1
|
Fellows AL, Quigley K, Leung V, Ainscough AJ, Wilkins MR, Barnett H, Miller D, Mayr M, Wojciak-Stothard B. Engineered pulmonary artery tissues for measuring contractility, drug testing and disease modelling. Br J Pharmacol 2025; 182:2585-2602. [PMID: 39979037 DOI: 10.1111/bph.17462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND AND PURPOSE Vasoreactivity of pulmonary arteries regulates blood flow through the lungs. Excessive constriction of these vessels contributes to pulmonary arterial hypertension (PAH), a progressive and incurable condition, resulting in right heart failure. The search for new and improved drug treatments is hampered by laboratory models that do not reproduce the vasoactive behaviour of healthy and diseased human arteries. EXPERIMENTAL APPROACH We have developed an innovative technique for producing miniature, three-dimensional arterial structures that allow proxy evaluation of human pulmonary artery contractility. These "engineered pulmonary artery tissues" or "EPATs" are fabricated by suspending human pulmonary artery vascular smooth muscle cells (VSMCs) in fibrin hydrogels between pairs of silicone posts, located on custom-made racks, in 24-well culture plates. KEY RESULTS EPATs exhibit rapid, robust and reproducible contraction responses to vasoconstrictors (KCl, ET-1, U46619) as well as relaxation responses to clinically approved PAH vasodilatory drugs that target several signalling pathways, such as bosentan, epoprostenol, selexipag and imatinib. EPATs composed of pulmonary artery VSMCs from PAH patients exhibit enhanced contraction to vasoconstrictors and relaxation in response to vasodilators. We also demonstrate the incorporation of endothelial cells into EPATs for the measurement of endothelium-dependent dilatory responses. CONCLUSION AND IMPLICATIONS We demonstrate the capacity and suitability of EPATs for studying the contractile behaviour of human arterial cells and preclinical drug testing. This novel biomimetic platform has the potential to dramatically improve our understanding and treatment of cardiovascular disease.
Collapse
MESH Headings
- Humans
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiology
- Pulmonary Artery/cytology
- Tissue Engineering/methods
- Vasodilator Agents/pharmacology
- Cells, Cultured
- Vasoconstriction/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Vasoconstrictor Agents/pharmacology
- Drug Evaluation, Preclinical/methods
Collapse
Affiliation(s)
- Adam L Fellows
- National Heart & Lung Institute, Imperial College London, London, UK
- Imperial College Advanced Hackspace, Imperial College London, London, UK
| | - Kate Quigley
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Venus Leung
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Martin R Wilkins
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Harry Barnett
- Imperial College Advanced Hackspace, Imperial College London, London, UK
| | - David Miller
- Imperial College Advanced Hackspace, Imperial College London, London, UK
| | - Manuel Mayr
- National Heart & Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
2
|
Zeng X, Ma Z, Wen S, Zhou L, Hong W, Wu Z, Cen C, Bai Q, Ding S, Chen X, Wang J, Chen L, Lu W, Wang T. Imatinib aggravates pressure-overload-induced right ventricle failure via JNK/Runx2 pathway. Br J Pharmacol 2025; 182:2560-2581. [PMID: 39965654 DOI: 10.1111/bph.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/28/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND AND PURPOSE Right ventricular (RV) function is the key prognostic determinant of pulmonary hypertension (PH). In PH patients, imatinib treatment decreases pulmonary vascular resistance and improves exercise capacity, but does not change mortality or duration to clinical worsening. Imatinib has been reported to be cardiotoxic in the left heart. We hypothesise that imatinib damages the pressure overloaded RV via its direct effects within the heart, which may counteract its therapeutic effects in haemodynamic improvement of PH. EXPERIMENTAL APPROACH A pulmonary arterial banding (PAB) rat model with fixed pulmonary artery narrowing was performed to avoid changes in RV afterload. KEY RESULTS In PAB rats, imatinib treatment decreased the survival rate and exacerbated RV dysfunction, myocardial hypertrophy, apoptosis and fibrosis. In vitro, imatinib increased cardiomyocyte hypertrophy and did not change cardiac fibroblasts activation; however, imatinib-treated conditioned medium from cardiomyocytes promoted fibroblast activation. Mechanistically, imatinib increased the phosphorylation of c-jun N-terminal kinase (JNK) and the expression of RUNX family transcription factor 2 (Runx2), and subsequently promoted the transcription of thrombospondin 4 (THBS4) and connective tissue growth factor (CTGF) in RV cardiomyocytes. Finally, SP600125, a JNK inhibitor, significantly alleviated imatinib-induced RV failure in PAB rats and enhanced the effects of imatinib on RV function improvement in SU5416 + hypoxia-induced PH rats without affecting pulmonary artery narrowing. CONCLUSION AND IMPLICATIONS We demonstrate for the first time that imatinib aggravates RV failure under pressure overload through JNK/Runx2 pathway, and JNK inhibition improves the therapeutic effects of imatinib on RV function in PH.
Collapse
Affiliation(s)
- Xiaohui Zeng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhuoji Ma
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanshan Wen
- Chinese Academy of Sciences Guangzhou Institutes of Biomedicine and Health Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Liang Zhou
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanxian Hong
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhixiong Wu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunxian Cen
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianwen Bai
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shangwei Ding
- Department of Ultrasound, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingdan Chen
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Wang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Rothman AMK, Villar SS, Middleton J, Roussakis AA, Varian F, Zafar H, Law M, Apperley J, Bartelink IH, Said MM, Delgado-SanMartin JA, Kiely DG, Howard L, Toshner M, Wort SJ, Wilkins MR. Positioning Imatinib for Pulmonary Arterial Hypertension: A Dose-Finding Phase 2 Study. Am J Respir Crit Care Med 2025; 211:1018-1027. [PMID: 40080796 DOI: 10.1164/rccm.202410-1929oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/13/2025] [Indexed: 03/15/2025] Open
Abstract
Rationale: Imatinib, 400 mg daily, reduces pulmonary vascular resistance and improves exercise capacity in patients with pulmonary arterial hypertension. Concerns about safety and tolerability limit its use. Objectives: We sought to identify a safe and tolerated dose of oral imatinib between 100 mg and 400 mg daily and evaluate its efficacy. Methods: Oral imatinib was added to the background therapy of 17 patients with pulmonary arterial hypertension, including 13 who were implanted with devices that provide daily measurements of cardiopulmonary hemodynamics and physical activity. The first patient was started on 100 mg daily. The next 12 patients, recruited serially, were started on 200 mg, 300 mg, or 400 mg daily, following a continuous reassessment dose-finding model. An extension cohort (Patients 14-17) received 100 mg or 200 mg daily. Measurements and Main Results: The continuous reassessment model recommended starting dose was 200 mg daily. The most common side effect was nausea. Imatinib reduced mean pulmonary artery pressure (-6.5 mm Hg; 95% confidence interval [CI] = -2.4 to -10.6; P < 0.01) and total pulmonary resistance (-2.8 Wood units; 95% CI = -1.5 to -4.2; P < 0.001), with no significant change in cardiac output. The reduction in total pulmonary resistance was dose and exposure dependent; the reduction from baseline with imatinib, at 200 mg daily, was -20.3% (95% CI = -14.3 to -26.3%). Total pulmonary resistance and night heart rate declined steadily over the first 28 days of treatment and remained below baseline up to 40 days after imatinib withdrawal. Conclusions: Oral imatinib, 200 mg daily, is well tolerated as an add-on treatment for pulmonary arterial hypertension. A delay in the return of cardiopulmonary hemodynamics to baseline was observed after imatinib was stopped.
Collapse
Affiliation(s)
- Alexander M K Rothman
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Clinical Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Sofia S Villar
- MRC Biostatistics Unit and
- Papworth Trials Unit Collaboration, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Jennifer Middleton
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Clinical Medicine, The University of Sheffield, Sheffield, United Kingdom
| | | | - Frances Varian
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Clinical Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Hamza Zafar
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Clinical Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Martin Law
- MRC Biostatistics Unit and
- Papworth Trials Unit Collaboration, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Jane Apperley
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Imke H Bartelink
- Department of Clinical Pharmacology and Pharmacy, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Medhat M Said
- Department of Clinical Pharmacology and Pharmacy, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Clinical Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Luke Howard
- National Heart and Lung Institute and
- National Pulmonary Hypertension Service, Hammersmith Hospital, London, United Kingdom; and
| | - Mark Toshner
- VPD Heart & Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - S John Wort
- National Heart and Lung Institute and
- National Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom
| | | |
Collapse
|
4
|
Varian F, Burney R, Pearson C, Goh ZM, Newman J, Rawlings G, Zafar H, Kiely DG, Thompson AAR, Condliffe R, Toshner M, McCormack C, Armstrong I, Peasgood T, Carlton J, Rothman AMK. Selection of patient-reported outcome measures in pulmonary arterial hypertension clinical trials: a systematic review, meta-analysis and health-related quality of life framework. Eur Respir Rev 2025; 34:250006. [PMID: 40368429 PMCID: PMC12076161 DOI: 10.1183/16000617.0006-2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/23/2025] [Indexed: 05/16/2025] Open
Abstract
INTRODUCTION Health-related quality of life (HRQoL) in pulmonary arterial hypertension (PAH) is valued as an outcome measure by patients, clinicians and regulators. The selection of patient-reported outcome measures (PROMs) for measurement of HRQoL in PAH clinical trials lacks systematic evaluation of their suitability, accuracy and reliability. METHODS We report a systematic review (PROSPERO ID: CRD42024484021) following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines of PROMs selected in PAH clinical trials. PROM measurement properties were then evaluated according to the 10-step COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist and graded by recommendation for use. Finally, HRQoL was modelled into a conceptual framework using patient interviews and surveys. RESULTS Screening of 896 records identified 90 randomised controlled trials. 43 trials selected PROMs, of which 20 were sufficiently validated to detect meaningful change. Of these, eight trials were adequately powered, using either EuroQol-five dimensions-five levels (EQ-5D-5L), Short-Form-36 (SF-36) or the Living with Pulmonary Hypertension Questionnaire (LPHQ). The COSMIN evaluation recommended EmPHasis-10 and the LPHQ for use (grade A); whereas, SF-36 and EQ-5D-5L require further study (grade B). A conceptual framework of HRQoL was developed from literature comprising 8045 patients. This framework can be used to visualise the different HRQoL concepts measured by different PROMs. CONCLUSION To improve patient-centred research, greater consistency in PROM selection is required. Three of 90 randomised controlled trials have selected COSMIN-recommended PROMs. Whilst the PROMs evaluated require development across the 10 areas of psychometric property measurement, EmPHasis-10 and the LPHQ can be recommended for use. The ratified conceptual framework can further support PROM selection by identifying the HRQoL concepts they are likely to capture.
Collapse
Affiliation(s)
- Frances Varian
- Division of Clinical Medicine, School of Medicine and Population Health (formerly Faculty of Medicine, Dentistry and Health), University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Rebecca Burney
- Division of Clinical Medicine, School of Medicine and Population Health (formerly Faculty of Medicine, Dentistry and Health), University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Charlotte Pearson
- Division of Clinical Medicine, School of Medicine and Population Health (formerly Faculty of Medicine, Dentistry and Health), University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Ze Ming Goh
- Division of Clinical Medicine, School of Medicine and Population Health (formerly Faculty of Medicine, Dentistry and Health), University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Joseph Newman
- Royal Papworth Hospital, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Gregg Rawlings
- Clinical and Applied Psychology Unit, University of Sheffield, Sheffield, UK
| | - Hamza Zafar
- Division of Clinical Medicine, School of Medicine and Population Health (formerly Faculty of Medicine, Dentistry and Health), University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - A A Roger Thompson
- Division of Clinical Medicine, School of Medicine and Population Health (formerly Faculty of Medicine, Dentistry and Health), University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Mark Toshner
- Royal Papworth Hospital, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Ciara McCormack
- Department of Sport Science and Nutrition, Maynooth University, Maynooth, Ireland
| | - Iain Armstrong
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Pulmonary Hypertension Association United Kingdom, Sheffield, UK
| | - Tessa Peasgood
- Sheffield Centre for Health and Related Research (ScHARR), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Jill Carlton
- Sheffield Centre for Health and Related Research (ScHARR), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Alexander M K Rothman
- Division of Clinical Medicine, School of Medicine and Population Health (formerly Faculty of Medicine, Dentistry and Health), University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
5
|
Chen X, Xue B, Xu L. Efficacy and Safety of Treating Pulmonary Arterial Hypertension With Imatinib: A Meta-Analysis of Randomized Controlled Trials. J Cardiovasc Pharmacol 2025; 85:177-185. [PMID: 39745285 DOI: 10.1097/fjc.0000000000001665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/14/2024] [Indexed: 05/01/2025]
Abstract
ABSTRACT Pulmonary vascular remodeling and arterial hypertension (PAH) correlate with increased platelet-derived growth factor activity and elevated KIT expression. Imatinib has emerged as a potential therapeutic agent for PAH. The purpose of this systematic review and meta-analysis was to assess the effectiveness of imatinib in the treatment of PAH. A literature search was conducted with the PubMed, Embase, Web of Science, and Cochrane Library to obtain randomized controlled trials where the efficacy of imatinib and placebo in patients with PAH was compared. Three randomized controlled trials that involved 262 patients were finally included in this study. Results showed that imatinib significantly improved 6-minute walk distance (mean difference [MD] = 42.76, 95% confidence interval [CI], 9.20-76.32, P = 0.01), reduced pulmonary vascular resistance (MD = -396.68, 95% CI, -474.50 to -318.85, P < 0.00001), and lowered mean pulmonary arterial pressure (MD = -7.29, 95% CI, -13.97 to -0.61, P = 0.03) in patients with PAH. No significant difference was found between the imatinib and placebo groups in terms of mortality (odds ratio = 1.25, 95% CI, 0.49-3.18) or adverse events (odds ratio = 1.82, 95% CI, 0.76-4.36, P = 0.18). Despite the significant improvement of key hemodynamic parameters, there was no advantage in reducing clinical adverse events or mortality. The prolonged efficacy and safety of imatinib in patients with PAH warrant further studies.
Collapse
Affiliation(s)
- Xiaofa Chen
- Department of Respiratory Medicine, Nantong Third People's Hospital, Affiliated to Nantong University, Nantong, China; and
| | - Bijuan Xue
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Lina Xu
- Department of Respiratory Medicine, Nantong Third People's Hospital, Affiliated to Nantong University, Nantong, China; and
| |
Collapse
|
6
|
Klouda T, Kim Y, Baek SH, Bhaumik M, Li Y, Liu Y, Wu JC, Raby BA, Perez VDJ, Yuan K. Specialized pericyte subtypes in the pulmonary capillaries. EMBO J 2025; 44:1074-1106. [PMID: 39806101 PMCID: PMC11833098 DOI: 10.1038/s44318-024-00349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/28/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Pericytes are essential for capillary stability and homeostasis, with impaired pericyte function linked to diseases like pulmonary arterial hypertension. Investigating pericyte biology has been challenging due to the lack of specific markers, making it difficult to distinguish pericytes from other stromal cells. Using bioinformatic analysis and RNAscope, we identified Higd1b as a unique gene marker for pericytes and subsequently generated a knock-in mouse line, Higd1b-CreERT2, that accurately labels pericytes in the lung and heart. Single-cell RNA sequencing revealed two distinct Higd1b+ pericyte subtypes: while Type 1 pericytes support capillary homeostasis, Type 2 pericytes accumulate in arterioles, and co-express smooth muscle markers and higher levels of vimentin under hypoxic conditions. Lastly, healthy human lung pericytes with upregulation of vimentin exhibited increased adhesion, migration, and higher expression levels of the smooth muscle marker SM22 in vitro. These findings highlight the specialization of pulmonary pericytes and their contribution to vascular remodeling during hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Timothy Klouda
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yunhye Kim
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Seung-Han Baek
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Mantu Bhaumik
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yan Li
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yu Liu
- Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Benjamin A Raby
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Vinicio de Jesus Perez
- Division of Pulmonary and Allergy Critical Care Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA.
| | - Ke Yuan
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Ghofrani HA, Gomberg-Maitland M, Zhao L, Grimminger F. Mechanisms and treatment of pulmonary arterial hypertension. Nat Rev Cardiol 2025; 22:105-120. [PMID: 39112561 DOI: 10.1038/s41569-024-01064-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 11/28/2024]
Abstract
Substantial progress has been made in the management of pulmonary arterial hypertension (PAH) in the past 25 years, but the disease remains life-limiting. Established therapies for PAH are mostly limited to symptomatic relief by correcting the imbalance of vasoactive factors. The tyrosine kinase inhibitor imatinib, the first predominantly non-vasodilatory drug to be tested in patients with PAH, improved exercise capacity and pulmonary haemodynamics compared with placebo but at the expense of adverse events such as subdural haematoma. Given that administration by inhalation might reduce the risk of systemic adverse effects, inhaled formulations of tyrosine kinase inhibitors are currently in clinical development. Other novel therapeutic approaches for PAH include suppression of activin receptor type IIA signalling with sotatercept, which has shown substantial efficacy in clinical trials and was approved for use in the USA in 2024, but the long-term safety of the drug remains unclear. Future advances in the management of PAH will focus on right ventricular function and involve deep phenotyping and the development of a personalized medicine approach. In this Review, we summarize the mechanisms underlying PAH, provide an overview of available PAH therapies and their limitations, describe the development of newer, predominantly non-vasodilatory drugs that are currently being tested in phase II or III clinical trials, and discuss future directions for PAH research.
Collapse
Affiliation(s)
- Hossein-Ardeschir Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany.
| | - Mardi Gomberg-Maitland
- George Washington University School of Medicine and Health Sciences, Department of Medicine, Washington, DC, USA
| | - Lan Zhao
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Friedrich Grimminger
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
8
|
Forbes LM, Bauer N, Bhadra A, Bogaard HJ, Choudhary G, Goss KN, Gräf S, Heresi GA, Hopper RK, Jose A, Kim Y, Klouda T, Lahm T, Lawrie A, Leary PJ, Leopold JA, Oliveira SD, Prisco SZ, Rafikov R, Rhodes CJ, Stewart DJ, Vanderpool RR, Yuan K, Zimmer A, Hemnes AR, de Jesus Perez VA, Wilkins MR. Precision Medicine for Pulmonary Vascular Disease: The Future Is Now (2023 Grover Conference Series). Pulm Circ 2025; 15:e70027. [PMID: 39749110 PMCID: PMC11693987 DOI: 10.1002/pul2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Pulmonary vascular disease is not a single condition; rather it can accompany a variety of pathologies that impact the pulmonary vasculature. Applying precision medicine strategies to better phenotype, diagnose, monitor, and treat pulmonary vascular disease is increasingly possible with the growing accessibility of powerful clinical and research tools. Nevertheless, challenges exist in implementing these tools to optimal effect. The 2023 Grover Conference Series reviewed the research landscape to summarize the current state of the art and provide a better understanding of the application of precision medicine to managing pulmonary vascular disease. In particular, the following aspects were discussed: (1) Clinical phenotypes, (2) genetics, (3) epigenetics, (4) biomarker discovery, (5) application of precision biology to clinical trials, (6) the right ventricle (RV), and (7) integrating precision medicine to clinical care. The present review summarizes the content of these discussions and the prospects for the future.
Collapse
Affiliation(s)
- Lindsay M. Forbes
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Natalie Bauer
- Department of PharmacologyCollege of Medicine, University of South AlabamaMobileAlabamaUSA
- Department of Physiology and Cell BiologyUniversity of South AlabamaMobileAlabamaUSA
| | - Aritra Bhadra
- Department of PharmacologyCollege of Medicine, University of South AlabamaMobileAlabamaUSA
- Center for Lung BiologyCollege of Medicine, University of South AlabamaMobileAlabamaUSA
| | - Harm J. Bogaard
- Department of Pulmonary MedicineAmsterdam UMCAmsterdamNetherlands
| | - Gaurav Choudhary
- Division of CardiologyWarren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
- Lifespan Cardiovascular InstituteRhode Island and Miriam HospitalsProvidenceRhode IslandUSA
- Department of CardiologyProvidence VA Medical CenterProvidenceRhode IslandUSA
| | - Kara N. Goss
- Department of Medicine and PediatricsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Stefan Gräf
- Division of Computational Genomics and Genomic Medicine, Department of MedicineUniversity of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research InstituteCambridgeUK
| | | | - Rachel K. Hopper
- Department of PediatricsStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Arun Jose
- Division of Pulmonary, Critical Care, and Sleep MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Yunhye Kim
- Division of Pulmonary MedicineBoston Children's HospitalBostonMAUSA
| | - Timothy Klouda
- Division of Pulmonary MedicineBoston Children's HospitalBostonMAUSA
| | - Tim Lahm
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of ColoradoAuroraColoradoUSA
- Division of Pulmonary, Critical Care, and Sleep MedicineNational Jewish HealthDenverColoradoUSA
- Pulmonary and Critical Care SectionRocky Mountain Regional VA Medical CenterDenverColoradoUSA
| | - Allan Lawrie
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Peter J. Leary
- Departments of Medicine and EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Jane A. Leopold
- Division of Cardiovascular MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Suellen D. Oliveira
- Department of Anesthesiology, Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Sasha Z. Prisco
- Division of CardiovascularLillehei Heart Institute, University of MinnesotaMinneapolisMinnesotaUSA
| | - Ruslan Rafikov
- Department of MedicineIndiana UniversityIndianapolisIndianaUSA
| | | | - Duncan J. Stewart
- Ottawa Hospital Research InstituteFaculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | | | - Ke Yuan
- Division of Pulmonary MedicineBoston Children's HospitalBostonMAUSA
| | - Alexsandra Zimmer
- Department of MedicineBrown UniversityProvidenceRhode IslandUSA
- Lifespan Cardiovascular InstituteRhode Island HospitalProvidenceRhode IslandUSA
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Vinicio A. de Jesus Perez
- Division of Pulmonary and Critical Care MedicineStanford University Medical CenterStanfordCaliforniaUSA
| | | |
Collapse
|
9
|
Kendrew R, Ajraoui S, Beaudet A, Kelly K, Kiely DG, Rothman A, Varian F, Davis S, Pillai N. Relevance of patient-centered actigraphy measures in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: a qualitative interview study. BMC Pulm Med 2024; 24:608. [PMID: 39696200 DOI: 10.1186/s12890-024-03442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are severe, progressive diseases characterized by key symptoms such as dyspnea and fatigue. These symptoms impair physical functioning, with patients struggling to perform their daily activities. One traditional measure of physical functioning and exercise capacity is the 6-minute walk test (6MWT). Actigraphy represents a promising tool to complement the 6MWT and provide a holistic picture of physical performance in patients with PAH or CTEPH. However, the current literature holds limited evidence on content validity of actigraphy in these populations, as reported by patients themselves. The primary objective of this study was to understand which physical functioning concepts are most meaningful to patients with PAH or CTEPH and identify relevant actigraphy variables and appropriate timeframes for their measurement. METHODS This was a cross-sectional, qualitative study in adults with a confirmed diagnosis of PAH or CTEPH. Participants from the UK and USA were interviewed one-on-one via a web-based platform, with interviewers using a semi-structured discussion guide that included concept elicitation and cognitive debriefing sections. Data within the anonymized interview transcripts were coded and thematically analyzed. RESULTS Concept elicitation identified the physical functioning concepts most meaningful to patients with PAH or CTEPH and generated a combined conceptual model of physical functioning, which strongly aligned with previous literature. During cognitive debriefing, of the four actigraphy variables debriefed in relation to these physical functioning concepts, study participants highly valued time spent in non-sedentary physical activity and time spent in moderate to vigorous activity, while step count and walking speed emerged as less relevant. Participants indicated four alternative variables as relevant: walking distance, walking up hills or inclines, duration of continuous walking bouts, and time spent walking. Regardless of the variable, participants suggested a timeframe of approximately 10 or 12 h/day over a minimum of 14 days for measuring physical functioning. CONCLUSIONS By demonstrating the content validity of actigraphy measures of physical functioning, this qualitative study begins to address the evidence gaps identified by the regulatory requirements for using actigraphy endpoints in future PAH and CTEPH clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
- NIHR Biomedical Research Centre, Sheffield, UK
| | - Alexander Rothman
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Frances Varian
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Stacy Davis
- Janssen Global Services, LLC, Horsham, PA, USA
| | - Nadia Pillai
- Actelion Pharmaceuticals Ltd, Allschwil, Switzerland.
| |
Collapse
|
10
|
Shen YH, Ding D, Lian TY, Qiu BC, Yan Y, Wang PW, Zhang WH, Jing ZC. Panorama of artery endothelial cell dysfunction in pulmonary arterial hypertension. J Mol Cell Cardiol 2024; 197:61-77. [PMID: 39437884 DOI: 10.1016/j.yjmcc.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal lung disease characterized by progressive pulmonary vascular remodeling. The initial cause of pulmonary vascular remodeling is the dysfunction of pulmonary arterial endothelial cells (PAECs), manifested by changes in the categorization of cell subtypes, endothelial programmed cell death, such as apoptosis, necroptosis, pyroptosis, ferroptosis, et al., overproliferation, senescence, metabolic reprogramming, endothelial-to-mesenchymal transition, mechanosensitivity, and regulation ability of peripheral cells. Therefore, it is essential to explore the mechanism of endothelial dysfunction in the context of PAH. This review aims to provide a comprehensive understanding of the molecular mechanisms underlying endothelial dysfunction in PAH. We highlight the developmental process of PAECs and changes in PAH and summarise the latest classification of endothelial dysfunction. Our review could offer valuable insights into potential novel EC-specific targets for preventing and treating PAH.
Collapse
Affiliation(s)
- Ying-Huizi Shen
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Dong Ding
- National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian-Yu Lian
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bao-Chen Qiu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Yan
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei-Wen Wang
- National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Hua Zhang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Jasińska-Stroschein M, Glajzner P. Searching for Old and New Small-Molecule Protein Kinase Inhibitors as Effective Treatments in Pulmonary Hypertension-A Systematic Review. Int J Mol Sci 2024; 25:12858. [PMID: 39684570 DOI: 10.3390/ijms252312858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Treatment options for pulmonary arterial hypertension (PAH) have improved substantially in the last 30 years, but there is still a need for novel molecules that can regulate the excessive accumulation of pulmonary artery smooth muscle cells (PASMCs) and consequent vascular remodeling. One set of possible candidates are protein kinases. The study provides an overview of existing preclinical and clinical data regarding small-molecule protein kinase inhibitors in PAH. Online databases were searched from 2001 to 2023 according to PRISMA. The corpus included preclinical studies demonstrating alterations in at least one PH-related parameter following chronic exposure to an individual protein kinase inhibitor, as well as prospective clinical reports including healthy adults or those with PAH, with primary outcomes defined as safety or efficacy of an individual small-molecule protein kinase inhibitor. Several models in preclinical protocols (93 papers) have been proposed for studying small-molecule protein kinase inhibitors in PAH. In total, 51 kinase inhibitors were tested. Meta-analysis of preclinical results demonstrated seralutinib, sorafenib, fasudil hydrochloride, and imatinib had the most comprehensive effects on PH with anti-inflammatory, anti-oxidant, and anti-proliferative potential. Fasudil demonstrated more than 70% animal survival with the longest experimental period, while dasatinib, nintedanib, and (R)-crizotinib could deteriorate PAH. The substances targeting the same kinases often varied considerably in their activity, and such heterogeneity may be due to the variety of causes. Recent studies have addressed the molecules that affect multiple networks such as PDG-FRα/β/CSF1R/c-KIT/BMPR2 or FKBP12/mTOR. They also focus on achieving a satisfactory safety profile using innovative inhalation formulations Many small-molecule protein kinase inhibitors are able to control migration, proliferation and survival in PASMCs in preclinical observations. Standardized animal models can successfully reduce inter-study heterogeneity and thereby facilitate successful identification of candidate drugs for further evaluations.
Collapse
Affiliation(s)
| | - Paulina Glajzner
- Department of Biopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
12
|
Liu Y, Jin F, Zhou L, Li X, Li X, Chen Q, Yang S, Sun J, Qi F. Platelet-derived Growth Factor Receptor-α Induces Contraction Knots and Inflammatory Pain-like Behavior in a Rat Model of Myofascial Trigger Points. Anesthesiology 2024; 141:929-945. [PMID: 39058323 PMCID: PMC11463032 DOI: 10.1097/aln.0000000000005167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Myofascial trigger points (MTrPs) are the primary etiological characteristics of chronic myofascial pain syndrome. Receptor tyrosine kinases (RTKs) are associated with signal transduction in the central mechanisms of chronic pain, but the role of RTKs in the peripheral mechanisms of MTrPs remains unclear. The current study aimed to identify RTKs expression in MTrPs and elucidate the molecular mechanisms through which platelet-derived growth factor receptor-α (PDGFR-α) induces contraction knots and inflammatory pain-like behavior in a rat model of myofascial trigger points. METHODS MTrPs tissue samples were obtained from the trapezius muscles of patients with myofascial pain syndrome through needle biopsy, and PDGFR-α activation was analyzed by microarray, enzyme-linked immunosorbent assay, and histological staining. Sprague-Dawley rats (male and female) were used to investigate PDGFR-α signaling, assessing pain-like behaviors with Randall-Selitto and nest-building tests. Muscle fiber and sarcomere morphologies were observed using histology and electron microscopy. The PDGFR-α binding protein was identified by coimmunoprecipitation, liquid chromatograph mass spectrometer, and molecular docking. PDGFR-α-related protein or gene levels, muscle contraction, and inflammatory markers were determined by Western blot and reverse-transcription quantitative polymerase chain reaction. RESULTS PDGFR-α phosphorylation levels were elevated in the MTrPs tissues of individuals with trapezius muscle pain and were positively correlated with pain intensity. In rats, PDGFR-α activation caused pain-like behaviors and muscle contraction via the Janus kinase 2/signal transducer and activator of transcription-3 (JAK2/STAT3) pathway. JAK2/STAT3 inhibitors reversed the pain-like behaviors and muscle contraction induced by PDGFR-α activation. Collagen type I α 1 (COL1A1) binds to PDGFR-α and promotes its phosphorylation, which contributed to pain-like behaviors and muscle contraction. CONCLUSIONS COL1A1-induced phosphorylation of PDGFR-α and the subsequent activation of the JAK2/STAT3 pathway may induce dysfunctional muscle contraction and increased nociception at MTrPs. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Yu Liu
- Department of Anesthesiology, and Research Center for Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feihong Jin
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lingwei Zhou
- Department of Anesthesiology, and Research Center for Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuan Li
- Department of Anesthesiology, and Research Center for Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyue Li
- Department of Anesthesiology, and Research Center for Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qinghe Chen
- Department of Anesthesiology, and Research Center for Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaozhong Yang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jintang Sun
- Research Center for Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, China
| | - Feng Qi
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
13
|
Steinhauser ML, Maron BA. Viewing Pulmonary Arterial Hypertension Pathogenesis and Opportunities for Disease-Modifying Therapy Through the Lens of Biomass. JACC Basic Transl Sci 2024; 9:1252-1263. [PMID: 39534642 PMCID: PMC11551874 DOI: 10.1016/j.jacbts.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 11/16/2024]
Abstract
Fibroproliferative remodeling of distal pulmonary arterioles is a cornerstone characteristic of pulmonary arterial hypertension (PAH). Data from contemporary quantitative imaging suggest that anabolic synthesis of macromolecular substrate, defined here as biomass, is the proximate event that causes vascular remodeling via pathogenic changes to DNA, collagen, cytoskeleton, and lipid membranes. Modifying biomass is achievable but requires tilting the balance in favor of endogenous degradation over synthetic pathways in order to advance the first-ever disease-modifying PAH pharmacotherapy. Viewing PAH pathobiology through the lens of biomass represents an opportunity to decipher novel determinants of disease inception and inform interventions that induce reverse remodeling.
Collapse
Affiliation(s)
- Matthew L. Steinhauser
- Division of Cardiovascular Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bradley A. Maron
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- University of Maryland-Institute for Health Computing, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Corboz MR, Nguyen TL, Stautberg A, Cipolla D, Perkins WR, Chapman RW. Current Overview of the Biology and Pharmacology in Sugen/Hypoxia-Induced Pulmonary Hypertension in Rats. J Aerosol Med Pulm Drug Deliv 2024; 37:241-283. [PMID: 39388691 PMCID: PMC11502635 DOI: 10.1089/jamp.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/03/2024] [Indexed: 10/12/2024] Open
Abstract
The Sugen 5416/hypoxia (Su/Hx) rat model of pulmonary arterial hypertension (PAH) demonstrates most of the distinguishing features of PAH in humans, including increased wall thickness and obstruction of the small pulmonary arteries along with plexiform lesion formation. Recently, significant advancement has been made describing the epidemiology, genomics, biochemistry, physiology, and pharmacology in Su/Hx challenge in rats. For example, there are differences in the overall reactivity to Su/Hx challenge in different rat strains and only female rats respond to estrogen treatments. These conditions are also encountered in human subjects with PAH. Also, there is a good translation in both the biochemical and metabolic pathways in the pulmonary vasculature and right heart between Su/Hx rats and humans, particularly during the transition from the adaptive to the nonadaptive phase of right heart failure. Noninvasive techniques such as echocardiography and magnetic resonance imaging have recently been used to evaluate the progression of the pulmonary vascular and cardiac hemodynamics, which are important parameters to monitor the efficacy of drug treatment over time. From a pharmacological perspective, most of the compounds approved clinically for the treatment of PAH are efficacious in Su/Hx rats. Several compounds that show efficacy in Su/Hx rats have advanced into phase II/phase III studies in humans with positive results. Results from these drug trials, if successful, will provide additional treatment options for patients with PAH and will also further validate the excellent translation that currently exists between Su/Hx rats and the human PAH condition.
Collapse
|
15
|
Austin ED, Aldred MA, Alotaibi M, Gräf S, Nichols WC, Trembath RC, Chung WK. Genetics and precision genomics approaches to pulmonary hypertension. Eur Respir J 2024; 64:2401370. [PMID: 39209481 PMCID: PMC11525347 DOI: 10.1183/13993003.01370-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Considerable progress has been made in the genomics of pulmonary arterial hypertension (PAH) since the 6th World Symposium on Pulmonary Hypertension, with the identification of rare variants in several novel genes, as well as common variants that confer a modest increase in PAH risk. Gene and variant curation by an expert panel now provides a robust framework for knowing which genes to test and how to interpret variants in clinical practice. We recommend that genetic testing be offered to specific subgroups of symptomatic patients with PAH, and to children with certain types of group 3 pulmonary hypertension (PH). Testing of asymptomatic family members and the use of genetics in reproductive decision-making require the involvement of genetics experts. Large cohorts of PAH patients with biospecimens now exist and extension to non-group 1 PH has begun. However, these cohorts are largely of European origin; greater diversity will be essential to characterise the full extent of genomic variation contributing to PH risk and treatment responses. Other types of omics data are also being incorporated. Furthermore, to advance gene- and pathway-specific care and targeted therapies, gene-specific registries will be essential to support patients and their families and to lay the foundation for genetically informed clinical trials. This will require international outreach and collaboration between patients/families, clinicians and researchers. Ultimately, harmonisation of patient-derived biospecimens, clinical and omic information, and analytic approaches will advance the field.
Collapse
Affiliation(s)
- Eric D. Austin
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Mona Alotaibi
- University of California San Diego, San Diego, CA, USA
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart and Lung Research Institute, Cambridge, UK
| | - William C. Nichols
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Richard C. Trembath
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Wendy K. Chung
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Rasheed A, Aslam S, Sadiq HZ, Ali S, Syed R, Panjiyar BK. New and Emerging Therapeutic Drugs for the Treatment of Pulmonary Arterial Hypertension: A Systematic Review. Cureus 2024; 16:e68117. [PMID: 39347150 PMCID: PMC11438555 DOI: 10.7759/cureus.68117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a serious, progressive, and potentially fatal lung disease characterized by a gradual increase in mean pulmonary arterial pressure to over 20 mmHg at rest. The pathogenesis of PAH is multifactorial. It involves dynamic obstruction of the pulmonary vasculature through vasoconstriction, structural obstruction due to adverse vascular remodeling, and pathological obstruction caused by vascular fibrosis and stiffening, which reduces compliance. PAH often presents with vague initial symptoms and is frequently diagnosed at an advanced stage. The increased pulmonary arterial pressure leads to vascular remodeling, eventually resulting in right ventricular hypertrophy and failure. PAH is a rare condition with a median life expectancy of three years, underscoring the need for effective treatment alternatives. Several FDA-approved therapeutic options are available, including prostacyclin analogs (epoprostenol, iloprost, and treprostinil), the non-prostanoid IP receptor agonist selexipag, selective endothelin receptor antagonists (ERA) (ambrisentan, bosentan, and macitentan), phosphodiesterase 5 inhibitors (sildenafil and tadalafil), and the soluble guanylate cyclase (sGC) stimulator riociguat. Despite these advancements, current medications do not provide a permanent cure. This study presents an overview of current and emerging PAH therapies through a systematic literature review. It involved an analysis of nine studies and a review of 800 papers from reputable journals published between 2013 and June 2023. The research focused on drug effects on the six-minute walk distance (6-MWD) and associated side effects in randomized controlled trials. The review found that while udenafil, imatinib, racecadotril, sotatercept, anastrozole, riociguat, tacrolimus, and ralinepag were evaluated, imatinib was notably associated with adverse side effects. Conversely, udenafil, racecadotril, sotatercept, anastrozole, riociguat, tacrolimus, and ralinepag were found to be safe, well-tolerated, and effective in improving hemodynamic measures and 6-MWDs. This study aims to summarize the developing treatment options currently under clinical trials, highlighting the need for further trials before their application in clinical practice.
Collapse
Affiliation(s)
- Amir Rasheed
- Internal Medicine, Aziz Bhatti Shaheed Teaching Hospital, Gujrat, PAK
| | | | | | - Salamat Ali
- General Surgery, Aziz Bhatti Shaheed Teaching Hospital, Gujrat, PAK
| | - Rizwana Syed
- Internal Medicine, Apollo Institute of Medical Sciences and Research, Chittoor, Chittoor, IND
| | - Binay K Panjiyar
- Research, Ventolini's Lab, Texas Tech University Health Sciences Center, Odessa, USA
- Global Clinical Scholars Research Training, Harvard Medical School, Boston, USA
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
17
|
Frantz RP, McLaughlin VV, Sahay S, Escribano Subías P, Zolty RL, Benza RL, Channick RN, Chin KM, Hemnes AR, Howard LS, Sitbon O, Vachiéry JL, Zamanian RT, Cravets M, Roscigno RF, Mottola D, Osterhout R, Bruey JM, Elman E, Tompkins CA, Parsley E, Aranda R, Zisman LS, Ghofrani HA. Seralutinib in adults with pulmonary arterial hypertension (TORREY): a randomised, double-blind, placebo-controlled phase 2 trial. THE LANCET. RESPIRATORY MEDICINE 2024; 12:523-534. [PMID: 38705167 DOI: 10.1016/s2213-2600(24)00072-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Morbidity and mortality in pulmonary arterial hypertension (PAH) remain high. Activation of platelet-derived growth factor receptor, colony stimulating factor 1 receptor, and mast or stem cell growth factor receptor kinases stimulates inflammatory, proliferative, and fibrotic pathways driving pulmonary vascular remodelling in PAH. Seralutinib, an inhaled kinase inhibitor, targets these pathways. We aimed to evaluate the efficacy and safety of seralutinib in patients with PAH receiving standard background therapy. METHODS The TORREY trial was a phase 2, randomised, multicentre, multinational, double-blind, placebo-controlled study. Patients with PAH from 40 hospital and community sites were randomly assigned 1:1 via interactive response technologies to receive seralutinib (60 mg twice daily for 2 weeks, then increased to 90 mg twice daily as tolerated) or placebo by dry powder inhaler twice daily for 24 weeks. Randomisation was stratified by baseline pulmonary vascular resistance (PVR; <800 dyne·s/cm5 and ≥800 dyne·s/cm5). Patients were eligible if classified as WHO Group 1 PH (PAH), WHO Functional Class II or III, with a PVR of 400 dyne·s/cm5 or more, and a 6 min walk distance of between 150 m and 550 m. The primary endpoint was change in PVR from baseline to 24 weeks. Analyses for efficacy endpoints were conducted in randomly assigned patients (intention-to-treat population). Safety analyses included all patients who received the study drug. TORREY was registered with ClinicalTrials.gov (NCT04456998) and EudraCT (2019-002669-37) and is completed. FINDINGS From Nov 12, 2020, to April 20, 2022, 151 patients were screened for eligibility, and following exclusions, 86 adults receiving PAH background therapy were randomly assigned to seralutinib (n=44; four male, 40 female) or placebo (n=42; four male, 38 female), and comprised the intention-to-treat population. At baseline, treatment groups were balanced except for a higher representation of WHO Functional Class II patients in the seralutinib group. The least squares mean change from baseline to week 24 in PVR was 21·2 dyne·s/cm5 (95% CI -37·4 to 79·8) for the placebo group and -74·9 dyne·s/cm5 (-139·7 to -10·2) for the seralutinib group. The least squares mean difference between the seralutinib and placebo groups for change in PVR was -96·1 dyne·s/cm5 (95% CI -183·5 to -8·8; p=0·03). The most common treatment-emergent adverse event in both treatment groups was cough: 16 (38%) of 42 patients in the placebo group; 19 (43%) of 44 patients in the seralutinib group. INTERPRETATION Treatment with inhaled seralutinib significantly decreased PVR, meeting the primary endpoint of the study among patients receiving background therapy for PAH. FUNDING Gossamer Bio.
Collapse
Affiliation(s)
- Robert P Frantz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Vallerie V McLaughlin
- Department of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA; Frankel Cardiovascular Center, Ann Arbor, MI, USA
| | - Sandeep Sahay
- Division of Pulmonary, Critical Care & Sleep Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Pilar Escribano Subías
- Department of Cardiology, CIBERCV, Complutense University, Madrid, Spain; University Hospital 12 de Octubre, Madrid, Spain
| | - Ronald L Zolty
- Department of Cardiovascular Medicine, University of Nebraska College of Medicine, Omaha, NE, USA; University of Nebraska Medical Center, Omaha, NE, USA
| | - Raymond L Benza
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mount Sinai Hospital, New York, NY, USA
| | - Richard N Channick
- Department of Clinical Medicine, University of California Los Angeles, Los Angeles, CA, USA; UCLA Medical Center, Los Angeles, CA, USA
| | - Kelly M Chin
- Division of Pulmonary and Critical Care Medicine, UT Southwestern Medical Center, Dallas, TX, USA; UT Southwestern Medical Center, Dallas, TX, USA
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN, USA; Vanderbilt University Medical Center, Nashville, TN, USA
| | - Luke S Howard
- National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, London, UK; Hammersmith Hospital, London, UK
| | - Olivier Sitbon
- Department of Respiratory Medicine, Hôpital Bicêtre (AP-HP), Le Kremlin-Bicêtre, France; Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Jean-Luc Vachiéry
- Department of Cardiology, Université Libre de Bruxelles, Brussels, Belgium; HUB-Hôpital Erasme, Brussels, Belgium
| | - Roham T Zamanian
- Department of Medicine-Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA; Stanford Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | | | | - Hossein-Ardeschir Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen and Marburg Lung Center (UGMLC), Giessen, Germany; Institute for Lung Health, Cardio-Pulmonary Institute, Giessen, Germany; German Center for Lung Research (DZL), Giessen, Germany; Department of Medicine, Imperial College, London, UK
| |
Collapse
|
18
|
Ba H, Guo Y, Jiang Y, Li Y, Dai X, Liu Y, Li X. Unveiling the metabolic landscape of pulmonary hypertension: insights from metabolomics. Respir Res 2024; 25:221. [PMID: 38807129 PMCID: PMC11131231 DOI: 10.1186/s12931-024-02775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/14/2024] [Indexed: 05/30/2024] Open
Abstract
Pulmonary hypertension (PH) is regarded as cardiovascular disease with an extremely poor prognosis, primarily due to irreversible vascular remodeling. Despite decades of research progress, the absence of definitive curative therapies remains a critical challenge, leading to high mortality rates. Recent studies have shown that serious metabolic disorders generally exist in PH animal models and patients of PH, which may be the cause or results of the disease. It is imperative for future research to identify critical biomarkers of metabolic dysfunction in PH pathophysiology and to uncover metabolic targets that could enhance diagnostic and therapeutic strategies. Metabolomics offers a powerful tool for the comprehensive qualitative and quantitative analysis of metabolites within specific organisms or cells. On the basis of the findings of the metabolomics research on PH, this review summarizes the latest research progress on metabolic pathways involved in processes such as amino acid metabolism, carbohydrate metabolism, lipid metabolism, and nucleotide metabolism in the context of PH.
Collapse
Affiliation(s)
- Huixue Ba
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yingfan Guo
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yujie Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Ying Li
- Department of Health Management, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xuejing Dai
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| | - Yuan Liu
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China.
| |
Collapse
|
19
|
Zamanian RT, Weatherald J, Sweatt AJ, Hemnes A, Rashid M, Psotka MA, Bogaard HJ, de Jesus Perez V. Constructing the Framework for Disease Modification in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2024; 209:1189-1195. [PMID: 38471030 PMCID: PMC11146536 DOI: 10.1164/rccm.202401-0089pp] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024] Open
Affiliation(s)
- Roham T. Zamanian
- Division of Pulmonary, Allergy and Critical Care Medicine and
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, California
| | - Jason Weatherald
- Department of Medicine, Division of Pulmonary Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J. Sweatt
- Division of Pulmonary, Allergy and Critical Care Medicine and
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, California
| | - Anna Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Moira Rashid
- Planned Parenthood of Orange and San Bernandino Counties, California
| | - Mitchell A. Psotka
- U.S. Food and Drug Administration, Silver Spring, Maryland
- Inova Schar Heart and Vascular, Falls Church, Virginia; and
| | - Harm J. Bogaard
- Department of Pulmonary Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Vinicio de Jesus Perez
- Division of Pulmonary, Allergy and Critical Care Medicine and
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, California
| |
Collapse
|
20
|
Novara ME, Di Martino E, Stephens B, Nayrouz M, Vitulo P, Carollo A, Provenzani A. Future Perspectives of Pulmonary Arterial Hypertension: A Review of Novel Pipeline Treatments and Indications. Drugs R D 2024; 24:13-28. [PMID: 38514585 PMCID: PMC11035521 DOI: 10.1007/s40268-024-00453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 03/23/2024] Open
Abstract
Pulmonary arterial hypertension is characterized by elevated blood pressure and pathological changes in the pulmonary arterioles, leading to the development of right-heart failure and potentially fatal outcomes if left untreated. This review aims to provide an overview of novel drugs or formulations and new drug indications for pulmonary arterial hypertension that are currently in phases II-III of randomized controlled trials, and describe the rationale for the use of these targeted therapies, as well as their efficacy, safety profile, and impact on quality of life and survival. The literature research was conducted using data from ClinicalTrials.gov for the period between 1 January 2016 up to 31 December 2022. The population of interest includes individuals aged ≥ 18 years who have been diagnosed with pulmonary arterial hypertension. The review selection criteria included trials with recruiting, enrolling by invitation, active, terminated or completed status in 2022 and 2023. A total of 24 studies were selected for evaluation based on the inclusion and exclusion criteria. This review summarizes the updated information from randomized clinical trials involving novel therapies for pulmonary arterial hypertension. However, larger clinical trials are required to validate their clinical safety and effects. In the future, clinicians should choose therapies based on the patient's individual situation and requirements when developing treatment strategies.
Collapse
Affiliation(s)
- Maria Eugenia Novara
- Clinical Pharmacy Service, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - Enrica Di Martino
- Clinical Pharmacy Service, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - Brandon Stephens
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Mary Nayrouz
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Patrizio Vitulo
- Pneumology Unit, Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - Anna Carollo
- Clinical Pharmacy Service, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - Alessio Provenzani
- Clinical Pharmacy Service, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy.
| |
Collapse
|
21
|
Zarogoulidis P, Petridis D, Huang H, Bai C, Pitsiou G, Matthaios D, Perdikouri EI, Papadopoulos V, Petanidis S, Kosmidis C, Hohenforst-schmidt W, Porpodis K, Kougas N, Oikonomou P, Nikolaou C, Charalampidis C, Sardeli C. Nebulisation of Paclitaxel, Sotatercept and Iloprost for pulmonary hypertension for lung cancer. From In vitro to In vivo. J Cancer 2024; 15:871-879. [PMID: 38230210 PMCID: PMC10788713 DOI: 10.7150/jca.90732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024] Open
Abstract
Background: Pulmonary hypertension is common symptom among several diseases. The consequences are severe for several organs. Pulmonary hypertension is usually under-diagnosed and the main symptom observed is dyspnea with or without exercise. Currently we have several treatment modalities administered orally, via inhalation, intravenously and subcutaneously. In advanced disease then heart or lung transplantation is considered. The objective of the study was to investigate the optimum method of aerosol production for the drugs: iloprost, paclitaxel and the novel sotatercept. Materials and Methods: In our experiment we used the drugs iloprost, paclitaxel and the novel sotatercept, in an experimental concept of nebulization. We performed nebulization experiments with 3 jet nebulizers and 3 ultrasound nebulizers with different combinations of residual cup designs, and residual cup loadings in order to identify which combination produces droplets of less than 5μm in mass median aerodynamic diameter. Results: We concluded that paclitaxel cannot produce small droplets and is also still very greasy and possible dangerous for alveoli. However; iloprost vs sotatercept had smaller droplet size formation at both inhaled technologies (1.37<2.23 and 1.92<3.11, jet and ultrasound respectively). Moreover; residual cup designs C and G create the smallest droplet size in both iloprost and sotatercept. There was no difference for the droplet formation between the facemask and cone mouthpieces. Discussion: Iloprost and sotatercept can be administered as aerosol in any type of nebulisation system and they are both efficient with the residual cups loaded with small doses of the drug (2.08 and 2.12 accordingly).
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department, General Clinic Euromedica, Thessaloniki, Greece
- 3rd University Surgery Department, ``AHEPA`` University Hospital, Thessaloniki, Greece
| | - Dimitris Petridis
- Department of Food Technology, School of Food Technology and Nutrition, Alexander Technological Educational Institute, Thessaloniki, Greece
| | - Haidong Huang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Navy Military Medical University, Shanghai, 200433, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Navy Military Medical University, Shanghai, 200433, China
| | - Georgia Pitsiou
- Pulmonary Department, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Greece
| | | | | | | | - Savvas Petanidis
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christoforos Kosmidis
- 3rd University Surgery Department, ``AHEPA`` University Hospital, Thessaloniki, Greece
| | - Wolfgang Hohenforst-schmidt
- Sana Clinic Group Franken, Department of Cardiology / Pulmonology / Intensive Care / Nephrology, ''Hof'' Clinics, University of Erlangen, Hof, Germany
| | - Konstantinos Porpodis
- Pulmonary Department, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Greece
| | - Nikos Kougas
- Rheumatology Department, Ippokrateio University General Hospital, Thessaloniki, Greece
| | - Panagoula Oikonomou
- Surgery Department, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Nikolaou
- Surgery Department, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Chrysanthi Sardeli
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
22
|
Gillies H, Chakinala MM, Dake BT, Feldman JP, Hoeper MM, Humbert M, Jing Z, Langley J, McLaughlin VV, Niven RW, Rosenkranz S, Zhang X, Hill NS. IMPAHCT: A randomized phase 2b/3 study of inhaled imatinib for pulmonary arterial hypertension. Pulm Circ 2024; 14:e12352. [PMID: 38532768 PMCID: PMC10963589 DOI: 10.1002/pul2.12352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
AV-101 (imatinib) powder for inhalation, an investigational dry powder inhaled formulation of imatinib designed to target the underlying pathobiology of pulmonary arterial hypertension, was generally well tolerated in healthy adults in a phase 1 single and multiple ascending dose study. Inhaled Imatinib Pulmonary Arterial Hypertension Clinical Trial (IMPAHCT; NCT05036135) is a phase 2b/3, randomized, double-blind, placebo-controlled, dose-ranging, and confirmatory study. IMPAHCT is designed to identify an optimal AV-101 dose (phase 2b primary endpoint: pulmonary vascular resistance) and assess the efficacy (phase 3 primary endpoint: 6-min walk distance), safety, and tolerability of AV-101 dose levels in subjects with pulmonary arterial hypertension using background therapies. The study has an operationally seamless, adaptive design allowing for continuous recruitment. It includes three parts; subjects enrolled in Part 1 (phase 2b dose-response portion) or Part 2 (phase 3 intermediate portion) will be randomized 1:1:1:1 to 10, 35, 70 mg AV-101, or placebo (twice daily), respectively. Subjects enrolled in Part 3 (phase 3 optimal dose portion) will be randomized 1:1 to the optimal dose of AV-101 and placebo (twice daily), respectively. All study parts include a screening period, a 24-week treatment period, and a 30-day safety follow-up period; the total duration is ∼32 weeks. Participation is possible in only one study part. IMPAHCT has the potential to advance therapies for patients with pulmonary arterial hypertension by assessing the efficacy and safety of a novel investigational drug-device combination (AV-101) using an improved study design that has the potential to save 6-12 months of development time. ClinicalTrials.gov Identifier: NCT05036135.
Collapse
Affiliation(s)
| | - Murali M. Chakinala
- Division of Pulmonary and Critical Care MedicineWashington University in St. LouisSt. LouisMissourIUSA
| | | | | | - Marius M. Hoeper
- Department of Respiratory Medicine and Infectious DiseasesHannover Medical SchoolHannoverGermany
- German Center for Lung Research (DZL)Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH)HannoverGermany
| | - Marc Humbert
- Service de Pneumologieet Soins Intensifs Respiratoires, Assistance Publique Hôpitaux de Paris, Hôpital BicêtreUniversité Paris–Saclay, INSERMUMR_S 999Le Kremlin‐BicêtreFrance
| | - Zhi‐Cheng Jing
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical SciencesSouthern Medical UniversityGuangzhouChina
| | | | - Vallerie V. McLaughlin
- Cardiology Clinic, Frankel Cardiovascular CenterUniversity of MichiganAnn ArborMichiganUSA
| | | | - Stephan Rosenkranz
- Department of Internal Medicine III, Cologne Cardiovascular Research Center, Heart CenterUniversityof CologneCologneGermany
| | | | - Nicholas S. Hill
- Pulmonary Critical Care and Sleep DivisionTufts Medical CenterBostonMassachusettsUSA
| |
Collapse
|
23
|
Zhang M, Zeng Q, Zhou S, Zhu G, Xu Y, Gao R, Su W, Wang R. Mendelian randomization study on causal association of IL-6 signaling with pulmonary arterial hypertension. Clin Exp Hypertens 2023; 45:2183963. [PMID: 36871578 DOI: 10.1080/10641963.2023.2183963] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
BACKGROUND A recent Mendelian randomization (MR) did not support an effect of the lead interleukin-6 receptor (IL-6 R) variant on risk of pulmonary arterial hypertension (PAH). Thus, we used two sets of genetic instrumental variants (IVs) and publicly available PAH genome-wide association studies (GWAS) to reassess the genetic causal link between IL-6 signaling and PAH. METHODS Six independent IL-6 signaling and 34 independent soluble IL-6 receptor (sIL-6 R) genetic IVs from recent MR reports and PAH GWAS including 162,962 European individuals were used to perform this two-sample MR study. RESULTS We found that as IL-6 signaling genetically increased, the risk of PAH reduced using IVW (odds ratio [OR] = 0.023, 95% confidence interval [CI]: 0.0013-0.393; p = .0093) and weighted median (OR = 0.033, 95% CI: 0.0024-0.467; p = .0116). Otherwise, as sIL-6 R genetically increased, the risk of PAH increased using IVW (OR = 1.34, 95% CI: 1.16-1.56; p = .0001), weighted median (OR = 1.36, 95% CI: 1.10-1.68; p = .005), MR-Egger (OR = 1.43, 95% CI: 1.05-1.94; p = .03), and weighted mode (OR = 1.35, 95% CI for OR: 1.12-1.63; p = .0035). CONCLUSION Our analysis suggested the causal link between genetically increased sIL-6 R and increased risk of PAH and between genetically increased IL-6 signaling and reduced risk of PAH. Thus, higher sIL-6 R levels may be a risk factor for patients with PAH, whereas higher IL-6 signaling may be a protective factor for patients with PAH.
Collapse
Affiliation(s)
- Min Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, China
| | - Qi Zeng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, China
| | - Shan Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, China
| | - Gaizhi Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, China
| | - Yaqi Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, China
| | - Ran Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, China
| | - Wenting Su
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, China
| |
Collapse
|
24
|
Olsson KM, Corte TJ, Kamp JC, Montani D, Nathan SD, Neubert L, Price LC, Kiely DG. Pulmonary hypertension associated with lung disease: new insights into pathomechanisms, diagnosis, and management. THE LANCET. RESPIRATORY MEDICINE 2023; 11:820-835. [PMID: 37591300 DOI: 10.1016/s2213-2600(23)00259-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/19/2023]
Abstract
Patients with chronic lung diseases, particularly interstitial lung disease and chronic obstructive pulmonary disease, frequently develop pulmonary hypertension, which results in clinical deterioration, worsening of oxygen uptake, and an increased mortality risk. Pulmonary hypertension can develop and progress independently from the underlying lung disease. The pulmonary vasculopathy is distinct from that of other forms of pulmonary hypertension, with vascular ablation due to loss of small pulmonary vessels being a key feature. Long-term tobacco exposure might contribute to this type of pulmonary vascular remodelling. The distinct pathomechanisms together with the underlying lung disease might explain why treatment options for this condition remain scarce. Most drugs approved for pulmonary arterial hypertension have shown no or sometimes harmful effects in pulmonary hypertension associated with lung disease. An exception is inhaled treprostinil, which improves exercise capacity in patients with interstitial lung disease and pulmonary hypertension. There is a pressing need for safe, effective treatment options and for reliable, non-invasive diagnostic tools to detect and characterise pulmonary hypertension in patients with chronic lung disease.
Collapse
Affiliation(s)
- Karen M Olsson
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), German Center for Lung Research, Hannover, Germany.
| | - Tamera J Corte
- Department of Respiratory Medicine, Royal Prince Alfred Hospital and University of Sydney, Sydney, NSW, Australia
| | - Jan C Kamp
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), German Center for Lung Research, Hannover, Germany
| | - David Montani
- Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, INSERM Unité Mixte de Recherche 999, Université Paris-Saclay, Paris, France
| | - Steven D Nathan
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Lavinia Neubert
- Institute of Pathology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Laura C Price
- National Heart and Lung Institute, Imperial College London, London, UK; National Pulmonary Hypertension Service, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; NIHR Biomedical Research Centre, Sheffield, UK
| |
Collapse
|
25
|
Humbert M, Sitbon O, Guignabert C, Savale L, Boucly A, Gallant-Dewavrin M, McLaughlin V, Hoeper MM, Weatherald J. Treatment of pulmonary arterial hypertension: recent progress and a look to the future. THE LANCET. RESPIRATORY MEDICINE 2023; 11:804-819. [PMID: 37591298 DOI: 10.1016/s2213-2600(23)00264-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/19/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a severe but treatable form of pre-capillary pulmonary hypertension caused by pulmonary vascular remodelling. As a result of basic science discoveries, randomised controlled trials, studies of real-world data, and the development of clinical practice guidelines, considerable progress has been made in the treatment options and outcomes for patients with PAH, underscoring the importance of seamless translation of information from bench to bedside and, ultimately, to patients. However, PAH still carries a high mortality rate, which emphasises the urgent need for transformative innovations in the field. In this Series paper, written by a group of clinicians, researchers, and a patient with PAH, we review therapeutic approaches and treatment options for PAH. We summarise current knowledge of the cellular and molecular mechanisms of PAH, with an emphasis on emerging treatable pathways and optimisation of current management strategies. In considering future directions for the field, our ambition is to identify therapies with the potential to stall or reverse pulmonary vascular remodelling. We highlight novel therapeutic approaches, the important role of patients as partners in research, and innovative approaches to PAH clinical trials.
Collapse
Affiliation(s)
- Marc Humbert
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France.
| | - Olivier Sitbon
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France
| | - Laurent Savale
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France
| | - Athénaïs Boucly
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France
| | | | - Vallerie McLaughlin
- Department of Internal Medicine, Division of Cardiology, Frankel Cardiovascular Center University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marius M Hoeper
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), Hannover, Germany
| | - Jason Weatherald
- Department of Medicine, Division of Pulmonary Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
26
|
Zarogoulidis P, Petridis D, Huang H, Bai C, Oikonomou P, Nikolaou C, Matthaios D, Perdikouri EI, Papadopoulos V, Petanidis S, Kosmidis C, Charalampidis C, Hohenforst-Schmidt W, Kougkas N, Sardeli C. Inhaled nintentanib, pirfenidone and macitentan for pulmonary fibrosis: a laboratory experiment. Ther Deliv 2023; 14:491-498. [PMID: 37584210 DOI: 10.4155/tde-2023-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Aim: Idiopathic pulmonary fibrosis is a rare disease with few efficient drugs in the market. The consequences of this disease are mainly respiratory failure and pulmonary hypertension. Materials & methods: In our experiment we used the drugs pirfenidone, nintetanib and macitentan. We performed nebulization experiments with three jet nebulizers and three ultrasound nebulizers with different combinations of residual cup designs, and residual cup loadings in order to identify which combination produces droplets of less than 5 μm in mass median aerodynamic diameter. Results: Pirfenidone versus nintetanib had smaller droplet size formation at both inhaled technologies (1.37 < 2.23 and 1.92 < 3.11, jet and ultrasound respectively). Discussion: Pirfenidone and nintetanib can be administered as aerosol in any type of nebulization system.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department, General Clinic Euromedica, Thessaloniki, Greece
- 3rd University Surgery Department, "AHEPA" University Hospital, Thessaloniki, Greece
| | - Dimitris Petridis
- Department of Food Technology, School of Food Technology & Nutrition, Alexander Technological Educational Institute, Thessaloniki, Greece
| | - Haidong Huang
- Department of Respiratory & Critical Care Medicine, Changhai Hospital, Navy Military Medical University, Shanghai, 200433, China
| | - Chong Bai
- Department of Respiratory & Critical Care Medicine, Changhai Hospital, Navy Military Medical University, Shanghai, 200433, China
| | - Panagoula Oikonomou
- Surgery Department, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Nikolaou
- Surgery Department, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | | | - Savvas Petanidis
- Department of Medicine, Laboratory of Medical Biology & Genetics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christoforos Kosmidis
- 3rd University Surgery Department, "AHEPA" University Hospital, Thessaloniki, Greece
| | | | - Wolfgang Hohenforst-Schmidt
- Department of Cardiology/Pulmonology/Intensive Care/Nephrology, Sana Clinic Group Franken, "Hof" Clinics, University of Erlangen, Hof, Germany
| | - Nikos Kougkas
- Rheumatology Department, Ippokrateio University General Hospital, Thessaloniki, Greece
| | - Chrysanthi Sardeli
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
27
|
Jandl K, Radic N, Zeder K, Kovacs G, Kwapiszewska G. Pulmonary vascular fibrosis in pulmonary hypertension - The role of the extracellular matrix as a therapeutic target. Pharmacol Ther 2023; 247:108438. [PMID: 37210005 DOI: 10.1016/j.pharmthera.2023.108438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Pulmonary hypertension (PH) is a condition characterized by changes in the extracellular matrix (ECM) deposition and vascular remodeling of distal pulmonary arteries. These changes result in increased vessel wall thickness and lumen occlusion, leading to a loss of elasticity and vessel stiffening. Clinically, the mechanobiology of the pulmonary vasculature is becoming increasingly recognized for its prognostic and diagnostic value in PH. Specifically, the increased vascular fibrosis and stiffening resulting from ECM accumulation and crosslinking may be a promising target for the development of anti- or reverse-remodeling therapies. Indeed, there is a huge potential in therapeutic interference with mechano-associated pathways in vascular fibrosis and stiffening. The most direct approach is aiming to restore extracellular matrix homeostasis, by interference with its production, deposition, modification and turnover. Besides structural cells, immune cells contribute to the level of ECM maturation and degradation by direct cell-cell contact or the release of mediators and proteases, thereby opening a huge avenue to target vascular fibrosis via immunomodulation approaches. Indirectly, intracellular pathways associated with altered mechanobiology, ECM production, and fibrosis, offer a third option for therapeutic intervention. In PH, a vicious cycle of persistent activation of mechanosensing pathways such as YAP/TAZ initiates and perpetuates vascular stiffening, and is linked to key pathways disturbed in PH, such as TGF-beta/BMPR2/STAT. Together, this complexity of the regulation of vascular fibrosis and stiffening in PH allows the exploration of numerous potential therapeutic interventions. This review discusses connections and turning points of several of these interventions in detail.
Collapse
Affiliation(s)
- Katharina Jandl
- Division of Pharmacology, Otto Loewi Research Center, Medical University Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria.
| | - Nemanja Radic
- Division of Physiology, Otto Loewi Research Center, Medical University Graz, Graz, Austria
| | - Katarina Zeder
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria; Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria; Division of Physiology, Otto Loewi Research Center, Medical University Graz, Graz, Austria; Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
28
|
Alamri AK, Ma CL, Ryan JJ. Novel Drugs for the Treatment of Pulmonary Arterial Hypertension: Where Are We Going? Drugs 2023; 83:577-585. [PMID: 37017914 PMCID: PMC10074340 DOI: 10.1007/s40265-023-01862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/06/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease that despite advances in therapy is associated with a 7-year survival of approximately 50%. Several risk factors are associated with developing PAH, include methamphetamine use, scleroderma, human immunodeficiency virus, portal hypertension, and genetic predisposition. PAH can also be idiopathic. There are traditional pathways underlying the pathophysiology of PAH involving nitric oxide, prostacyclin, thromboxane A2, and endothelin-1, resulting in impaired vasodilation, enhanced vasoconstriction and proliferation in the pulmonary vasculature. Established PAH medications targets these pathways; however, this paper aims to discuss novel drugs for treating PAH by targeting new and alternative pathways.
Collapse
Affiliation(s)
- Ayedh K Alamri
- Department of Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA.
- Department of Medicine, College of Medicine, Northern Border University, Arar, 73213, Saudi Arabia.
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA.
| | - Christy L Ma
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - John J Ryan
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| |
Collapse
|
29
|
Gillies H, Niven R, Dake BT, Chakinala MM, Feldman JP, Hill NS, Hoeper MM, Humbert M, McLaughlin VV, Kankam M. AV-101, a novel inhaled dry-powder formulation of imatinib, in healthy adult participants: a phase 1 single and multiple ascending dose study. ERJ Open Res 2023; 9:00433-2022. [PMID: 36923571 PMCID: PMC10009698 DOI: 10.1183/23120541.00433-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/16/2022] [Indexed: 11/12/2022] Open
Abstract
Background Oral imatinib has been shown to be effective, but poorly tolerated, in patients with advanced pulmonary arterial hypertension (PAH). To maintain efficacy while improving tolerability, AV-101, a dry powder inhaled formulation of imatinib, was developed to deliver imatinib directly to the lungs. Methods This phase 1, placebo-controlled, randomised single ascending dose (SAD) and multiple ascending dose (MAD) study evaluated the safety/tolerability and pharmacokinetics of AV-101 in healthy adults. The SAD study included five AV-101 cohorts (1 mg, 3 mg, 10 mg, 30 mg, 90 mg) and placebo, and a single-dose oral imatinib 400-mg cohort. The MAD study included three AV-101 cohorts (10 mg, 30 mg, 90 mg) and placebo; dosing occurred twice daily for 7 days. Results 82 participants (SAD n=48, MAD n=34) were enrolled. For the SAD study, peak plasma concentrations of imatinib occurred within 3 h of dosing with lower systemic exposure compared to oral imatinib (p<0.001). For the MAD study, systemic exposure of imatinib was higher after multiple doses of AV-101 compared to a single dose, but steady-state plasma concentrations were lower for the highest AV-101 cohort (90 mg) compared to simulated steady-state oral imatinib at day 7 (p=0.0002). Across AV-101 MAD dose cohorts, the most common treatment-emergent adverse events were cough (n=7, 27%) and headache (n=4, 15%). Conclusions AV-101 was well tolerated in healthy adults, and targeted doses of AV-101 significantly reduced the systemic exposure of imatinib compared with oral imatinib. An ongoing phase 2b/phase 3 study (IMPAHCT; clinicaltrials.gov identifier NCT05036135) will evaluate the safety/tolerability and clinical benefit of AV-101 for PAH.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicholas S Hill
- Pulmonary Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Marius M Hoeper
- Respiratory Medicine, Hannover Medical School and German Centre of Lung Research, Hannover, Germany
| | - Marc Humbert
- Université Paris-Saclay, INSERM, Assistance Publique Hôpitaux de Paris, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | | | - Martin Kankam
- Altasciences Clinical Kansas, Inc., Overland Park, KS, USA
| |
Collapse
|
30
|
Novel Molecular Mechanisms Involved in the Medical Treatment of Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24044147. [PMID: 36835558 PMCID: PMC9965798 DOI: 10.3390/ijms24044147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe condition with a high mortality rate despite advances in diagnostic and therapeutic strategies. In recent years, significant scientific progress has been made in the understanding of the underlying pathobiological mechanisms. Since current available treatments mainly target pulmonary vasodilation, but lack an effect on the pathological changes that develop in the pulmonary vasculature, there is need to develop novel therapeutic compounds aimed at antagonizing the pulmonary vascular remodeling. This review presents the main molecular mechanisms involved in the pathobiology of PAH, discusses the new molecular compounds currently being developed for the medical treatment of PAH and assesses their potential future role in the therapeutic algorithms of PAH.
Collapse
|
31
|
Swisher JW, Weaver E. The Evolving Management and Treatment Options for Patients with Pulmonary Hypertension: Current Evidence and Challenges. Vasc Health Risk Manag 2023; 19:103-126. [PMID: 36895278 PMCID: PMC9990521 DOI: 10.2147/vhrm.s321025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
Pulmonary hypertension may develop as a disease process specific to pulmonary arteries with no identifiable cause or may occur in relation to other cardiopulmonary and systemic illnesses. The World Health Organization (WHO) classifies pulmonary hypertensive diseases on the basis of primary mechanisms causing increased pulmonary vascular resistance. Effective management of pulmonary hypertension begins with accurately diagnosing and classifying the disease in order to determine appropriate treatment. Pulmonary arterial hypertension (PAH) is a particularly challenging form of pulmonary hypertension as it involves a progressive, hyperproliferative arterial process that leads to right heart failure and death if untreated. Over the last two decades, our understanding of the pathobiology and genetics behind PAH has evolved and led to the development of several targeted disease modifiers that ameliorate hemodynamics and quality of life. Effective risk management strategies and more aggressive treatment protocols have also allowed better outcomes for patients with PAH. For those patients who experience progressive PAH with medical therapy, lung transplantation remains a life-saving option. More recent work has been directed at developing effective treatment strategies for other forms of pulmonary hypertension, such as chronic thromboembolic pulmonary hypertension (CTEPH) and pulmonary hypertension due to other lung or heart diseases. The discovery of new disease pathways and modifiers affecting the pulmonary circulation is an ongoing area of intense investigation.
Collapse
Affiliation(s)
- John W Swisher
- East Tennessee Pulmonary Hypertension Center, StatCare Pulmonary Consultants, Knoxville, TN, USA
| | - Eric Weaver
- East Tennessee Pulmonary Hypertension Center, StatCare Pulmonary Consultants, Knoxville, TN, USA
| |
Collapse
|
32
|
Galkin A, Sitapara R, Clemons B, Garcia E, Kennedy M, Guimond D, Carter LL, Douthitt A, Osterhout R, Gandjeva A, Slee D, Salter-Cid L, Tuder RM, Zisman LS. Inhaled seralutinib exhibits potent efficacy in models of pulmonary arterial hypertension. Eur Respir J 2022; 60:2102356. [PMID: 35680144 PMCID: PMC9724289 DOI: 10.1183/13993003.02356-2021] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 05/20/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Signalling through platelet-derived growth factor receptor (PDGFR), colony-stimulating factor 1 receptor (CSF1R) and mast/stem cell growth factor receptor kit (c-KIT) plays a critical role in pulmonary arterial hypertension (PAH). We examined the preclinical efficacy of inhaled seralutinib, a unique small-molecule PDGFR/CSF1R/c-KIT kinase inhibitor in clinical development for PAH, in comparison to a proof-of-concept kinase inhibitor, imatinib. METHODS Seralutinib and imatinib potency and selectivity were compared. Inhaled seralutinib pharmacokinetics/pharmacodynamics were studied in healthy rats. Efficacy was evaluated in two rat models of PAH: SU5416/Hypoxia (SU5416/H) and monocrotaline pneumonectomy (MCTPN). Effects on inflammatory/cytokine signalling were examined. PDGFR, CSF1R and c-KIT immunohistochemistry in rat and human PAH lung samples and microRNA (miRNA) analysis in the SU5416/H model were performed. RESULTS Seralutinib potently inhibited PDGFRα/β, CSF1R and c-KIT. Inhaled seralutinib demonstrated dose-dependent inhibition of lung PDGFR and c-KIT signalling and increased bone morphogenetic protein receptor type 2 (BMPR2). Seralutinib improved cardiopulmonary haemodynamic parameters and reduced small pulmonary artery muscularisation and right ventricle hypertrophy in both models. In the SU5416/H model, seralutinib improved cardiopulmonary haemodynamic parameters, restored lung BMPR2 protein levels and decreased N-terminal pro-brain natriuretic peptide (NT-proBNP), more than imatinib. Quantitative immunohistochemistry in human lung PAH samples demonstrated increased PDGFR, CSF1R and c-KIT. miRNA analysis revealed candidates that could mediate seralutinib effects on BMPR2. CONCLUSIONS Inhaled seralutinib was an effective treatment of severe PAH in two animal models, with improved cardiopulmonary haemodynamic parameters, a reduction in NT-proBNP, reverse remodelling of pulmonary vascular pathology and improvement in inflammatory biomarkers. Seralutinib showed greater efficacy compared to imatinib in a preclinical study.
Collapse
Affiliation(s)
- Anna Galkin
- Gossamer Bio, Inc., San Diego, CA, USA
- A. Galkin and R. Sitapara contributed equally as first authors
| | - Ravikumar Sitapara
- Gossamer Bio, Inc., San Diego, CA, USA
- The Rensselaer Center for Translational Research Inc., Rensselaer, NY, USA
- A. Galkin and R. Sitapara contributed equally as first authors
| | | | | | | | | | | | | | | | - Aneta Gandjeva
- University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | - Rubin M Tuder
- University of Colorado School of Medicine, Aurora, CO, USA
| | | |
Collapse
|
33
|
Zhao J, Wang Q, Deng X, Qian J, Tian Z, Liu Y, Li M, Zeng X. The treatment strategy of connective tissue disease associated pulmonary arterial hypertension: Evolving into the future. Pharmacol Ther 2022; 239:108192. [DOI: 10.1016/j.pharmthera.2022.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
|
34
|
Pitre T, Su J, Cui S, Scanlan R, Chiang C, Husnudinov R, Khalid MF, Khan N, Leung G, Mikhail D, Saadat P, Shahid S, Mah J, Mielniczuk L, Zeraatkar D, Mehta S. Medications for the treatment of pulmonary arterial hypertension: a systematic review and network meta-analysis. Eur Respir Rev 2022; 31:31/165/220036. [PMID: 35948391 DOI: 10.1183/16000617.0036-2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/30/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND There is no consensus on the most effective treatments of pulmonary arterial hypertension (PAH). Our objective was to compare effects of medications for PAH. METHODS We searched MEDLINE, Embase, the Cochrane Central Register of Controlled Trials and Clinicaltrials.gov from inception to December 2021. We performed a frequentist random-effects network meta-analysis on all included trials. We rated the certainty of the evidence using the Grades of Recommendation, Assessment, Development, and Evaluation approach. RESULTS We included 53 randomised controlled trials with 10 670 patients. Combination therapy with endothelin receptor antagonist (ERA) plus phosphodiesterase-5 inhibitors (PDE5i) reduced clinical worsening (120.7 fewer events per 1000, 95% CI 136.8-93.4 fewer; high certainty) and was superior to either ERA or PDE5i alone, both of which reduced clinical worsening, as did riociguat monotherapy (all high certainty). PDE5i (24.9 fewer deaths per 1000, 95% CI 35.2 fewer to 2.1 more); intravenous/subcutaneous prostanoids (18.3 fewer deaths per 1000, 95% CI 28.6 fewer deaths to 0) and riociguat (29.1 fewer deaths per 1000, 95% CI 38.6 fewer to 8.7 more) probably reduce mortality as compared to placebo (all moderate certainty). Combination therapy with ERA+PDE5i (49.9 m, 95% CI 25.9-73.8 m) and riociguat (49.5 m, 95% CI 17.3-81.7 m) probably increase 6-min walk distance as compared to placebo (moderate certainty). CONCLUSION Current PAH treatments improve clinically important outcomes, although the degree and certainty of benefit vary between treatments.
Collapse
Affiliation(s)
- Tyler Pitre
- Division of Internal Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Johnny Su
- Division of Internal Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Sonya Cui
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ryan Scanlan
- Division of Internal Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Christopher Chiang
- Division of Internal Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Renata Husnudinov
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Nadia Khan
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Gareth Leung
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David Mikhail
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Pakeezah Saadat
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Shaneela Shahid
- Health Research Methods Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Jasmine Mah
- Dept of Medicine, Dalhousie University, Halifax, NS, Canada
| | | | - Dena Zeraatkar
- Health Research Methods Evidence and Impact, McMaster University, Hamilton, ON, Canada.,Harvard Medical School, Harvard University, Boston, MA, USA.,D. Zeraatkar and S. Mehta contributed equally to this article as senior authors and supervised the work
| | - Sanjay Mehta
- Southwest Ontario PH Clinic, Division of Respirology, Dept of Medicine, Lawson Health Research Institute, London Health Sciences Centre, Schulich School of Medicine, Western University, London, ON, Canada.,PHA Canada, Vancouver, BC, Canada.,D. Zeraatkar and S. Mehta contributed equally to this article as senior authors and supervised the work
| |
Collapse
|
35
|
Yaku A, Inagaki T, Asano R, Okazawa M, Mori H, Sato A, Hia F, Masaki T, Manabe Y, Ishibashi T, Vandenbon A, Nakatsuka Y, Akaki K, Yoshinaga M, Uehata T, Mino T, Morita S, Ishibashi-Ueda H, Morinobu A, Tsujimura T, Ogo T, Nakaoka Y, Takeuchi O. Regnase-1 Prevents Pulmonary Arterial Hypertension Through mRNA Degradation of Interleukin-6 and Platelet-Derived Growth Factor in Alveolar Macrophages. Circulation 2022; 146:1006-1022. [PMID: 35997026 DOI: 10.1161/circulationaha.122.059435] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a type of pulmonary hypertension (PH) characterized by obliterative pulmonary vascular remodeling, resulting in right-sided heart failure. Although the pathogenesis of PAH is not fully understood, inflammatory responses and cytokines have been shown to be associated with PAH, in particular, with connective tissue disease-PAH. In this sense, Regnase-1, an RNase that regulates mRNAs encoding genes related to immune reactions, was investigated in relation to the pathogenesis of PH. METHODS We first examined the expression levels of ZC3H12A (encoding Regnase-1) in peripheral blood mononuclear cells from patients with PH classified under various types of PH, searching for an association between the ZC3H12A expression and clinical features. We then generated mice lacking Regnase-1 in myeloid cells, including alveolar macrophages, and examined right ventricular systolic pressures and histological changes in the lung. We further performed a comprehensive analysis of the transcriptome of alveolar macrophages and pulmonary arteries to identify genes regulated by Regnase-1 in alveolar macrophages. RESULTS ZC3H12A expression in peripheral blood mononuclear cells was inversely correlated with the prognosis and severity of disease in patients with PH, in particular, in connective tissue disease-PAH. The critical role of Regnase-1 in controlling PAH was also reinforced by the analysis of mice lacking Regnase-1 in alveolar macrophages. These mice spontaneously developed severe PAH, characterized by the elevated right ventricular systolic pressures and irreversible pulmonary vascular remodeling, which recapitulated the pathology of patients with PAH. Transcriptomic analysis of alveolar macrophages and pulmonary arteries of these PAH mice revealed that Il6, Il1b, and Pdgfa/b are potential targets of Regnase-1 in alveolar macrophages in the regulation of PAH. The inhibition of IL-6 (interleukin-6) by an anti-IL-6 receptor antibody or platelet-derived growth factor by imatinib but not IL-1β (interleukin-1β) by anakinra, ameliorated the pathogenesis of PAH. CONCLUSIONS Regnase-1 maintains lung innate immune homeostasis through the control of IL-6 and platelet-derived growth factor in alveolar macrophages, thereby suppressing the development of PAH in mice. Furthermore, the decreased expression of Regnase-1 in various types of PH implies its involvement in PH pathogenesis and may serve as a disease biomarker, and a therapeutic target for PH as well.
Collapse
Affiliation(s)
- Ai Yaku
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
- Department of Rheumatology and Clinical Immunology (A.Y., A.M.), Graduate School of Medicine, Kyoto University, Japan
| | - Tadakatsu Inagaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
| | - Ryotaro Asano
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
- Department of Advanced Medical Research for Pulmonary Hypertension (R.A., T.O.), National Cerebral and Cardiovascular Center, Suita, Japan
- Department of Cardiovascular Medicine (R.A., T.O.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Makoto Okazawa
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
| | - Hiroyoshi Mori
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
| | - Ayuko Sato
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Japan (A.S., T.T.)
| | - Fabian Hia
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| | - Takeshi Masaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
| | - Yusuke Manabe
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan (Y.M.)
| | - Tomohiko Ishibashi
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
| | - Alexis Vandenbon
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences (A.V.), Kyoto University, Japan
| | - Yoshinari Nakatsuka
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| | - Kotaro Akaki
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| | - Masanori Yoshinaga
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| | - Takuya Uehata
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| | - Takashi Mino
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine (S.M.), Kyoto University, Japan
| | - Hatsue Ishibashi-Ueda
- Department of Pathology (H.I.-U.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology (A.Y., A.M.), Graduate School of Medicine, Kyoto University, Japan
| | - Tohru Tsujimura
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Japan (A.S., T.T.)
| | - Takeshi Ogo
- Department of Advanced Medical Research for Pulmonary Hypertension (R.A., T.O.), National Cerebral and Cardiovascular Center, Suita, Japan
- Department of Cardiovascular Medicine (R.A., T.O.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoshikazu Nakaoka
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
- Department of Cardiovascular Medicine (Y. Nakaoka), Osaka University Graduate School of Medicine, Suita, Japan
- Department of Molecular Imaging in Cardiovascular Medicine (Y. Nakaoka), Osaka University Graduate School of Medicine, Suita, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
36
|
Zhu HR, Kuang HY, Li Q, Ji XJ. Effects of oral targeted treatments in pulmonary arterial hypertension: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9:915470. [PMID: 35983180 PMCID: PMC9378982 DOI: 10.3389/fcvm.2022.915470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022] Open
Abstract
Background Although pulmonary arterial hypertension (PAH) is a fatal disease, specific drugs have been used to treat PAH. These drugs predominantly target these three pathobiological pathways: Endothelin receptor antagonist (ERA), nitric oxide (NO), and prostanoids pathways. In this review, we aimed to analyze the efficacy and safety of oral targeted treatments for PAH. Methods The national library of medicine (MEDLINE), excerpta medica database (EMBASE), and Cochrane Central Register of Controlled Trials databases were searched. Randomized controlled trials that compared the oral targeted drugs with placebos were selected. We calculated odds ratios (ORs) with 95% confidence intervals (CIs) for variables with dichotomous outcomes, and standardized mean differences with continuous outcomes variables. Additionally, the mean of the differences for the 6-min walk distance (6MWD) was analyzed. Results In total, 23 studies involving 7,121 patients were included in this study. These studies show that orally PAH-specific drugs could decrease the risk of clinical worsening events, with an OR of 0.55 (p < 0.001). Furthermore, these drugs could improve exercise capacity, showing a 21.74-m increase in 6MWD (95% CI: 17.53–25.95 m) and cause a greater amelioration of functional class (OR = 0.60, 95% CI: 0.47–0.76). Additionally, subgroup analysis indicated that compared with placebo, ERAs, and drugs in the NO pathway were most effective and safe, which are associated with an improvement in exercise capacity, 6MWD, and worsening events-free survival rate. Conclusion Nitric oxide exhibited the most prominent clinical effect on exercise tolerance. However, in the subgroup analysis, oral targeted drugs of different pathways show applicability to different populations, which highlights the need for precise treatment in the clinical setting. Systematic Review Registration [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=297946], identifier [CRD 42022297946].
Collapse
Affiliation(s)
- Hui-ru Zhu
- National Clinical Research Center for Child Health and Disorders, Department of Ultrasound, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Hong-yu Kuang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Li
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Department of Cardiology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-juan Ji
- Department of Ultrasound, Chongqing General Hospital, Chongqing, China
- *Correspondence: Xiao-juan Ji,
| |
Collapse
|
37
|
Dhoble S, Patravale V, Weaver E, Lamprou DA, Patravale T. Comprehensive Review on Novel Targets and Emerging Therapeutic Modalities for Pulmonary Arterial Hypertension. Int J Pharm 2022; 621:121792. [PMID: 35513217 DOI: 10.1016/j.ijpharm.2022.121792] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/17/2022] [Accepted: 04/28/2022] [Indexed: 01/17/2023]
Abstract
Pulmonary Arterial Hypertension (PAH) is the progressive increase in mean pulmonary arterial pressure (mPAP) (≥ 20 mmHg at rest). Current treatment strategies include the drugs targeting at nitric oxide pathway, endothelin receptors, prostaglandin receptors, thromboxane receptors and phosphodiesterase inhibitors, which provides the symptomatic relief. Despite of these treatments, the mortality amongst the PAH patients remains high due to non-reversal of the condition. This review primarily covers the introduction of PAH and the current treatments of the disease. This is followed by the newer disease targets expressed in the pathobiology of the disease like Rho Kinase Pathway, Vasoactive Intestinal Peptide Pathway, Receptor Tyrosine Kinases, Serotonin signalling pathway, Voltage-gated potassium (Kv) channel pathway. Newer formulation strategies for targeting at these specific receptors were covered and includes nano formulations like liposomes, Micelles, Polymeric Nanoparticles, Solid Lipid Nanoparticles (SLN), Bioresorbable stents, NONOates, Cell-Based Therapies, miRNA therapy for PAH. Novel targets were identified for their role in the pathogenesis of the PAH and needs to be targeted with new molecules or existing molecules effectively. Nanosystems have shown their potential as alternative carriers on the virtue of their better performance than traditional drug delivery systems.
Collapse
Affiliation(s)
- Sagar Dhoble
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai 400 019, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai 400 019, India.
| | - Edward Weaver
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom.
| | - Tanmay Patravale
- Department of General Surgery, Jawaharlal Nehru Medical College, KLE Academy of Higher Education and Research, Belagavi 590 010, India
| |
Collapse
|
38
|
Panchal A, Panchal J, Jain S, Dwivedi J. A literature review on pulmonary arterial hypertension (PAH). CURRENT RESPIRATORY MEDICINE REVIEWS 2022. [DOI: 10.2174/1573398x18666220217151152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
PAH was first of all reported from German Doctor E. Romberg in 1891, It's usually found throughout the globe, but it is a burden in India and other developing countries. Pulmonary arterial hypertension (PAH) is characterized by a rise in pulmonary arterial pressure and the development of progressive symptoms like reduction in functional ability, shortness of breath and fatigue. The pulmonary arteries move blood from the right side of the heart over the lungs.
Introduction:
Increase pressure in pulmonary arteries known as pulmonary arterial pressure (PAH). The treatment of is require because without it, the right heart to work much harder due to high blood pressure in the lungs, and over time it became reason of heart failure. In this article, we have tried to provide brief information about the prevalence, pathology, classification and different therapies of PAH. Combining medicines from different categories is currently given as quality care and has been revealed to boost outcomes. A small part of the new treatment options has been included.
Collapse
Affiliation(s)
| | - Jigar Panchal
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022,
India
| | - Sonika Jain
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022,
India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022,
India
| |
Collapse
|
39
|
Andre P, Joshi SR, Briscoe SD, Alexander MJ, Li G, Kumar R. Therapeutic Approaches for Treating Pulmonary Arterial Hypertension by Correcting Imbalanced TGF-β Superfamily Signaling. Front Med (Lausanne) 2022; 8:814222. [PMID: 35141256 PMCID: PMC8818880 DOI: 10.3389/fmed.2021.814222] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease characterized by high blood pressure in the pulmonary circulation driven by pathological remodeling of distal pulmonary arteries, leading typically to death by right ventricular failure. Available treatments improve physical activity and slow disease progression, but they act primarily as vasodilators and have limited effects on the biological cause of the disease—the uncontrolled proliferation of vascular endothelial and smooth muscle cells. Imbalanced signaling by the transforming growth factor-β (TGF-β) superfamily contributes extensively to dysregulated vascular cell proliferation in PAH, with overactive pro-proliferative SMAD2/3 signaling occurring alongside deficient anti-proliferative SMAD1/5/8 signaling. We review the TGF-β superfamily mechanisms underlying PAH pathogenesis, superfamily interactions with inflammation and mechanobiological forces, and therapeutic strategies under development that aim to restore SMAD signaling balance in the diseased pulmonary arterial vessels. These strategies could potentially reverse pulmonary arterial remodeling in PAH by targeting causative mechanisms and therefore hold significant promise for the PAH patient population.
Collapse
|
40
|
Effectiveness of therapy with low-dosage masitinib on pulmonary hypertension in dogs: a pilot study. ACTA VET BRNO 2022. [DOI: 10.2754/avb202291040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purpose of this pilot study was to assess the efficacy of long-term masitinib therapy at low doses on echocardiographic, cardiovascular, haematological, and blood biochemical indicators, as well as clinical symptoms in dogs with pulmonary hypertension (PH) caused by advanced chronic degenerative mitral valve disease or heartworm disease. Seven client-owned dogs with severe PH were recruited prospectively and given low-dose masitinib orally, 3 mg/kg body weight (approximately one-fourth of the recommended antineoplastic dosage), q24h, for 123–928 days. Examinations were performed prior to masitinib administration, as well as 1, 2, 3, 6, and 12 months later. At 1–12 months, low-dose masitinib significantly reduced systolic pulmonary arterial pressure (P < 0.05 or 0.01) and dramatically improved clinical symptoms. Low-dose masitinib treatment improved right ventricular function indicators such as right atrium/aorta ratio, maximum tricuspid regurgitation velocity, right ventricular Tei index, and tricuspid annular plane systolic excursion, without worsening left ventricular function indicators. These findings suggest that low-dose masitinib may be effective as an adjunctive therapeutic for chronic heart failure in dogs with PH and may increase the survival of PH dogs.
Collapse
|
41
|
Shi Y, Gu C, Zhao T, Jia Y, Bao C, Luo A, Guo Q, Han Y, Wang J, Black SM, Desai AA, Tang H. Combination Therapy With Rapamycin and Low Dose Imatinib in Pulmonary Hypertension. Front Pharmacol 2021; 12:758763. [PMID: 34858182 PMCID: PMC8632256 DOI: 10.3389/fphar.2021.758763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Rationale: Enhanced proliferation and distal migration of human pulmonary arterial smooth muscle cells (hPASMCs) both contribute to the progressive increases in pulmonary vascular remodeling and resistance in pulmonary arterial hypertension (PAH). Our previous studies revealed that Rictor deletion, to disrupt mTOR Complex 2 (mTORC2), over longer periods result in a paradoxical rise in platelet-derived growth factor receptor (PDGFR) expression in PASMCs. Thus, the purpose of this study was to evaluate the role of combination therapy targeting both mTOR signaling with PDGFR inhibition to attenuate the development and progression of PAH. Methods and Results: Immunoblotting analyses revealed that short-term exposure to rapamycin (6h) significantly reduced phosphorylation of p70S6K (mTORC1-specific) in hPASMCs but had no effect on the phosphorylation of AKT (p-AKT S473, considered mTORC2-specific). In contrast, longer rapamycin exposure (>24 h), resulted in differential AKT (T308) and AKT (S473) phosphorylation with increases in phosphorylation of AKT at T308 and decreased phosphorylation at S473. Phosphorylation of both PDGFRα and PDGFRβ was increased in hPASMCs after treatment with rapamycin for 48 and 72 h. Based on co-immunoprecipitation studies, longer exposure to rapamycin (24–72 h) significantly inhibited the binding of mTOR to Rictor, mechanistically suggesting mTORC2 inhibition by rapamycin. Combined exposure of rapamycin with the PDGFR inhibitor, imatinib significantly reduced the proliferation and migration of hPASMCs compared to either agent alone. Pre-clinical studies validated increased therapeutic efficacy of rapamycin combined with imatinib in attenuating PAH over either drug alone. Specifically, combination therapy further attenuated the development of monocrotaline (MCT)- or Hypoxia/Sugen-induced pulmonary hypertension (PH) in rats as demonstrated by further reductions in the Fulton index, right ventricular systolic pressure (RVSP), pulmonary vascular wall thickness and vessel muscularization, and decreased proliferating cell nuclear antigen (PCNA) staining in PASMCs. Conclusion: Prolonged rapamycin treatment activates PDGFR signaling, in part, via mTORC2 inhibition. Combination therapy with rapamycin and imatinib may be a more effective strategy for the treatment of PAH.
Collapse
Affiliation(s)
- Yinan Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Department of Medicine, Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, United States
| | - Chenxin Gu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Tongtong Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yangfan Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Changlei Bao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ang Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qiang Guo
- Department of Critical Care Medicine, Suzhou Dushu Lake Hospital, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Han
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Stephen M Black
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Miami, FL, United States.,Department of Environmental Health Sciences, Center for Translational Science, Robert Stempel College of Public Health and Social Work, Florida International University, Port St. Lucie, FL, United States
| | - Ankit A Desai
- Department of Medicine, Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, United States
| | - Haiyang Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
42
|
Epstein R, Krishnan US. Management of Pulmonary Hypertension in the Pediatric Patient. Cardiol Clin 2021; 40:115-127. [PMID: 34809912 DOI: 10.1016/j.ccl.2021.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pediatric pulmonary hypertension (PH) is a rare disease with historically very high morbidity and mortality. In the past 20 years, there has been a growing recognition that pediatric PH, although having similarities to adult PH, is a unique entity with its own particular pathogeneses, presentation, and management. With better understanding and earlier diagnosis of pediatric PH, and as more medications have become available, survival of children with PH has also significantly improved. This article reviews the various forms of PH in childhood, with a focus on both established and investigational therapies that are available for children with PH.
Collapse
Affiliation(s)
- Rebecca Epstein
- Pediatric Cardiology, Columbia University Irving Medical Center, New York Presbyterian Hospital, CHN 2N, #255, 3959 Broadway, New York, NY 10032, USA
| | - Usha S Krishnan
- Pediatric Cardiology, Columbia University Irving Medical Center, New York Presbyterian Hospital, CHN 2N, #255, 3959 Broadway, New York, NY 10032, USA.
| |
Collapse
|
43
|
Werner MH, Olanow CW. Parkinson's Disease Modification through Abl Kinase Inhibition: An Opportunity. Mov Disord 2021; 37:6-15. [PMID: 34816484 PMCID: PMC8770606 DOI: 10.1002/mds.28858] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease of the central nervous system, with an estimated 5 000 000 cases worldwide. Historically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, PD pathology is now known to be widespread and to affect serotonin, cholinergic and norepinephrine neurons as well as nerve cells in the olfactory system, cerebral hemisphere, brain stem, spinal cord, and peripheral autonomic nervous system. PD pathology is characterized by the accumulation of misfolded α-synuclein, which is thought to play a critical role in the etiopathogenesis of the disease. Animal models of PD suggest that activation of the Abelson tyrosine kinase (c-Abl) plays an essential role in the initiation and progression of α-synuclein pathology and neurodegeneration. These studies demonstrate that internalization of misfolded α-synuclein activates c-Abl, which phosphorylates α-synuclein and promotes α-synuclein pathology within the affected neurons. Additionally, c-Abl inactivates parkin, disrupting mitochondrial quality control and biogenesis, promoting neurodegeneration. Post-mortem studies of PD patients demonstrate increased levels of tyrosine phosphorylated α-synuclein, consistent with the activation of c-Abl in human disease. Although the c-Abl inhibitor nilotinib failed to demonstrate clinical benefit in two double-blind trials, novel c-Abl inhibitors have been developed that accumulate in the brain and may inhibit c-Abl at saturating levels. These novel inhibitors have demonstrated benefits in animal models of PD and have now entered clinical development. Here, we review the role of c-Abl in the neurodegenerative disease process and consider the translational potential of c-Abl inhibitors from model studies to disease-modifying therapies for Parkinson's disease. © 2021 Inhibikase Therapeutics, Inc. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
| | - C Warren Olanow
- Department of Neurology and Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA.,Clintrex Research Corporation, Sarasota, Florida, USA
| |
Collapse
|
44
|
Frantz RP, Benza RL, Channick RN, Chin K, Howard LS, McLaughlin VV, Sitbon O, Zamanian RT, Hemnes AR, Cravets M, Bruey JM, Roscigno R, Mottola D, Elman E, Zisman LS, Ghofrani HA. TORREY, a Phase 2 study to evaluate the efficacy and safety of inhaled seralutinib for the treatment of pulmonary arterial hypertension. Pulm Circ 2021; 11:20458940211057071. [PMID: 34790348 PMCID: PMC8591655 DOI: 10.1177/20458940211057071] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Aberrant kinase signaling that involves platelet-derived growth factor receptor (PDGFR) α/β, colony stimulating factor 1 receptor (CSF1R), and stem cell factor receptor (c-KIT) pathways may be responsible for vascular remodeling in pulmonary arterial hypertension. Targeting these specific pathways may potentially reverse the pathological inflammation, cellular proliferation, and fibrosis associated with pulmonary arterial hypertension progression. Seralutinib (formerly known as GB002) is a novel, potent, clinical stage inhibitor of PDGFRα/β, CSF1R, and c-KIT delivered via inhalation that is being developed for patients with pulmonary arterial hypertension. Here, we report on an ongoing Phase 2 randomized, double-blind, placebo-controlled trial (NCT04456998) evaluating the efficacy and safety of seralutinib in subjects with World Health Organization Group 1 Pulmonary Hypertension who are classified as Functional Class II or III. A total of 80 subjects will be enrolled and randomized to receive either study drug or placebo for 24 weeks followed by an optional 72-week open-label extension study. The primary endpoint is the change from baseline to Week 24 in pulmonary vascular resistance by right heart catheterization. The secondary endpoint is the change in distance from baseline to Week 24 achieved in the 6-min walk test. A computerized tomography sub-study will examine the effect of seralutinib on pulmonary vascular remodelling. A separate heart rate monitoring sub-study will examine the effect of seralutinib on cardiac effort during the 6-min walk test.
Collapse
Affiliation(s)
| | | | | | - Kelly Chin
- UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gupta S, Padhan P, Subhankar S, Singh P. Cardiovascular complications in patients with interstitial lung disease and their correlation with 6-minute walk test and spirometry: A single-center study. J Family Med Prim Care 2021; 10:3330-3335. [PMID: 34760753 PMCID: PMC8565147 DOI: 10.4103/jfmpc.jfmpc_350_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 11/04/2022] Open
Abstract
Introduction Pulmonary hypertension and other cardiac complications occur frequently due to chronic hypoxia induced by interstitial lung diseases (ILD) or due to connective tissue disorder itself. Two-dimensional (2D) echocardiography is ideal for identifying abnormalities at a given time. In this study, we tried to detect cardiovascular complications in patients with ILD using 2D echocardiography and correlate them with a 6-minute walk test (6 MWT) and spirometry. Materials and Methods This study was carried out for 18 months including 100 consecutive cases of ILD. The diagnosis was made using the latest criteria as per the disease and high-resolution computed tomography (HRCT) thorax. All patients were evaluated with 2D echocardiography, 6 MWT, and spirometry along with routine investigations. Their results were analyzed using STATA 15.1 software. Result Cardiovascular involvement was detected in 68% of cases. Pulmonary hypertension predominated with a prevalence of 50%. In spirometry, mean Forced expiratory volume in first second (FEV1)and Forced vital capacity (FVC) were found to be 54.96 (L) and 53.49 (L), respectively, with a predominant restrictive pattern (89%). There was a significant correlation between baseline saturation of oxygen (SpO2) and pulmonary arterial systolic pressure (PASP) with a P value of <0.05. Baseline SpO2 and distance covered in 6 MWT had a significant correlation (P = 0.014). Conclusion A baseline or nighttime hypoxia is responsible for developing PAH. Pulmonary arterial hypertension should be suspected in patients unable to perform 6 MWT or having low baseline SpO2. A routine follow-up with a 6 MWT and baseline SpO2 should be performed in each visit to identify early deterioration of the disease.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Pulmonary Medicine, Kalinga Institute of Medical Sciences, KIIT University, Patia, Bhubaneswar, Odisha, India
| | - Prasanta Padhan
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences, KIIT University, Patia, Bhubaneswar, Odisha, India
| | - Saswat Subhankar
- Department of Pulmonary Medicine, Kalinga Institute of Medical Sciences, KIIT University, Patia, Bhubaneswar, Odisha, India
| | - Pratima Singh
- Department of Pulmonary Medicine, Kalinga Institute of Medical Sciences, KIIT University, Patia, Bhubaneswar, Odisha, India
| |
Collapse
|
46
|
Berghausen EM, Janssen W, Vantler M, Gnatzy-Feik LL, Krause M, Behringer A, Joseph C, Zierden M, Freyhaus HT, Klinke A, Baldus S, Alcazar MA, Savai R, Pullamsetti SS, Wong DW, Boor P, Zhao JJ, Schermuly RT, Rosenkranz S. Disrupted PI3K subunit p110α signaling protects against pulmonary hypertension and reverses established disease in rodents. J Clin Invest 2021; 131:136939. [PMID: 34596056 DOI: 10.1172/jci136939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
Enhanced signaling via RTKs in pulmonary hypertension (PH) impedes current treatment options because it perpetuates proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs). Here, we demonstrated hyperphosphorylation of multiple RTKs in diseased human vessels and increased activation of their common downstream effector phosphatidylinositol 3'-kinase (PI3K), which thus emerged as an attractive therapeutic target. Systematic characterization of class IA catalytic PI3K isoforms identified p110α as the key regulator of pathogenic signaling pathways and PASMC responses (proliferation, migration, survival) downstream of multiple RTKs. Smooth muscle cell-specific genetic ablation or pharmacological inhibition of p110α prevented onset and progression of pulmonary hypertension (PH) as well as right heart hypertrophy in vivo and even reversed established vascular remodeling and PH in various animal models. These effects were attributable to both inhibition of vascular proliferation and induction of apoptosis. Since this pathway is abundantly activated in human disease, p110α represents a central target in PH.
Collapse
Affiliation(s)
- Eva M Berghausen
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Wiebke Janssen
- Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,University of Giessen and Marburg Lung Center (UGMLC), and German Centre for Lung Research (DZL), Giessen, Germany
| | - Marius Vantler
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Leoni L Gnatzy-Feik
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Max Krause
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Arnica Behringer
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and
| | - Christine Joseph
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and
| | - Mario Zierden
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Henrik Ten Freyhaus
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Anna Klinke
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Miguel A Alcazar
- Center for Molecular Medicine Cologne (CMMC) and.,Institute for Lung Health, member of the DZL, UGMLC, Giessen, Germany.,Department of Pediatric and Adolecent Medicine, University of Cologne, Cologne, Germany
| | - Rajkumar Savai
- Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Dickson Wl Wong
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jean J Zhao
- Dana-Farber Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph T Schermuly
- Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,University of Giessen and Marburg Lung Center (UGMLC), and German Centre for Lung Research (DZL), Giessen, Germany
| | - Stephan Rosenkranz
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| |
Collapse
|
47
|
Wilkins MR, Mckie MA, Law M, Roussakis AA, Harbaum L, Church C, Coghlan JG, Condliffe R, Howard LS, Kiely DG, Lordan J, Rothman A, Suntharalingam J, Toshner M, Wort SJ, Villar SS. Positioning imatinib for pulmonary arterial hypertension: A phase I/II design comprising dose finding and single-arm efficacy. Pulm Circ 2021; 11:20458940211052823. [PMID: 34868551 PMCID: PMC8642118 DOI: 10.1177/20458940211052823] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension is an unmet clinical need. Imatinib, a tyrosine kinase inhibitor, 200 to 400 mg daily reduces pulmonary artery pressure and increases functional capacity in this patient group, but is generally poorly tolerated at the higher dose. We have designed an open-label, single-arm clinical study to investigate whether there is a tolerated dose of imatinib that can be better targeted to patients who will benefit. The study consists of two parts. Part 1 seeks to identify the best tolerated dose of Imatinib in the range from 100 and up to 400 mg using a Bayesian Continuous Reassessment Method. Part 2 will measure efficacy after 24 weeks treatment with the best tolerated dose using a Simon's two-stage design. The primary efficacy endpoint is a binary variable. For patients with a baseline pulmonary vascular resistance (PVR) >1000 dynes · s · cm-5, success is defined by an absolute reduction in PVR of ≥300 dynes · s · cm-5 at 24 weeks. For patients with a baseline PVR ≤1000 dynes · s · cm-5, success is a 30% reduction in PVR at 24 weeks. PVR will also be evaluated as a continuous variable by genotype as an exploratory analysis. Evaluating the response to that dose by genotype may inform a prospective biomarker-driven study.
Collapse
Affiliation(s)
- Martin R. Wilkins
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Mikel A. Mckie
- MRC Biostatistics Unit, School of Clinical Medicine, Cambridge Institute of Public Health, Cambridge, UK
| | - Martin Law
- MRC Biostatistics Unit, School of Clinical Medicine, Cambridge Institute of Public Health, Cambridge, UK
| | | | - Lars Harbaum
- Golden Jubilee National Hospital, University of Glasgow, Scotland, UK
| | - Colin Church
- Royal Free Hospital, Royal Free London NHS Foundation Trust, London, UK
| | - J Gerry Coghlan
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Luke S Howard
- National Pulmonary Hypertension Service, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - David G Kiely
- Newcastle Freeman Hospital, Freeman Road, High Heaton, Newcastle Upon Tyne, UK
| | - Jim Lordan
- Royal United Hospital, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - Alexander Rothman
- Heart Lung Research Institute, University of Cambridge, Cambridge, UK
| | | | - Mark Toshner
- Royal Brompton Hospital, Guy’s and St Thomas’s Trust, London, UK
| | - Stephen J Wort
- Royal Brompton Hospital, Guy’s and St Thomas’s Trust, London, UK
| | - Sofía S. Villar
- MRC Biostatistics Unit, School of Clinical Medicine, Cambridge Institute of Public Health, Cambridge, UK
| |
Collapse
|
48
|
Zolty R. Novel Experimental Therapies for Treatment of Pulmonary Arterial Hypertension. J Exp Pharmacol 2021; 13:817-857. [PMID: 34429666 PMCID: PMC8380049 DOI: 10.2147/jep.s236743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and devastating disease characterized by pulmonary artery vasoconstriction and vascular remodeling leading to vascular rarefaction with elevation of pulmonary arterial pressures and pulmonary vascular resistance. Often PAH will cause death from right heart failure. Current PAH-targeted therapies improve functional capacity, pulmonary hemodynamics and reduce hospitalization. Nevertheless, today PAH still remains incurable and is often refractory to medical therapy, underscoring the need for further research. Over the last three decades, PAH has evolved from a disease of unknown pathogenesis devoid of effective therapy to a condition whose cellular, genetic and molecular underpinnings are unfolding. This article provides an update on current knowledge and summarizes the progression in recent advances in pharmacological therapy in PAH.
Collapse
Affiliation(s)
- Ronald Zolty
- Pulmonary Hypertension Program, University of Nebraska Medical Center, Lied Transplant Center, Omaha, NE, USA
| |
Collapse
|
49
|
Gu M, Donato M, Guo M, Wary N, Miao Y, Mao S, Saito T, Otsuki S, Wang L, Harper RL, Sa S, Khatri P, Rabinovitch M. iPSC-endothelial cell phenotypic drug screening and in silico analyses identify tyrphostin-AG1296 for pulmonary arterial hypertension. Sci Transl Med 2021; 13:13/592/eaba6480. [PMID: 33952674 DOI: 10.1126/scitranslmed.aba6480] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/09/2021] [Indexed: 12/27/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disorder leading to occlusive vascular remodeling. Current PAH therapies improve quality of life but do not reverse structural abnormalities in the pulmonary vasculature. Here, we used high-throughput drug screening combined with in silico analyses of existing transcriptomic datasets to identify a promising lead compound to reverse PAH. Induced pluripotent stem cell-derived endothelial cells generated from six patients with PAH were exposed to 4500 compounds and assayed for improved cell survival after serum withdrawal using a chemiluminescent caspase assay. Subsequent validation of caspase activity and improved angiogenesis combined with data analyses using the Gene Expression Omnibus and Library of Integrated Network-Based Cellular Signatures databases revealed that the lead compound AG1296 was positively associated with an anti-PAH gene signature. AG1296 increased abundance of bone morphogenetic protein receptors, downstream signaling, and gene expression and suppressed PAH smooth muscle cell proliferation. AG1296 induced regression of PA neointimal lesions in lung organ culture and PA occlusive changes in the Sugen/hypoxia rat model and reduced right ventricular systolic pressure. Moreover, AG1296 improved vascular function and BMPR2 signaling and showed better correlation with the anti-PAH gene signature than other tyrosine kinase inhibitors. Specifically, AG1296 up-regulated small mothers against decapentaplegic (SMAD) 1/5 coactivators, cAMP response element-binding protein 3 (CREB3), and CREB5: CREB3 induced inhibitor of DNA binding 1 and downstream genes that improved vascular function. Thus, drug discovery for PAH can be accelerated by combining phenotypic screening with in silico analyses of publicly available datasets.
Collapse
Affiliation(s)
- Mingxia Gu
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA.,Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Michele Donato
- Department of Medicine (Biomedical Informatics) and Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Minzhe Guo
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Neil Wary
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yifei Miao
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA.,Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shuai Mao
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Toshie Saito
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Shoichiro Otsuki
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Lingli Wang
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Rebecca L Harper
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Silin Sa
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Purvesh Khatri
- Department of Medicine (Biomedical Informatics) and Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marlene Rabinovitch
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA. .,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
50
|
Sitapara R, Lam TT, Gandjeva A, Tuder RM, Zisman LS. Phosphoproteomic analysis of lung tissue from patients with pulmonary arterial hypertension. Pulm Circ 2021; 11:20458940211031109. [PMID: 34966541 PMCID: PMC8711668 DOI: 10.1177/20458940211031109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 06/18/2021] [Indexed: 11/29/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disorder associated with high morbidity and mortality despite currently available treatments. We compared the phosphoproteome of lung tissue from subjects with idiopathic PAH (iPAH) obtained at the time of lung transplant with control lung tissue. The mass spectrometry-based analysis found 60,428 phosphopeptide features from which 6622 proteins were identified. Within the subset of identified proteins there were 1234 phosphopeptides with q < 0.05, many of which are involved in immune regulation, angiogenesis, and cell proliferation. Most notably there was a marked relative increase in phosphorylated (S378) IKZF3 (Aiolos), a zinc finger transcription factor that plays a key role in lymphocyte regulation. In vitro phosphorylation assays indicated that GSK3 alpha and/or GSK3 beta could phosphorylate IKZF3 at S378. Western blot analysis demonstrated increased pIKZF3 in iPAH lungs compared to controls. Immunohistochemistry demonstrated phosphorylated IKZF3 in lymphocytes surrounding severely hypertrophied pulmonary arterioles. In situ hybrization showed gene expression in lymphocyte aggregates in PAH samples. A BCL2 reporter assay showed that IKZF3 increased BCL2 promoter activity and demonstrated the potential role of phosphorylation of IKZF3 in the regulation of BCL mediated transcription. Kinase network analysis demonstrated potentially important regulatory roles of casein kinase 2, cyclin-dependent kinase 1 (CDK1), mitogen-associated protein kinases (MAPKs), and protein kinases (PRKs) in iPAH. Bioinformatic analysis demonstrated enrichment of RhoGTPase signaling and the potential importance of cGMP-dependent protein kinase 1 (PRKG). In conclusion, this unbiased phosphoproteomic analysis demonstrated several novel targets regulated by kinase networks in iPAH, and reinforced the potential role of immune regulation in the pathogenesis of iPAH. The identified up- and down-regulated phosphoproteins have potential to serve as biomarkers for PAH and to provide new insights for therapeutic strategies.
Collapse
Affiliation(s)
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, Yale University, New Haven, CT, USA
- MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT, USA
| | - Aneta Gandjeva
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rubin M Tuder
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lawrence S Zisman
- Rensselaer Center for Translational Research Inc., Troy, NY, USA
- Pulmokine Inc., Troy, NY, USA
| |
Collapse
|