1
|
Li B, Niu H, Zhao X, Huang X, Ding Y, Dang K, Yang T, Chen Y, Ma J, Liu X, Zhang K, Xie H, Ding P. Targeted anti-cancer therapy: Co-delivery of VEGF siRNA and Phenethyl isothiocyanate (PEITC) via cRGD-modified lipid nanoparticles for enhanced anti-angiogenic efficacy. Asian J Pharm Sci 2024; 19:100891. [PMID: 38584690 PMCID: PMC10990863 DOI: 10.1016/j.ajps.2024.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/22/2024] [Accepted: 02/17/2024] [Indexed: 04/09/2024] Open
Abstract
Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target techniques, with a specific emphasis on targeting the vascular endothelial growth factor, but have not reached ideal therapeutic efficacy. In response to this issue, our study introduced a novel nanoparticle system known as CS-siRNA/PEITC&L-cRGD NPs. These chitosan-based nanoparticles have been recognized for their excellent biocompatibility and ability to deliver genes. To enhance their targeted delivery capability, they were combined with a cyclic RGD peptide (cRGD). Targeted co-delivery of gene and chemotherapeutic agents was achieved through the use of a negatively charged lipid shell and cRGD, which possesses high affinity for integrin αvβ3 overexpressed in tumor cells and neovasculature. In this multifaceted approach, co-delivery of VEGF siRNA and phenethyl isothiocyanate (PEITC) was employed to target both tumor vascular endothelial cells and tumor cells simultaneously. The co-delivery of VEGF siRNA and PEITC could achieve precise silencing of VEGF, inhibit the accumulation of HIF-1α under hypoxic conditions, and induce apoptosis in tumor cells. In summary, we have successfully developed a nanoparticle delivery platform that utilizes a dual mechanism of action of anti-tumor angiogenesis and pro-tumor apoptosis, which provides a robust and potent strategy for the delivery of anti-cancer therapeutics.
Collapse
Affiliation(s)
- Bao Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haoran Niu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics Shenyang Pharmaceutical University Shenyang 110016, China
| | - Xiaoyu Huang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ke Dang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences School of Pharmacy Husson University Bangor, ME 04401, USA
| | - Yongfeng Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jizhuang Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohong Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Keda Zhang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Huichao Xie
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Pingtian Ding
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
2
|
Zhou M, Yang S, Cao L, Dai W, Nie X, Mu G, Zhang X, Wang B, Ma J, Wang D, Shi T, Wang C, Hao X, Chen W. Longitudinal association of polycyclic aromatic hydrocarbons and genetic risk with lung function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122801. [PMID: 37890693 DOI: 10.1016/j.envpol.2023.122801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
To quantify the association of polycyclic aromatic hydrocarbons (PAHs) and the polygenic risk score (PRS) with lung function decline, we developed a repeated-measures study with 4681 observations from baseline and 6-year follow-up of the Wuhan-Zhuhai cohort. Lung function and urinary monohydroxylated PAH metabolites (OH-PAHs) were measured for each observation. The PRS was derived from 246 lung function-associated genetic variants weighted by the effect size of the decreasing ratio of forced expiratory volume in 1 s by forced vital capacity (FEV1/FVC). Linear mixed models were used to estimate the longitudinal exposure-response relationships between OH-PAHs and lung function, and to evaluate the interactions between OH-PAHs and PRS on the longitudinal change of lung function. We found that each 1-unit increase in log-transformed values of 9-hydroxyfluorene, 2-hydroxyfluorene, 4-hydroxyphenanthrene, 9-hydroxyphenanthrene, 2-hydroxyphenanthrene, 1-hydroxyphenanthrene, 1-hydroxypyrene, low molecular weight OH-PAHs (ΣLMW-OH-PAHs), and total OH-PAHs (ΣOH-PAHs) was associated with an annual change in FEV1/FVC of -0.140, -0.112, -0.260, -0.300, -0.159, -0.220, -0.145, -0.156, and -0.177 %/year, respectively. Interactions on the annual decline of FEV1/FVC were detected between ΣLMW-OH-PAHs and PRS (-0.010 %/year, 95% confidence interval -0.018 to -0.001, Pint = 0.0228), and between ΣOH-PAHs and PRS (-0.010 %/year, -0.018 to -0.001, Pint = 0.0203). These results indicated that specific and total urinary OH-PAHs were associated with the longitudinal FEV1/FVC decline, and ΣLMW-OH-PAHs as well as ΣOH-PAHs interacted with PRS on the annual decline of FEV1/FVC.
Collapse
Affiliation(s)
- Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Limin Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Tianjin Third Central Hospital, Tianjin 300170, China
| | - Wencan Dai
- Zhuhai Center for Disease Control and Prevention, Zhuhai, Guangdong 519060, China
| | - Xiuquan Nie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaokang Zhang
- Gannan Medical University, No.1 Harmonious Road, RongJiang District, Ganzhou, Jiangxi 341000, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tingming Shi
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Chaolong Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xingjie Hao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
3
|
Tesfaigzi Y, Curtis JL, Petrache I, Polverino F, Kheradmand F, Adcock IM, Rennard SI. Does Chronic Obstructive Pulmonary Disease Originate from Different Cell Types? Am J Respir Cell Mol Biol 2023; 69:500-507. [PMID: 37584669 PMCID: PMC10633838 DOI: 10.1165/rcmb.2023-0175ps] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 08/17/2023] Open
Abstract
The onset of chronic obstructive pulmonary disease (COPD) is heterogeneous, and current approaches to define distinct disease phenotypes are lacking. In addition to clinical methodologies, subtyping COPD has also been challenged by the reliance on human lung samples from late-stage diseases. Different COPD phenotypes may be initiated from the susceptibility of different cell types to cigarette smoke, environmental pollution, and infections at early stages that ultimately converge at later stages in airway remodeling and destruction of the alveoli when the disease is diagnosed. This perspective provides discussion points on how studies to date define different cell types of the lung that can initiate COPD pathogenesis, focusing on the susceptibility of macrophages, T and B cells, mast cells, dendritic cells, endothelial cells, and airway epithelial cells. Additional cell types, including fibroblasts, smooth muscle cells, neuronal cells, and other rare cell types not covered here, may also play a role in orchestrating COPD. Here, we discuss current knowledge gaps, such as which cell types drive distinct disease phenotypes and/or stages of the disease and which cells are primarily affected by the genetic variants identified by whole genome-wide association studies. Applying new technologies that interrogate the functional role of a specific cell type or a combination of cell types as well as single-cell transcriptomics and proteomic approaches are creating new opportunities to understand and clarify the pathophysiology and thereby the clinical heterogeneity of COPD.
Collapse
Affiliation(s)
- Yohannes Tesfaigzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey L. Curtis
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Irina Petrache
- Division of Pulmonary Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado
- University of Colorado, Denver, Colorado
| | - Francesca Polverino
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, Baylor University, Houston, Texas
| | - Farrah Kheradmand
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, Baylor University, Houston, Texas
| | - Ian M. Adcock
- Department of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Stephen I. Rennard
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
4
|
Granell R, Curtin JA, Haider S, Kitaba NT, Mathie SA, Gregory LG, Yates LL, Tutino M, Hankinson J, Perretti M, Vonk JM, Arshad HS, Cullinan P, Fontanella S, Roberts GC, Koppelman GH, Simpson A, Turner SW, Murray CS, Lloyd CM, Holloway JW, Custovic A. A meta-analysis of genome-wide association studies of childhood wheezing phenotypes identifies ANXA1 as a susceptibility locus for persistent wheezing. eLife 2023; 12:e84315. [PMID: 37227431 PMCID: PMC10292845 DOI: 10.7554/elife.84315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/22/2023] [Indexed: 05/26/2023] Open
Abstract
Background Many genes associated with asthma explain only a fraction of its heritability. Most genome-wide association studies (GWASs) used a broad definition of 'doctor-diagnosed asthma', thereby diluting genetic signals by not considering asthma heterogeneity. The objective of our study was to identify genetic associates of childhood wheezing phenotypes. Methods We conducted a novel multivariate GWAS meta-analysis of wheezing phenotypes jointly derived using unbiased analysis of data collected from birth to 18 years in 9568 individuals from five UK birth cohorts. Results Forty-four independent SNPs were associated with early-onset persistent, 25 with pre-school remitting, 33 with mid-childhood remitting, and 32 with late-onset wheeze. We identified a novel locus on chr9q21.13 (close to annexin 1 [ANXA1], p<6.7 × 10-9), associated exclusively with early-onset persistent wheeze. We identified rs75260654 as the most likely causative single nucleotide polymorphism (SNP) using Promoter Capture Hi-C loops, and then showed that the risk allele (T) confers a reduction in ANXA1 expression. Finally, in a murine model of house dust mite (HDM)-induced allergic airway disease, we demonstrated that anxa1 protein expression increased and anxa1 mRNA was significantly induced in lung tissue following HDM exposure. Using anxa1-/- deficient mice, we showed that loss of anxa1 results in heightened airway hyperreactivity and Th2 inflammation upon allergen challenge. Conclusions Targeting this pathway in persistent disease may represent an exciting therapeutic prospect. Funding UK Medical Research Council Programme Grant MR/S025340/1 and the Wellcome Trust Strategic Award (108818/15/Z) provided most of the funding for this study.
Collapse
Affiliation(s)
- Raquel Granell
- MRC Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - John A Curtin
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation TrustManchesterUnited Kingdom
| | - Sadia Haider
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - Negusse Tadesse Kitaba
- Human Development and Health, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
| | - Sara A Mathie
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - Lisa G Gregory
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - Laura L Yates
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - Mauro Tutino
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation TrustManchesterUnited Kingdom
| | - Jenny Hankinson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation TrustManchesterUnited Kingdom
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine Queen Mary University of LondonLondonUnited Kingdom
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen\GroningenNetherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenNetherlands
| | - Hasan S Arshad
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation TrustSouthamptonUnited Kingdom
- David Hide Asthma and Allergy Research CentreIsle of WightUnited Kingdom
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
| | - Paul Cullinan
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - Sara Fontanella
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - Graham C Roberts
- Human Development and Health, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation TrustSouthamptonUnited Kingdom
- David Hide Asthma and Allergy Research CentreIsle of WightUnited Kingdom
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenNetherlands
- Department of Pediatric Pulmonology and Pediatric Allergology, University of Groningen, University Medical Center Groningen, Beatrix Children’s HospitalGroningenNetherlands
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation TrustManchesterUnited Kingdom
| | - Steve W Turner
- Child Health, University of AberdeenAberdeenUnited Kingdom
| | - Clare S Murray
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation TrustManchesterUnited Kingdom
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation TrustSouthamptonUnited Kingdom
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
5
|
Tota M, Łacwik J, Laska J, Sędek Ł, Gomułka K. The Role of Eosinophil-Derived Neurotoxin and Vascular Endothelial Growth Factor in the Pathogenesis of Eosinophilic Asthma. Cells 2023; 12:cells12091326. [PMID: 37174726 PMCID: PMC10177218 DOI: 10.3390/cells12091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Asthma is a chronic complex pulmonary disease characterized by airway inflammation, remodeling, and hyperresponsiveness. Vascular endothelial growth factor (VEGF) and eosinophil-derived neurotoxin (EDN) are two significant mediators involved in the pathophysiology of asthma. In asthma, VEGF and EDN levels are elevated and correlate with disease severity and airway hyperresponsiveness. Diversity in VEGF polymorphisms results in the variability of responses to glucocorticosteroids and leukotriene antagonist treatment. Targeting VEGF and eosinophils is a promising therapeutic approach for asthma. We identified lichochalcone A, bevacizumab, azithromycin (AZT), vitamin D, diosmetin, epigallocatechin gallate, IGFBP-3, Neovastat (AE-941), endostatin, PEDF, and melatonin as putative add-on drugs in asthma with anti-VEGF properties. Further studies and clinical trials are needed to evaluate the efficacy of those drugs. AZT reduces the exacerbation rate and may be considered in adults with persistent symptomatic asthma. However, the long-term effects of AZT on community microbial resistance require further investigation. Vitamin D supplementation may enhance corticosteroid responsiveness. Herein, anti-eosinophil drugs are reviewed. Among them are, e.g., anti-IL-5 (mepolizumab, reslizumab, and benralizumab), anti-IL-13 (lebrikizumab and tralokinumab), anti-IL-4 and anti-IL-13 (dupilumab), and anti-IgE (omalizumab) drugs. EDN over peripheral blood eosinophil count is recommended to monitor the asthma control status and to assess the efficacy of anti-IL-5 therapy in asthma.
Collapse
Affiliation(s)
- Maciej Tota
- Student Scientific Group of Adult Allergology, Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Łacwik
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Julia Laska
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
6
|
Zhang L, Jiang F, Xie Y, Mo Y, Zhang X, Liu C. Diabetic endothelial microangiopathy and pulmonary dysfunction. Front Endocrinol (Lausanne) 2023; 14:1073878. [PMID: 37025413 PMCID: PMC10071002 DOI: 10.3389/fendo.2023.1073878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/17/2023] [Indexed: 04/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a widespread metabolic condition with a high global morbidity and mortality rate that affects the whole body. Their primary consequences are mostly caused by the macrovascular and microvascular bed degradation brought on by metabolic, hemodynamic, and inflammatory variables. However, research in recent years has expanded the target organ in T2DM to include the lung. Inflammatory lung diseases also impose a severe financial burden on global healthcare. T2DM has long been recognized as a significant comorbidity that influences the course of various respiratory disorders and their disease progress. The pathogenesis of the glycemic metabolic problem and endothelial microangiopathy of the respiratory disorders have garnered more attention lately, indicating that the two ailments have a shared history. This review aims to outline the connection between T2DM related endothelial cell dysfunction and concomitant respiratory diseases, including Coronavirus disease 2019 (COVID-19), asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
- Lanlan Zhang
- Department of Respiratory and Critical Care Medicine, Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Lanlan Zhang, ; Xin Zhang, ; Chuntao Liu,
| | - Faming Jiang
- Department of Respiratory and Critical Care Medicine, Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yingying Xie
- Department of Nephrology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yan Mo
- Department of Neurology Medicine, The Aviation Industry Corporation of China (AVIC) 363 Hospital, Chengdu, China
| | - Xin Zhang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Lanlan Zhang, ; Xin Zhang, ; Chuntao Liu,
| | - Chuntao Liu
- Department of Respiratory and Critical Care Medicine, Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Lanlan Zhang, ; Xin Zhang, ; Chuntao Liu,
| |
Collapse
|
7
|
Haider S, Granell R, Curtin J, Fontanella S, Cucco A, Turner S, Simpson A, Roberts G, Murray CS, Holloway JW, Devereux G, Cullinan P, Arshad SH, Custovic A. Modeling Wheezing Spells Identifies Phenotypes with Different Outcomes and Genetic Associates. Am J Respir Crit Care Med 2022; 205:883-893. [PMID: 35050846 PMCID: PMC9838626 DOI: 10.1164/rccm.202108-1821oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rationale: Longitudinal modeling of current wheezing identified similar phenotypes, but their characteristics often differ between studies. Objectives: We propose that a more comprehensive description of wheeze may better describe trajectories than binary information on the presence/absence of wheezing. Methods: We derived six multidimensional variables of wheezing spells from birth to adolescence (including duration, temporal sequencing, and the extent of persistence/recurrence). We applied partition-around-medoids clustering on these variables to derive phenotypes in five birth cohorts. We investigated within- and between-phenotype differences compared with binary latent class analysis models and ascertained associations of these phenotypes with asthma and lung function and with polymorphisms in asthma loci 17q12-21 and CDHR3 (cadherin-related family member 3). Measurements and Main Results: Analysis among 7,719 participants with complete data identified five spell-based wheeze phenotypes with a high degree of certainty: never (54.1%), early-transient (ETW) (23.7%), late-onset (LOW) (6.9%), persistent (PEW) (8.3%), and a novel phenotype, intermittent wheeze (INT) (6.9%). FEV1/FVC was lower in PEW and INT compared with ETW and LOW and declined from age 8 years to adulthood in INT. 17q12-21 and CDHR3 polymorphisms were associated with higher odds of PEW and INT, but not ETW or LOW. Latent class analysis- and spell-based phenotypes appeared similar, but within-phenotype individual trajectories and phenotype allocation differed substantially. The spell-based approach was much more robust in dealing with missing data, and the derived clusters were more stable and internally homogeneous. Conclusions: Modeling of spell variables identified a novel intermittent wheeze phenotype associated with lung function decline to early adulthood. Using multidimensional spell variables may better capture wheeze development and provide a more robust input for phenotype derivation.
Collapse
Affiliation(s)
- Sadia Haider
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Raquel Granell
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - John Curtin
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sara Fontanella
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alex Cucco
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen Turner
- Royal Aberdeen Children’s Hospital National Health Service Grampian, Aberdeen, United Kingdom;,Child Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Graham Roberts
- Human Development and Health and,National Institute for Health Research Southampton Biomedical Research Centre, University Hospitals Southampton National Health Service Foundation Trust, Southampton, United Kingdom;,David Hide Asthma and Allergy Research Centre, Isle of Wight, United Kingdom; and
| | - Clare S. Murray
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - John W. Holloway
- Human Development and Health and,National Institute for Health Research Southampton Biomedical Research Centre, University Hospitals Southampton National Health Service Foundation Trust, Southampton, United Kingdom
| | - Graham Devereux
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Paul Cullinan
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom;,National Institute for Health Research Southampton Biomedical Research Centre, University Hospitals Southampton National Health Service Foundation Trust, Southampton, United Kingdom;,David Hide Asthma and Allergy Research Centre, Isle of Wight, United Kingdom; and
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Al Kawas H, Saaid I, Jank P, Westhoff CC, Denkert C, Pross T, Weiler KBS, Karsten MM. How VEGF-A and its splice variants affect breast cancer development - clinical implications. Cell Oncol (Dordr) 2022; 45:227-239. [PMID: 35303290 PMCID: PMC9050780 DOI: 10.1007/s13402-022-00665-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Altered expression levels and structural variations in the vascular endothelial growth factor (VEGF) have been found to play important roles in cancer development and to be associated with the overall survival and therapy response of cancer patients. Particularly VEGF-A and its splice variants have been found to affect physiological and pathological angiogenic processes, including tumor angiogenesis, correlating with tumor progression, mostly caused by overexpression. This review focuses on the expression and impact of VEGF-A splice variants under physiologic conditions and in tumors and, in particular, the distribution and role of isoform VEGF165b in breast cancer. CONCLUSIONS AND PERSPECTIVES Many publications already highlighted the importance of VEGF-A and its splice variants in tumor therapy, especially in breast cancer, which are summarized in this review. Furthermore, we were able to demonstrate that cytoplasmatic VEGFA/165b expression is higher in invasive breast cancer tumor cells than in normal tissues or stroma. These examples show that the detection of VEGF splice variants can be performed also on the protein level in formalin fixed tissues. Although no quantitative conclusions can be drawn, these results may be the starting point for further studies at a quantitative level, which can be a major step towards the design of targeted antibody-based (breast) cancer therapies.
Collapse
Affiliation(s)
- Hivin Al Kawas
- Department of Gynecology with Breast Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Inas Saaid
- Department of Gynecology with Breast Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul Jank
- Institute of Pathology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | | | - Carsten Denkert
- Institute of Pathology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Therese Pross
- Department of Gynecology with Breast Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Maria Margarete Karsten
- Department of Gynecology with Breast Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
9
|
Gao X, Wang X, Jiao N, Chen J, Sun D. Association of VEGFA polymorphisms with chronic obstructive pulmonary disease in Chinese Han and Mongolian populations. Exp Physiol 2021; 106:1839-1848. [PMID: 34081380 DOI: 10.1113/ep089523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the central question of this study? Vascular endothelial growth factor A (VEGFA) is an important growth factor involved in changes in the bronchial microvascular and airway inflammation in chronic obstructive pulmonary disease (COPD) progression. What is the association of single nucleotide polymorphisms (SNPs) in VEGFA with the risk of COPD in the Chinese Han and Mongolian populations? What is the main finding and its importance? The effect of five SNPs in the VEGFA gene was analysed and compared between the Chinese Han and Mongolian populations. A contribution of risk alleles rs833068, rs833070 and rs3024997 to COPD was detected in the Chinese Mongolian population only. The study provided data from different populations to validate the role of VEGFA polymorphisms in COPD and provided reliable SNPs to predict the risk of COPD. ABSTRACT We attempted to define the associations between single nucleotide polymorphisms (SNPs) in the vascular endothelial growth factor A (VEGFA) gene and chronic obstructive pulmonary disease (COPD) in Chinese Han and Mongolian cohorts. Five SNPs were genotyped in cohorts of 684 COPD patients (350 Mongolian and 334 Han) and 784 healthy controls (350 Mongolian and 434 Han) using SNPscan multiplex PCR. SNP frequencies, genetic models and haplotypes were analysed using the chi-square test. The associations of SNPs with COPD and linkage disequilibrium were analysed using logistic regression and HaploView, respectively. We found that only rs833068G>A, rs833070T>C and rs3024997G>A were significantly associated with the risk of COPD in the Mongolian population (rs833068: P < 0.001, rs833070: P < 0.001, rs3024997: P = 0.002). In the analysis of genotype distributions, the A/A and G/A genotypes in rs833068 (A/A: odds ratio (OR) = 0.313, P < 0.001; G/A: OR = 0.724, P < 0.001) and rs3024997 (A/A: OR = 0.513, P = 0.008; G/A: OR = 0.671, P = 0.008) and the C/C and T/C genotypes in rs833070 (C/C: OR = 0.435, P = 0.007; T/C: OR = 0.593, P = 0.007) were associated with protection against COPD in the Mongolian population. The haplotype frequencies of GCCAT and GTCGC were significantly different between the patients and controls (GCCAT: P = 0.001; GTCGC: P < 0.001) in the Mongolian population. Our findings indicate that five SNPs in the VEGFA gene play divergent roles in the Han and Mongolian populations. rs833068A, rs833070C and rs3024997A were observed to be associated with the risk of COPD in the Mongolian population.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Xin Wang
- Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China.,Health care institution, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Na Jiao
- Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Jiyuan Chen
- Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Dejun Sun
- Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
10
|
Haider S, Simpson A, Custovic A. Genetics of Asthma and Allergic Diseases. Handb Exp Pharmacol 2021; 268:313-329. [PMID: 34085121 DOI: 10.1007/164_2021_484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Asthma genes have been identified through a range of approaches, from candidate gene association studies and family-based genome-wide linkage analyses to genome-wide association studies (GWAS). The first GWAS of asthma, reported in 2007, identified multiple markers on chromosome 17q21 as associates of the childhood-onset asthma. This remains the best replicated asthma locus to date. However, notwithstanding undeniable successes, genetic studies have produced relatively heterogeneous results with limited replication, and despite considerable promise, genetics of asthma and allergy has, so far, had limited impact on patient care, our understanding of disease mechanisms, and development of novel therapeutic targets. The paucity of precise replication in genetic studies of asthma is partly explained by the existence of numerous gene-environment interactions. Another important issue which is often overlooked is that of time of the assessment of the primary outcome(s) and the relevant environmental exposures. Most large GWASs use the broadest possible definition of asthma to increase the sample size, but the unwanted consequence of this is increased phenotypic heterogeneity, which dilutes effect sizes. One way of addressing this is to precisely define disease subtypes (e.g. by applying novel mathematical approaches to rich phenotypic data) and use these latent subtypes in genetic studies.
Collapse
Affiliation(s)
- Sadia Haider
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
11
|
Role of VEGF Polymorphisms in the Susceptibility and Severity of Interstitial Lung Disease. Biomedicines 2021; 9:biomedicines9050458. [PMID: 33922301 PMCID: PMC8145193 DOI: 10.3390/biomedicines9050458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022] Open
Abstract
The search for biomarkers that can help to establish an early diagnosis and prognosis of interstitial lung disease (ILD) is of potential interest. VEGF polymorphisms have been implicated in the development of several lung disorders. Consequently, we assessed, for the first time, the role of VEGF polymorphisms in the susceptibility and severity of ILD. A total of 436 Caucasian ILD patients (244 with idiopathic interstitial pneumonias (IIPs) and 192 with non-IIP) and 536 ethnically-matched healthy controls were genotyped for VEGF rs833061, rs1570360, rs2010963, rs3025020, and rs3025039 polymorphisms by TaqMan assays. Pulmonary function tests were collected from all the patients. VEGF serum levels were determined by ELISA in a subgroup of patients. No VEGF genotype, allele, carrier, or haplotype differences were found between ILD patients and controls as well as between IIP and non-IIP patients. However, an association of rs1570360 with IIP in women and also with lung function in IIP patients was found. None of the VEGF polymorphisms were associated with VEGF levels. In conclusion, our results suggest that VEGF does not seem to play a relevant role in ILD, although rs1570360 may influence the severity of ILD in women and a worse outcome in IIP patients.
Collapse
|
12
|
Wan Z, Tang Y, Song Q, Zhang J, Xie W, He Y, Huang R, Zheng X, Liu C, Liu J. Gene polymorphisms in VEGFA and COL2A1 are associated with response to inhaled corticosteroids in children with asthma. Pharmacogenomics 2020; 20:947-955. [PMID: 31486735 DOI: 10.2217/pgs-2019-0036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Aim: The purpose of this study was to investigate the involvement of single-nucleotide polymorphisms in VEGFA, TBX21 and COL2A1 in the response to inhaled corticosteroids in asthmatic children. Subjects & methods: Children with mild-to-moderate asthma were enrolled in the study. The SEQUENOM MassARRAY method was used to sequence 27 SNP genotypes. By ranking the data from smallest to largest, we could infer whether the change in distribution of forced expiratory volume in one second/forced vital capcacity (FEV1/FVC) and fractional exhaled nitric oxide differed between genotype groups. Results: VEGFA rs3025039 T allele carriers had a smaller change in FEV1 than CC carriers (p = 0.040), and in COL2A1 rs3809324, the frequency of T allele carriers was lower than that of GG carriers (p = 0.048). rs3025039 was also associated with changes in FEV1/FVC (p = 0.016). Conclusion: VEGFA and COL2A1 polymorphisms are significantly associated with the response to inhaled corticosteroids in asthmatic children.
Collapse
Affiliation(s)
- Zan Wan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China
| | - Yongjun Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China.,Department of Pediatric, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Qianqian Song
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China
| | - Jun Zhang
- Department of nephrology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Wanying Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China
| | - Yijing He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China
| | - Rong Huang
- Department of Pediatric, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Xiangrong Zheng
- Department of Pediatric, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Chentao Liu
- Department of Pediatric, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Jie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410078, Hunan, PR China
| |
Collapse
|
13
|
Sevoflurane Prevents Airway Remodeling via Downregulation of VEGF and TGF-β1 in Mice with OVA-Induced Chronic Airway Inflammation. Inflammation 2019; 42:1015-1022. [PMID: 30680697 DOI: 10.1007/s10753-019-00963-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Asthma is characterized by chronic airway inflammation, which is the underlying cause of airway remodeling featured by goblet cell hyperplasia, subepithelial fibrosis, and proliferation of smooth muscle. Sevoflurane has been used to treat life-threatening asthma and our previous study shows that sevoflurane inhibits acute lung inflammation in ovalbumin (OVA)-induced allergic mice. However, the effect of sevoflurane on airway remodeling in the context of chronic airway inflammation and the underlying mechanism are still unknown. Here, female C57BL/6 mice were used to establish chronic airway inflammation model. Hematoxylin and eosin (H&E), periodic acid-Schiff (PAS), and Sirius red (SR) staining were used to evaluate airway remodeling. Protein levels of α-SMA, VEGF, and TGF-β1 in lung tissues were detected by western blotting analyses and immunohistochemistry staining. Results showed that inhalation of sevoflurane inhibited chronic airway inflammation including inflammatory cell infiltration and pro-inflammatory cytokine production in BALF of the OVA-challenged mice. Meanwhile, sevoflurane suppressed airway thickening, goblet cell hyperplasia, smooth muscle hyperplasia, collagen deposition, and fiber hyperplasia in the lung tissues of the mice with airway remodeling. Most notably, sevoflurane inhibited the OVA-induced expressions of VEGF and TGF-β1. These results suggested that sevoflurane effectively inhibits airway remodeling in mouse model of chronic airway inflammation, which may be due to the downregulation of VEGF and TGF-β1in lung tissues. Therefore, our results indicate a potential role of sevoflurane in inhibiting airway remodeling besides its known suppression effect on airway inflammation, and support the use of sevoflurane in treating severe asthma in ICU.
Collapse
|
14
|
Hur GY, Broide DH. Genes and Pathways Regulating Decline in Lung Function and Airway Remodeling in Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2019; 11:604-621. [PMID: 31332973 PMCID: PMC6658410 DOI: 10.4168/aair.2019.11.5.604] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 12/14/2022]
Abstract
Asthma is a common disorder of the airways characterized by airway inflammation and by decline in lung function and airway remodeling in a subset of asthmatics. Airway remodeling is characterized by structural changes which include airway smooth muscle hypertrophy/hyperplasia, subepithelial fibrosis due to thickening of the reticular basement membrane, mucus metaplasia of the epithelium, and angiogenesis. Epidemiologic studies suggest that both genetic and environmental factors may contribute to decline in lung function and airway remodeling in a subset of asthmatics. Environmental factors include respiratory viral infection-triggered asthma exacerbations, and tobacco smoke. There is also evidence that several asthma candidate genes may contribute to decline in lung function, including ADAM33, PLAUR, VEGF, IL13, CHI3L1, TSLP, GSDMB, TGFB1, POSTN, ESR1 and ARG2. In addition, mediators or cytokines, including cysteinyl leukotrienes, matrix metallopeptidase-9, interleukin-33 and eosinophil expression of transforming growth factor-β, may contribute to airway remodeling in asthma. Although increased airway smooth muscle is associated with reduced lung function (i.e. forced expiratory volume in 1 second) in asthma, there have been few long-term studies to determine how individual pathologic features of airway remodeling contribute to decline in lung function in asthma. Clinical studies with inhibitors of individual gene products, cytokines or mediators are needed in asthmatic patients to identify their individual role in decline in lung function and/or airway remodeling.
Collapse
Affiliation(s)
- Gyu Young Hur
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - David H Broide
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
15
|
Abstract
Asthmatic adults with lower lung function have been described as having had this worse condition early in life. Lung function is reduced in children with persistent asthma and continues low throughout adult life. The challenge is to know if impaired lung function is a risk factor of asthma, as a consequence of special congenital characteristics of the airways, or whether asthmatic patients suffer a loss in lung function as early as 9 years of age as a consequence of very precocious remodeling of the airways. The loss is so early in life that it is probably a congenital characteristic, however there is not a cut-off point with clinical interest to predict risk of asthma later in life. There are contradictory results regarding whether asthmatic children lose lung function as a consequence of the airway remodeling by the illness itself. This aspect seemed to be shown for children at risk-the offspring of asthmatic mothers. The early BHR seems to be very frequent even in healthy infants, but is probably not a risk factor for asthma years later; except in the offspring of asthmatic mothers in which it has been shown. There are still many uncertainties in this field; so, more research is needed in order to better understand the pathophysiology of asthma, the early risk factors and to design new therapeutic targets and early interventions to change the natural history of the disease.
Collapse
Affiliation(s)
- Manuel Sánchez-Solís
- Department of Pediatric, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Palmar, Spain.,Department of Surgery, Pediatric, Obstetric and Gynaecology, University of Murcia, Murcia, Spain
| |
Collapse
|
16
|
Functional Studies of Single-Nucleotide Polymorphisms Suggest Heterogeneity in Chronic Obstructive Pulmonary Disease due to Susceptibility of Different Cell Types. Ann Am Thorac Soc 2018. [DOI: 10.1513/annalsats.201806-437mg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Khelifa MB, Salem HB, Sfaxi R, Chatti S, Rouatbi S, Saad HB. “Spirometric” lung age reference equations: A narrative review. Respir Physiol Neurobiol 2018; 247:31-42. [DOI: 10.1016/j.resp.2017.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 11/30/2022]
|
18
|
Bush A, Custovic A. Formula one: best is no formula. Eur Respir J 2017; 49:49/5/1700105. [PMID: 28461302 DOI: 10.1183/13993003.00105-2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Andrew Bush
- Royal Brompton Hospital, London, UK .,Imperial College, London, UK
| | | |
Collapse
|
19
|
Green CE, Turner AM. The role of the endothelium in asthma and chronic obstructive pulmonary disease (COPD). Respir Res 2017; 18:20. [PMID: 28100233 PMCID: PMC5241996 DOI: 10.1186/s12931-017-0505-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/13/2017] [Indexed: 01/05/2023] Open
Abstract
COPD and asthma are important chronic inflammatory disorders with a high associated morbidity. Much research has concentrated on the role of inflammatory cells, such as the neutrophil, in these diseases, but relatively little focus has been given to the endothelial tissue, through which inflammatory cells must transmigrate to reach the lung parenchyma and cause damage. There is evidence that there is an abnormal amount of endothelial tissue in COPD and asthma and that this tissue and its’ progenitor cells behave in a dysfunctional manner. This article reviews the evidence of the involvement of pulmonary endothelium in COPD and asthma and potential treatment options for this.
Collapse
Affiliation(s)
- Clara E Green
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK.
| | - Alice M Turner
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
20
|
Ding Y, Niu H, Li Y, He P, Li Q, Ouyang Y, Li M, Hu Z, Zhong Y, Sun P, Jin T. Polymorphisms in VEGF-A are associated with COPD risk in the Chinese population from Hainan province. J Genet 2016; 95:151-6. [PMID: 27019442 DOI: 10.1007/s12041-016-0627-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, we examined and validated how common variants contribute to susceptibility to chronic obstructive pulmonary disease (COPD) in the Han Chinese population. Here, we genotyped 18 nucleotide polymorphisms and evaluated their association with COPD using chi-square test and genetic model analysis (246 COPD patients and 350 controls), and found three SNPs that might cause a predisposition to COPD. Both rs3025030 and rs3025033 are located on chromosome 6 in VEGF-A. We found one risk allele 'C' from rs3025030 and another 'G' from rs3025033 using the log-additive model (OR 1.40; 95% CI 1.05-5.96; P = 0.022), (OR 1.38; 95% CI 1.03-1.84; P = 0.03). We also found another risk allele 'A' of rs9296092 in gene region ZBTB9-BAK1 by the allele model (OR 2.63; 95% CI 1.27-5.45; P = 0.0078), (adjusted OR 3.53; 95% CI 1.12-11.11; P = 0.031).We found a risk haplotype 'CG' associated with the risk of COPD (OR 1.39; 95% CI 1.04-1.86; P = 0.028). Our results when compared with previous studies showed significant association between VEGF-A polymorphism and COPD. We also identified rs9296092 as a risk factor for COPD.
Collapse
Affiliation(s)
- Yipeng Ding
- Department of Emergency, People's Hospital of Hainan Province, Haikou, Hainan 570311,People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Fernando D Martinez
- From the Asthma and Airway Disease Research Center, University of Arizona, Tucson
| |
Collapse
|
22
|
Boucherat O, Morissette MC, Provencher S, Bonnet S, Maltais F. Bridging Lung Development with Chronic Obstructive Pulmonary Disease. Relevance of Developmental Pathways in Chronic Obstructive Pulmonary Disease Pathogenesis. Am J Respir Crit Care Med 2016; 193:362-75. [PMID: 26681127 DOI: 10.1164/rccm.201508-1518pp] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic airflow limitation. This generic term encompasses emphysema and chronic bronchitis, two common conditions, each having distinct but also overlapping features. Recent epidemiological and experimental studies have challenged the traditional view that COPD is exclusively an adult disease occurring after years of inhalational insults to the lungs, pinpointing abnormalities or disruption of the pathways that control lung development as an important susceptibility factor for adult COPD. In addition, there is growing evidence that emphysema is not solely a destructive process because it is also characterized by a failure in cell and molecular maintenance programs necessary for proper lung development. This leads to the concept that tissue regeneration required stimulation of signaling pathways that normally operate during development. We undertook a review of the literature to outline the contribution of developmental insults and genes in the occurrence and pathogenesis of COPD, respectively.
Collapse
Affiliation(s)
- Olivier Boucherat
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Mathieu C Morissette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Steeve Provencher
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Sébastien Bonnet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - François Maltais
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| |
Collapse
|
23
|
Baz-Dávila R, Espinoza-Jiménez A, Rodríguez-Pérez MDC, Zulueta J, Varo N, Montejo Á, Almeida-González D, Aguirre-Jaime A, Córdoba-Lanús E, Casanova C. Role of HIF1A, VEGFA and VEGFR2 SNPs in the Susceptibility and Progression of COPD in a Spanish Population. PLoS One 2016; 11:e0154998. [PMID: 27163696 PMCID: PMC4862690 DOI: 10.1371/journal.pone.0154998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/22/2016] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is involved in the development of chronic inflammatory processes. Under hypoxic conditions HIF1A, VEGF and VEGFR2 are expressed and mediate the course of the resultant disease. The aim of the present study was to define the associations between tSNPs in these genes and COPD susceptibility and progression in a Spanish cohort. The T alleles in rs3025020 and rs833070 SNPs (VEGFA gene) were less frequent in the group of COPD cases and were associated with a lower risk of developing the disease (OR = 0.60; 95% CI = 0. 39–0.93; p = 0.023 and OR = 0.60; 95% CI = 0.38–0.96; p = 0.034, respectively) under a dominant model of inheritance. The haplotype in which both SNPs presented the T allele confirmed the association found (OR = 0.02; 95% CI = 0.00 to 0.66; p = 0.03). Moreover, patients with COPD carrying the T allele in homozygosis in rs3025020 SNP showed higher lung function values and this association remained constant during 3 years of follow-up. In conclusion, T allele in rs833070 and rs3025020 may confer a protective effect to COPD susceptibility in a Spanish population and the association of the SNP rs3025020 with lung function may be suggesting a role for VEGF in the progression of the disease.
Collapse
Affiliation(s)
- Rebeca Baz-Dávila
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- * E-mail: (RBD); (ECL)
| | - Adriana Espinoza-Jiménez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Javier Zulueta
- Pulmonary Department, Clínica Universitaria de Navarra, Pamplona, Spain
| | - Nerea Varo
- Biochemical Analysis Department, Clínica Universitaria de Navarra, Pamplona, Spain
| | - Ángela Montejo
- Pulmonary Department, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Delia Almeida-González
- Immunology Department, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Armando Aguirre-Jaime
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Elizabeth Córdoba-Lanús
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- * E-mail: (RBD); (ECL)
| | - Ciro Casanova
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Pulmonary Department, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| |
Collapse
|
24
|
Hu C, Xun Q, Li X, He R, Lu R, Zhang S, Hu X, Feng J. GLCCI1 Variation Is Associated with Asthma Susceptibility and Inhaled Corticosteroid Response in a Chinese Han Population. Arch Med Res 2016; 47:118-25. [PMID: 27133712 DOI: 10.1016/j.arcmed.2016.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/19/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS GLCCI1 variations are found to be associated with response to glucocorticoid therapy in non-Hispanic white subjects with asthma. However, there are also other relevant studies that were not consistent with this finding. In this study we aimed to evaluate the association of GLCCI1 variations with asthma susceptibility and inhaled corticosteroid (ICS) response in a Chinese adult Han population. METHODS We genotyped 24 single nucleotide polymorphisms of GLCCI1 in 182 asthmatic patients and 180 healthy controls. Furthermore, we analyzed the association of GLCCI1 variations with ICS response in 30 mild-to-moderate asthmatics. RESULTS rs11976862 homozygote mutant genotype GG was nominally associated with increased asthma risk (OR = 2.435, 95% CI: 1.221-4.854, p = 0.01148, p(corr) = 0.0127). Recessive model of rs37972, rs37973 and rs11976862 showed that the rare alleles were correlated with less improvement in FEV1 after fluticasone treatment for 12 weeks (p = 0.004, p = 0.009 and p = 0.039, respectively). The GLCCI1 mRNA expression level decreased obviously in asthmatics than in healthy controls (0.037663 ± 0.0216833 vs. 0.046352 ± 0.0235812, p = 0.000). For asthmatics, GLCCI1 mRNA expression level significantly increased after fluticasone treatment for 12 weeks (0.067641 ± 0.031547 vs. 0.030048 ± 0.014613, p = 0.000). Moreover, changes of GLCCI1 mRNA expression were significantly related with rs37973 and rs11976862 in a recessive model (p = 0.014 and p = 0.033, respectively). CONCLUSIONS GLCCI1 variations are associated with asthma susceptibility and ICS response in a Chinese Han adult population. GLCCI1 variations may affect ICS response by modulating GLCCI1 expression.
Collapse
Affiliation(s)
- Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University (Key Cite of National Clinical Research Center for Respiratory Disease), Changsha, Hunan, China
| | - Qiufen Xun
- Department of Respiratory Medicine, Xiangya Hospital, Central South University (Key Cite of National Clinical Research Center for Respiratory Disease), Changsha, Hunan, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruoxi He
- Department of Respiratory Medicine, Xiangya Hospital, Central South University (Key Cite of National Clinical Research Center for Respiratory Disease), Changsha, Hunan, China
| | - Rongli Lu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University (Key Cite of National Clinical Research Center for Respiratory Disease), Changsha, Hunan, China
| | - Shichuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University (Key Cite of National Clinical Research Center for Respiratory Disease), Changsha, Hunan, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University (Key Cite of National Clinical Research Center for Respiratory Disease), Changsha, Hunan, China
| | - Juntao Feng
- Department of Respiratory Medicine, Xiangya Hospital, Central South University (Key Cite of National Clinical Research Center for Respiratory Disease), Changsha, Hunan, China.
| |
Collapse
|
25
|
Aryl hydrocarbon receptor agonists upregulate VEGF secretion from bronchial epithelial cells. J Mol Med (Berl) 2015; 93:1257-69. [PMID: 26076680 DOI: 10.1007/s00109-015-1304-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/06/2015] [Accepted: 05/29/2015] [Indexed: 01/26/2023]
Abstract
UNLABELLED Chronic airway diseases, such as asthma and chronic obstructive pulmonary disease, are characterized by airway remodeling. Vascular endothelial growth factor (VEGF) is a critical regulator of angiogenesis and vascular remodeling, important components of airway remodeling. The aryl hydrocarbon receptor (AhR) is the principle receptor for many environmental toxicants, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which may contribute to the pathogenesis of asthma and chronic obstructive pulmonary disease. However, the regulatory role of AhR on the expression of VEGF in bronchial epithelial cells (BECs) remains elusive. This study was conducted to determine the role of AhR in regulating bronchial epithelial VEGF expression, which might contribute to angiogenesis of airway remodeling. The plasma VEGF levels of asthmatic patients and healthy subjects were compared. By treating HBE-135, Beas-2B, and primary human BECs with AhR agonists, the mechanisms through which AhR modulated VEGF expression in human BECs were investigated. The plasma VEGF level was significantly higher in asthmatic patients than in healthy subjects. AhR agonists significantly upregulated VEGF secretion from human BECs, which promoted the migratory and tube-forming ability of human umbilical vein endothelial cells. The secretion of VEGF was increased via a canonical AhR pathway, followed by the 15-LOX/15-HETE/STAT3 pathway. C57BL/6JNarl mice treated with TCDD intratracheally also showed increased VEGF expression in BECs. This hitherto unrecognized pathway may provide a potential target for the treatment of airway remodeling in many pulmonary diseases, especially those related to environmental toxicants. KEY MESSAGE AhR agonists increase VEGF secretion from bronchial epithelial cells. The mechanism involves the canonical AhR pathway and 15-LOX/15-HETE/STAT3 pathway. Asthmatic patients have higher plasma VEGF level. Mice treated with intratracheal TCDD show increased VEGF expression in BECs. This novel regulatory pathway is a potential target for treating asthma and COPD.
Collapse
|
26
|
Patterns of IgE responses to multiple allergen components and clinical symptoms at age 11 years. J Allergy Clin Immunol 2015; 136:1224-31. [PMID: 25935108 PMCID: PMC4649774 DOI: 10.1016/j.jaci.2015.03.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 03/12/2015] [Accepted: 03/18/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND The relationship between sensitization to allergens and disease is complex. OBJECTIVE We sought to identify patterns of response to a broad range of allergen components and investigate associations with asthma, eczema, and hay fever. METHODS Serum specific IgE levels to 112 allergen components were measured by using a multiplex array (Immuno Solid-phase Allergen Chip) in a population-based birth cohort. Latent variable modeling was used to identify underlying patterns of component-specific IgE responses; these patterns were then related to asthma, eczema, and hay fever. RESULTS Two hundred twenty-one of 461 children had IgE to 1 or more components. Seventy-one of the 112 components were recognized by 3 or more children. By using latent variable modeling, 61 allergen components clustered into 3 component groups (CG1, CG2, and CG3); protein families within each CG were exclusive to that group. CG1 comprised 27 components from 8 plant protein families. CG2 comprised 7 components of mite allergens from 3 protein families. CG3 included 27 components of plant, animal, and fungal origin from 12 protein families. Each CG included components from different biological sources with structural homology and also nonhomologous proteins arising from the same biological source. Sensitization to CG3 was most strongly associated with asthma (odds ratio [OR], 8.20; 95% CI, 3.49-19.24; P < .001) and lower FEV1 (P < .001). Sensitization to CG1 was associated with hay fever (OR, 12.79; 95% CI, 6.84-23.90; P < .001). Sensitization to CG2 was associated with both asthma (OR, 3.60; 95% CI, 2.05-6.29) and hay fever (OR, 2.52; 95% CI, 1.38-4.61). CONCLUSIONS Latent variable modeling with a large number of allergen components identified 3 patterns of IgE responses, each including different protein families. In 11-year-old children the pattern of response to components of multiple allergens appeared to be associated with current asthma and hay fever but not eczema.
Collapse
|
27
|
Mahlman M, Huusko JM, Karjalainen MK, Kaukola T, Marttila R, Ojaniemi M, Haataja R, Lavoie PM, Rämet M, Hallman M. Genes Encoding Vascular Endothelial Growth Factor A (VEGF-A) and VEGF Receptor 2 (VEGFR-2) and Risk for Bronchopulmonary Dysplasia. Neonatology 2015; 108:53-9. [PMID: 25998098 DOI: 10.1159/000381279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/26/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is one of the main consequences of prematurity, with notably high heritability. Vascular endothelial growth factor A (VEGF-A) and its main receptor, vascular endothelial growth factor receptor 2 (VEGFR-2), have been implicated in the pathogenesis of BPD. OBJECTIVE To study whether common polymorphisms of the genes encoding VEGF-A and VEGFR-2 are associated with BPD. METHODS In this association study, six tagging single nucleotide polymorphism (tSNPs) for VEGFA and 25 tSNPs for VEGFR2 were genotyped in a prospectively collected, genetically homogeneous discovery population of 160 infants (44 infants with grade 2-3 BPD) born before 30 completed gestational weeks. The replication population of 328 infants included 120 cases of BPD. RESULTS VEGFR2 SNP rs4576072 was associated with BPD grade 2-3 with a minor allele frequency in 23.9% of the cases compared to 9.1% in controls (p = 0.0005, odds ratio 3.15, 95% CI: 1.62-6.12) in the discovery population. This association was not observed in the more heterogeneous replication population. CONCLUSIONS In line with the results of recent large-scale genetic studies, our findings indicate that common polymorphisms of the genes encoding VEGF-A and VEGFR-2 are not consistently associated with BPD. This finding does not rule out the involvement of VEGFA and VEGFR2 in BPD pathogenesis since, in addition to common variations within the gene region, other mechanisms also play important roles in the regulation of gene function.
Collapse
Affiliation(s)
- Mari Mahlman
- PEDEGO Research Center, and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Koutras A, Kotoula V, Fountzilas G. Prognostic and predictive role of vascular endothelial growth factor polymorphisms in breast cancer. Pharmacogenomics 2015; 16:79-94. [DOI: 10.2217/pgs.14.148] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Current evidence indicates that angiogenesis plays an important role in the pathogenesis of several malignancies, including breast cancer. The vascular endothelial growth factor (VEGF) pathway has been investigated extensively, due to its important role in angiogenesis. The major mediator of tumor angiogenesis is VEGF-A, frequently referred to as VEGF, which activates the VEGF receptor-2. The VEGF gene is located on chromosome 6 and constitutes a highly polymorphic gene. Numerous SNPs in the promoter, 5′- and 3′-untranslated regions (UTR) of VEGF gene have been recognized. This genetic variability possibly influences the production and function of VEGF. Subsequently, the VEGF SNPs may have an impact on breast cancer risk and disease outcome. Moreover, these SNPs may be of predictive value in patients receiving agents targeting the VEGF pathway. This review presents an update on the potential role of VEGF SNPs as prognostic and/or predictive markers in patients with breast cancer.
Collapse
Affiliation(s)
- Angelos Koutras
- Division of Oncology, Department of Medicine, University Hospital, University of Patras Medical School, Patras, Rion 26504, Greece
| | - Vasiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
- Department of Medical Oncology, ‘Papageorgiou’ Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| |
Collapse
|
29
|
Smith N, Hankinson J, Simpson A, Denning D, Bowyer P. Reduced expression of TLR3, TLR10 and TREM1 by human macrophages in Chronic cavitary pulmonary aspergillosis, and novel associations of VEGFA, DENND1B and PLAT. Clin Microbiol Infect 2014; 20:O960-8. [DOI: 10.1111/1469-0691.12643] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 12/21/2022]
|
30
|
Belgrave DCM, Buchan I, Bishop C, Lowe L, Simpson A, Custovic A. Trajectories of lung function during childhood. Am J Respir Crit Care Med 2014; 189:1101-9. [PMID: 24606581 DOI: 10.1164/rccm.201309-1700oc] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Developmental patterns of lung function during childhood may have major implications for our understanding of the pathogenesis of respiratory disease throughout life. OBJECTIVES To explore longitudinal trajectories of lung function during childhood and factors associated with lung function decline. METHODS In a population-based birth cohort, specific airway resistance (sRaw) was assessed at age 3 (n = 560), 5 (n = 829), 8 (n = 786), and 11 years (n = 644). Based on prospective data (questionnaires, skin tests, IgE), children were assigned to wheeze phenotypes (no wheezing, transient, late-onset, and persistent) and atopy phenotypes (no atopy, dust mite, non-dust mite, multiple early, and multiple late). We used longitudinal linear mixed models to determine predictors of change in sRaw over time. MEASUREMENTS AND MAIN RESULTS Contrary to the assumption that sRaw is independent of age and sex, boys had higher sRaw than girls (mean difference, 0.080; 95% confidence interval [CI], 0.049-0.111; P < 0.001) and a higher rate of increase over time. For girls, sRaw increased by 0.017 kPa ⋅ s(-1) per year (95% CI, 0.011-0.023). In boys this increase was significantly greater (P = 0.012; mean between-sex difference, 0.011 kPa ⋅ s(-1); 95% CI, 0.003-0.019). Children with persistent wheeze (but not other wheeze phenotypes) had a significantly greater rate of deterioration in sRaw over time compared with never wheezers (P = 0.009). Similarly, children with multiple early, but not other atopy phenotypes had significantly poorer lung function than those without atopy (mean difference, 0.116 kPa ⋅ s(-1); 95% CI, 0.065-0.168; P < 0.001). sRaw increased progressively with the increasing number of asthma exacerbations. CONCLUSIONS Children with persistent wheeze, frequent asthma exacerbations, and multiple early atopy have diminished lung function throughout childhood, and are at risk of a progressive loss of lung function from age 3 to 11 years. These effects are more marked in boys.
Collapse
Affiliation(s)
- Danielle C M Belgrave
- 1 Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester and University Hospital of South Manchester, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
31
|
Kreiner-Møller E, Chawes BLK, Vissing NH, Koppelman GH, Postma DS, Madsen JS, Olsen DA, Baty F, Vonk JM, Kerkhof M, Sleiman P, Hakonarsson H, Mortensen LJ, Poorisrisak P, Bisgaard H, Bønnelykke K. VEGFA variants are associated with pre-school lung function, but not neonatal lung function. Clin Exp Allergy 2014; 43:1236-45. [PMID: 24152156 DOI: 10.1111/cea.12188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/10/2013] [Accepted: 07/14/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is implicated in airway remodelling and asthma development. We studied VEGFA gene variants and plasma levels and the development of lung function, bronchial hyperresponsiveness and asthma in childhood. METHODS We analysed 13 SNPs in the VEGFA gene in 411 children from the COPSAC2000 high-risk birth cohort. Asthma was diagnosed prospectively, and lung function measurements were obtained at birth and 6 years of age. Plasma VEGF levels were measured at 18 months of age. We used a Bonferroni adjusted significance level. Findings were replicated in the Prevention and Incidence of Asthma and Mite Allergy (PIAMA) birth cohort at age 8. RESULTS At age six, three SNPs from the same linkage block were associated with FEV1 (rs699947, P = 1.31E-05), independent of asthma, and there were suggestive associations between FEV1/FVC ratio and rs833052 and maximal mid-expiratory flow and rs6900017. Replication in the PIAMA cohort showed borderline association between FEV1 and rs699947 and significant meta-analysis result. SNPs upstream and nearby rs699947 were nominally associated with VEGF plasma levels. VEGF levels were not associated with asthmatic symptoms or lung function measures. CONCLUSIONS AND CLINICAL RELEVANCE VEGF gene variants are associated with lung function at school age, but not at birth, suggesting a role of VEGF in post-natal lung function development.
Collapse
Affiliation(s)
- E Kreiner-Møller
- COPSAC: Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark; The Danish Pediatric Asthma Center, Copenhagen University Hospital, Gentofte, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Barratt S, Medford AR, Millar AB. Vascular endothelial growth factor in acute lung injury and acute respiratory distress syndrome. Respiration 2013; 87:329-342. [PMID: 24356493 DOI: 10.1159/000356034] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/03/2013] [Indexed: 02/05/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is the most severe form of lung injury, characterised by alveolar oedema and vascular permeability, in part due to disruption of the alveolar capillary membrane integrity. Vascular endothelial growth factor (VEGF) was originally identified as a vascular permeability factor and has been implicated in the pathogenesis of acute lung injury/ARDS. This review describes our current knowledge of VEGF biology and summarises the literature investigating the potential role VEGF may play in normal lung maintenance and in the development of lung injury.
Collapse
Affiliation(s)
- S Barratt
- Academic Respiratory Unit, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
33
|
Affiliation(s)
- Susanna A McColley
- Division of Pulmonary Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
| | | |
Collapse
|
34
|
Ben Saad H, Elhraiech A, Hadj Mabrouk K, Ben Mdalla S, Essghaier M, Maatoug C, Abdelghani A, Bouslah H, Charrada A, Rouatbi S. Estimated lung age in healthy North African adults cannot be predicted using reference equations derived from other populations. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2013. [DOI: 10.1016/j.ejcdt.2013.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
35
|
Affiliation(s)
- Erika von Mutius
- Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | | |
Collapse
|
36
|
Malmström K, Pelkonen AS, Mäkelä MJ. Remodeling, inflammation and airway responsiveness in early childhood asthma. Curr Opin Allergy Clin Immunol 2013; 13:203-10. [PMID: 23339936 DOI: 10.1097/aci.0b013e32835e122c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Remodeling and inflammation together with airway hyperresponsiveness are essential components of asthma but their role in development of the disease is still obscure. RECENT FINDINGS Recent data imply that remodeling can occur early in childhood, not necessarily subsequent to but rather, in parallel with inflammation. The assumption of thickening of the reticular basement membrane being a prerequirement for chronic asthma is questioned but development of airway responsiveness is a significant factor. Airway responsiveness is at least partially linked to bronchial inflammation but there are several other genes and pathways regulating airway responsiveness. Increased airway smooth muscle in early childhood is associated with later development of asthma and may be one link between inflammation and airway responsiveness. Novel findings on genetic variation in genes regulating lung growth and remodeling in early childhood shed light on the pathophysiological mechanisms leading to chronic asthma. SUMMARY Even young children with chronic asthma have detectable elements of airway remodeling, inflammation and increased airway responsiveness, which all contribute to impaired lung function.
Collapse
Affiliation(s)
- Kristiina Malmström
- Department of Allergy, Helsinki University Central Hospital, Helsinki, Finland
| | | | | |
Collapse
|
37
|
Bates DO, Mavrou A, Qiu Y, Carter JG, Hamdollah-Zadeh M, Barratt S, Gammons MV, Millar AB, Salmon AHJ, Oltean S, Harper SJ. Detection of VEGF-A(xxx)b isoforms in human tissues. PLoS One 2013; 8:e68399. [PMID: 23935865 PMCID: PMC3729684 DOI: 10.1371/journal.pone.0068399] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 05/30/2013] [Indexed: 12/24/2022] Open
Abstract
Vascular Endothelial Growth Factor-A (VEGF-A) can be generated as multiple isoforms by alternative splicing. Two families of isoforms have been described in humans, pro-angiogenic isoforms typified by VEGF-A165a, and anti-angiogenic isoforms typified by VEGF-A165b. The practical determination of expression levels of alternative isoforms of the same gene may be complicated by experimental protocols that favour one isoform over another, and the use of specific positive and negative controls is essential for the interpretation of findings on expression of the isoforms. Here we address some of the difficulties in experimental design when investigating alternative splicing of VEGF isoforms, and discuss the use of appropriate control paradigms. We demonstrate why use of specific control experiments can prevent assumptions that VEGF-A165b is not present, when in fact it is. We reiterate, and confirm previously published experimental design protocols that demonstrate the importance of using positive controls. These include using known target sequences to show that the experimental conditions are suitable for PCR amplification of VEGF-A165b mRNA for both q-PCR and RT-PCR and to ensure that mispriming does not occur. We also provide evidence that demonstrates that detection of VEGF-A165b protein in mice needs to be tightly controlled to prevent detection of mouse IgG by a secondary antibody. We also show that human VEGF165b protein can be immunoprecipitated from cultured human cells and that immunoprecipitating VEGF-A results in protein that is detected by VEGF-A165b antibody. These findings support the conclusion that more information on the biology of VEGF-A165b isoforms is required, and confirm the importance of the experimental design in such investigations, including the use of specific positive and negative controls.
Collapse
Affiliation(s)
- David O Bates
- Microvascular Research Laboratories, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Meyer N, Akdis CA. Vascular endothelial growth factor as a key inducer of angiogenesis in the asthmatic airways. Curr Allergy Asthma Rep 2013; 13:1-9. [PMID: 23076420 DOI: 10.1007/s11882-012-0317-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Asthma is a chronic inflammatory disease of the airways characterized by structural airway changes, which are known as airway remodeling, including smooth muscle hypertrophy, goblet cell hyperplasia, subepithelial fibrosis, and angiogenesis. Vascular remodeling in asthmatic lungs results from increased angiogenesis, which is mainly mediated by vascular endothelial growth factor (VEGF). VEGF is a key regulator of blood vessel growth in the airways of asthma patients by promoting proliferation and differentiation of endothelial cells and inducing vascular leakage and permeability. In addition, VEGF induces allergic inflammation, enhances allergic sensitization, and has a role in Th2 type inflammatory responses. Specific inhibitors of VEGF and blockers of its receptors might be useful to control chronic airway inflammation and vascular remodeling, and might be a new therapeutic approach for chronic inflammatory airway disease like asthma.
Collapse
Affiliation(s)
- Norbert Meyer
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.
| | | |
Collapse
|
39
|
Abstract
Anti-angiogenic vascular endothelial growth factor A (VEGF) 165b and pro-angiogenic VEGF 165 are generated from the same transcript, and their relative amounts are dependent on alternative splicing. The role of VEGF 165b has not been investigated in as much detail as VEGF 165, although it appears to be highly expressed in non-angiogenic tissues and, in contrast with VEGF 165, is downregulated in tumors and other pathologies associated with abnormal neovascularization such as diabetic retinopathy or Denys Drash syndrome. VEGF 165b inhibits VEGFR2 signaling by inducing differential phosphorylation, and it can be used to block angiogenesis in in vivo models of tumorigenesis and angiogenesis-related eye disease. Recent reports have identified three serine/arginine-rich proteins, SRSF1, SRSF2 and SRSF6, and studied their role in regulating terminal splice-site selection. Since the balance of VEGF isoforms is lost in cancer and angiogenesis-related conditions, control of VEGF splicing could also be used as a basis for therapy in these diseases.
Collapse
Affiliation(s)
- Maria Peiris-Pagès
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|