL were knocked down by small interfering ribonucleic acid (siRNA) and TGF-β1 secretion into the cell culture medium was measured by ELISA assays or Western blots. RESULTS Mice treated with silica demonstrated lung fibrosis at 28 days following exposure, whereas, in controls, only mild and transient inflammation was evident at day 3 and day 7 postinstillation and was not present at day 14. Furthermore, silica-exposed mice exhibited significantly (p < 0.05) elevated levels of annexin A5 in serum and lung tissues, relative to control groups. Consistent with these findings, silica exposure of RAW264.7 cells for 6 or 12 h, led to an annexin A5-dependent increase in the expression levels of TGF-β1, IL-1α, FasL, and their downstream target molecules. These silica-induced changes were reversed by siRNA-mediated knockdown of annexin A5, but downregulation of FasL led to increased annexin A5 expression and reduced levels of TGF-β1, IL-1α, and FasL downstream target molecules. CONCLUSIONS These findings define a role of annexin A5 in promoting macrophage activation via Fas/FasL pathways in silica-induced lung fibrosis.
Collapse
Affiliation(s)
- C Luo
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - X Ji
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - J Fan
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Z Hou
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - T Wang
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - B Wu
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - C Ni
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
43
|
Reinholz M, Eder I, Przybilla B, Schauber J, Wollenberg A, Wulffen W, Goldscheider I, Varga R, Ruzicka T, Schaumann A, Ruëff F. Photoallergic contact dermatitis due to treatment of pulmonary fibrosis with pirfenidone. J Eur Acad Dermatol Venereol 2014; 30:370-1. [DOI: 10.1111/jdv.12794] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Reinholz
- Department of Dermatology and Allergy; Ludwig-Maximilian University; Munich Germany
| | - I. Eder
- Department of Dermatology and Allergy; Ludwig-Maximilian University; Munich Germany
| | - B. Przybilla
- Department of Dermatology and Allergy; Ludwig-Maximilian University; Munich Germany
| | - J. Schauber
- Department of Dermatology and Allergy; Ludwig-Maximilian University; Munich Germany
| | - A. Wollenberg
- Department of Dermatology and Allergy; Ludwig-Maximilian University; Munich Germany
| | - W. Wulffen
- Department of Medicine V; Ludwig-Maximilian University; Munich Germany
| | - I. Goldscheider
- Department of Dermatology and Allergy; Ludwig-Maximilian University; Munich Germany
| | - R. Varga
- Department of Dermatology and Allergy; Ludwig-Maximilian University; Munich Germany
| | - T. Ruzicka
- Department of Dermatology and Allergy; Ludwig-Maximilian University; Munich Germany
| | | | - F. Ruëff
- Department of Dermatology and Allergy; Ludwig-Maximilian University; Munich Germany
| |
Collapse
|
44
|
Cullinane AR, Yeager C, Dorward H, Carmona-Rivera C, Wu HP, Moss J, O'Brien KJ, Nathan SD, Meyer KC, Rosas IO, Helip-Wooley A, Huizing M, Gahl WA, Gochuico BR. Dysregulation of galectin-3. Implications for Hermansky-Pudlak syndrome pulmonary fibrosis. Am J Respir Cell Mol Biol 2014; 50:605-13. [PMID: 24134621 DOI: 10.1165/rcmb.2013-0025oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The etiology of Hermansky-Pudlak syndrome (HPS) pulmonary fibrosis (HPSPF), a progressive interstitial lung disease with high mortality, is unknown. Galectin-3 is a β-galactoside-binding lectin with profibrotic effects. The objective of this study was to investigate the involvement of galectin-3 in HPSPF. Galectin-3 was measured by ELISA, immunohistochemistry, and immunoblotting in human specimens from subjects with HPS and control subjects. Mechanisms of galectin-3 accumulation were studied by quantitative RT-PCR, Northern blot analysis, membrane biotinylation assays, and rescue of HPS1-deficient cells by transfection. Bronchoalveolar lavage galectin-3 concentrations were significantly higher in HPSPF compared with idiopathic pulmonary fibrosis or that from normal volunteers, and correlated with disease severity. Galectin-3 immunostaining was increased in HPSPF compared with idiopathic pulmonary fibrosis or normal lung tissue. Fibroblasts from subjects with HPS subtypes associated with pulmonary fibrosis had increased galectin-3 protein expression compared with cells from nonfibrotic HPS subtypes. Galectin-3 protein accumulation was associated with reduced Galectin-3 mRNA, normal Mucin 1 levels, and up-regulated microRNA-322 in HPSPF cells. Membrane biotinylation assays showed reduced galectin-3 and normal Mucin 1 expression at the plasma membrane in HPSPF cells compared with control cells, which suggests that galectin-3 is mistrafficked in these cells. Reconstitution of HPS1 cDNA into HPS1-deficient cells normalized galectin-3 protein and mRNA levels, as well as corrected galectin-3 trafficking to the membrane. Intracellular galectin-3 levels are regulated by HPS1 protein. Abnormal accumulation of galectin-3 may contribute to the pathogenesis of HPSPF.
Collapse
Affiliation(s)
- Andrew R Cullinane
- 1 Medical Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Kanazu M, Arai T, Sugimoto C, Kitaichi M, Akira M, Abe Y, Hozumi Y, Suzuki T, Inoue Y. An intractable case of Hermansky-Pudlak syndrome. Intern Med 2014; 53:2629-34. [PMID: 25400188 DOI: 10.2169/internalmedicine.53.2446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 52-year-old Japanese man with congenital amblyopia and oculocutaneous albinism was admitted to our hospital. Chest CT showed reticular opacities and traction bronchiectasis without honeycombing. Specimens obtained by a video-assisted thoracoscopic surgery showed patchy chronic fibrotic lesions. We diagnosed him with Hermansky-Pudlak syndrome (HPS). A mutation in the HPS1 gene was detected, and the diagnosis was confirmed. The patient was treated with prednisolone, pirfenidone, and azathioprine, but he nevertheless died within four months. Autopsy lung specimens showed diffuse alveolar damage suggesting comparatively rapid deterioration, although this presentation was not typical of an acute exacerbation. These pathological changes may be a possible progression pattern in HPS patients.
Collapse
Affiliation(s)
- Masaki Kanazu
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Harada T, Ishimatsu Y, Nakashima S, Miura S, Tomonaga M, Kakugawa T, Hara S, Sakamoto N, Yoshii C, Mukae H, Kawabata Y, Kohno S. An autopsy case of Hermansky-Pudlak syndrome: a case report and review of the literature on treatment. Intern Med 2014; 53:2705-9. [PMID: 25447654 DOI: 10.2169/internalmedicine.53.2239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder, the most common complication of which influencing the prognosis is pulmonary fibrosis. In the present report, we describe an autopsy case of a Japanese woman with HPS. The patient was diagnosed at 50 years of age based on the presence of oculocutaneous albinism, hemorrhagic diathesis, ceroid-lipofuscin accumulation and pulmonary fibrosis. Although systemic steroids, immunosuppressants and pirfenidone were administered for pulmonary involvement, she died from respiratory failure two years later. Obtaining an early diagnosis and taking into consideration the need for lung transplantation is necessary in order to improve the prognosis of HPS. We herein report this very rare Japanese case of HPS with a review of the treatment approaches for HPS complicated with pulmonary fibrosis.
Collapse
Affiliation(s)
- Tatsuhiko Harada
- The Second Department of Internal Medicine, Nagasaki University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
El-Chemaly S, Malide D, Yao J, Nathan SD, Rosas IO, Gahl WA, Moss J, Gochuico BR. Glucose transporter-1 distribution in fibrotic lung disease: association with [¹⁸F]-2-fluoro-2-deoxyglucose-PET scan uptake, inflammation, and neovascularization. Chest 2013; 143:1685-1691. [PMID: 23699745 DOI: 10.1378/chest.12-1359] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND [¹⁸F]-2-fluoro-2-deoxyglucose (FDG)-PET scan uptake is increased in areas of fibrosis and honeycombing in patients with idiopathic pulmonary fibrosis (IPF). Glucose transporter-1 (Glut-1) is known to be the main transporter for FDG. There is a paucity of data regarding the distribution of Glut-1 and the cells responsible for FDG binding in fibrotic lung diseases. METHODS We applied immunofluorescence to localize Glut-1 in normal, IPF, and Hermansky-Pudlak syndrome (HPS) pulmonary fibrosis lung tissue specimens as well as an array of 19 different lung neoplasms. In addition, we investigated Glut-1 expression in inflammatory cells from BAL fluid (BALF) from healthy volunteers, subjects with IPF, and subjects with HPS pulmonary fibrosis. RESULTS In normal lung tissue, Glut-1 immunoreactivity was seen on the surface of erythrocytes. In tissue sections from fibrotic lung diseases (IPF and HPS pulmonary fibrosis), Glut-1 immunoreactivity was present on the surface of erythrocytes and inflammatory cells. BALF inflammatory cells from healthy control subjects showed no immunoreactivity; BALF cells from subjects with IPF and HPS pulmonary fibrosis showed Glut-1 immunoreactivity associated with neutrophils and alveolar macrophages. CONCLUSIONS Glut-1 transporter expression in normal lung is limited to erythrocytes. In fibrotic lung, erythrocytes and inflammatory cells express Glut-1. Together, these data suggest that FDG-PET scan uptake in IPF could be explained by enhanced inflammatory and erythrocytes uptake due to neovascularization seen in IPF and not an upregulation of metabolic rate in pneumocytes. Thus, FDG-PET scan may detect inflammation and neovascularization in lung fibrosis.
Collapse
Affiliation(s)
- Souheil El-Chemaly
- Cardiovascular and Pulmonary Branch, National Institutes of Health, Bethesda, MD; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA.
| | - Daniela Malide
- Light Microscopy Core Facility, National Institutes of Health, Bethesda, MD
| | - Jianhua Yao
- National Heart, Lung, and Blood Institute, the Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD
| | | | - Ivan O Rosas
- Cardiovascular and Pulmonary Branch, National Institutes of Health, Bethesda, MD; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, National Institutes of Health, Bethesda, MD
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
49
|
Bone marrow contributions to fibrosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:955-61. [PMID: 23385196 DOI: 10.1016/j.bbadis.2013.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 01/21/2013] [Accepted: 01/24/2013] [Indexed: 12/26/2022]
Abstract
Bone marrow transplant experiments in mice using labelled donor bone marrow have indicated that following injury bone marrow derived cells can circulate and home to the injured organs. In particular fibrocytes and myofibroblasts are capable of contributing to the wound healing response, including collagen deposition. In chronic injury this can lead to a pathological degree of fibrosis. Experiments have shown that this can be a relatively insignificant contribution to the scar forming population in certain organs and that the majority of the scar forming cells are intrinsic to the organ. Conversely, in certain circumstances, the circulating cells become major players in the organs fibrotic response. Whilst cell tracking experiments are relatively simple to perform, to actually determine a functional contribution to a fibrotic response more sophisticated approaches are required. This can include the use of bone marrow transplantation from recipients with collagen reporter systems which gives a read out of bone marrow derived cells that are transcriptional active for collagen production in a damaged organ. Another technique is to use bone marrow transplants from donors that have a mutation in the collagen to demonstrate a functional difference in fibrosis when bone marrow transplants performed. Recent reports have identified factors mediating recruitment of circulating fibrocytes to injured organs, such as CXCL12 and CXCL16 and shown that blocking these factors reduced fibrocyte recruitment and subsequent fibrosis. The identification of such factors may enable the development of novel therapies to block further fibrocyte engraftment and fibrosis in situations of pathological scarring. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
|
50
|
Mahavadi P, Guenther A, Gochuico BR. Hermansky-Pudlak syndrome interstitial pneumonia: it's the epithelium, stupid! Am J Respir Crit Care Med 2013; 186:939-40. [PMID: 23155210 DOI: 10.1164/rccm.201210-1771ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|