1
|
Zhang X, Hu C, Chen T, Li P, Tan Y, Ren C, Wang Y, Jiang X, Ma B, Yin J, Huang Y, Liu L, Li H, Luo P. DNA methylation regulates growth traits by influencing metabolic pathways in Pacific white shrimp (Litopenaeus vannamei). BMC Genomics 2025; 26:511. [PMID: 40394505 PMCID: PMC12093746 DOI: 10.1186/s12864-025-11688-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 05/09/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND DNA methylation is a critical epigenetic modification that dynamically regulates gene expression associated with economic traits. Pacific white shrimp (Litopenaeus vannamei) is one of the most important aquatic species for culturing, and growth trait is one of the most important economic traits for its production. However, research on DNA methylation regulation of growth traits is still at an early stage. This study explored DNA methylome dynamics and their associations with the regulatory mechanism behind growth traits using full-subfamily individuals with discrepant growth performance. RESULTS The DNA methylation-related genes in L. vannamei were identified, and the expression of DNA methylation genes showed significantly higher levels in the slow growth (SG) group compared to the fast-growing (FG) individuals. The Whole Genome Bisulfite Sequencing (WGBS) analysis revealed that the methylation levels in the muscles of shrimp were notably decreased in SG individuals compared to FG individuals. A total of 532 differentially methylated promoters and 2,067 differentially methylated regions were identified. Through integrative analysis of DNA methylation and transcriptomic data from SG and FG group shrimp, a total of 47 genes were screened out with differential methylation levels (DMGs) and expression levels (DEGs). Functional enrichment analysis revealed that the overlapping DEGs/DMGs were enriched mainly in metabolic pathways, starch and sucrose metabolism, linoleic acid metabolism, ascorbate and aldarate metabolism, pentose and glucuronate interconversions. CONCLUSIONS DNA methylation plays a role in the regulation of growth traits in L. vannamei. The level of DNA methylation was found to be negatively correlated with growth traits. Through comprehensive analysis, it was discovered that DNA methylation predominantly affects growth performance by up-regulating the expression of genes involved in metabolic pathways, such as glucose metabolism and amino acid metabolism in L. vannamei. This suggests a higher metabolism activity in SG individuals derived DNA methylation to cope with some unknown internal stress or environmental stress rather than being allocated for growth.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chaoqun Hu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Ting Chen
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | | | - Yehui Tan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chunhua Ren
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yanhong Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiao Jiang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Bo Ma
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiayue Yin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunyi Huang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liyan Liu
- Yuehai Feed Group Co., Ltd, Zhanjiang, China
| | - Huo Li
- Guangdong Jinyang Biotechnology Co., Ltd, Maoming, China
| | - Peng Luo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
2
|
Selman M, Buendia-Roldan I, Pardo A. Decoding the complexity: mechanistic insights into comorbidities in idiopathic pulmonary fibrosis. Eur Respir J 2025; 65:2402418. [PMID: 40180336 PMCID: PMC12095908 DOI: 10.1183/13993003.02418-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
The complex pathogenic relationships between idiopathic pulmonary fibrosis (IPF) and its usually associated comorbidities remain poorly understood. While evidence suggests that some comorbidities may directly influence the development or progression of IPF, or vice versa, whether these associations are causal or arise independently due to shared risk factors, such as ageing, smoking, lifestyle and genetic susceptibility, is still uncertain. Some comorbidities, such as metabolic syndromes, gastro-oesophageal reflux disease and obstructive sleep apnoea, precede the development of IPF. In contrast, others, such as pulmonary hypertension and lung cancer, often become apparent after IPF onset or during its progression. These timing patterns suggest a directional relationship in their associations. The issue is further complicated by the fact that patients often have multiple comorbidities, which may interact and exacerbate one another, creating a vicious cycle. To clarify these correlations, some studies have used causal inference methods (e.g. Mendelian randomisation) and exploration of underlying mechanisms; however, these efforts have not yet generated conclusive insights. In this review, we provide a general overview of the relationship between IPF and its comorbidities, emphasising the pathogenic mechanisms underlying each comorbidity, potential shared pathobiology with IPF and, when available, causal insights from Mendelian randomisation studies.
Collapse
Affiliation(s)
- Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Ivette Buendia-Roldan
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Kirkil G, Mogulkoc N, Jovanovic D. Risk factors and management of lung cancer in idiopathic pulmonary fibrosis: A comprehensive review. SARCOIDOSIS, VASCULITIS, AND DIFFUSE LUNG DISEASES : OFFICIAL JOURNAL OF WASOG 2025; 42:15604. [PMID: 40100103 PMCID: PMC12013682 DOI: 10.36141/svdld.v42i1.15604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/12/2024] [Indexed: 03/20/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease. Lung cancer (LC) is among the most crucial comorbidity factors in patients with IPF. IPF patients that are diagnosed with LC have a reduced mean survival time. Therapeutic strategies for LC in patients with IPF need to be adapted according to the individual treatment risk. Life-threatening acute exacerbation (AE) of IPF may occur in association with cancer treatment, thereby severely restricting the therapeutic options for IPF-associated LC. Because LC and anticancer treatments can worsen the prognosis of IPF, the prevention of LC is as critical as managing patients with IPF.
Collapse
Affiliation(s)
- Gamze Kirkil
- Department of Chest Disease, University of Firat, Elazig, Türkiye
| | - Nesrin Mogulkoc
- Department of Chest Disease, University of Ege, İzmir, Türkiye
| | | |
Collapse
|
4
|
Ghosh AJ, Coyne LP, Panda S, Menon AA, Moll M, Archer MA, Wallen J, Middleton FA, Hersh CP, Glatt SJ, Hess JL. LungGENIE: the lung gene-expression and network imputation engine. BMC Genomics 2025; 26:227. [PMID: 40065206 PMCID: PMC11892309 DOI: 10.1186/s12864-025-11412-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Few cohorts have study populations large enough to conduct molecular analysis of ex vivo lung tissue for genomic analyses. Transcriptome imputation is a non-invasive alternative with many potential applications. We present a novel transcriptome-imputation method called the Lung Gene Expression and Network Imputation Engine (LungGENIE) that uses principal components from blood gene-expression levels in a linear regression model to predict lung tissue-specific gene-expression. METHODS We use paired blood and lung RNA sequencing data from the Genotype-Tissue Expression (GTEx) project to train LungGENIE models. We replicate model performance in a unique dataset, where we generated RNA sequencing data from paired lung and blood samples available through the SUNY Upstate Biorepository (SUBR). We further demonstrate proof-of-concept application of LungGENIE models in an independent blood RNA sequencing data from the Genetic Epidemiology of COPD (COPDGene) study. RESULTS We show that LungGENIE prediction accuracies have higher correlation to measured lung tissue expression compared to existing cis-expression quantitative trait loci-based methods (median Pearson's r = 0.25, IQR 0.19-0.32), with close to half of the reliably predicted transcripts being replicated in the testing dataset. Finally, we demonstrate significant correlation of differential expression results in chronic obstructive pulmonary disease (COPD) from imputed lung tissue gene-expression and differential expression results experimentally determined from lung tissue. CONCLUSION Our results demonstrate that LungGENIE provides complementary results to existing expression quantitative trait loci-based methods and outperforms direct blood to lung results across internal cross-validation, external replication, and proof-of-concept in an independent dataset. Taken together, we establish LungGENIE as a tool with many potential applications in the study of lung diseases.
Collapse
Affiliation(s)
- Auyon J Ghosh
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, SUNY Upstate Medical University, 750 East Adams St, Syracuse, NY, 13210, USA.
| | - Liam P Coyne
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanchit Panda
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, SUNY Upstate Medical University, 750 East Adams St, Syracuse, NY, 13210, USA
| | - Aravind A Menon
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Matthew Moll
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michael A Archer
- Division of Thoracic Surgery, Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jason Wallen
- Division of Thoracic Surgery, Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Frank A Middleton
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Stephen J Glatt
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jonathan L Hess
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
5
|
Valand A, Rajasekar P, Wain LV, Clifford RL. Interplay between genetics and epigenetics in lung fibrosis. Int J Biochem Cell Biol 2025; 180:106739. [PMID: 39848439 DOI: 10.1016/j.biocel.2025.106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/15/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Lung fibrosis, including idiopathic pulmonary fibrosis (IPF), is a complex and devastating disease characterised by the progressive scarring of lung tissue leading to compromised respiratory function. Aberrantly activated fibroblasts deposit extracellular matrix components into the surrounding lung tissue, impairing lung function and capacity for gas exchange. Both genetic and epigenetic factors have been found to play a role in the pathogenesis of lung fibrosis, with emerging evidence highlighting the interplay between these two regulatory mechanisms. This review provides an overview of the current understanding of the interplay between genetics and epigenetics in lung fibrosis. We discuss the genetic variants associated with susceptibility to lung fibrosis and explore how epigenetic modifications such as DNA methylation, histone modifications, and non-coding RNA expression contribute to disease. Insights from genome-wide association studies (GWAS) and epigenome-wide association studies (EWAS) are integrated to explore the molecular mechanisms underlying lung fibrosis pathogenesis. We also discuss the potential clinical implications of genetics and epigenetics in lung fibrosis, including the development of novel therapeutic targets. Overall, this review highlights the importance of considering both genetic and epigenetic factors in the understanding and management of lung fibrosis.
Collapse
Affiliation(s)
- Anita Valand
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; Nottingham NIHR Biomedical Research Centre, Nottingham, UK; Biodiscovery Institute, University Park, University of Nottingham, UK
| | - Poojitha Rajasekar
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; Nottingham NIHR Biomedical Research Centre, Nottingham, UK; Biodiscovery Institute, University Park, University of Nottingham, UK
| | - Louise V Wain
- Department of Population Health Sciences, University of Leicester, Leicester, UK; NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Rachel L Clifford
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; Nottingham NIHR Biomedical Research Centre, Nottingham, UK; Biodiscovery Institute, University Park, University of Nottingham, UK.
| |
Collapse
|
6
|
Bridges JP, Vladar EK, Kurche JS, Krivoi A, Stancil IT, Dobrinskikh E, Hu Y, Sasse SK, Lee JS, Blumhagen RZ, Yang IV, Gerber AN, Peljto AL, Evans CM, Redente EF, Riches DW, Schwartz DA. Progressive lung fibrosis: reprogramming a genetically vulnerable bronchoalveolar epithelium. J Clin Invest 2025; 135:e183836. [PMID: 39744946 PMCID: PMC11684817 DOI: 10.1172/jci183836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is etiologically complex, with well-documented genetic and nongenetic origins. In this Review, we speculate that the development of IPF requires two hits: the first establishes a vulnerable bronchoalveolar epithelium, and the second triggers mechanisms that reprogram distal epithelia to initiate and perpetuate a profibrotic phenotype. While vulnerability of the bronchoalveolar epithelia is most often driven by common or rare genetic variants, subsequent injury of the bronchoalveolar epithelia results in persistent changes in cell biology that disrupt tissue homeostasis and activate fibroblasts. The dynamic biology of IPF can best be contextualized etiologically and temporally, including stages of vulnerability, early disease, and persistent and progressive lung fibrosis. These dimensions of IPF highlight critical mechanisms that adversely disrupt epithelial function, activate fibroblasts, and lead to lung remodeling. Together with better recognition of early disease, this conceptual approach should lead to the development of novel therapeutics directed at the etiologic and temporal drivers of lung fibrosis that will ultimately transform the care of patients with IPF from palliative to curative.
Collapse
Affiliation(s)
- James P. Bridges
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eszter K. Vladar
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan S. Kurche
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Andrei Krivoi
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ian T. Stancil
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, School of Medicine, Stanford, California, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yan Hu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sarah K. Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Joyce S. Lee
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel Z. Blumhagen
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Ivana V. Yang
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony N. Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Anna L. Peljto
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher M. Evans
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Elizabeth F. Redente
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - David W.H. Riches
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A. Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Ryu MH, Yun JH, Kim K, Gentili M, Ghosh A, Sciurba F, Barwick L, Limper A, Criner G, Brown KK, Wise R, Martinez FJ, Flaherty KR, Cho MH, Castaldi PJ, DeMeo DL, Silverman EK, Hersh CP, Morrow JD. Computational deconvolution of cell type-specific gene expression in COPD and IPF lungs reveals disease severity associations. BMC Genomics 2024; 25:1192. [PMID: 39695952 PMCID: PMC11654147 DOI: 10.1186/s12864-024-11031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are debilitating diseases associated with divergent histopathological changes in the lungs. At present, due to cost and technical limitations, profiling cell types is not practical in large epidemiology cohorts (n > 1000). Here, we used computational deconvolution to identify cell types in COPD and IPF lungs whose abundances and cell type-specific gene expression are associated with disease diagnosis and severity. RESULTS We analyzed lung tissue RNA-seq data from 1026 subjects (COPD, n = 465; IPF, n = 213; control, n = 348) from the Lung Tissue Research Consortium. We performed RNA-seq deconvolution, querying thirty-eight discrete cell-type varieties in the lungs. We tested whether deconvoluted cell-type abundance and cell type-specific gene expression were associated with disease severity. The abundance score of twenty cell types significantly differed between IPF and control lungs. In IPF subjects, eleven and nine cell types were significantly associated with forced vital capacity (FVC) and diffusing capacity for carbon monoxide (DLCO), respectively. Aberrant basaloid cells, a rare cells found in fibrotic lungs, were associated with worse FVC and DLCO in IPF subjects, indicating that this aberrant epithelial population increased with disease severity. Alveolar type 1 and vascular endothelial (VE) capillary A were decreased in COPD lungs compared to controls. An increase in macrophages and classical monocytes was associated with lower DLCO in IPF and COPD subjects. In both diseases, lower non-classical monocytes and VE capillary A cells were associated with increased disease severity. Alveolar type 2 cells and alveolar macrophages had the highest number of genes with cell type-specific differential expression by disease severity in COPD and IPF. In IPF, genes implicated in the pathogenesis of IPF, such as matrix metallopeptidase 7, growth differentiation factor 15, and eph receptor B2, were associated with disease severity in a cell type-specific manner. CONCLUSIONS Utilization of RNA-seq deconvolution enabled us to pinpoint cell types present in the lungs that are associated with the severity of COPD and IPF. This knowledge offers valuable insight into the alterations within tissues in more advanced illness, ultimately providing a better understanding of the underlying pathological processes that drive disease progression.
Collapse
Affiliation(s)
- Min Hyung Ryu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, USA, 181 Longwood Ave, 02115, MA
- Harvard Medical School, Boston, MA, USA
| | - Jeong H Yun
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, USA, 181 Longwood Ave, 02115, MA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kangjin Kim
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, USA, 181 Longwood Ave, 02115, MA
- Harvard Medical School, Boston, MA, USA
| | - Michele Gentili
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, USA, 181 Longwood Ave, 02115, MA
- Harvard Medical School, Boston, MA, USA
| | - Auyon Ghosh
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, USA
| | - Frank Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Andrew Limper
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gerard Criner
- Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Kevin K Brown
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Robert Wise
- Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Fernando J Martinez
- Department of Medicine, Weill Cornell Medical College, NYPresbyterian Hospital, New York, NY, USA
| | - Kevin R Flaherty
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, USA, 181 Longwood Ave, 02115, MA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, USA, 181 Longwood Ave, 02115, MA
- Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, MA, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, USA, 181 Longwood Ave, 02115, MA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, USA, 181 Longwood Ave, 02115, MA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, USA, 181 Longwood Ave, 02115, MA.
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Jarrett D Morrow
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, USA, 181 Longwood Ave, 02115, MA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Jurkowska RZ. Role of epigenetic mechanisms in the pathogenesis of chronic respiratory diseases and response to inhaled exposures: From basic concepts to clinical applications. Pharmacol Ther 2024; 264:108732. [PMID: 39426605 DOI: 10.1016/j.pharmthera.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Epigenetic modifications are chemical groups in our DNA (and chromatin) that determine which genes are active and which are shut off. Importantly, they integrate environmental signals to direct cellular function. Upon chronic environmental exposures, the epigenetic signature of lung cells gets altered, triggering aberrant gene expression programs that can lead to the development of chronic lung diseases. In addition to driving disease, epigenetic marks can serve as attractive lung disease biomarkers, due to early onset, disease specificity, and stability, warranting the need for more epigenetic research in the lung field. Despite substantial progress in mapping epigenetic alterations (mostly DNA methylation) in chronic lung diseases, the molecular mechanisms leading to their establishment are largely unknown. This review is meant as a guide for clinicians and lung researchers interested in epigenetic regulation with a focus on DNA methylation. It provides a short introduction to the main epigenetic mechanisms (DNA methylation, histone modifications and non-coding RNA) and the machinery responsible for their establishment and removal. It presents examples of epigenetic dysregulation across a spectrum of chronic lung diseases and discusses the current state of epigenetic therapies. Finally, it introduces the concept of epigenetic editing, an exciting novel approach to dissecting the functional role of epigenetic modifications. The promise of this emerging technology for the functional study of epigenetic mechanisms in cells and its potential future use in the clinic is further discussed.
Collapse
Affiliation(s)
- Renata Z Jurkowska
- Division of Biomedicine, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
9
|
Campitiello R, Soldano S, Gotelli E, Hysa E, Montagna P, Casabella A, Paolino S, Pizzorni C, Sulli A, Smith V, Cutolo M. The intervention of macrophages in progressive fibrosis characterizing systemic sclerosis: A systematic review. Autoimmun Rev 2024; 23:103637. [PMID: 39255852 DOI: 10.1016/j.autrev.2024.103637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND AND AIM Systemic sclerosis (SSc) is an immune mediated connective tissue disease characterized by microvascular dysfunction, aberrant immune response, and progressive fibrosis. Although the immuno-pathophysiological mechanisms underlying SSc are not fully clarified, they are often associated with a dysfunctional macrophage activation toward an alternative (M2) phenotype induced by cytokines [i.e., IL-4, IL-10, IL-13, and transforming growth factor (TGF-β)] involved in the fibrotic and anti-inflammatory process. A spectrum of macrophage activation state has been identified ranging from M1 to M2 phenotype, gene expression of phenotype markers, and functional aspects. This systematic review aims to analyze the importance of M2 macrophage polatization during the immune mediated process and the identification of specific pathways, cytokines, and chemokines involved in SSc pathogenesis. Moreover, this review provides an overview on the in vitro and in vivo studies aiming to test therapeutic strategies targeting M2 macrophages. METHODS A systematic literature review was performed according to the preferred Reported Items for Systematic Reviews and Meta-Analyses (PRISMA). The search encompassed the online medical databases PubMed and Embase up to the 30th of June 2024. Original research manuscripts (in vitro study, in vivo study), animal model and human cohort, were considered for the review. Exclusion criteria encompassed reviews, case reports, correspondences, and conference abstracts/posters. The eligible manuscripts main findings were critically analyzed, discussed, and summarized in the correspondent tables. RESULTS Out of the 77 screened abstracts, 49 papers were deemed eligible. Following a critical analysis, they were categorized according to the primary (29 original articles) and secondary (20 original articles) research objectives of this systematic review. The data from the present systematic review suggest the pivotal role of M2 macrophages differentiation and activation together with the dysregulation of the immune system in the SSc pathogenesis. Strong correlations have been found between M2 macrophage presence and clinical manifestations in both murine and human tissue samples. Interestingly, the presence of M2 cell surface markers on peripheral blood monocytes has been highlighted, suggesting a potential biomarker role for this finding. Therapeutic effects reducing M2 macrophage activities have been observed and/or tested for existing and for new drugs, demonstrating potential efficacy in modulating the pro-fibrotic immune response for treatment of SSc. CONCLUSIONS The increased M2 macrophage activation in course of SSc seems to offer new insights on the self-amplifying inflammatory and fibrotic response by the immune system on such disease. Therefore, the revaluation of immunomodulatory and ongoing antifibrotic therapies, as well as novel therapeutical approaches in SSc that contribute to limit the M2 macrophage activation are matter of intense investigations.
Collapse
Affiliation(s)
- Rosanna Campitiello
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Stefano Soldano
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy.
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy
| | - Elvis Hysa
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Paola Montagna
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy.
| | - Andrea Casabella
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Sabrina Paolino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Carmen Pizzorni
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Alberto Sulli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Vanessa Smith
- Department of Rheumatology, Ghent University Hospital, University of Ghent, Ghent, Belgium; Department of Internal Medicine, Ghent University Hospital, University of Ghent, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, Flemish Institute for Biotechnology, Inflammation Research Center, Ghent, Belgium.
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
10
|
Chen N, Sun Y, Luo P, Tang Y, Fan Y, Han L, Wang K. Association of CXCR4 gene expression and promoter methylation with chronic hepatitis B-related fibrosis/cirrhosis. Int Immunopharmacol 2024; 139:112686. [PMID: 39053226 DOI: 10.1016/j.intimp.2024.112686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Chronic hepatitis B (CHB) virus infection remains a major public health concern. In this study, the diagnostic capability of C-X-C chemokine receptor type 4 promoter methylation in patients with CHB-associated liver fibrosis/cirrhosis was evaluated. METHODS Two hundred participants were recruited, including 25 healthy controls (HCs), 60 patients with CHB and 115 patients with hepatitis B virus (HBV)-related liver fibrosis/LC. Researchers monitored the methylation and messenger ribonucleic acid (mRNA) levels of C-X-C chemokine receptor type 4 (CXCR4) in peripheral blood mononuclear cells (PBMCs). In addition, we utilized single cell sequencing to analyze the cell types highly expressing CXCR4 in HBV-related liver fibrosis/LC. RESULTS HBV-related fibrosis/cirrhosis patients exhibited a significant elevation in the expression level of CXCR4 mRNA in PBMCs compared to CHB ones. The CXCR4 promoter showed a significantly lower methylation level in patients with CHB-related fibrosis/cirrhosis than in patients with CHB. Additionally, the diagnostic area under the area under the curve (AUC) of methylation of the CXCR4 promoter for CHB -related liver fibrosis/LC exceeded liver stiffness measurement (LSM), aspartate aminotransferase-to-platelet ratio index (APRI) and fibrosis-4 score (FIB-4). Furthermore, single-cell analysis demonstrated that CXCR4 expression is closely associated with Natural Killer cells(NK cells), T lymphocytes (T cells), and monocytes. CONCLUSION The low methylation of the CXCR4 promoter holds promise as a non-invasive biomarker for detecting CHB-associated liver fibrosis/LC.
Collapse
Affiliation(s)
- Nan Chen
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yu Sun
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Pengyu Luo
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yuna Tang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Liyan Han
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China; Institute of Hepatology, Shandong University, Jinan 250012, PR China.
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China; Institute of Hepatology, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
11
|
Adegunsoye A, Kropski JA, Behr J, Blackwell TS, Corte TJ, Cottin V, Glanville AR, Glassberg MK, Griese M, Hunninghake GM, Johannson KA, Keane MP, Kim JS, Kolb M, Maher TM, Oldham JM, Podolanczuk AJ, Rosas IO, Martinez FJ, Noth I, Schwartz DA. Genetics and Genomics of Pulmonary Fibrosis: Charting the Molecular Landscape and Shaping Precision Medicine. Am J Respir Crit Care Med 2024; 210:401-423. [PMID: 38573068 PMCID: PMC11351799 DOI: 10.1164/rccm.202401-0238so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024] Open
Abstract
Recent genetic and genomic advancements have elucidated the complex etiology of idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung diseases (ILDs), emphasizing the contribution of heritable factors. This state-of-the-art review synthesizes evidence on significant genetic contributors to pulmonary fibrosis (PF), including rare genetic variants and common SNPs. The MUC5B promoter variant is unusual, a common SNP that markedly elevates the risk of early and established PF. We address the utility of genetic variation in enhancing understanding of disease pathogenesis and clinical phenotypes, improving disease definitions, and informing prognosis and treatment response. Critical research gaps are highlighted, particularly the underrepresentation of non-European ancestries in PF genetic studies and the exploration of PF phenotypes beyond usual interstitial pneumonia/IPF. We discuss the role of telomere length, often critically short in PF, and its link to progression and mortality, underscoring the genetic complexity involving telomere biology genes (TERT, TERC) and others like SFTPC and MUC5B. In addition, we address the potential of gene-by-environment interactions to modulate disease manifestation, advocating for precision medicine in PF. Insights from gene expression profiling studies and multiomic analyses highlight the promise for understanding disease pathogenesis and offer new approaches to clinical care, therapeutic drug development, and biomarker discovery. Finally, we discuss the ethical, legal, and social implications of genomic research and therapies in PF, stressing the need for sound practices and informed clinical genetic discussions. Looking forward, we advocate for comprehensive genetic testing panels and polygenic risk scores to improve the management of PF and related ILDs across diverse populations.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Pulmonary/Critical Care, and
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Juergen Behr
- Department of Medicine V, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Comprehensive Pneumology Center Munich, member of the German Center for Lung Research (DZL), Munich, Germany
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Tamera J. Corte
- Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases (OrphaLung), Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), Lyon, France
- Claude Bernard University Lyon, Lyon, France
| | - Allan R. Glanville
- Lung Transplant Unit, St. Vincent’s Hospital Sydney, Sydney, New South Wales, Australia
| | - Marilyn K. Glassberg
- Department of Medicine, Loyola Chicago Stritch School of Medicine, Chicago, Illinois
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Gary M. Hunninghake
- Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Michael P. Keane
- Department of Respiratory Medicine, St. Vincent’s University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - John S. Kim
- Department of Medicine, School of Medicine, and
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Toby M. Maher
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - David A. Schwartz
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
12
|
Cheng HP, Jiang SH, Cai J, Luo ZQ, Li XH, Feng DD. Histone deacetylases: potential therapeutic targets for idiopathic pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1426508. [PMID: 39193364 PMCID: PMC11347278 DOI: 10.3389/fcell.2024.1426508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/03/2024] [Indexed: 08/29/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease of unknown origin and the most common interstitial lung disease. However, therapeutic options for IPF are limited, and novel therapies are urgently needed. Histone deacetylases (HDACs) are enzymes that participate in balancing histone acetylation activity for chromatin remodeling and gene transcription regulation. Increasing evidence suggests that the HDAC family is linked to the development and progression of chronic fibrotic diseases, including IPF. This review aims to summarize available information on HDACs and related inhibitors and their potential applications in treating IPF. In the future, HDACs may serve as novel targets, which can aid in understanding the etiology of PF, and selective inhibition of single HDACs or disruption of HDAC genes may serve as a strategy for treating PF.
Collapse
Affiliation(s)
- Hai-peng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, China
| | - Shi-he Jiang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, China
| | - Jin Cai
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, China
| | - Zi-qiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, Hunan, China
| | - Xiao-hong Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, China
| | - Dan-dan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Lu R, Gregory A, Suryadevara R, Xu Z, Jain D, Morrow JD, Hobbs BD, Yun JH, Lichtblau N, Chase R, Curtis JL, Sauler M, Bartholmai BJ, Silverman EK, Hersh CP, Castaldi PJ, Boueiz A. Lung Transcriptomics Links Emphysema to Barrier Dysfunction and Macrophage Subpopulations. Am J Respir Crit Care Med 2024; 211:75-90. [PMID: 38935868 PMCID: PMC11755365 DOI: 10.1164/rccm.202305-0793oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/27/2024] [Indexed: 06/29/2024] Open
Abstract
RATIONALE While many studies have examined gene expression in lung tissue, the gene regulatory processes underlying emphysema are still not well understood. Finding efficient non-imaging screening methods and disease-modifying therapies has been challenging, but knowledge of the transcriptomic features of emphysema may help in this effort. OBJECTIVES Our goals were to identify emphysema-associated biological pathways through transcriptomic analysis of bulk lung tissue, to determine the lung cell types in which these emphysema-associated pathways are altered, and to detect unique and overlapping transcriptomic signatures in blood and lung samples. METHODS Using RNA-sequencing data from 446 samples in the Lung Tissue Research Consortium (LTRC) and 3,606 blood samples from the COPDGene study, we examined the transcriptomic features of chest computed tomography-quantified emphysema. We also leveraged publicly available lung single-cell RNA-sequencing data to identify cell types showing COPD-associated differential expression of the emphysema pathways found in the bulk analyses. MEASUREMENTS AND MAIN RESULTS In the bulk lung RNA-seq analysis, 1,087 differentially expressed genes and 34 dysregulated pathways were significantly associated with emphysema. We observed alternative splicing of several genes and increased activity in pluripotency and cell barrier function pathways. Lung tissue and blood samples shared differentially expressed genes and biological pathways. Multiple lung cell types displayed dysregulation of epithelial barrier function pathways, and distinct pathway activities were observed among various macrophage subpopulations. CONCLUSIONS This study identified emphysema-related changes in gene expression and alternative splicing, cell-type specific dysregulated pathways, and instances of shared pathway dysregulation between blood and lung.
Collapse
Affiliation(s)
- Robin Lu
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, Massachusetts, United States
| | - Andrew Gregory
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, Massachusetts, United States
| | - Rahul Suryadevara
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, Massachusetts, United States
| | - Zhonghui Xu
- Brigham and Women's Hospital Channing Division of Network Medicine, Boston, Massachusetts, United States
| | - Dhawal Jain
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, Massachusetts, United States
- Bayer US LLC. Pharmaceuticals, Division of Pulmonary Drug Discovery Laboratory, Boston, Massachusetts, United States
| | - Jarrett D Morrow
- Brigham & Women's Hospital, Channing Division of Network Medicine, Boston, Massachusetts, United States
| | - Brian D Hobbs
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, Massachusetts, United States
- Massachusetts, United States
| | - Jeong H Yun
- Brigham and Women's Hospital Channing Division of Network Medicine, Boston, Massachusetts, United States
| | - Noah Lichtblau
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, Massachusetts, United States
| | - Robert Chase
- Brigham and Women's Hospital Channing Division of Network Medicine, Boston, Massachusetts, United States
| | - Jeffrey L Curtis
- Pulmonary & Critical Care Medicine Section, Ann Arbor, United States
| | - Maor Sauler
- Yale School of Medicine, Pulmonay, Critical Care and Sleep, New Haven, Connecticut, United States
| | | | | | - Craig P Hersh
- Brigham and Women's Hospital, Channing Laboratory, Boston, Massachusetts, United States
| | - Peter J Castaldi
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, Massachusetts, United States
| | - Adel Boueiz
- Brigham and Women\'s Hospital, Channing Division of Network Medicine, Boston, Massachusetts, United States
- Brigham and Women\'s Hospital, Pulmonary and Critical Care Medicine, Boston, Massachusetts, United States;
| |
Collapse
|
14
|
Li HL, Wang Y, Guo D, Zhu JH, Wang Y, Dai HF, Peng SQ. Reprogramming of DNA methylation and changes of gene expression in grafted Hevea brasiliensis. FRONTIERS IN PLANT SCIENCE 2024; 15:1407700. [PMID: 38978517 PMCID: PMC11228250 DOI: 10.3389/fpls.2024.1407700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024]
Abstract
Rubber tree (Hevea brasiliensis) is reproduced by bud grafting for commercial planting, but significant intraclonal variations exist in bud-grafted clones. DNA methylation changes related to grafting may be partly responsible for intraclonal variations. In the current study, whole-genome DNA methylation profiles of grafted rubber tree plants (GPs) and their donor plants (DPs) were evaluated by whole-genome bisulfite sequencing. Data showed that DNA methylation was downregulated and DNA methylations in CG, CHG, and CHH sequences were reprogrammed in GPs, suggesting that grafting induced the reprogramming of DNA methylation. A total of 5,939 differentially methylated genes (DMGs) were identified by comparing fractional methylation levels between GPs and DPs. Transcriptional analysis revealed that there were 9,798 differentially expressed genes (DEGs) in the DP and GP comparison. A total of 1,698 overlapping genes between DEGs and DMGs were identified. These overlapping genes were markedly enriched in the metabolic pathway and biosynthesis of secondary metabolites by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Global DNA methylation and transcriptional analyses revealed that reprogramming of DNA methylation is correlated with gene expression in grafted rubber trees. The study provides a whole-genome methylome of rubber trees and an insight into the molecular mechanisms underlying the intraclonal variations existing in the commercial planting of grafted rubber trees.
Collapse
Affiliation(s)
- Hui-Liang Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences and Key Laboratory for Biology and Genetic Resources of Hainan Province, Hainan Academy of Tropical Agricultural Resource, Haikou, Hainan, China
- National Key Laboratory for Tropical Crop Breeding and Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Ying Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences and Key Laboratory for Biology and Genetic Resources of Hainan Province, Hainan Academy of Tropical Agricultural Resource, Haikou, Hainan, China
| | - Dong Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences and Key Laboratory for Biology and Genetic Resources of Hainan Province, Hainan Academy of Tropical Agricultural Resource, Haikou, Hainan, China
- National Key Laboratory for Tropical Crop Breeding and Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Jia-Hong Zhu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences and Key Laboratory for Biology and Genetic Resources of Hainan Province, Hainan Academy of Tropical Agricultural Resource, Haikou, Hainan, China
- National Key Laboratory for Tropical Crop Breeding and Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Yu Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences and Key Laboratory for Biology and Genetic Resources of Hainan Province, Hainan Academy of Tropical Agricultural Resource, Haikou, Hainan, China
- National Key Laboratory for Tropical Crop Breeding and Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Hao-Fu Dai
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences and Key Laboratory for Biology and Genetic Resources of Hainan Province, Hainan Academy of Tropical Agricultural Resource, Haikou, Hainan, China
| | - Shi-Qing Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences and Key Laboratory for Biology and Genetic Resources of Hainan Province, Hainan Academy of Tropical Agricultural Resource, Haikou, Hainan, China
| |
Collapse
|
15
|
Ryu MH, Yun JH, Kim K, Gentili M, Ghosh A, Sciurba F, Barwick L, Limper A, Criner G, Brown KK, Wise R, Martinez FJ, Flaherty KR, Cho MH, Castaldi PJ, DeMeo DL, Silverman EK, Hersh CP, Morrow JD. Computational Deconvolution of Cell Type-Specific Gene Expression in COPD and IPF Lungs Reveals Disease Severity Associations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.26.24304775. [PMID: 38585732 PMCID: PMC10996764 DOI: 10.1101/2024.03.26.24304775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are debilitating diseases associated with divergent histopathological changes in the lungs. At present, due to cost and technical limitations, profiling cell types is not practical in large epidemiology cohorts (n>1000). Here, we used computational deconvolution to identify cell types in COPD and IPF lungs whose abundances and cell type-specific gene expression are associated with disease diagnosis and severity. METHODS We analyzed lung tissue RNA-seq data from 1026 subjects (COPD, n=465; IPF, n=213; control, n=348) from the Lung Tissue Research Consortium. We performed RNA-seq deconvolution, querying thirty-eight discrete cell-type varieties in the lungs. We tested whether deconvoluted cell-type abundance and cell type-specific gene expression were associated with disease severity. RESULTS The abundance score of twenty cell types significantly differed between IPF and control lungs. In IPF subjects, eleven and nine cell types were significantly associated with forced vital capacity (FVC) and diffusing capacity for carbon monoxide (DLCO), respectively. Aberrant basaloid cells, a rare cells found in fibrotic lungs, were associated with worse FVC and DLCO in IPF subjects, indicating that this aberrant epithelial population increased with disease severity. Alveolar type 1 and vascular endothelial (VE) capillary A were decreased in COPD lungs compared to controls. An increase in macrophages and classical monocytes was associated with lower DLCO in IPF and COPD subjects. In both diseases, lower non-classical monocytes and VE capillary A cells were associated with increased disease severity. Alveolar type 2 cells and alveolar macrophages had the highest number of genes with cell type-specific differential expression by disease severity in COPD and IPF. In IPF, genes implicated in the pathogenesis of IPF, such as matrix metallopeptidase 7, growth differentiation factor 15, and eph receptor B2, were associated with disease severity in a cell type-specific manner. CONCLUSION Utilization of RNA-seq deconvolution enabled us to pinpoint cell types present in the lungs that are associated with the severity of COPD and IPF. This knowledge offers valuable insight into the alterations within tissues in more advanced illness, ultimately providing a better understanding of the underlying pathological processes that drive disease progression.
Collapse
|
16
|
Mari YM, Fraix MP, Agrawal DK. Pulmonary Fibrosis and Diabetes Mellitus: Two coins with the same face. ARCHIVES OF INTERNAL MEDICINE RESEARCH 2024; 7:53-70. [PMID: 38576768 PMCID: PMC10994216 DOI: 10.26502/aimr.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) constitutes a long-term disease with a complex pathophysiology composed of multiple molecular actors that lead to the deposition of extracellular matrix, the loss of pulmonary function and ultimately the patient's death. Despite the approval of pirfenidone and nintedanib for the treatment of the disease, lung transplant is the only long-term solution to fully recover the respiratory capacity and gain quality of life. One of the risk factors for the development of IPF is the pre-existing condition of diabetes mellitus. Both, IPF and diabetes mellitus, share similar pathological damage mechanisms, including inflammation, endoplasmic reticulum stress, mitochondrial failure, oxidative stress, senescence and signaling from glycated proteins through receptors. In this critical review article, we provide information about this interrelationship, examining molecular mediators that play an essential role in both diseases and identify targets of interest for the development of potential drugs. We review the findings of clinical trials examining the progression of IPF and how novel molecules may be used to stop this process. The results highlight the importance of early detection and addressing multiple therapeutic targets simultaneously to achieve better therapeutic efficacy and potentially reverse lung fibrosis.
Collapse
Affiliation(s)
- Yssel Mendoza Mari
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766
| | - Marcel P Fraix
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766
| |
Collapse
|
17
|
Zhou BW, Liu HM, Xu F, Jia XH. The role of macrophage polarization and cellular crosstalk in the pulmonary fibrotic microenvironment: a review. Cell Commun Signal 2024; 22:172. [PMID: 38461312 PMCID: PMC10924385 DOI: 10.1186/s12964-024-01557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/03/2024] [Indexed: 03/11/2024] Open
Abstract
Pulmonary fibrosis (PF) is a progressive interstitial inflammatory disease with a high mortality rate. Patients with PF commonly experience a chronic dry cough and progressive dyspnoea for years without effective mitigation. The pathogenesis of PF is believed to be associated with dysfunctional macrophage polarization, fibroblast proliferation, and the loss of epithelial cells. Thus, it is of great importance and necessity to explore the interactions among macrophages, fibroblasts, and alveolar epithelial cells in lung fibrosis, as well as in the pro-fibrotic microenvironment. In this review, we discuss the latest studies that have investigated macrophage polarization and activation of non-immune cells in the context of PF pathogenesis and progression. Next, we discuss how profibrotic cellular crosstalk is promoted in the PF microenvironment by multiple cytokines, chemokines, and signalling pathways. And finally, we discuss the potential mechanisms of fibrogenesis development and efficient therapeutic strategies for the disease. Herein, we provide a comprehensive summary of the vital role of macrophage polarization in PF and its profibrotic crosstalk with fibroblasts and alveolar epithelial cells and suggest potential treatment strategies to target their cellular communication in the microenvironment.
Collapse
Affiliation(s)
- Bo-Wen Zhou
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Hua-Man Liu
- Department of General Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Fei Xu
- Department of Pneumology and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xin-Hua Jia
- Department of Pneumology and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
18
|
Bernatchez L, Ferchaud AL, Berger CS, Venney CJ, Xuereb A. Genomics for monitoring and understanding species responses to global climate change. Nat Rev Genet 2024; 25:165-183. [PMID: 37863940 DOI: 10.1038/s41576-023-00657-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/22/2023]
Abstract
All life forms across the globe are experiencing drastic changes in environmental conditions as a result of global climate change. These environmental changes are happening rapidly, incur substantial socioeconomic costs, pose threats to biodiversity and diminish a species' potential to adapt to future environments. Understanding and monitoring how organisms respond to human-driven climate change is therefore a major priority for the conservation of biodiversity in a rapidly changing environment. Recent developments in genomic, transcriptomic and epigenomic technologies are enabling unprecedented insights into the evolutionary processes and molecular bases of adaptation. This Review summarizes methods that apply and integrate omics tools to experimentally investigate, monitor and predict how species and communities in the wild cope with global climate change, which is by genetically adapting to new environmental conditions, through range shifts or through phenotypic plasticity. We identify advantages and limitations of each method and discuss future research avenues that would improve our understanding of species' evolutionary responses to global climate change, highlighting the need for holistic, multi-omics approaches to ecosystem monitoring during global climate change.
Collapse
Affiliation(s)
- Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.
- Parks Canada, Office of the Chief Ecosystem Scientist, Protected Areas Establishment, Quebec City, Quebec, Canada.
| | - Chloé Suzanne Berger
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Clare J Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Amanda Xuereb
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
19
|
Yang S, Sun Y, Luo Y, Liu Y, Jiang M, Li J, Zhang Q, Bai J. Hypermethylation of PPARG-encoding gene promoter mediates fine particulate matter-induced pulmonary fibrosis by regulating the HMGB1/NLRP3 axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116068. [PMID: 38330871 DOI: 10.1016/j.ecoenv.2024.116068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
The inflammatory response induced by fine particulate matter (PM2.5), a common class of air pollutants, is an important trigger for the development of pulmonary fibrosis. However, the specific mechanisms responsible for this phenomenon are yet to be fully understood. To investigate the mechanisms behind the onset and progression of lung fibrosis owing to PM2.5 exposure, both rats and human bronchial epithelial cells were subjected to varying concentrations of PM2.5. The involvement of the PPARG/HMGB1/NLRP3 signaling pathway in developing lung fibrosis caused by PM2.5 was validated through the utilization of a PPARG agonist (rosiglitazone), a PPARG inhibitor (GW9662), and an HMGB1 inhibitor (glycyrrhizin). These outcomes highlighted the downregulation of PPARG expression and activation of the HMGB1/NLRP3 signaling pathway triggered by PM2.5, thereby eliciting inflammatory responses and promoting pulmonary fibrosis. Additionally, PM2.5 exposure-induced DNA hypermethylation of PPARG-encoding gene promoter downregulated PPARG expression. Moreover, the DNA methyltransferase inhibitor 5-azacytidine mitigated the hypermethylation of the PPARG-encoding gene promoter triggered by PM2.5. In conclusion, the HMGB1/NLRP3 signaling pathway was activated in pulmonary fibrosis triggered by PM2.5 through the hypermethylation of the PPARG-encoding gene promoter.
Collapse
Affiliation(s)
- Siyu Yang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 638000, China; Chongqing Nanan District Center for Disease Control and Prevention, Chongqing 400066, China
| | - Yaochuan Sun
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Yajun Luo
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 638000, China
| | - Yingyi Liu
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 638000, China
| | - Mengyu Jiang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 638000, China
| | - Jiayou Li
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 638000, China
| | - Qibing Zhang
- Department of pharmacy, The Second People's Hospital of Deyang City, Deyang 618000, China.
| | - Jun Bai
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 638000, China.
| |
Collapse
|
20
|
Mahalanobish S, Ghosh S, Sil PC. Genetic Underpinnings of Pulmonary Fibrosis: An Overview. Cardiovasc Hematol Agents Med Chem 2024; 22:367-374. [PMID: 38284708 DOI: 10.2174/0118715257261006231207113809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/10/2023] [Accepted: 09/26/2023] [Indexed: 01/30/2024]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disorder, in which genetic and environmental factors are involved in disease onset. Although, by definition, the disease is considered idiopathic in nature, evidence-based studies have indicated familial cases of pulmonary fibrosis, in which genetic factors contribute to IPF pathogenesis. METHODS Both common as well as rare genetic variants are associated with sporadic as well as familial forms of IPF. Although clinical inferences of the genetic association have still not been explored properly, observation-based studies have found a genotypic influence on disease development and outcome. RESULTS Based on genetic studies, individuals with a risk of IPF can be easily identified and can be classified more precisely. Identification of genetic variants also helps to develop more effective therapeutic approaches. CONCLUSION Further comprehensive research is needed to get a blueprint of IPF pathogenesis. The rapidly evolving field of genetic engineering and molecular biology, along with the bioinformatics approach, will possibly explore a new horizon very soon to achieve this goal.
Collapse
Affiliation(s)
- Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| |
Collapse
|
21
|
Liu T, Li T, Ke S. Role of the CASZ1 transcription factor in tissue development and disease. Eur J Med Res 2023; 28:562. [PMID: 38053207 DOI: 10.1186/s40001-023-01548-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
The zinc finger transcription factor gene, CASZ1/Castor (Castor zinc finger 1), initially identified in Drosophila, plays a critical role in neural, cardiac, and cardiovascular development, exerting a complex, multifaceted influence on cell fate and tissue morphogenesis. During neurogenesis, CASZ1 exhibits dynamic expression from early embryonic development to the perinatal period, constituting a key regulator in this process. Additionally, CASZ1 controls the transition between neurogenesis and gliomagenesis. During human cardiovascular system development, CASZ1 is essential for cardiomyocyte differentiation, cardiac morphogenesis, and vascular morphology homeostasis and formation. The deletion or inactivation of CASZ1 mutations can lead to human developmental diseases or tumors, including congenital heart disease, cardiovascular disease, and neuroblastoma. CASZ1 can be used as a biomarker for disease prevention and diagnosis as well as a prognostic indicator for cancer. This review explores the unique functions of CASZ1 in tissue morphogenesis and associated diseases, offering new insights for elucidating the molecular mechanisms underlying diseases and identifying potential therapeutic targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Tiantian Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, Henan, China.
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Tao Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shaorui Ke
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| |
Collapse
|
22
|
Villaseñor-Altamirano AB, Jain D, Jeong Y, Menon JA, Kamiya M, Haider H, Manandhar R, Sheikh MDA, Athar H, Merriam LT, Ryu MH, Sasaki T, Castaldi PJ, Rao DA, Sholl LM, Vivero M, Hersh CP, Zhou X, Veerkamp J, Yun JH, Kim EY, the MGB-Bayer Pulmonary Drug Discovery Lab. Activation of CD8 + T Cells in Chronic Obstructive Pulmonary Disease Lung. Am J Respir Crit Care Med 2023; 208:1177-1195. [PMID: 37756440 PMCID: PMC10868372 DOI: 10.1164/rccm.202305-0924oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023] Open
Abstract
Rationale: Despite the importance of inflammation in chronic obstructive pulmonary disease (COPD), the immune cell landscape in the lung tissue of patients with mild-moderate disease has not been well characterized at the single-cell and molecular level. Objectives: To define the immune cell landscape in lung tissue from patients with mild-moderate COPD at single-cell resolution. Methods: We performed single-cell transcriptomic, proteomic, and T-cell receptor repertoire analyses on lung tissue from patients with mild-moderate COPD (n = 5, Global Initiative for Chronic Obstructive Lung Disease I or II), emphysema without airflow obstruction (n = 5), end-stage COPD (n = 2), control (n = 6), or donors (n = 4). We validated in an independent patient cohort (N = 929) and integrated with the Hhip+/- murine model of COPD. Measurements and Main Results: Mild-moderate COPD lungs have increased abundance of two CD8+ T cell subpopulations: cytotoxic KLRG1+TIGIT+CX3CR1+ TEMRA (T effector memory CD45RA+) cells, and DNAM-1+CCR5+ T resident memory (TRM) cells. These CD8+ T cells interact with myeloid and alveolar type II cells via IFNG and have hyperexpanded T-cell receptor clonotypes. In an independent cohort, the CD8+KLRG1+ TEMRA cells are increased in mild-moderate COPD lung compared with control or end-stage COPD lung. Human CD8+KLRG1+ TEMRA cells are similar to CD8+ T cells driving inflammation in an aging-related murine model of COPD. Conclusions: CD8+ TEMRA cells are increased in mild-moderate COPD lung and may contribute to inflammation that precedes severe disease. Further study of these CD8+ T cells may have therapeutic implications for preventing severe COPD.
Collapse
Affiliation(s)
| | - Dhawal Jain
- Pulmonary Drug Discovery Laboratory, Pharmaceuticals Research and Development, Bayer US LLC, Boston, Massachusetts; and
| | - Yunju Jeong
- Division of Pulmonary and Critical Care Medicine
- Harvard Medical School, Boston, Massachusetts
| | | | - Mari Kamiya
- Division of Pulmonary and Critical Care Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Hibah Haider
- Division of Pulmonary and Critical Care Medicine
| | | | | | - Humra Athar
- Division of Pulmonary and Critical Care Medicine
- Pulmonary Drug Discovery Laboratory, Pharmaceuticals Research and Development, Bayer US LLC, Boston, Massachusetts; and
| | | | - Min Hyung Ryu
- Channing Division of Network Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Takanori Sasaki
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Peter J. Castaldi
- Channing Division of Network Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Deepak A. Rao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Lynette M. Sholl
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Marina Vivero
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Craig P. Hersh
- Channing Division of Network Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Xiaobo Zhou
- Channing Division of Network Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Justus Veerkamp
- Pharmaceuticals, Research & Early Development Precision Medicine RED (preMED), Pharmaceuticals Research and Development, Bayer AG, Wuppertal, Germany
| | - Jeong H. Yun
- Channing Division of Network Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Edy Y. Kim
- Division of Pulmonary and Critical Care Medicine
- Harvard Medical School, Boston, Massachusetts
| | - the MGB-Bayer Pulmonary Drug Discovery Lab
- Division of Pulmonary and Critical Care Medicine
- Channing Division of Network Medicine, and
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, and
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Pulmonary Drug Discovery Laboratory, Pharmaceuticals Research and Development, Bayer US LLC, Boston, Massachusetts; and
- Pharmaceuticals, Research & Early Development Precision Medicine RED (preMED), Pharmaceuticals Research and Development, Bayer AG, Wuppertal, Germany
| |
Collapse
|
23
|
Yun JH, Khan MAW, Ghosh A, Hobbs BD, Castaldi PJ, Hersh CP, Miller PG, Cool CD, Sciurba F, Barwick L, Limper AH, Flaherty K, Criner GJ, Brown K, Wise R, Martinez F, Silverman EK, DeMeo D, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, Cho MH, Bick AG. Clonal Somatic Mutations in Chronic Lung Diseases Are Associated with Reduced Lung Function. Am J Respir Crit Care Med 2023; 208:1196-1205. [PMID: 37788444 PMCID: PMC10868367 DOI: 10.1164/rccm.202303-0395oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/03/2023] [Indexed: 10/05/2023] Open
Abstract
Rationale: Constantly exposed to the external environment and mutagens such as tobacco smoke, human lungs have one of the highest somatic mutation rates among all human organs. However, the relationship of these mutations to lung disease and function is not known. Objectives: To identify the prevalence and significance of clonal somatic mutations in chronic lung diseases. Methods: We analyzed the clonal somatic mutations from 1,251 samples of normal and diseased noncancerous lung tissue RNA sequencing with paired whole-genome sequencing from the Lung Tissue Research Consortium. We examined the associations of somatic mutations with lung function, disease status, and computationally deconvoluted cell types in two of the most common diseases represented in our dataset, chronic obstructive pulmonary disease (COPD; 29%) and idiopathic pulmonary fibrosis (IPF; 13%). Measurements and Main Results: Clonal somatic mutational burden was associated with reduced lung function in both COPD and IPF. We identified an increased prevalence of clonal somatic mutations in individuals with IPF compared with normal control subjects and individuals with COPD independent of age and smoking status. IPF clonal somatic mutations were enriched in disease-related and airway epithelial-expressed genes such as MUC5B in IPF. Patients who were MUC5B risk variant carriers had increased odds of developing somatic mutations of MUC5B that were explained by increased expression of MUC5B. Conclusions: Our identification of an increased prevalence of clonal somatic mutation in diseased lung that correlates with airway epithelial gene expression and disease severity highlights for the first time the role of somatic mutational processes in lung disease genetics.
Collapse
Affiliation(s)
- Jeong H. Yun
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - M. A. Wasay Khan
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Auyon Ghosh
- Pulmonary Critical Care and Sleep Medicine, Upstate Medical University, Syracuse, New York
| | - Brian D. Hobbs
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Peter J. Castaldi
- Channing Division of Network Medicine and
- Harvard Medical School, Boston, Massachusetts
| | - Craig P. Hersh
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Peter G. Miller
- Harvard Medical School, Boston, Massachusetts
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
| | - Carlyne D. Cool
- Division of Pathology, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Frank Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Andrew H. Limper
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kevin Flaherty
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Gerard J. Criner
- Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kevin Brown
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Robert Wise
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland; and
| | - Fernando Martinez
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Edwin K. Silverman
- Channing Division of Network Medicine and
- Harvard Medical School, Boston, Massachusetts
| | - Dawn DeMeo
- Channing Division of Network Medicine and
- Harvard Medical School, Boston, Massachusetts
| | - NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
- Pulmonary Critical Care and Sleep Medicine, Upstate Medical University, Syracuse, New York
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Division of Pathology, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Emmes, Frederick, Maryland
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan
- Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
- Department of Medicine, National Jewish Health, Denver, Colorado
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland; and
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Michael H. Cho
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
24
|
Jing C, Fu R, Liu X, Zang G, Zhu X, Wang C, Zhang W. A comprehensive cuproptosis score and associated gene signatures reveal prognostic and immunological features of idiopathic pulmonary fibrosis. Front Immunol 2023; 14:1268141. [PMID: 38035073 PMCID: PMC10682708 DOI: 10.3389/fimmu.2023.1268141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Background Cuproptosis, the most recently identified and regulated cell death, depends on copper ions in vivo. Copper regulates the pathogenesis of Idiopathic pulmonary fibrosis (IPF), but the mechanism of action underlying cuproptosis in IPF remains unclear. Methods We identified three cuproptosis patterns based on ten cuproptosis-related genes using unsupervised consensus clustering. We quantified these patterns using a PCA algorithm to construct a cuproptosis score. ssGSEA and the Cibersort algorithm assessed the immune profile of IPF patients. GSEA and GSVA were used to analyze the functional differences in different molecular patterns. Drug susceptibility prediction based on cuproptosis scores and meaningful gene markers was eventually screened in combination with external public data sets,in vitro experiments and our cases. Results Of the three types of cuproptosis-related clusters identified in the study, patients in the clusterA, geneclusterB, and score-high groups showed improved prognoses. Moreover, each cluster exhibited differential immune characteristics, with the subtype showing a poorer prognosis associated with an immune overreaction. Cuproptosis score can be an independent risk factor for predicting the prognosis of IPF patients. GSEA showed a significant functional correlation between the score and cuproptosis. The genes AKAP9, ANK3, C6orf106, LYRM7, and MBNL1, were identified as prognostic-related signatures in IPF patients. The functional role of immune regulation in IPF was further explored by correlating essential genes with immune factors. Also, the nomogram constructed by cumulative information from gene markers and cuproptosis score showed reliable clinical application. Conclusions Cuproptosis patterns differ significantly in the prognosis and immune characteristics of IPF patients. The cuproptosis score and five gene signatures can provide a reliable reference in the prognosis and diagnosis of IPF.
Collapse
Affiliation(s)
- Chuanqing Jing
- Clinical Department of Integrated Traditional Chinese and Western Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong Fu
- Clinical Department of Integrated Traditional Chinese and Western Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Guodong Zang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Xue Zhu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Can Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| |
Collapse
|
25
|
Moll M, Peljto AL, Kim JS, Xu H, Debban CL, Chen X, Menon A, Putman RK, Ghosh AJ, Saferali A, Nishino M, Hatabu H, Hobbs BD, Hecker J, McDermott G, Sparks JA, Wain LV, Allen RJ, Tobin MD, Raby BA, Chun S, Silverman EK, Zamora AC, Ortega VE, Garcia CK, Barr RG, Bleecker ER, Meyers DA, Kaner RJ, Rich SS, Manichaikul A, Rotter JI, Dupuis J, O’Connor GT, Fingerlin TE, Hunninghake GM, Schwartz DA, Cho MH. A Polygenic Risk Score for Idiopathic Pulmonary Fibrosis and Interstitial Lung Abnormalities. Am J Respir Crit Care Med 2023; 208:791-801. [PMID: 37523715 PMCID: PMC10563194 DOI: 10.1164/rccm.202212-2257oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/31/2023] [Indexed: 08/02/2023] Open
Abstract
Rationale: In addition to rare genetic variants and the MUC5B locus, common genetic variants contribute to idiopathic pulmonary fibrosis (IPF) risk. The predictive power of common variants outside the MUC5B locus for IPF and interstitial lung abnormalities (ILAs) is unknown. Objectives: We tested the predictive value of IPF polygenic risk scores (PRSs) with and without the MUC5B region on IPF, ILA, and ILA progression. Methods: We developed PRSs that included (PRS-M5B) and excluded (PRS-NO-M5B) the MUC5B region (500-kb window around rs35705950-T) using an IPF genome-wide association study. We assessed PRS associations with area under the receiver operating characteristic curve (AUC) metrics for IPF, ILA, and ILA progression. Measurements and Main Results: We included 14,650 participants (1,970 IPF; 1,068 ILA) from six multi-ancestry population-based and case-control cohorts. In cases excluded from genome-wide association study, the PRS-M5B (odds ratio [OR] per SD of the score, 3.1; P = 7.1 × 10-95) and PRS-NO-M5B (OR per SD, 2.8; P = 2.5 × 10-87) were associated with IPF. Participants in the top PRS-NO-M5B quintile had ∼sevenfold odds for IPF compared with those in the first quintile. A clinical model predicted IPF (AUC, 0.61); rs35705950-T and PRS-NO-M5B demonstrated higher AUCs (0.73 and 0.7, respectively), and adding both genetic predictors to a clinical model yielded the highest performance (AUC, 0.81). The PRS-NO-M5B was associated with ILA (OR, 1.25) and ILA progression (OR, 1.16) in European ancestry participants. Conclusions: A common genetic variant risk score complements the MUC5B variant to identify individuals at high risk of interstitial lung abnormalities and pulmonary fibrosis.
Collapse
Affiliation(s)
- Matthew Moll
- Division of Pulmonary and Critical Care Medicine, and
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anna L. Peljto
- Department of Medicine and
- Department of Immunology, Division of Pulmonary Medicine, University of Colorado, Aurora, Colorado
| | - John S. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Catherine L. Debban
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Xianfeng Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Phoenix, Arizona
| | - Aravind Menon
- Division of Pulmonary and Critical Care Medicine, and
| | | | - Auyon J. Ghosh
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, State University of New York Upstate Medical Center, Syracuse, New York
| | - Aabida Saferali
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mizuki Nishino
- Center for Pulmonary Functional Imaging, Department of Radiology
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology
| | - Brian D. Hobbs
- Division of Pulmonary and Critical Care Medicine, and
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julian Hecker
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gregory McDermott
- Division of Rheumatology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Jeffrey A. Sparks
- Division of Rheumatology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Louise V. Wain
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Richard J. Allen
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Martin D. Tobin
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Benjamin A. Raby
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Pediatrics
- Division of Pulmonary Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sung Chun
- Division of Pulmonary Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Edwin K. Silverman
- Division of Pulmonary and Critical Care Medicine, and
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ana C. Zamora
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Phoenix, Arizona
| | - Victor E. Ortega
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Phoenix, Arizona
| | - Christine K. Garcia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - R. Graham Barr
- Department of Medicine and
- Division of General Medicine, Department of Epidemiology, Columbia University Medical Center, New York, New York
| | - Eugene R. Bleecker
- Division of Genetics, Genomics, and Precision Medicine, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Deborah A. Meyers
- Division of Genetics, Genomics, and Precision Medicine, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Robert J. Kaner
- Division of Pulmonary Medicine, Weill Cornell School of Medicine, New York, New York
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles Medical Center, Torrance, California
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University Faculty of Medicine and Health Sciences, Montreal, Quebec, Canada
| | - George T. O’Connor
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts; and
| | - Tasha E. Fingerlin
- The National Jewish Health Cohen Family Asthma Institute, Division of Allergy and Immunology, National Jewish Health, Denver, Colorado
| | | | - David A. Schwartz
- Department of Medicine and
- Department of Immunology, Division of Pulmonary Medicine, University of Colorado, Aurora, Colorado
| | - Michael H. Cho
- Division of Pulmonary and Critical Care Medicine, and
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Pavel AB, Garrison C, Luo L, Liu G, Taub D, Xiao J, Juan-Guardela B, Tedrow J, Alekseyev YO, Yang IV, Geraci MW, Sciurba F, Schwartz DA, Kaminski N, Beane J, Spira A, Lenburg ME, Campbell JD. Integrative genetic and genomic networks identify microRNA associated with COPD and ILD. Sci Rep 2023; 13:13076. [PMID: 37567908 PMCID: PMC10421936 DOI: 10.1038/s41598-023-39751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and interstitial lung disease (ILD) are clinically and molecularly heterogeneous diseases. We utilized clustering and integrative network analyses to elucidate roles for microRNAs (miRNAs) and miRNA isoforms (isomiRs) in COPD and ILD pathogenesis. Short RNA sequencing was performed on 351 lung tissue samples of COPD (n = 145), ILD (n = 144) and controls (n = 64). Five distinct subclusters of samples were identified including 1 COPD-predominant cluster and 2 ILD-predominant clusters which associated with different clinical measurements of disease severity. Utilizing 262 samples with gene expression and SNP microarrays, we built disease-specific genetic and expression networks to predict key miRNA regulators of gene expression. Members of miR-449/34 family, known to promote airway differentiation by repressing the Notch pathway, were among the top connected miRNAs in both COPD and ILD networks. Genes associated with miR-449/34 members in the disease networks were enriched among genes that increase in expression with airway differentiation at an air-liquid interface. A highly expressed isomiR containing a novel seed sequence was identified at the miR-34c-5p locus. 47% of the anticorrelated predicted targets for this isomiR were distinct from the canonical seed sequence for miR-34c-5p. Overexpression of the canonical miR-34c-5p and the miR-34c-5p isomiR with an alternative seed sequence down-regulated NOTCH1 and NOTCH4. However, only overexpression of the isomiR down-regulated genes involved in Ras signaling such as CRKL and GRB2. Overall, these findings elucidate molecular heterogeneity inherent across COPD and ILD patients and further suggest roles for miR-34c in regulating disease-associated gene-expression.
Collapse
Affiliation(s)
- Ana B Pavel
- Department of Medicine, Boston University School of Medicine, 72 East Concord St, Boston, MA, 02118, USA.
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA.
| | - Carly Garrison
- Department of Medicine, Boston University School of Medicine, 72 East Concord St, Boston, MA, 02118, USA
| | - Lingqi Luo
- Department of Medicine, Boston University School of Medicine, 72 East Concord St, Boston, MA, 02118, USA
| | - Gang Liu
- Department of Medicine, Boston University School of Medicine, 72 East Concord St, Boston, MA, 02118, USA
| | - Daniel Taub
- Department of Medicine, Boston University School of Medicine, 72 East Concord St, Boston, MA, 02118, USA
| | - Ji Xiao
- Department of Medicine, Boston University School of Medicine, 72 East Concord St, Boston, MA, 02118, USA
| | - Brenda Juan-Guardela
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John Tedrow
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Norman Regional Medical Center, Norman, Oklahoma, USA
| | - Yuriy O Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ivana V Yang
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Mark W Geraci
- Department of Medicine, University of Colorado, Aurora, CO, USA
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Frank Sciurba
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - David A Schwartz
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Naftali Kaminski
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jennifer Beane
- Department of Medicine, Boston University School of Medicine, 72 East Concord St, Boston, MA, 02118, USA
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | - Avrum Spira
- Department of Medicine, Boston University School of Medicine, 72 East Concord St, Boston, MA, 02118, USA
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | - Marc E Lenburg
- Department of Medicine, Boston University School of Medicine, 72 East Concord St, Boston, MA, 02118, USA
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Joshua D Campbell
- Department of Medicine, Boston University School of Medicine, 72 East Concord St, Boston, MA, 02118, USA.
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA.
| |
Collapse
|
27
|
Stanel SC, Callum J, Rivera-Ortega P. Genetic and environmental factors in interstitial lung diseases: current and future perspectives on early diagnosis of high-risk cohorts. Front Med (Lausanne) 2023; 10:1232655. [PMID: 37601795 PMCID: PMC10435297 DOI: 10.3389/fmed.2023.1232655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Within the wide scope of interstitial lung diseases (ILDs), familial pulmonary fibrosis (FPF) is being increasingly recognized as a specific entity, with earlier onset, faster progression, and suboptimal responses to immunosuppression. FPF is linked to heritable pathogenic variants in telomere-related genes (TRGs), surfactant-related genes (SRGs), telomere shortening (TS), and early cellular senescence. Telomere abnormalities have also been identified in some sporadic cases of fibrotic ILD. Air pollution and other environmental exposures carry additive risk to genetic predisposition in pulmonary fibrosis. We provide a perspective on how these features impact on screening strategies for relatives of FPF patients, interstitial lung abnormalities, ILD multi-disciplinary team (MDT) discussion, and disparities and barriers to genomic testing. We also describe our experience with establishing a familial interstitial pneumonia (FIP) clinic and provide guidance on how to identify patients with telomere dysfunction who would benefit most from genomic testing.
Collapse
Affiliation(s)
- Stefan Cristian Stanel
- Interstitial Lung Disease Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jack Callum
- Interstitial Lung Disease Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Pilar Rivera-Ortega
- Interstitial Lung Disease Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
28
|
Jian H, Poetsch A. CASZ1: Current Implications in Cardiovascular Diseases and Cancers. Biomedicines 2023; 11:2079. [PMID: 37509718 PMCID: PMC10377389 DOI: 10.3390/biomedicines11072079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Castor zinc finger 1 (CASZ1) is a C2H2 zinc finger family protein that has two splicing variants, CASZ1a and CASZ1b. It is involved in multiple physiological processes, such as tissue differentiation and aldosterone antagonism. Genetic and epigenetic alternations of CASZ1 have been characterized in multiple cardiovascular disorders, such as congenital heart diseases, chronic venous diseases, and hypertension. However, little is known about how CASZ1 mechanically participates in the pathogenesis of these diseases. Over the past decades, at first glance, paradoxical influences on cell behaviors and progressions of different cancer types have been discovered for CASZ1, which may be explained by a "double-agent" role for CASZ1. In this review, we discuss the physiological function of CASZ1, and focus on the association of CASZ1 aberrations with the pathogenesis of cardiovascular diseases and cancers.
Collapse
Affiliation(s)
- Heng Jian
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Ansgar Poetsch
- Queen Mary School, Nanchang University, Nanchang 330006, China
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| |
Collapse
|
29
|
Zhao T, Zhou Z, Zhao S, Wan H, Li H, Hou J, Wang J, Qian M, Shen X. Vincamine as an agonist of G protein-coupled receptor 40 effectively ameliorates pulmonary fibrosis in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154919. [PMID: 37392673 DOI: 10.1016/j.phymed.2023.154919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/27/2023] [Accepted: 06/04/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is an irreversible and fatal lung disease with limited therapeutic options. G protein-coupled receptor 40 (GPR40) has been developed as a promising therapeutic target for metabolic disorders and functions potently in varied pathological and physiological processes. Vincamine (Vin) is a monoterpenoid indole alkaloid originated from Madagascar periwinkle and was reported as a GPR40 agonist in our previous work. PURPOSE Here, we aimed to clarify the role of GPR40 in PF pathogenesis by using the determined GPR40 agonist Vin as a probe and explore the potential of Vin in ameliorating PF in mice. METHODS Pulmonary GPR40 expression alterations were assessed in both PF patients and bleomycin-induced PF mice (PF mice). Vin was used to evaluate the therapeutic potential of GPR40 activation for PF and the underlying mechanism was intensively investigated by assays against GPR40 knockout (Ffar1-/-) mice and the cells transfected with si-GPR40 in vitro. RESULTS Pulmonary GPR40 expression level was highly downregulated in PF patients and PF mice. Pulmonary GPR40 deletion (Ffar1-/-) exacerbated pulmonary fibrosis as evidenced by the increases in mortality, dysfunctional lung index, activated myofibroblasts and extracellular matrix (ECM) deposition in PF mice. Vin-mediated pulmonary GPR40 activation ameliorated PF-like pathology in mice. Mechanistically, Vin suppressed ECM deposition by GPR40/β-arrestin2/SMAD3 pathway, repressed inflammatory response by GPR40/NF-κB/NLRP3 pathway and inhibited angiogenesis by decreasing GPR40-mediated vascular endothelial growth factor (VEGF) expression in the region of interface to normal parenchyma in pulmonary fibrotic tissues of mice. CONCLUSION Pulmonary GPR40 activation shows promise as a therapeutic strategy for PF and Vin exhibits high potential in treating this disease.
Collapse
Affiliation(s)
- Tong Zhao
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiruo Zhou
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shimei Zhao
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huiqi Wan
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Honglin Li
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiwei Hou
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
| | - Jiaying Wang
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 210023, China
| | - Minyi Qian
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Xu Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 210023, China.
| |
Collapse
|
30
|
Sumey JL, Johnston PC, Harrell AM, Caliari SR. Hydrogel mechanics regulate fibroblast DNA methylation and chromatin condensation. Biomater Sci 2023; 11:2886-2897. [PMID: 36880435 PMCID: PMC10329270 DOI: 10.1039/d2bm02058k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Cellular mechanotransduction plays a central role in fibroblast activation during fibrotic disease progression, leading to increased tissue stiffness and reduced organ function. While the role of epigenetics in disease mechanotransduction has begun to be appreciated, little is known about how substrate mechanics, particularly the timing of mechanical inputs, regulate epigenetic changes such as DNA methylation and chromatin reorganization during fibroblast activation. In this work, we engineered a hyaluronic acid hydrogel platform with independently tunable stiffness and viscoelasticity to model normal (storage modulus, G' ∼ 0.5 kPa, loss modulus, G'' ∼ 0.05 kPa) to increasingly fibrotic (G' ∼ 2.5 and 8 kPa, G'' ∼ 0.05 kPa) lung mechanics. Human lung fibroblasts exhibited increased spreading and nuclear localization of myocardin-related transcription factor-A (MRTF-A) with increasing substrate stiffness within 1 day, with these trends holding steady for longer cultures. However, fibroblasts displayed time-dependent changes in global DNA methylation and chromatin organization. Fibroblasts initially displayed increased DNA methylation and chromatin decondensation on stiffer hydrogels, but both of these measures decreased with longer culture times. To investigate how culture time affected the responsiveness of fibroblast nuclear remodeling to mechanical signals, we engineered hydrogels amenable to in situ secondary crosslinking, enabling a transition from a compliant substrate mimicking normal tissue to a stiffer substrate resembling fibrotic tissue. When stiffening was initiated after only 1 day of culture, fibroblasts rapidly responded and displayed increased DNA methylation and chromatin decondensation, similar to fibroblasts on static stiffer hydrogels. Conversely, when fibroblasts experienced later stiffening at day 7, they showed no changes in DNA methylation and chromatin condensation, suggesting the induction of a persistent fibroblast phenotype. These results highlight the time-dependent nuclear changes associated with fibroblast activation in response to dynamic mechanical perturbations and may provide mechanisms to target for controlling fibroblast activation.
Collapse
Affiliation(s)
- Jenna L Sumey
- Department of Chemical Engineering, University of Virginia, USA.
| | | | | | - Steven R Caliari
- Department of Chemical Engineering, University of Virginia, USA.
- Department of Biomedical Engineering, University of Virginia, USA
| |
Collapse
|
31
|
Effendi WI, Nagano T. Epigenetics Approaches toward Precision Medicine for Idiopathic Pulmonary Fibrosis: Focus on DNA Methylation. Biomedicines 2023; 11:biomedicines11041047. [PMID: 37189665 DOI: 10.3390/biomedicines11041047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Genetic information is not transmitted solely by DNA but by the epigenetics process. Epigenetics describes molecular missing link pathways that could bridge the gap between the genetic background and environmental risk factors that contribute to the pathogenesis of pulmonary fibrosis. Specific epigenetic patterns, especially DNA methylation, histone modifications, long non-coding, and microRNA (miRNAs), affect the endophenotypes underlying the development of idiopathic pulmonary fibrosis (IPF). Among all the epigenetic marks, DNA methylation modifications have been the most widely studied in IPF. This review summarizes the current knowledge concerning DNA methylation changes in pulmonary fibrosis and demonstrates a promising novel epigenetics-based precision medicine.
Collapse
|
32
|
Goobie GC, Li X, Ryerson CJ, Carlsten C, Johannson KA, Fabisiak JP, Lindell KO, Chen X, Gibson KF, Kass DJ, Nouraie SM, Zhang Y. PM 2.5 and constituent component impacts on global DNA methylation in patients with idiopathic pulmonary fibrosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120942. [PMID: 36574806 DOI: 10.1016/j.envpol.2022.120942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease (ILD) whose outcomes are worsened with air pollution exposures. DNA methylation (DNAm) patterns are altered in lungs and blood from patients with IPF, but the relationship between air pollution exposures and DNAm patterns in IPF remains unexplored. This study aimed to evaluate the association of PM2.5 and constituent components with global DNAm in patients with IPF. Patients enrolled in either the University of Pittsburgh Simmons Center for ILD Registry (Simmons) or the U.S.-wide Pulmonary Fibrosis Foundation (PFF) Patient Registry with peripheral blood DNA samples were included. The averages of monthly exposures to PM2.5 and constituents over 1-year and 3-months pre-blood collection were matched to patient residential coordinates using satellite-derived hybrid models. Global DNAm percentage (%5 mC) was determined using the ELISA-based MethylFlash assay. Associations of pollutants with %5 mC were assessed using beta-regression, Cox models for mortality, and linear regression for baseline lung function. Mediation proportion was determined for models where pollutant-mortality and pollutant-%5 mC associations were significant. Inclusion criteria were met by 313 Simmons and 746 PFF patients with IPF. Higher PM2.5 3-month exposures prior to blood collection were associated with higher %5 mC in Simmons (β = 0.02, 95%CI 0.0003-0.05, p = 0.047), with trends in the same direction in the 1-year period in both cohorts. Higher exposures to sulfate, nitrate, ammonium, and black carbon constituents were associated with higher %5 mC in multiple models. Percent 5 mC was not associated with IPF mortality or lung function, but was found to mediate between 2 and 5% of the associations of PM2.5, sulfate, and ammonium with mortality. In conclusion, we found that higher global DNAm is a novel biomarker for increased PM2.5 and anthropogenic constituent exposure in patients with IPF. Mechanistic research is needed to determine if DNAm has pathogenic relevance in mediating associations between pollutants and mortality in IPF.
Collapse
Affiliation(s)
- Gillian C Goobie
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Xiaoyun Li
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Christopher J Ryerson
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.
| | - Christopher Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.
| | - Kerri A Johannson
- Division of Respiratory Medicine, Department of Medicine, University of Calgary, Calgary, AB, Canada.
| | - James P Fabisiak
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Kathleen O Lindell
- Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; College of Nursing, Medical University of South Carolina, Charleston, SC, USA.
| | - Xiaoping Chen
- Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Kevin F Gibson
- Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Daniel J Kass
- Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - S Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yingze Zhang
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
Liu Y, Cheng D, Wang Y, Xi S, Wang T, Sun W, Li G, Ma D, Zhou S, Li Z, Ni C. UHRF1-mediated ferroptosis promotes pulmonary fibrosis via epigenetic repression of GPX4 and FSP1 genes. Cell Death Dis 2022; 13:1070. [PMID: 36566325 PMCID: PMC9789966 DOI: 10.1038/s41419-022-05515-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
Pulmonary fibrosis (PF), as an end-stage clinical phenotype of interstitial lung diseases (ILDs), is frequently initiated after alveolar injury, in which ferroptosis has been identified as a critical event aggravating the pathophysiological progression of this disease. Here in, a comprehensive analysis of two mouse models of pulmonary fibrosis developed in our lab demonstrated that lung damage-induced ferroptosis of alveolar epithelial Type2 cells (AEC2) significantly accumulates during the development of pulmonary fibrosis while ferroptosis suppressor genes GPX4 and FSP1 are dramatically inactivated. Mechanistically, upregulation of de novo methylation regulator Uhrf1 sensitively elevates CpG site methylation levels in promoters of both GPX4 and FSP1 genes and induces the epigenetic repression of both genes, subsequently leading to ferroptosis in chemically interfered AEC2 cells. Meanwhile, specific inhibition of UHRF1 highly arrests the ferroptosis formation and blocks the progression of pulmonary fibrosis in both of our research models. This study first, to our knowledge, identified the involvement of Uhrf1 in mediating the ferroptosis of chemically injured AEC2s via de novo promoter-specific methylation of both GPX4 and FSP1 genes, which consequently accelerates the process of pulmonary fibrosis. The above findings also strongly suggested Uhrf1 as a novel potential target in the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yi Liu
- grid.89957.3a0000 0000 9255 8984Gusu School, Nanjing Medical University, Nanjing, 211166 China
| | - Demin Cheng
- grid.89957.3a0000 0000 9255 8984Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Yue Wang
- grid.89957.3a0000 0000 9255 8984Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Sichuan Xi
- grid.48336.3a0000 0004 1936 8075Thoracic Epigenetics Section, Thoracic Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892 USA
| | - Ting Wang
- grid.412676.00000 0004 1799 0784Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000 China
| | - Wenqing Sun
- grid.89957.3a0000 0000 9255 8984Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Guanru Li
- grid.89957.3a0000 0000 9255 8984Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Dongyu Ma
- grid.89957.3a0000 0000 9255 8984Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Siyun Zhou
- grid.89957.3a0000 0000 9255 8984Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Ziwei Li
- grid.89957.3a0000 0000 9255 8984Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Chunhui Ni
- grid.89957.3a0000 0000 9255 8984Gusu School, Nanjing Medical University, Nanjing, 211166 China ,grid.89957.3a0000 0000 9255 8984Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| |
Collapse
|
34
|
Zheng J, Wang J, Qin X, Li K, Gao Q, Yang M, Liu H, Li S, Chang X, Sun Y. LncRNA HOTAIRM1 Involved in Nano NiO-Induced Pulmonary Fibrosis via Regulating PRKCB DNA Methylation-Mediated JNK/c-Jun Pathway. Toxicol Sci 2022; 190:64-78. [PMID: 36066426 DOI: 10.1093/toxsci/kfac092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nickel oxide nanoparticles (Nano NiO) lead to pulmonary fibrosis, and the mechanisms are associated with epigenetics. This study aimed to clarify the regulatory relationship among long noncoding RNA HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1), DNA methylation and expression of protein kinase C beta (PRKCB), and JNK/c-Jun pathway in Nano NiO-induced pulmonary fibrosis. Therefore, we constructed the rat pulmonary fibrosis model by intratracheal instillation of Nano NiO twice a week for 9 weeks and established the collagen deposition model by treating BEAS-2B cells with Nano NiO for 24 h. Here, the DNA methylation pattern was analyzed by whole-genome bisulfite sequencing in rat fibrotic lung tissues. Then, we integrated mRNA transcriptome data and found 93 DNA methylation genes with transcriptional significance. Meanwhile, the data showed that Nano NiO caused the down-regulation of lncRNA HOTAIRM1, the hypomethylation, and up-regulation of PRKCB2, JNK/c-Jun pathway activation, and collagen deposition (the up-regulated Col-I and α-SMA) both in vivo and in vitro. DNMTs inhibitor 5-AZDC attenuated Nano NiO-induced PRKCB2 expression, JNK/c-Jun pathway activation, and collagen deposition, but overexpression of PRKCB2 aggravated the changes mentioned indicators in Nano NiO-induced BEAS-2B cells. Furthermore, JNK/c-Jun pathway inhibitor (SP600125) alleviated Nano NiO-induced excessive collagen formation. Additionally, overexpression of HOTAIRM1 restrained the PRKCB hypomethylation, the activation of JNK/c-Jun pathway, and collagen formation induced by Nano NiO in BEAS-2B cells. In conclusion, these findings demonstrated that HOTAIRM1 could arrest Nano NiO-induced pulmonary fibrosis by suppressing the PRKCB DNA methylation-mediated JNK/c-Jun pathway.
Collapse
Affiliation(s)
- Jinfa Zheng
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jinyu Wang
- Institute of Anthropotomy and Histoembryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xin Qin
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Kun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qing Gao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Mengmeng Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sheng Li
- Department of Public Health, The First People's Hospital of Lanzhou City, Lanzhou 730050, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
35
|
Wang Y, Zhang L, Huang T, Wu GR, Zhou Q, Wang FX, Chen LM, Sun F, Lv Y, Xiong F, Zhang S, Yu Q, Yang P, Gu W, Xu Y, Zhao J, Zhang H, Xiong W, Wang CY. The methyl-CpG-binding domain 2 facilitates pulmonary fibrosis by orchestrating fibroblast to myofibroblast differentiation. Eur Respir J 2022; 60:2003697. [PMID: 35086828 PMCID: PMC9520034 DOI: 10.1183/13993003.03697-2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/09/2021] [Indexed: 11/05/2022]
Abstract
Although DNA methylation has been recognised in the pathogenesis of idiopathic pulmonary fibrosis (IPF), the exact mechanisms are yet to be fully addressed. Herein, we demonstrate that lungs originated from IPF patients and mice after bleomycin (BLM)-induced pulmonary fibrosis are characterised by altered DNA methylation along with overexpression in myofibroblasts of methyl-CpG-binding domain 2 (MBD2), a reader responsible for interpreting DNA methylome-encoded information. Specifically, depletion of Mbd2 in fibroblasts or myofibroblasts protected mice from BLM-induced pulmonary fibrosis coupled with a significant reduction of fibroblast differentiation. Mechanistically, transforming growth factor (TGF)-β1 induced a positive feedback regulatory loop between TGF-β receptor I (TβRI), Smad3 and Mbd2, and erythroid differentiation regulator 1 (Erdr1). TGF-β1 induced fibroblasts to undergo a global DNA hypermethylation along with Mbd2 overexpression in a TβRI/Smad3 dependent manner, and Mbd2 selectively bound to the methylated CpG DNA within the Erdr1 promoter to repress its expression, through which it enhanced TGF-β/Smad signalling to promote differentiation of fibroblast into myofibroblast and exacerbate pulmonary fibrosis. Therefore, enhancing Erdr1 expression strikingly reversed established pulmonary fibrosis. Collectively, our data support that strategies aimed at silencing Mbd2 or increasing Erdr1 could be viable therapeutic approaches for prevention and treatment of pulmonary fibrosis in clinical settings.
Collapse
Affiliation(s)
- Yi Wang
- The Center for Biomedical Research, Dept of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- These authors contributed equally to this work
| | - Lei Zhang
- The Center for Biomedical Research, Dept of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- These authors contributed equally to this work
| | - Teng Huang
- The Center for Biomedical Research, Dept of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Rao Wu
- The Center for Biomedical Research, Dept of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Zhou
- The Center for Biomedical Research, Dept of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fa-Xi Wang
- The Center for Biomedical Research, Dept of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long-Min Chen
- The Center for Biomedical Research, Dept of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Dept of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- The Center for Biomedical Research, Dept of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Dept of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qilin Yu
- The Center for Biomedical Research, Dept of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yang
- The Center for Biomedical Research, Dept of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weikuan Gu
- Dept of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yongjian Xu
- The Center for Biomedical Research, Dept of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianping Zhao
- The Center for Biomedical Research, Dept of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Jianping Zhao, Huilan Zhang, Weining Xiong and Cong-Yi Wang contributed equally to this article as lead authors and supervised the work
| | - Huilan Zhang
- The Center for Biomedical Research, Dept of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Jianping Zhao, Huilan Zhang, Weining Xiong and Cong-Yi Wang contributed equally to this article as lead authors and supervised the work
| | - Weining Xiong
- The Center for Biomedical Research, Dept of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Dept of Respiratory and Critical Care Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Jianping Zhao, Huilan Zhang, Weining Xiong and Cong-Yi Wang contributed equally to this article as lead authors and supervised the work
| | - Cong-Yi Wang
- The Center for Biomedical Research, Dept of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Jianping Zhao, Huilan Zhang, Weining Xiong and Cong-Yi Wang contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
36
|
Mailleux AA, Crestani B. New insights into methylome alterations and consequences during myofibroblastic differentiation in pulmonary fibrosis. Eur Respir J 2022; 60:60/3/2201536. [PMID: 36175026 DOI: 10.1183/13993003.01536-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Arnaud A Mailleux
- Université Paris Cité, Inserm, Physiopathologie et épidémiologie des maladies respiratoires, Paris, France
| | - Bruno Crestani
- Université Paris Cité, Inserm, Physiopathologie et épidémiologie des maladies respiratoires, Paris, France.,Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, FHU APOLLO, Paris, France
| |
Collapse
|
37
|
Duan J, Zhong B, Fan Z, Zhang H, Xu M, Zhang X, Sanders YY. DNA methylation in pulmonary fibrosis and lung cancer. Expert Rev Respir Med 2022; 16:519-528. [PMID: 35673969 DOI: 10.1080/17476348.2022.2085091] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Juan Duan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhihua Fan
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Mengmeng Xu
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 901 19 Street South, BMRII Room 408, Birmingham, AL 35294, USA
| |
Collapse
|
38
|
Ghosh AJ, Hobbs BD, Yun JH, Saferali A, Moll M, Xu Z, Chase RP, Morrow J, Ziniti J, Sciurba F, Barwick L, Limper AH, Flaherty K, Criner G, Brown KK, Wise R, Martinez FJ, McGoldrick D, Cho MH, DeMeo DL, Silverman EK, Castaldi PJ, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium CrapoJames D.SilvermanEdwin K.123MakeBarry J.ReganElizabeth A.BeatyTerriBegumFerdouseCastaldiPeter J.13ChoMichael123DeMeoDawn L.123BoueizAdel R.ForemanMarilyn G.Halper-StrombergEitanHaydenLystra P.HershCraig P.123HetmanskiJacquelineHobbsBrian D.123HokansonJohn E.LairdNanLangeChristophLutzSharon M.McDonaldMerry-LynnParkerMargaret M.ProkopenkoDmitryQiaoDandiSakornsakolpatPhuwanatWanEmily S.WonSunghoCentenoJuan PabloCharbonnierJean-PaulCoxsonHarvey O.GalbanCraig J.HanMeiLan K.HoffmanEric A.HumphriesStephenJacobsonFrancine L.JudyPhilip F.KazerooniElla A.KluiberAlexLynchDavid A.NardelliPietroNewell JrJohn D.NotaryAleenaOhAndreaRossJames C.EsteparRaul San JoseSchroederJoyceSierenJeredStoelBerend C.TschirrenJuergVan BeekEdwinvan GinnekenBramRikxoortEva vanSanchez-FerreroGonzalo VegasVeitelLucasWashkoGeorge R.WilsonCarla G.JensenRobertEverettDouglasCrooksJimPratteKatherineStrandMattKinneyGregoryYoungKendra A.BhattSurya P.BonJessica4DiazAlejandro A.MurraySusanSolerXavierBowlerRussell P.KechrisKaterinaBanaei-KashaniFarnoushCurtisJeffrey L.PernicanoPerry G.HananiaNicolaAtikMustafaBoriekAladinGuntupalliKalpathaGuyElizabethParulekarAmitGraham BarrR.AustinJohnD’SouzaBelindaThomashowByronMacIntyreNeilJrPage McAdamsH.WashingtonLaceyFlenaughEricTerpenningSilanthMcEvoyCharleneTashjianJosephWiseRobert10BrownRobertHanselNadia N.HortonKarenLambertAllisonPutchaNirupamaCasaburiRichardAdamiAlessandraBudoffMatthewFischerHansPorszaszJanosRossiterHarryStringerWilliamSharafkhanehAmirLanCharlieWendtChristineBellBrianKunisakiKen M.RosielloRichardPaceDavidCrinerGerard8CiccolellaDavidCordovaFrancisDassChandraD’AlonzoGilbertDesaiParagJacobsMichaelKelsenStevenKimVictorJames MamaryA.MarchettiNathanielSattiAditiShenoyKartikSteinerRobert M.SwiftAlexSwiftIreneVega-SanchezMaria ElenaDransfieldMarkBaileyWilliamIyerAnandNathHrudayaMichael WellsJ.ConradDouglasYenAndrewComellasAlejandro P.HothKarin F.ThompsonBradLabakiWassimVummidiDharshanBillingsJoanneBegnaudAbbieAllenTadashiSciurbaFrank4ChandraDivay4FuhrmanCarl4WeissfeldJoel4AnzuetoAntonioAdamsSandraMaselli-CaceresDiegoRuizMario E.SingHarjinder, Hersh CP. Lung tissue shows divergent gene expression between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Respir Res 2022; 23:97. [PMID: 35449067 PMCID: PMC9026726 DOI: 10.1186/s12931-022-02013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are characterized by shared exposures and clinical features, but distinct genetic and pathologic features exist. These features have not been well-studied using large-scale gene expression datasets. We hypothesized that there are divergent gene, pathway, and cellular signatures between COPD and IPF. METHODS We performed RNA-sequencing on lung tissues from individuals with IPF (n = 231) and COPD (n = 377) compared to control (n = 267), defined as individuals with normal spirometry. We grouped the overlapping differential expression gene sets based on direction of expression and examined the resultant sets for genes of interest, pathway enrichment, and cell composition. Using gene set variation analysis, we validated the overlap group gene sets in independent COPD and IPF data sets. RESULTS We found 5010 genes differentially expressed between COPD and control, and 11,454 genes differentially expressed between IPF and control (1% false discovery rate). 3846 genes overlapped between IPF and COPD. Several pathways were enriched for genes upregulated in COPD and downregulated in IPF; however, no pathways were enriched for genes downregulated in COPD and upregulated in IPF. There were many myeloid cell genes with increased expression in COPD but decreased in IPF. We found that the genes upregulated in COPD but downregulated in IPF were associated with lower lung function in the independent validation cohorts. CONCLUSIONS We identified a divergent gene expression signature between COPD and IPF, with increased expression in COPD and decreased in IPF. This signature is associated with worse lung function in both COPD and IPF.
Collapse
Affiliation(s)
- Auyon J. Ghosh
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Brian D. Hobbs
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Jeong H. Yun
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Aabida Saferali
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Matthew Moll
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Zhonghui Xu
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Robert P. Chase
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Jarrett Morrow
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - John Ziniti
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Frank Sciurba
- grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Lucas Barwick
- grid.280434.90000 0004 0459 5494The Emmes Company, Rockville, MD USA
| | - Andrew H. Limper
- grid.66875.3a0000 0004 0459 167XDivision of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Kevin Flaherty
- grid.214458.e0000000086837370Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Healthy System, Ann Arbor, MI USA
| | - Gerard Criner
- grid.264727.20000 0001 2248 3398Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA USA
| | - Kevin K. Brown
- grid.240341.00000 0004 0396 0728Department of Medicine, National Jewish Health, Denver, CO USA
| | - Robert Wise
- grid.21107.350000 0001 2171 9311Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Fernando J. Martinez
- grid.5386.8000000041936877XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY USA
| | - Daniel McGoldrick
- grid.34477.330000000122986657Northwest Genomics Center, University of Washington, Seattle, WA USA
| | - Michael H. Cho
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Dawn L. DeMeo
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Edwin K. Silverman
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Peter J. Castaldi
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | | | - Craig P. Hersh
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| |
Collapse
|
39
|
Preisendörfer S, Ishikawa Y, Hennen E, Winklmeier S, Schupp JC, Knüppel L, Fernandez IE, Binzenhöfer L, Flatley A, Juan-Guardela BM, Ruppert C, Guenther A, Frankenberger M, Hatz RA, Kneidinger N, Behr J, Feederle R, Schepers A, Hilgendorff A, Kaminski N, Meinl E, Bächinger HP, Eickelberg O, Staab-Weijnitz CA. FK506-Binding Protein 11 Is a Novel Plasma Cell-Specific Antibody Folding Catalyst with Increased Expression in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:1341. [PMID: 35456020 PMCID: PMC9027113 DOI: 10.3390/cells11081341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Antibodies are central effectors of the adaptive immune response, widespread used therapeutics, but also potentially disease-causing biomolecules. Antibody folding catalysts in the plasma cell are incompletely defined. Idiopathic pulmonary fibrosis (IPF) is a fatal chronic lung disease with increasingly recognized autoimmune features. We found elevated expression of FK506-binding protein 11 (FKBP11) in IPF lungs where FKBP11 specifically localized to antibody-producing plasma cells. Suggesting a general role in plasma cells, plasma cell-specific FKBP11 expression was equally observed in lymphatic tissues, and in vitro B cell to plasma cell differentiation was accompanied by induction of FKBP11 expression. Recombinant human FKBP11 was able to refold IgG antibody in vitro and inhibited by FK506, strongly supporting a function as antibody peptidyl-prolyl cis-trans isomerase. Induction of ER stress in cell lines demonstrated induction of FKBP11 in the context of the unfolded protein response in an X-box-binding protein 1 (XBP1)-dependent manner. While deficiency of FKBP11 increased susceptibility to ER stress-mediated cell death in an alveolar epithelial cell line, FKBP11 knockdown in an antibody-producing hybridoma cell line neither induced cell death nor decreased expression or secretion of IgG antibody. Similarly, antibody secretion by the same hybridoma cell line was not affected by knockdown of the established antibody peptidyl-prolyl isomerase cyclophilin B. The results are consistent with FKBP11 as a novel XBP1-regulated antibody peptidyl-prolyl cis-trans isomerase and indicate significant redundancy in the ER-resident folding machinery of antibody-producing hybridoma cells.
Collapse
Affiliation(s)
- Stefan Preisendörfer
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Yoshihiro Ishikawa
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; (Y.I.); (H.P.B.)
| | - Elisabeth Hennen
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Stephan Winklmeier
- Institute of Clinical Neuroimmunology, Biomedical Center and LMU Klinikum, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (S.W.); (E.M.)
| | - Jonas C. Schupp
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (J.C.S.); (B.M.J.-G.); (N.K.)
- Department of Respiratory Medicine, Hannover Medical School, Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Larissa Knüppel
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Isis E. Fernandez
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
- Department of Medicine V, LMU Klinikum, Ludwig-Maximilians-Universität München, Member of the German Center of Lung Research (DZL), 81377 Munich, Germany; (N.K.); (J.B.)
| | - Leonhard Binzenhöfer
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, 85764 Neuherberg, Germany; (A.F.); (R.F.); (A.S.)
| | - Brenda M. Juan-Guardela
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (J.C.S.); (B.M.J.-G.); (N.K.)
| | - Clemens Ruppert
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), 35392 Giessen, Germany; (C.R.); (A.G.)
| | - Andreas Guenther
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), 35392 Giessen, Germany; (C.R.); (A.G.)
| | - Marion Frankenberger
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Rudolf A. Hatz
- Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, LMU Klinikum, Ludwig-Maximilians-Universität München, 81377 Munich, Germany;
- Asklepios Fachkliniken München-Gauting, 82131 Gauting, Germany
| | - Nikolaus Kneidinger
- Department of Medicine V, LMU Klinikum, Ludwig-Maximilians-Universität München, Member of the German Center of Lung Research (DZL), 81377 Munich, Germany; (N.K.); (J.B.)
| | - Jürgen Behr
- Department of Medicine V, LMU Klinikum, Ludwig-Maximilians-Universität München, Member of the German Center of Lung Research (DZL), 81377 Munich, Germany; (N.K.); (J.B.)
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, 85764 Neuherberg, Germany; (A.F.); (R.F.); (A.S.)
| | - Aloys Schepers
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, 85764 Neuherberg, Germany; (A.F.); (R.F.); (A.S.)
| | - Anne Hilgendorff
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (J.C.S.); (B.M.J.-G.); (N.K.)
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and LMU Klinikum, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (S.W.); (E.M.)
| | - Hans Peter Bächinger
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; (Y.I.); (H.P.B.)
| | - Oliver Eickelberg
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Claudia A. Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| |
Collapse
|
40
|
RNA Sequencing of Epithelial Cell/Fibroblastic Foci Sandwich in Idiopathic Pulmonary Fibrosis: New Insights on the Signaling Pathway. Int J Mol Sci 2022; 23:ijms23063323. [PMID: 35328744 PMCID: PMC8954546 DOI: 10.3390/ijms23063323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/27/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease characterized by irreversible scarring of the distal lung. IPF is best described by its histopathological pattern of usual interstitial pneumonia (UIP), characterized by spatial heterogeneity with alternating interstitial fibrosis and areas of normal lung, and temporal heterogeneity of fibrosis characterized by scattered fibroblastic foci (FF), dense acellular collagen and honeycomb changes. FF, comprising aggregated fibroblasts/myofibroblasts surrounded by metaplastic epithelial cells (EC), are the cardinal pathological lesion and their presence strongly correlates with disease progression and mortality. We hypothesized that the EC/FF sandwich from patients with UIP/IPF has a distinct molecular signature which could offer new insights into the crosstalk of these two crucial actors in the disease. Laser capture microdissection with RNAseq was used to investigate the transcriptome of the EC/FF sandwich from IPF patients versus controls (primary spontaneous pneumothorax). Differentially expressed gene analysis identified 23 up-regulated genes mainly related to epithelial dysfunction. Gene ontology analysis highlighted the activation of different pathways, mainly related to EC, immune response and programmed cell death. This study provides novel insights into the IPF pathogenetic pathways and suggests that targeting some of these up-regulated pathways (particularly those related to secreto-protein/mucin dysfunction) may be beneficial in IPF. Further studies in a larger number of lung samples, ideally from patients with early and advanced disease, are needed to validate these findings.
Collapse
|
41
|
Chakraborty A, Mastalerz M, Ansari M, Schiller HB, Staab-Weijnitz CA. Emerging Roles of Airway Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11061050. [PMID: 35326501 PMCID: PMC8947093 DOI: 10.3390/cells11061050] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with incompletely understood aetiology and limited treatment options. Traditionally, IPF was believed to be mainly caused by repetitive injuries to the alveolar epithelium. Several recent lines of evidence, however, suggest that IPF equally involves an aberrant airway epithelial response, which contributes significantly to disease development and progression. In this review, based on recent clinical, high-resolution imaging, genetic, and single-cell RNA sequencing data, we summarize alterations in airway structure, function, and cell type composition in IPF. We furthermore give a comprehensive overview on the genetic and mechanistic evidence pointing towards an essential role of airway epithelial cells in IPF pathogenesis and describe potentially implicated aberrant epithelial signalling pathways and regulation mechanisms in this context. The collected evidence argues for the investigation of possible therapeutic avenues targeting these processes, which thus represent important future directions of research.
Collapse
|
42
|
Ghosh AJ, Hobbs BD, Moll M, Saferali A, Boueiz A, Yun JH, Sciurba F, Barwick L, Limper AH, Flaherty K, Criner G, Brown KK, Wise R, Martinez FJ, Lomas D, Castaldi PJ, Carey VJ, DeMeo DL, Cho MH, Silverman EK, Hersh CP. Alpha-1 Antitrypsin MZ Heterozygosity Is an Endotype of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2022; 205:313-323. [PMID: 34762809 PMCID: PMC8886988 DOI: 10.1164/rccm.202106-1404oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023] Open
Abstract
Rationale: Multiple studies have demonstrated an increased risk of chronic obstructive pulmonary disease (COPD) in heterozygous carriers of the AAT (alpha-1 antitrypsin) Z allele. However, it is not known if MZ subjects with COPD are phenotypically different from noncarriers (MM genotype) with COPD. Objectives: To assess if MZ subjects with COPD have different clinical features compared with MM subjects with COPD. Methods: Genotypes of SERPINA1 were ascertained by using whole-genome sequencing data in three independent studies. We compared outcomes between MM subjects with COPD and MZ subjects with COPD in each study and combined the results in a meta-analysis. We performed longitudinal and survival analyses to compare outcomes in MM and MZ subjects with COPD over time. Measurements and Main Results: We included 290 MZ subjects with COPD and 6,184 MM subjects with COPD across the three studies. MZ subjects had a lower FEV1% predicted and greater quantitative emphysema on chest computed tomography scans compared with MM subjects. In a meta-analysis, the FEV1 was 3.9% lower (95% confidence interval [CI], -6.55% to -1.26%) and emphysema (the percentage of lung attenuation areas <-950 HU) was 4.14% greater (95% CI, 1.44% to 6.84%) in MZ subjects. We found one gene, PGF (placental growth factor), to be differentially expressed in lung tissue from one study between MZ subjects and MM subjects. Conclusions: Carriers of the AAT Z allele (those who were MZ heterozygous) with COPD had lower lung function and more emphysema than MM subjects with COPD. Taken with the subtle differences in gene expression between the two groups, our findings suggest that MZ subjects represent an endotype of COPD.
Collapse
Affiliation(s)
- Auyon J. Ghosh
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Brian D. Hobbs
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Matthew Moll
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Adel Boueiz
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Jeong H. Yun
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Frank Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Andrew H. Limper
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kevin Flaherty
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Gerard Criner
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania
| | - Kevin K. Brown
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Robert Wise
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - David Lomas
- University College London Respiratory Division of Medicine, University College London, London, United Kingdom
| | - Peter J. Castaldi
- Channing Division of Network Medicine and
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Vincent J. Carey
- Channing Division of Network Medicine and
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Dawn L. DeMeo
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Michael H. Cho
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Edwin K. Silverman
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Craig P. Hersh
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| |
Collapse
|
43
|
Sauler M, McDonough JE, Adams TS, Kothapalli N, Barnthaler T, Werder RB, Schupp JC, Nouws J, Robertson MJ, Coarfa C, Yang T, Chioccioli M, Omote N, Cosme C, Poli S, Ayaub EA, Chu SG, Jensen KH, Gomez JL, Britto CJ, Raredon MSB, Niklason LE, Wilson AA, Timshel PN, Kaminski N, Rosas IO. Characterization of the COPD alveolar niche using single-cell RNA sequencing. Nat Commun 2022; 13:494. [PMID: 35078977 PMCID: PMC8789871 DOI: 10.1038/s41467-022-28062-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide, however our understanding of cell specific mechanisms underlying COPD pathobiology remains incomplete. Here, we analyze single-cell RNA sequencing profiles of explanted lung tissue from subjects with advanced COPD or control lungs, and we validate findings using single-cell RNA sequencing of lungs from mice exposed to 10 months of cigarette smoke, RNA sequencing of isolated human alveolar epithelial cells, functional in vitro models, and in situ hybridization and immunostaining of human lung tissue samples. We identify a subpopulation of alveolar epithelial type II cells with transcriptional evidence for aberrant cellular metabolism and reduced cellular stress tolerance in COPD. Using transcriptomic network analyses, we predict capillary endothelial cells are inflamed in COPD, particularly through increased CXCL-motif chemokine signaling. Finally, we detect a high-metallothionein expressing macrophage subpopulation enriched in advanced COPD. Collectively, these findings highlight cell-specific mechanisms involved in the pathobiology of advanced COPD.
Collapse
Affiliation(s)
- Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA.
| | - John E McDonough
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA.
| | - Taylor S Adams
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Neeharika Kothapalli
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Thomas Barnthaler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Rhiannon B Werder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Jonas C Schupp
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease Hannover, German Lung Research Center (DZL), Hannover, Germany
| | - Jessica Nouws
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Matthew J Robertson
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Tao Yang
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Maurizio Chioccioli
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Norihito Omote
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Carlos Cosme
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Sergio Poli
- Department of Internal Medicine, Mount Sinai Medical Center, Miami, FL, USA
| | - Ehab A Ayaub
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah G Chu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jose L Gomez
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Clemente J Britto
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Micha Sam B Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
| | - Laura E Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ivan O Rosas
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
44
|
Mei Q, Liu Z, Zuo H, Yang Z, Qu J. Idiopathic Pulmonary Fibrosis: An Update on Pathogenesis. Front Pharmacol 2022; 12:797292. [PMID: 35126134 PMCID: PMC8807692 DOI: 10.3389/fphar.2021.797292] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, lethal fibrotic lung disease that occurs primarily in middle-aged and elderly adults. It is a major cause of morbidity and mortality. With an increase in life expectancy, the economic burden of IPF is expected to continuously rise in the near future. Although the exact pathophysiological mechanisms underlying IPF remain not known. Significant progress has been made in our understanding of the pathogenesis of this devastating disease in last decade. The current paradigm assumes that IPF results from sustained or repetitive lung epithelial injury and subsequent activation of fibroblasts and myofibroblast differentiation. Persistent myofibroblast phenotype contributes to excessive deposition of the extracellular matrix (ECM) and aberrant lung repair, leading to tissue scar formation, distortion of the alveolar structure, and irreversible loss of lung function. Treatments of patients with IPF by pirfenidone and nintedanib have shown significant reduction of lung function decline and slowing of disease progression in patients with IPF. However, these drugs do not cure the disease. In this review, we discuss recent advances on the pathogenesis of IPF and highlight the development of novel therapeutic strategies against the disease.
Collapse
Affiliation(s)
| | | | | | | | - Jing Qu
- *Correspondence: Zhenhua Yang, ; Jing Qu,
| |
Collapse
|
45
|
Šrut M. Ecotoxicological epigenetics in invertebrates: Emerging tool for the evaluation of present and past pollution burden. CHEMOSPHERE 2021; 282:131026. [PMID: 34111635 DOI: 10.1016/j.chemosphere.2021.131026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The effect of environmental pollution on epigenetic changes and their heredity in affected organisms is of major concern as such changes can play a significant role in adaptation to changing environmental conditions. Changes of epigenetic marks including DNA methylation, histone modifications, and non-coding RNA's can induce changes in gene transcription leading to physiological long-term changes or even transgenerational inheritance. Such mechanisms have until recently been scarcely studied in invertebrate organisms, mainly focusing on model species including Caenorhabditis elegans and Daphnia magna. However, more data are becoming available, particularly focused on DNA methylation changes caused by anthropogenic pollutants in a wide range of invertebrates. This review examines the literature from field and laboratory studies utilising invertebrate species exposed to environmental pollutants and their effect on DNA methylation. Possible mechanisms of epigenetic modifications and their role on physiology and adaptation as well as the incidence of intergenerational and transgenerational inheritance are discussed. Furthermore, critical research challenges are defined and the way forward is proposed. Future studies should focus on the use of next generation sequencing tools to define invertebrate methylomes under environmental stress in higher resolution, those data should further be linked to gene expression patterns and phenotypes and detailed studies focusing on transgenerational effects are encouraged. Moreover, studies of other epigenetic mechanisms in various invertebrate species, apart from DNA methylation would provide better understanding of interconnected cross-talk between epigenetic marks. Taken together incorporating epigenetic studies in ecotoxicology context presents a promising tool for development of sensitive biomarkers for environmental stress assessment.
Collapse
Affiliation(s)
- Maja Šrut
- University of Innsbruck, Institute of Zoology, Technikerstraße 25, 6020, Innsbruck, Austria.
| |
Collapse
|
46
|
Stevenson AW, Melton PE, Moses EK, Wallace HJ, Wood FM, Rea S, Danielsen PL, Alghamdi M, Hortin N, Borowczyk J, Deng Z, Manzur M, Fear MW. A methylome and transcriptome analysis of normal human scar cells reveals a role for FOXF2 in scar maintenance. J Invest Dermatol 2021; 142:1489-1498.e12. [PMID: 34687743 DOI: 10.1016/j.jid.2021.08.445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022]
Abstract
Scar is maintained for life and increases in size during periods of growth such as puberty. Epigenetic changes in fibroblasts after injury may underpin the maintenance and growth of scar. Here, we, combined methylome and transcriptome data from normotrophic mature scar and contralateral uninjured normal skin fibroblasts to identify potential regulators of scar maintenance. 219 significantly differentially expressed and 1199 significantly differentially methylated promoters were identified, of which there were 12 genes both significantly differentially methylated and expressed. Of these the two transcription factors, Forkhead Box F2 (FOXF2) and Mohawk Homeobox (MKX) were selected for further analysis. Immunocytochemistry and qPCR suggested FOXF2 but not MKX had elevated expression in scar fibroblasts. Using RNASeq, FOXF2 knockdown was shown to significantly reduce expression of extracellular matrix related genes, whilst MKX did not appear to affect similar pathways. Finally, FOXF2 knockdown was also shown to significantly decrease collagen I production in scar and keloid fibroblasts. This study provides insights into the maintenance of normotrophic scar, suggesting FOXF2 is an important regulator of this process. Targeting genes responsible for maintenance of scar phenotype may ameliorate scar appearance and improve patient outcomes in the future.
Collapse
Affiliation(s)
- Andrew W Stevenson
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia.
| | - Phillip E Melton
- School of Population and Global Health, The University of Western Australia, Perth, Australia; School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, Australia; Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia
| | - Eric K Moses
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, Australia; Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Hilary J Wallace
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia; School of Medicine, The University of Notre Dame Australia, Fremantle, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia; Burns Service of Western Australia, Perth Children's Hospital and Fiona Stanley Hospital, Perth, Australia
| | - Suzanne Rea
- Burns Service of Western Australia, Perth Children's Hospital and Fiona Stanley Hospital, Perth, Australia
| | - Patricia L Danielsen
- Department of Dermatology and Copenhagen Wound Healing Center, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mansour Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia; Genomics and Personalised Medicine Unit, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Nicole Hortin
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
| | - Julia Borowczyk
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Zhenjun Deng
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
| | - Mitali Manzur
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
47
|
Ballinger MN, Mora AL. The Epigenomic Landscape: A Cornerstone of Macrophage Phenotype Regulation in the Fibrotic Lung. Am J Respir Crit Care Med 2021; 204:881-883. [PMID: 34478358 PMCID: PMC8534622 DOI: 10.1164/rccm.202107-1760ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Megan N Ballinger
- Division of Pulmonary, Critical Care and Sleep Medicine and Dorothy M. Davis Heart and Lung Research Institute The Ohio State University Columbus, Ohio
| | - Ana L Mora
- Division of Pulmonary, Critical Care and Sleep Medicine and Dorothy M. Davis Heart and Lung Research Institute The Ohio State University Columbus, Ohio
| |
Collapse
|
48
|
Konigsberg IR, Borie R, Walts AD, Cardwell J, Rojas M, Metzger F, Hauck SM, Fingerlin TE, Yang IV, Schwartz DA. Molecular Signatures of Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 65:430-441. [PMID: 34038697 PMCID: PMC8525208 DOI: 10.1165/rcmb.2020-0546oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/24/2021] [Indexed: 11/24/2022] Open
Abstract
Molecular patterns and pathways in idiopathic pulmonary fibrosis (IPF) have been extensively investigated, but few studies have assimilated multiomic platforms to provide an integrative understanding of molecular patterns that are relevant in IPF. Herein, we combine the coding and noncoding transcriptomes, DNA methylomes, and proteomes from IPF and healthy lung tissue to identify molecules and pathways associated with this disease. RNA sequencing, Illumina MethylationEPIC array, and liquid chromatography-mass spectrometry proteomic data were collected on lung tissue from 24 subjects with IPF and 14 control subjects. Significant differential features were identified by using linear models adjusting for age and sex, inflation, and bias when appropriate. Data Integration Analysis for Biomarker Discovery Using a Latent Component Method for Omics Studies was used for integrative multiomic analysis. We identified 4,643 differentially expressed transcripts aligning to 3,439 genes, 998 differentially abundant proteins, 2,500 differentially methylated regions, and 1,269 differentially expressed long noncoding RNAs (lncRNAs) that were significant after correcting for multiple tests (false discovery rate < 0.05). Unsupervised hierarchical clustering using 20 coding mRNA, protein, methylation, and lncRNA features with the highest loadings on the top latent variable from the four data sets demonstrates perfect separation of IPF and control lungs. Our analysis confirmed previously validated molecules and pathways known to be dysregulated in disease and implicated novel molecular features as potential drivers and modifiers of disease. For example, 4 proteins, 18 differentially methylated regions, and 10 lncRNAs were found to have strong correlations (|r| > 0.8) with MMP7 (matrix metalloproteinase 7). Therefore, by using a system biology approach, we have identified novel molecular relationships in IPF.
Collapse
Affiliation(s)
- Iain R. Konigsberg
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Raphael Borie
- Department of Medicine, Bichat Hospital, Paris, France
| | - Avram D. Walts
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Jonathan Cardwell
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Mauricio Rojas
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Fabian Metzger
- Research Unit for Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; and
| | - Stefanie M. Hauck
- Research Unit for Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; and
| | - Tasha E. Fingerlin
- Department of Immunology and Genomic Medicine and Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado
| | - Ivana V. Yang
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - David A. Schwartz
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| |
Collapse
|
49
|
Wei A, Gao Q, Chen F, Zhu X, Chen X, Zhang L, Su X, Dai J, Shi Y, Cao W. Inhibition of DNA methylation derepresses PPARγ and attenuates pulmonary fibrosis. Br J Pharmacol 2021; 179:1304-1318. [PMID: 34378791 DOI: 10.1111/bph.15655] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/13/2021] [Accepted: 08/02/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Development of pulmonary fibrosis is associated with altered DNA methylation modifications of fibrogenic gene expressions; however, their causal relationships and the underlying mechanisms remain unclear. This study investigates the critical role of DNA methylation aberration-associated suppression of PPARγ (peroxisome proliferator-activated receptor-gamma) in pulmonary fibrosis. EXPERIMENTAL APPROACH Expressions of PPARγ and bioactive DNA methyltranferases, and PPARγ promoter methylation status were examined from fibrotic lungs of idiopathic pulmonary fibrosis (IPF) patients and bleomycin (Blm)-treated mice. DNA demethylating agent 5-Aza-2'-deoxycytidine (5aza) and glycyrrhizic acid (GA) derived from medicinal plant were assessed for their PPARγ derepression and anti-pulmonary fibrosis activities. PPARγ knockout mice were created to determine the critical role of PPARγ in the protections. KEY RESULTS Lung PPARγ expressions were markedly suppressed in IPF patients and Blm mice, accompanied by increased methyltransferase (DNMT) 1/DNMT3a and PPARγ promoter hypermethylation. Administrations of 5aza and GA similarly demethylated PPARγ promoter, recovered the PPARγ loss and alleviated the fibrotic lung pathologies, including structural alterations and adverse expressions of fibrotic mediators and inflammatory cytokines. In cultured lung fibroblast and alveolar epithelial cells, GA alleviated the fibrotic PPARγ suppression in a gain of DNMT-sensitive manner, and in PPARγ knockout mice, the anti-fibrotic effects of 5aza and GA were significantly reduced, suggesting that PPARγ is a critical mediator of epigenetic pulmonary fibrogenesis. CONCLUSION AND IMPLICATIONS Aberrant DNMT1/3a elevations and the resultant PPARγ suppression contribute significantly to the development of pulmonary fibrosis, and strategies targeting DNMT/PPARγ axis by synthetic or natural small compounds might benefit patients with pulmonary fibrotic disorders.
Collapse
Affiliation(s)
- Ai Wei
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China.,Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qi Gao
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Fang Chen
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Xiaobo Zhu
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Xingren Chen
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Lijun Zhang
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Xin Su
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Yi Shi
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Wangsen Cao
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
50
|
Rajasekar P, Patel J, Clifford RL. DNA Methylation of Fibroblast Phenotypes and Contributions to Lung Fibrosis. Cells 2021; 10:cells10081977. [PMID: 34440746 PMCID: PMC8391838 DOI: 10.3390/cells10081977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/22/2022] Open
Abstract
Fibroblasts are an integral part of connective tissue and play a crucial role in developing and modulating the structural framework of tissues by acting as the primary source of extracellular matrix (ECM). A precise definition of the fibroblast remains elusive. Lung fibroblasts orchestrate the assembly and turnover of ECM to facilitate gas exchange alongside performing immune functions including the secretion of bioactive molecules and antigen presentation. DNA methylation is the covalent attachment of a methyl group to primarily cytosines within DNA. DNA methylation contributes to diverse cellular phenotypes from the same underlying genetic sequence, with DNA methylation profiles providing a memory of cellular origin. The lung fibroblast population is increasingly viewed as heterogeneous with between 6 and 11 mesenchymal populations identified across health and lung disease to date. DNA methylation has been associated with different lung fibroblast populations in health and with alterations in lung disease, but to varying extents. In this review, we will discuss lung fibroblast heterogeneity and the evidence for a contribution from DNA methylation to defining cell populations and alterations in disease.
Collapse
|