1
|
Kushiro K, Hirono H, Ohkoshi S. Platelet-activating cytokines potentially associated with MASLD-induced liver injury significantly decreased following CPAP therapy: A translational study using a fatty liver mouse model. Sleep Med 2025; 130:15-24. [PMID: 40112616 DOI: 10.1016/j.sleep.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/10/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND AND AIM Patients with obstructive sleep apnea (OSA) and metabolic dysfunction associated steatotic liver disease (MASLD) frequently overlap due to the high prevalence of obesity. This translational study aimed to identify cytokines linking these conditions, beginning with an analysis of fatty liver in mice. Serum cytokine levels upregulated in the fatty liver mice were subsequently examined in human OSA serum samples. METHODS Mice were fed a high-fat diet to induce fatty liver. Liver proteins were analyzed using cytokine arrays. Serum samples from seventy (70) OSA patients (with 20 non-MASLD and 50 MASLD, pre- and 6-month post-continuous positive airway pressure [CPAP] therapy) were analyzed for the cytokines identified in the mouse experiment using enzyme-linked immunosorbent assays. RESULTS Four platelet-activation chemokines/cytokines (CCL5/RANTES, P-selectin, CXCL4/PF4, and CXCL5/LIX) were upregulated in mice with fatty liver. While serum levels of these factors were not significantly higher in MASLD-OSA compared to non-MASLD-OSA patients, their levels significantly decreased 6 months after the initiation of CPAP therapy, along with a reduction in mean platelet volume. CPAP compliance was significantly associated with a reduction in CCL5 levels. Additionally, a decrease in ALT levels following 6 months of CPAP therapy was significantly associated with CPAP compliance in MASLD-OSA patients. CONCLUSIONS While platelet-activation cytokines were not directly implicated in liver injury in MASLD-OSA patients, they decreased with CPAP therapy. CPAP compliance may play a key role in ALT reduction in MASLD-OSA patients independently of body weight changes. CCL5/RANTES may be indirectly associated with liver injury in MASLD-OSA, potentially induced through intermittent hypoxia.
Collapse
Affiliation(s)
- Kosuke Kushiro
- Clinical Examination, Graduate School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| | - Haruka Hirono
- Clinical Examination, Graduate School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| | - Shogo Ohkoshi
- Clinical Examination, Graduate School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan.
| |
Collapse
|
2
|
Romero-ElKhayat L, Dakterzada F, Huerto R, Carnes-Vendrell A, Mínguez O, Pujol Sabaté M, Targa A, Barbé F, Milanesi E, Dobre M, Manda G, Cuadrado A, Piñol-Ripoll G. Inflammatory and Redox Blood Gene Expression Fingerprint of Severe Obstructive Sleep Apnoea in Patients With Mild Alzheimer's Disease. J Inflamm Res 2025; 18:1609-1621. [PMID: 39925924 PMCID: PMC11806709 DOI: 10.2147/jir.s475776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Introduction Obstructive sleep apnoea (OSA) is the sleep disorder most frequently found in patients with Alzheimer's disease (AD). The intermittent hypoxia (IH) caused by OSA may participate in AD pathogenesis through increase in oxidative damage and inflammation. We aimed to identify inflammatory and redox genes differentially expressed in the blood from AD patients with severe OSA compared with those with nonsevere OSA. Methods We included 40 AD patients diagnosed based on clinical manifestations and AD biomarker levels in cerebrospinal fluid (CSF). Severe or nonsevere OSA (apnoea-hypopnea index ≥ 30/h and < 30/h, respectively) was diagnosed through overnight polysomnography (PSG). The expression levels of 136 inflammation-related and 84 redox-related genes were evaluated by whole blood targeted transcriptomics. Results Three inflammatory and six redox genes were upregulated in the blood of AD patients with severe OSA. Three of them correlated with PSG parameters. A pathway enrichment analysis showed a strong enrichment of the serotonergic synapse pathway in severe OSA AD patients. Discussion Our results show an upregulation of nine genes involved in NF-κB-mediated inflammation and redox metabolism in the blood of patients with mild AD with severe OSA. Therefore, severe OSA may worsen the inflammation and oxidative damage that are already altered in patients with AD.
Collapse
Affiliation(s)
- Leila Romero-ElKhayat
- Unitat de Trastorns Cognitius, Cognition and Behavior Study Group, Universitat de Lleida, IRBLleida, Lleida, 25198, Spain
| | - Farida Dakterzada
- Unitat de Trastorns Cognitius, Cognition and Behavior Study Group, Universitat de Lleida, IRBLleida, Lleida, 25198, Spain
| | - Raquel Huerto
- Unitat de Trastorns Cognitius, Cognition and Behavior Study Group, Universitat de Lleida, IRBLleida, Lleida, 25198, Spain
| | - Anna Carnes-Vendrell
- Unitat de Trastorns Cognitius, Cognition and Behavior Study Group, Universitat de Lleida, IRBLleida, Lleida, 25198, Spain
| | - Olga Mínguez
- Unitat de Son, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
| | | | - Adriano Targa
- Group of Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- Center for Biomedical Research in Respiratory Diseases Network (CIBERES), Madrid, Spain
| | - Ferran Barbé
- Group of Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- Center for Biomedical Research in Respiratory Diseases Network (CIBERES), Madrid, Spain
| | - Elena Milanesi
- “Victor Babes” National Institute of Pathology, Bucharest, 050096, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, 050474, Romania
| | - Maria Dobre
- “Victor Babes” National Institute of Pathology, Bucharest, 050096, Romania
| | - Gina Manda
- “Victor Babes” National Institute of Pathology, Bucharest, 050096, Romania
| | - Antonio Cuadrado
- “Victor Babes” National Institute of Pathology, Bucharest, 050096, Romania
- Department of Endocrine Physiology and Nervous System, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, Madrid, 28029, Spain
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, 28049, Spain
- Neuroscience Section, Instituto de Investigación Sanitaria La Paz (Idipaz), Madrid, 28046, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, 28031, Spain
| | - Gerard Piñol-Ripoll
- Unitat de Trastorns Cognitius, Cognition and Behavior Study Group, Universitat de Lleida, IRBLleida, Lleida, 25198, Spain
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona – Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
3
|
Henning RJ, Anderson WM. Sleep apnea is a common and dangerous cardiovascular risk factor. Curr Probl Cardiol 2025; 50:102838. [PMID: 39242062 DOI: 10.1016/j.cpcardiol.2024.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Sleep apnea involves almost one billion individuals throughout the world, including 40 million Americans. Of major medical concern is the fact that the prevalence of sleep apnea is significantly increasing due to the epidemic of obesity, physical inactivity, and diabetes mellitus which are important risk factors for the development and persistence of sleep apnea in individuals. Sleep apnea is characterized by multiple episodes of apnea or hypopnea during sleep, which cause nocturnal arousals, gasping for breath during the night, daytime sleepiness, irritability, forgetfulness, fatigue and recurrent headaches. Obstructive sleep apnea occurs when upper airway obstruction occurs in an individual during sleep with absent or markedly reduced airflow in the presence of continued activity of inspiratory thoracic and diaphragmatic muscles. Central sleep apnea is defined as the absence or the significant reduction of naso-oral airflow due to the withdrawal during sleep of ponto-medullary respiratory center stimulation of the nerves of the inspiratory thoracic and diaphragmatic muscles and absence of contraction of these muscles during apnea. Complex sleep apnea occurs when an individual exhibits characteristics of both obstructive and central sleep apnea. The severity of sleep apnea is measured by polysomnography and the apnea hypopnea index (AHI), which is the average number of apneas and hypopneas per hour of sleep measured by polysomnography. Sleep apnea is mild if the AHI is 5-14/h with no or mild symptoms, moderate if the AHI is 15 to 30/h with occasional daytime sleepiness, and severe if the AHI is >30/h with frequent daytime sleepiness that interferes with the normal activities of daily life. Chronic sleep apneas and hypopneas followed by compensatory hyperpneas are associated with significant adverse cardiovascular consequences including: 1) recurrent hypoxemia and hypercarbia; 2) Increased sympathetic nerve activity and decreased parasympathetic nerve activity; 3) oxidative stress and vascular endothelial dysfunction; and 4) cardiac remodeling and cardiovascular disease. Moderate or severe sleep apnea significantly increases the risk of coronary artery disease, congestive heart failure, cerebral vascular events (strokes), and cardiac dysrhythmias, and also increase the morbidity and mortality of these diseases. Nevertheless, sleep apnea is currently underdiagnosed and untreated in many individuals due to the challenges in the prediction and detection of sleep apnea and a lack of well-defined optimal treatment guidelines. Chronic continuous positive airway pressure for ≥4 h/night for >70% of nights is beneficial in the treatment of patients with sleep apnea. CPAP Improves sleep quality, reduces the AHI, augments cardiac output and increases oxygen delivery to brain and heart, reduces resistant hypertension, decreases cardiac dysrhythmias, and reduces daytime sleepiness. The present article discusses the diagnosis of obstructive sleep apnea, central sleep apnea, and complex apnea. Thereafter the important pathophysiologic mechanisms in sleep apnea and the relationship of these pathophysiologic mechanics to atherosclerotic vascular disease are reviewed. Guidelines are then provided for the treatment of mild, moderate and severe sleep apnea. In order to reduce the cardiovascular morbidity and mortality caused by sleep apnea and facilitate the diagnosis and the long-term, effective treatment of sleep apnea in patients, the close cooperation is necessary of cardiovascular specialists, pulmonary specialists, and respiratory therapy/rehabilitation specialists.
Collapse
Affiliation(s)
- Robert J Henning
- University of South Florida College of Public Health and Morsani College of Medicine, USA.
| | - W McDowell Anderson
- University of South Florida College of Public Health and Morsani College of Medicine, USA
| |
Collapse
|
4
|
Jin C, Zhang F, Luo H, Li B, Jiang X, Pirozzi CJ, Liang C, Zhang M. The CCL5/CCR5/SHP2 axis sustains Stat1 phosphorylation and activates NF-κB signaling promoting M1 macrophage polarization and exacerbating chronic prostatic inflammation. Cell Commun Signal 2024; 22:584. [PMID: 39633456 PMCID: PMC11619290 DOI: 10.1186/s12964-024-01943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Chronic prostatitis (CP) is a condition markered by persistent prostate inflammation, yet the specific cytokines driving its progression remain largely undefined. This study aims to identify key cytokines involved in CP and investigate their role in driving inflammatory responses through mechanistic and therapeutic exploration. METHODS A 48-cytokine panel test was conducted to compare the plasma cytokine profiles between participants with CP-like symptoms (CP-LS) and healthy controls. Experimental autoimmune prostatitis (EAP) models were used for functional validation, with further mechanistic studies performed through in vivo and in vitro assays. Pharmacological inhibition was applied using maraviroc, and pathway inhibitors to assess therapeutic potential. RESULTS Our analysis identified CCL5 as one of the most prominently elevated cytokines in CP-LS patients. Further validation in the EAP model mice confirmed elevated CCL5 levels, highlighting its role in driving prostatic inflammation. Mechanistic studies revealed that CCL5 interacts with the CCR5 receptor, promoting M1 macrophage polarization and activating key inflammatory signaling pathways, including Stat1 and NF-κB, as indicated by increased phosphorylation of Stat1 and p65. In vitro, CCL5 combined with LPS stimulation amplified these effects, further promoting M1 polarization. CCL5 also sustained Stat1 activation by inhibiting its dephosphorylation through reduced interaction with SHP2, leading to prolonged inflammatory signaling. Single-cell transcriptomics confirmed high CCR5 expression in macrophages, correlating with inflammatory pathways. Pharmacological inhibition of CCR5, or its downstream signaling, significantly reduced macrophage-driven inflammation both in vivo and in vitro. CONCLUSION These findings establish the CCL5/CCR5 axis as a critical driver of persistant prostatic inflammation and present it as a potential therapeutic target for CP.
Collapse
Affiliation(s)
- Chen Jin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Fei Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
| | - Hailang Luo
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
| | - Boyang Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
| | - Xue Jiang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | | | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China.
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China.
| |
Collapse
|
5
|
Olea E, Valverde-Pérez E, Docio I, Prieto-Lloret J, Aaronson PI, Rocher A. Pulmonary Vascular Responses to Chronic Intermittent Hypoxia in a Guinea Pig Model of Obstructive Sleep Apnea. Int J Mol Sci 2024; 25:7484. [PMID: 39000591 PMCID: PMC11242077 DOI: 10.3390/ijms25137484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Experimental evidence suggests that chronic intermittent hypoxia (CIH), a major hallmark of obstructive sleep apnea (OSA), boosts carotid body (CB) responsiveness, thereby causing increased sympathetic activity, arterial and pulmonary hypertension, and cardiovascular disease. An enhanced circulatory chemoreflex, oxidative stress, and NO signaling appear to play important roles in these responses to CIH in rodents. Since the guinea pig has a hypofunctional CB (i.e., it is a natural CB knockout), in this study we used it as a model to investigate the CB dependence of the effects of CIH on pulmonary vascular responses, including those mediated by NO, by comparing them with those previously described in the rat. We have analyzed pulmonary artery pressure (PAP), the hypoxic pulmonary vasoconstriction (HPV) response, endothelial function both in vivo and in vitro, and vascular remodeling (intima-media thickness, collagen fiber content, and vessel lumen area). We demonstrate that 30 days of the exposure of guinea pigs to CIH (FiO2, 5% for 40 s, 30 cycles/h) induces pulmonary artery remodeling but does not alter endothelial function or the contractile response to phenylephrine (PE) in these arteries. In contrast, CIH exposure increased the systemic arterial pressure and enhanced the contractile response to PE while decreasing endothelium-dependent vasorelaxation to carbachol in the aorta without causing its remodeling. We conclude that since all of these effects are independent of CB sensitization, there must be other oxygen sensors, beyond the CB, with the capacity to alter the autonomic control of the heart and vascular function and structure in CIH.
Collapse
Affiliation(s)
- Elena Olea
- Departamento de Enfermería, Facultad de Enfermería Universidad de Valladolid, 47005 Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, 47005 Valladolid, Spain
| | - Esther Valverde-Pérez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, 47005 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Inmaculada Docio
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Jesus Prieto-Lloret
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, 47005 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Philip I Aaronson
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, UK
| | - Asunción Rocher
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, 47005 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
6
|
Mao Z, Zheng P, Zhu X, Wang L, Zhang F, Liu H, Li H, Zhou L, Liu W. Obstructive sleep apnea hypopnea syndrome and vascular lesions: An update on what we currently know. Sleep Med 2024; 119:296-311. [PMID: 38723575 DOI: 10.1016/j.sleep.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/18/2024]
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is the most prevalent sleep and respiratory disorder. This syndrome can induce severe cardiovascular and cerebrovascular complications, and intermittent hypoxia is a pivotal contributor to this damage. Vascular pathology is closely associated with the impairment of target organs, marking a focal point in current research. Vascular lesions are the fundamental pathophysiological basis of multiorgan ailments and indicate a shared pathogenic mechanism among common cardiovascular and cerebrovascular conditions, suggesting their importance as a public health concern. Increasing evidence shows a strong correlation between OSAHS and vascular lesions. Previous studies predominantly focused on the pathophysiological alterations in OSAHS itself, such as intermittent hypoxia and fragmented sleep, leading to vascular disruptions. This review aims to delve deeper into the vascular lesions affected by OSAHS by examining the microscopic pathophysiological mechanisms involved. Emphasis has been placed on examining how OSAHS induces vascular lesions through disruptions in the endothelial barrier, metabolic dysregulation, cellular phenotype alterations, neuroendocrine irregularities, programmed cell death, vascular inflammation, oxidative stress and epigenetic modifications. This review examines the epidemiology and associated risk factors for OSAHS and vascular diseases and subsequently describes the existing evidence on vascular lesions induced by OSAHS in the cardiovascular, cerebrovascular, retinal, renal and reproductive systems. A detailed account of the current research on the pathophysiological mechanisms mediating vascular lesions caused by OSAHS is provided, culminating in a discussion of research advancements in therapeutic modalities to mitigate OSAHS-related vascular lesions and the implications of these treatment strategies.
Collapse
Affiliation(s)
- Zhenyu Mao
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Zhu
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengqin Zhang
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai Li
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
7
|
Liao X, Zeng Q, Xie L, Zhang H, Hu W, Xiao L, Zhou H, Wang F, Xie W, Song J, Sun X, Wang D, Ding Y, Jiao Y, Mai W, Aini W, Hui X, Liu W, Hsueh WA, Deng T. Adipose stem cells control obesity-induced T cell infiltration into adipose tissue. Cell Rep 2024; 43:113963. [PMID: 38492218 DOI: 10.1016/j.celrep.2024.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
T cell infiltration into white adipose tissue (WAT) drives obesity-induced adipose inflammation, but the mechanisms of obesity-induced T cell infiltration into WAT remain unclear. Our single-cell RNA sequencing reveals a significant impact of adipose stem cells (ASCs) on T cells. Transplanting ASCs from obese mice into WAT enhances T cell accumulation. C-C motif chemokine ligand 5 (CCL5) is upregulated in ASCs as early as 4 weeks of high-fat diet feeding, coinciding with the onset of T cell infiltration into WAT during obesity. ASCs and bone marrow transplantation experiments demonstrate that CCL5 from ASCs plays a crucial role in T cell accumulation during obesity. The production of CCL5 in ASCs is induced by tumor necrosis factor alpha via the nuclear factor κB pathway. Overall, our findings underscore the pivotal role of ASCs in regulating T cell accumulation in WAT during the early phases of obesity, emphasizing their importance in modulating adaptive immunity in obesity-induced adipose inflammation.
Collapse
Affiliation(s)
- Xiyan Liao
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Qin Zeng
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Limin Xie
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Haowei Zhang
- The First Affiliated Hospital, Department of Orthopedics, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wanyu Hu
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Liuling Xiao
- Center for Translational Research in Hematological Malignancies, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77080, USA
| | - Hui Zhou
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Fanqi Wang
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wanqin Xie
- NHC Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 53 Xiangchun Road, Changsha, Hunan 410028, China
| | - Jianfeng Song
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiaoxiao Sun
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Dandan Wang
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yujin Ding
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yayi Jiao
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wuqian Mai
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wufuer Aini
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Wei Liu
- Department of Biliopancreatic Surgery and Bariatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Willa A Hsueh
- The Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
8
|
Xu C, Cheng X, Wang X, Huang W, Liu Y, Ye H, Guan J, Shen J, Yi H. The immune response to arterial damage in a mouse model of intermittent hypoxia: a transcriptomics analysis. Sleep Breath 2023; 27:2397-2406. [PMID: 37391539 DOI: 10.1007/s11325-023-02866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 07/02/2023]
Abstract
PURPOSE Mice can develop arterial damage and even atherosclerosis under intermittent hypoxia (IH); however, the specific mechanism of arterial damage induced by IH remains unclear. Hence, this research aimed to illustrate the underlying mechanism linking IH to arterial injury. MATERIALS AND METHODS The differential gene expression of the thoracic aorta under normoxia or IH mice was analyzed utilizing RNA sequencing. Furthermore, GO, KEGG pathway, and CIBERSORT analyses were carried out. For verification of the expression of candidate genes affected by IH, quantitative RT-qPCR (qRT-PCR) was conducted. Immunohistochemical (IHC) staining revealed immune cell infiltration in the thoracic aorta. RESULTS The thickness of the intima-media of the mouse aorta was increased, and the fiber structure was disordered under IH. Transcriptomics analysis showed that in the aorta, 1137 upregulated genes and 707 downregulated genes were affected by IH, significantly related to the activation of the immune system and cell adhesion. Furthermore, B cell infiltration around the aorta was observed under IH. CONCLUSIONS IH might lead to structural changes in the aorta by activating the immune response and enhancing cell adhesion.
Collapse
Affiliation(s)
- Chong Xu
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyu Cheng
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoting Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijun Huang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yupu Liu
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Ye
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Guan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhong Shen
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongliang Yi
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Arnaud C, Billoir E, de Melo Junior AF, Pereira SA, O'Halloran KD, Monteiro EC. Chronic intermittent hypoxia-induced cardiovascular and renal dysfunction: from adaptation to maladaptation. J Physiol 2023; 601:5553-5577. [PMID: 37882783 DOI: 10.1113/jp284166] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) is the dominant pathological feature of human obstructive sleep apnoea (OSA), which is highly prevalent and associated with cardiovascular and renal diseases. CIH causes hypertension, centred on sympathetic nervous overactivity, which persists following removal of the CIH stimulus. Molecular mechanisms contributing to CIH-induced hypertension have been carefully delineated. However, there is a dearth of knowledge on the efficacy of interventions to ameliorate high blood pressure in established disease. CIH causes endothelial dysfunction, aberrant structural remodelling of vessels and accelerates atherosclerotic processes. Pro-inflammatory and pro-oxidant pathways converge on disrupted nitric oxide signalling driving vascular dysfunction. In addition, CIH has adverse effects on the myocardium, manifesting atrial fibrillation, and cardiac remodelling progressing to contractile dysfunction. Sympatho-vagal imbalance, oxidative stress, inflammation, dysregulated HIF-1α transcriptional responses and resultant pro-apoptotic ER stress, calcium dysregulation, and mitochondrial dysfunction conspire to drive myocardial injury and failure. CIH elaborates direct and indirect effects in the kidney that initially contribute to the development of hypertension and later to chronic kidney disease. CIH-induced morphological damage of the kidney is dependent on TLR4/NF-κB/NLRP3/caspase-1 inflammasome activation and associated pyroptosis. Emerging potential therapies related to the gut-kidney axis and blockade of aryl hydrocarbon receptors (AhR) are promising. Cardiorenal outcomes in response to intermittent hypoxia present along a continuum from adaptation to maladaptation and are dependent on the intensity and duration of exposure to intermittent hypoxia. This heterogeneity of OSA is relevant to therapeutic treatment options and we argue the need for better stratification of OSA phenotypes.
Collapse
Affiliation(s)
- Claire Arnaud
- Université Grenoble-Alpes INSERM U1300, Laboratoire HP2, Grenoble, France
| | - Emma Billoir
- Université Grenoble-Alpes INSERM U1300, Laboratoire HP2, Grenoble, France
| | | | - Sofia A Pereira
- iNOVA4Health, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Emilia C Monteiro
- iNOVA4Health, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
10
|
Cetin-Atalay R, Meliton AY, Ozcan C, Woods PS, Sun KA, Fang Y, Hamanaka RB, Mutlu GM. Loss of heme oxygenase 2 causes reduced expression of genes in cardiac muscle development and contractility and leads to cardiomyopathy in mice. PLoS One 2023; 18:e0292990. [PMID: 37844118 PMCID: PMC10578579 DOI: 10.1371/journal.pone.0292990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a common breathing disorder that affects a significant portion of the adult population. In addition to causing excessive daytime sleepiness and neurocognitive effects, OSA is an independent risk factor for cardiovascular disease; however, the underlying mechanisms are not completely understood. Using exposure to intermittent hypoxia (IH) to mimic OSA, we have recently reported that mice exposed to IH exhibit endothelial cell (EC) activation, which is an early process preceding the development of cardiovascular disease. Although widely used, IH models have several limitations such as the severity of hypoxia, which does not occur in most patients with OSA. Recent studies reported that mice with deletion of hemeoxygenase 2 (Hmox2-/-), which plays a key role in oxygen sensing in the carotid body, exhibit spontaneous apneas during sleep and elevated levels of catecholamines. Here, using RNA-sequencing we investigated the transcriptomic changes in aortic ECs and heart tissue to understand the changes that occur in Hmox2-/- mice. In addition, we evaluated cardiac structure, function, and electrical properties by using echocardiogram and electrocardiogram in these mice. We found that Hmox2-/- mice exhibited aortic EC activation. Transcriptomic analysis in aortic ECs showed differentially expressed genes enriched in blood coagulation, cell adhesion, cellular respiration and cardiac muscle development and contraction. Similarly, transcriptomic analysis in heart tissue showed a differentially expressed gene set enriched in mitochondrial translation, oxidative phosphorylation and cardiac muscle development. Analysis of transcriptomic data from aortic ECs and heart tissue showed loss of Hmox2 gene might have common cellular network footprints on aortic endothelial cells and heart tissue. Echocardiographic evaluation showed that Hmox2-/- mice develop progressive dilated cardiomyopathy and conduction abnormalities compared to Hmox2+/+ mice. In conclusion, we found that Hmox2-/- mice, which spontaneously develop apneas exhibit EC activation and transcriptomic and functional changes consistent with heart failure.
Collapse
Affiliation(s)
- Rengul Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Angelo Y. Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Cevher Ozcan
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, Illinois, United States of America
| | - Parker S. Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Kaitlyn A. Sun
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Yun Fang
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Robert B. Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Gökhan M. Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
11
|
Zhou X, Jiang Y, Wang Y, Fan L, Zhu Y, Chen Y, Wang Y, Zhu Y, Wang H, Pan Z, Li Z, Zhu X, Ren R, Ge Z, Lai D, Lai EY, Chen T, Wang K, Liang P, Qin L, Liu C, Qiu C, Simons M, Yu L. Endothelial FIS1 DeSUMOylation Protects Against Hypoxic Pulmonary Hypertension. Circ Res 2023; 133:508-531. [PMID: 37589160 DOI: 10.1161/circresaha.122.321200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Hypoxia is a major cause and promoter of pulmonary hypertension (PH), a representative vascular remodeling disease with poor prognosis and high mortality. However, the mechanism underlying how pulmonary arterial system responds to hypoxic stress during PH remains unclear. Endothelial mitochondria are considered signaling organelles on oxygen tension. Results from previous clinical research and our studies suggested a potential role of posttranslational SUMOylation (small ubiquitin-like modifier modification) in endothelial mitochondria in hypoxia-related vasculopathy. METHODS Chronic hypoxia mouse model and Sugen/hypoxia rat model were employed as PH animal models. Mitochondrial morphology and subcellular structure were determined by transmission electron and immunofluorescent microscopies. Mitochondrial metabolism was determined by mitochondrial oxygen consumption rate and extracellular acidification rate. SUMOylation and protein interaction were determined by immunoprecipitation. RESULTS The involvement of SENP1 (sentrin-specific protease 1)-mediated SUMOylation in mitochondrial remodeling in the pulmonary endothelium was identified in clinical specimens of hypoxia-related PH and was verified in human pulmonary artery endothelial cells under hypoxia. Further analyses in clinical specimens, hypoxic rat and mouse PH models, and human pulmonary artery endothelial cells and human embryonic stem cell-derived endothelial cells revealed that short-term hypoxia-induced SENP1 translocation to endothelial mitochondria to regulate deSUMOylation (the reversible process of SUMOylation) of mitochondrial fission protein FIS1 (mitochondrial fission 1), which facilitated FIS1 assembling with fusion protein MFN2 (mitofusin 2) and mitochondrial gatekeeper VDAC1 (voltage-dependent anion channel 1), and the membrane tethering activity of MFN2 by enhancing its oligomerization. Consequently, FIS1 deSUMOylation maintained the mitochondrial integrity and endoplasmic reticulum-mitochondria calcium communication across mitochondrial-associated membranes, subsequently preserving pulmonary endothelial function and vascular homeostasis. In contrast, prolonged hypoxia disabled the FIS1 deSUMOylation by diminishing the availability of SENP1 in mitochondria via inducing miR (micro RNA)-138 and consequently resulted in mitochondrial dysfunction and metabolic reprogramming in pulmonary endothelium. Functionally, introduction of viral-packaged deSUMOylated FIS1 within pulmonary endothelium in mice improved pulmonary endothelial dysfunction and hypoxic PH development, while knock-in of SUMO (small ubiquitin-like modifier)-conjugated FIS1 in mice exaggerated the diseased cellular and tissue phenotypes. CONCLUSIONS By maintaining endothelial mitochondrial homeostasis, deSUMOylation of FIS1 adaptively preserves pulmonary endothelial function against hypoxic stress and consequently protects against PH. The FIS1 deSUMOylation-SUMOylation transition in pulmonary endothelium is an intrinsic pathogenesis of hypoxic PH.
Collapse
Affiliation(s)
- Xiaofei Zhou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Yuanqing Jiang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Yuewen Wang
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, China (Yuewen Wang)
| | - Linge Fan
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Yunhui Zhu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- Cardiovascular Research Center, Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (X. Zhu, L.Q., M.S.)
| | - Yefeng Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Yiran Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Yingyi Zhu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Hongkun Wang
- Institute of Translational Medicine (H.W., P.L.), Hangzhou, China
| | - Zihang Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China (Z.P., K.W.)
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Z.P., K.W.)
| | - Zhoubin Li
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L., E.Y.-L., T.C.)
| | - Xiaolong Zhu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
| | - Ruizhe Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Zhen Ge
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (Z.G.)
| | - Dongwu Lai
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
| | - En Yin Lai
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L., E.Y.-L., T.C.)
| | - Ting Chen
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L., E.Y.-L., T.C.)
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China (Z.P., K.W.)
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Z.P., K.W.)
| | - Ping Liang
- Institute of Translational Medicine (H.W., P.L.), Hangzhou, China
| | - Lingfeng Qin
- Cardiovascular Research Center, Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (X. Zhu, L.Q., M.S.)
| | - Cuiqing Liu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China (C.L.)
| | - Cong Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
- Cancer Center, Zhejiang University (C.Q., L.Y.), Hangzhou, China
| | - Michael Simons
- Cardiovascular Research Center, Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (X. Zhu, L.Q., M.S.)
| | - Luyang Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
- Cancer Center, Zhejiang University (C.Q., L.Y.), Hangzhou, China
| |
Collapse
|
12
|
Shah R, Patel N, Emin M, Celik Y, Jimenez A, Gao S, Garfinkel J, Wei Y, Jelic S. Statins Restore Endothelial Protection against Complement Activity in Obstructive Sleep Apnea: A Randomized Clinical Trial. Ann Am Thorac Soc 2023; 20:1029-1037. [PMID: 36912897 PMCID: PMC12039953 DOI: 10.1513/annalsats.202209-761oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/13/2023] [Indexed: 03/14/2023] Open
Abstract
Rationale: Increased cardiovascular risk in obstructive sleep apnea (OSA) persists after continuous positive airway pressure (CPAP) and alternative therapies are needed. Impaired endothelial protection against complement is a cholesterol-dependent process that initiates endothelial inflammation in OSA, which increases cardiovascular risk. Objectives: To investigate directly whether lowering cholesterol improves endothelial protection against complement and its proinflammatory effects in OSA. Methods: Newly diagnosed patients with OSA (n = 87) and OSA-free controls (n = 32) participated. Endothelial cells and blood were collected at baseline, after 4 weeks of CPAP therapy, and again after 4 weeks of 10 mg atorvastatin versus placebo using a randomized, double-blind, parallel-group design. Primary outcome was the proportion of a complement inhibitor, CD59, on the endothelial cell plasma membrane in OSA patients after 4 weeks of statins versus placebo. Secondary outcomes were complement deposition on endothelial cells and circulating levels of its downstream proinflammatory factor, angiopoietin-2, after statins versus placebo. Results: Baseline expression of CD59 was lower, whereas complement deposition on endothelial cells and levels of angiopoietin-2 were greater, in patients with OSA compared with controls. CPAP did not affect expression of CD59 or complement deposition on endothelial cells in patients with OSA, regardless of adherence. Compared with placebo, statins increased expression of endothelial complement protector CD59 and lowered complement deposition in patients with OSA. Good CPAP adherence was associated with increased angiopoietin-2 levels, which was reversed by statins. Conclusions: Statins restore endothelial protection against complement and reduce its downstream proinflammatory effects, suggesting a potential approach to reduce residual cardiovascular risk after CPAP in patients with OSA. Clinical trial registered with www.clinicaltrials.gov (NCT03122639).
Collapse
Affiliation(s)
- Riddhi Shah
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | - Memet Emin
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Yeliz Celik
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | - Su Gao
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Jared Garfinkel
- Department of Biostatistics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Ying Wei
- Department of Biostatistics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Sanja Jelic
- Division of Pulmonary, Allergy, and Critical Care Medicine
| |
Collapse
|
13
|
Alterki A, Abu-Farha M, Al Shawaf E, Al-Mulla F, Abubaker J. Investigating the Relationship between Obstructive Sleep Apnoea, Inflammation and Cardio-Metabolic Diseases. Int J Mol Sci 2023; 24:ijms24076807. [PMID: 37047780 PMCID: PMC10095553 DOI: 10.3390/ijms24076807] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Obstructive sleep apnoea (OSA) is a prevalent underdiagnosed disorder whose incidence increases with age and weight. Uniquely characterised by frequent breathing interruptions during sleep-known as intermittent hypoxia (IH)-OSA disrupts the circadian rhythm. Patients with OSA have repeated episodes of hypoxia and reoxygenation, leading to systemic consequences. OSA consequences range from apparent symptoms like excessive daytime sleepiness, neurocognitive deterioration and decreased quality of life to pathological complications characterised by elevated biomarkers linked to endocrine-metabolic and cardiovascular changes. OSA is a well-recognized risk factor for cardiovascular and cerebrovascular diseases. Furthermore, OSA is linked to other conditions that worsen cardiovascular outcomes, such as obesity. The relationship between OSA and obesity is complex and reciprocal, involving interaction between biological and lifestyle factors. The pathogenesis of both OSA and obesity involve oxidative stress, inflammation and metabolic dysregulation. The current medical practice uses continuous positive airway pressure (CPAP) as the gold standard tool to manage OSA. It has been shown to improve symptoms and cardiac function, reduce cardiovascular risk and normalise biomarkers. Nonetheless, a full understanding of the factors involved in the deleterious effects of OSA and the best methods to eliminate their occurrence are still poorly understood. In this review, we present the factors and evidence linking OSA to increased risk of cardiovascular conditions.
Collapse
Affiliation(s)
- Abdulmohsen Alterki
- Department of Otolaryngology Head & Neck Surgery, Zain and Al Sabah Hospitals and Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Eman Al Shawaf
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| |
Collapse
|
14
|
Zhou H, Liao X, Zeng Q, Zhang H, Song J, Hu W, Sun X, Ding Y, Wang D, Xiao Y, Deng T. Metabolic effects of CCL5 deficiency in lean and obese mice. Front Immunol 2023; 13:1059687. [PMID: 36713454 PMCID: PMC9880418 DOI: 10.3389/fimmu.2022.1059687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Accumulation and activation of immunocytes in adipose tissues are essential to obesity-induced inflammation and insulin resistance. Chemokines are pivotal for the recruitment of immunocytes in adipose tissue during obesity. Chemokine (C-C motif) ligand 5 (CCL5) plays a vital role in the recruitment of immunocytes to sites of inflammation. CCL5 expression level is increased in obese adipose tissue from humans and mice. However, the role of CCL5 in obesity-induced adipose inflammation remains unclear. Our study found that the CCL5 expression level was increased in the epididymal white adipose tissue (eWAT) of obese mice, particularly in CD8+ T cells. CCL5 knockout (KO) mice exhibited better glucose tolerance than wild-type (WT) mice under lean conditions. In contrast, CCL5 KO mice were more insulin resistant and had severe hepatic steatosis than WT mice under obese conditions. Increased T cells in adipose tissue heaven adipose inflammation in obese CCL5 KO mice. The compensatory increased T cell-associated chemokines may account for increased T cell content in the eWAT of obese CCL5 KO mice. These findings imply that CCL5 deficiency exacerbates adipose inflammation and impairs insulin sensitivity in the metabolic tissues of obese mice.
Collapse
Affiliation(s)
- Hui Zhou
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiyan Liao
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qin Zeng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haowei Zhang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jianfeng Song
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wanyu Hu
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Sun
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yujin Ding
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dandan Wang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yalun Xiao
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China,Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, China,*Correspondence: Tuo Deng,
| |
Collapse
|
15
|
Boëté Q, Lo M, Liu KL, Vial G, Lemarié E, Rougelot M, Steuckardt I, Harki O, Couturier A, Gaucher J, Bouyon S, Demory A, Boutin-Paradis A, El Kholti N, Berthier A, Pépin JL, Briançon-Marjollet A, Lambert E, Debret R, Faury G. Physiological Impact of a Synthetic Elastic Protein in Arterial Diseases Related to Alterations of Elastic Fibers: Effect on the Aorta of Elastin-Haploinsufficient Male and Female Mice. Int J Mol Sci 2022; 23:13464. [PMID: 36362244 PMCID: PMC9656458 DOI: 10.3390/ijms232113464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 09/08/2024] Open
Abstract
Elastic fibers, made of elastin (90%) and fibrillin-rich microfibrils (10%), are the key extracellular components, which endow the arteries with elasticity. The alteration of elastic fibers leads to cardiovascular dysfunctions, as observed in elastin haploinsufficiency in mice (Eln+/-) or humans (supravalvular aortic stenosis or Williams-Beuren syndrome). In Eln+/+ and Eln+/- mice, we evaluated (arteriography, histology, qPCR, Western blots and cell cultures) the beneficial impact of treatment with a synthetic elastic protein (SEP), mimicking several domains of tropoelastin, the precursor of elastin, including hydrophobic elasticity-related domains and binding sites for elastin receptors. In the aorta or cultured aortic smooth muscle cells from these animals, SEP treatment induced a synthesis of elastin and fibrillin-1, a thickening of the aortic elastic lamellae, a decrease in wall stiffness and/or a strong trend toward a reduction in the elastic lamella disruptions in Eln+/- mice. SEP also modified collagen conformation and transcript expressions, enhanced the aorta constrictive response to phenylephrine in several animal groups, and, in female Eln+/- mice, it restored the normal vasodilatory response to acetylcholine. SEP should now be considered as a biomimetic molecule with an interesting potential for future treatments of elastin-deficient patients with altered arterial structure/function.
Collapse
Affiliation(s)
- Quentin Boëté
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Ming Lo
- Institut de Biologie et Chimie des Protéines UMR5305-LBTI, CNRS, Lyon-7, Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Kiao-Ling Liu
- Institut de Biologie et Chimie des Protéines UMR5305-LBTI, CNRS, Lyon-7, Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Guillaume Vial
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Emeline Lemarié
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Maxime Rougelot
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Iris Steuckardt
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Olfa Harki
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Axel Couturier
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Jonathan Gaucher
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Sophie Bouyon
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Alexandra Demory
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Antoine Boutin-Paradis
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Naima El Kholti
- Institut de Biologie et Chimie des Protéines UMR5305-LBTI, CNRS, Lyon-7, Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Aurore Berthier
- Institut de Biologie et Chimie des Protéines UMR5305-LBTI, CNRS, Lyon-7, Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Jean-Louis Pépin
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | | | - Elise Lambert
- Institut de Biologie et Chimie des Protéines UMR5305-LBTI, CNRS, Lyon-7, Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Romain Debret
- Institut de Biologie et Chimie des Protéines UMR5305-LBTI, CNRS, Lyon-7, Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Gilles Faury
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| |
Collapse
|
16
|
Cetin-Atalay R, Meliton AY, Sun KA, Glass ME, Woods PS, Peng YJ, Fang Y, Hamanaka RB, Prabhakar NR, Mutlu GM. Intermittent hypoxia inhibits epinephrine-induced transcriptional changes in human aortic endothelial cells. Sci Rep 2022; 12:17167. [PMID: 36229484 PMCID: PMC9561121 DOI: 10.1038/s41598-022-21614-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/29/2022] [Indexed: 02/02/2023] Open
Abstract
Obstructive sleep apnea (OSA) is an independent risk factor for cardiovascular disease. While intermittent hypoxia (IH) and catecholamine release play an important role in this increased risk, the mechanisms are incompletely understood. We have recently reported that IH causes endothelial cell (EC) activation, an early phenomenon in the development of cardiovascular disease, via IH-induced catecholamine release. Here, we investigated the effects of IH and epinephrine on gene expression in human aortic ECs using RNA-sequencing. We found a significant overlap between IH and epinephrine-induced differentially expressed genes (DEGs) including enrichment in leukocyte migration, cytokine-cytokine receptor interaction, cell adhesion and angiogenesis. Epinephrine caused higher number of DEGs compared to IH. Interestingly, IH when combined with epinephrine had an inhibitory effect on epinephrine-induced gene expression. Combination of IH and epinephrine induced MT1G (Metallothionein 1G), which has been shown to be highly expressed in ECs from parts of aorta (i.e., aortic arch) where atherosclerosis is more likely to occur. In conclusion, epinephrine has a greater effect than IH on EC gene expression in terms of number of genes and their expression level. IH inhibited the epinephrine-induced transcriptional response. Further investigation of the interaction between IH and epinephrine is needed to better understand how OSA causes cardiovascular disease.
Collapse
Affiliation(s)
- Rengul Cetin-Atalay
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Angelo Y. Meliton
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Kaitlyn A. Sun
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Mariel E. Glass
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Parker S. Woods
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Ying-Jie Peng
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Emergency Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| | - Yun Fang
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| | - Robert B. Hamanaka
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| | - Nanduri R. Prabhakar
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Emergency Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| | - Gökhan M. Mutlu
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| |
Collapse
|
17
|
Chronic Intermittent Hypoxia Increases Cell Proliferation in Hepatocellular Carcinoma. Cells 2022; 11:cells11132051. [PMID: 35805134 PMCID: PMC9265377 DOI: 10.3390/cells11132051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea (OSA) syndrome is characterized by chronic intermittent hypoxia and is associated with an increased risk of all-cause mortality, including cancer mortality. Hepatocellular carcinoma (HCC) is the most common type of liver cancer, characterized by increasing incidence and high mortality. However, the link between HCC and OSA-related chronic intermittent hypoxia remains unclear. Herein, we used a diethylnitrosamine (DEN)-induced HCC model to investigate whether OSA-related chronic intermittent hypoxia has an impact on HCC progression. To elucidate the associated mechanisms, we first evaluated the hypoxia status in the DEN-induced HCC model. Next, to simulate OSA-related intermittent hypoxia, we exposed cirrhotic rats with HCC to intermittent hypoxia during six weeks. We performed histopathological, immunohistochemical, RT-qPCR, and RNA-seq analysis. Chronic DEN injections strongly promoted cell proliferation, fibrosis, disorganized vasculature, and hypoxia in liver tissue, which mimics the usual events observed during human HCC development. Intermittent hypoxia further increased cell proliferation in DEN-induced HCC, which may contribute to an increased risk of HCC progression. In conclusion, our observations suggest that chronic intermittent hypoxia may be a factor worsening the prognosis of HCC.
Collapse
|
18
|
Harki O, Bouyon S, Sallé M, Arco-Hierves A, Lemarié E, Demory A, Chirica C, Vilgrain I, Pépin JL, Faury G, Briançon-Marjollet A. Inhibition of Vascular Endothelial Cadherin Cleavage Prevents Elastic Fiber Alterations and Atherosclerosis Induced by Intermittent Hypoxia in the Mouse Aorta. Int J Mol Sci 2022; 23:ijms23137012. [PMID: 35806017 PMCID: PMC9266969 DOI: 10.3390/ijms23137012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Intermittent hypoxia (IH), the major feature of obstructive sleep apnea syndrome (OSAS), induces atherosclerosis and elastic fiber alterations. VE-cadherin cleavage is increased in OSAS patients and in an IH-cellular model. It is mediated by HIF-1 and Src-tyr-kinases pathways and results in endothelial hyperpermeability. Our aim was to determine whether blocking VE-cadherin cleavage in vivo could be an efficient strategy to inhibit deleterious IH-induced vascular remodeling, elastic fiber defects and atherogenesis. VE-cadherin regulation, aortic remodeling and atherosclerosis were studied in IH-exposed C57Bl/6J or ApoE-/-mice treated or not with Src-tyr-kinases inhibitors (Saracatinib/Pazopanib) or a HIF-1 inhibitor (Acriflavine). Human aortic endothelial cells were exposed to IH and treated with the same inhibitors. LDL and the monocytes transendothelium passage were measured. In vitro, IH increased transendothelium LDL and monocytes passage, and the tested inhibitors prevented these effects. In mice, IH decreased VE-cadherin expression and increased plasmatic sVE level, intima-media thickness, elastic fiber alterations and atherosclerosis, while the inhibitors prevented these in vivo effects. In vivo inhibition of HIF-1 and Src tyr kinase pathways were associated with the prevention of IH-induced elastic fiber/lamella degradation and atherogenesis, which suggests that VE-cadherin could be an important target to limit atherogenesis and progression of arterial stiffness in OSAS.
Collapse
Affiliation(s)
- Olfa Harki
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, Laboratoire HP2, 38042 Grenoble, France; (O.H.); (S.B.); (M.S.); (A.A.-H.); (E.L.); (A.D.); (J.-L.P.); (A.B.-M.)
| | - Sophie Bouyon
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, Laboratoire HP2, 38042 Grenoble, France; (O.H.); (S.B.); (M.S.); (A.A.-H.); (E.L.); (A.D.); (J.-L.P.); (A.B.-M.)
| | - Marine Sallé
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, Laboratoire HP2, 38042 Grenoble, France; (O.H.); (S.B.); (M.S.); (A.A.-H.); (E.L.); (A.D.); (J.-L.P.); (A.B.-M.)
| | - Alejandro Arco-Hierves
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, Laboratoire HP2, 38042 Grenoble, France; (O.H.); (S.B.); (M.S.); (A.A.-H.); (E.L.); (A.D.); (J.-L.P.); (A.B.-M.)
| | - Emeline Lemarié
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, Laboratoire HP2, 38042 Grenoble, France; (O.H.); (S.B.); (M.S.); (A.A.-H.); (E.L.); (A.D.); (J.-L.P.); (A.B.-M.)
| | - Alexandra Demory
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, Laboratoire HP2, 38042 Grenoble, France; (O.H.); (S.B.); (M.S.); (A.A.-H.); (E.L.); (A.D.); (J.-L.P.); (A.B.-M.)
| | - Carole Chirica
- Unité Biochimie Immunoanalyse, Service de Biochimie SB2TE, CHU Grenoble Alpes, 38000 Grenoble, France;
| | - Isabelle Vilgrain
- Université Grenoble Alpes, INSERM U1292, CEA, 38042 Grenoble, France;
| | - Jean-Louis Pépin
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, Laboratoire HP2, 38042 Grenoble, France; (O.H.); (S.B.); (M.S.); (A.A.-H.); (E.L.); (A.D.); (J.-L.P.); (A.B.-M.)
| | - Gilles Faury
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, Laboratoire HP2, 38042 Grenoble, France; (O.H.); (S.B.); (M.S.); (A.A.-H.); (E.L.); (A.D.); (J.-L.P.); (A.B.-M.)
- Correspondence:
| | - Anne Briançon-Marjollet
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, Laboratoire HP2, 38042 Grenoble, France; (O.H.); (S.B.); (M.S.); (A.A.-H.); (E.L.); (A.D.); (J.-L.P.); (A.B.-M.)
| |
Collapse
|
19
|
González-Candia A, Candia AA, Paz A, Mobarec F, Urbina-Varela R, del Campo A, Herrera EA, Castillo RL. Cardioprotective Antioxidant and Anti-Inflammatory Mechanisms Induced by Intermittent Hypobaric Hypoxia. Antioxidants (Basel) 2022; 11:antiox11061043. [PMID: 35739940 PMCID: PMC9220055 DOI: 10.3390/antiox11061043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
More than 80 million people live and work (in a chronic or intermittent form) above 2500 masl, and 35 million live in the Andean Mountains. Furthermore, in Chile, it is estimated that 100,000 people work in high-altitude shifts, where stays in the lowlands are interspersed with working visits in the highlands. Acute exposure to high altitude has been shown to induce oxidative stress in healthy human lowlanders due to increased free radical formation and decreased antioxidant capacity. However, intermittent hypoxia (IH) induces preconditioning in animal models, generating cardioprotection. Here, we aim to describe the responses of a cardiac function to four cycles of intermittent hypobaric hypoxia (IHH) in a rat model. The twelve adult Wistar rats were randomly divided into two equal groups, a four-cycle of IHH and a normobaric hypoxic control. Intermittent hypoxia was induced in a hypobaric chamber in four continuous cycles (1 cycle = 4 days of hypoxia + 4 days of normoxia), reaching a barometric pressure equivalent to 4600 m of altitude (428 Torr). At the end of the fourth cycle, cardiac structural and functional variables were also determined by echocardiography; furthermore, cardiac oxidative stress biomarkers (4-Hydroxynonenal, HNE; nitrotyrosine, NT), antioxidant enzymes, and NLRP3 inflammasome panel expression are also determined. Our results show a higher ejection and a shortening fraction of the left ventricle function by the end of the fourth cycle. Furthermore, cardiac tissue presented a decreased expression of antioxidant proteins. However, a decrease in IL-1β, TNF-αn, and oxidative stress markers is observed in IHH compared to normobaric hypoxic controls. Non-significant differences were found in protein levels of NLRP3 and caspase-1. IHH exposure determines structural and functional heart changes. These findings suggest that initial states of IHH are beneficial for cardiovascular function and protection.
Collapse
Affiliation(s)
| | - Alejandro A. Candia
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile; (A.A.C.); (A.P.); (F.M.)
- Department for the Woman and Newborn Health Promotion, Universidad de Chile, Santiago 7500922, Chile
| | - Adolfo Paz
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile; (A.A.C.); (A.P.); (F.M.)
| | - Fuad Mobarec
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile; (A.A.C.); (A.P.); (F.M.)
| | - Rodrigo Urbina-Varela
- Laboratorio de Fisiología y Bioenergética Celular, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (R.U.-V.); (A.d.C.)
| | - Andrea del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (R.U.-V.); (A.d.C.)
| | - Emilio A. Herrera
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile; (A.A.C.); (A.P.); (F.M.)
- International Center for Andean Studies (INCAS), University of Chile, Putre 1070000, Chile
- Correspondence: (E.A.H.); or (R.L.C.); Tel.: +56-982-337-566 (R.L.C.)
| | - Rodrigo L. Castillo
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile
- Unidad de Paciente Crítico, Hospital del Salvador, Santiago 7500922, Chile
- Correspondence: (E.A.H.); or (R.L.C.); Tel.: +56-982-337-566 (R.L.C.)
| |
Collapse
|
20
|
Delsart P, Soquet J, Pierache A, Dedeken M, Fry S, Mallart A, Pontana F, Azzaoui R, Juthier F, Sobocinski J, Mounier-Vehier C. Influence of nocturnal hypoxemia on follow-up course after type B acute aortic syndrome. BMC Pulm Med 2021; 21:401. [PMID: 34872556 PMCID: PMC8647351 DOI: 10.1186/s12890-021-01778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/19/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction Association between sleep nocturnal breathing disorders and acute aortic syndrome (AAS) has been described but mid-term data are scarce. Objectives We assessed the prognostic value of sleep apnea parameters and their relationship with aortic morphology after the onset of a type B AAS. Methods Between January 2010 and January 2018, sleep apnea screening in post type B AAS was prospectively performed. The association of sleep apnea parameters with aortic morphology and aortic expansion during follow-up was studied. Results Over the 8-year-study period, 103 patients were included, with a mean age of 57.8 ± 12.1 years old. Median follow-up was 25.0 months (11.0–51.0). Thirty-two patients (31%) required aortic stenting during the acute phase. In patients treated by aortic stenting, the descending thoracic aortic diameter was positively associated with a higher percentage of nocturnal time of saturation ≤ 90% after adjustment (p = 0.016). During follow-up, the nocturnal time of saturation ≤ 90% in patients treated by medical therapy was the only parameter associated with significant aortic expansion rate (r = 0.26, p = 0.04). Thirty-eight patients started and sustained nocturnal ventilation during follow-up. The association between aortic expansion rate and nocturnal time of saturation ≤ 90% did not persist during follow-up after adjustment on nocturnal ventilation initiation (r = 0.25, p = 0.056). Conclusions Nocturnal hypoxemia parameters are positively associated with the max onset aortic diameter and significant aortic growth after type B AAS. Nocturnal ventilation seems to mitigate aortic expansion during follow-up. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01778-y.
Collapse
Affiliation(s)
- Pascal Delsart
- Lille, Institut Cœur Poumon, Bd Pr Leclercq, 59000, Lille, France. .,Vascular Medicine and Hypertension Department, Institut-Coeur-Poumon, Boulevard Pr Leclercq, 59037, Lille Cedex, France.
| | - Jerome Soquet
- Lille, Institut Cœur Poumon, Bd Pr Leclercq, 59000, Lille, France.,University of Lille, CHU Lille, 59000, Lille, France
| | - Adeline Pierache
- Service d'épidémiologie et de santé publique, University of Lille, CHU Lille, 59000, Lille, France
| | - Maxime Dedeken
- Lille, Institut Cœur Poumon, Bd Pr Leclercq, 59000, Lille, France
| | - Stephanie Fry
- Lille, Institut Cœur Poumon, Bd Pr Leclercq, 59000, Lille, France
| | - Anne Mallart
- Lille, Institut Cœur Poumon, Bd Pr Leclercq, 59000, Lille, France
| | - François Pontana
- Lille, Institut Cœur Poumon, Bd Pr Leclercq, 59000, Lille, France.,University of Lille, CHU Lille, 59000, Lille, France
| | - Richard Azzaoui
- Lille, Institut Cœur Poumon, Bd Pr Leclercq, 59000, Lille, France
| | - Francis Juthier
- Lille, Institut Cœur Poumon, Bd Pr Leclercq, 59000, Lille, France.,University of Lille, CHU Lille, 59000, Lille, France
| | - Jonathan Sobocinski
- Lille, Institut Cœur Poumon, Bd Pr Leclercq, 59000, Lille, France.,University of Lille, CHU Lille, 59000, Lille, France
| | - Claire Mounier-Vehier
- Lille, Institut Cœur Poumon, Bd Pr Leclercq, 59000, Lille, France.,University of Lille, CHU Lille, 59000, Lille, France.,Vascular Medicine and Hypertension Department, Institut-Coeur-Poumon, Boulevard Pr Leclercq, 59037, Lille Cedex, France
| |
Collapse
|
21
|
Agaltsov MV, Drapkina OM. Obstructive sleep apnea and cardiovascular comorbidity: common pathophysiological mechanisms to cardiovascular disease. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2021. [DOI: 10.20996/1819-6446-2021-08-05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Obstructive sleep apnea (OSA) is associated with many cardiovascular and metabolic diseases. Sleep apnea causes intermittent hypoxemia, chest pressure fluctuations and a reaction from the cerebral cortex in the form of a short awakening during sleep (EEG-activation). The consequences of pathological pathways are studied in experimental models involving cell cultures, animals, and healthy volunteers. At present, the negative impact of intermittent hypoxemia on a variety of pathophysiological disorders of the heart and blood vessels (vascular tone fluctuations, thickening of the intimamedia complex in the vascular wall, direct damaging effect on the myocardium) has a great evidence base. Two other pathological components of OSA (pressure fluctuations and EEG-activation) can also affect cardiovascular system, mainly affecting the increase in blood pressure and changing cardiac hemodynamics. Although these reactions are considered separately in the review, with the development of sleep apnea they occur sequentially and are closely interrelated. As a result, these pathological pathways trigger further pathophysiological mechanisms acting on the heart and blood vessels. It is known that these include excessive sympathetic activation, inflammation, oxidative stress and metabolic dysregulation. In many respects being links of one process, these mechanisms can trigger damage to the vascular wall, contributing to the formation of atherosclerotic lesions. The accumulated data with varying degrees of reliability confirm the participation of OSA through these processes in the formation of cardiovascular disorders. There are factors limiting direct evidence of this interaction (sleep deprivation, causing similar changes, as well as the inability to share the contribution of other risk factors for cardiovascular diseases, in particular arterial hypertension, obesity, which are often associated with OSA). It is necessary to continue the study of processes that implement the pathological effect of OSA on the cardiovascular system.
Collapse
Affiliation(s)
- M. V. Agaltsov
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
22
|
Harki O, Boete Q, Pépin JL, Arnaud C, Belaidi E, Faury G, Khouri C, Briançon-Marjollet A. Intermittent hypoxia-related alterations in vascular structure and function: a systematic review and meta-analysis of rodent data. Eur Respir J 2021; 59:13993003.00866-2021. [PMID: 34413154 DOI: 10.1183/13993003.00866-2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/25/2021] [Indexed: 12/09/2022]
Abstract
Obstructive Sleep Apnea and the related intermittent hypoxia (IH) are widely recognised as risk factors for incident cardiovascular diseases. Numerous studies support the deleterious vascular impact of IH in rodents but an overall interpretation is challenging owing to heterogeneity in rodent species investigated and the severity and duration of IH exposure.To clarify this major issue, we conducted a systematic review and meta-analysis to quantify the impact of IH on systemic artery structure and function depending on the different IH exposure designs.We searched PubMed, Embase and Web of Sciences and included 125 articles in a meta-analysis, among them 112 using wild-type rodents and 13 using Apolipoprotein E knock-out mice. We used the standardised mean difference (SMD) to compare results between studies.IH significantly increased mean arterial pressure (+13.90 mmHg (95% CI [11.88; 15.92]), systolic and diastolic blood pressure. Meta-regressions showed that mean arterial pressure change was associated with strain and year of publication. IH altered vasodilation in males but not in females, and increased endothelin-1-induced, but not phenylephrine-induced, vasoconstriction. Intima-media thickness significantly increased upon IH exposure (SMD 1.10 [0.58; 1.62], absolute values: +5.23 (2.81-7.84)). This increase was observed in mice but not in rats, and was negatively associated with age. Finally IH increased atherosclerotic plaque size in ApoE-/- mice (SMD 1.08 [0.80; 1.37]).To conclude, our meta-analysis established that IH, independently of other confounders, has a strong effect on vascular structure and physiology. Our findings support the interest of identifying and treating sleep apnea in routine cardiology practice.
Collapse
Affiliation(s)
- Olfa Harki
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Quentin Boete
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Jean-Louis Pépin
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Claire Arnaud
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Elise Belaidi
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Gilles Faury
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Charles Khouri
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France.,Pharmacovigilance Unit & Clinical Pharmacology Department, Grenoble Alpes University Hospital, Grenoble, France.,Co-last authors have equally contributed to the work
| | - Anne Briançon-Marjollet
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France .,Co-last authors have equally contributed to the work
| |
Collapse
|
23
|
Sun Y, Tan J, Miao Y, Zhang Q. The role of PD-L1 in the immune dysfunction that mediates hypoxia-induced multiple organ injury. Cell Commun Signal 2021; 19:76. [PMID: 34256773 PMCID: PMC8276205 DOI: 10.1186/s12964-021-00742-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxia is a pathological condition common to many diseases, although multiple organ injuries induced by hypoxia are often overlooked. There is increasing evidence to suggest that the hypoxic environment may activate innate immune cells and suppress adaptive immunity, further stimulating inflammation and inhibiting immunosurveillance. We found that dysfunctional immune regulation may aggravate hypoxia-induced tissue damage and contribute to secondary injury. Among the diverse mechanisms of hypoxia-induced immune dysfunction identified to date, the role of programmed death-ligand 1 (PD-L1) has recently attracted much attention. Besides leading to tumour immune evasion, PD-L1 has also been found to participate in the progression of the immune dysfunction which mediates hypoxia-induced multiple organ injury. In this review, we aimed to summarise the role of immune dysfunction in hypoxia-induced multiple organ injury, the effects of hypoxia on the cellular expression of PD-L1, and the effects of upregulated PD-L1 expression on immune regulation. Furthermore, we summarise the latest information pertaining to the involvement, diagnostic value, and therapeutic potential of immunosuppression induced by PD-L1 in various types of hypoxia-related diseases, including cancers, ischemic stroke, acute kidney injury, and obstructive sleep apnoea. Video Abstract.
Collapse
Affiliation(s)
- Yang Sun
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Anshan Road NO.154, Tianjin, 300052 China
| | - Jin Tan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Anshan Road NO.154, Tianjin, 300052 China
| | | | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Anshan Road NO.154, Tianjin, 300052 China
| |
Collapse
|
24
|
Cetin-Atalay R, Meliton AY, Wu D, Woods PS, Sun KA, Peng YJ, Nanduri J, Su X, Fang Y, Hamanaka RB, Prabhakar N, Mutlu GM. Intermittent Hypoxia-Induced Activation of Endothelial Cells Is Mediated via Sympathetic Activation-Dependent Catecholamine Release. Front Physiol 2021; 12:701995. [PMID: 34322038 PMCID: PMC8311436 DOI: 10.3389/fphys.2021.701995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/22/2021] [Indexed: 02/03/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a common breathing disorder affecting a significant percentage of the adult population. OSA is an independent risk factor for cardiovascular disease (CVD); however, the underlying mechanisms are not completely understood. Since the severity of hypoxia correlates with some of the cardiovascular effects, intermittent hypoxia (IH) is thought to be one of the mechanisms by which OSA may cause CVD. Here, we investigated the effect of IH on endothelial cell (EC) activation, characterized by the expression of inflammatory genes, that is known to play an important role in the pathogenesis of CVD. Exposure of C57BL/6 mice to IH led to aortic EC activation, while in vitro exposure of ECs to IH failed to do so, suggesting that IH does not induce EC activation directly, but indirectly. One of the consequences of IH is activation of the sympathetic nervous system and catecholamine release. We found that exposure of mice to IH caused elevation of circulating levels of catecholamines. Inhibition of the IH-induced increase in catecholamines by pharmacologic inhibition or by adrenalectomy or carotid body ablation prevented the IH-induced EC activation in mice. Supporting a key role for catecholamines, epinephrine alone was sufficient to cause EC activation in vivo and in vitro. Together, these results suggested that IH does not directly induce EC activation, but does so indirectly via release of catecholamines. These results suggest that targeting IH-induced sympathetic nerve activity and catecholamine release may be a potential therapeutic target to attenuate the CV effects of OSA.
Collapse
Affiliation(s)
- Rengul Cetin-Atalay
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Angelo Y Meliton
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - David Wu
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Parker S Woods
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Kaitlyn A Sun
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Ying-Jie Peng
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Emergency Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Jayasri Nanduri
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Emergency Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Xiaoyu Su
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Emergency Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Yun Fang
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Robert B Hamanaka
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Nanduri Prabhakar
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Emergency Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Gökhan M Mutlu
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
25
|
Koenig AM, Koehler U, Hildebrandt O, Schwarzbach H, Hannemann L, Boneberg R, Heverhagen JT, Mahnken AH, Keller M, Kann PH, Deigner HP, Laur N, Kinscherf R, Hildebrandt W. The Effect of Obstructive Sleep Apnea and Continuous Positive Airway Pressure Therapy on Skeletal Muscle Lipid Content in Obese and Nonobese Men. J Endocr Soc 2021; 5:bvab082. [PMID: 34268461 PMCID: PMC8274947 DOI: 10.1210/jendso/bvab082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 01/01/2023] Open
Abstract
Obstructive sleep apnea (OSA), independently of obesity (OBS), predisposes to insulin resistance (IR) for largely unknown reasons. Because OSA-related intermittent hypoxia triggers lipolysis, overnight increases in circulating free fatty acids (FFAs) including palmitic acid (PA) may lead to ectopic intramuscular lipid accumulation potentially contributing to IR. Using 3-T-1H-magnetic resonance spectroscopy, we therefore compared intramyocellular and extramyocellular lipid (IMCL and EMCL) in the vastus lateralis muscle at approximately 7 am between 26 male patients with moderate-to-severe OSA (17 obese, 9 nonobese) and 23 healthy male controls (12 obese, 11 nonobese). Fiber type composition was evaluated by muscle biopsies. Moreover, we measured fasted FFAs including PA, glycated hemoglobin A1c, thigh subcutaneous fat volume (ScFAT, 1.5-T magnetic resonance tomography), and maximal oxygen uptake (VO2max). Fourteen patients were reassessed after continuous positive airway pressure (CPAP) therapy. Total FFAs and PA were significantly (by 178% and 166%) higher in OSA patients vs controls and correlated with the apnea-hypopnea index (AHI) (r ≥ 0.45, P < .01). Moreover, IMCL and EMCL were 55% (P < .05) and 40% (P < .05) higher in OSA patients, that is, 114% and 103% in nonobese, 24.4% and 8.4% in obese participants (with higher control levels). Overall, PA, FFAs (minus PA), and ScFAT significantly contributed to IMCL (multiple r = 0.568, P = .002). CPAP significantly decreased EMCL (–26%) and, by trend only, IMCL, total FFAs, and PA. Muscle fiber composition was unaffected by OSA or CPAP. Increases in IMCL and EMCL are detectable at approximately 7 am in OSA patients and are partly attributable to overnight FFA excesses and high ScFAT or body mass index. CPAP decreases FFAs and IMCL by trend but significantly reduces EMCL.
Collapse
Affiliation(s)
- Alexander M Koenig
- Department of Diagnostic and Interventional Radiology, University Hospital of Marburg, Philipps-University of Marburg, 35043 Marburg, Germany
| | - Ulrich Koehler
- Department of Sleep Medicine, Division of Pneumology, Internal Medicine, University Hospital, Philipps-University of Marburg, 35043 Marburg, Germany
| | - Olaf Hildebrandt
- Department of Sleep Medicine, Division of Pneumology, Internal Medicine, University Hospital, Philipps-University of Marburg, 35043 Marburg, Germany
| | - Hans Schwarzbach
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Lena Hannemann
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Raphael Boneberg
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Johannes T Heverhagen
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Andreas H Mahnken
- Department of Diagnostic and Interventional Radiology, University Hospital of Marburg, Philipps-University of Marburg, 35043 Marburg, Germany
| | - Malte Keller
- Department of Diagnostic and Interventional Radiology, University Hospital of Marburg, Philipps-University of Marburg, 35043 Marburg, Germany
| | - Peter H Kann
- Division of Endocrinology, Diabetology and Osteology, Internal Medicine, University Hospital, Philipps-University of Marburg, 35043 Marburg, Germany
| | - Hans-Peter Deigner
- Furtwangen University, Institute of Precision Medicine, 78054 VS-Schwenningen, Germany
| | - Nico Laur
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, 35032 Marburg, Germany.,Furtwangen University, Institute of Precision Medicine, 78054 VS-Schwenningen, Germany
| | - Ralf Kinscherf
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Wulf Hildebrandt
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, 35032 Marburg, Germany
| |
Collapse
|
26
|
Yang SH, Xing YS, Wang ZX, Liu YB, Chen HW, Ren YF, Chen JL, Li SB, Wang ZF. Association of Obstructive Sleep Apnea With the Risk of Repeat Adverse Cardiovascular Events in Patients With Newly Diagnosed Acute Coronary Syndrome: A Systematic Review and Meta-Analysis. EAR, NOSE & THROAT JOURNAL 2021; 100:260-270. [PMID: 33570429 DOI: 10.1177/0145561321989450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The impact of obstructive sleep apnea (OSA) on subsequent cardiovascular events in patients with acute coronary syndrome (ACS) remains inconclusive. AIM Our aim was to systematically assess the relationship between preexisting OSA and adverse cardiovascular events in patients with newly diagnosed ACS by conducting a systematic review and meta-analysis. METHODS We systematically searched PubMed, EMBASE, and Cochrane library for studies published up to May 1, 2020, that reported any association between OSA and cardiovascular events in patients with newly diagnosed ACS. The main outcomes were a composite of all-cause or cardiovascular death, recurrent myocardial infarction, stroke, repeat revascularization, or heart failure. We conducted a pooled analysis using the random-effects model. We also performed subgroup, sensitivity, heterogeneity analysis, and the assessment of publication bias. RESULTS We identified 10 studies encompassing 3350 participants. The presence of OSA was associated with increased risk of adverse cardiovascular events in newly prognosed ACS (risk ratio [RR] 2.18, 95% confidence interval [CI]: 1.45-3.26, P < .001, I2 = 64%). Between-study heterogeneity was partially explained by a multicenter study (9 single-center studies, RR 2.33 95% CI 1.69-3.19, I2 =18%), and I2 remarkably decreased from 64% to 18%. Moreover, OSA significantly increased the incidence of repeat revascularization (8 studies) and heart failure (6 studies) in patients with newly diagnosed ACS. CONCLUSION Patients with preexisting OSA are at greater risk of subsequent cardiovascular events after onset of ACS. Further studies should investigate the treatment of OSA in patient with ACS.
Collapse
Affiliation(s)
- Shu-Han Yang
- Department of Cardiology, Xinxiang Central Hospital, The Fourth Clinical College of 91593Xinxiang Medical University, Henan Province, People's Republic of China
| | - Yong-Sheng Xing
- Department of Intensive Care Unit, Xinxiang Central Hospital, The Fourth Clinical College of 91593Xinxiang Medical University, Henan Province, People's Republic of China
| | - Zeng-Xia Wang
- Department of Intensive Care Unit, Xinxiang Central Hospital, The Fourth Clinical College of 91593Xinxiang Medical University, Henan Province, People's Republic of China
| | - Yan-Bin Liu
- Department of Cardiology, Xinxiang Central Hospital, The Fourth Clinical College of 91593Xinxiang Medical University, Henan Province, People's Republic of China
| | - Hong-Wei Chen
- Department of Intensive Care Unit, Xinxiang Central Hospital, The Fourth Clinical College of 91593Xinxiang Medical University, Henan Province, People's Republic of China
| | - Yan-Feng Ren
- Department of Intensive Care Unit, Xinxiang Central Hospital, The Fourth Clinical College of 91593Xinxiang Medical University, Henan Province, People's Republic of China
| | - Jing-Ling Chen
- Department of Intensive Care Unit, Xinxiang Central Hospital, The Fourth Clinical College of 91593Xinxiang Medical University, Henan Province, People's Republic of China
| | - Sheng-Bo Li
- Department of Intensive Care Unit, Xinxiang Central Hospital, The Fourth Clinical College of 91593Xinxiang Medical University, Henan Province, People's Republic of China
| | - Zhi-Fang Wang
- Department of Cardiology, Xinxiang Central Hospital, The Fourth Clinical College of 91593Xinxiang Medical University, Henan Province, People's Republic of China
| |
Collapse
|
27
|
Harki O, Tamisier R, Pépin JL, Bailly S, Mahmani A, Gonthier B, Salomon A, Vilgrain I, Faury G, Briançon-Marjollet A. VE-cadherin cleavage in sleep apnoea: new insights into intermittent hypoxia-related endothelial permeability. Eur Respir J 2021; 58:13993003.04518-2020. [PMID: 33737411 DOI: 10.1183/13993003.04518-2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/24/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Obstructive sleep apnoea (OSA) causes intermittent hypoxia that in turn induces endothelial dysfunction and atherosclerosis progression. We hypothesised that VE-cadherin cleavage, detected by its released extracellular fragment solubilised in the blood (sVE), may be an early indicator of emergent abnormal endothelial permeability. Our aim was to assess VE-cadherin cleavage in OSA patients and in in vivo and in vitro intermittent hypoxia models to decipher the cellular mechanisms and consequences. METHODS Sera from seven healthy volunteers exposed to 14 nights of intermittent hypoxia, 43 OSA patients and 31 healthy control subjects were analysed for their sVE content. Human aortic endothelial cells (HAECs) were exposed to 6 h of intermittent hypoxia in vitro, with or without an antioxidant or inhibitors of hypoxia-inducible factor (HIF)-1, tyrosine kinases or vascular endothelial growth factor (VEGF) pathways. VE-cadherin cleavage and phosphorylation were evaluated, and endothelial permeability was assessed by measuring transendothelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran flux. RESULTS sVE was significantly elevated in sera from healthy volunteers submitted to intermittent hypoxia and OSA patients before treatment, but conversely decreased in OSA patients after 6 months of continuous positive airway pressure treatment. OSA was the main factor accounting for sVE variations in a multivariate analysis. In in vitro experiments, cleavage and expression of VE-cadherin increased upon HAEC exposure to intermittent hypoxia. TEER decreased and FITC-dextran flux increased. These effects were reversed by all of the pharmacological inhibitors tested. CONCLUSIONS We suggest that in OSA, intermittent hypoxia increases endothelial permeability in OSA by inducing VE-cadherin cleavage through reactive oxygen species production, and activation of HIF-1, VEGF and tyrosine kinase pathways.
Collapse
Affiliation(s)
- Olfa Harki
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| | - Renaud Tamisier
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| | - Jean-Louis Pépin
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| | - Sébastien Bailly
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| | - Anissa Mahmani
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| | - Brigitte Gonthier
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| | - Aude Salomon
- Université Grenoble Alpes, INSERM U1036, CEA, Grenoble, France
| | | | - Gilles Faury
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| | | |
Collapse
|
28
|
Xia L, Zhang P, Niu JW, Ge W, Chen JT, Yang S, Su AX, Feng YZ, Wang F, Chen G, Chen GH. Relationships Between a Range of Inflammatory Biomarkers and Subjective Sleep Quality in Chronic Insomnia Patients: A Clinical Study. Nat Sci Sleep 2021; 13:1419-1428. [PMID: 34413689 PMCID: PMC8369225 DOI: 10.2147/nss.s310698] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/06/2021] [Indexed: 01/24/2023] Open
Abstract
PURPOSE To examine whether associations exist between chronic insomnia disorder (CID) and overlooked inflammatory factors (Serum amyloid protein A [SAA]), tumor necrosis factor [TNF]-α, granulocyte-macrophage colony-stimulating factor [GM-CSF], and regulated on activation and normal T cell expressed and presumably secreted [RANTES]). PATIENTS AND METHODS A total of 65 CID patients and 39 sex- and age-matched good sleeper (GS) controls participated in this study. They completed a baseline survey to collect data on demographics, and were elevated sleep and mood by Pittsburgh Sleep Quality Index (PSQI), Athens Insomnia Scale (AIS), 17-item Hamilton Depression Rating Scale (HAMD-17) and 14-item Hamilton Anxiety Rating Scale (HAMA-14), respectively. The blood samples were collected and tested the serum levels of SAA, TNF-α, GM-CSF and RANTES. RESULTS The CID group had higher serum levels of SAA, TNF-α, and GM-CSF and a lower level of RANTES than the GS group. In the Spearman correlation analysis, SAA and GM-CSF positively correlated with the PSQI and AIS scores. After controlling for sex, HAMD-17 score, and HAMA-14 score, the partial correlation analysis showed that GM-CSF was positively correlated with PSQI score. Further stepwise linear regression analyses showed that GM-CSF was positively associated with the PSQI and AIS scores, while RANTES was negatively associated with them, and SAA was positively associated with just the AIS score. CONCLUSION The serum levels of inflammatory mediators (SAA, TNF-α, and GM-CSF) were significantly elevated and the level of RANTES was significantly decreased in CID patients and, to some extent, the changes are related to the severity of insomnia. These findings may help us to improve interventions to prevent the biological consequences of CID by inhibiting inflammation, thereby promoting health.
Collapse
Affiliation(s)
- Lan Xia
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Ping Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), People's Republic of China
| | - Jing-Wen Niu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), People's Republic of China
| | - Wei Ge
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), People's Republic of China
| | - Jun-Tao Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), People's Republic of China
| | - Shuai Yang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), People's Republic of China
| | - Ai-Xi Su
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), People's Republic of China
| | - Yi-Zhou Feng
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), People's Republic of China
| | - Fang Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Gong Chen
- Hefei Technology College, Hefei (Chaohu), People's Republic of China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), People's Republic of China
| |
Collapse
|
29
|
Umeda A, Miyagawa K, Mochida A, Takeda H, Takeda K, Okada Y, Gozal D. Effects of Normoxic Recovery on Intima-Media Thickness of Aorta and Pulmonary Artery Following Intermittent Hypoxia in Mice. Front Physiol 2020; 11:583735. [PMID: 33192596 PMCID: PMC7645053 DOI: 10.3389/fphys.2020.583735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Obstructive sleep apnea (OSA) patients are at risk for increased blood pressure and carotid intima-media thickness (IMT), with pulmonary hypertension and right-sided heart failure potentially developing as well. Chronic intermittent hypoxia (IH) has been used as an OSA model in animals, but its effects on vascular beds have not been evaluated using objective unbiased tools. Previously published and current experimental data in mice exposed to IH were evaluated for IMT in aorta and pulmonary artery (PA) after IH with or without normoxic recovery using software for meta-analysis, Review Manager 5. Because IMT data reports on PA were extremely scarce, atherosclerotic area percentage from lumen data was also evaluated. IH significantly increased IMT parameters in both aorta and PA as illustrated by Forest plots (P < 0.01), which also confirmed that IMT values after normoxic recovery were within the normal range in both vascular beds. One-sided scarce lower areas in Funnel Plots were seen for both aorta and PA indicating the likelihood of significant publication bias. Forest and Funnel plots, which provide unbiased assessments of published and current data, suggest that IH exposures may induce IMT thickening that may be reversed by normoxic recovery in both aorta and PA. In light of the potential likelihood of publication bias, future studies are needed to confirm or refute the findings. In conclusion, OSA may induce IMT thickening (e.g., aorta and/or PA), but the treatment (e.g., nasal continuous positive airway pressure) will likely lead to improvements in such findings.
Collapse
Affiliation(s)
- Akira Umeda
- Department of Respiratory Medicine, International University of Health and Welfare Shioya Hospital, Yaita, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Otawara, Japan
| | - Atsumi Mochida
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Otawara, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Otawara, Japan
| | - Kotaro Takeda
- Faculty of Rehabilitation, School of Healthcare, Fujita Health University, Toyoake, Japan
| | - Yasumasa Okada
- Department of Internal Medicine, National Hospital Organization Murayama Medical Center, Musashimurayama, Japan
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, MU Women's and Children's Hospital, University of Missouri, Columbia, MO, United States
| |
Collapse
|
30
|
Bourdier G, Détrait M, Bouyon S, Lemarié E, Brasseur S, Doutreleau S, Pépin J, Godin‐Ribuot D, Belaidi E, Arnaud C. Intermittent Hypoxia Triggers Early Cardiac Remodeling and Contractile Dysfunction in the Time-Course of Ischemic Cardiomyopathy in Rats. J Am Heart Assoc 2020; 9:e016369. [PMID: 32805159 PMCID: PMC7660805 DOI: 10.1161/jaha.120.016369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Sleep-disordered breathing is associated with a poor prognosis (mortality) in patients with ischemic cardiomyopathy. The understanding of mechanisms linking intermittent hypoxia (IH), the key feature of sleep-disordered breathing, to ischemic cardiomyopathy progression is crucial for identifying specific actionable therapeutic targets. The aims of the present study were (1) to evaluate the impact of IH on the time course evolution of cardiac remodeling and contractile dysfunction in a rat model of ischemic cardiomyopathy; and (2) to determine the impact of IH on sympathetic activity, hypoxia inducible factor-1 activation, and endoplasmic reticulum stress in the time course of ischemic cardiomyopathy progression. METHODS AND RESULTS Ischemic cardiomyopathy was induced by a permanent ligature of the left coronary artery in male Wistar rats (rats with myocardial infarction). Rats with myocardial infarction were then exposed to either IH or normoxia for up to 12 weeks. Cardiac remodeling and function were analyzed by Sirius red and wheat germ agglutinin staining, ultrasonography, and cardiac catheterization. Sympathetic activity was evaluated by spectral analysis of blood pressure variability. Hypoxia-inducible factor-1α activation and burden of endoplasmic reticulum stress were characterized by Western blots. Long-term IH exposure precipitated cardiac remodeling (hypertrophy and interstitial fibrosis) and contractile dysfunction during the time course evolution of ischemic cardiomyopathy in rodents. Among associated mechanisms, we identified the early occurrence and persistence of sympathetic activation, associated with sustained hypoxia-inducible factor-1α expression and a delayed pro-apoptotic endoplasmic reticulum stress. CONCLUSIONS Our data provide the demonstration of the deleterious impact of IH on post-myocardial infarction remodeling and contractile dysfunction. Further studies are needed to evaluate whether targeting sympathetic nervous system or HIF-1 overactivities could limit these effects and improve management of coexisting ischemic cardiomyopathy and sleep-disordered breathing.
Collapse
Affiliation(s)
| | - Maximin Détrait
- Univ. Grenoble AlpesINSERMCHU Grenoble AlpesHP2GrenobleFrance
| | - Sophie Bouyon
- Univ. Grenoble AlpesINSERMCHU Grenoble AlpesHP2GrenobleFrance
| | - Emeline Lemarié
- Univ. Grenoble AlpesINSERMCHU Grenoble AlpesHP2GrenobleFrance
| | | | | | | | | | - Elise Belaidi
- Univ. Grenoble AlpesINSERMCHU Grenoble AlpesHP2GrenobleFrance
| | - Claire Arnaud
- Univ. Grenoble AlpesINSERMCHU Grenoble AlpesHP2GrenobleFrance
| |
Collapse
|
31
|
Tang JJ, Li GX, Liu ZG, Yi R, Yu D, Zhang YB, Zhao SQ, Wang SH. Danlou Tablet () Improves Chronic Intermittent Hypoxia-induced Dyslipidemia and Arteriosclerosis by HIF-1 α-Angptl4 mRNA Signaling Pathway. Chin J Integr Med 2020; 28:509-517. [PMID: 32623702 DOI: 10.1007/s11655-020-3255-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To detect whether Danlou Tablet (, DLT) regulates the hypoxia-induced factor (HIF)-1 α-angiopoietin-like 4 (Angptl4) mRNA signaling pathway and explore the role of DLT in treating chronic intermittent hypoxia (CIH)-induced dyslipidemia and arteriosclerosis. METHODS The mature adipocytes were obtained from 3T3-L1 cell culturation and allocated into 8 groups including control groups (Groups 1 and 5, 0.1 mL of cell culture grade water); DLT groups (Groups 2 and 6, 0.1 mL of 1,000 µg/mL DLT submicron powder solution); dimethyloxalylglycine (DMOG) groups (Groups 3 and 7, DMOG and 0.1 mL of cell culture grade water); DMOG plus DLT groups (Groups 4 and 8, DMOG and 0.1 mL of 1,000 µg/mL DLT submicron powder solution). Groups 1-4 used mature adipocytes and groups 5-8 used HIF-1 α-siRNA lentivirus-transfected mature adipocytes. After 24-h treatment, real-time polymerase chain reaction and Western blot were employed to determine the mRNA and protein expression levels of HIF-1 α and Angptl4. In animal experiments, the CIH model in ApoE-/- mice was established. Sixteen mice were complete randomly divided into 4 groups including sham group, CIH model group [intermittent hypoxia and normal saline (2 mL/time) gavage once a day]; Angptl4 Ab group [intermittent hypoxia and Angptl4 antibody (30 mg/kg) intraperitoneally injected every week]; DLT group [intermittent hypoxia and DLT (250 mg/kg) once a day], 4 mice in each group. After 4-week treatment, enzyme linked immunosorbent assay was used to detect the expression levels of serum total cholesterol (TC) and triglyceride (TG). Hematoxylin-eosin and CD68 staining were used to observe the morphological properties of arterial plaques. RESULTS Angptl4 expression was dependent on HIF-1 α, with a reduction in mRNA expression and no response in protein level to DMOG or DLT treatment in relation to siHIF-1 α -transfected cells. DLT inhibited HIF-1 α and Angptl4 mRNA expression (P<0.05 or P<0.01) and reduced HIF-1 α and Angptl4 protein expressions with DMOG in mature adipocytes (all P<0.01), as the effect on HIF-1 α protein also existed in the presence of siHIF-1 α (P<0.01). ApoE-/- mice treated with CIH had increased TG and TC levels (all P<0.01) and atherosclerotic plaque. Angptl4 antibody and DLT both reduce TG and TC levels (all P<0.01), as well as reducing atherosclerotic plaque areas, narrowing arterial wall thickness and alleviating atherosclerotic lesion symptoms to some extent. CONCLUSION DLT had positive effects in improving dyslipidemia and arteriosclerosis by inhibiting Angptl4 protein level through HIF-1 α-Angptl4 mRNA signaling pathway.
Collapse
Affiliation(s)
- Jing-Jing Tang
- Department of Pneumology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Guang-Xi Li
- Department of Pneumology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100053, China.,Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhi-Guo Liu
- Department of Pneumology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Rong Yi
- Department of Pneumology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Dong Yu
- Drug Clinical Trial Agency, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yue-Bo Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shuang-Qiao Zhao
- Department of Gynecology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Shi-Han Wang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, 55905, USA. .,Department of Cardiovascular Medicine, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
32
|
Moulin S, Arnaud C, Bouyon S, Pépin JL, Godin-Ribuot D, Belaidi E. Curcumin prevents chronic intermittent hypoxia-induced myocardial injury. Ther Adv Chronic Dis 2020; 11:2040622320922104. [PMID: 32637058 PMCID: PMC7315663 DOI: 10.1177/2040622320922104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/24/2020] [Indexed: 01/14/2023] Open
Abstract
Background: Chronic intermittent hypoxia (IH), the hallmark feature of obstructive sleep apnoea syndrome, contributes to infarct size enhancement after myocardial ischemia–reperfusion (I/R). Curcumin (Curc), the natural pigment of Curcuma longa, has been demonstrated to be beneficial in the context of myocardial injury. In this study, we assessed the effects of Curc on the maladaptive cardiac response to IH, and particularly on IH-induced hypoxia inducible factor-1 (HIF-1) expression, oxidative stress, inflammation, endoplasmic reticulum (ER) stress and apoptosis. Methods: Swiss/SV129 mice were exposed to normoxia or IH (21–5% FiO2, 60 s cycles, 8 h per day, for 21 days) and treated orally with Curc (100 mg kg−1
day−1, oral gavage) or its vehicle. Mice were then either euthanised for heart sampling in order to perform biochemical and histological analysis, or subjected to an in vivo ischemia-reperfusion protocol in order to measure infarct size. Results: IH increased nuclear HIF-1α expression and superoxide anion (O2.–) production as well as nuclear factor kappa B (NF-kB) p65, glucose-regulated protein (Grp78) and C/EBP homologous protein (CHOP) expression. IH also induced apoptosis and increased infarct size after I/R . The IH-induced HIF-1 activation, oxidative stress, inflammation, ER stress and apoptosis were abolished by chronic Curc treatment. Curc also significantly decreased infarct size only in mice exposed to IH. Conclusion: Curc prevents IH-induced myocardial cell death signalling. Curc might be used as a combined therapy with continuous positive airway pressure in sleep apnoea patients with high cardiovascular risk.
Collapse
Affiliation(s)
- Sophie Moulin
- Université Grenoble Alpes-HP2-Grenoble F-38042, France / INSERM, U1042-Grenoble F38042, France
| | - Claire Arnaud
- Université Grenoble Alpes-HP2-Grenoble F-38042, France / INSERM, U1042-Grenoble F38042, France
| | - Sophie Bouyon
- Université Grenoble Alpes-HP2-Grenoble F-38042, France / INSERM, U1042-Grenoble F38042, France
| | - Jean-Louis Pépin
- Université Grenoble Alpes-HP2-Grenoble F-38042, France / INSERM, U1042-Grenoble F38042, France / Centre Hospitalier Universitaire des Alpes, Grenoble F38042, France
| | - Diane Godin-Ribuot
- Université Grenoble Alpes-HP2-Grenoble F-38042, France / INSERM, U1042-Grenoble F38042, France
| | - Elise Belaidi
- University Grenoble Alpes, Grenoble, France INSERM, U1042, Grenoble, France
| |
Collapse
|
33
|
Obstructive sleep apnoea and cardiovascular consequences: Pathophysiological mechanisms. Arch Cardiovasc Dis 2020; 113:350-358. [DOI: 10.1016/j.acvd.2020.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
|
34
|
Relationships Among and Predictive Values of Obesity, Inflammation Markers, and Disease Severity in Pediatric Patients with Obstructive Sleep Apnea Before and After Adenotonsillectomy. J Clin Med 2020; 9:jcm9020579. [PMID: 32093397 PMCID: PMC7073666 DOI: 10.3390/jcm9020579] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Both obstructive sleep apnea (OSA) and obesity are major health issues that contribute to increased systemic inflammation in children. To date, adenotonsillectomy (AT) is still the first-line treatment for childhood OSA. However, the relationships among and predictive values of obesity, inflammation, and OSA severity have not been comprehensively investigated. This prospective study investigated body mass index (BMI), serum inflammatory markers, and OSA severity before and after AT in 60 pediatric patients with OSA. At baseline, differences in levels of interleukin-6, interleukin-9, basic fibroblast growth factor, platelet-derived growth factor-BB, as well as regulated on activation, normal T cell expressed and secreted (RANTES) were significant among the various weight status and OSA severity subgroups. After 3 months postoperatively, the differences in these inflammatory markers diminished along with a decrease in OSA severity while obesity persisted. The rate of surgical cure (defined as postoperative obstructive apnea-hypopnea index < 2.0 and obstructive apnea index < 1.0) was 62%. Multivariate analysis revealed that age, BMI z-score, granulocyte-macrophage colony-stimulating factor, monocyte chemotactic protein-1, and RANTES independently predicted surgical cure. Despite the significant reductions in inflammatory markers and OSA severity after AT, an inter-dependent relationship between obesity and OSA persisted. In addition to age and BMI, several inflammatory markers helped to precisely predict surgical cure.
Collapse
|
35
|
Chen YC, Chen SP, Li JY, Chen PC, Lee YZ, Li KM, Zarivach R, Sun YJ, Sue SC. Integrative Model to Coordinate the Oligomerization and Aggregation Mechanisms of CCL5. J Mol Biol 2020; 432:1143-1157. [PMID: 31931012 DOI: 10.1016/j.jmb.2019.12.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 11/25/2022]
Abstract
CC-type chemokine ligand 5 (CCL5) is involved in the pathogenesis of many inflammatory conditions. Under physiological conditions, CCL5 oligomerization and aggregation are considered to be responsible for its inflammatory properties. The structural basis of CCL5 oligomerization remains controversial because the current oligomer models contain no consensus interactions. In this study, NMR and biophysical analyses proposed evidence that the CC-type CCL5 dimer acts as the basic unit to constitute the oligomer and that CCL5 oligomerizes alternatively through E66-K25 and E66-R44/K45 interactions. In addition, a newly determined trimer structure, constituted by CCL5 and the E66S mutant, reported an interfacial interaction through the N-terminal 12FAY14 sequence. The interaction contributes to CCL5 aggregation and precipitation but not to oligomerization. In accordance with the observations, an integrative model explains the CCL5 oligomerization and aggregation mechanism in which CCL5 assembly consists of two types of dimer-dimer interactions and one aggregation mechanism. For full-length CCL5, the molecular accumulation triggers oligomerization through the E66-K25 and E66-R44/K45 interactions, and the 12FAY14 interaction acts as a secondary effect to derive aggregation and precipitation. In contrast, the E66-R44/K45 interaction might dominate in CCL5 N-terminal truncations, and the interaction would lead to the filament-like formation in solution.
Collapse
Affiliation(s)
- Yi-Chen Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Siou-Pei Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jin-Ye Li
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Chun Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Zong Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan; Instrument Center, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kun-Mou Li
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Raz Zarivach
- Department of Life Sciences, The National Institute for Biotechnology in the Negev and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yuh-Ju Sun
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
36
|
Jullian-Desayes I, Joyeux-Faure M, Baillieul S, Guzun R, Tamisier R, Pepin JL. [What prospects for the sleep apnea syndrome and connected health?]. Orthod Fr 2019; 90:435-442. [PMID: 34643529 DOI: 10.1051/orthodfr/2019019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Connected health is a growing field and can be viewed from different perspectives, particularly in sleep apnea syndrome. The purpose of this review is to show how all these aspects of connected health are already used in the management of sleep apnea syndrome (SAS) and its comorbidities. First, it can give patients a better understanding and a better assessment of their health. It also facilitates their healthcare by allowing them a greater role in their care pathway. For healthcare providers, connected health tools make it possible to set up new procedures for diagnosing and monitoring ambulatory patients, and for the making of joint decisions by health professionals and patients. Finally, for researchers, e-health generates massive amounts of data, thus facilitating the acquisition of knowledge in real life situations and the development of new methodologies for clinical studies that are faster, less expensive and just as reliable. All these considerations are already applicable in the field of sleep apnea, both for proposed treatments and for comorbidities management and for the patient's involvement in his/her care pathway.
Collapse
Affiliation(s)
- Ingrid Jullian-Desayes
- Laboratoire HP2, INSERM U1042, Université Grenoble Alpes, Faculté de Médecine/Pharmacie, 38700 La Tronche, France Laboratoire HP2, INSERM U1042, Explorations Fonctionnelles Respiratoires, CHU Grenoble, France Service EFCR, Physiologie Sommeil et Exercice, Pole Thorax et Vaisseaux, CHU Grenoble, CS10217, 38043 Grenoble Cedex 9, France
| | - Marie Joyeux-Faure
- Laboratoire HP2, INSERM U1042, Université Grenoble Alpes, Faculté de Médecine/Pharmacie, 38700 La Tronche, France Laboratoire HP2, INSERM U1042, Explorations Fonctionnelles Respiratoires, CHU Grenoble, France Service EFCR, Physiologie Sommeil et Exercice, Pole Thorax et Vaisseaux, CHU Grenoble, CS10217, 38043 Grenoble Cedex 9, France
| | - Sébastien Baillieul
- Laboratoire HP2, INSERM U1042, Université Grenoble Alpes, Faculté de Médecine/Pharmacie, 38700 La Tronche, France Laboratoire HP2, INSERM U1042, Explorations Fonctionnelles Respiratoires, CHU Grenoble, France Service EFCR, Physiologie Sommeil et Exercice, Pole Thorax et Vaisseaux, CHU Grenoble, CS10217, 38043 Grenoble Cedex 9, France
| | - Rita Guzun
- Laboratoire HP2, INSERM U1042, Université Grenoble Alpes, Faculté de Médecine/Pharmacie, 38700 La Tronche, France Laboratoire HP2, INSERM U1042, Explorations Fonctionnelles Respiratoires, CHU Grenoble, France Service EFCR, Physiologie Sommeil et Exercice, Pole Thorax et Vaisseaux, CHU Grenoble, CS10217, 38043 Grenoble Cedex 9, France
| | - Renaud Tamisier
- Laboratoire HP2, INSERM U1042, Université Grenoble Alpes, Faculté de Médecine/Pharmacie, 38700 La Tronche, France Laboratoire HP2, INSERM U1042, Explorations Fonctionnelles Respiratoires, CHU Grenoble, France Service EFCR, Physiologie Sommeil et Exercice, Pole Thorax et Vaisseaux, CHU Grenoble, CS10217, 38043 Grenoble Cedex 9, France
| | - Jean-Louis Pepin
- Laboratoire HP2, INSERM U1042, Université Grenoble Alpes, Faculté de Médecine/Pharmacie, 38700 La Tronche, France Laboratoire HP2, INSERM U1042, Explorations Fonctionnelles Respiratoires, CHU Grenoble, France Service EFCR, Physiologie Sommeil et Exercice, Pole Thorax et Vaisseaux, CHU Grenoble, CS10217, 38043 Grenoble Cedex 9, France
| |
Collapse
|
37
|
Sleep Apnea and Sleep Habits: Relationships with Metabolic Syndrome. Nutrients 2019; 11:nu11112628. [PMID: 31684029 PMCID: PMC6893600 DOI: 10.3390/nu11112628] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/01/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022] Open
Abstract
Excess visceral adiposity is a primary cause of metabolic syndrome and often results from excess caloric intake and a lack of physical activity. Beyond these well-known etiologic factors, however, sleep habits and sleep apnea also seem to contribute to abdominal obesity and metabolic syndrome: Evidence suggests that sleep deprivation and behaviors linked to evening chronotype and social jetlag affect eating behaviors like meal preferences and eating times. When circadian rest and activity rhythms are disrupted, hormonal and metabolic regulations also become desynchronized, and this is known to contribute to the development of metabolic syndrome. The metabolic consequences of obstructive sleep apnea syndrome (OSAS) also contribute to incident metabolic syndrome. These observations, along with the first sleep intervention studies, have demonstrated that sleep is a relevant lifestyle factor that needs to be addressed along with diet and physical activity. Personalized lifestyle interventions should be tested in subjects with metabolic syndrome, based on their specific diet and physical activity habits, but also according to their circadian preference. The present review therefore focuses (i) on the role of sleep habits in the development of metabolic syndrome, (ii) on the reciprocal relationship between sleep apnea and metabolic syndrome, and (iii) on the results of sleep intervention studies.
Collapse
|
38
|
Fhayli W, Boëté Q, Harki O, Briançon-Marjollet A, Jacob MP, Faury G. Rise and fall of elastic fibers from development to aging. Consequences on arterial structure-function and therapeutical perspectives. Matrix Biol 2019; 84:41-56. [PMID: 31493460 DOI: 10.1016/j.matbio.2019.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/03/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
In the arteries of vertebrates, evolution has given rise to resilient macromolecular structures, elastin and elastic fibers, capable of sustaining an elevated blood pressure and smoothening the discontinuous blood flow and pressure generated by the heart. Elastic fibers are produced only during development and childhood, before being progressively degraded by mechanical stress and enzymatic activities during adulthood and aging. During this period, arterial elastic fiber calcification and loading of lipids also occur, all of these events conducting to arteriosclerosis. This leads to a progressive dysfunction of the large elastic arteries inducing elevated blood pressure as well as altered hemodynamics and organ perfusion, which induce more global malfunctions of the body during normal aging. Additionally, some arterial conditions occur more frequently with advancing age, such as atherosclerosis or aneurysms, which are called age-related diseases or pathological aging. The physiological or pathological degradation of elastic fibers and function of elastic arteries seemed to be rather inevitable over time. However, during the recent years, different molecules - including several ATP-dependent potassium channel openers, such as minoxidil - have been shown to re-induce elastin production and elastic fiber assembly, leading to improvements in the arterial structure and function or in organ perfusion. This review summarizes the changes in the arterial elastic fibers and structure from development until aging, and presents some of the potential pharmacotherapies leading to elastic fiber neosynthesis and arterial function improvement.
Collapse
Affiliation(s)
- Wassim Fhayli
- Univ. Grenoble Alpes, Inserm U1042, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | - Quentin Boëté
- Univ. Grenoble Alpes, Inserm U1042, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | - Olfa Harki
- Univ. Grenoble Alpes, Inserm U1042, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | | | - Marie-Paule Jacob
- INSERM, U1148, and Hopital Bichat-Claude Bernard, 46 rue Henri Huchard, 75877 Paris, France
| | - Gilles Faury
- Univ. Grenoble Alpes, Inserm U1042, CHU Grenoble Alpes, HP2, 38000 Grenoble, France.
| |
Collapse
|
39
|
Aortic remodelling induced by obstructive apneas is normalized with mesenchymal stem cells infusion. Sci Rep 2019; 9:11443. [PMID: 31391506 PMCID: PMC6685984 DOI: 10.1038/s41598-019-47813-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 07/22/2019] [Indexed: 02/08/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSA) promotes aortic dilatation, increased stiffness and accelerated atherosclerosis, but the mechanisms of vascular remodelling are not known. We aimed to assess vascular remodelling, its mechanisms, and the effect of mesenchymal stem cells (MSC) infusions in a clinically relevant rat model of chronic OSA involving recurrent airway obstructions leading thoracic pressure swings and intermittent hypoxia/hypercapnia (OSA-rats). Another group of rats were placed in the same setup without air obstructions (Sham-rats) and were considered controls. Our study demonstrates that chronic, non-invasive repetitive airway obstructions mimicking OSA promote remarkable structural changes of the descending thoracic aorta such as eccentric aortic hypertrophy due to an increased wall thickness and lumen diameter, an increase in the number of elastin fibers which, in contrast, get ruptured, but no changes in tunica media fibrosis. As putative molecular mechanisms of the OSA-induced vascular changes we identified an increase in reactive oxygen species and renin-angiotensin system markers and an imbalance in oxide nitric synthesis. Our results also indicate that MSC infusion blunts the OSA-related vascular changes, most probably due to their anti-inflammatory properties.
Collapse
|
40
|
Ohta S, Tanaka A, Jinno M, Hirai K, Miyata Y, Yamaguchi M, Homma T, Muramoto M, Watanabe Y, Suzuki S, Yokoe T, Sagara H. Exposure to intermittent hypoxia inhibits allergic airway inflammation in a murine model of asthma. Sleep Breath 2019; 24:523-532. [PMID: 31302837 DOI: 10.1007/s11325-019-01892-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/03/2019] [Accepted: 06/29/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Obesity increases the severity of asthma, and patients with severe asthma are often complicated with obstructive sleep apnea syndrome (OSAS), a concomitant disease of obesity. We investigated whether intermittent hypoxia (IH), which is a physiological feature of OSAS, modifies allergic airway inflammation in a murine model of asthma. METHODS Balb/c mice were sensitized by ovalbumin (OVA) intraperitoneally twice (days 1 and 14) and challenged with intranasal OVA three times (days 21, 22, and 23). The mice were exposed to IH either from days 1 to 24 (long exposure) or only from days 21 to 24 (short exposure). The impact of IH exposure to allergic airway inflammation was investigated using these mice models by histologic, morphometric, and molecular techniques. Additionally, the airway responsiveness to acetylcholine was also assessed. RESULTS OVA-sensitized and OVA-challenged mice exposed to room air (RA) showed increased total cell and eosinophil numbers in the BALF. The levels of interleukin (IL)-5 and IL-13 in the BALF also increased and goblet cell metaplasia was induced. In contrast, both long and short exposure to IH inhibited the increased total cell and eosinophil numbers. The levels of IL-5 and IL-13 in the BALF also decreased on exposure to IH. Moreover, the goblet cell hyperplasia and airway hyperresponsiveness were significantly reduced in mice exposed to IH compared to those exposed to RA. CONCLUSIONS These results suggest that IH may not deteriorate the asthmatic condition in a murine model of asthma.
Collapse
Affiliation(s)
- Shin Ohta
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan.
| | - Akihiko Tanaka
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Megumi Jinno
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Kuniaki Hirai
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yoshito Miyata
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Munehiro Yamaguchi
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Tetsuya Homma
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Mayumi Muramoto
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yoshio Watanabe
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Shintaro Suzuki
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Takuya Yokoe
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Hironori Sagara
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| |
Collapse
|
41
|
Myocardial hypothermia increases autophagic flux, mitochondrial mass and myocardial function after ischemia-reperfusion injury. Sci Rep 2019; 9:10001. [PMID: 31292486 PMCID: PMC6620356 DOI: 10.1038/s41598-019-46452-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/17/2019] [Indexed: 01/09/2023] Open
Abstract
Animal studies have demonstrated beneficial effects of therapeutic hypothermia on myocardial function, yet exact mechanisms remain unclear. Impaired autophagy leads to heart failure and mitophagy is important for mitigating ischemia/reperfusion injury. This study aims to investigate whether the beneficial effects of therapeutic hypothermia are due to preserved autophagy and mitophagy. Under general anesthesia, the left anterior descending coronary artery of 19 female farm pigs was occluded for 90 minutes with consecutive reperfusion. 30 minutes after reperfusion, we performed pericardial irrigation with warm or cold saline for 60 minutes. Myocardial tissue analysis was performed one and four weeks after infarction. Therapeutic hypothermia induced a significant increase in autophagic flux, mitophagy, mitochondrial mass and function in the myocardium after infarction. Cell stress, apoptosis, inflammation as well as fibrosis were reduced, with significant preservation of systolic and diastolic function four weeks post infarction. We found similar biochemical changes in human samples undergoing open chest surgery under hypothermic conditions when compared to the warm. These results suggest that autophagic flux and mitophagy are important mechanisms implicated in cardiomyocyte recovery after myocardial infarction under hypothermic conditions. New therapeutic strategies targeting these pathways directly could lead to improvements in prevention of heart failure.
Collapse
|
42
|
Ryan S, Arnaud C, Fitzpatrick SF, Gaucher J, Tamisier R, Pépin JL. Adipose tissue as a key player in obstructive sleep apnoea. Eur Respir Rev 2019; 28:28/152/190006. [PMID: 31243096 PMCID: PMC9488701 DOI: 10.1183/16000617.0006-2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/09/2019] [Indexed: 01/21/2023] Open
Abstract
Obstructive sleep apnoea (OSA) is a major health concern worldwide and adversely affects multiple organs and systems. OSA is associated with obesity in >60% of cases and is independently linked with the development of numerous comorbidities including hypertension, arrhythmia, stroke, coronary heart disease and metabolic dysfunction. The complex interaction between these conditions has a significant impact on patient care and mortality. The pathophysiology of cardiometabolic complications in OSA is still incompletely understood; however, the particular form of intermittent hypoxia (IH) observed in OSA, with repetitive short cycles of desaturation and re-oxygenation, probably plays a pivotal role. There is fast growing evidence that IH mediates some of its detrimental effects through adipose tissue inflammation and dysfunction. This article aims to summarise the effects of IH on adipose tissue in experimental models in a comprehensive way. Data from well-designed controlled trials are also reported with the final goal of proposing new avenues for improving phenotyping and personalised care in OSA. Fast growing evidence strongly suggests that cardiovascular and metabolic alterations induced by intermittent hypoxia in OSA are mediated through adipose tissue inflammation and dysfunction.bit.ly/2W929Pe
Collapse
Affiliation(s)
- Silke Ryan
- School of Medicine, The Conway Institute, University College Dublin, Dublin, Ireland.,Pulmonary and Sleep Disorders Unit, St. Vincent's University Hospital, Dublin, Ireland.,Joint first authors
| | - Claire Arnaud
- HP2 Laboratory, INSERM U1042, Universite Grenoble Alpes, Grenoble, France.,Joint first authors
| | - Susan F Fitzpatrick
- School of Medicine, The Conway Institute, University College Dublin, Dublin, Ireland
| | - Jonathan Gaucher
- HP2 Laboratory, INSERM U1042, Universite Grenoble Alpes, Grenoble, France
| | - Renaud Tamisier
- HP2 Laboratory, INSERM U1042, Universite Grenoble Alpes, Grenoble, France.,EFCR Laboratory, Grenoble Alpes University Hospital, Grenoble, France
| | - Jean-Louis Pépin
- HP2 Laboratory, INSERM U1042, Universite Grenoble Alpes, Grenoble, France .,EFCR Laboratory, Grenoble Alpes University Hospital, Grenoble, France
| |
Collapse
|
43
|
Mentek M, Morand J, Baldazza M, Faury G, Aptel F, Pepin JL, Godin-Ribuot D, Chiquet C. Chronic Intermittent Hypoxia Alters Rat Ophthalmic Artery Reactivity Through Oxidative Stress, Endothelin and Endothelium-Derived Hyperpolarizing Pathways. Invest Ophthalmol Vis Sci 2019; 59:5256-5265. [PMID: 30383197 DOI: 10.1167/iovs.18-25151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Obstructive sleep apnea recently has been associated with a higher frequency of ischemic optic neuropathies. Intermittent hypoxia (IH) has been proposed as a major component of obstructive sleep apnea cardiovascular consequences. However, there currently are no pathophysiologic data regarding the effect of IH on the ocular vascular system. Thus, we assessed the impact of chronic IH exposure on the morphology and vascular reactivity of the rat ophthalmic artery (OA). Methods Rats were exposed to 14 days of IH or normoxia (NX). Ophthalmic artery reactivity was studied using wire myography in rats treated or not with tempol (1 mM/day). Expression of endothelin-1 (ET-1) and its receptors, and of the three nitric oxide synthase (NOS) isoform genes was quantified using quantitative polymerase chain reaction (qPCR) in the retina and optic nerve. Structural alterations (optical and electron microscopy) and superoxide anion production were studied in OA sections. Results Superoxide ion expression in the OA wall was increased by 23% after IH exposure. Ophthalmic artery contractile response to 3.10-8 M ET-1 was increased by 18.6% and nitric oxide-mediated relaxation was significantly delayed in IH compared to NX rats. In the absence of nitric oxide, cytochrome P450 blockade increased relaxation to acetylcholine in IH rats and delayed it in NX rats. Tempol treatment abolished the IH-induced changes in OA reactivity. Conclusions These results strongly suggest that chronic IH induces oxidative stress in the rat OA, associated with endothelial dysfunction through alterations of nitric oxide and endothelium-derived hyperpolarising factors (EDHF) pathways.
Collapse
Affiliation(s)
- Marielle Mentek
- HP2 Laboratory, INSERM U1042 Unit, Grenoble Alpes University, Grenoble, France
| | - Jessica Morand
- HP2 Laboratory, INSERM U1042 Unit, Grenoble Alpes University, Grenoble, France
| | - Marie Baldazza
- HP2 Laboratory, INSERM U1042 Unit, Grenoble Alpes University, Grenoble, France
| | - Gilles Faury
- HP2 Laboratory, INSERM U1042 Unit, Grenoble Alpes University, Grenoble, France
| | - Florent Aptel
- HP2 Laboratory, INSERM U1042 Unit, Grenoble Alpes University, Grenoble, France.,Department of Ophthalmology, Grenoble Alpes University Hospital, Grenoble Alpes University, Grenoble, France
| | - Jean Louis Pepin
- HP2 Laboratory, INSERM U1042 Unit, Grenoble Alpes University, Grenoble, France.,Sleep Laboratory, Thorax and Vessels Division, Grenoble Alpes University Hospital, Grenoble Alpes University, Grenoble, France
| | - Diane Godin-Ribuot
- HP2 Laboratory, INSERM U1042 Unit, Grenoble Alpes University, Grenoble, France
| | - Christophe Chiquet
- HP2 Laboratory, INSERM U1042 Unit, Grenoble Alpes University, Grenoble, France.,Department of Ophthalmology, Grenoble Alpes University Hospital, Grenoble Alpes University, Grenoble, France
| |
Collapse
|
44
|
Borel AL, Tamisier R, Böhme P, Priou P, Avignon A, Benhamou PY, Hanaire H, Pépin JL, Kessler L, Valensi P, Darmon P, Gagnadoux F. Obstructive sleep apnoea syndrome in patients living with diabetes: Which patients should be screened? DIABETES & METABOLISM 2019; 45:91-101. [DOI: 10.1016/j.diabet.2018.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/16/2018] [Accepted: 08/11/2018] [Indexed: 12/27/2022]
|
45
|
Chuang LP, Chen NH, Lin SW, Hu HC, Kao KC, Li LF, Yang CT, Huang CC, Pang JHS. Monocytic C-C chemokine receptor 5 expression increases in in vitro intermittent hypoxia condition and in severe obstructive sleep apnea patients. Sleep Breath 2019; 23:1177-1186. [PMID: 30778913 PMCID: PMC6867987 DOI: 10.1007/s11325-019-01797-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 12/14/2022]
Abstract
Purpose Obstructive sleep apnea (OSA) patients have higher risk of cardiovascular disease. C-C chemokine receptor 5 (CCR5), as an important receptor for monocyte recruitment and the initiation of atherosclerosis, was studied under intermittent hypoxia and in OSA patients. Methods The expression and function of CCR5 regulated by intermittent hypoxia in monocytic THP-1 cells were investigated in an in vitro intermittent hypoxia culture system. The expression levels of protein and mRNA were analyzed by western blot and RT/real-time PCR analysis. Cell adhesion assay and transwell filter migration assay were carried out to investigate the adhesion and chemotaxis of monocytes. In addition, the mRNA expression of CCR5 in monocytes isolated from peripheral blood of 72 adults was analyzed. Results Intermittent hypoxia upregulated the expression of CCR5 in THP-1 cells and enhanced the adhesion and chemotaxis of monocytes to vascular endothelial cells mediated by RANTES. The CCR5 expression induced by intermittent hypoxia was inhibited by inhibitor for p42/44 MAPK. Besides, the expression of CCR5 in monocytes increased along the AHI value especially in severe OSA patients that was statistically significant compared with mild and moderate OSA groups. Conclusions This study demonstrated the increased monocytic CCR5 gene expression in patients with severe OSA. Intermittent hypoxia, the characteristic of OSA, induced monocytic CCR5 gene expression and the enhanced RANTES-mediated chemotaxis and adhesion through p42/44 MAPK signal pathways.
Collapse
Affiliation(s)
- Li-Pang Chuang
- Sleep Center, Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Ning-Hung Chen
- Sleep Center, Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Shih-Wei Lin
- Sleep Center, Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Han-Chung Hu
- Sleep Center, Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Kuo-Chin Kao
- Sleep Center, Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Li-Fu Li
- Sleep Center, Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Cheng-Ta Yang
- Sleep Center, Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Chung-Chi Huang
- Sleep Center, Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan.
| |
Collapse
|
46
|
Abstract
Obstructive sleep apnoea (OSA) is recognized as a major public health burden conveying a significant risk of cardiovascular diseases (CVD) and mortality. Continuous positive airway pressure (CPAP) is the treatment of choice for the majority of patients with OSA but the benefit of CPAP on CVD is uncertain. Thus, a greater understanding of the mechanisms by which OSA leads to CVD might identify novel therapeutic approaches. Intermittent hypoxia (IH), a hallmark feature of OSA, plays a key role in the pathogenesis and experimental studies using animal and cell culture studies suggest that IH mediates CVD through activation of multiple mechanistic pathways such as sympathetic excitation, inflammation, oxidative stress or metabolic dysregulation. Recurrent arousals, intrathoracic pressure swings and concomitant obesity likely play important additive roles in this process. In this review, the available evidence of the pathophysiological mechanisms of CVD in OSA is explored with a specific emphasis on IH, recurrent arousals and intrathoracic pressure swings as the main pathophysiological triggers.
Collapse
Affiliation(s)
- Silke Ryan
- Pulmonary and Sleep Disorders Unit, St. Vincent's University Hospital, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
47
|
Borel AL, Tamisier R, Böhme P, Priou P, Avignon A, Benhamou PY, Hanaire H, Pépin JL, Kessler L, Valensi P, Darmon P, Gagnadoux F. [Reprint of : Management of obstructive sleep apnea syndrome in people living with diabetes: context, screening, indications and treatment modalities: context, screening, indications and treatment modalities: a French position statement]. Rev Mal Respir 2018; 35:1067-1089. [PMID: 30429090 DOI: 10.1016/j.rmr.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- A-L Borel
- Hôpital universitaire Grenoble Alpes, Département d'Endocrinologie, Diabétologie, Nutrition, 38043 Grenoble cedex 9, France; Université Grenoble Alpes, laboratoire "Hypoxie physiopahologie" INSERM U1042, Grenoble, France.
| | - R Tamisier
- Université Grenoble Alpes, laboratoire "Hypoxie physiopahologie" INSERM U1042, Grenoble, France; Hôpital universitaire Grenoble Alpes, Pôle "Thorax et Vaisseaux", clinique de physiologie, sommeil et exercice, Grenoble, France
| | - P Böhme
- Hôpital universitaire de Nancy, Département d'Endocrinologie, Diabétologie, Nutrition, Nancy, France; Université de Lorraine, EA4360 APEMAC, Nancy, France
| | - P Priou
- Hôpital universitaire d'Angers, Département des maladies respiratoires, Angers, France; Université d'Angers, INSERM UMR 1063, Angers, France
| | - A Avignon
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France; Hôpital universitaire de Montpellier, département de Nutrition, Montpellier, France
| | - P-Y Benhamou
- Hôpital universitaire Grenoble Alpes, Département d'Endocrinologie, Diabétologie, Nutrition, 38043 Grenoble cedex 9, France
| | - H Hanaire
- Hôpital universitaire de Toulouse, Université de Toulouse, Toulouse, France
| | - J-L Pépin
- Université Grenoble Alpes, laboratoire "Hypoxie physiopahologie" INSERM U1042, Grenoble, France; Hôpital universitaire Grenoble Alpes, Pôle "Thorax et Vaisseaux", clinique de physiologie, sommeil et exercice, Grenoble, France
| | - L Kessler
- Hôpital universitaire de Strasbourg, département de diabétologie, INSERM UMR 1260, Strasbourg, France
| | - P Valensi
- Departement d'Endocrinologie Diabétologie Nutrition, APHP, Hôpital Jean Verdier, Université Paris Nord, CRNH-IdF, CINFO, Bondy, France
| | - P Darmon
- Hôpital universitaire de Marseille, département d'Endocrinologie, et Université de France & Aix Marseille, INSERM, INRA, C2VN, Marseille, France
| | - F Gagnadoux
- Hôpital universitaire d'Angers, Département des maladies respiratoires, Angers, France; Université d'Angers, INSERM UMR 1063, Angers, France
| |
Collapse
|
48
|
Gabryelska A, Łukasik ZM, Makowska JS, Białasiewicz P. Obstructive Sleep Apnea: From Intermittent Hypoxia to Cardiovascular Complications via Blood Platelets. Front Neurol 2018; 9:635. [PMID: 30123179 PMCID: PMC6085466 DOI: 10.3389/fneur.2018.00635] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
Obstructive sleep apnea is a chronic condition characterized by recurrent episodes of apneas or hypopneas during sleep leading to intermittent hypoxemia and arousals. The prevalence of the sleep disordered breathing is estimated that almost 50% of men and 24% of women suffer from moderate to severe form of the disorder. Snoring, collapse of upper airways and intermittent hypoxia are main causes of smoldering systemic inflammation in patients suffering from obstructive sleep apnea. The systematic inflammation is considered one of the key mechanisms leading to significant cardiovascular complications. Blood platelets, formerly not even recognized as cells, are currently gaining attention as crucial players in the immune continuum. Platelet surface is endowed with receptors characteristic for cells classically belonging to the immune system, which enables them to recognize pathogens, immune complexes, and interact in a homo- and heterotypic aggregates. Platelets participate in the process of transcellular production of bioactive lipids by delivering both specific enzymes and substrate molecules. Despite their lack of nucleus, platelets synthetize proteins in a stimuli-dependent manner. Atherosclerosis and consequent cardiovascular complications result from disruption in homeostasis of both of the platelet roles: blood coagulation and inflammatory processes modulation. Platelet parameters, routinely evaluated as a part of complete blood count test, were proposed as markers of cardiovascular comorbidity in patients with obstructive sleep apnea. Platelets were found to be excessively activated in this group of patients, especially in obese subjects. Persistent activation results in enhanced spontaneous aggregability and change in cytokine production. Platelet-lymphocyte ratio was suggested as an independent marker for cardiovascular disease in obstructive sleep apnea syndrome and continuous positive air pressure therapy was found to have an impact on platelet parameters and phenotype. In this literature review we summarize the current knowledge on the subject of platelets involvement in obstructive sleep apnea syndrome and consider the possible pathways in which they contribute to cardiovascular comorbidity.
Collapse
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Zuzanna M Łukasik
- Department of Rheumatology, Medical University of Lodz, Lodz, Poland
| | - Joanna S Makowska
- Department of Rheumatology, Medical University of Lodz, Lodz, Poland
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
49
|
Pépin JL, Bailly S, Tamisier R. Incorporating polysomnography into obstructive sleep apnoea phenotyping: moving towards personalised medicine for OSA. Thorax 2018; 73:409-411. [DOI: 10.1136/thoraxjnl-2017-210943] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2018] [Indexed: 01/08/2023]
|
50
|
Parisi V, Paolillo S, Rengo G, Formisano R, Petraglia L, Grieco F, D'Amore C, Dellegrottaglie S, Marciano C, Ferrara N, Leosco D, Filardi PP. Sleep-disordered breathing and epicardial adipose tissue in patients with heart failure. Nutr Metab Cardiovasc Dis 2018; 28:126-132. [PMID: 29198416 DOI: 10.1016/j.numecd.2017.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/11/2017] [Accepted: 09/28/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS Sleep-disordered breathing (SDB) is common in patients with heart failure (HF), contributes to the progression of cardiac disease, and is associated with adverse prognosis. Previous evidence indicates that epicardial adipose tissue (EAT) is independently associated with sleep apnea in obese individuals. We explored the relationship between SDB and EAT in HF patients. METHODS AND RESULTS EAT thickness was assessed by echocardiography in 66 patients with systolic HF undergoing nocturnal cardiorespiratory monitoring. A significantly higher EAT thickness was found in patients with SDB than in those without SDB (10.7 ± 2.8 mm vs. 8.3 ± 1.8 mm; p = 0.001). Among SDB patients, higher EAT thickness was found in both those with prevalent obstructive sleep apnea (OSA) and those with prevalent central sleep apnea (CSA). Of interest, EAT thickness was significantly higher in CSA than in OSA patients (11.9 ± 2.9 vs. 10.1 ± 2.5 p = 0.022). Circulating plasma norepinephrine levels were higher in CSA than in OSA patients (2.19 ± 1.25 vs. 1.22 ± 0.92 ng/ml, p = 0.019). According to the apnea-hypopnea index (AHI), patients were then stratified in three groups of SDB severity: Group 1, mild SDB; Group 2, moderate SDB; Group 3, severe SDB. EAT thickness progressively and significantly increased from Group 1 to Group 3 (ANOVA p < 0.001). At univariate analysis, only left ventricular ejection fraction and AHI significantly correlated with EAT (p = 0.019 and p < 0.0001, respectively). At multivariate analysis, AHI was the only independent predictor of EAT (β = 0.552, p < 0.001). CONCLUSIONS Our results suggest an association between the presence and severity of sleep apneas and cardiac visceral adiposity in HF patients.
Collapse
Affiliation(s)
- V Parisi
- Department of Translational Medical Sciences, Naples, Italy
| | - S Paolillo
- SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy
| | - G Rengo
- Department of Translational Medical Sciences, Naples, Italy
| | - R Formisano
- Department of Translational Medical Sciences, Naples, Italy
| | - L Petraglia
- Department of Translational Medical Sciences, Naples, Italy
| | - F Grieco
- Department of Translational Medical Sciences, Naples, Italy
| | - C D'Amore
- Department of Advanced Biomedical Science, Naples, Italy
| | | | - C Marciano
- Istituto Diagnostico Varelli, Naples, Italy
| | - N Ferrara
- Department of Translational Medical Sciences, Naples, Italy
| | - D Leosco
- Department of Translational Medical Sciences, Naples, Italy.
| | - P P Filardi
- Department of Advanced Biomedical Science, Naples, Italy
| |
Collapse
|