1
|
Mueller MC, Blomberg R, Tanneberger AE, Davis-Hall D, Neeves KB, Magin CM. Female Fibroblast Activation Is Estrogen-Mediated in Sex-Specific 3D-Bioprinted Pulmonary Artery Adventitia Models. ACS Biomater Sci Eng 2025; 11:2935-2945. [PMID: 40285704 DOI: 10.1021/acsbiomaterials.5c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Pulmonary arterial hypertension (PAH) is a form of pulmonary vascular disease characterized by scarring of the small blood vessels that results in reduced blood flow and increased blood pressure in the lungs. Over time, this increase in blood pressure causes damage to the heart. Idiopathic (IPAH) impacts male and female patients differently, with female patients showing a higher disease susceptibility (4:1 female-to-male ratio) but experiencing longer survival rates postdiagnosis compared to male patients. This complex sex dimorphism is known as the estrogen paradox. Prior studies suggest that estrogen signaling may be pathologic in the pulmonary vasculature and protective in the heart, yet the mechanisms underlying these sex differences in IPAH remain unclear. Many previous studies of PAH relied on male cells or cells of undisclosed origin for in vitro modeling. Here, we present a dynamic, three-dimensional (3D)-bioprinted model incorporating cells and circulating sex hormones from female patients to specifically study how female patients respond to changes in microenvironmental stiffness and sex hormone signaling on the cellular level. Poly(ethylene glycol)-α methacrylate (PEGαMA)-based hydrogels containing female human pulmonary artery adventitia fibroblasts (hPAAFs) from IPAH or control donors were 3D bioprinted to mimic pulmonary artery adventitia. These biomaterials were initially soft, like healthy blood vessels, and then stiffened using light to mimic vessel scarring in PAH. These 3D-bioprinted models showed that stiffening the microenvironment around female IPAH hPAAFs led to hPAAF activation. On both the protein and gene-expression levels, cellular activation markers significantly increased in stiffened samples and were highest in IPAH patient-derived cells. Treatment with a selective estrogen receptor modulator, which is currently in clinical trials for IPAH treatment, reduced the expression of hPAAF activation markers, demonstrating that hPAAF activation is one pathologic response mediated by estrogen signaling in the vasculature. These results showed the utility of sex-specific, 3D-bioprinted pulmonary artery adventitia models for preclinical drug discovery and validation.
Collapse
Affiliation(s)
- Mikala C Mueller
- Department of Bioengineering, University of Colorado, Denver|Anschutz Medical Campus, Aurora 80045, Colorado, United States
| | - Rachel Blomberg
- Department of Bioengineering, University of Colorado, Denver|Anschutz Medical Campus, Aurora 80045, Colorado, United States
| | - Alicia E Tanneberger
- Department of Bioengineering, University of Colorado, Denver|Anschutz Medical Campus, Aurora 80045, Colorado, United States
| | - Duncan Davis-Hall
- Department of Bioengineering, University of Colorado, Denver|Anschutz Medical Campus, Aurora 80045, Colorado, United States
| | - Keith B Neeves
- Department of Bioengineering, University of Colorado, Denver|Anschutz Medical Campus, Aurora 80045, Colorado, United States
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora 80045, Colorado, United States
- Hemophilia and Thrombosis Center, University of Colorado, Anschutz Medical Campus, Aurora 80045, Colorado, United States
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado, Denver|Anschutz Medical Campus, Aurora 80045, Colorado, United States
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora 80045, Colorado, United States
- Division of Pulmonary Sciences & Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora 80045, Colorado, United States
| |
Collapse
|
2
|
Yang Y, Zeng Z, Yang Q, Wang H, Zhang H, Yan W, Wang P, Wang C, Su Z, Thangaraju P, Safi SZ, Yang B, Wang Y, Zhou J, Zou Z, Huang Y, Shu S, Xiong C. The Challenge in Burden of Pulmonary Arterial Hypertension: A Perspective From the Global Burden of Disease Study. MedComm (Beijing) 2025; 6:e70175. [PMID: 40276646 PMCID: PMC12019876 DOI: 10.1002/mco2.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 04/26/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) poses significant clinical management challenges due to gaps in understanding its global epidemiology. We analyzed PAH-related disability-adjusted life years (DALYs), deaths, and prevalence from 1990 to 2021. Age-period-cohort models and regression analyses assessed temporal trends and projected burdens to 2050. Globally, PAH-related DALYs declined by 6.6%, but increased by 13.9% in high socio-demographic index (SDI) countries. Middle SDI regions reported the highest DALYs in 1990 and 2021. Deaths rose by 48.5% worldwide, with high SDI nations experiencing a 76.6% surge. Age-standardized rates (ASRs) of DALYs and deaths decreased across SDI countries, with high-middle SDI regions showing the steepest declines. Younger age groups, especially males, had a higher proportion of global DALYs in earlier years, but the burden shifted toward older populations over time, with this trend more pronounced in high-SDI countries. Age-period-cohort analysis revealed declining DALYs in younger ages but rising rates in older cohorts. By 2050, deaths and prevalence are projected to rise, disproportionately affecting females. Significant regional disparities in PAH burden persist, necessitating targeted policies, improved healthcare access, and early detection strategies, especially in underserved areas. Addressing these disparities is critical for mitigating PAH' s global impact.
Collapse
Affiliation(s)
- Yicheng Yang
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Center of Respiratory and Pulmonary Vascular DiseaseFuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of CardiologyAnzhen HospitalBeijingChina
| | - Zhiwei Zeng
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qiaoxi Yang
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Huan Wang
- Institute of Child and Adolescent HealthSchool of Public HealthNational Health Commission Key Laboratory of Reproductive Health, Peking UniversityHaidian DistrictBeijingChina
| | - Hanwen Zhang
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Center of Respiratory and Pulmonary Vascular DiseaseFuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wenjie Yan
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Center of Respiratory and Pulmonary Vascular DiseaseFuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Peizhi Wang
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Center for Molecular CardiologyUniversity of ZurichSchlierenZurichSwitzerland
| | - Chuangshi Wang
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Medical Research and Biometrics CenterNational Clinical Research Center for Cardiovascular DiseasesFuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| | - Zhanhao Su
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | | | - Sher Zaman Safi
- Faculty of MedicineBioscience & NursingMAHSA UniversitySelangorMalaysia
| | - Beilan Yang
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Center of Respiratory and Pulmonary Vascular DiseaseFuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yaoyao Wang
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jingjing Zhou
- Echocardiography Medical CenterBeijing Anzhen Hospital, Capital Medical UniversityBeijingChina
| | - Zhiyong Zou
- Institute of Child and Adolescent HealthSchool of Public HealthNational Health Commission Key Laboratory of Reproductive Health, Peking UniversityHaidian DistrictBeijingChina
| | - Yuan Huang
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Cardiovascular SurgeryFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Songren Shu
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Cardiovascular SurgeryFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Changming Xiong
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Center of Respiratory and Pulmonary Vascular DiseaseFuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
3
|
Goossen CJ, Kufner A, Dustin CM, Al Ghouleh I, Yuan S, Straub AC, Sembrat J, Baust JJ, Gomez D, Kračun D, Pagano PJ. Redox regulation of lung endothelial PERK, unfolded protein response (UPR) and proliferation via NOX1: Targeted inhibition as a potential therapy for PAH. Redox Biol 2025; 82:103554. [PMID: 40154102 PMCID: PMC11986987 DOI: 10.1016/j.redox.2025.103554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 04/01/2025] Open
Abstract
AIMS Reactive oxygen species (ROS) play an important role in the pathogenesis of pulmonary arterial hypertension (PAH) and NADPH oxidases (NOXs) as sources of ROS are implicated in the development of the disease. We previously showed that NOX isozyme 1 (NOX1)-derived ROS contributes to pulmonary vascular endothelial cell (EC) proliferation in response to PAH triggers in vitro. However, whether and how NOX1 is involved in PAH in vivo have not been explored nor has NOX1 been examined as a viable and effective therapeutic disease target. METHODS AND RESULTS Herein, infusion of mice exposed to Sugen/hypoxia (10 % O2) with a specific NOX1 inhibitor, NOXA1ds, delivered via osmotic minipumps (i.p.), significantly suppressed pathological changes in hemodynamic parameters characteristic of PAH. Furthermore, lungs of human patients with idiopathic PAH (iPAH) and exploratory RNA-seq analysis of hypoxic human pulmonary ECs, in which NOX1 was suppressed, were probed. The findings showed a clear indication of NOX1 in the promotion of both protein disulfide isomerase (PDI) and the unfolded protein response (UPR; in particular, the PERK arm of the pathway including eIF2α and ATF4) leading to proliferation. In aggregate, these results are consistent with a causal role for NOX1 in the development of mouse and human PAH and reveal a novel and mechanistic pathway by which NOX1 activates the UPR response during EC proliferation. CONCLUSION NOX1 promotes phenotypic changes in ECs that are pivotal to proliferation and PAH through activation of the UPR. Taken together, our results are consistent with selective inhibition of NOX1 as a novel modality for attenuating PAH.
Collapse
Affiliation(s)
- Christian J Goossen
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Alex Kufner
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Christopher M Dustin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Imad Al Ghouleh
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shuai Yuan
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Adam C Straub
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - John Sembrat
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jeffrey J Baust
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Delphine Gomez
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Damir Kračun
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| | - Patrick J Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
4
|
Li X, Wang J, Chen Y, Li P, Wen H, Xu X, Wang J, Xu Y, Chen Y, Song J, Lu W, Zhu D, Fu X. Estrogen Oppositely Regulates Pulmonary Hypertension via METTL3/PFKFB3 under Normoxia and Hypoxia. Am J Respir Cell Mol Biol 2025; 72:258-271. [PMID: 39265182 DOI: 10.1165/rcmb.2024-0042oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024] Open
Abstract
Despite extensive investigation into estrogen's role in pulmonary hypertension (PH) development, its effects, whether beneficial or detrimental, remain contentious. This study aimed to elucidate estrogen's potential role in PH under normoxic and hypoxic conditions. Using norfenfluramine- and hypoxia-induced rat models of PH, the study evaluated the impact of 17β-estradiol (E2) on PH progression. E2 promoted PH development under normoxia while providing protection under hypoxia. Mechanistically, under normoxia, E2 upregulated METTL3 (methyltransferase-like 3) gene transcription and protein via an estrogen response element-dependent pathway, which in turn increased the N6-methyladenosine methylation and translational efficiency of PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3) mRNA, leading to increased PFKFB3 protein levels and enhanced proliferation and migration of pulmonary artery smooth muscle cells. Conversely, under hypoxia, E2 downregulated METTL3 transcription through a hypoxia response element-dependent mechanism driven by increased HIF-1α (hypoxia-inducible factor 1α) levels, resulting in reduced PFKFB3 protein expression and diminished pulmonary artery smooth muscle cell proliferation and migration. METTL3 and PFKFB3 proteins are upregulated in the pulmonary arteries of patients with pulmonary arterial hypertension. Collectively, these findings suggest that E2 exerts differential effects on PH progression via dual regulation of the METTL3/PFKFB3 protein under normoxic and hypoxic conditions, positioning the METTL3/PFKFB3 protein as a potential therapeutic target for PH treatment.
Collapse
Affiliation(s)
- Xiaosa Li
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiale Wang
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Ping Li
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hao Wen
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingyan Xu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Yiming Xu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingying Chen
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Dongxing Zhu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaodong Fu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Potluri T, You T, Yin P, Coon J, Stulberg JJ, Dai Y, Escobar DJ, Lieber RL, Zhao H, Bulun SE. Estrogen receptor-α ablation reverses muscle fibrosis and inguinal hernias. J Clin Invest 2025; 135:e179137. [PMID: 39903526 PMCID: PMC11910215 DOI: 10.1172/jci179137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Fibrosis of the lower abdominal muscle (LAM) contributes to muscle weakening and inguinal hernia formation, an ailment that affects a noteworthy 50% of men by age 75 and necessitates surgical correction as the singular therapy. Despite its prevalence, the mechanisms driving LAM fibrosis and hernia development remain poorly understood. Using a humanized mouse model that replicates the elevated skeletal muscle tissue estrogen concentrations seen in aging men, we identified estrogen receptor-α (ESR1) as a key driver of LAM fibroblast proliferation, extracellular matrix deposition, and hernia formation. Fibroblast-specific ESR1 ablation effectively prevented muscle fibrosis and herniation, while pharmacological ESR1 inhibition with fulvestrant reversed hernias and restored normal muscle architecture. Multiomics analyses of in vitro LAM fibroblasts from humanized mice unveiled an estrogen/ESR1-mediated activation of a distinct profibrotic cistrome and gene expression signature, concordant with observations in inguinal hernia tissues in human males. Our findings hold significant promise for prospective medical interventions targeting fibrotic conditions and present non-surgical avenues for addressing inguinal hernias.
Collapse
Affiliation(s)
- Tanvi Potluri
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Tianming You
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ping Yin
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John Coon
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jonah J. Stulberg
- Department of Surgery, McGovern Medical School at the University of Texas Health Sciences Center, Houston, Texas, USA
| | - Yang Dai
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | | | - Richard L. Lieber
- Departments of Physical Medicine and Rehabilitation and Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
- Research Service, Hines VA Medical Center, Maywood, Illinois, USA
- Shirley Ryan AbilityLab, Chicago, Illinois, USA
| | - Hong Zhao
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Serdar E. Bulun
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
6
|
Wang H, Li L, Zhou G, Wang L, Wu Z. RPL39 Was Associated With Sex Differences in Pulmonary Arterial Hypertension. Can Respir J 2025; 2025:7139235. [PMID: 39957991 PMCID: PMC11824382 DOI: 10.1155/carj/7139235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) is a malignant cardiovascular disease with a complex etiology, in which several types of cells play important roles. Sex differences in disease susceptibility and survival have been observed in PAH patients, but few studies have analyzed the effect of changes in cell type and number on sex differences in PAH at the single-cell level. In this study, we performed a series of analyses on GSE169471 and GSE228644 datasets and found significant changes in the ratio of several types of cells in male PAH lung tissues. Surprisingly, we found that the ratio of macrophages in male PAH samples was 7 times higher than that in females. Consistently, the ratio of M1 macrophages was also significantly increased in male PAH samples. The different expression genes (DEGs) in macrophages were mainly involved in the ribosome pathway, which is closely related to cell proliferation. Inhibition of ribosomal protein L39 (RPL39), a core gene in the ribosome pathway, can inhibit macrophage proliferation and attenuate the sex differences in PAH. In conclusion, our study suggests that ribosome pathway-associated cell proliferation of macrophages might be associated with sex differences in PAH.
Collapse
Affiliation(s)
- Haixia Wang
- National Health Commission Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (Co-Construction), Department of Scientific Research, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
- Department of Preventive Medicine, Shihezi University Medical School Shihezi, Xinjiang, China
| | - Ling Li
- Department of Preventive Medicine, Shihezi University Medical School Shihezi, Xinjiang, China
| | - Guangyuan Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lu Wang
- Department of Respiratory and Critical Care Medicine, Miyun Teaching Hospital of Capital Medical University, Beijing, China
| | - Zeang Wu
- National Health Commission Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (Co-Construction), Department of Scientific Research, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
7
|
Mueller MC, Blomberg R, Tanneberger AE, Davis-Hall D, Neeves KB, Magin CM. Female fibroblast activation is estrogen-mediated in sex-specific 3D-bioprinted pulmonary artery adventitia models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633670. [PMID: 39896610 PMCID: PMC11785021 DOI: 10.1101/2025.01.17.633670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Pulmonary arterial hypertension (PAH) impacts male and female patients in different ways. Female patients exhibit a greater susceptibility to disease (4:1 female-to-male ratio) but live longer after diagnosis than male patients. This complex sexual dimorphism is known as the estrogen paradox. Prior studies suggest that estrogen signaling may be pathologic in the pulmonary vasculature and protective in the heart, yet the mechanisms underlying these sex-differences in PAH remain unclear. PAH is a form of a pulmonary vascular disease that results in scarring of the small blood vessels, leading to impaired blood flow and increased blood pressure. Over time, this increase in blood pressure causes damage to the heart. Many previous studies of PAH relied on male cells or cells of undisclosed origin for in vitro modeling. Here we present a dynamic, 3D-bioprinted model that incorporates cells and circulating sex hormones from female patients to specifically study how female patients respond to changes in microenvironmental stiffness and sex hormone signaling. Poly(ethylene glycol)-alpha methacrylate (PEGαMA)-based hydrogels containing female human pulmonary artery adventitia fibroblasts (hPAAFs) from idiopathic PAH (IPAH) or control donors were 3D bioprinted to mimic pulmonary artery adventitia. These biomaterials were initially soft, like healthy blood vessels, and then stiffened using light to mimic vessel scarring in PAH. These 3D-bioprinted models showed that stiffening the microenvironment around female IPAH hPAAFs led to hPAAF activation. On both the protein and gene-expression levels, cellular activation markers significantly increased in stiffened samples and were highest in IPAH patient-derived cells. Treatment with a selective estrogen receptor modulator reduced expression hPAAF activation markers, demonstrating that hPAAF activation is a one pathologic response mediated by estrogen signaling in the vasculature, validating that drugs currently in clinical trials could be evaluated in sex-specific 3D-bioprinted pulmonary artery adventitia models.
Collapse
|
8
|
Tondo P, Meschi C, Mantero M, Scioscia G, Siciliano M, Bradicich M, Stella GM. Sex and gender differences during the lung lifespan: unveiling a pivotal impact. Eur Respir Rev 2025; 34:240121. [PMID: 39971394 PMCID: PMC11836673 DOI: 10.1183/16000617.0121-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/29/2024] [Indexed: 02/21/2025] Open
Abstract
Sex and gender differences significantly influence lung parenchyma development, beginning as early as the embryonic stages of human life. Although this association is well known in the clinical manifestations of some relevant pulmonary diseases, there is less data available regarding their effects on cell biological programmes across different stages of body development. A deep understanding of these mechanisms could help in defining preventive strategies tailored to a fully personalised approach to respiratory medicine. From this perspective, this review aims to analyse the influence of sex and gender on bronchoalveolar and vascular compartments from embryonic and neonatal stages through to adolescence, adulthood and elder age.
Collapse
Affiliation(s)
- Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia; Respiratory and Critical Care Unit, Polyclinic Foggia University-Hospital, Foggia, Italy
| | - Claudia Meschi
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
- Pulmonary Unit, Cardiothoracic and Vascular Department, Pisa University Hospital, Pisa, Italy
| | - Marco Mantero
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, University of Milan, Milan, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia; Respiratory and Critical Care Unit, Polyclinic Foggia University-Hospital, Foggia, Italy
| | - Matteo Siciliano
- Catholic University of the Sacred Heart, Rome Campus; Agostino Gemelli IRCCS University Polyclinic Foundation, Rome, Italy
| | - Matteo Bradicich
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Giulia M. Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS San Matteo Polyclinic Hospital, Pavia, Italy
| |
Collapse
|
9
|
Avecilla V, Doke M, Appunni S, Rubens M, Ramamoorthy V, Das JK. Pathophysiological Features of Remodeling in Vascular Diseases: Impact of Inhibitor of DNA-Binding/Differentiation-3 and Estrogenic Endocrine Disruptors. Med Sci (Basel) 2024; 13:2. [PMID: 39846697 PMCID: PMC11755649 DOI: 10.3390/medsci13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/12/2024] [Accepted: 12/22/2024] [Indexed: 01/30/2025] Open
Abstract
Vascular diseases, such as hypertension, atherosclerosis, cerebrovascular, and peripheral arterial diseases, present major clinical and public health challenges, largely due to their common underlying process: vascular remodeling. This process involves structural alterations in blood vessels, driven by a variety of molecular mechanisms. The inhibitor of DNA-binding/differentiation-3 (ID3), a crucial member of ID family of transcriptional regulators, has been identified as a key player in vascular biology, significantly impacting the progression of these diseases. This review explores the role of ID3 in vascular remodeling, emphasizing its involvement in processes such as apoptosis, cell proliferation, and extracellular matrix regulation. Furthermore, we examine how oxidative stress, intensified by exposure to estrogenic endocrine disruptors (EEDs) like polychlorinated biphenyls (PCBs) and bisphenol A (BPA), affects ID3 activity and contributes to vascular disease. Understanding the interaction between ID3 signaling and EED exposure provides critical insights into the molecular mechanisms underlying vascular remodeling and its role in the development and progression of vascular diseases.
Collapse
Affiliation(s)
- Vincent Avecilla
- Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, USA
- Avecilla Consulting LLC, Miami, FL 33131, USA
| | - Mayur Doke
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA
| | - Sandeep Appunni
- Department of Biochemistry, Government Medical College, Kozhikode 673008, Kerala, India
| | - Muni Rubens
- Baptist Health South Florida, Miami Gardens, FL 33176, USA
| | | | - Jayanta Kumar Das
- Department of Health and Natural Sciences, Florida Memorial University, Miami Gardens, FL 33054, USA
| |
Collapse
|
10
|
Wang X, Wang Y, Yuan T, Wang H, Zeng Z, Tian L, Cui L, Guo J, Chen Y. Network pharmacology provides new insights into the mechanism of traditional Chinese medicine and natural products used to treat pulmonary hypertension. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156062. [PMID: 39305743 DOI: 10.1016/j.phymed.2024.156062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/31/2024] [Accepted: 09/14/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a rare cardiovascular disease with high morbidity and mortality rates. It is characterized by increased pulmonary arterial pressure. Current research into relevant therapeutic drugs and targets for PH, however, is insufficient still. Traditional Chinese medicine (TCM) and natural products have a long history as therapeutics for PH. Network pharmacology is an approach that integrates drug-target interactions and signaling pathways based on biomarkers information obtained from drug and disease databases. The concept of network pharmacology shows many similarities with the TCM philosophy. Network pharmacology help elucidate the mechanisms of TCM in PH. This review presents representative applications of network pharmacology in the study of the mechanisms of TCM and natural products for the treatment of PH. METHODS In this review, we used ("pulmonary hypertension" OR "pulmonary arterial hypertension" OR "chronic thromboembolic pulmonary hypertension") AND ("network pharmacology" OR "systematic pharmacology") as keywords to search for reports from PubMed, Web of Science, and Google Scholar databases from ten years ago. The studies were screened and those chosen are summarized here. The TCM and natural products inPH and their corresponding targets and signaling pathways are described. Additionally, we discuss the application of network pharmacology in the study of TCM in PH to provide insights for future application strategies. RESULTS Network pharmacology have shown that AKT-related pathways, HIF-1 signaling pathway, MAPK signaling pathway, TGF-β-Smad pathway, cell cycle-related pathways and inflammation-related pathways are the main signaling pathways enriched in the PH targets of TCM. Reservatrol, curcumol, genistin, formononetin, wogonin, luteolin, baicalein, berberine, triptolide and tanshinone llA are active ingredients specific for PH treatment. A number of databases and tools specific for the treatment of PH are used in network pharmacology and natural product research. CONCLUSION Through the reasonable combination of molecular docking, omics technology and bioinformatics technology, the mechanism of multi-targets can be explained more comprehensively. Analyzing the complex mechanism of TCM from the clinical perspective may be a potential development trend of network pharmacology. Combination of predicted targets and traditional pharmacology improves efficiency of drug development.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yichen Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongjuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zuomei Zeng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Leiyu Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lidan Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yucai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
11
|
Corbi G, Comegna M, Vinciguerra C, Capasso A, Onorato L, Salucci AM, Rapacciuolo A, Cannavo A. Age and sex mediated effects of estrogen and Β3-adrenergic receptor on cardiovascular pathophysiology. Exp Gerontol 2024; 190:112420. [PMID: 38588751 DOI: 10.1016/j.exger.2024.112420] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Sex differences are consistently identified in determining the prevalence, manifestation, and response to therapies in several systemic disorders, including those affecting the cardiovascular (CV), skeletal muscle, and nervous system. Interestingly, such differences are often more noticeable as we age. For example, premenopausal women experience a lower risk of CV disease than men of the same age. While at an advanced age, with menopause, the risk of cardiovascular diseases and adverse outcomes increases exponentially in women, exceeding that of men. However, this effect appears to be reversed in diseases such as pulmonary hypertension, where women are up to seven times more likely than men to develop an idiopathic form of the disease with symptoms developing ten years earlier than their male counterparts. Explaining this is a complex question. However, several factors and mechanisms have been identified in recent decades, including a role for sex hormones, particularly estrogens and their related receptors. Furthermore, an emerging role in these sex differences has also been suggested for β-adrenergic receptors (βARs), which are essential regulators of mammalian physiology. It has in fact been shown that βARs interact with estrogen receptors (ER), providing further demonstration of their involvement in determining sexual differences. Based on these premises, this review article focused on the β3AR subtype, which shows important activities in adipose tissue but with new and interesting roles in regulating the function of cardiomyocytes and vascular cells. In detail, we examined how β3AR and ER signaling are intertwined and whether there would be sex- and age-dependent specific effects of these receptor systems.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Marika Comegna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE-Advanced Biotechnologies - Franco Salvatore, Naples, Italy
| | - Caterina Vinciguerra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessio Capasso
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Luigi Onorato
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Antonio Rapacciuolo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
12
|
Charoenpong P, Hall NM, Keller CM, Ram AK, Murnane KS, Goeders NE, Dhillon NK, Walter RE. Overview of Methamphetamine-Associated Pulmonary Arterial Hypertension. Chest 2024; 165:1518-1533. [PMID: 38211700 PMCID: PMC11177101 DOI: 10.1016/j.chest.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024] Open
Abstract
TOPIC IMPORTANCE The global surge in methamphetamine use is a critical public health concern, particularly due to its robust correlation with methamphetamine-associated pulmonary arterial hypertension (MA-PAH). This association raises urgent alarms about the potential escalation of MA-PAH incidence, posing a significant and imminent challenge to global public health. REVIEW FINDINGS This comprehensive review meticulously explores MA-PAH, offering insights into its epidemiology, pathophysiology, clinical presentation, diagnostic intricacies, and management strategies. The pathogenesis, yet to be fully described, involves complex molecular interactions, including alterations in serotonin signaling, reduced activity of carboxylesterase 1, oxidative stress, and dysregulation of pulmonary vasoconstrictors and vasodilators. These processes culminate in the structural remodeling of the pulmonary vasculature, resulting in pulmonary arterial hypertension. MA-PAH exhibits a more severe clinical profile in functional class and hemodynamics compared with idiopathic pulmonary arterial hypertension. Management involves a multifaceted approach, integrating pulmonary vasodilators, cessation of methamphetamine use, and implementing social and rehabilitation programs. These measures aim to enhance patient outcomes and detect potential relapses for timely intervention. SUMMARY This review consolidates our understanding of MA-PAH, pinpointing knowledge gaps for future studies. Addressing these gaps is crucial for advancing diagnostic accuracy, unraveling mechanisms, and optimizing treatment for MA-PAH, thereby addressing the evolving landscape of this complex health concern.
Collapse
Affiliation(s)
- Prangthip Charoenpong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA.
| | - Nicole M Hall
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Courtney M Keller
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Anil Kumar Ram
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Kevin S Murnane
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Nicholas E Goeders
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Navneet Kaur Dhillon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Robert E Walter
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| |
Collapse
|
13
|
Sun Y, Chen C, Yan Q, Wang S, Tan Y, Long J, Lin Y, Ning S, Wang J, Zhang S, Ai Q, Liu S. A peripheral system disease-Pulmonary hypertension. Biomed Pharmacother 2024; 175:116787. [PMID: 38788548 DOI: 10.1016/j.biopha.2024.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Pulmonary hypertension (PH) is a cardiovascular disorder characterized by substantial morbidity and mortality rates. It is a chronic condition characterized by intricate pathogenesis and uncontrollable factors. We summarized the pathological effects of estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification on PH. PH is not only a pulmonary vascular disease, but also a systemic disease. The findings emphasize that the onset of PH is not exclusively confined to the pulmonary vasculature, consequently necessitating treatment approaches that extend beyond targeting pulmonary blood vessels. Hence, the research on the pathological mechanism of PH is not limited to target organs such as pulmonary vessels, but also focuses on exploring other fields (such as estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification).
Collapse
Affiliation(s)
- Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Siying Wang
- Pharmacy Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shuangcheng Ning
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Jin Wang
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Shusheng Zhang
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China.
| |
Collapse
|
14
|
Burtscher J, Raberin A, Brocherie F, Malatesta D, Manferdelli G, Citherlet T, Krumm B, Bourdillon N, Antero J, Rasica L, Burtscher M, Millet GP. Recommendations for Women in Mountain Sports and Hypoxia Training/Conditioning. Sports Med 2024; 54:795-811. [PMID: 38082199 PMCID: PMC11052836 DOI: 10.1007/s40279-023-01970-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 04/28/2024]
Abstract
The (patho-)physiological responses to hypoxia are highly heterogeneous between individuals. In this review, we focused on the roles of sex differences, which emerge as important factors in the regulation of the body's reaction to hypoxia. Several aspects should be considered for future research on hypoxia-related sex differences, particularly altitude training and clinical applications of hypoxia, as these will affect the selection of the optimal dose regarding safety and efficiency. There are several implications, but there are no practical recommendations if/how women should behave differently from men to optimise the benefits or minimise the risks of these hypoxia-related practices. Here, we evaluate the scarce scientific evidence of distinct (patho)physiological responses and adaptations to high altitude/hypoxia, biomechanical/anatomical differences in uphill/downhill locomotion, which is highly relevant for exercising in mountainous environments, and potentially differential effects of altitude training in women. Based on these factors, we derive sex-specific recommendations for mountain sports and intermittent hypoxia conditioning: (1) Although higher vulnerabilities of women to acute mountain sickness have not been unambiguously shown, sex-dependent physiological reactions to hypoxia may contribute to an increased acute mountain sickness vulnerability in some women. Adequate acclimatisation, slow ascent speed and/or preventive medication (e.g. acetazolamide) are solutions. (2) Targeted training of the respiratory musculature could be a valuable preparation for altitude training in women. (3) Sex hormones influence hypoxia responses and hormonal-cycle and/or menstrual-cycle phases therefore may be factors in acclimatisation to altitude and efficiency of altitude training. As many of the recommendations or observations of the present work remain partly speculative, we join previous calls for further quality research on female athletes in sports to be extended to the field of altitude and hypoxia.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Antoine Raberin
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Davide Malatesta
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Giorgio Manferdelli
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Juliana Antero
- Institut de Recherche Bio-Médicale Et d'Épidémiologie du Sport (EA 7329), French Institute of Sport, Paris, France
| | - Letizia Rasica
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland.
| |
Collapse
|
15
|
Raberin A, Burtscher J, Citherlet T, Manferdelli G, Krumm B, Bourdillon N, Antero J, Rasica L, Malatesta D, Brocherie F, Burtscher M, Millet GP. Women at Altitude: Sex-Related Physiological Responses to Exercise in Hypoxia. Sports Med 2024; 54:271-287. [PMID: 37902936 PMCID: PMC10933174 DOI: 10.1007/s40279-023-01954-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/01/2023]
Abstract
Sex differences in physiological responses to various stressors, including exercise, have been well documented. However, the specific impact of these differences on exposure to hypoxia, both at rest and during exercise, has remained underexplored. Many studies on the physiological responses to hypoxia have either excluded women or included only a limited number without analyzing sex-related differences. To address this gap, this comprehensive review conducted an extensive literature search to examine changes in physiological functions related to oxygen transport and consumption in hypoxic conditions. The review encompasses various aspects, including ventilatory responses, cardiovascular adjustments, hematological alterations, muscle metabolism shifts, and autonomic function modifications. Furthermore, it delves into the influence of sex hormones, which evolve throughout life, encompassing considerations related to the menstrual cycle and menopause. Among these physiological functions, the ventilatory response to exercise emerges as one of the most sex-sensitive factors that may modify reactions to hypoxia. While no significant sex-based differences were observed in cardiac hemodynamic changes during hypoxia, there is evidence of greater vascular reactivity in women, particularly at rest or when combined with exercise. Consequently, a diffusive mechanism appears to be implicated in sex-related variations in responses to hypoxia. Despite well-established sex disparities in hematological parameters, both acute and chronic hematological responses to hypoxia do not seem to differ significantly between sexes. However, it is important to note that these responses are sensitive to fluctuations in sex hormones, and further investigation is needed to elucidate the impact of the menstrual cycle and menopause on physiological responses to hypoxia.
Collapse
Affiliation(s)
- Antoine Raberin
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Johannes Burtscher
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Giorgio Manferdelli
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Juliana Antero
- Institut de Recherche Bio-Médicale Et d'Épidémiologie du Sport (EA 7329), French Institute of Sport, Paris, France
| | - Letizia Rasica
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Davide Malatesta
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
16
|
Takatsuki S, Shimokawahara H, Shimizu Y, Kawai R, Matsuura H, Matsubara H. Clinical differences between children and adults with idiopathic and heritable pulmonary arterial hypertension. Cardiol Young 2023; 33:1909-1912. [PMID: 36330840 DOI: 10.1017/s1047951122003432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Although previous studies have demonstrated that paediatric pulmonary arterial hypertension remains distinct from that in adults, there are limited studies evaluating a direct comparison between children and adults. The aim of this head-to-head comparison study was to compare the gender, haemodynamic parameters, and prognosis between paediatric and adult pulmonary arterial hypertension. METHODS AND RESULTS We retrospectively assessed the clinical differences in 40 childhood-onset (under 20 years old) patients and 40 adult-onset patients with idiopathic and heritable pulmonary arterial hypertension who were followed up at two centres. There was no female predominance among patients with childhood-onset pulmonary arterial hypertension (child female: 42.5%, adult female: 80%). The percent of New York Heart Association functional class IV in adult-onset pulmonary arterial hypertension tended to be higher than those in childhood-onset pulmonary arterial hypertension (22.5 and 10%, respectively), although children had worse haemodynamic parameters at diagnosis (mean pulmonary artery pressure (children versus adults); median 65 mmHg versus 49 mmHg, p < 0.001). There was no significant difference in the event-free survival rate between the two groups (95% vs. 85%) during the follow-up period (median, 96 months; range, 1-120 months). CONCLUSIONS Although paediatric pulmonary arterial hypertension patients had worse haemodynamic parameters at diagnosis than adults, children survived as long as adults with appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Shinichi Takatsuki
- Department of Pediatrics, Toho University Omori Medical Center, Tokyo, Japan
| | - Hiroto Shimokawahara
- Department of Cardiology, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Yurika Shimizu
- Department of Pediatrics, Toho University Omori Medical Center, Tokyo, Japan
| | - Reiko Kawai
- Department of Pediatrics, Toho University Omori Medical Center, Tokyo, Japan
| | - Hiroyuki Matsuura
- Department of Pediatrics, Toho University Omori Medical Center, Tokyo, Japan
| | - Hiromi Matsubara
- Department of Cardiology, National Hospital Organization Okayama Medical Center, Okayama, Japan
| |
Collapse
|
17
|
Xu F, Ma J, Wang X, Wang X, Fang W, Sun J, Li Z, Liu J. The Role of G Protein-Coupled Estrogen Receptor (GPER) in Vascular Pathology and Physiology. Biomolecules 2023; 13:1410. [PMID: 37759810 PMCID: PMC10526873 DOI: 10.3390/biom13091410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Estrogen is indispensable in health and disease and mainly functions through its receptors. The protection of the cardiovascular system by estrogen and its receptors has been recognized for decades. Numerous studies with a focus on estrogen and its receptor system have been conducted to elucidate the underlying mechanism. Although nuclear estrogen receptors, including estrogen receptor-α and estrogen receptor-β, have been shown to be classical receptors that mediate genomic effects, studies now show that GPER mainly mediates rapid signaling events as well as transcriptional regulation via binding to estrogen as a membrane receptor. With the discovery of selective synthetic ligands for GPER and the utilization of GPER knockout mice, significant progress has been made in understanding the function of GPER. In this review, the tissue and cellular localizations, endogenous and exogenous ligands, and signaling pathways of GPER are systematically summarized in diverse physiological and diseased conditions. This article further emphasizes the role of GPER in vascular pathology and physiology, focusing on the latest research progress and evidence of GPER as a promising therapeutic target in hypertension, pulmonary hypertension, and atherosclerosis. Thus, selective regulation of GPER by its agonists and antagonists have the potential to be used in clinical practice for treating such diseases.
Collapse
Affiliation(s)
- Fujie Xu
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Weiyi Fang
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jingwei Sun
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| |
Collapse
|
18
|
Zhou X, Jiang Y, Wang Y, Fan L, Zhu Y, Chen Y, Wang Y, Zhu Y, Wang H, Pan Z, Li Z, Zhu X, Ren R, Ge Z, Lai D, Lai EY, Chen T, Wang K, Liang P, Qin L, Liu C, Qiu C, Simons M, Yu L. Endothelial FIS1 DeSUMOylation Protects Against Hypoxic Pulmonary Hypertension. Circ Res 2023; 133:508-531. [PMID: 37589160 DOI: 10.1161/circresaha.122.321200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Hypoxia is a major cause and promoter of pulmonary hypertension (PH), a representative vascular remodeling disease with poor prognosis and high mortality. However, the mechanism underlying how pulmonary arterial system responds to hypoxic stress during PH remains unclear. Endothelial mitochondria are considered signaling organelles on oxygen tension. Results from previous clinical research and our studies suggested a potential role of posttranslational SUMOylation (small ubiquitin-like modifier modification) in endothelial mitochondria in hypoxia-related vasculopathy. METHODS Chronic hypoxia mouse model and Sugen/hypoxia rat model were employed as PH animal models. Mitochondrial morphology and subcellular structure were determined by transmission electron and immunofluorescent microscopies. Mitochondrial metabolism was determined by mitochondrial oxygen consumption rate and extracellular acidification rate. SUMOylation and protein interaction were determined by immunoprecipitation. RESULTS The involvement of SENP1 (sentrin-specific protease 1)-mediated SUMOylation in mitochondrial remodeling in the pulmonary endothelium was identified in clinical specimens of hypoxia-related PH and was verified in human pulmonary artery endothelial cells under hypoxia. Further analyses in clinical specimens, hypoxic rat and mouse PH models, and human pulmonary artery endothelial cells and human embryonic stem cell-derived endothelial cells revealed that short-term hypoxia-induced SENP1 translocation to endothelial mitochondria to regulate deSUMOylation (the reversible process of SUMOylation) of mitochondrial fission protein FIS1 (mitochondrial fission 1), which facilitated FIS1 assembling with fusion protein MFN2 (mitofusin 2) and mitochondrial gatekeeper VDAC1 (voltage-dependent anion channel 1), and the membrane tethering activity of MFN2 by enhancing its oligomerization. Consequently, FIS1 deSUMOylation maintained the mitochondrial integrity and endoplasmic reticulum-mitochondria calcium communication across mitochondrial-associated membranes, subsequently preserving pulmonary endothelial function and vascular homeostasis. In contrast, prolonged hypoxia disabled the FIS1 deSUMOylation by diminishing the availability of SENP1 in mitochondria via inducing miR (micro RNA)-138 and consequently resulted in mitochondrial dysfunction and metabolic reprogramming in pulmonary endothelium. Functionally, introduction of viral-packaged deSUMOylated FIS1 within pulmonary endothelium in mice improved pulmonary endothelial dysfunction and hypoxic PH development, while knock-in of SUMO (small ubiquitin-like modifier)-conjugated FIS1 in mice exaggerated the diseased cellular and tissue phenotypes. CONCLUSIONS By maintaining endothelial mitochondrial homeostasis, deSUMOylation of FIS1 adaptively preserves pulmonary endothelial function against hypoxic stress and consequently protects against PH. The FIS1 deSUMOylation-SUMOylation transition in pulmonary endothelium is an intrinsic pathogenesis of hypoxic PH.
Collapse
Affiliation(s)
- Xiaofei Zhou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Yuanqing Jiang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Yuewen Wang
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, China (Yuewen Wang)
| | - Linge Fan
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Yunhui Zhu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- Cardiovascular Research Center, Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (X. Zhu, L.Q., M.S.)
| | - Yefeng Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Yiran Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Yingyi Zhu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Hongkun Wang
- Institute of Translational Medicine (H.W., P.L.), Hangzhou, China
| | - Zihang Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China (Z.P., K.W.)
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Z.P., K.W.)
| | - Zhoubin Li
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L., E.Y.-L., T.C.)
| | - Xiaolong Zhu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
| | - Ruizhe Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Zhen Ge
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (Z.G.)
| | - Dongwu Lai
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
| | - En Yin Lai
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L., E.Y.-L., T.C.)
| | - Ting Chen
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L., E.Y.-L., T.C.)
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China (Z.P., K.W.)
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Z.P., K.W.)
| | - Ping Liang
- Institute of Translational Medicine (H.W., P.L.), Hangzhou, China
| | - Lingfeng Qin
- Cardiovascular Research Center, Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (X. Zhu, L.Q., M.S.)
| | - Cuiqing Liu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China (C.L.)
| | - Cong Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
- Cancer Center, Zhejiang University (C.Q., L.Y.), Hangzhou, China
| | - Michael Simons
- Cardiovascular Research Center, Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (X. Zhu, L.Q., M.S.)
| | - Luyang Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
- Cancer Center, Zhejiang University (C.Q., L.Y.), Hangzhou, China
| |
Collapse
|
19
|
Visniauskas B, Kilanowski-Doroh I, Ogola BO, Mcnally AB, Horton AC, Imulinde Sugi A, Lindsey SH. Estrogen-mediated mechanisms in hypertension and other cardiovascular diseases. J Hum Hypertens 2023; 37:609-618. [PMID: 36319856 PMCID: PMC10919324 DOI: 10.1038/s41371-022-00771-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 06/08/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally for men and women. Premenopausal women have a lower incidence of hypertension and other cardiovascular events than men of the same age, but diminished sex differences after menopause implicates 17-beta-estradiol (E2) as a protective agent. The cardioprotective effects of E2 are mediated by nuclear estrogen receptors (ERα and ERβ) and a G protein-coupled estrogen receptor (GPER). This review summarizes both established as well as emerging estrogen-mediated mechanisms that underlie sex differences in the vasculature during hypertension and CVD. In addition, remaining knowledge gaps inherent in the association of sex differences and E2 are identified, which may guide future clinical trials and experimental studies in this field.
Collapse
Affiliation(s)
- Bruna Visniauskas
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Benard O Ogola
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alexandra B Mcnally
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alec C Horton
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ariane Imulinde Sugi
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Center of Excellence in Sex-Based Biology and Medicine, New Orleans, LA, USA.
- Tulane Brain Institute, New Orleans, LA, USA.
| |
Collapse
|
20
|
Kumar R, Lee M, Kassa B, Fonseca Balladares D, Mickael C, Sanders L, Andruska A, Kumar M, Spiekerkoetter E, Bandeira A, Stenmark K, Tuder R, Graham B. Repetitive schistosoma exposure causes perivascular lung fibrosis and persistent pulmonary hypertension. Clin Sci (Lond) 2023; 137:617-631. [PMID: 37014925 PMCID: PMC10133871 DOI: 10.1042/cs20220642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) can occur as a complication of schistosomiasis. In humans, schistosomiasis-PH persists despite antihelminthic therapy and parasite eradication. We hypothesized that persistent disease arises as a consequence of exposure repetition. METHODS Following intraperitoneal sensitization, mice were experimentally exposed to Schistosoma eggs by intravenous injection, either once or three times repeatedly. The phenotype was characterized by right heart catheterization and tissue analysis. RESULTS Following intraperitoneal sensitization, a single intravenous Schistosoma egg exposure resulted in a PH phenotype that peaked at 7-14 days, followed by spontaneous resolution. Three sequential exposures resulted in a persistent PH phenotype. Inflammatory cytokines were not significantly different between mice exposed to one or three egg doses, but there was an increase in perivascular fibrosis in those who received three egg doses. Significant perivascular fibrosis was also observed in autopsy specimens from patients who died of this condition. CONCLUSIONS Repeatedly exposing mice to schistosomiasis causes a persistent PH phenotype, accompanied by perivascular fibrosis. Perivascular fibrosis may contribute to the persistent schistosomiasis-PH observed in humans with this disease.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, U.S.A
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, U.S.A
| | - Michael H. Lee
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, U.S.A
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, U.S.A
| | - Biruk Kassa
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, U.S.A
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, U.S.A
| | - Dara C. Fonseca Balladares
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, U.S.A
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, U.S.A
| | - Claudia Mickael
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Linda Sanders
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Adam Andruska
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Palo Alto, CA, U.S.A
| | - Maya Kumar
- Department of Pediatrics, Division of Pulmonary Medicine, Stanford University, Palo Alto, CA, U.S.A
| | - Edda Spiekerkoetter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Palo Alto, CA, U.S.A
| | - Angela Bandeira
- PROCAPE, Universidade de Pernambuco, Recife, Pernambuco, Brazil
| | - Kurt R. Stenmark
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Rubin M. Tuder
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Brian B Graham
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, U.S.A
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, U.S.A
| |
Collapse
|
21
|
Wang C, Xing Y, Zhang J, He M, Dong J, Chen S, Wu H, Huang HY, Chou CH, Bai L, He F, She J, Su A, Wang Y, Thistlethwaite PA, Huang HD, Yuan JXJ, Yuan ZY, Shyy JYJ. MED1 Regulates BMP/TGF-β in Endothelium: Implication for Pulmonary Hypertension. Circ Res 2022; 131:828-841. [PMID: 36252121 DOI: 10.1161/circresaha.122.321532] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/26/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Dysregulated BMP (bone morphogenetic protein) or TGF-β (transforming growth factor beta) signaling pathways are imperative in idiopathic and familial pulmonary arterial hypertension (PAH) as well as experimental pulmonary hypertension (PH) in rodent models. MED1 (mediator complex subunit 1) is a key transcriptional co-activator and KLF4 (Krüppel-like factor 4) is a master transcription factor in endothelium. However, MED1 and KLF4 epigenetic and transcriptional regulations of the BMP/TGF-β axes in pulmonary endothelium and their dysregulations leading to PAH remain elusive. We investigate the MED1/KLF4 co-regulation of the BMP/TGF-β axes in endothelium by studying the epigenetic regulation of BMPR2 (BMP receptor type II), ETS-related gene (ERG), and TGFBR2 (TGF-β receptor 2) and their involvement in the PH. METHODS High-throughput screening involving data from RNA-seq, MED1 ChIP-seq, H3K27ac ChIP-seq, ATAC-seq, and high-throughput chromosome conformation capture together with in silico computations were used to explore the epigenetic and transcriptional regulation of BMPR2, ERG, and TGFBR2 by MED1 and KLF4. In vitro experiments with cultured pulmonary arterial endothelial cells (ECs) and bulk assays were used to validate results from these in silico analyses. Lung tissue from patients with idiopathic PAH, animals with experimental PH, and mice with endothelial ablation of MED1 (EC-MED1-/-) were used to study the PH-protective effect of MED1. RESULTS Levels of MED1 were decreased in lung tissue or pulmonary arterial endothelial cells from idiopathic PAH patients and rodent PH models. Mechanistically, MED1 acted synergistically with KLF4 to transactivate BMPR2, ERG, and TGFBR2 via chromatin remodeling and enhancer-promoter interactions. EC-MED1-/- mice showed PH susceptibility. In contrast, MED1 overexpression mitigated the PH phenotype in rodents. CONCLUSIONS A homeostatic regulation of BMPR2, ERG, and TGFBR2 in ECs by MED1 synergistic with KLF4 is essential for the normal function of the pulmonary endothelium. Dysregulation of MED1 and the resulting impairment of the BMP/TGF-β signaling is implicated in the disease progression of PAH in humans and PH in rodent models.
Collapse
Affiliation(s)
- Chen Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
| | - Yuanming Xing
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
| | - Jiao Zhang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA (J.Z., M.H., J.D., J.Y.-J.)
| | - Ming He
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA (J.Z., M.H., J.D., J.Y.-J.)
| | - Jianjie Dong
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA (J.Z., M.H., J.D., J.Y.-J.)
| | - Shanshan Chen
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
| | - Haoyu Wu
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
| | - Hsi-Yuan Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China (H.-Y.H., H.-D.H.)
- School of Life and Health Sciences, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China (H.-Y.H., H.-D.H.)
| | - Chih-Hung Chou
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan (C.-H.C.)
| | - Liang Bai
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
| | - Fangzhou He
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
| | - Jianqing She
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
| | - Ailing Su
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
| | - Youhua Wang
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, China (Y.W.)
| | - Patricia A Thistlethwaite
- Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA (P.A.T.)
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China (H.-Y.H., H.-D.H.)
- School of Life and Health Sciences, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China (H.-Y.H., H.-D.H.)
| | - Jason X-J Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA (J.X.-J.Y.)
| | - Zu-Yi Yuan
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
| | - John Y-J Shyy
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA (J.Z., M.H., J.D., J.Y.-J.)
| |
Collapse
|
22
|
Guajardo-Correa E, Silva-Agüero JF, Calle X, Chiong M, Henríquez M, García-Rivas G, Latorre M, Parra V. Estrogen signaling as a bridge between the nucleus and mitochondria in cardiovascular diseases. Front Cell Dev Biol 2022; 10:968373. [PMID: 36187489 PMCID: PMC9516331 DOI: 10.3389/fcell.2022.968373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Epidemiological studies indicate that pre-menopausal women are more protected against the development of CVDs compared to men of the same age. This effect is attributed to the action/effects of sex steroid hormones on the cardiovascular system. In this context, estrogen modulates cardiovascular function in physiological and pathological conditions, being one of the main physiological cardioprotective agents. Here we describe the common pathways and mechanisms by which estrogens modulate the retrograde and anterograde communication between the nucleus and mitochondria, highlighting the role of genomic and non-genomic pathways mediated by estrogen receptors. Additionally, we discuss the presumable role of bromodomain-containing protein 4 (BRD4) in enhancing mitochondrial biogenesis and function in different CVD models and how this protein could act as a master regulator of estrogen protective activity. Altogether, this review focuses on estrogenic control in gene expression and molecular pathways, how this activity governs nucleus-mitochondria communication, and its projection for a future generation of strategies in CVDs treatment.
Collapse
Affiliation(s)
- Emanuel Guajardo-Correa
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Francisco Silva-Agüero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ximena Calle
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Mario Chiong
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mauricio Henríquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| | - Gerardo García-Rivas
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
- Tecnológico de Monterrey, The Institute for Obesity Research, Hospital Zambrano Hellion, San Pedro Garza Garcia, Nuevo León, Mexico
| | - Mauricio Latorre
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| |
Collapse
|
23
|
Integrating epigenetics and metabolomics to advance treatments for pulmonary arterial hypertension. Biochem Pharmacol 2022; 204:115245. [PMID: 36096239 DOI: 10.1016/j.bcp.2022.115245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating vascular disease with multiple etiologies. Emerging evidence supports a fundamental role for epigenetic machinery and metabolism in the initiation and progression of PAH. Here, we summarize emerging epigenetic mechanisms that have been identified as contributors to PAH evolution, specifically, DNA methylation, histone modifications, and microRNAs. Furthermore, the interplay between epigenetics with metabolism is explored while new crosstalk targets to be investigated in PAH are proposed that highlight multi-omics strategies including integrated epigenomics and metabolomics. Therapeutic opportunities and challenges associated with epigenetics and metabolomics in PAH are examined, highlighting the role that epigenetics and metabolomics have in facilitating early detection, personalized dietary plans, and advanced drug therapy for PAH.
Collapse
|
24
|
Coursen J, Simpson CE, Mukherjee M, Vaught AJ, Kutty S, Al-Talib TK, Wood MJ, Scott NS, Mathai SC, Sharma G. Pregnancy Considerations in the Multidisciplinary Care of Patients with Pulmonary Arterial Hypertension. J Cardiovasc Dev Dis 2022; 9:jcdd9080260. [PMID: 36005424 PMCID: PMC9409449 DOI: 10.3390/jcdd9080260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a vasoconstrictive disease of the distal pulmonary vasculature resulting in adverse right heart remodeling. Pregnancy in PAH patients is associated with high maternal morbidity and mortality as well as neonatal and fetal complications. Pregnancy-associated changes in the cardiovascular, pulmonary, hormonal, and thrombotic systems challenge the complex PAH physiology. Due to the high risks, patients with PAH are currently counseled against pregnancy based on international consensus guidelines, but there are promising signs of improving outcomes, particularly for patients with mild disease. For patients who become pregnant, multidisciplinary care at a PAH specialist center is needed for peripartum monitoring, medication management, delivery, postpartum care, and complication management. Patients with PAH also require disease-specific counseling on contraception and breastfeeding. In this review, we detail the considerations for reproductive planning, pregnancy, and delivery for the multidisciplinary care of a patient with PAH.
Collapse
Affiliation(s)
- Julie Coursen
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Catherine E. Simpson
- Divisions of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Monica Mukherjee
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Arthur J. Vaught
- Division of Maternal Fetal Medicine, Department of Gynecology Obstetrics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Shelby Kutty
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tala K. Al-Talib
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Malissa J. Wood
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nandita S. Scott
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stephen C. Mathai
- Divisions of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Garima Sharma
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Correspondence:
| |
Collapse
|
25
|
Predescu DN, Mokhlesi B, Predescu SA. The Impact of Sex Chromosomes in the Sexual Dimorphism of Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:582-594. [PMID: 35114193 PMCID: PMC8978209 DOI: 10.1016/j.ajpath.2022.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 02/09/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a sex-biased disease with a poorly understood female prevalence. Emerging research suggests that nonhormonal factors, such as the XX or XY sex chromosome complement and sex bias in gene expression, may also lead to sex-based differences in PAH incidence, penetrance, and progression. Typically, one of females' two X chromosomes is epigenetically silenced to offer a gender-balanced gene expression. Recent data demonstrate that the long noncoding RNA X-inactive specific transcript, essential for X chromosome inactivation and dosage compensation of X-linked gene expression, shows elevated levels in female PAH lung specimens compared with controls. This molecular event leads to incomplete inactivation of the females' second X chromosome, abnormal expression of X-linked gene(s) involved in PAH pathophysiology, and a pulmonary artery endothelial cell (PAEC) proliferative phenotype. Moreover, the pathogenic proliferative p38 mitogen-activated protein kinase/ETS transcription factor ELK1 (Elk1)/cFos signaling is mechanistically linked to the sexually dimorphic proliferative response of PAECs in PAH. Apprehending the complicated relationship between long noncoding RNA X-inactive specific transcript and X-linked genes and how this relationship integrates into a sexually dimorphic proliferation of PAECs and PAH sex paradox remain challenging. We highlight herein new findings related to how the sex chromosome complement and sex-differentiated epigenetic mechanisms to control gene expression are decisive players in the sexual dimorphism of PAH. Pharmacologic interventions in the light of the newly elucidated mechanisms are discussed.
Collapse
Affiliation(s)
- Dan N Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois.
| | - Babak Mokhlesi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Sanda A Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
26
|
Amgoud Y, Senbel A, Bouhadoun A, Abdelazeem H, Ozen G, Savané I, Manikpurage HD, Mani S, Tran-Dinh A, Castier Y, Guyard A, Longrois D, Silverstein AM, Norel X. In search of pulmonary hypertension treatments: Effect of 17β-estradiol on PGI 2 pathway in human pulmonary artery. Prostaglandins Leukot Essent Fatty Acids 2021; 172:102321. [PMID: 34403986 DOI: 10.1016/j.plefa.2021.102321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/20/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Prostacyclin (PGI2) is synthetized by PGI2 synthase (PGIS) and induces vasorelaxation via activation of cyclic AMP (cAMP) generating IP-receptor. Several components of the PGI2 signaling pathway are reduced in patients with pulmonary hypertension (PH). AIM To study the effect of 17β-estradiol (E2) on the PGI2 signaling pathway in human pulmonary arteries (HPA) and in their smooth muscle cells (hPASMC) derived from Group-3 PH and non-PH patients. METHODS Following E2-treatments of isolated HPA and cultured hPASMC, we measured: 6-keto-Prostaglandin F1α (PGI2 stable metabolite) by ELISA, PGIS and IP protein levels by Western blot and HPA vasorelaxations with an organ bath system. RESULTS Incubation with E2 (24/48 h, doses ≥ 10 nM) significantly increased the expression of PGIS in hPASMC derived from both PH (65-98%) and non-PH (21-33%) patients, whereas incubation with E2 (2 h, 0.1 and 1 µM) increased 6-keto-PGF1α production in HPA from Group-3 PH patients only, and did not affect 6-keto-PGF1α production in hPASMC from either non-PH or Group-3 PH patients. Increases in IP receptor expression were observed following 10 mM E2-treatment of hPASMC from non-PH (33% after 48 h) and Group-3 PH (23% after 24 h) patient lungs. Finally, preincubation with 100 nM E2 significantly increased arachidonic acid-induced vasorelaxation of HPA from non-PH patient lungs but not of HPA from Group-3 PH patient lungs. CONCLUSION E2-treatment may help to restore the PGI2-pathway in Group-3 PH.
Collapse
MESH Headings
- 6-Ketoprostaglandin F1 alpha/metabolism
- Antihypertensive Agents/pharmacology
- Arachidonic Acid/pharmacology
- Case-Control Studies
- Cytochrome P-450 Enzyme System/drug effects
- Cytochrome P-450 Enzyme System/metabolism
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Epoprostenol/analogs & derivatives
- Epoprostenol/pharmacology
- Estradiol/pharmacology
- Estrogens/pharmacology
- Female
- Humans
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Intramolecular Oxidoreductases/drug effects
- Intramolecular Oxidoreductases/metabolism
- Male
- Middle Aged
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Pulmonary Artery/cytology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Yasmine Amgoud
- Université de Paris, INSERM, UMR-S 1148, CHU X. Bichat, 75018 Paris, France; Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Amira Senbel
- Alexandria University, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Alexandria, Egypt; Arab Academy for Science, Technology & Maritime Transport, College of Pharmacy, Alexandria, Egypt
| | - Amel Bouhadoun
- Université de Paris, INSERM, UMR-S 1148, CHU X. Bichat, 75018 Paris, France; Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Heba Abdelazeem
- Université de Paris, INSERM, UMR-S 1148, CHU X. Bichat, 75018 Paris, France; Université Sorbonne Paris Nord, 93430 Villetaneuse, France; Alexandria University, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Alexandria, Egypt
| | - Gulsev Ozen
- Université de Paris, INSERM, UMR-S 1148, CHU X. Bichat, 75018 Paris, France; Istanbul University, Faculty of Pharmacy, Department of Pharmacology, 34116 Istanbul, Turkey
| | - Ines Savané
- Université de Paris, INSERM, UMR-S 1148, CHU X. Bichat, 75018 Paris, France; Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | | | - Salma Mani
- Université de Paris, INSERM, UMR-S 1148, CHU X. Bichat, 75018 Paris, France; Université Sorbonne Paris Nord, 93430 Villetaneuse, France; Université de Monastir-Tunisia, Institut Supérieur de Biotechnologie de Monastir (ISBM), Tunisia
| | - Alexy Tran-Dinh
- Université de Paris, INSERM, UMR-S 1148, CHU X. Bichat, 75018 Paris, France; Hôpital Bichat-Claude Bernard, AP-HP, Paris Diderot University, USPC, 75018 Paris, France
| | - Yves Castier
- Hôpital Bichat-Claude Bernard, AP-HP, Paris Diderot University, USPC, 75018 Paris, France
| | - Alice Guyard
- Hôpital Bichat-Claude Bernard, AP-HP, Paris Diderot University, USPC, 75018 Paris, France
| | - Dan Longrois
- Université de Paris, INSERM, UMR-S 1148, CHU X. Bichat, 75018 Paris, France; Hôpital Bichat-Claude Bernard, AP-HP, Paris Diderot University, USPC, 75018 Paris, France
| | | | - Xavier Norel
- Université de Paris, INSERM, UMR-S 1148, CHU X. Bichat, 75018 Paris, France; Université Sorbonne Paris Nord, 93430 Villetaneuse, France.
| |
Collapse
|
27
|
Murthy S, Benza R. The Evolution of Risk Assessment in Pulmonary Arterial Hypertension. Methodist Debakey Cardiovasc J 2021; 17:134-144. [PMID: 34326933 PMCID: PMC8298117 DOI: 10.14797/lrpr7655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 11/08/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic debilitating disease that
carries an unacceptably high morbidity and mortality rate despite improved
survival with modern therapies. The combination of several modifiable and
nonmodifiable variables yields a robust risk assessment across various available
clinical calculators. The role of risk calculation is integral to managing PAH
and aids in the timely referral to expert centers and potentially lung
transplantation. Studies are ongoing to determine the role of risk calculators
in the framework of clinical trials and to elucidate novel markers of high risk
in PAH.
Collapse
Affiliation(s)
| | - Raymond Benza
- Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
28
|
Pulmonary Hypertension Complicating Pregnancy. CURRENT PULMONOLOGY REPORTS 2021. [DOI: 10.1007/s13665-021-00275-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Abstract
Purpose of review
This study aims to describe the pathophysiology of pregnancy in pulmonary hypertension (PH) and review recent literature on maternal and fetal outcomes.
Recent findings
There is an increasing number of pregnant women with PH. Maternal mortality in pulmonary arterial hypertension (PAH) ranges from 9 to 25%, most commonly from heart failure and arrythmias. The highest risk of death is peri-partum and post-partum. Fetal/neonatal morbidity and mortality are also substantial. There are high rates of prematurity, intrauterine growth retardation, and preeclampsia. Women should be referred to expert centers for management. Combination PAH therapy with parenteral prostacyclin and a phosphodiesterase type V inhibitor is recommended. Induced vaginal delivery is preferred, except in cases of severe heart failure or obstetric indications for cesarean section.
Summary
Despite advances in management, pregnancy in PAH remains a high-risk condition and should be prevented.
Collapse
|
29
|
Hye T, Dwivedi P, Li W, Lahm T, Nozik-Grayck E, Stenmark KR, Ahsan F. Newer insights into the pathobiological and pharmacological basis of the sex disparity in patients with pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1025-L1037. [PMID: 33719549 DOI: 10.1152/ajplung.00559.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) affects more women than men, although affected females tend to survive longer than affected males. This sex disparity in PAH is postulated to stem from the diverse roles of sex hormones in disease etiology. In animal models, estrogens appear to be implicated not only in pathologic remodeling of pulmonary arteries, but also in protection against right ventricular (RV) hypertrophy. In contrast, the male sex hormone testosterone is associated with reduced survival in male animals, where it is associated with increased RV mass, volume, and fibrosis. However, it also has a vasodilatory effect on pulmonary arteries. Furthermore, patients of both sexes show varying degrees of response to current therapies for PAH. As such, there are many gaps and contradictions regarding PAH development, progression, and therapeutic interventions in male versus female patients. Many of these questions remain unanswered, which may be due in part to lack of effective experimental models that can consistently reproduce PAH pulmonary microenvironments in their sex-specific forms. This review article summarizes the roles of estrogens and related sex hormones, immunological and genetical differences, and the benefits and limitations of existing experimental tools to fill in gaps in our understanding of the sex-based variation in PAH development and progression. Finally, we highlight the potential of a new tissue chip-based model mimicking PAH-afflicted male and female pulmonary arteries to study the sex-based differences in PAH and to develop personalized therapies based on patient sex and responsiveness to existing and new drugs.
Collapse
Affiliation(s)
- Tanvirul Hye
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, Texas
| | - Pankaj Dwivedi
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, Missouri
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas
| | - Tim Lahm
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Eva Nozik-Grayck
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, Texas.,Department of Pharmaceutical and Biomedical Sciences, California Northstate University, Elk Grove, California
| |
Collapse
|
30
|
DuBrock HM, Cartin-Ceba R, Channick RN, Kawut SM, Krowka MJ. Sex Differences in Portopulmonary Hypertension. Chest 2020; 159:328-336. [PMID: 32798521 DOI: 10.1016/j.chest.2020.07.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/28/2020] [Accepted: 07/27/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Portopulmonary hypertension (POPH), pulmonary arterial hypertension that develops in the setting of portal hypertension, can lead to right-sided heart failure and death. Being female is a known risk factor for POPH, but little is known about the effect of sex on clinical manifestations, hemodynamics, treatment response, and survival. RESEARCH QUESTION We sought to characterize sex differences in clinical characteristics, pulmonary hemodynamics, treatment response, and survival in patients with POPH. STUDY DESIGN AND METHODS We performed a retrospective cohort study of adult candidates for liver transplant (LT) who had POPH within the Organ Procurement and Transplantation Network database. Females and males were compared. Multivariate regression was performed to assess the association between sex and pulmonary vascular resistance (PVR) and survival. Patients were also stratified by age (50 years) to determine how age modifies the relationship between sex and hemodynamics and survival. RESULTS We included 190 adults (103 male, 87 female). Compared with men, women had a lower model for end-stage liver disease (MELD) score (12.1± 4.2 vs 13.8 ± 4.9; P = .01) and were more likely to have autoimmune liver disease. Women had a higher baseline PVR (610.6 ± 366.6 vs 461.0 ± 185.3 dynes-s-cm-5; P < .001) and posttreatment PVR (244.6 ± 119.5 vs 202.0 ± 87.7 dynes-s-cm-5; P = .008) and a greater treatment response (ΔPVR) (-359.3 ± 381.9 vs -260.2 ± 177.3 dynes-s-cm-5; P = .03). In multivariate analysis, female sex (or gender) remained associated with a higher baseline PVR (P = .008). Women and men had overall similar survival (P > .05). When patients were stratified by age, being female was independently associated with worse waiting list survival after adjusting for MELD and PVR in younger patients (HR, 6.61; 95% CI, 1.25-35.08; P = .03) but not in older patients. INTERPRETATION Compared with male candidates, female candidates for LT who had POPH had a higher PVR and lower MELD score and were more likely to have autoimmune liver disease. Women and men had similar overall survival, but female sex (or gender) was associated with worse survival in younger patients.
Collapse
Affiliation(s)
- Hilary M DuBrock
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN.
| | - Rodrigo Cartin-Ceba
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Richard N Channick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, UCLA Medical Center, Los Angeles, CA
| | - Steven M Kawut
- Center for Clinical Epidemiology and Biostatistics and the Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael J Krowka
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
31
|
Hsu JY, Major JL, Riching AS, Sen R, Pires da Silva J, Bagchi RA. Beyond the genome: challenges and potential for epigenetics-driven therapeutic approaches in pulmonary arterial hypertension. Biochem Cell Biol 2020; 98:631-646. [PMID: 32706995 DOI: 10.1139/bcb-2020-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease of the cardiopulmonary system caused by the narrowing of the pulmonary arteries, leading to increased vascular resistance and pressure. This leads to right ventricle remodeling, dysfunction, and eventually, death. While conventional therapies have largely focused on targeting vasodilation, other pathological features of PAH including aberrant inflammation, mitochondrial dynamics, cell proliferation, and migration have not been well explored. Thus, despite some recent improvements in PAH treatment, the life expectancy and quality of life for patients with PAH remains poor. Showing many similarities to cancers, PAH is characterized by increased pulmonary arterial smooth muscle cell proliferation, decreased apoptotic signaling pathways, and changes in metabolism. The recent successes of therapies targeting epigenetic modifiers for the treatment of cancer has prompted epigenetic research in PAH, revealing many new potential therapeutic targets. In this minireview we discuss the emergence of epigenetic dysregulation in PAH and highlight epigenetic-targeting compounds that may be effective for the treatment of PAH.
Collapse
Affiliation(s)
- Jessica Y Hsu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jennifer L Major
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew S Riching
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rwik Sen
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julie Pires da Silva
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rushita A Bagchi
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
32
|
Aryan L, Younessi D, Zargari M, Banerjee S, Agopian J, Rahman S, Borna R, Ruffenach G, Umar S, Eghbali M. The Role of Estrogen Receptors in Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21124314. [PMID: 32560398 PMCID: PMC7352426 DOI: 10.3390/ijms21124314] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular Diseases (CVDs) are the leading cause of death globally. More than 17 million people die worldwide from CVD per year. There is considerable evidence suggesting that estrogen modulates cardiovascular physiology and function in both health and disease, and that it could potentially serve as a cardioprotective agent. The effects of estrogen on cardiovascular function are mediated by nuclear and membrane estrogen receptors (ERs), including estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), and G-protein-coupled ER (GPR30 or GPER). Receptor binding in turn confers pleiotropic effects through both genomic and non-genomic signaling to maintain cardiovascular homeostasis. Each ER has been implicated in multiple pre-clinical cardiovascular disease models. This review will discuss current reports on the underlying molecular mechanisms of the ERs in regulating vascular pathology, with a special emphasis on hypertension, pulmonary hypertension, and atherosclerosis, as well as in regulating cardiac pathology, with a particular emphasis on ischemia/reperfusion injury, heart failure with reduced ejection fraction, and heart failure with preserved ejection fraction.
Collapse
|
33
|
Sex-specific stress response and HMGB1 release in pulmonary endothelial cells. PLoS One 2020; 15:e0231267. [PMID: 32271800 PMCID: PMC7145198 DOI: 10.1371/journal.pone.0231267] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/05/2020] [Indexed: 01/03/2023] Open
Abstract
Women are known to be associated with a higher susceptibility to pulmonary arterial hypertension (PAH). In contrast, male PAH patients have a worse survival prognosis. In this study, we investigated whether the contribution of sex goes beyond the effects of sex hormones by comparing the ability of isolated male and female pulmonary endothelial cells to respire, proliferate and tolerate the stress. Mouse lung endothelial cells (MLEC) were isolated from the lungs of male and female 3-week old mice. Male MLEC showed an increased basal mitochondrial respiration rate, elevated maximal respiration, a significantly greater level of mitochondrial polarization, and a higher rate of proliferation. Exposure of cells to hypoxia (2% of O2 for 24 hours) induced a strong apoptotic response in female but not male MLEC. In contrast, treatment with mitochondrial respiratory Complex III inhibitor Antimycin A (AA, 50μM) mediated severe necrosis specifically in male MLEC, while female cells again responded primarily by apoptosis. The same effect with female cells responding to the stress by apoptosis and male cells responding by necrosis was confirmed in starved pulmonary endothelial cells isolated from human donors. Elevated necrosis seen in male cells was associated with a significant release of damage-associated alarmin, HMGB1. No stimuli induced a significant elevation of HMGB1 secretion in females. We conclude that male cells appear to be protected against mild stress conditions, such as hypoxia, possibly due to increased mitochondrial respiration. In contrast, they are more sensitive to impaired mitochondrial function, to which they respond by necrotic death. Necrosis in male vascular cells releases a significant amount of HMGB1 that could contribute to the pro-inflammatory phenotype known to be associated with the male gender.
Collapse
|
34
|
YAO L, YANG YX, CAO H, REN HH, NIU Z, SHI L. Osthole attenuates pulmonary arterial hypertension by the regulation of sphingosine 1-phosphate in rats. Chin J Nat Med 2020; 18:308-320. [DOI: 10.1016/s1875-5364(20)30038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 10/24/2022]
|
35
|
Sex hormones and sex hormone-targeting therapies in systemic sclerosis: A systematic literature review. Semin Arthritis Rheum 2020; 50:140-148. [DOI: 10.1016/j.semarthrit.2019.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/29/2019] [Accepted: 07/18/2019] [Indexed: 01/19/2023]
|
36
|
Sepehrinezhad A, Dehghanian A, Rafati A, Ketabchi F. Impact of liver damage on blood-borne variables and pulmonary hemodynamic responses to hypoxia and hyperoxia in anesthetized rats. BMC Cardiovasc Disord 2020; 20:13. [PMID: 31931715 PMCID: PMC6956555 DOI: 10.1186/s12872-019-01297-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Liver disorders may be associated with normal pulmonary hemodynamic, hepatopulmonary syndrome (HPS), or portopulmonary hypertension (POPH). In this study, we aimed to investigate the effect of the severity of liver dysfunctions on blood-borne variables, and pulmonary hemodynamic during repeated ventilation with hyperoxic and hypoxic gases. METHODS Female Sprague Dawley rats were assigned into four groups of Sham (n = 7), portal vein ligation (PPVL, n = 7), common bile duct ligation (CBDL, n = 7), and combination of them (CBDL+ PPVL, n = 7). Twenty-eight days later, right ventricular systolic pressure (RVSP) and systemic blood pressure were recorded in anesthetized animals subjected to repeated maneuvers of hyperoxia (O2 50%) and hypoxia (O2 10%). Besides, we assessed blood parameters and liver histology. RESULTS Liver histology score, liver enzymes, WBC and plasma malondialdehyde in the CBDL+PPVL group were higher than those in the CBDL group. Also, the plasma platelet level in the CBDL+PPVL group was lower than those in the other groups. On the other hand, the serum estradiol in the CBDL group was higher than that in the CBDL+PPVL group. All the above parameters in the PPVL group were similar to those in the Sham group. During ventilation with hyperoxia gas, RVSP in the CBDL+PPVL group was higher than the ones in the other groups, and in the CBDL group, it was more than those in the PPVL and Sham groups. Hypoxic pulmonary vasoconstriction (HPV) was not detected in both CBDL+PPVL and CBDL groups, whereas, it retained in the PPVL group. CONCLUSION Severe liver damage increases RVSP in the CBDL+PPVL group linked to the high level of ROS, low levels of serum estradiol and platelets or a combination of them. Furthermore, the high RVSP at the noted group could present a reliable animal model for POPH in female rats.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirreza Dehghanian
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rafati
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Ketabchi
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
37
|
Vogel TA, Neary JM, Smith ZK, Johnson BJ. Body Weight and Steroidal Implants Impact Animal Growth Performance, Sera Metabolites, and Pulmonary Arterial Pressure in Feedlot Cattle. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/ojas.2020.103026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Sweatt AJ, Hedlin HK, Balasubramanian V, Hsi A, Blum LK, Robinson WH, Haddad F, Hickey PM, Condliffe R, Lawrie A, Nicolls MR, Rabinovitch M, Khatri P, Zamanian RT. Discovery of Distinct Immune Phenotypes Using Machine Learning in Pulmonary Arterial Hypertension. Circ Res 2019; 124:904-919. [PMID: 30661465 DOI: 10.1161/circresaha.118.313911] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Accumulating evidence implicates inflammation in pulmonary arterial hypertension (PAH) and therapies targeting immunity are under investigation, although it remains unknown if distinct immune phenotypes exist. OBJECTIVE Identify PAH immune phenotypes based on unsupervised analysis of blood proteomic profiles. METHODS AND RESULTS In a prospective observational study of group 1 PAH patients evaluated at Stanford University (discovery cohort; n=281) and University of Sheffield (validation cohort; n=104) between 2008 and 2014, we measured a circulating proteomic panel of 48 cytokines, chemokines, and factors using multiplex immunoassay. Unsupervised machine learning (consensus clustering) was applied in both cohorts independently to classify patients into proteomic immune clusters, without guidance from clinical features. To identify central proteins in each cluster, we performed partial correlation network analysis. Clinical characteristics and outcomes were subsequently compared across clusters. Four PAH clusters with distinct proteomic immune profiles were identified in the discovery cohort. Cluster 2 (n=109) had low cytokine levels similar to controls. Other clusters had unique sets of upregulated proteins central to immune networks-cluster 1 (n=58; TRAIL [tumor necrosis factor-related apoptosis-inducing ligand], CCL5 [C-C motif chemokine ligand 5], CCL7, CCL4, MIF [macrophage migration inhibitory factor]), cluster 3 (n=77; IL [interleukin]-12, IL-17, IL-10, IL-7, VEGF [vascular endothelial growth factor]), and cluster 4 (n=37; IL-8, IL-4, PDGF-β [platelet-derived growth factor beta], IL-6, CCL11). Demographics, PAH clinical subtypes, comorbidities, and medications were similar across clusters. Noninvasive and hemodynamic surrogates of clinical risk identified cluster 1 as high-risk and cluster 3 as low-risk groups. Five-year transplant-free survival rates were unfavorable for cluster 1 (47.6%; 95% CI, 35.4%-64.1%) and favorable for cluster 3 (82.4%; 95% CI, 72.0%-94.3%; across-cluster P<0.001). Findings were replicated in the validation cohort, where machine learning classified 4 immune clusters with comparable proteomic, clinical, and prognostic features. CONCLUSIONS Blood cytokine profiles distinguish PAH immune phenotypes with differing clinical risk that are independent of World Health Organization group 1 subtypes. These phenotypes could inform mechanistic studies of disease pathobiology and provide a framework to examine patient responses to emerging therapies targeting immunity.
Collapse
Affiliation(s)
- Andrew J Sweatt
- From the Division of Pulmonary and Critical Care Medicine (A.J.S., M.R.N., R.T.Z.), in the Department of Medicine, Stanford University, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, CA (A.J.S., A.H., M.R.N., M.R., R.T.Z.)
| | - Haley K Hedlin
- Quantitative Sciences Unit (H.K.H., V.B.), in the Department of Medicine, Stanford University, CA
| | - Vidhya Balasubramanian
- Quantitative Sciences Unit (H.K.H., V.B.), in the Department of Medicine, Stanford University, CA
| | - Andrew Hsi
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, CA (A.J.S., A.H., M.R.N., M.R., R.T.Z.)
| | - Lisa K Blum
- Division of Immunology and Rheumatology (L.K.B., W.H.R.), in the Department of Medicine, Stanford University, CA
| | - William H Robinson
- Division of Immunology and Rheumatology (L.K.B., W.H.R.), in the Department of Medicine, Stanford University, CA
| | - Francois Haddad
- Division of Cardiovascular Medicine (F.H.), in the Department of Medicine, Stanford University, CA.,Stanford Cardiovascular Institute (F.H.), in the Department of Medicine, Stanford University, CA
| | - Peter M Hickey
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, United Kingdom (P.M.H., A.L.)
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (R.C.)
| | - Allan Lawrie
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, United Kingdom (P.M.H., A.L.)
| | - Mark R Nicolls
- From the Division of Pulmonary and Critical Care Medicine (A.J.S., M.R.N., R.T.Z.), in the Department of Medicine, Stanford University, CA.,Institute for Immunity, Transplantation, and Infection (M.R.N., P.K.), in the Department of Medicine, Stanford University, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, CA (A.J.S., A.H., M.R.N., M.R., R.T.Z.)
| | - Marlene Rabinovitch
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, CA (A.J.S., A.H., M.R.N., M.R., R.T.Z.).,Department of Pediatric Cardiology, Stanford University, CA (M.R.)
| | - Purvesh Khatri
- Institute for Immunity, Transplantation, and Infection (M.R.N., P.K.), in the Department of Medicine, Stanford University, CA.,Division of Biomedical Informatics Research (P.K.) in the Department of Medicine, Stanford University, CA
| | - Roham T Zamanian
- From the Division of Pulmonary and Critical Care Medicine (A.J.S., M.R.N., R.T.Z.), in the Department of Medicine, Stanford University, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, CA (A.J.S., A.H., M.R.N., M.R., R.T.Z.)
| |
Collapse
|
39
|
Rafikov R, Nair V, Sinari S, Babu H, Sullivan JC, Yuan JXJ, Desai AA, Rafikova O. Gender Difference in Damage-Mediated Signaling Contributes to Pulmonary Arterial Hypertension. Antioxid Redox Signal 2019; 31:917-932. [PMID: 30652485 PMCID: PMC6765065 DOI: 10.1089/ars.2018.7664] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aims: Pulmonary arterial hypertension (PAH) is a progressive lethal disease with a known gender dimorphism. Female patients are more susceptible to PAH, whereas male patients have a lower survival rate. Initial pulmonary vascular damage plays an important role in PAH pathogenesis. Therefore, this study aimed at investigating the role of gender in activation of apoptosis/necrosis-mediated signaling pathways in PAH. Results: The media collected from pulmonary artery endothelial cells (PAECs) that died by necrosis or apoptosis were used to treat naive PAECs. Necrotic cell death stimulated phosphorylation of toll-like receptor 4, accumulation of interleukin 1 beta, and expression of E-selectin in a redox-dependent manner; apoptosis did not induce any of these effects. In the animal model of severe PAH, the necrotic marker, high mobility group box 1 (HMGB1), was visualized in the pulmonary vascular wall of male but not female rats. This vascular necrosis was associated with male-specific redox changes in plasma, activation of the same inflammatory signaling pathway seen in response to necrosis in vitro, and an increased endothelial-leukocyte adhesion in small pulmonary arteries. In PAH patients, gender-specific changes in redox homeostasis correlated with the prognostic marker, B-type natriuretic peptide. Males had also shown elevated circulating levels of HMGB1 and pro-inflammatory changes. Innovation: This study discovered the role of gender in the initiation of damage-associated signaling in PAH and highlights the importance of the gender-specific approach in PAH therapy. Conclusion: In PAH, the necrotic cell death is augmented in male patients compared with female patients. Factors released from necrotic cells could alter redox homeostasis and stimulate inflammatory signaling pathways.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Vineet Nair
- Division of Cardiology, Sarver Heart Center, University of Arizona, Tucson, Arizona
| | - Shripad Sinari
- Center for Biomedical Informatics and Biostatistics, University of Arizona, Tucson, Arizona
| | | | | | - Jason X-J Yuan
- Division of Translational and Regenerative Medicine, University of Arizona, Tucson, Arizona
| | - Ankit A Desai
- Division of Cardiology, Sarver Heart Center, University of Arizona, Tucson, Arizona
| | - Olga Rafikova
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
40
|
Denver N, Khan S, Homer NZM, MacLean MR, Andrew R. Current strategies for quantification of estrogens in clinical research. J Steroid Biochem Mol Biol 2019; 192:105373. [PMID: 31112747 PMCID: PMC6726893 DOI: 10.1016/j.jsbmb.2019.04.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022]
Abstract
Estrogens and their bioactive metabolites play key roles in regulating diverse processes in health and disease. In particular, estrogens and estrogenic metabolites have shown both protective and non-protective effects on disease pathobiology, implicating the importance of this steroid pathway in disease diagnostics and monitoring. All estrogens circulate in a wide range of concentrations, which in some patient cohorts can be extremely low. However, elevated levels of estradiol are reported in disease. For example, in pulmonary arterial hypertension (PAH) elevated levels have been reported in men and postmenopausal women. Conventional immunoassay techniques have come under scrutiny, with their selectivity, accuracy and precision coming into question. Analytical methodologies such as gas and liquid chromatography coupled to single and tandem mass spectrometric approaches (GC-MS, GC-MS/MS, LC-MS and LC-MS/MS) have been developed to quantify endogenous estrogens and in some cases their bioactive metabolites in biological fluids such as urine, serum, plasma and saliva. Liquid-liquid or solid-phase extraction approaches are favoured with derivatization remaining a necessity for detection in lower volumes of sample. The limits of quantitation of individual assays vary but are commonly in the range of 0.5-5 pg/mL for estrone and estradiol, with limits for their bioactive metabolites being higher. This review provides an overview of current approaches for measurement of unconjugated estrogens in biological matrices by MS, highlighting the advances in this field and the challenges remaining for routine use in the clinical and research environment.
Collapse
Affiliation(s)
- Nina Denver
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom.
| | - Shazia Khan
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom; University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, UK, EH16 4TJ.
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom.
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom.
| | - Ruth Andrew
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom; University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, UK, EH16 4TJ.
| |
Collapse
|
41
|
Umar S, Cunningham CM, Itoh Y, Moazeni S, Vaillancourt M, Sarji S, Centala A, Arnold AP, Eghbali M. The Y Chromosome Plays a Protective Role in Experimental Hypoxic Pulmonary Hypertension. Am J Respir Crit Care Med 2019; 197:952-955. [PMID: 28934553 DOI: 10.1164/rccm.201707-1345le] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Soban Umar
- 1 University of California, Los Angeles Los Angeles, California
| | | | - Yuichiro Itoh
- 1 University of California, Los Angeles Los Angeles, California
| | - Shayan Moazeni
- 1 University of California, Los Angeles Los Angeles, California
| | | | - Shervin Sarji
- 1 University of California, Los Angeles Los Angeles, California
| | - Alex Centala
- 1 University of California, Los Angeles Los Angeles, California
| | - Arthur P Arnold
- 1 University of California, Los Angeles Los Angeles, California
| | | |
Collapse
|
42
|
Kwapiszewska G, Johansen AKZ, Gomez-Arroyo J, Voelkel NF. Role of the Aryl Hydrocarbon Receptor/ARNT/Cytochrome P450 System in Pulmonary Vascular Diseases. Circ Res 2019; 125:356-366. [PMID: 31242807 DOI: 10.1161/circresaha.119.315054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE CYPs (cytochrome p450) are critically involved in the metabolism of xenobiotics and toxins. Given that pulmonary hypertension is strongly associated with environmental exposure, we hypothesize that CYPs play a role in the development and maintenance of pathological vascular remodeling. OBJECTIVE We sought to identify key CYPs that could link drug or hormone metabolism to the development of pulmonary hypertension. METHODS AND RESULTS We searched in Medline (PubMed) database, as well as http://www.clinicaltrials.gov, for CYPs associated with many key aspects of pulmonary arterial hypertension including, but not limited to, severe pulmonary hypertension, estrogen metabolism, inflammation mechanisms, quasi-malignant cell growth, drug susceptibility, and metabolism of the pulmonary arterial hypertension-specific drugs. CONCLUSIONS We postulate a hypothesis where the AhR (aryl hydrocarbon receptor) mediates aberrant cell growth via expression of different CYPs associated with estrogen metabolism and inflammation.
Collapse
Affiliation(s)
- Grazyna Kwapiszewska
- From the Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, Austria (G.K.)
| | - Anne Katrine Z Johansen
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (A.K.Z.J.)
| | - Jose Gomez-Arroyo
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati College of Medicine, OH (J.G.-A.)
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Hospital Research Foundation, OH (J.G.-A.)
| | - Norbert F Voelkel
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, the Netherlands (N.F.V.)
| |
Collapse
|
43
|
Docherty CK, Harvey KY, Mair KM, Griffin S, Denver N, MacLean MR. The Role of Sex in the Pathophysiology of Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1065:511-528. [PMID: 30051404 DOI: 10.1007/978-3-319-77932-4_31] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterised by increased pulmonary vascular resistance and pulmonary artery remodelling as result of increased vascular tone and vascular cell proliferation, respectively. Eventually, this leads to right heart failure. Heritable PAH is caused by a mutation in the bone morphogenetic protein receptor-II (BMPR-II). Female susceptibility to PAH has been known for some time, and most recent figures show a female-to-male ratio of 4:1. Variations in the female sex hormone estrogen and estrogen metabolism modify FPAH risk, and penetrance of the disease in BMPR-II mutation carriers is increased in females. Several lines of evidence point towards estrogen being pathogenic in the pulmonary circulation, and thus increasing the risk of females developing PAH. Recent studies have also suggested that estrogen metabolism may be crucial in the development and progression of PAH with studies indicating that downstream metabolites such as 16α-hydroxyestrone are upregulated in several forms of experimental pulmonary hypertension (PH) and can cause pulmonary artery smooth muscle cell proliferation and subsequent vascular remodelling. Conversely, other estrogen metabolites such as 2-methoxyestradiol have been shown to be protective in the context of PAH. Estrogen may also upregulate the signalling pathways of other key mediators of PAH such as serotonin.
Collapse
Affiliation(s)
- Craig K Docherty
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Katie Yates Harvey
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kirsty M Mair
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sinead Griffin
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Nina Denver
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Margaret R MacLean
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
44
|
Tanaka S, Shiroto T, Godo S, Saito H, Ikumi Y, Ito A, Kajitani S, Sato S, Shimokawa H. Important role of endothelium-dependent hyperpolarization in the pulmonary microcirculation in male mice: implications for hypoxia-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 2018; 314:H940-H953. [DOI: 10.1152/ajpheart.00487.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelium-dependent hyperpolarization (EDH) plays important roles in the systemic circulation, whereas its role in the pulmonary circulation remains largely unknown. Furthermore, the underlying mechanisms of pulmonary hypertension (PH) also remain to be elucidated. We thus aimed to elucidate the role of EDH in pulmonary circulation in general and in PH in particular. In isolated perfused lung and using male wild-type mice, endothelium-dependent relaxation to bradykinin (BK) was significantly reduced in the presence of Nω-nitro-l-arginine by ~50% compared with those in the presence of indomethacin, and the combination of apamin plus charybdotoxin abolished the residual relaxation, showing the comparable contributions of nitric oxide (NO) and EDH in the pulmonary microcirculation under physiological conditions. Catalase markedly inhibited EDH-mediated relaxation, indicating the predominant contribution of endothelium-derived H2O2. BK-mediated relaxation was significantly reduced at day 1 of hypoxia, whereas it thereafter remained unchanged until day 28. EDH-mediated relaxation was diminished at day 2 of hypoxia, indicating a transition from EDH to NO in BK-mediated relaxation before the development of hypoxia-induced PH. Mechanistically, chronic hypoxia enhanced endothelial NO synthase expression and activity associated with downregulation of caveolin-1. Nitrotyrosine levels were significantly higher in vascular smooth muscle of pulmonary microvessels under chronic hypoxia than under normoxia. A similar transition of the mediators in BK-mediated relaxation was also noted in the Sugen hypoxia mouse model. These results indicate that EDH plays important roles in the pulmonary microcirculation in addition to NO under normoxic conditions and that impaired EDH-mediated relaxation and subsequent nitrosative stress may be potential triggers of the onset of PH. NEW & NOTEWORTHY This study provides novel evidence that both endothelium-dependent hyperpolarization and nitric oxide play important roles in endothelium-dependent relaxation in the pulmonary microcirculation under physiological conditions in mice and that hypoxia first impairs endothelium-dependent hyperpolarization-mediated relaxation, with compensatory upregulation of nitric oxide, before the development of hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Shuhei Tanaka
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Shiroto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroki Saito
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yosuke Ikumi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiyo Ito
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shoko Kajitani
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Sato
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
45
|
Yang YM, Sehgal PB. Smooth Muscle-Specific BCL6+/- Knockout Abrogates Sex Bias in Chronic Hypoxia-Induced Pulmonary Arterial Hypertension in Mice. Int J Endocrinol 2018; 2018:3473105. [PMID: 30140283 PMCID: PMC6081567 DOI: 10.1155/2018/3473105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/07/2018] [Accepted: 06/24/2018] [Indexed: 12/18/2022] Open
Abstract
The "estrogen paradox" in pulmonary arterial hypertension (PAH) refers to observations that while there is a higher incidence of idiopathic PAH in women, rodent models of PAH show male dominance and estrogens are protective. To explain these differences, we previously proposed the neuroendocrine-STAT5-BCL6 hypothesis anchored in the sex-biased and species-specific patterns of growth hormone (GH) secretion by the pituitary, the targeting of the hypothalamus by estrogens to feminize GH secretion patterns, and the role of the transcription factors STAT5a/b and BCL6 as downstream mediators of this patterned GH-driven sex bias. As a test of this hypothesis, we previously reported that vascular smooth muscle cell- (SMC-) specific deletion of the STAT5a/b locus abrogated the male-dominant sex bias in the chronic hypoxia model of PAH in mice. In the present study, we confirmed reduced BCL6 expression in pulmonary arterial (PA) segments in both male and female SMC:STAT5a/b-/- mice. In order to test the proposed contribution of BCL6 to sex bias in PAH, we developed mice with SMC-specific deletion of BCL6+/- by crossing SM22α-Cre mice with BCL6-floxed mice and investigated sex bias in these mutant mice in the chronic hypoxia model of PAH. We observed that the male-bias observed in wild-type- (wt-) SM22α-Cre-positive mice was abrogated in the SMC:BCL6+/- knockouts-both males and females showed equivalent enhancement of indices of PAH. The new data confirm BCL6 as a contributor to the sex-bias phenotype observed in hypoxic PAH in mice and support the neuroendocrine-STAT5-BCL6 hypothesis of sex bias in this experimental model of vascular disease.
Collapse
Affiliation(s)
- Yang-Ming Yang
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Pravin B. Sehgal
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
46
|
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pathological hemodynamic elevation in pulmonary artery pressure. Development of international registries over the last decade has raised awareness about the disease, leading to the development of new and improved therapies. Paradigm shifts such as these warrant review of existing literature regarding PAH, especially in females, as the disease continues to affect women more than males. The aim of this review is to provide an update on the classification, pathophysiology, diagnosis, and treatment of PAH while focusing specifically on its impact on women.
Collapse
|
47
|
Kelly NJ, Radder JE, Baust JJ, Burton CL, Lai YC, Potoka KC, Agostini BA, Wood JP, Bachman TN, Vanderpool RR, Dandachi N, Leme AS, Gregory AD, Morris A, Mora AL, Gladwin MT, Shapiro SD. Mouse Genome-Wide Association Study of Preclinical Group II Pulmonary Hypertension Identifies Epidermal Growth Factor Receptor. Am J Respir Cell Mol Biol 2017; 56:488-496. [PMID: 28085498 DOI: 10.1165/rcmb.2016-0176oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pulmonary hypertension (PH) is associated with features of obesity and metabolic syndrome that translate to the induction of PH by chronic high-fat diet (HFD) in some inbred mouse strains. We conducted a genome-wide association study (GWAS) to identify candidate genes associated with susceptibility to HFD-induced PH. Mice from 36 inbred and wild-derived strains were fed with regular diet or HFD for 20 weeks beginning at 6-12 weeks of age, after which right ventricular (RV) and left ventricular (LV) end-systolic pressure (ESP) and maximum pressure (MaxP) were measured by cardiac catheterization. We tested for association of RV MaxP and RV ESP and identified genomic regions enriched with nominal associations to both of these phenotypes. We excluded genomic regions if they were also associated with LV MaxP, LV ESP, or body weight. Genes within significant regions were scored based on the shortest-path betweenness centrality, a measure of network connectivity, of their human orthologs in a gene interaction network of human PH-related genes. WSB/EiJ, NON/ShiLtJ, and AKR/J mice had the largest increases in RV MaxP after high-fat feeding. Network-based scoring of GWAS candidates identified epidermal growth factor receptor (Egfr) as having the highest shortest-path betweenness centrality of GWAS candidates. Expression studies of lung homogenate showed that EGFR expression is increased in the AKR/J strain, which developed a significant increase in RV MaxP after high-fat feeding as compared with C57BL/6J, which did not. Our combined GWAS and network-based approach adds evidence for a role for Egfr in murine PH.
Collapse
Affiliation(s)
| | | | | | | | - Yen-Chun Lai
- 1 Department of Medicine.,2 Vascular Medicine Institute, and
| | - Karin C Potoka
- 1 Department of Medicine.,3 Department of Pediatrics, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | - Ana L Mora
- 1 Department of Medicine.,2 Vascular Medicine Institute, and
| | - Mark T Gladwin
- 1 Department of Medicine.,2 Vascular Medicine Institute, and
| | | |
Collapse
|
48
|
Nicolls MR, Voelkel NF. The Roles of Immunity in the Prevention and Evolution of Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2017; 195:1292-1299. [PMID: 27786553 PMCID: PMC5443903 DOI: 10.1164/rccm.201608-1630pp] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/21/2016] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mark R. Nicolls
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs Palo Alto/Stanford University, Palo Alto, California; and
| | - Norbert F. Voelkel
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
49
|
Umar S, Partow-Navid R, Ruffenach G, Iorga A, Moazeni S, Eghbali M. Severe pulmonary hypertension in aging female apolipoprotein E-deficient mice is rescued by estrogen replacement therapy. Biol Sex Differ 2017; 8:9. [PMID: 28344760 PMCID: PMC5360087 DOI: 10.1186/s13293-017-0129-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/03/2017] [Indexed: 12/12/2022] Open
Abstract
Background Apolipoprotein E (ApoE) is a multifunctional protein, and its deficiency leads to the development of atherosclerosis in mice. Patients with pulmonary hypertension (PH) have reduced expression of ApoE in lung tissue. ApoE is known to inhibit endothelial and smooth muscle cell proliferation and has anti-inflammatory and anti-platelet aggregation properties. Young ApoE-deficient mice have been shown to develop PH on high fat diet. The combined role of female sex and aging in the development of PH has not been investigated before. Here, we investigated the development of PH in young and middle-aged (MA) female ApoE-deficient mice and explored the role of exogenous estrogen (E2) replacement therapy for the aging females. Methods Wild type (WT) and ApoE-deficient female mice (Young and MA) were injected with a single intraperitoneal dose of monocrotaline (MCT, 60 mg/kg). Some ApoE-deficient MA female mice that received MCT were also treated with subcutaneous E2 pellets (0.03 mg/kg/day) from day 21 to 30 after MCT injection. Direct cardiac catheterization was performed terminally to record right ventricular systolic pressure (RVSP). Right ventricular (RV), left ventricular (LV), and interventricular septum (IVS) were dissected and weighed. Lung sections were examined using trichrome and immunofluorescence staining. Western blot analyses of lung and RV lysates were performed. Results In WT female mice, the severity of PH was similar between young and MA mice as RVSP was not significantly different (RVSP = 38.2 ± 1.2 in young vs. 40.5 ± 8.3 mmHg in MA, p < 0.05). In ApoE-deficient mice, MA females developed significantly severe PH (RVSP = 63 ± 10 mmHg) compared to young females (RVSP; 36 ± 3 mmHg, p < 0.05 vs. MA female). ApoE-deficient MA females also developed more severe RV hypertrophy compared to young females (RV hypertrophy index (RV/[LV + IVS]) = 0.53 ± 0.06 vs. 0.33 ± 0.01, p < 0.05). ApoE-deficient MA female mice manifested increased peripheral pulmonary artery muscularization and pulmonary fibrosis. E2 treatment of MA female ApoE-deficient mice resulted in a significant decrease in RVSP, reversal of pulmonary vascular remodeling, and RV hypertrophy. In MA female ApoE-deficient mice with PH, only the expression of ERβ in the lungs, but not in RV, was significantly downregulated, and it was restored by E2 treatment. The expression of ERα was not affected in either lungs or RV by PH. GPR30 was only detected in the RV, and it was not affected by PH in MA female ApoE-deficient mice. Conclusions Our results suggest that only aging female ApoE-deficient but not WT mice develop severe PH compared to younger females. Exogenous estrogen therapy rescued PH and RV hypertrophy in aging female ApoE-deficient mice possibly through restoration of lung ERβ.
Collapse
Affiliation(s)
- Soban Umar
- Department of Anaesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-160 CHS, 650 Charles E Young Dr. South, Los Angeles, CA 90095-7115 USA
| | - Rod Partow-Navid
- Department of Anaesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-160 CHS, 650 Charles E Young Dr. South, Los Angeles, CA 90095-7115 USA
| | - Gregoire Ruffenach
- Department of Anaesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-160 CHS, 650 Charles E Young Dr. South, Los Angeles, CA 90095-7115 USA
| | - Andrea Iorga
- Department of Anaesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-160 CHS, 650 Charles E Young Dr. South, Los Angeles, CA 90095-7115 USA
| | - Shayan Moazeni
- Department of Anaesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-160 CHS, 650 Charles E Young Dr. South, Los Angeles, CA 90095-7115 USA
| | - Mansoureh Eghbali
- Department of Anaesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-160 CHS, 650 Charles E Young Dr. South, Los Angeles, CA 90095-7115 USA
| |
Collapse
|
50
|
Goncharova EA, Gladwin MT, Kawut SM. Update in Pulmonary Vascular Diseases 2014. Am J Respir Crit Care Med 2015; 192:544-50. [PMID: 26561677 DOI: 10.1164/rccm.201504-0829up] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|