1
|
Ponomarchuk O, Boudreault F, Gryczynski I, Lee B, Dzyuba SV, Fudala R, Gryczynski Z, Hanrahan JW, Grygorczyk R. Nanoscale Viscometry Reveals an Inherent Mucus Defect in Cystic Fibrosis. ACS NANO 2025; 19:4637-4649. [PMID: 39825840 DOI: 10.1021/acsnano.4c14927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
The abnormally viscous and thick mucus is a hallmark of cystic fibrosis (CF). How the mutated CF gene causes abnormal mucus remains an unanswered question of paramount interest. Mucus is produced by the hydration of gel-forming mucin macromolecules that are stored in intracellular granules prior to release. Current understanding of mucin/mucus structure before and after secretion remains limited, and contradictory models exist. Here, we used a molecular viscometer and fluorescence lifetime imaging of human bronchoepithelial cells (Normal and CF) to measure nanometer-scale viscosity. We found significantly elevated intraluminal nanoviscosity in a population of CF mucin granules, indicating an intrinsic, presecretory mucin defect. Nanoviscosity influences protein conformational dynamics and function. Its elevation along the protein secretory pathway could arise from molecular overcrowding, impacting mucin's post-translational processing, hydration, and mucus rheology after release. The nanoviscosity of secreted CF mucus was elevated compared to that of non-CF. Interestingly, it was higher after release than in granules. Validation experiments indicate that reduced mobility of water hydrating mucin macromolecules may contribute to the high nanoviscosity in mucus and mucin granules. This suggests that mucins have a weakly ordered state in granules but adopt a highly ordered, nematic crystalline structure when secreted. This challenges the traditional view of mucus as a porous agarose-like gel and suggests an alternative model for mucin organization before and after secretion. Our study also indicates that endoplasmic reticulum stress due to molecular overcrowding could contribute to mucus pathogenesis in CF cells. It encourages the development of therapeutics that target presecretory mechanisms in CF and other muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Olga Ponomarchuk
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
| | - Francis Boudreault
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
| | - Ignacy Gryczynski
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Bong Lee
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Sergei V Dzyuba
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Rafal Fudala
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Zygmunt Gryczynski
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - John W Hanrahan
- Department of Physiology, McGill University, Montreal, Quebec H3A 0G4, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Ryszard Grygorczyk
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
- Département de Médecine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
2
|
Bonhiver R, Bricmont N, Pirotte M, Wuidart MA, Monseur J, Benchimol L, Poirrier AL, Moermans C, Calmés D, Schleich F, Louis R, Seghaye MC, Kempeneers C. Evidence for secondary ciliary dyskinesia in patients with cystic fibrosis. J Cyst Fibros 2025; 24:193-200. [PMID: 39428275 DOI: 10.1016/j.jcf.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Mucociliary clearance (MCC) impairment can be due to mucus abnormalities or to a ciliary dysfunction, which can be innate, or secondary to infection and/or inflammation. In cystic fibrosis (CF), it is well documented that MCC is impaired due to mucus abnormalities, but little is known concerning ciliary beating. This study aimed to confirm that ciliary dyskinesia is present in CF, and if this might be innate or secondary to the chronic infection and/or inflammation. METHODS Ciliated epithelial samples were obtained by nasal brushing from 51 CF patients, and from 30 healthy subjects. Ciliary beating was evaluated using digital high-speed videomicroscopy at 37 °C, allowing to evaluate ciliary beat frequency (CBF) and the percentage of abnormal beat pattern (CBP); this was repeated after air-liquid interface (ALI) cell culture. RESULTS Ciliary dyskinesia was higher in CF patients than in healthy subjects, with a lower CBF and a higher percentage of abnormal CBP. Ciliary dyskinesia, already present in childhood, normalized after ALI cell culture. A chronic airway colonization did not worsen ciliary dyskinesia. CONCLUSIONS We showed that, in CF, a ciliary dyskinesia, present from childhood, might contribute to the impaired MCC. Our results also found that the abnormal ciliary beating was not associated with a chronic infection, and resolved after ALI cell culture, suggesting that ciliary dyskinesia in CF is not innate, and might be secondary to chronic inflammation.
Collapse
Affiliation(s)
- Romane Bonhiver
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liege, Belgium; Division of Respirology, Department of Pediatrics, University Hospital of Liege, Belgium.
| | - Noemie Bricmont
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liege, Belgium; Division of Respirology, Department of Pediatrics, University Hospital of Liege, Belgium
| | - Maud Pirotte
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liege, Belgium
| | | | - Justine Monseur
- Biostatistics and Research Method Center, Public Health Department, University of Liege, Belgium
| | | | | | - Catherine Moermans
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liege, Belgium; Department of Pneumology, University Hospital of Liege, Belgium
| | - Doriane Calmés
- Department of Pneumology, University Hospital of Liege, Belgium
| | - Florence Schleich
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liege, Belgium; Department of Pneumology, University Hospital of Liege, Belgium
| | - Renaud Louis
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liege, Belgium; Department of Pneumology, University Hospital of Liege, Belgium
| | - Marie-Christine Seghaye
- Division of Cardiology, Department of Pediatrics, University Hospital Liege and University of Liege, Belgium
| | - Céline Kempeneers
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liege, Belgium; Division of Respirology, Department of Pediatrics, University Hospital of Liege, Belgium
| |
Collapse
|
3
|
Keith JD, Murphree-Terry M, Bollar G, Oden AM, Doty IH, Birket SE. Ivacaftor ameliorates mucus burden, bacterial load, and inflammation in acute but not chronic P. aeruginosa infection in hG551D rats. Respir Res 2024; 25:397. [PMID: 39497082 PMCID: PMC11536857 DOI: 10.1186/s12931-024-03029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Newly approved highly effective modulation therapies (HEMT) have been life-changing for people with CF. Although these drugs have resulted in significant improvements in lung function and exacerbation rate, bacterial populations in the lung have not been eradicated. The mechanisms behind the continued colonization are not completely clear. METHODS We used a humanized rat to assess the effects of ivacaftor therapy on infection outcomes. Rats harbor an insert expressing humanized CFTR cDNA, including the G551D mutation. hG551D rats were treated with ivacaftor either during or before infection with P. aeruginosa. The response to infection was assessed by bacterial burden in the lung and mucus burden in the lung. RESULTS We found that hG551D rats treated with ivacaftor had reduced bacteria present in the lung in the acute phase of the infection but were not different than vehicle control in the chronic phase of the infection. Similarly, the percentage of neutrophils in the airways were reduced at the acute, but not chronic, timepoints. Overall weight data indicated that the hG551D rats had significantly better weight recovery during the course of infection when treated with ivacaftor. Potentiation of the G551D mutation with ivacaftor resultant in short-circuit current measurements equal to WT, even during the chronic phase of the infection. Despite the persistent infection, hG551D rats treated with ivacaftor had fewer airways with mucus plugs during the chronic infection. CONCLUSIONS The data indicate that the hG551D rats have better outcomes during infection when treated with ivacaftor compared to the vehicle group. Rats have increased weight gain, increased CFTR protein function, and decreased mucus accumulation, despite the persistence of infection and inflammation. These data suggest that ivacaftor improves tolerance of infection, rather than eradication, in this rat model.
Collapse
Affiliation(s)
- Johnathan D Keith
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL, 35294, USA
| | - Mikayla Murphree-Terry
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL, 35294, USA
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gretchen Bollar
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL, 35294, USA
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashley M Oden
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ian H Doty
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Susan E Birket
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL, 35294, USA.
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Solís-García M, García-Clemente MM, Madrid-Carbajal CJ, Peláez A, Gómez Punter RM, Eiros Bachiller JM, Girón Moreno RM. Is Obesity a Problem in New Cystic Fibrosis Treatments? Nutrients 2024; 16:3103. [PMID: 39339703 PMCID: PMC11435113 DOI: 10.3390/nu16183103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Malnutrition has always been a problem in CF (cystic fibrosis) patients; however, new treatments with CFTR (cystic fibrosis transmembrane conductance regulator protein) modulators have led to weight gain, with some patients at risk of overweight and obesity. OBJECTIVE Our study aimed to analyze the evolution of BMI (body mass index) after one year of treatment with triple therapy and the factors associated with weight gain in CF patients undergoing treatment with triple therapy with CFTR protein modulators (ETI) (elexacaftor/tezacaftor/ivacaftor). METHODS We conducted a prospective, observational, longitudinal, multicenter study in patients diagnosed with cystic fibrosis, aged 18 years or older, with at least one F508del allele and who underwent ETI therapy for at least one year, from 2020 to 2023. One hundred and eight patients from two cystic fibrosis units in Spain, Princess University Hospital of Madrid (74 patients) and Central University Hospital of Asturias (HUCA) (34 patients), were included. Demographic data, anthropometric data, lung function, and exacerbations were collected, comparing the data in the previous year to the start of therapy with the results after one year of treatment. Multivariant models were developed to account for repeated weight and BMI measurements, using a mixed effects model approach and accounting for possible modifying factors Results: One hundred and eight patients were included in the study, 58 men (53.7%) and 50 women (46.3%) with a mean age of 29.5 ± 9.4 years (18-59). Patient weight and BMI were recorded at baseline and at 3-month intervals during the study period. The weight increased from 59.6 kg to 62.6 kg and BMI increased from 21.9 kg/m2 to 23.0 kg/m2 after one year of treatment (p < 0.0001 for both). The proportion of underweight individuals decreased after one year of ETI therapy, from 9.3% to 1.9%, while the proportion of overweight or obese individuals increased from 8.3% to 22.9 % at the same time (p < 0.001). In relation to exacerbations, there is a significant increase in the number of patients who did not have any exacerbations after one year of treatment, which increased from 10.2% to 46.2% (p < 0.001), while the number of patients who had >4 exacerbations decreased significantly, from 40.7% to 1.9% (p < 0.001). FEV1% (forced expiratory volume) increased from 63.9 ± 20.9 to 76.8 ± 21.4 (p < 0.001) and the VR/TLC (residual volume/total lung capacity) value decreased from 45.1 ± 10.9 to 34.9 ± 6.2 (p < 0.001). The proportion with FEV1% > 80% increased from 23.1% before ETI therapy to 49.1% one year after ETI therapy. We performed multivariate mixed models to evaluate the evolution of BMI changes with time, accounting for repeated measures and for possible modifying factors. After the introduction of the triple therapy, patients included in the study had significant weight gain during the 12 months, and when including different covariates in the multivariate mixed model, we found that lower baseline BMI, lower baseline FEV1 and FVC (forced vital capacity), and higher VR/TLC value and higher number of exacerbations were associated with higher BMI changes over the study period. CONCLUSIONS CF patients treated with triple therapy experience significant weight gain, increasing the proportion of overweight patients. CF patients who experienced greater weight gain were those with worse BMI at the start of treatment, as well as patients with worse lung function and a greater number of exacerbations in the year before starting ETI therapy.
Collapse
Affiliation(s)
- Marta Solís-García
- Servicio de Neumología, Hospital Universitario La Princesa, 28006 Madrid, Spain
| | - Marta María García-Clemente
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, 33011 Oviedo, Spain
- Servicio de Neumología, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | | | - Adrián Peláez
- Facultad de Ciencias de la Salud-HM Hospitales, Universidad Camilo José Cela, 28014 Madrid, Spain
| | | | | | | |
Collapse
|
5
|
Qiu B, Manzanares D, Li Y, Wang X, Li Z, Terreau S, He Z, Lyu J, Wang W, Lara-Sáez I. Highly branched poly β-amino ester/CpG-depleted CFTR plasmid nanoparticles for non-viral gene therapy in lung cystic fibrosis disease. Mol Ther Methods Clin Dev 2024; 32:101292. [PMID: 40017666 PMCID: PMC11866167 DOI: 10.1016/j.omtm.2024.101292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/21/2024] [Indexed: 03/01/2025]
Abstract
Lung cystic fibrosis (CF) is a lethal inherited disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, leading to a dysfunctional CFTR protein. Gene therapy offers promise for the treatment of lung CF. However, the development and clinical application of CF gene therapy have long been hampered by the absence of safe and highly efficient delivery vectors. In this work, a novel polymer-based gene replacement treatment approach was developed. A series of poly (β-amino esters) (PAEs) with various topological structures and chemical compositions were screened to create non-viral therapeutic systems for CFTR restoration in lung CF disease. A nanoparticle, formed by the selected highly branched PAE (HPAE) with a CpG-depleted CFTR plasmid, demonstrated CFTR gene expression and biocompatibility in lung epithelial cells, outperforming leading commercial gene transfection reagents such as Lipofectamine 3000 and Xfect. The newly developed gene therapy system successfully restored functional CFTR protein production in lung CF epithelial monolayers. This therapeutic approach holds great potential for use as an efficient and safe non-viral treatment for CF patients.
Collapse
Affiliation(s)
- Bei Qiu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04V1W8, Ireland
| | - Darío Manzanares
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04V1W8, Ireland
| | - Yinghao Li
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04V1W8, Ireland
| | - Xianqing Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04V1W8, Ireland
| | - Zishan Li
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04V1W8, Ireland
| | - Sébastien Terreau
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04V1W8, Ireland
| | - Zhonglei He
- Institute of Precision Medicine (AUST-IPM), Anhui University of Science and Technology, Huainan 232001, China
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Jing Lyu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04V1W8, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04V1W8, Ireland
- Institute of Precision Medicine (AUST-IPM), Anhui University of Science and Technology, Huainan 232001, China
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Irene Lara-Sáez
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04V1W8, Ireland
| |
Collapse
|
6
|
Harris ES, McIntire HJ, Mazur M, Schulz-Hildebrandt H, Leung HM, Tearney GJ, Krick S, Rowe SM, Barnes JW. Reduced sialylation of airway mucin impairs mucus transport by altering the biophysical properties of mucin. Sci Rep 2024; 14:16568. [PMID: 39019950 PMCID: PMC11255327 DOI: 10.1038/s41598-024-66510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Mucus stasis is a pathologic hallmark of muco-obstructive diseases, including cystic fibrosis (CF). Mucins, the principal component of mucus, are extensively modified with hydroxyl (O)-linked glycans, which are largely terminated by sialic acid. Sialic acid is a negatively charged monosaccharide and contributes to the biochemical/biophysical properties of mucins. Reports suggest that mucin sialylation may be altered in CF; however, the consequences of reduced sialylation on mucus clearance have not been fully determined. Here, we investigated the consequences of reduced sialylation on the charge state and conformation of the most prominent airway mucin, MUC5B, and defined the functional consequences of reduced sialylation on mucociliary transport (MCT). Reduced sialylation contributed to a lower charged MUC5B form and decreased polymer expansion. The inhibition of total mucin sialylation de novo impaired MCT in primary human bronchial epithelial cells and rat airways, and specific α-2,3 sialylation blockade was sufficient to recapitulate these findings. Finally, we show that ST3 beta-galactoside alpha-2,3-sialyltransferase (ST3Gal1) expression is downregulated in CF and partially restored by correcting CFTR via Elexacaftor/Tezacaftor/Ivacaftor treatment. Overall, this study demonstrates the importance of mucin sialylation in mucus clearance and identifies decreased sialylation by ST3Gal1 as a possible therapeutic target in CF and potentially other muco-obstructive diseases.
Collapse
Affiliation(s)
- Elex S Harris
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hannah J McIntire
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marina Mazur
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA
| | | | - Hui Min Leung
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Guillermo J Tearney
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Stefanie Krick
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA.
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Departments of Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jarrod W Barnes
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA.
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Sutharsan S, Fischer R, Gleiber W, Horsley A, Crosby J, Guo S, Xia S, Yu R, Newman KB, Elborn JS. Randomised, phase 1/2a trial of ION-827359, an antisense oligonucleotide inhibitor of ENaC. ERJ Open Res 2024; 10:00986-2023. [PMID: 39286058 PMCID: PMC11403593 DOI: 10.1183/23120541.00986-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/11/2024] [Indexed: 09/19/2024] Open
Abstract
Background Hyperactivity of epithelial sodium channel (ENaC) with increased sodium absorption is a feature of cystic fibrosis (CF). ION-827359 is a 2.5-generation antisense oligonucleotide targeted to reduce ENaC protein. This study evaluated ION-827359 safety, pharmacokinetics and pharmacodynamics. Methods In this three-part phase 1/2a, double-blind, randomised study, healthy volunteers received single doses of placebo or ION-827359 (3, 10, 37.5 or 100 mg; Part 1) or multiple doses of placebo or ION-827359 (5×10 mg, 5×37.5 mg, 5×75 mg or 10×37.5 mg; Part 2). People with CF (pwCF) received multiple doses of placebo or ION-827359 (5×10 mg, 5×37.5 mg, 5×75 mg and 5×100 mg; Part 3). Treatments were administered via Pari eFlow© mesh nebuliser. The primary outcome was safety; pharmacokinetic and pharmacodynamic parameters were also assessed. Results 64 healthy volunteers and 34 pwCF were enrolled. ION-827359 was well tolerated with an acceptable safety profile. There were no clinically relevant changes in laboratory values, ECG or vital signs. Systemic drug exposure was low (plasma half-life ∼2 weeks). Multiple doses of ION-827359 were associated with dose-dependent reductions in ENaC mRNA in bronchial epithelium. After multiple dosing, forced expiratory volume in 1 s was slightly higher in pwCF receiving ION-827359 (+2.9% with ION-827359 100 mg versus placebo; p=0.27). Conclusions The tolerability and safety of ION-827359 appear favourable at this stage of investigation. Reduction in ENaC mRNA supports mechanistic efficacy at the doses and regimens tested, and supports further investigation of ION-827359 in pwCF.
Collapse
Affiliation(s)
- Sivagurunathan Sutharsan
- Division of Cystic Fibrosis, Department of Pulmonary Medicine, University Medicine Essen - Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | | | - Wolfgang Gleiber
- Schwerpunkt Pneumologie/Allergologie, Goethe University, Frankfurt, Germany
| | - Alex Horsley
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Jeff Crosby
- Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Shuling Guo
- Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Shuting Xia
- Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Rosie Yu
- Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | | | - J Stuart Elborn
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| |
Collapse
|
8
|
Cho DY, Rivers NJ, Lim DJ, Zhang S, Skinner D, Yang L, Menon AJ, Kelly OJ, Jones MP, Bicknel BT, Grayson JW, Harris E, Rowe SM, Woodworth BA. Glutathione and bicarbonate nanoparticles improve mucociliary transport in cystic fibrosis epithelia. Int Forum Allergy Rhinol 2024; 14:1026-1035. [PMID: 37975554 PMCID: PMC11098968 DOI: 10.1002/alr.23301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) airway disease is characterized by thick mucus and impaired mucociliary transport (MCT). Loss of functional cystic fibrosis transmembrane receptor (CFTR) leads to acidification and oxidation of airway surface mucus. Replacing bicarbonate (HCO3 -) topically fails due to rapid reabsorption and neutralization, while the scavenging antioxidant, glutathione sulfhydryl (GSH), is also rapidly degraded. The objective of this study is to investigate GSH/NaHCO3 nanoparticles as novel strategy for CF airway disease. METHODS GSH/NaHCO3 poly (lactic-co-glycolic acid) nanoparticles were tested on primary CF (F508del/F508del) epithelial cultures to evaluate dose-release curves, surface pH, toxicity, and MCT indices using micro-optical coherence tomography. In vivo tests were performed in three rabbits to assess safety and toxicity. After 1 week of daily injections, histopathology, computed tomography (CT), and blood chemistries were performed and compared to three controls. Fluorescent nanoparticles were injected into a rabbit with maxillary sinusitis and explants visualized with confocal microscopy. RESULTS Sustained release of GSH and HCO3 - with no cellular toxicity was observed over 2 weeks. Apical surface pH gradually increased from 6.54 ± 0.13 (baseline) to 7.07 ± 0.10 (24 h) (p < 0.001) and 6.87 ± 0.05 at 14 days (p < 0.001). MCT, ciliary beat frequency, and periciliary liquid were significantly increased. When injected into the maxillary sinuses of rabbits, there were no changes to histology, CT, or blood chemistries. Nanoparticles penetrated rabbit sinusitis mucus on confocal microscopy. CONCLUSION Findings suggest that GSH/NaHCO3 - nanoparticles are a promising treatment option for viscous mucus in CF and other respiratory diseases of mucus obstruction such as chronic rhinosinusitis.
Collapse
Affiliation(s)
- Do Yeon Cho
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Division of Otolaryngology, Department of Surgery, Veterans Affairs, Birmingham Alabama, United States of America
| | - Nicholas J. Rivers
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dong-Jin Lim
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shaoyan Zhang
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Daniel Skinner
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lydia Yang
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Departments of Medicine, Pediatrics, Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adithya J. Menon
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Olivia Jo Kelly
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Martin P. Jones
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brenton T. Bicknel
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jessica W. Grayson
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elex Harris
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Steven M. Rowe
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Departments of Medicine, Pediatrics, Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bradford A. Woodworth
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
9
|
Harris ES, McIntire HJ, Mazur M, Schulz-Hildebrandt H, Leung HM, Tearney GJ, Krick S, Rowe SM, Barnes JW. Reduced Sialylation of Airway Mucin Impairs Mucus Transport by Altering the Biophysical Properties of Mucin. RESEARCH SQUARE 2024:rs.3.rs-4421613. [PMID: 38853971 PMCID: PMC11160914 DOI: 10.21203/rs.3.rs-4421613/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mucus stasis is a pathologic hallmark of muco-obstructive diseases, including cystic fibrosis (CF). Mucins, the principal component of mucus, are extensively modified with hydroxyl (O)-linked glycans, which are largely terminated by sialic acid. Sialic acid is a negatively charged monosaccharide and contributes to the biochemical/biophysical properties of mucins. Reports suggest that mucin sialylation may be altered in CF; however, the consequences of reduced sialylation on mucus clearance have not been fully determined. Here, we investigated the consequences of reduced sialylation on the charge state and conformation of the most prominent airway mucin, MUC5B, and defined the functional consequences of reduced sialylation on mucociliary transport (MCT). Reduced sialylation contributed to a lower charged MUC5B form and decreased polymer expansion. The inhibition of total mucin sialylation de novo impaired MCT in primary human bronchial epithelial cells and rat airways, and specific α-2,3 sialylation blockade was sufficient to recapitulate these findings. Finally, we show that ST3 beta-galactoside alpha-2,3-sialyltransferase (ST3Gal1) expression is downregulated in CF and partially restored by correcting CFTR via Elexacaftor/Tezacaftor/Ivacaftor treatment. Overall, this study demonstrates the importance of mucin sialylation in mucus clearance and identifies decreased sialylation by ST3Gal1 as a possible therapeutic target in CF and potentially other muco-obstructive diseases.
Collapse
Affiliation(s)
- Elex S Harris
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Hannah J McIntire
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Marina Mazur
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | - Stefanie Krick
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Jarrod W Barnes
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
10
|
Hancock AM, Datta SS. Interplay between environmental yielding and dynamic forcing modulates bacterial growth. Biophys J 2024; 123:957-967. [PMID: 38454600 PMCID: PMC11052696 DOI: 10.1016/j.bpj.2024.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Many bacterial habitats-ranging from gels and tissues in the body to cell-secreted exopolysaccharides in biofilms-are rheologically complex, undergo dynamic external forcing, and have unevenly distributed nutrients. How do these features jointly influence how the resident cells grow and proliferate? Here, we address this question by studying the growth of Escherichia coli dispersed in granular hydrogel matrices with defined and highly tunable structural and rheological properties, under different amounts of external forcing imposed by mechanical shaking, and in both aerobic and anaerobic conditions. Our experiments establish a general principle: that the balance between the yield stress of the environment that the cells inhabit, σy, and the external stress imposed on the environment, σ, modulates bacterial growth by altering transport of essential nutrients to the cells. In particular, when σy<σ, the environment is easily fluidized and mixed over large scales, providing nutrients to the cells and sustaining complete cellular growth. By contrast, when σy>σ, the elasticity of the environment suppresses large-scale fluid mixing, limiting nutrient availability and arresting cellular growth. Our work thus reveals a new mechanism, beyond effects that change cellular behavior via local forcing, by which the rheology of the environment may modulate microbial physiology in diverse natural and industrial settings.
Collapse
Affiliation(s)
- Anna M Hancock
- Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Sujit S Datta
- Chemical and Biological Engineering, Princeton University, Princeton, New Jersey.
| |
Collapse
|
11
|
Xia T, Umezu K, Scully DM, Wang S, Larina IV. In vivo volumetric depth-resolved imaging of cilia metachronal waves using dynamic optical coherence tomography. OPTICA 2023; 10:1439-1451. [PMID: 38665775 PMCID: PMC11044847 DOI: 10.1364/optica.499927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/21/2023] [Indexed: 04/28/2024]
Abstract
Motile cilia are dynamic hair-like structures covering epithelial surfaces in multiple organs. The periodic coordinated beating of cilia creates waves propagating along the surface, known as the metachronal waves, which transport fluids and mucus along the epithelium. Motile ciliopathies result from disrupted coordinated cilia beating and are associated with serious clinical complications, including reproductive disorders. Despite the recognized clinical significance, research of cilia dynamics is extremely limited. Here, we present quantitative imaging of cilia metachronal waves volumetrically through tissue layers using dynamic optical coherence tomography (OCT). Our method relies on spatiotemporal mapping of the phase of intensity fluctuations in OCT images caused by the ciliary beating. We validated our new method ex vivo and implemented it in vivo to visualize cilia metachronal wave propagation within the mouse fallopian tube. This method can be extended to the assessment of physiological cilia function and ciliary dyskinesias in various organ systems, contributing to better management of pathologies associated with motile ciliopathies.
Collapse
Affiliation(s)
- Tian Xia
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kohei Umezu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Deirdre M. Scully
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | - Irina V. Larina
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
12
|
Harris ES, Novak L, Fernandez-Petty CM, Lindgren NR, Baker SM, Birket SE, Rowe SM. SNSP113 (PAAG) improves mucociliary transport and lung pathology in the Scnn1b-Tg murine model of CF lung disease. J Cyst Fibros 2023; 22:1104-1112. [PMID: 37714777 PMCID: PMC10843010 DOI: 10.1016/j.jcf.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Mucus stasis, a hallmark of muco-obstructive disease, results from impaired mucociliary transport and leads to lung function decline and chronic infection. Although therapeutics that target mucus stasis in the airway, such as hypertonic saline or rhDNAse, show some therapeutic benefit, they do not address the underlying electrostatic defect apparent in mucins in CF and related conditions. We have previously shown poly (acetyl, arginyl) glucosamine (PAAG, developed as SNSP113), a soluble, cationic polymer, significantly improves mucociliary transport in a rat model of CF by normalizing the charge defects of CF mucin. Here, we report efficacy in the CFTR-sufficient, ENaC hyperactive, Scnn1b-Tg mouse model that develops airway muco-obstruction due to sodium hyperabsorption and airway dehydration. METHODS Scnn1b-Tg mice were treated with either 250 µg/mL SNSP113 or vehicle control (1.38% glycerol in PBS) via nebulization once daily for 7 days and then euthanized for analysis. Micro-Optical Coherence Tomography-based evaluation of excised mouse trachea was used to determine the effect on the functional microanatomy. Tissue analysis was performed by routine histopathology. RESULTS Nebulized treatment of SNSP113 significantly improved mucociliary transport in the airways of Scnn1b-Tg mice, without altering the airway surface or periciliary liquid layer. In addition, SNSP113 significantly reversed epithelial hypertrophy and goblet cell metaplasia. Finally, SNSP113 significantly ameliorated eosinophilic crystalline pneumonia and lung consolidation in addition to inflammatory macrophage influx in this model. CONCLUSION Overall, this study extends the efficacy of SNSP113 as a potential therapeutic to alleviate mucus stasis in muco-obstructive diseases in CF and potentially in related conditions.
Collapse
Affiliation(s)
- Elex S Harris
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Lea Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Courtney M Fernandez-Petty
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Natalie R Lindgren
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Susan E Birket
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA; Departments of Pediatrics, and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Departments of Pediatrics, and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
13
|
Vasiljevs S, Gupta A, Baines D. Effect of glucose on growth and co-culture of Staphylococcus aureus and Pseudomonas aeruginosa in artificial sputum medium. Heliyon 2023; 9:e21469. [PMID: 37908712 PMCID: PMC10613906 DOI: 10.1016/j.heliyon.2023.e21469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
People with cystic fibrosis-related diabetes (CFRD) suffer from chronic infections with Staphylococcus aureus and/or Pseudomonas aeruginosa. In people with CFRD, the concentration of glucose in the airway surface liquid (ASL) was shown to be elevated from 0.4 to 4 mM. The effect of glucose on bacterial growth/interactions in ASL is not well understood and here we studied the relationship between these lung pathogens in artificial sputum medium (ASM), an environment similar to ASL in vivo. S. aureus exhibited more rapid adaptation to growth in ASM than P. aeruginosa. Supplementation of ASM with glucose significantly increased the growth of S. aureus (p < 0.01, n = 5) and P. aeruginosa (p < 0.001, n = 3). ASM conditioned by the presence of S. aureus promoted growth of P. aeruginosa with less lag time compared with non-conditioned ASM, or conditioned medium that had been heated to 121 °C. Stable co-culture of S. aureus and P. aeruginosa could be established in a 50:50 mix of ASM and S. aureus-conditioned supernatant. These data indicate that glucose, in a nutrient depleted environment, can promote the growth of S. aureus and P. aeruginosa. In addition, heat labile factors present in S. aureus pre-conditioned ASM promoted the growth of P. aeruginosa. We suggest that the use of ASM allows investigation of the effects of nutrients such as glucose on common lung pathogens. ASM could be further used to understand the relationship between S. aureus and P. aeruginosa in a co-culture scenario. Our model of stable co-culture could be extrapolated to include other common lung pathogens and could be used to better understand disease progression in vitro.
Collapse
Affiliation(s)
- Stanislavs Vasiljevs
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| | - Arya Gupta
- School of Health, Leeds Beckett University, Leeds, LS1 3HE, UK
| | - Deborah Baines
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| |
Collapse
|
14
|
Harris E, Easter M, Ren J, Krick S, Barnes J, Rowe SM. An ex vivo rat trachea model reveals abnormal airway physiology and a gland secretion defect in cystic fibrosis. PLoS One 2023; 18:e0293367. [PMID: 37874846 PMCID: PMC10597513 DOI: 10.1371/journal.pone.0293367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease hallmarked by aberrant ion transport that results in delayed mucus clearance, chronic infection, and progressive lung function decline. Several animal models have been developed to study the airway anatomy and mucus physiology in CF, but they are costly and difficult to maintain, making them less accessible for many applications. A more available CFTR-/- rat model has been developed and characterized to develop CF airway abnormalities, but consistent dosing of pharmacologic agents and longitudinal evaluation remain a challenge. In this study, we report the development and characterization of a novel ex vivo trachea model that utilizes both wild type (WT) and CFTR-/- rat tracheae cultured on a porcine gelatin matrix. Here we show that the ex vivo tracheae remain viable for weeks, maintain a CF disease phenotype that can be readily quantified, and respond to stimulation of mucus and fluid secretion by cholinergic stimulation. Furthermore, we show that ex vivo tracheae may be used for well-controlled pharmacological treatments, which are difficult to perform on freshly excised trachea or in vivo models with this degree of scrutiny. With improved interrogation possible with a durable trachea, we also established firm evidence of a gland secretion defect in CFTR-/- rat tracheae compared to WT controls. Finally, we demonstrate that the ex vivo tracheae can be used to generate high mucus protein yields for subsequent studies, which are currently limited by in vivo mucus collection techniques. Overall, this study suggests that the ex vivo trachea model is an effective, easy to set up culture model to study airway and mucus physiology.
Collapse
Affiliation(s)
- Elex Harris
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Molly Easter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Janna Ren
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Stefanie Krick
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Jarrod Barnes
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Steven M. Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Departments of Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
15
|
Boboltz A, Yang S, Duncan GA. Engineering in vitro models of cystic fibrosis lung disease using neutrophil extracellular trap inspired biomaterials. J Mater Chem B 2023; 11:9419-9430. [PMID: 37701932 PMCID: PMC10591795 DOI: 10.1039/d3tb01489d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Cystic fibrosis (CF) is a muco-obstructive lung disease where inflammatory responses due to chronic infection result in the accumulation of neutrophil extracellular traps (NETs) in the airways. NETs are web-like complexes comprised mainly of decondensed chromatin that function to capture and kill bacteria. Prior studies have established excess release of NETs in CF airways increases viscoelasticity of mucus secretions and reduces mucociliary clearance. Despite the pivotal role of NETs in CF disease pathogenesis, current in vitro models of this disease do not account for their contribution. Motivated by this, we developed a new approach to study the pathobiological effects of NETs in CF by combining synthetic NET-like biomaterials, composed of DNA and histones, with an in vitro human airway epithelial cell culture model. To determine the impact of synthetic NETs on airway clearance function, we incorporated synthetic NETs into mucin hydrogels and cell culture derived airway mucus to assess their rheological and transport properties. We found that the addition of synthetic NETs significantly increases mucin hydrogel viscoelasticity. As a result, mucociliary transport in vitro was significantly reduced with the addition of mucus containing synthetic NETs. Given the prevalence of bacterial infection in the CF lung, we also evaluated the growth of Pseudomonas aeruginosa in mucus with or without synthetic NETs. We found mucus containing synthetic NETs promoted microcolony growth and prolonged bacterial survival. Together, this work establishes a new biomaterial enabled approach to study innate immunity mediated airway dysfunction in CF.
Collapse
Affiliation(s)
- Allison Boboltz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
16
|
Dębczyński M, Gorrieri G, Mojsak D, Guida F, Zara F, Scudieri P. ATP12A Proton Pump as an Emerging Therapeutic Target in Cystic Fibrosis and Other Respiratory Diseases. Biomolecules 2023; 13:1455. [PMID: 37892136 PMCID: PMC10605105 DOI: 10.3390/biom13101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
ATP12A encodes the catalytic subunit of the non-gastric proton pump, which is expressed in many epithelial tissues and mediates the secretion of protons in exchange for potassium ions. In the airways, ATP12A-dependent proton secretion contributes to complex mechanisms regulating the composition and properties of the fluid and mucus lining the respiratory epithelia, which are essential to maintain the airway host defense and the respiratory health. Increased expression and activity of ATP12A in combination with the loss of other balancing activities, such as the bicarbonate secretion mediated by CFTR, leads to excessive acidification of the airway surface liquid and mucus dysfunction, processes that play relevant roles in the pathogenesis of cystic fibrosis and other chronic inflammatory respiratory disorders. In this review, we summarize the findings dealing with ATP12A expression, function, and modulation in the airways, which led to the consideration of ATP12A as a potential therapeutic target for the treatment of cystic fibrosis and other airway diseases; we also highlight the current advances and gaps regarding the development of therapeutic strategies aimed at ATP12A inhibition.
Collapse
Affiliation(s)
- Michał Dębczyński
- 2nd Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, 15-540 Bialystok, Poland; (M.D.); (D.M.)
| | - Giulia Gorrieri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16132 Genoa, Italy; (G.G.); (F.G.); (F.Z.)
| | - Damian Mojsak
- 2nd Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, 15-540 Bialystok, Poland; (M.D.); (D.M.)
| | - Floriana Guida
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16132 Genoa, Italy; (G.G.); (F.G.); (F.Z.)
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16132 Genoa, Italy; (G.G.); (F.G.); (F.Z.)
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Paolo Scudieri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16132 Genoa, Italy; (G.G.); (F.G.); (F.Z.)
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
17
|
Sutharsan S, Dillenhoefer S, Welsner M, Stehling F, Brinkmann F, Burkhart M, Ellemunter H, Dittrich AM, Smaczny C, Eickmeier O, Kappler M, Schwarz C, Sieber S, Naehrig S, Naehrlich L. Impact of elexacaftor/tezacaftor/ivacaftor on lung function, nutritional status, pulmonary exacerbation frequency and sweat chloride in people with cystic fibrosis: real-world evidence from the German CF Registry. THE LANCET REGIONAL HEALTH. EUROPE 2023; 32:100690. [PMID: 37554663 PMCID: PMC10405057 DOI: 10.1016/j.lanepe.2023.100690] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Treatment with elexacaftor/tezacaftor/ivacaftor (ETI) improves multiple clinical outcomes in people with cystic fibrosis (pwCF) with at least one F508del allele. This study evaluated the real-world impact of ETI on lung function, nutritional status, pulmonary exacerbation frequency, and sweat chloride concentrations in a large group of pwCF. METHODS This observational cohort study used data from the German CF Registry for pwCF who received ETI therapy and were followed up for a period of 12 months. FINDINGS The study included 2645 pwCF from 67 centres in Germany (mean age 28.0 ± 11.5 years). Over the first year after ETI was initiated, percent predicted forced expiratory volume in 1 s (ppFEV1) increased by 11.3% (95% confidence interval [CI] 10.8-11.8, p < 0.0001), body mass index (BMI) z-score increased by 0.3 (95% CI 0.3-0.4, p < 0.0001) in individuals aged 12 to <18 years and BMI in adults increased by 1.4 kg/m2 (95% CI 1.3-1.4, p < 0.0001), pulmonary exacerbations decreased by 75.9% (p < 0.0001) and mean sweat chloride concentration decreased by 50.9 mmol/L (95% CI -52.6, -49.3, p < 0.0001). Improvements in ppFEV1 over the first year of therapy were greater in pwCF who had not previously received cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy (12.6% [95% CI 11.9-13.4] vs. 9.7% [95% CI 9.0-10.5] in those with prior CFTR modulator treatment. INTERPRETATION These real-world data are consistent with the findings of randomised clinical trials, and support the use of ETI as a highly effective treatment option for pwCF who have at least one F508del allele. FUNDING None.
Collapse
Affiliation(s)
- Sivagurunathan Sutharsan
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Adult Cystic Fibrosis Center, University of Duisburg-Essen, Essen, Germany
| | - Stefanie Dillenhoefer
- Department of Pediatric Pulmonology, Cystic Fibrosis Center, University Children's Hospital of Ruhr University Bochum at St. Josef-Hospital, Bochum, Germany
| | - Matthias Welsner
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Adult Cystic Fibrosis Center, University of Duisburg-Essen, Essen, Germany
| | - Florian Stehling
- Pediatric Pulmonology and Sleep Medicine, Children's University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Folke Brinkmann
- Department of Pediatric Pneumology & Allergology, The University of Lübeck, University Medical Center Schleswig-Holstein, Campus Centrum Lübeck, Member of Airway Research Center North (ARCN) of the German Center of Lung Research (DZL), Lübeck, Germany
| | | | - Helmut Ellemunter
- Medical University of Innsbruck, Cystic Fibrosis Centre Innsbruck, Innsbruck, Austria
| | - Anna-Maria Dittrich
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Germany
| | - Christina Smaczny
- University Hospital Frankfurt/Main, Goethe University, Pneumology and Allergology, Christiane Herzog CF Center Frankfurt/Main, Frankfurt/Main, Germany
| | - Olaf Eickmeier
- Pediatric Allergology, Pulmonology & Cystic Fibrosis, Christiane Herzog CF Center- Frankfurt a.M., University Hospital Frankfurt a.M., Germany
| | - Matthias Kappler
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Carsten Schwarz
- Division Cystic Fibrosis, HMU-Health and Medical University Potsdam, Clinic Westbrandenburg, Potsdam, Germany
| | - Sarah Sieber
- STAT-UP Statistical Consulting & Data Science GmbH, Munich, Germany
| | - Susanne Naehrig
- Department of Internal Medicine V, Cystic Fibrosis Center for Adults, University Hospital, Ludwig Maximilian University (LMU) Munich, Germany
| | - Lutz Naehrlich
- Department of Pediatrics, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
18
|
Yuan F, Gasser GN, Lemire E, Montoro DT, Jagadeesh K, Zhang Y, Duan Y, Ievlev V, Wells KL, Rotti PG, Shahin W, Winter M, Rosen BH, Evans I, Cai Q, Yu M, Walsh SA, Acevedo MR, Pandya DN, Akurathi V, Dick DW, Wadas TJ, Joo NS, Wine JJ, Birket S, Fernandez CM, Leung HM, Tearney GJ, Verkman AS, Haggie PM, Scott K, Bartels D, Meyerholz DK, Rowe SM, Liu X, Yan Z, Haber AL, Sun X, Engelhardt JF. Transgenic ferret models define pulmonary ionocyte diversity and function. Nature 2023; 621:857-867. [PMID: 37730992 PMCID: PMC10533402 DOI: 10.1038/s41586-023-06549-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 08/17/2023] [Indexed: 09/22/2023]
Abstract
Speciation leads to adaptive changes in organ cellular physiology and creates challenges for studying rare cell-type functions that diverge between humans and mice. Rare cystic fibrosis transmembrane conductance regulator (CFTR)-rich pulmonary ionocytes exist throughout the cartilaginous airways of humans1,2, but limited presence and divergent biology in the proximal trachea of mice has prevented the use of traditional transgenic models to elucidate ionocyte functions in the airway. Here we describe the creation and use of conditional genetic ferret models to dissect pulmonary ionocyte biology and function by enabling ionocyte lineage tracing (FOXI1-CreERT2::ROSA-TG), ionocyte ablation (FOXI1-KO) and ionocyte-specific deletion of CFTR (FOXI1-CreERT2::CFTRL/L). By comparing these models with cystic fibrosis ferrets3,4, we demonstrate that ionocytes control airway surface liquid absorption, secretion, pH and mucus viscosity-leading to reduced airway surface liquid volume and impaired mucociliary clearance in cystic fibrosis, FOXI1-KO and FOXI1-CreERT2::CFTRL/L ferrets. These processes are regulated by CFTR-dependent ionocyte transport of Cl- and HCO3-. Single-cell transcriptomics and in vivo lineage tracing revealed three subtypes of pulmonary ionocytes and a FOXI1-lineage common rare cell progenitor for ionocytes, tuft cells and neuroendocrine cells during airway development. Thus, rare pulmonary ionocytes perform critical CFTR-dependent functions in the proximal airway that are hallmark features of cystic fibrosis airway disease. These studies provide a road map for using conditional genetics in the first non-rodent mammal to address gene function, cell biology and disease processes that have greater evolutionary conservation between humans and ferrets.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Grace N Gasser
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Evan Lemire
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Yan Zhang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yifan Duan
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Vitaly Ievlev
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kristen L Wells
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Pavana G Rotti
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Weam Shahin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael Winter
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Bradley H Rosen
- Division of Pulmonary, Critical Care, Occupational, and Sleep Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Idil Evans
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Qian Cai
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Miao Yu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Susan A Walsh
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael R Acevedo
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Darpan N Pandya
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Vamsidhar Akurathi
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - David W Dick
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Thaddeus J Wadas
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nam Soo Joo
- Cystic Fibrosis Research Laboratory, Department of Psychology, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey J Wine
- Cystic Fibrosis Research Laboratory, Department of Psychology, Stanford University, Stanford, CA, USA
| | - Susan Birket
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Courtney M Fernandez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alan S Verkman
- Department of Medicine, UCSF, San Francisco, CA, USA
- Department of Physiology, UCSF, San Francisco, CA, USA
| | - Peter M Haggie
- Department of Medicine, UCSF, San Francisco, CA, USA
- Department of Physiology, UCSF, San Francisco, CA, USA
| | - Kathleen Scott
- Office of Animal Resources, University of Iowa, Iowa City, IA, USA
| | - Douglas Bartels
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adam L Haber
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
19
|
Kienenberger ZE, Farber TO, Teresi ME, Milavetz F, Singh SB, Larson Ode K, Thoma T, Weiner RL, Burlage KR, Fischer AJ. Patient and Caregiver Perceptions of Airway Clearance Methods Used for Cystic Fibrosis. Can Respir J 2023; 2023:1422319. [PMID: 37547298 PMCID: PMC10403321 DOI: 10.1155/2023/1422319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/06/2023] [Accepted: 06/24/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Cystic Fibrosis Foundation guidelines recommend people with CF perform daily airway clearance. This can be difficult for patients, as some find it time consuming or uncomfortable. Data comparing airway clearance methods are limited. We surveyed patients and their families to understand which methods are preferred and identify obstacles to performing airway clearance. Methods We designed a REDCap survey and enrolled participants in 2021. Respondents reported information on airway clearance usage, time commitment, and medication use. They rated airway clearance methods for effectiveness, comfort, time commitment, importance, and compatibility with other treatments. The analysis included descriptive statistics and clustering. Results 60 respondents started and 52 completed the survey. The median patient age was 20 years. Respondents experienced a median of four airway clearance methods in their lifetime, including chest wall oscillation (vest, 92%), manual chest physical therapy (CPT, 88%), forced expiration technique (huff or cough, 77%), and exercise (75%). Past 30-day use was highest for exercise (62%) and vest (57%). The time commitment was generally less than 2 hours daily. Of those eligible for CFTR modulators, 53% reported decreased time commitment to airway clearance after starting treatment. On a scale of 0-100, respondents rated CFTR modulators as their most important treatment (median 99.5), followed by exercise (88). Discussion. Patients and caregivers are familiar with several methods of airway clearance for CF. They report distinct strengths and limitations of each method. Exercise and vest are the most common methods of airway clearance. The use of CFTR modulators may reduce patient-reported time commitment to airway clearance.
Collapse
Affiliation(s)
- Zoe E. Kienenberger
- Pediatrics, University of Iowa, Iowa City, IA, USA
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | | | | - Kathryn R. Burlage
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
20
|
Rasmussen L, Stafford D, LaFontaine J, Allen A, Antony L, Kim H, Raju SV. Alcohol-Induced Mucociliary Dysfunction: Role of Defective CFTR Channel Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.548927. [PMID: 37502889 PMCID: PMC10370077 DOI: 10.1101/2023.07.17.548927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Excessive alcohol use is thought to increase the risk of respiratory infections by impairing mucociliary clearance (MCC). In this study, we investigate the hypothesis that alcohol reduces the function of CFTR, the protein that is defective in individuals with cystic fibrosis, thus altering mucus properties to impair MCC and the airway's defense against inhaled pathogens. Methods Sprague Dawley rats with wild type CFTR (+/+), matched for age and sex, were administered either a Lieber-DeCarli alcohol diet or a control diet with the same number of calories for eight weeks. CFTR activity was measured using nasal potential difference (NPD) assay and Ussing chamber electrophysiology of tracheal tissue samples. In vivo MCC was determined by measuring the radiographic clearance of inhaled Tc99 particles and the depth of the airway periciliary liquid (PCL) and mucus transport rate in excised trachea using micro-optical coherence tomography (μOCT). The levels of rat lung MUC5b and CFTR were estimated by protein and mRNA analysis. Results Alcohol diet was found to decrease CFTR ion transport in the nasal and tracheal epithelium in vivo and ex vivo. This decrease in activity was also reflected in partially reduced full-length CFTR protein levels but not, in mRNA copies, in the lungs of rats. Furthermore, alcohol-fed rats showed a significant decrease in MCC after 8 weeks of alcohol consumption. The trachea from these rats also showed reduced PCL depth, indicating a decrease in mucosal surface hydration that was reflected in delayed mucus transport. Diminished MCC rate was also likely due to the elevated MUC5b expression in alcohol-fed rat lungs. Conclusions Excessive alcohol use can decrease the expression and activity of CFTR channels, leading to reduced airway surface hydration and impaired mucus clearance. This suggests that CFTR dysfunction plays a role in the compromised lung defense against respiratory pathogens in individuals who drink alcohol excessively.
Collapse
Affiliation(s)
- Lawrence Rasmussen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Environment Health Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Denise Stafford
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer LaFontaine
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Antonio Allen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Linto Antony
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hyunki Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S. Vamsee Raju
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Environment Health Science, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
21
|
Boboltz AM, Yang S, Duncan GA. Engineering in vitro models of cystic fibrosis lung disease using neutrophil extracellular trap inspired biomaterials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546583. [PMID: 37425779 PMCID: PMC10327088 DOI: 10.1101/2023.06.26.546583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cystic fibrosis (CF) is a muco-obstructive lung disease where inflammatory responses due to chronic infection result in the accumulation of neutrophil extracellular traps (NETs) in the airways. NETs are web-like complexes comprised mainly of decondensed chromatin that function to capture and kill bacteria. Prior studies have established excess release of NETs in CF airways increases viscoelasticity of mucus secretions and reduces mucociliary clearance. Despite the pivotal role of NETs in CF disease pathogenesis, current in vitro models of this disease do not account for their contribution. Motivated by this, we developed a new approach to study the pathobiological effects of NETs in CF by combining synthetic NET-like biomaterials, composed of DNA and histones, with an in vitro human airway epithelial cell culture model. To determine the impact of synthetic NETs on airway clearance function, we incorporated synthetic NETs into mucin hydrogels and cell culture derived airway mucus to assess their rheological and transport properties. We found that the addition of synthetic NETs significantly increases mucin hydrogel and native mucus viscoelasticity. As a result, mucociliary transport in vitro was significantly reduced with the addition of mucus containing synthetic NETs. Given the prevalence of bacterial infection in the CF lung, we also evaluated the growth of Pseudomonas aeruginosa in mucus with or without synthetic NETs. We found mucus containing synthetic NETs promoted microcolony growth and prolonged bacterial survival. Together, this work establishes a new biomaterial enabled approach to study innate immunity mediated airway dysfunction in CF.
Collapse
Affiliation(s)
- Allison M Boboltz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
22
|
Albers S, Allen EC, Bharti N, Davyt M, Joshi D, Perez-Garcia CG, Santos L, Mukthavaram R, Delgado-Toscano MA, Molina B, Kuakini K, Alayyoubi M, Park KJJ, Acharya G, Gonzalez JA, Sagi A, Birket SE, Tearney GJ, Rowe SM, Manfredi C, Hong JS, Tachikawa K, Karmali P, Matsuda D, Sorscher EJ, Chivukula P, Ignatova Z. Engineered tRNAs suppress nonsense mutations in cells and in vivo. Nature 2023; 618:842-848. [PMID: 37258671 PMCID: PMC10284701 DOI: 10.1038/s41586-023-06133-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
Nonsense mutations are the underlying cause of approximately 11% of all inherited genetic diseases1. Nonsense mutations convert a sense codon that is decoded by tRNA into a premature termination codon (PTC), resulting in an abrupt termination of translation. One strategy to suppress nonsense mutations is to use natural tRNAs with altered anticodons to base-pair to the newly emerged PTC and promote translation2-7. However, tRNA-based gene therapy has not yielded an optimal combination of clinical efficacy and safety and there is presently no treatment for individuals with nonsense mutations. Here we introduce a strategy based on altering native tRNAs into efficient suppressor tRNAs (sup-tRNAs) by individually fine-tuning their sequence to the physico-chemical properties of the amino acid that they carry. Intravenous and intratracheal lipid nanoparticle (LNP) administration of sup-tRNA in mice restored the production of functional proteins with nonsense mutations. LNP-sup-tRNA formulations caused no discernible readthrough at endogenous native stop codons, as determined by ribosome profiling. At clinically important PTCs in the cystic fibrosis transmembrane conductance regulator gene (CFTR), the sup-tRNAs re-established expression and function in cell systems and patient-derived nasal epithelia and restored airway volume homeostasis. These results provide a framework for the development of tRNA-based therapies with a high molecular safety profile and high efficacy in targeted PTC suppression.
Collapse
Affiliation(s)
- Suki Albers
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | | | - Nikhil Bharti
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Marcos Davyt
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Disha Joshi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | | | - Leonardo Santos
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | | | | | | | | - Amit Sagi
- Arcturus Therapeutics, San Diego, CA, USA
| | - Susan E Birket
- Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, MA, Cambridge, USA
| | - Steven M Rowe
- Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Candela Manfredi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jeong S Hong
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | | | | | | | - Eric J Sorscher
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | | | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
23
|
Rasmussen LW, Stanford D, LaFontaine J, Allen AD, Raju SV. Nicotine aerosols diminish airway CFTR function and mucociliary clearance. Am J Physiol Lung Cell Mol Physiol 2023; 324:L557-L570. [PMID: 36852921 PMCID: PMC10085557 DOI: 10.1152/ajplung.00453.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Electronic cigarettes (e-cigs) are often promoted as safe alternatives to smoking based on the faulty perception that inhaling nicotine is safe until other harmful chemicals in cigarette smoke are absent. Previously, others and we have reported that, similar to cigarette smoke, e-cig aerosols decrease CFTR-mediated ion transport across airway epithelium. However, it is unclear whether such defective epithelial ion transport by e-cig aerosols occurs in vivo and what the singular contribution of inhaled nicotine is to impairments in mucociliary clearance (MCC), the primary physiologic defense of the airways. Here, we tested the effects of nicotine aerosols from e-cigs in primary human bronchial epithelial (HBE) cells and two animal models, rats and ferrets, known for their increasing physiologic complexity and potential for clinical translation, followed by in vitro and in vivo electrophysiologic assays for CFTR activity and micro-optical coherence tomography (μOCT) image analyses for alterations in airway mucus physiology. Data presented in this report indicate nicotine in e-cig aerosols causes 1) reduced CFTR and epithelial Na+ channel (ENaC)-mediated ion transport, 2) delayed MCC, and 3) diminished airway surface hydration, as determined by periciliary liquid depth analysis. Interestingly, the common e-cig vehicles vegetable glycerin and propylene glycol did not affect CFTR function or MCC in vivo despite their significant adverse effects in vitro. Overall, our studies contribute to an improved understanding of inhaled nicotine effects on lung health among e-cig users and inform pathologic mechanisms involved in altered host defense and increased risk for tobacco-associated lung diseases.
Collapse
Affiliation(s)
- Lawrence W Rasmussen
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Environmental Health Sciences, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Denise Stanford
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jennifer LaFontaine
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Antonio Demarcus Allen
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - S Vamsee Raju
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
24
|
Campos-Gómez J, Fernandez Petty C, Mazur M, Tang L, Solomon GM, Joseph R, Li Q, Peabody Lever JE, Hussain SS, Harrod KS, Onuoha EE, Kim H, Rowe SM. Mucociliary clearance augmenting drugs block SARS-CoV-2 replication in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2023; 324:L493-L506. [PMID: 36809189 PMCID: PMC10042606 DOI: 10.1152/ajplung.00285.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
The coronavirus disease (COVID-19) pandemic, caused by SARS-CoV-2 coronavirus, is devastatingly impacting human health. A prominent component of COVID-19 is the infection and destruction of the ciliated respiratory cells, which perpetuates dissemination and disrupts protective mucociliary transport (MCT) function, an innate defense of the respiratory tract. Thus, drugs that augment MCT could improve the barrier function of the airway epithelium and reduce viral replication and, ultimately, COVID-19 outcomes. We tested five agents known to increase MCT through distinct mechanisms for activity against SARS-CoV-2 infection using a model of human respiratory epithelial cells terminally differentiated in an air/liquid interphase. Three of the five mucoactive compounds tested showed significant inhibitory activity against SARS-CoV-2 replication. An archetype mucoactive agent, ARINA-1, blocked viral replication and therefore epithelial cell injury; thus, it was further studied using biochemical, genetic, and biophysical methods to ascertain the mechanism of action via the improvement of MCT. ARINA-1 antiviral activity was dependent on enhancing the MCT cellular response, since terminal differentiation, intact ciliary expression, and motion were required for ARINA-1-mediated anti-SARS-CoV2 protection. Ultimately, we showed that the improvement of cilia movement was caused by ARINA-1-mediated regulation of the redox state of the intracellular environment, which benefited MCT. Our study indicates that intact MCT reduces SARS-CoV-2 infection, and its pharmacologic activation may be effective as an anti-COVID-19 treatment.
Collapse
Affiliation(s)
- Javier Campos-Gómez
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| | | | - Marina Mazur
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| | - Liping Tang
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| | - George M Solomon
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| | - Reny Joseph
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| | - Qian Li
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| | - Jacelyn E Peabody Lever
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
- Medical Scientist Training Program, Heersink School of Medicine, University of Alabama at Birmingham, Alabama, United States
| | - Shah Saddad Hussain
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
| | - Kevin S Harrod
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Alabama, United States
| | - Ezinwanne E Onuoha
- Department of Biomedical Engineering, University of Alabama at Birmingham, Alabama, United States
| | - Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, Alabama, United States
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| |
Collapse
|
25
|
Campos-Gomez J, Petty CF, Mazur M, Tang L, Solomon GM, Joseph R, Li Q, Lever JEP, Hussain S, Harrod K, Onuoha E, Kim H, Rowe SM. Mucociliary Clearance Augmenting Drugs Block SARS-Cov-2 Replication in Human Airway Epithelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526308. [PMID: 36778446 PMCID: PMC9915467 DOI: 10.1101/2023.01.30.526308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The coronavirus disease (COVID-19) pandemic, caused by SARS-CoV-2 coronavirus, is devastatingly impacting human health. A prominent component of COVID-19 is the infection and destruction of the ciliated respiratory cells, which perpetuates dissemination and disrupts protective mucociliary transport (MCT) function, an innate defense of the respiratory tract. Thus, drugs that augment MCT could improve barrier function of the airway epithelium, reduce viral replication and, ultimately, COVID-19 outcomes. We tested five agents known to increase MCT through distinct mechanisms for activity against SARS-CoV-2 infection using a model of human respiratory epithelial cells terminally differentiated in an air/liquid interphase. Three of the five mucoactive compounds tested showed significant inhibitory activity against SARS-CoV-2 replication. An archetype mucoactive agent, ARINA-1, blocked viral replication and therefore epithelial cell injury, thus, it was further studied using biochemical, genetic and biophysical methods to ascertain mechanism of action via improvement of MCT. ARINA-1 antiviral activity was dependent on enhancing the MCT cellular response, since terminal differentiation, intact ciliary expression and motion was required for ARINA-1-mediated anti-SARS-CoV2 protection. Ultimately, we showed that improvement of cilia movement was caused by ARINA-1-mediated regulation of the redox state of the intracellular environment, which benefited MCT. Our study indicates that Intact MCT reduces SARS-CoV-2 infection, and its pharmacologic activation may be effective as an anti-COVID-19 treatment.
Collapse
Affiliation(s)
- Javier Campos-Gomez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Marina Mazur
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Liping Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - George M. Solomon
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Reny Joseph
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Qian Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jacelyn E. Peabody Lever
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
- Medical Scientist Training Program, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shah Hussain
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin Harrod
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ezinwanne Onuoha
- Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven M. Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
26
|
Li Q, Vijaykumar K, Phillips SE, Hussain SS, Huynh NV, Fernandez-Petty CM, Lever JEP, Foote JB, Ren J, Campos-Gómez J, Daya FA, Hubbs NW, Kim H, Onuoha E, Boitet ER, Fu L, Leung HM, Yu L, Detchemendy TW, Schaefers LT, Tipper JL, Edwards LJ, Leal SM, Harrod KS, Tearney GJ, Rowe SM. Mucociliary transport deficiency and disease progression in Syrian hamsters with SARS-CoV-2 infection. JCI Insight 2023; 8:e163962. [PMID: 36625345 PMCID: PMC9870055 DOI: 10.1172/jci.insight.163962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/16/2022] [Indexed: 01/10/2023] Open
Abstract
Substantial clinical evidence supports the notion that ciliary function in the airways is important in COVID-19 pathogenesis. Although ciliary damage has been observed in both in vitro and in vivo models, the extent or nature of impairment of mucociliary transport (MCT) in in vivo models remains unknown. We hypothesize that SARS-CoV-2 infection results in MCT deficiency in the airways of golden Syrian hamsters that precedes pathological injury in lung parenchyma. Micro-optical coherence tomography was used to quantitate functional changes in the MCT apparatus. Both genomic and subgenomic viral RNA pathological and physiological changes were monitored in parallel. We show that SARS-CoV-2 infection caused a 67% decrease in MCT rate as early as 2 days postinfection (dpi) in hamsters, principally due to 79% diminished airway coverage of motile cilia. Correlating quantitation of physiological, virological, and pathological changes reveals steadily descending infection from the upper airways to lower airways to lung parenchyma within 7 dpi. Our results indicate that functional deficits of the MCT apparatus are a key aspect of COVID-19 pathogenesis, may extend viral retention, and could pose a risk factor for secondary infection. Clinically, monitoring abnormal ciliated cell function may indicate disease progression. Therapies directed toward the MCT apparatus deserve further investigation.
Collapse
Affiliation(s)
- Qian Li
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | | | - Scott E. Phillips
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | - Shah S. Hussain
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | | | | | | | | | | | | | - Farah Abou Daya
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | - Nathaniel W. Hubbs
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | - Harrison Kim
- Gregory Fleming James Cystic Fibrosis Research Center
- Department of Radiology, and
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ezinwanne Onuoha
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Evan R. Boitet
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | - Lianwu Fu
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Linhui Yu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Levi T. Schaefers
- Department of Microbiology
- Department of Anesthesiology and Perioperative Medicine
| | | | | | - Sixto M. Leal
- Department of Microbiology
- Department of Anesthesiology and Perioperative Medicine
| | | | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven M. Rowe
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
- Department of Pediatrics
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
27
|
Åstrand A, Libby EF, Shei RJ, Lever JEP, Kaza N, Adewale AT, Boitet E, Edwards L, Hemmerling M, Root J, Lindberg B, Wingren C, Malmgren A, Sabater J, Rowe SM. Preclinical evaluation of the epithelial sodium channel inhibitor AZD5634 and implications on human translation. Am J Physiol Lung Cell Mol Physiol 2022; 323:L536-L547. [PMID: 36098422 PMCID: PMC9602792 DOI: 10.1152/ajplung.00454.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Airway dehydration causes mucus stasis and bacterial overgrowth in cystic fibrosis (CF), resulting in recurrent respiratory infections and exacerbations. Strategies to rehydrate airway mucus including inhibition of the epithelial sodium channel (ENaC) have the potential to improve mucosal defense by enhancing mucociliary clearance (MCC) and reducing the risk of progressive decline in lung function. In the current work, we evaluated the effects of AZD5634, an ENaC inhibitor that shows extended lung retention and safety profile as compared with previously evaluated candidate drugs, in healthy and CF preclinical model systems. We found that AZD5634 elicited a potent inhibition of amiloride-sensitive current in non-CF airway cells and airway cells derived from F508del-homozygous individuals with CF that effectively increased airway surface liquid volume and improved mucociliary transport (MCT) rate. AZD5634 also demonstrated efficacious inhibition of ENaC in sheep bronchial epithelial cells, translating to dose-dependent improvement of mucus clearance in healthy sheep in vivo. Conversely, nebulization of AZD5634 did not notably improve airway hydration or MCT in CF rats that exhibit an MCC defect, consistent with findings from a first single-dose evaluation of AZD5634 on MCC in people with CF. Overall, these findings suggest that CF animal models demonstrating impaired mucus clearance translatable to the human situation may help to successfully predict and promote the successful translation of ENaC-directed therapies to the clinic.
Collapse
Affiliation(s)
- Annika Åstrand
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Emily Falk Libby
- 2Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ren-Jay Shei
- 2Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama,3Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jacelyn E. Peabody Lever
- 2Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama,3Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Niroop Kaza
- 3Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Evan Boitet
- 2Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lloyd Edwards
- 4Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Martin Hemmerling
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - James Root
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Botilda Lindberg
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Cecilia Wingren
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Malmgren
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Steven M. Rowe
- 2Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama,3Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama,5Department of Cellular, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama,6Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
28
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
29
|
Cho DY, Grayson JW, Woodworth BA. Unified Airway—Cystic Fibrosis. Otolaryngol Clin North Am 2022; 56:125-136. [DOI: 10.1016/j.otc.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Henderson AG, Davis JM, Keith JD, Green ME, Oden AM, Rowe SM, Birket SE. Static mucus impairs bacterial clearance and allows chronic infection with Pseudomonas aeruginosa in the cystic fibrosis rat. Eur Respir J 2022; 60:2101032. [PMID: 35115338 PMCID: PMC9944330 DOI: 10.1183/13993003.01032-2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 01/10/2022] [Indexed: 02/03/2023]
Abstract
Cystic fibrosis airway disease is characterised by chronic Pseudomonas aeruginosa infection. Successful eradication strategies have been hampered by a poor understanding of the mechanisms underlying conversion to chronicity. The cystic fibrosis transmembrane conductance receptor (CFTR)-knockout (KO) rat harbours a progressive defect in mucociliary transport and viscosity. KO rats were infected before and after the appearance of the mucus defect, using a clinical mucoid-isolate of P. aeruginosa embedded in agarose beads. Young KO rats that were exposed to bacteria before the development of mucociliary transport defects resolved the infection and subsequent tissue damage. However, older KO rats that were infected in the presence of hyperviscous and static mucus were unable to eradicate bacteria, but instead had bacterial persistence through 28 days post-infection that was accompanied by airway mucus occlusion and lingering inflammation. Normal rats responded to infection with increased mucociliary transport to supernormal rates, which reduced the severity of a second bacterial exposure. We conclude that the aberrant mucus present in the CF airway permits persistence of P. aeruginosa in the lung.
Collapse
Affiliation(s)
- Alexander G Henderson
- Dept of Medicine and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joy M Davis
- Dept of Medicine and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Johnathan D Keith
- Dept of Medicine and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Morgan E Green
- Dept of Medicine and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashley M Oden
- Dept of Medicine and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Dept of Medicine and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Susan E Birket
- Dept of Medicine and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
31
|
Ash JJ, Hilkin BM, Gansemer ND, Hoffman EA, Zabner J, Stoltz DA, Abou Alaiwa MH. Tromethamine improves mucociliary clearance in cystic fibrosis pigs. Physiol Rep 2022; 10:e15340. [PMID: 36073059 PMCID: PMC9453173 DOI: 10.14814/phy2.15340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023] Open
Abstract
In cystic fibrosis (CF), the loss of cystic fibrosis transmembrane conductance regulator (CFTR) mediated Cl- and HCO3 - secretion across the epithelium acidifies the airway surface liquid (ASL). Acidic ASL alters two key host defense mechanisms: Rapid ASL bacterial killing and mucociliary transport (MCT). Aerosolized tromethamine (Tham) increases ASL pH and restores the ability of ASL to rapidly kill bacteria in CF pigs. In CF pigs, clearance of insufflated microdisks is interrupted due to abnormal mucus causing microdisks to abruptly recoil. Aerosolizing a reducing agent to break disulfide bonds that link mucins improves MCT. Here, we are interested in restoring MCT in CF by aerosolizing Tham, a buffer with a pH of 8.4. Because Tham is hypertonic to serum, we use an acidified formulation as a control. We measure MCT by tracking the caudal movement of individual tantalum microdisks with serial chest computed tomography scans. Alkaline Tham improves microdisk clearance to within the range of that seen in non-CF pigs. It also partially reverses MCT defects, including reduced microdisk recoil and elapse time until they start moving after methacholine stimulation in CF pig airways. The effect is not due to hypertonicity, as it is not seen with acidified Tham or hypertonic saline. This finding indicates acidic ASL impairs CF MCT and suggests that alkalinization of ASL pH with inhaled Tham may improve CF airway disease.
Collapse
Affiliation(s)
- Jamison J. Ash
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Brieanna M. Hilkin
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Nicholas D. Gansemer
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Eric A. Hoffman
- Department of RadiologyRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Roy J Carver, Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| | - Joseph Zabner
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - David A. Stoltz
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Roy J Carver, Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
- Department of Molecular Physiology and BiophysicsRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Mahmoud H. Abou Alaiwa
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Roy J Carver, Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
32
|
Advances in Preclinical In Vitro Models for the Translation of Precision Medicine for Cystic Fibrosis. J Pers Med 2022; 12:jpm12081321. [PMID: 36013270 PMCID: PMC9409685 DOI: 10.3390/jpm12081321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.
Collapse
|
33
|
Plebani R, Potla R, Soong M, Bai H, Izadifar Z, Jiang A, Travis RN, Belgur C, Dinis A, Cartwright MJ, Prantil-Baun R, Jolly P, Gilpin SE, Romano M, Ingber DE. Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip. J Cyst Fibros 2022; 21:606-615. [PMID: 34799298 DOI: 10.1101/2021.07.15.21260407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/19/2021] [Accepted: 10/14/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) is a genetic disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), which results in impaired airway mucociliary clearance, inflammation, infection, and respiratory insufficiency. The development of new therapeutics for CF are limited by the lack of reliable preclinical models that recapitulate the structural, immunological, and bioelectrical features of human CF lungs. METHODS We leveraged organ-on-a-chip technology to develop a microfluidic device lined by primary human CF bronchial epithelial cells grown under an air-liquid interface and interfaced with pulmonary microvascular endothelial cells (CF Airway Chip) exposed to fluid flow. The responses of CF and healthy Airway Chips were analyzed in the presence or absence of polymorphonuclear leukocytes (PMNs) and the bacterial pathogen, Pseudomonas aeruginosa. RESULTS The CF Airway Chip faithfully recapitulated many features of the human CF airways, including enhanced mucus accumulation, increased cilia density, and a higher ciliary beating frequency compared to chips lined by healthy bronchial epithelial cells. The CF chips also secreted higher levels of IL-8, which was accompanied by enhanced PMN adhesion to the endothelium and transmigration into the airway compartment. In addition, CF Airway Chips provided a more favorable environment for Pseudomonas aeruginosa growth, which resulted in enhanced secretion of inflammatory cytokines and recruitment of PMNs to the airway. CONCLUSIONS The human CF Airway Chip may provide a valuable preclinical tool for pathophysiology studies as well as for drug testing and personalized medicine.
Collapse
Affiliation(s)
- Roberto Plebani
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States; Center on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ratnakar Potla
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States; Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Mercy Soong
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Amanda Jiang
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Renee N Travis
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Chaitra Belgur
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Alexandre Dinis
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Mark J Cartwright
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Pawan Jolly
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Sarah E Gilpin
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Mario Romano
- Center on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States; Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States; Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, United States.
| |
Collapse
|
34
|
Keith JD, Henderson AG, Fernandez-Petty CM, Davis JM, Oden AM, Birket SE. Muc5b Contributes to Mucus Abnormality in Rat Models of Cystic Fibrosis. Front Physiol 2022; 13:884166. [PMID: 35574458 PMCID: PMC9096080 DOI: 10.3389/fphys.2022.884166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) airway disease is characterized by excessive and accumulative mucus in the airways. Mucociliary clearance becomes defective as mucus secretions become hyperconcentrated and viscosity increases. The CFTR-knockout (KO) rat has been previously shown to progressively develop delayed mucociliary transport, secondary to increased viscoelasticity of airway secretions. The humanized-G551D CFTR rat model has demonstrated that abnormal mucociliary clearance and hyperviscosity is reversed by ivacaftor treatment. In this study, we sought to identify the components of mucus that changes as the rat ages to contribute to these abnormalities. We found that Muc5b concentrations, and to a lesser extent Muc5ac, in the airway were increased in the KO rat compared to WT, and that Muc5b concentration was directly related to the viscosity of the mucus. Additionally, we found that methacholine administration to the airway exacerbates these characteristics of disease in the KO, but not WT rat trachea. Lastly we determined that at 6 months of age, CF rats had mucus that was adherent to the airway epithelium, a process that is reversed by ivacaftor therapy in the hG551D rat. Overall, these data indicate that accumulation of Muc5b initiates the muco-obstructive process in the CF lung prior to infection.
Collapse
Affiliation(s)
- Johnathan D Keith
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alexander G Henderson
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Courtney M Fernandez-Petty
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joy M Davis
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ashley M Oden
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Susan E Birket
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
35
|
Csekő K, Hargitai D, Draskóczi L, Kéri A, Jaikumpun P, Kerémi B, Helyes Z, Zsembery Á. Safety of chronic hypertonic bicarbonate inhalation in a cigarette smoke-induced airway irritation guinea pig model. BMC Pulm Med 2022; 22:131. [PMID: 35392868 PMCID: PMC8991956 DOI: 10.1186/s12890-022-01919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) are often associated with airway fluid acidification. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to impaired bicarbonate secretion contributing to CF airway pathology. Chronic cigarette smoke (CS) -the major cause of COPD- is reported to induce acquired CFTR dysfunction underlying airway acidification and inflammation. We hypothesize that bicarbonate-containing aerosols could be beneficial for patients with CFTR dysfunctions. Thus, we investigated the safety of hypertonic sodium bicarbonate (NaHCO3) inhalation in CS-exposed guinea pigs. METHODS Animals were divided into groups inhaling hypertonic NaCl (8.4%) or hypertonic NaHCO3 (8.4%) aerosol for 8 weeks. Subgroups from each treatment groups were further exposed to CS. Respiratory functions were measured at 0 and after 2, 4, 6 and 8 weeks. After 8 weeks blood tests and pulmonary histopathological assessment were performed. RESULTS Neither smoking nor NaHCO3-inhalation affected body weight, arterial and urine pH, or histopathology significantly. NaHCO3-inhalation did not worsen respiratory parameters. Moreover, it normalized the CS-induced transient alterations in frequency, peak inspiratory flow, inspiratory and expiratory times. CONCLUSION Long-term NaHCO3-inhalation is safe in chronic CS-exposed guinea pigs. Our data suggest that bicarbonate-containing aerosols might be carefully applied to CF patients.
Collapse
Affiliation(s)
- Kata Csekő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, 7624, Hungary
- Molecular Pharmacology Research Group, Szentágothai Research Centre, Pécs, 7624, Hungary
| | - Dóra Hargitai
- 2nd Department of Pathology, Semmelweis University, Budapest, 1091, Hungary
| | - Lilla Draskóczi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, 7624, Hungary
- Molecular Pharmacology Research Group, Szentágothai Research Centre, Pécs, 7624, Hungary
| | - Adrienn Kéri
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
- Heim Pál Children Hospital, Budapest, 1089, Hungary
| | - Pongsiri Jaikumpun
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Beáta Kerémi
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
- Department of Conservative Dentistry, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, 7624, Hungary
- Molecular Pharmacology Research Group, Szentágothai Research Centre, Pécs, 7624, Hungary
- PharmInVivo Ltd, Pécs, 7629, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| |
Collapse
|
36
|
Kato T, Radicioni G, Papanikolas MJ, Stoychev GV, Markovetz MR, Aoki K, Porterfield M, Okuda K, Barbosa Cardenas SM, Gilmore RC, Morrison CB, Ehre C, Burns KA, White KK, Brennan TA, Goodell HP, Thacker H, Loznev HT, Forsberg LJ, Nagase T, Rubinstein M, Randell SH, Tiemeyer M, Hill DB, Kesimer M, O’Neal WK, Ballard ST, Freeman R, Button B, Boucher RC. Mucus concentration-dependent biophysical abnormalities unify submucosal gland and superficial airway dysfunction in cystic fibrosis. SCIENCE ADVANCES 2022; 8:eabm9718. [PMID: 35363522 PMCID: PMC10938572 DOI: 10.1126/sciadv.abm9718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Cystic fibrosis (CF) is characterized by abnormal transepithelial ion transport. However, a description of CF lung disease pathophysiology unifying superficial epithelial and submucosal gland (SMG) dysfunctions has remained elusive. We hypothesized that biophysical abnormalities associated with CF mucus hyperconcentration provide a unifying mechanism. Studies of the anion secretion-inhibited pig airway model of CF revealed elevated SMG mucus concentrations, osmotic pressures, and SMG mucus accumulation. Human airway studies revealed hyperconcentrated CF SMG mucus with raised osmotic pressures and cohesive forces predicted to limit SMG mucus secretion/release. Using proline-rich protein 4 (PRR4) as a biomarker of SMG secretion, CF sputum proteomics analyses revealed markedly lower PRR4 levels compared to healthy and bronchiectasis controls, consistent with a failure of CF SMGs to secrete mucus onto airway surfaces. Raised mucus osmotic/cohesive forces, reflecting mucus hyperconcentration, provide a unifying mechanism that describes disease-initiating mucus accumulation on airway surfaces and in SMGs of the CF lung.
Collapse
Affiliation(s)
- Takafumi Kato
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - Giorgia Radicioni
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Micah J. Papanikolas
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Georgi V. Stoychev
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew R. Markovetz
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Melody Porterfield
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Rodney C. Gilmore
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cameron B. Morrison
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kimberlie A. Burns
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kristen K. White
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tara A. Brennan
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Henry P. Goodell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Holly Thacker
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Henry T. Loznev
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lawrence J. Forsberg
- Protein Expression and Purification Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Takahide Nagase
- Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Scott H. Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - David B. Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mehmet Kesimer
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wanda K. O’Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen T. Ballard
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard C. Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
37
|
Luettich K, Sharma M, Yepiskoposyan H, Breheny D, Lowe FJ. An Adverse Outcome Pathway for Decreased Lung Function Focusing on Mechanisms of Impaired Mucociliary Clearance Following Inhalation Exposure. FRONTIERS IN TOXICOLOGY 2022; 3:750254. [PMID: 35295103 PMCID: PMC8915806 DOI: 10.3389/ftox.2021.750254] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/11/2021] [Indexed: 01/23/2023] Open
Abstract
Adverse outcome pathways (AOPs) help to organize available mechanistic information related to an adverse outcome into key events (KEs) spanning all organizational levels of a biological system(s). AOPs, therefore, aid in the biological understanding of a particular pathogenesis and also help with linking exposures to eventual toxic effects. In the regulatory context, knowledge of disease mechanisms can help design testing strategies using in vitro methods that can measure or predict KEs relevant to the biological effect of interest. The AOP described here evaluates the major processes known to be involved in regulating efficient mucociliary clearance (MCC) following exposures causing oxidative stress. MCC is a key aspect of the innate immune defense against airborne pathogens and inhaled chemicals and is governed by the concerted action of its functional components, the cilia and airway surface liquid (ASL). The AOP network described here consists of sequences of KEs that culminate in the modulation of ciliary beat frequency and ASL height as well as mucus viscosity and hence, impairment of MCC, which in turn leads to decreased lung function.
Collapse
Affiliation(s)
- Karsta Luettich
- Philip Morris International R&D, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Monita Sharma
- PETA Science Consortium International e.V., Stuttgart, Germany
| | - Hasmik Yepiskoposyan
- Philip Morris International R&D, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Damien Breheny
- British American Tobacco (Investments) Ltd., Group Research and Development, Southampton, United Kingdom
| | - Frazer J Lowe
- Broughton Nicotine Services, Earby, Lancashire, United Kingdom
| |
Collapse
|
38
|
Morrison CB, Shaffer KM, Araba KC, Markovetz MR, Wykoff JA, Quinney NL, Hao S, Delion MF, Flen AL, Morton LC, Liao J, Hill DB, Drumm ML, O’Neal WK, Kesimer M, Gentzsch M, Ehre C. Treatment of cystic fibrosis airway cells with CFTR modulators reverses aberrant mucus properties via hydration. Eur Respir J 2022; 59:13993003.00185-2021. [PMID: 34172469 PMCID: PMC8859811 DOI: 10.1183/13993003.00185-2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/11/2021] [Indexed: 02/05/2023]
Abstract
QUESTION Cystic fibrosis (CF) is characterised by the accumulation of viscous adherent mucus in the lungs. While several hypotheses invoke a direct relationship with cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction (i.e. acidic airway surface liquid (ASL) pH, low bicarbonate (HCO3 -) concentration, airway dehydration), the dominant biochemical alteration of CF mucus remains unknown. MATERIALS/METHODS We characterised a novel cell line (CFTR-KO Calu3 cells) and the responses of human bronchial epithelial (HBE) cells from subjects with G551D or F508del mutations to ivacaftor and elexacaftor-tezacaftor-ivacaftor. A spectrum of assays such as short-circuit currents, quantitative PCR, ASL pH, Western blotting, light scattering/refractometry (size-exclusion chromatography with inline multi-angle light scattering), scanning electron microscopy, percentage solids and particle tracking were performed to determine the impact of CFTR function on mucus properties. RESULTS Loss of CFTR function in Calu3 cells resulted in ASL pH acidification and mucus hyperconcentration (dehydration). Modulation of CFTR in CF HBE cells did not affect ASL pH or mucin mRNA expression, but decreased mucus concentration, relaxed mucus network ultrastructure and improved mucus transport. In contrast with modulator-treated cells, a large fraction of airway mucins remained attached to naïve CF cells following short apical washes, as revealed by the use of reducing agents to remove residual mucus from the cell surfaces. Extended hydration, but not buffers alkalised with sodium hydroxide or HCO3 -, normalised mucus recovery to modulator-treated cell levels. CONCLUSION These results indicate that airway dehydration, not acidic pH and/or low [HCO3 -], is responsible for abnormal mucus properties in CF airways and CFTR modulation predominantly restores normal mucin entanglement.
Collapse
Affiliation(s)
- Cameron B. Morrison
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Kendall M. Shaffer
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Kenza C. Araba
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Matthew R. Markovetz
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Jason A. Wykoff
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Nancy L. Quinney
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Shuyu Hao
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill
| | - Martial F. Delion
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Alexis L. Flen
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Lisa C. Morton
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Jimmy Liao
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - David B. Hill
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill,Department of Physics and Astronomy, The University of North Carolina at Chapel Hill
| | - Mitchell L. Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine
| | - Wanda K. O’Neal
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Mehmet Kesimer
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Martina Gentzsch
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill,Division of Pediatric Pulmonology, The University of North Carolina at Chapel Hill,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill
| | - Camille Ehre
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill,Division of Pediatric Pulmonology, The University of North Carolina at Chapel Hill,To whom correspondence should be addressed:
| |
Collapse
|
39
|
SLC26A9 as a Potential Modifier and Therapeutic Target in Cystic Fibrosis Lung Disease. Biomolecules 2022; 12:biom12020202. [PMID: 35204703 PMCID: PMC8961553 DOI: 10.3390/biom12020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022] Open
Abstract
SLC26A9 belongs to the solute carrier family 26 (SLC26), which comprises membrane proteins involved in ion transport mechanisms. On the basis of different preliminary findings, including the phenotype of SlC26A9-deficient mice and its possible role as a gene modifier of the human phenotype and treatment response, SLC26A9 has emerged as one of the most interesting alternative targets for the treatment of cystic fibrosis (CF). However, despite relevant clues, some open issues and controversies remain. The lack of specific pharmacological modulators, the elusive expression reported in the airways, and its complex relationships with CFTR and the CF phenotype prevent us from conclusively understanding the contribution of SLC26A9 in human lung physiology and its real potential as a therapeutic target in CF. In this review, we summarized the various studies dealing with SLC26A9 expression, molecular structure, and function as an anion channel or transporter; its interaction and functional relationships with CFTR; and its role as a gene modifier and tried to reconcile them in order to highlight the current understanding and the gap in knowledge regarding the contribution of SLC26A9 to human lung physiology and CF disease and treatment.
Collapse
|
40
|
Li Q, Vijaykumar K, Philips SE, Hussain SS, Huynh VN, Fernandez-Petty CM, Lever JEP, Foote JB, Ren J, Campos-Gómez J, Daya FA, Hubbs NW, Kim H, Onuoha E, Boitet ER, Fu L, Leung HM, Yu L, Detchemendy TW, Schaefers LT, Tipper JL, Edwards LJ, Leal SM, Harrod KS, Tearney GJ, Rowe SM. Mucociliary Transport Deficiency and Disease Progression in Syrian Hamsters with SARS-CoV-2 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.16.476016. [PMID: 35075457 PMCID: PMC8786228 DOI: 10.1101/2022.01.16.476016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Substantial clinical evidence supports the notion that ciliary function in the airways plays an important role in COVID-19 pathogenesis. Although ciliary damage has been observed in both in vitro and in vivo models, consequent impaired mucociliary transport (MCT) remains unknown for the intact MCT apparatus from an in vivo model of disease. Using golden Syrian hamsters, a common animal model that recapitulates human COVID-19, we quantitatively followed the time course of physiological, virological, and pathological changes upon SARS-CoV-2 infection, as well as the deficiency of the MCT apparatus using micro-optical coherence tomography, a novel method to visualize and simultaneously quantitate multiple aspects of the functional microanatomy of intact airways. Corresponding to progressive weight loss up to 7 days post-infection (dpi), viral detection and histopathological analysis in both the trachea and lung revealed steadily descending infection from the upper airways, as the main target of viral invasion, to lower airways and parenchymal lung, which are likely injured through indirect mechanisms. SARS-CoV-2 infection caused a 67% decrease in MCT rate as early as 2 dpi, largely due to diminished motile ciliation coverage, but not airway surface liquid depth, periciliary liquid depth, or cilia beat frequency of residual motile cilia. Further analysis indicated that the fewer motile cilia combined with abnormal ciliary motion of residual cilia contributed to the delayed MCT. The time course of physiological, virological, and pathological progression suggest that functional deficits of the MCT apparatus predispose to COVID-19 pathogenesis by extending viral retention and may be a risk factor for secondary infection. As a consequence, therapies directed towards the MCT apparatus deserve further investigation as a treatment modality.
Collapse
Affiliation(s)
- Qian Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kadambari Vijaykumar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Scott E Philips
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shah S Hussain
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Van N Huynh
- Department of Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Courtney M Fernandez-Petty
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jacelyn E Peabody Lever
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeremy B Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Janna Ren
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Javier Campos-Gómez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Farah Abou Daya
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nathaniel W Hubbs
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harrison Kim
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ezinwanne Onuoha
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Evan R Boitet
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lianwu Fu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Linhui Yu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas W Detchemendy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Levi T Schaefers
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jennifer L Tipper
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lloyd J Edwards
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sixto M Leal
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kevin S Harrod
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
- Departments of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
41
|
Immunoglobulin A Mucosal Immunity and Altered Respiratory Epithelium in Cystic Fibrosis. Cells 2021; 10:cells10123603. [PMID: 34944110 PMCID: PMC8700636 DOI: 10.3390/cells10123603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
The respiratory epithelium represents the first chemical, immune, and physical barrier against inhaled noxious materials, particularly pathogens in cystic fibrosis. Local mucus thickening, altered mucociliary clearance, and reduced pH due to CFTR protein dysfunction favor bacterial overgrowth and excessive inflammation. We aimed in this review to summarize respiratory mucosal alterations within the epithelium and current knowledge on local immunity linked to immunoglobulin A in patients with cystic fibrosis.
Collapse
|
42
|
Ermund A, Meiss LN, Dolan B, Jaudas F, Ewaldsson L, Bähr A, Klymiuk N, Hansson GC. Mucus threads from surface goblet cells clear particles from the airways. Respir Res 2021; 22:303. [PMID: 34823518 PMCID: PMC8620232 DOI: 10.1186/s12931-021-01898-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/17/2021] [Indexed: 01/23/2023] Open
Abstract
Background The mucociliary clearance system driven by beating cilia protects the airways from inhaled microbes and particles. Large particles are cleared by mucus bundles made in submucosal glands by parallel linear polymers of the MUC5B mucins. However, the structural organization and function of the mucus generated in surface goblet cells are poorly understood. Methods The origin and characteristics of different mucus structures were studied on live tissue explants from newborn wild-type (WT), cystic fibrosis transmembrane conductance regulator (CFTR) deficient (CF) piglets and weaned pig airways using video microscopy, Airyscan imaging and electron microscopy. Bronchoscopy was performed in juvenile pigs in vivo. Results We have identified a distinct mucus formation secreted from the surface goblet cells with a diameter less than two micrometer. This type of mucus was named mucus threads. With time mucus threads gathered into larger mucus assemblies, efficiently collecting particles. The previously observed Alcian blue stained mucus bundles were around 10 times thicker than the threads. Together the mucus bundles, mucus assemblies and mucus threads cleared the pig trachea from particles. Conclusions These results demonstrate that normal airway mucus is more complex and has a more variable structural organization and function than was previously understood. These observations emphasize the importance of studying young objects to understand the function of a non-compromised lung. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01898-3.
Collapse
Affiliation(s)
- Anna Ermund
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30, Gothenburg, Sweden.
| | - Lauren N Meiss
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30, Gothenburg, Sweden
| | - Brendan Dolan
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30, Gothenburg, Sweden
| | - Florian Jaudas
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lars Ewaldsson
- Experimental Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Andrea Bähr
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30, Gothenburg, Sweden
| |
Collapse
|
43
|
Plebani R, Potla R, Soong M, Bai H, Izadifar Z, Jiang A, Travis RN, Belgur C, Dinis A, Cartwright MJ, Prantil-Baun R, Jolly P, Gilpin SE, Romano M, Ingber DE. Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip: Cystic fibrosis airway chip. J Cyst Fibros 2021; 21:606-615. [PMID: 34799298 DOI: 10.1016/j.jcf.2021.10.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/19/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) is a genetic disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), which results in impaired airway mucociliary clearance, inflammation, infection, and respiratory insufficiency. The development of new therapeutics for CF are limited by the lack of reliable preclinical models that recapitulate the structural, immunological, and bioelectrical features of human CF lungs. METHODS We leveraged organ-on-a-chip technology to develop a microfluidic device lined by primary human CF bronchial epithelial cells grown under an air-liquid interface and interfaced with pulmonary microvascular endothelial cells (CF Airway Chip) exposed to fluid flow. The responses of CF and healthy Airway Chips were analyzed in the presence or absence of polymorphonuclear leukocytes (PMNs) and the bacterial pathogen, Pseudomonas aeruginosa. RESULTS The CF Airway Chip faithfully recapitulated many features of the human CF airways, including enhanced mucus accumulation, increased cilia density, and a higher ciliary beating frequency compared to chips lined by healthy bronchial epithelial cells. The CF chips also secreted higher levels of IL-8, which was accompanied by enhanced PMN adhesion to the endothelium and transmigration into the airway compartment. In addition, CF Airway Chips provided a more favorable environment for Pseudomonas aeruginosa growth, which resulted in enhanced secretion of inflammatory cytokines and recruitment of PMNs to the airway. CONCLUSIONS The human CF Airway Chip may provide a valuable preclinical tool for pathophysiology studies as well as for drug testing and personalized medicine.
Collapse
Affiliation(s)
- Roberto Plebani
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States; Center on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ratnakar Potla
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States; Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Mercy Soong
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Amanda Jiang
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Renee N Travis
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Chaitra Belgur
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Alexandre Dinis
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Mark J Cartwright
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Pawan Jolly
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Sarah E Gilpin
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Mario Romano
- Center on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States; Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States; Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, United States.
| |
Collapse
|
44
|
Dumas MP, Xia S, Bear CE, Ratjen F. Perspectives on the translation of in-vitro studies to precision medicine in Cystic Fibrosis. EBioMedicine 2021; 73:103660. [PMID: 34740114 PMCID: PMC8577330 DOI: 10.1016/j.ebiom.2021.103660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022] Open
Abstract
Recent strides towards precision medicine in Cystic Fibrosis (CF) have been made possible by patient-derived in-vitro assays with the potential to predict clinical response to small molecule-based therapies. Here, we discuss the status of primary and stem-cell derived tissues used to evaluate the preclinical efficacy of CFTR modulators highlighting both their potential and limitations. Validation of these assays requires correlation of in-vitro responses to in-vivo measures of clinical biomarkers of disease outcomes. While initial efforts have shown some success, this translation requires methodologies that are sensitive enough to capture treatment responses in a CF population that now predominantly has mild lung disease. Future development of in-vitro and in-vivo biomarkers will facilitate the generation of new therapeutics particularly for those patients with rare mutations where clinical trials are not feasible so that in the future every CF patient will have access to effective targeted therapies.
Collapse
Affiliation(s)
- Marie-Pier Dumas
- Respiratory Medicine, Hospital for Sick Children, Toronto, Canada; Translational Medicine, Hospital for Sick Children, Toronto, Canada
| | - Sunny Xia
- Molecular Medicine, Hospital for Sick Children, Toronto, Canada.; Department of Physiology, University of Toronto, Toronto, Canada
| | - Christine E Bear
- Molecular Medicine, Hospital for Sick Children, Toronto, Canada.; Department of Physiology, University of Toronto, Toronto, Canada; Department of Biochemistry University of Toronto, Toronto, Canada
| | - Felix Ratjen
- Respiratory Medicine, Hospital for Sick Children, Toronto, Canada; Translational Medicine, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
45
|
Hanssens LS, Duchateau J, Casimir GJ. CFTR Protein: Not Just a Chloride Channel? Cells 2021; 10:2844. [PMID: 34831067 PMCID: PMC8616376 DOI: 10.3390/cells10112844] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is a recessive genetic disease caused by mutations in a gene encoding a protein called Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). The CFTR protein is known to acts as a chloride (Cl-) channel expressed in the exocrine glands of several body systems where it also regulates other ion channels, including the epithelial sodium (Na+) channel (ENaC) that plays a key role in salt absorption. This function is crucial to the osmotic balance of the mucus and its viscosity. However, the pathophysiology of CF is more challenging than a mere dysregulation of epithelial ion transport, mainly resulting in impaired mucociliary clearance (MCC) with consecutive bronchiectasis and in exocrine pancreatic insufficiency. This review shows that the CFTR protein is not just a chloride channel. For a long time, research in CF has focused on abnormal Cl- and Na+ transport. Yet, the CFTR protein also regulates numerous other pathways, such as the transport of HCO3-, glutathione and thiocyanate, immune cells, and the metabolism of lipids. It influences the pH homeostasis of airway surface liquid and thus the MCC as well as innate immunity leading to chronic infection and inflammation, all of which are considered as key pathophysiological characteristics of CF.
Collapse
Affiliation(s)
- Laurence S. Hanssens
- Department of Pediatric Pulmonology and Cystic Fibrosis Clinic, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Avenue J.J. Crocq 15, 1020 Brussels, Belgium;
| | - Jean Duchateau
- Laboratoire Académique de Pédiatrie, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Avenue J.J. Crocq 15, 1020 Brussels, Belgium;
| | - Georges J. Casimir
- Department of Pediatric Pulmonology and Cystic Fibrosis Clinic, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Avenue J.J. Crocq 15, 1020 Brussels, Belgium;
- Laboratoire Académique de Pédiatrie, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Avenue J.J. Crocq 15, 1020 Brussels, Belgium;
| |
Collapse
|
46
|
Pedersoli L, Zhang S, Briatico-Vangosa F, Petrini P, Cardinaels R, den Toonder J, Peneda Pacheco D. Engineered modular microphysiological models of the human airway clearance phenomena. Biotechnol Bioeng 2021; 118:3898-3913. [PMID: 34143430 DOI: 10.1002/bit.27866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 11/09/2022]
Abstract
Mucociliary clearance is a crucial mechanism that supports the elimination of inhaled particles, bacteria, pollution, and hazardous agents from the human airways, and it also limits the diffusion of aerosolized drugs into the airway epithelium. In spite of its relevance, few in vitro models sufficiently address the cumulative effect of the steric and interactive barrier function of mucus on the one hand, and the dynamic mucus transport imposed by ciliary mucus propulsion on the other hand. Here, ad hoc mucus models of physiological and pathological mucus are combined with magnetic artificial cilia to model mucociliary transport in both physiological and pathological states. The modular concept adopted in this study enables the development of mucociliary clearance models with high versatility since these can be easily modified to reproduce phenomena characteristic of healthy and diseased human airways while allowing to determine the effect of each parameter and/or structure separately on the overall mucociliary transport. These modular airway models can be available off-the-shelf because they are exclusively made of readily available materials, thus ensuring reproducibility across different laboratories.
Collapse
Affiliation(s)
- Lucia Pedersoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Shuaizhong Zhang
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Francesco Briatico-Vangosa
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Paola Petrini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Ruth Cardinaels
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Soft Matter Rheology and Technology, Department of Chemical Engineering, KU Leuven, Heverlee, Belgium
| | - Jaap den Toonder
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Daniela Peneda Pacheco
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
47
|
Shteinberg M, Haq IJ, Polineni D, Davies JC. Cystic fibrosis. Lancet 2021; 397:2195-2211. [PMID: 34090606 DOI: 10.1016/s0140-6736(20)32542-3] [Citation(s) in RCA: 391] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/03/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis is a monogenic disease considered to affect at least 100 000 people worldwide. Mutations in CFTR, the gene encoding the epithelial ion channel that normally transports chloride and bicarbonate, lead to impaired mucus hydration and clearance. Classical cystic fibrosis is thus characterised by chronic pulmonary infection and inflammation, pancreatic exocrine insufficiency, male infertility, and might include several comorbidities such as cystic fibrosis-related diabetes or cystic fibrosis liver disease. This autosomal recessive disease is diagnosed in many regions following newborn screening, whereas in other regions, diagnosis is based on a group of recognised multiorgan clinical manifestations, raised sweat chloride concentrations, or CFTR mutations. Disease that is less easily diagnosed, and in some cases affecting only one organ, can be seen in the context of gene variants leading to residual protein function. Management strategies, including augmenting mucociliary clearance and aggressively treating infections, have gradually improved life expectancy for people with cystic fibrosis. However, restoration of CFTR function via new small molecule modulator drugs is transforming the disease for many patients. Clinical trial pipelines are actively exploring many other approaches, which will be increasingly needed as survival improves and as the population of adults with cystic fibrosis increases. Here, we present the current understanding of CFTR mutations, protein function, and disease pathophysiology, consider strengths and limitations of current management strategies, and look to the future of multidisciplinary care for those with cystic fibrosis.
Collapse
Affiliation(s)
- Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel; Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Iram J Haq
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, London, UK; Royal Brompton and Harefield, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
48
|
Anderson JD, Liu Z, Odom LV, Kersh L, Guimbellot JS. CFTR function and clinical response to modulators parallel nasal epithelial organoid swelling. Am J Physiol Lung Cell Mol Physiol 2021; 321:L119-L129. [PMID: 34009038 DOI: 10.1152/ajplung.00639.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In vitro biomarkers to assess cystic fibrosis transmembrane conductance regulator activity are desirable for precision modulator selection and as a tool for clinical trials. Here, we describe an organoid swelling assay derived from human nasal epithelia using commercially available reagents and equipment and an automated imaging process. Cells were collected in nasal brush biopsies, expanded in vitro, and cultured as spherical organoids or as monolayers. Organoids were used in a functional swelling assay with automated measurements and analysis, whereas monolayers were used for short-circuit current measurements to assess ion channel activity. Clinical data were collected from patients on modulators. Relationships between swelling data and short-circuit current, as well as between swelling data and clinical outcome measures, were assessed. The organoid assay measurements correlated with short-circuit current measurements for ion channel activity. The functional organoid assay distinguished individual responses as well as differences between groups. The organoid assay distinguished incremental drug responses to modulator monotherapy with ivacaftor and combination therapy with ivacaftor, tezacaftor, and elexacaftor. The swelling activity paralleled the clinical response. In conclusion, an in vitro biomarker derived from patients' cells can be used to predict responses to drugs and is likely to be useful as a preclinical tool to aid in the development of novel treatments and as a clinical trial outcome measure for a variety of applications, including gene therapy or editing.
Collapse
Affiliation(s)
- Justin D Anderson
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhongyu Liu
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - L Victoria Odom
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Latona Kersh
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Guimbellot
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
49
|
Galdi F, Pedone C, McGee CA, George M, Rice AB, Hussain SS, Vijaykumar K, Boitet ER, Tearney GJ, McGrath JA, Brown AR, Rowe SM, Incalzi RA, Garantziotis S. Inhaled high molecular weight hyaluronan ameliorates respiratory failure in acute COPD exacerbation: a pilot study. Respir Res 2021; 22:30. [PMID: 33517896 PMCID: PMC7847749 DOI: 10.1186/s12931-020-01610-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/27/2020] [Indexed: 12/31/2022] Open
Abstract
Background Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) carry significant morbidity and mortality. AECOPD treatment remains limited. High molecular weight hyaluronan (HMW-HA) is a glycosaminoglycan sugar, which is a physiological constituent of the lung extracellular matrix and has notable anti-inflammatory and hydrating properties. Research question We hypothesized that inhaled HMW-HA will improve outcomes in AECOPD. Methods We conducted a single center, randomized, placebo-controlled, double-blind study to investigate the effect of inhaled HMW-HA in patients with severe AECOPD necessitating non-invasive positive-pressure ventilation (NIPPV). Primary endpoint was time until liberation from NIPPV. Results Out of 44 screened patients, 41 were included in the study (21 for placebo and 20 for HMW-HA). Patients treated with HMW-HA had significantly shorter duration of NIPPV. HMW-HA treated patients also had lower measured peak airway pressures on the ventilator and lower systemic inflammation markers after liberation from NIPPV. In vitro testing showed that HMW-HA significantly improved mucociliary transport in air–liquid interface cultures of primary bronchial cells from COPD patients and healthy primary cells exposed to cigarette smoke extract. Interpretation Inhaled HMW-HA shortens the duration of respiratory failure and need for non-invasive ventilation in patients with AECOPD. Beneficial effects of HMW-HA on mucociliary clearance and inflammation may account for some of the effects (NCT02674880, www.clinicaltrials.gov).
Collapse
Affiliation(s)
- Flavia Galdi
- Division of Geriatrics, Department of Medicine, Campus Bio-Medico University and Teaching Hospital, Rome, Italy
| | - Claudio Pedone
- Division of Geriatrics, Department of Medicine, Campus Bio-Medico University and Teaching Hospital, Rome, Italy
| | - Christopher A McGee
- Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC, 27709, USA
| | - Margaret George
- Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC, 27709, USA
| | - Annette B Rice
- Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC, 27709, USA
| | - Shah S Hussain
- Department of Medicine and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama in Birmingham Medical Center, Birmingham, USA
| | - Kadambari Vijaykumar
- Department of Medicine and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama in Birmingham Medical Center, Birmingham, USA
| | - Evan R Boitet
- Department of Medicine and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama in Birmingham Medical Center, Birmingham, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA.,Department of Dermatology, Massachusetts General Hospital, Boston, USA.,Harvard Medical School, Boston, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, USA.,Department of Pathology, Massachusetts General Hospital, Boston, USA
| | | | | | - Steven M Rowe
- Department of Medicine and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama in Birmingham Medical Center, Birmingham, USA.,Department of Pediatrics, UAB, Birmingham, USA.,Department of Cell development & Integrative Biology, UAB, Birmingham, USA
| | - Raffaele A Incalzi
- Division of Geriatrics, Department of Medicine, Campus Bio-Medico University and Teaching Hospital, Rome, Italy
| | - Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
50
|
Antibacterial Effects of Bicarbonate in Media Modified to Mimic Cystic Fibrosis Sputum. Int J Mol Sci 2020; 21:ijms21228614. [PMID: 33207565 PMCID: PMC7696793 DOI: 10.3390/ijms21228614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/06/2020] [Accepted: 11/14/2020] [Indexed: 12/18/2022] Open
Abstract
Cystic fibrosis (CF) is a hereditary disease caused by mutations in the gene encoding an epithelial anion channel. In CF, Cl− and HCO3− hyposecretion, together with mucin hypersecretion, leads to airway dehydration and production of viscous mucus. This habitat is ideal for colonization by pathogenic bacteria. We have recently demonstrated that HCO3− inhibits the growth and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus when tested in laboratory culture media. Using the same bacteria our aim was to investigate the effects of HCO3− in artificial sputum medium (ASM), whose composition resembles CF mucus. Control ASM containing no NaHCO3 was incubated in ambient air (pH 7.4 or 8.0). ASM containing NaHCO3 (25 and 100 mM) was incubated in 5% CO2 (pH 7.4 and 8.0, respectively). Viable P. aeruginosa and S. aureus cells were counted by colony-forming unit assay and flow cytometry after 6 h and 17 h of incubation. Biofilm formation was assessed after 48 h. The data show that HCO3− significantly decreased viable cell counts and biofilm formation in a concentration-dependent manner. These effects were due neither to extracellular alkalinization nor to altered osmolarity. These results show that HCO3− exerts direct antibacterial and antibiofilm effects on prevalent CF bacteria.
Collapse
|