1
|
Benlala I, Dournes G, Girodet PO, Laurent F, Ben Hassen W, Baldacci F, De Senneville BD, Berger P. Bronchial wall T2w MRI signal as a new imaging biomarker of severe asthma. Insights Imaging 2025; 16:71. [PMID: 40133719 PMCID: PMC11937477 DOI: 10.1186/s13244-025-01939-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/16/2025] [Indexed: 03/27/2025] Open
Abstract
OBJECTIVES Severe asthma patients are prone to severe exacerbations with a need of hospital admission increasing the economic burden on healthcare systems. T2w lung MRI was found to be useful in the assessment of bronchial inflammation. The main goal of this study is to compare quantitative MRI T2 signal bronchial intensity between patients with severe and non-severe asthma. METHODS This is an ancillary study of a prospective single-center study (NCT03089346). We assessed the mean T2 intensity MRI signal of the bronchial wall area (BrWall_T2-MIS) in 15 severe and 15 age and sex-matched non-severe asthmatic patients. They also have had pulmonary function tests (PFTs), fractional exhaled nitric oxide (FeNO) and blood eosinophils count (Eos). Comparisons between the two groups were performed using Student's t-test. Correlations were assessed using Pearson coefficients. Reproducibility was assessed using intraclass correlation coefficient and Bland-Altman analysis. RESULTS BrWall_T2-MIS was higher in severe than in non-severe asthma patients (74 ± 12 vs 49 ± 14; respectively p < 0.001). BrWall_T2-MIS showed a moderate inverse correlation with PFTs in the whole cohort (r = -0.54, r = -0.44 for FEV1(%pred) and FEV1/FVC respectively, p ≤ 0.01) and in the severe asthma group (r = -0.53, r = -0.44 for FEV1(%pred) and FEV1/FVC respectively, p ≤ 0.01). Eos was moderately correlated with BrWall_T2-MIS in severe asthma group (r = 0.52, p = 0.047). Reproducibility was almost perfect with ICC = 0.99 and mean difference in Bland-Altman analysis of -0.15 [95% CI = -0.48-0.16]. CONCLUSION Quantification of bronchial wall T2w signal intensity appears to be able to differentiate severe from non-severe asthma and correlates with obstructive PFTs' parameters and inflammatory markers in severe asthma. CRITICAL RELEVANCE STATEMENT The development of non-ionizing imaging biomarkers could play an essential role in the management of patients with severe asthma in the current era of biological therapies. KEY POINTS Severe asthma exhibits severe exacerbations with a high burden on healthcare systems. T2w bronchial wall signal intensity is related to inflammatory biomarker in severe asthma. T2w MRI may represent a non-invasive tool to follow up severe asthma patients.
Collapse
Affiliation(s)
- Ilyes Benlala
- University Bordeaux, INSERM, CRCTB, U 1045, Bordeaux, France.
- CHU de Bordeaux, Service d'imagerie Cardiaque et Thoracique, CIC-P 1401, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France.
| | - Gaël Dournes
- University Bordeaux, INSERM, CRCTB, U 1045, Bordeaux, France
- CHU de Bordeaux, Service d'imagerie Cardiaque et Thoracique, CIC-P 1401, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Pierre-Olivier Girodet
- University Bordeaux, INSERM, CRCTB, U 1045, Bordeaux, France
- CHU de Bordeaux, Service d'imagerie Cardiaque et Thoracique, CIC-P 1401, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - François Laurent
- University Bordeaux, INSERM, CRCTB, U 1045, Bordeaux, France
- CHU de Bordeaux, Service d'imagerie Cardiaque et Thoracique, CIC-P 1401, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | | | - Fabien Baldacci
- LaBRI, CNRS, Bordeaux INP, UMR 5800, Bordeaux INP, UMR 5251, Talence, France
| | - Baudouin Denis De Senneville
- Mathematical Institute of Bordeaux (IMB), University Bordeaux, CNRS, INRIA, Bordeaux INP, UMR 5251, Talence, France
| | - Patrick Berger
- University Bordeaux, INSERM, CRCTB, U 1045, Bordeaux, France
- CHU de Bordeaux, Service d'imagerie Cardiaque et Thoracique, CIC-P 1401, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| |
Collapse
|
2
|
Chen D, Wu W, Li J, Huang X, Chen S, Zheng T, Huang G, Ouyang S. Targeting mitochondrial function as a potential therapeutic approach for allergic asthma. Inflamm Res 2025; 74:1. [PMID: 39762562 DOI: 10.1007/s00011-024-01972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Allergic asthma is a chronic complex airway disease characterized by airway hyperresponsiveness, eosinophilic inflammation, excessive mucus secretion, and airway remodeling, with increasing mortality and incidence globally. The pathogenesis of allergic asthma is influenced by various factors including genetics, environment, and immune responses, making it complex and diverse. Recent studies have found that various cellular functions of mitochondria such as calcium regulation, adenosine triphosphate production, changes in redox potential, and free radical scavenging, are involved in regulating the pathogenesis of asthma. This review explores the involvement of mitochondrial functional changes in the pathogenesis of asthma, and investigate the potential of targeting cellular mitochondria as a therapeutic approach for asthma. Those insights can provide a novel theoretical foundations and treatment strategies for understanding and preventing asthma.
Collapse
Affiliation(s)
- Daichi Chen
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, College of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Wanhua Wu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, College of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Jianing Li
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, College of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Xueqin Huang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, College of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Su Chen
- Liaobu Hospital of Dongguan City, Dongguan, 523430, China
| | - TingTing Zheng
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, College of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Gonghua Huang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, College of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Suidong Ouyang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, College of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
- Liaobu Hospital of Dongguan City, Dongguan, 523430, China.
| |
Collapse
|
3
|
Tiotiu A, Steiropoulos P, Novakova S, Nedeva D, Novakova P, Chong-Neto H, Fogelbach GG, Kowal K. Airway Remodeling in Asthma: Mechanisms, Diagnosis, Treatment, and Future Directions. Arch Bronconeumol 2025; 61:31-40. [PMID: 39368875 DOI: 10.1016/j.arbres.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024]
Abstract
Airway remodeling (AR) with chronic inflammation, are key features in asthma pathogenesis. AR characterized by structural changes in the bronchial wall is associated with a specific asthma phenotype with poor clinical outcomes, impaired lung function and reduced treatment response. Most studies focus on the role of inflammation, while understanding the mechanisms driving AR is crucial for developing disease-modifying therapeutic strategies. This review paper summarizes current knowledge on the mechanisms underlying AR, diagnostic tools, and therapeutic approaches. Mechanisms explored include the role of the resident cells and the inflammatory cascade in AR. Diagnostic methods such as bronchial biopsy, lung function testing, imaging, and possible biomarkers are described. The effectiveness on AR of different treatments of asthma including corticosteroids, leukotriene modifiers, bronchodilators, macrolides, biologics, and bronchial thermoplasty is discussed, as well as other possible therapeutic options. AR poses a significant challenge in asthma management, contributing to disease severity and treatment resistance. Current therapeutic approaches target mostly airway inflammation rather than smooth muscle cell dysfunction and showed limited benefits on AR. Future research should focus more on investigating the mechanisms involved in AR to identify novel therapeutic targets and to develop new effective treatments able to prevent irreversible structural changes and improve long-term asthma outcomes.
Collapse
Affiliation(s)
- Angelica Tiotiu
- Department of Pulmonology, University Hospital Saint-Luc, Brussels, Belgium; Pole Pneumology, ENT, and Dermatology - LUNS, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.
| | - Paschalis Steiropoulos
- Department of Pulmonology, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Silviya Novakova
- Department of Allergology, University Hospital "Sv. Georgi" Plovdiv, Bulgaria
| | - Denislava Nedeva
- Clinic of Asthma and Allergology, UMBAL Alexandrovska, Medical University Sofia, Sofia, Bulgaria
| | - Plamena Novakova
- Department of Allergy, Medical University Sofia, Sofia, Bulgaria
| | - Herberto Chong-Neto
- Division of Allergy and Immunology, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Krzysztof Kowal
- Department of Experimental Allergology and Immunology and Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
4
|
Li H, Dai X, Zhou J, Wang Y, Zhang S, Guo J, Shen L, Yan H, Jiang H. Mitochondrial dynamics in pulmonary disease: Implications for the potential therapeutics. J Cell Physiol 2024; 239:e31370. [PMID: 38988059 DOI: 10.1002/jcp.31370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Mitochondria are dynamic organelles that continuously undergo fusion/fission to maintain normal cell physiological activities and energy metabolism. When mitochondrial dynamics is unbalanced, mitochondrial homeostasis is broken, thus damaging mitochondrial function. Accumulating evidence demonstrates that impairment in mitochondrial dynamics leads to lung tissue injury and pulmonary disease progression in a variety of disease models, including inflammatory responses, apoptosis, and barrier breakdown, and that the role of mitochondrial dynamics varies among pulmonary diseases. These findings suggest that modulation of mitochondrial dynamics may be considered as a valid therapeutic strategy in pulmonary diseases. In this review, we discuss the current evidence on the role of mitochondrial dynamics in pulmonary diseases, with a particular focus on its underlying mechanisms in the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis (PF), pulmonary arterial hypertension (PAH), lung cancer and bronchopulmonary dysplasia (BPD), and outline effective drugs targeting mitochondrial dynamics-related proteins, highlighting the great potential of targeting mitochondrial dynamics in the treatment of pulmonary disease.
Collapse
Affiliation(s)
- Hui Li
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Xinyan Dai
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Junfu Zhou
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yujuan Wang
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Shiying Zhang
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jiacheng Guo
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Lidu Shen
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Hengxiu Yan
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Huiling Jiang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Allard B, Ousova O, Savitskaya Z, Levardon H, Maurat E, Campagnac M, Trian T, Berger P. Pulmonary adaptation to repeated poly(I:C) exposure is impaired in asthmatic mice: an observational study. Respir Res 2024; 25:314. [PMID: 39160577 PMCID: PMC11334391 DOI: 10.1186/s12931-024-02948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND While asthma exacerbations remain a major challenge in patient management, few animal models exist to explore the underlying mechanisms. Here, we established an animal model of asthma that can be used to study pathophysiological mechanisms and therapeutic strategies on asthma exacerbation. METHODS Female BALB/c mice were sensitized and exposed to PBS or Dermatophagoides pteronyssinus (DerP) extract for 11 weeks. Asthmatic phenotype was assessed through lung inflammation, bronchial hyperresponsiveness and bronchial smooth muscle remodeling. Asthmatic and control mice were exposed once or three times to poly(I:C) to simulate virus-induced inflammation. RESULTS Fourteen days after exposure to DerP, asthmatic mice showed resolution of inflammation with sustained bronchial hyperresponsiveness and bronchial smooth muscle remodeling compared to control. At this stage, when mice were subjected to a single exposure to poly(I:C), control and asthmatic mice were characterized by a significant increase in neutrophilic inflammation and bronchial hyperresponsiveness. When mice were repeatedly exposed to poly(I:C), control mice showed a significant decrease in neutrophilic inflammation and bronchial hyperresponsiveness, while asthmatic mice experienced worsening of these outcomes. CONCLUSIONS This observational study report an asthmatic mouse model that can undergo exacerbation after repeated exposure to poly(I:C). Our findings on pulmonary adaptation in control mice may also pave the way for further research into the mechanism of adaptation that may be impaired in asthma and raise the question of whether asthma exacerbation may be a loss of adaptation.
Collapse
Affiliation(s)
- Benoit Allard
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France.
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France.
| | - Olga Ousova
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
| | - Zhanna Savitskaya
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
| | - Hannah Levardon
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
| | - Elise Maurat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
| | - Marilyne Campagnac
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
| | - Patrick Berger
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
- Service d'exploration fonctionnelle respiratoire, CHU de Bordeaux, Pessac, CIC 1401, 33600, France
| |
Collapse
|
6
|
Beaufils F, Berger P. Commentary: Effect of curcumin nanoparticles on proliferation and migration of mouse airway smooth muscle cells and airway inflammatory infiltration. Front Pharmacol 2024; 15:1432397. [PMID: 39114346 PMCID: PMC11303164 DOI: 10.3389/fphar.2024.1432397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Affiliation(s)
- Fabien Beaufils
- Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, Bordeaux Imaging Center, University Bordeaux, Pessac, France
- CHU Bordeaux, Département de Pédiatrie, CIC-P 1401, Service d’Anatomopathologie, Service d’Exploration Fonctionnelle Respiratoire, Bordeaux, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Centre d’Investigation Clinique (CIC-P 1401), Pessac, France
| | - Patrick Berger
- Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, Bordeaux Imaging Center, University Bordeaux, Pessac, France
- CHU Bordeaux, Département de Pédiatrie, CIC-P 1401, Service d’Anatomopathologie, Service d’Exploration Fonctionnelle Respiratoire, Bordeaux, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Centre d’Investigation Clinique (CIC-P 1401), Pessac, France
| |
Collapse
|
7
|
Hackmann MJ, Cairncross A, Elliot JG, Mulrennan S, Nilsen K, Thompson BR, Li Q, Karnowski K, Sampson DD, McLaughlin RA, Cense B, James AL, Noble PB. Quantification of smooth muscle in human airways by polarization-sensitive optical coherence tomography requires correction for perichondrium. Am J Physiol Lung Cell Mol Physiol 2024; 326:L393-L408. [PMID: 38261720 DOI: 10.1152/ajplung.00254.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024] Open
Abstract
Quantifying airway smooth muscle (ASM) in patients with asthma raises the possibility of improved and personalized disease management. Endobronchial polarization-sensitive optical coherence tomography (PS-OCT) is a promising quantitative imaging approach that is in the early stages of clinical translation. To date, only animal tissues have been used to assess the accuracy of PS-OCT to quantify absolute (rather than relative) ASM in cross sections with directly matched histological cross sections as validation. We report the use of whole fresh human and pig airways to perform a detailed side-by-side qualitative and quantitative validation of PS-OCT against gold-standard histology. We matched and quantified 120 sections from five human and seven pig (small and large) airways and linked PS-OCT signatures of ASM to the tissue structural appearance in histology. Notably, we found that human cartilage perichondrium can share with ASM the properties of birefringence and circumferential alignment of fibers, making it a significant confounder for ASM detection. Measurements not corrected for perichondrium overestimated ASM content several-fold (P < 0.001, paired t test). After careful exclusion of perichondrium, we found a strong positive correlation (r = 0.96, P < 0.00001) of ASM area measured by PS-OCT and histology, supporting the method's application in human subjects. Matching human histology further indicated that PS-OCT allows conclusions on the intralayer composition and in turn potential contractile capacity of ASM bands. Together these results form a reliable basis for future clinical studies.NEW & NOTEWORTHY Polarization-sensitive optical coherence tomography (PS-OCT) may facilitate in vivo measurement of airway smooth muscle (ASM). We present a quantitative validation correlating absolute ASM area from PS-OCT to directly matched histological cross sections using human tissue. A major confounder for ASM quantification was observed and resolved: fibrous perichondrium surrounding hyaline cartilage in human airways presents a PS-OCT signature similar to ASM for birefringence and optic axis orientation. Findings impact the development of automated methods for ASM segmentation.
Collapse
Affiliation(s)
- Michael J Hackmann
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Alvenia Cairncross
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Western Australia, Australia
| | - John G Elliot
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Western Australia, Australia
| | - Siobhain Mulrennan
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- Institute of Respiratory Health, The University of Western Australia, Crawley, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kris Nilsen
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Bruce R Thompson
- Melbourne School of Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Qingyun Li
- Department of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Karol Karnowski
- Department of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - David D Sampson
- School of Computer Science and Electronic Engineering, University of Surrey, Guildford, United Kingdom
| | - Robert A McLaughlin
- Department of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
| | - Barry Cense
- Department of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Mechanical Engineering, Yonsei University, Seoul, South Korea
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
8
|
Huang AS, Tong BCK, Hung HCH, Wu AJ, Ho OKY, Kong AHY, Leung MMK, Bai J, Fu X, Yu Z, Li M, Leung TF, Mak JCW, Leung GPH, Cheung KH. Targeting calcium signaling by inositol trisphosphate receptors: A novel mechanism for the anti-asthmatic effects of Houttuynia cordata. Biomed Pharmacother 2023; 164:114935. [PMID: 37245337 DOI: 10.1016/j.biopha.2023.114935] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023] Open
Abstract
Asthma is a chronic inflammatory disease characterized by airway hypersensitivity and remodeling. The current treatments provide only short-term benefits and may have undesirable side effects; thus, alternative or supplementary therapy is needed. Because intracellular calcium (Ca2+) signaling plays an essential role in regulating the contractility and remodeling of airway smooth muscle cells, the targeting of Ca2+ signaling is a potential therapeutic strategy for asthma. Houttuynia cordata is a traditional Chinese herb that is used to treat asthma due to its anti-allergic and anti-inflammatory properties. We hypothesized that H. cordata might modulate intracellular Ca2+ signaling and could help relieve asthmatic airway remodeling. We found that the mRNA and protein levels of inositol trisphosphate receptors (IP3Rs) were elevated in interleukin-stimulated primary human bronchial smooth muscle cells and a house dust mite-sensitized model of asthma. The upregulation of IP3R expression enhanced intracellular Ca2+ release upon stimulation and contributed to airway remodeling in asthma. Intriguingly, pretreatment with H. cordata essential oil rectified the disruption of Ca2+ signaling, mitigated asthma development, and prevented airway narrowing. Furthermore, our analysis suggested that houttuynin/2-undecanone could be the bioactive component in H. cordata essential oil because we found similar IP3R suppression in response to the commercially available derivative sodium houttuyfonate. An in silico analysis showed that houttuynin, which downregulates IP3R expression, binds to the IP3 binding domain of IP3R and may mediate a direct inhibitory effect. In summary, our findings suggest that H. cordata is a potential alternative treatment choice that may reduce asthma severity by targeting the dysregulation of Ca2+ signaling.
Collapse
Affiliation(s)
- Alexis Shiying Huang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Benjamin Chun-Kit Tong
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Harry Chun-Hin Hung
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Aston Jiaxi Wu
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Olivia Ka-Yi Ho
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Anna Hau-Yee Kong
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Maggie Ming-Ki Leung
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Jingxuan Bai
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Xiuqiong Fu
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Zhiling Yu
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Min Li
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Ting Fan Leung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Judith Choi-Wo Mak
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - King-Ho Cheung
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China.
| |
Collapse
|
9
|
Fayon M, Beaufils F, Esteves P, Campagnac M, Maurat E, Michelet M, Siao-Him-Fa V, Lavrand F, Simon G, Begueret H, Berger P. Bronchial Remodeling-based Latent Class Analysis Predicts Exacerbations in Severe Preschool Wheezers. Am J Respir Crit Care Med 2023; 207:416-426. [PMID: 36108144 DOI: 10.1164/rccm.202205-0913oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Children with preschool wheezing represent a very heterogeneous population with wide variability regarding their clinical, inflammatory, obstructive, and/or remodeling patterns. We hypothesized that assessing bronchial remodeling would help clinicians to better characterize severe preschool wheezers. Objectives: The main objective was to identify bronchial remodeling-based latent classes of severe preschool wheezers. Secondary objectives were to compare cross-sectional and longitudinal clinical and biological data between classes and to assess the safety of bronchoscopy. Methods: This double-center prospective study (NCT02806466) included severe preschool wheezers (1-5 yr old) requiring fiberoptic bronchoscopy. Bronchial remodeling parameters (i.e., epithelial integrity, reticular basement membrane [RBM] thickness, mucus gland, fibrosis and bronchial smooth muscle [BSM] areas, the density of blood vessels, and RBM-BSM distance) were assessed and evaluated by latent class analysis. An independent cohort of severe preschool wheezers (NCT04558671) was used to validate our results. Measurements and Main Results: Fiberoptic bronchoscopy procedures were well tolerated. A two-class model was identified: Class BR1 was characterized by increased RBM thickness, normalized BSM area, the density of blood vessels, decreased mucus gland area, fibrosis, and RBM-BSM distance compared with Class BR2. No significant differences were found between classes in the year before fiberoptic bronchoscopy. By contrast, Class BR1 was associated with a shorter time to first exacerbation and an increased risk of both frequent (3 or more) and severe exacerbations during the year after bronchoscopy in the two cohorts. Conclusions: Assessing bronchial remodeling identified severe preschool wheezers at risk of frequent and severe subsequent exacerbations with a favorable benefit to risk ratio.
Collapse
Affiliation(s)
- Michael Fayon
- Bordeaux University, Centre de Recherche Cardio-Thoracique de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U1045, Bordeaux Imaging Center, Bordeaux, France.,CHU Bordeaux, Département de Pédiatrie, Centre d'Investigation Clinique-Pédiatrique (CIC-P 1401), Service d'Anatomopathologie, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Centre d'Investigation Clinique-Pédiatrique 1401, Bordeaux, France
| | - Fabien Beaufils
- Bordeaux University, Centre de Recherche Cardio-Thoracique de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U1045, Bordeaux Imaging Center, Bordeaux, France.,CHU Bordeaux, Département de Pédiatrie, Centre d'Investigation Clinique-Pédiatrique (CIC-P 1401), Service d'Anatomopathologie, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Centre d'Investigation Clinique-Pédiatrique 1401, Bordeaux, France
| | - Pauline Esteves
- Bordeaux University, Centre de Recherche Cardio-Thoracique de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U1045, Bordeaux Imaging Center, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Centre d'Investigation Clinique-Pédiatrique 1401, Bordeaux, France
| | - Maryline Campagnac
- Bordeaux University, Centre de Recherche Cardio-Thoracique de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U1045, Bordeaux Imaging Center, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Centre d'Investigation Clinique-Pédiatrique 1401, Bordeaux, France
| | - Elise Maurat
- Bordeaux University, Centre de Recherche Cardio-Thoracique de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U1045, Bordeaux Imaging Center, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Centre d'Investigation Clinique-Pédiatrique 1401, Bordeaux, France
| | - Marine Michelet
- CHU Toulouse, Hôpital des Enfants, Service de pneumologie-allergologie pédiatrique, Service d'Anatomopathologie; and.,University Toulouse Paul Sabatier, INSERM U1043 (CPTP), F-31059 Toulouse, France
| | - Valerie Siao-Him-Fa
- Bordeaux University, Centre de Recherche Cardio-Thoracique de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U1045, Bordeaux Imaging Center, Bordeaux, France.,CHU Bordeaux, Département de Pédiatrie, Centre d'Investigation Clinique-Pédiatrique (CIC-P 1401), Service d'Anatomopathologie, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Centre d'Investigation Clinique-Pédiatrique 1401, Bordeaux, France
| | - Frederic Lavrand
- CHU Bordeaux, Département de Pédiatrie, Centre d'Investigation Clinique-Pédiatrique (CIC-P 1401), Service d'Anatomopathologie, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France
| | - Guillaume Simon
- CHU Bordeaux, Département de Pédiatrie, Centre d'Investigation Clinique-Pédiatrique (CIC-P 1401), Service d'Anatomopathologie, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France
| | - Hugues Begueret
- CHU Bordeaux, Département de Pédiatrie, Centre d'Investigation Clinique-Pédiatrique (CIC-P 1401), Service d'Anatomopathologie, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France
| | - Patrick Berger
- Bordeaux University, Centre de Recherche Cardio-Thoracique de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U1045, Bordeaux Imaging Center, Bordeaux, France.,CHU Bordeaux, Département de Pédiatrie, Centre d'Investigation Clinique-Pédiatrique (CIC-P 1401), Service d'Anatomopathologie, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Centre d'Investigation Clinique-Pédiatrique 1401, Bordeaux, France
| | | |
Collapse
|
10
|
Wang CJ, Noble PB, Elliot JG, James AL, Wang KCW. From Beneath the Skin to the Airway Wall: Understanding the Pathological Role of Adipose Tissue in Comorbid Asthma-Obesity. Compr Physiol 2023; 13:4321-4353. [PMID: 36715283 DOI: 10.1002/cphy.c220011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This article provides a contemporary report on the role of adipose tissue in respiratory dysfunction. Adipose tissue is distributed throughout the body, accumulating beneath the skin (subcutaneous), around organs (visceral), and importantly in the context of respiratory disease, has recently been shown to accumulate within the airway wall: "airway-associated adipose tissue." Excessive adipose tissue deposition compromises respiratory function and increases the severity of diseases such as asthma. The mechanisms of respiratory impairment are inflammatory, structural, and mechanical in nature, vary depending on the anatomical site of deposition and adipose tissue subtype, and likely contribute to different phenotypes of comorbid asthma-obesity. An understanding of adipose tissue-driven pathophysiology provides an opportunity for diagnostic advancement and patient-specific treatment. As an exemplar, the potential impact of airway-associated adipose tissue is highlighted, and how this may change the management of a patient with asthma who is also obese. © 2023 American Physiological Society. Compr Physiol 13:4321-4353, 2023.
Collapse
Affiliation(s)
- Carolyn J Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - John G Elliot
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
11
|
Hsieh A, Assadinia N, Hackett TL. Airway remodeling heterogeneity in asthma and its relationship to disease outcomes. Front Physiol 2023; 14:1113100. [PMID: 36744026 PMCID: PMC9892557 DOI: 10.3389/fphys.2023.1113100] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Asthma affects an estimated 262 million people worldwide and caused over 461,000 deaths in 2019. The disease is characterized by chronic airway inflammation, reversible bronchoconstriction, and airway remodeling. Longitudinal studies have shown that current treatments for asthma (inhaled bronchodilators and corticosteroids) can reduce the frequency of exacerbations, but do not modify disease outcomes over time. Further, longitudinal studies in children to adulthood have shown that these treatments do not improve asthma severity or fixed airflow obstruction over time. In asthma, fixed airflow obstruction is caused by remodeling of the airway wall, but such airway remodeling also significantly contributes to airway closure during bronchoconstriction in acute asthmatic episodes. The goal of the current review is to understand what is known about the heterogeneity of airway remodeling in asthma and how this contributes to the disease process. We provide an overview of the existing knowledge on airway remodeling features observed in asthma, including loss of epithelial integrity, mucous cell metaplasia, extracellular matrix remodeling in both the airways and vessels, angiogenesis, and increased smooth muscle mass. While such studies have provided extensive knowledge on different aspects of airway remodeling, they have relied on biopsy sampling or pathological assessment of lungs from fatal asthma patients, which have limitations for understanding airway heterogeneity and the entire asthma syndrome. To further understand the heterogeneity of airway remodeling in asthma, we highlight the potential of in vivo imaging tools such as computed tomography and magnetic resonance imaging. Such volumetric imaging tools provide the opportunity to assess the heterogeneity of airway remodeling within the whole lung and have led to the novel identification of heterogenous gas trapping and mucus plugging as important predictors of patient outcomes. Lastly, we summarize the current knowledge of modification of airway remodeling with available asthma therapeutics to highlight the need for future studies that use in vivo imaging tools to assess airway remodeling outcomes.
Collapse
Affiliation(s)
- Aileen Hsieh
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Najmeh Assadinia
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Tillie-Louise Hackett,
| |
Collapse
|
12
|
Hassoun D, Rose L, Blanc FX, Magnan A, Loirand G, Sauzeau V. Bronchial smooth muscle cell in asthma: where does it fit? BMJ Open Respir Res 2022; 9:9/1/e001351. [PMID: 36109087 PMCID: PMC9478857 DOI: 10.1136/bmjresp-2022-001351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/04/2022] [Indexed: 11/04/2022] Open
Abstract
Asthma is a frequent respiratory condition whose pathophysiology relies on altered interactions between bronchial epithelium, smooth muscle cells (SMC) and immune responses. Those leads to classical hallmarks of asthma: airway hyper-responsiveness, bronchial remodelling and chronic inflammation. Airway smooth muscle biology and pathophysiological implication in asthma are now better understood. Precise deciphering of intracellular signalling pathways regulating smooth muscle contraction highlighted the critical roles played by small GTPases of Rho superfamily. Beyond contractile considerations, active involvement of airway smooth muscle in bronchial remodelling mechanisms is now established. Not only cytokines and growth factors, such as fibroblats growth factor or transforming growth factor-β, but also extracellular matrix composition have been demonstrated as potent phenotype modifiers for airway SMC. Although basic science knowledge has grown significantly, little of it has translated into improvement in asthma clinical practice. Evaluation of airway smooth muscle function is still limited to its contractile activity. Moreover, it relies on tools, such as spirometry, that give only an overall assessment and not a specific one. Interesting technics such as forced oscillometry or specific imagery (CT and MRI) give new perspectives to evaluate other aspects of airway muscle such as bronchial remodelling. Finally, except for the refinement of conventional bronchodilators, no new drug therapy directly targeting airway smooth muscle proved its efficacy. Bronchial thermoplasty is an innovative and efficient therapeutic strategy but is only restricted to a small proportion of severe asthmatic patients. New diagnostic and therapeutic strategies specifically oriented toward airway smooth muscle are needed to improve global asthma care.
Collapse
Affiliation(s)
- Dorian Hassoun
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Lindsay Rose
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Pays de la Loire, France
| | - François-Xavier Blanc
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Antoine Magnan
- INRAe, UMR 0892, Hôpital Foch, Suresnes, France.,Université Versailles-Saint-Quentin-en-Yvelines Paris-Saclay, Versailles, France
| | - Gervaise Loirand
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Pays de la Loire, France
| | - Vincent Sauzeau
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Pays de la Loire, France
| |
Collapse
|
13
|
Alqahtani T, Parveen S, Alghazwani Y, Alharbi HM, Gahtani RM, Hussain N, Rehman KU, Hussain M. Pharmacological Validation for the Folklore Use of Ipomoea nil against Asthma: In Vivo and In Vitro Evaluation. Molecules 2022; 27:4653. [PMID: 35889525 PMCID: PMC9324646 DOI: 10.3390/molecules27144653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress is the key factor that strengthens free radical generation which stimulates lung inflammation. The aim was to explore antioxidant, bronchodilatory along with anti-asthmatic potential of folkloric plants and the aqueous methanolic crude extract of Ipomoea nil (In.Cr) seeds which may demonstrate as more potent, economically affordable, having an improved antioxidant profile and providing evidence as exclusive therapeutic agents in respiratory pharmacology. In vitro antioxidant temperament was executed by DPPH, TFC, TPC and HPLC in addition to enzyme inhibition (cholinesterase) analysis; a bronchodilator assay on rabbit’s trachea as well as in vivo OVA-induced allergic asthmatic activity was performed on mice. In vitro analysis of 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH) expressed as % inhibition 86.28 ± 0.25 with IC50 17.22 ± 0.56 mol/L, TPC 115.5 ± 1.02 mg GAE/g of dry sample, TFC 50.44 ± 1.06 mg QE/g dry weight of sample, inhibition in cholinesterase levels for acetyl and butyryl with IC50 (0.60 ± 0.67 and 1.5 ± 0.04 mol/L) in comparison with standard 0.06 ± 0.002 and 0.30 ± 0.003, respectively, while HPLC characterization of In.Cr confirmed the existence with identification as well as quantification of various polyphenolics and flavonoids i.e., gallic acid, vanillic acid, chlorogenic acid, quercetin, kaempferol and others. However, oral gavage of In.Cr at different doses in rabbits showed a better brochodilation profile as compared to carbachol and K+-induced bronchospasm. More significant (p < 0.01) reduction in OVA-induced allergic hyper-responses i.e., inflammatory cells grade, antibody IgE as well as altered IFN-α in airways were observed at three different doses of In.Cr. It can be concluded that sound mechanistic basis i.e., the existence of antioxidants: various phenolic and flavonoids, calcium antagonist(s) as well as enzymes’ inhibition profile, validates folkloric consumptions of this traditionally used plant to treat ailments of respiration.
Collapse
Affiliation(s)
- Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (T.A.); (Y.A.)
| | - Sajida Parveen
- Faculty of Pharmacy, TheIslamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.P.); (K.u.R.)
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (T.A.); (Y.A.)
| | - Hanan M. Alharbi
- Department of Pharmaceutics, College of Pharmacy, Umm A-Qura University, Makkah 21955, Saudi Arabia;
| | - Reem M. Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates;
| | - Kashif ur Rehman
- Faculty of Pharmacy, TheIslamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.P.); (K.u.R.)
| | - Musaddique Hussain
- Faculty of Pharmacy, TheIslamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.P.); (K.u.R.)
| |
Collapse
|
14
|
Saunders RM, Biddle M, Amrani Y, Brightling CE. Stressed out - The role of oxidative stress in airway smooth muscle dysfunction in asthma and COPD. Free Radic Biol Med 2022; 185:97-119. [PMID: 35472411 DOI: 10.1016/j.freeradbiomed.2022.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
The airway smooth muscle (ASM) surrounding the airways is dysfunctional in both asthma and chronic obstructive pulmonary disease (COPD), exhibiting; increased contraction, increased mass, increased inflammatory mediator release and decreased corticosteroid responsiveness. Due to this dysfunction, ASM is a key contributor to symptoms in patients that remain symptomatic despite optimal provision of currently available treatments. There is a significant body of research investigating the effects of oxidative stress/ROS on ASM behaviour, falling into the following categories; cigarette smoke and associated compounds, air pollutants, aero-allergens, asthma and COPD relevant mediators, and the anti-oxidant Nrf2/HO-1 signalling pathway. However, despite a number of recent reviews addressing the role of oxidative stress/ROS in asthma and COPD, the potential contribution of oxidative stress/ROS-related ASM dysfunction to asthma and COPD pathophysiology has not been comprehensively reviewed. We provide a thorough review of studies that have used primary airway, bronchial or tracheal smooth muscle cells to investigate the role of oxidative stress/ROS in ASM dysfunction and consider how they could contribute to the pathophysiology of asthma and COPD. We summarise the current state of play with regards to clinical trials/development of agents targeting oxidative stress and associated limitations, and the adverse effects of oxidative stress on the efficacy of current therapies, with reference to ASM related studies where appropriate. We also identify limitations in the current knowledge of the role of oxidative stress/ROS in ASM dysfunction and identify areas for future research.
Collapse
Affiliation(s)
- Ruth M Saunders
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK.
| | - Michael Biddle
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Yassine Amrani
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Christopher E Brightling
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
15
|
Lin Q, Ni H, Zheng Z, Zhong J, Nie H. Cross-talk of four types of RNA modification writers defines the immune microenvironment in severe asthma. Ann N Y Acad Sci 2022; 1514:93-103. [PMID: 35506887 DOI: 10.1111/nyas.14782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenine modifications, including m6 A, m1 A, APA, and A-to-I modifications, are the most impactful RNA modifications. These modifications are primarily produced by enzymes called writers. The main purpose of this study was to explore the cross-talk and potential roles of these writers in severe asthma. We found 13 RNA writers potentially related to severe asthma and three RNA modification patterns. Cluster 3 showed predominant neutrophil infiltration and C-type lectin receptor signaling; cluster 1 showed predominant innate immune cell infiltration and ubiquitin-proteasome system activation; and cluster 2 did not show obvious immune infiltration characteristics. We found that RNA modification writers modified immune cell-related genes and led to both accumulation of different immune cells in the airways and activation of a series of biological processes, which ultimately leads to severe asthma. TRMT6, WTAP, and TRMT6A were included in a random forest model as predictors. Cromoglicic acid, thioperamide, and fluvastatin were potential drugs for clusters 1, 2, and 3, respectively. We found that cross-talk of RNA modifications is significant in severe asthma, which provides insight into severe asthma pathogenesis and possible treatment avenues.
Collapse
Affiliation(s)
- Qibin Lin
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haiyang Ni
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhishui Zheng
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jieying Zhong
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Esteves P, Allard B, Celle A, Dupin I, Maurat E, Ousova O, Thumerel M, Dupuy JW, Leste-Lasserre T, Marthan R, Girodet PO, Trian T, Berger P. Asthmatic bronchial smooth muscle increases rhinovirus replication within the bronchial epithelium. Cell Rep 2022; 38:110571. [PMID: 35354045 DOI: 10.1016/j.celrep.2022.110571] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 12/13/2021] [Accepted: 03/04/2022] [Indexed: 11/27/2022] Open
Abstract
Rhinovirus (RV) infection of the bronchial epithelium is implicated in the vast majority of severe asthma exacerbations. Interestingly, the susceptibility of bronchial epithelium to RV infection is increased in persons with asthma. Bronchial smooth muscle (BSM) remodeling is an important feature of severe asthma pathophysiology, and its reduction using bronchial thermoplasty has been associated with a significant decrease in the exacerbation rate. We hypothesized that asthmatic BSM can play a role in RV infection of the bronchial epithelium. Using an original co-culture model between bronchial epithelium and BSM cells, we show that asthmatic BSM cells increase RV replication in bronchial epithelium following RV infection. These findings are related to the increased production of CCL20 by asthmatic BSM cells. Moreover, we demonstrate an original downregulation of the activity of the epithelial protein kinase RNA-activated (PKR) antiviral pathway. Finally, we identify a direct bottom-up effect of asthmatic BSM cells on bronchial epithelium susceptibility to RV infection.
Collapse
Affiliation(s)
- Pauline Esteves
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France
| | - Benoit Allard
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France
| | - Alexis Celle
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France
| | - Isabelle Dupin
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France
| | - Elise Maurat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France
| | - Olga Ousova
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France
| | - Matthieu Thumerel
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de pharmacologie, CIC 1401, Service de chirurgie thoracique, 33604 Pessac, France
| | - Jean-William Dupuy
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France
| | - Thierry Leste-Lasserre
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France
| | - Roger Marthan
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de pharmacologie, CIC 1401, Service de chirurgie thoracique, 33604 Pessac, France
| | - Pierre-Olivier Girodet
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de pharmacologie, CIC 1401, Service de chirurgie thoracique, 33604 Pessac, France
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France.
| | - Patrick Berger
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de pharmacologie, CIC 1401, Service de chirurgie thoracique, 33604 Pessac, France
| |
Collapse
|
17
|
Celle A, Esteves P, Cardouat G, Beaufils F, Eyraud E, Dupin I, Maurat E, Lacomme S, Ousova O, Begueret H, Thumerel M, Marthan R, Girodet PO, Berger P, Trian T. Rhinovirus infection of bronchial epithelium induces specific bronchial smooth muscle cell migration of severe asthmatic patients. J Allergy Clin Immunol 2022; 150:104-113. [PMID: 35143808 DOI: 10.1016/j.jaci.2022.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Patients with severe asthma show an increase in both exacerbation frequency and bronchial smooth muscle (BSM) mass. Rhinovirus (RV) infection of the bronchial epithelium (BE) is the main trigger of asthma exacerbations. Histological analysis of biopsies shows that a close connection between BE and hypertrophic BSM is a criterion for severity of asthma. OBJECTIVE We hypothesized that RV infection of BE specifically increases asthmatic BSM cell migration. METHODS Serum samples, biopsies or BSM cells were obtained from 86 patients with severe asthma and 31 non-asthmatic subjects. BE cells from non-asthmatic subjects were cultured in an air-liquid interface and exposed to RV-16. Migration of BSM cells was assessed in response to BE supernatant using chemotaxis assays. Chemokine concentrations were analyzed by transcriptomics and ELISAs. Immunocytochemistry, western blotting and flow cytometry were used to quantify CXCR3 isoform distribution. CXCR3 downstream signaling pathways were assessed by calcium imaging and western blots. RESULTS BSM cells from severe asthmatic patients specifically migrated toward RV-infected BE, whereas those from non-asthmatic subjects did not. This specific migration is driven by BE CXCL10, which was increased in vitro in response to RV infection as well as in vivo in serum from exacerbating patients with severe asthma. The mechanism is related to both decreased expression and activation of the CXCR3-B-specific isoform in severe asthmatic BSM cells. CONCLUSION We have demonstrated a novel mechanism of BSM remodeling in severe asthmatic patients following RV exacerbation. This study highlights the CXCL10/CXCR3-A axis as a potential therapeutic target in severe asthma.
Collapse
Affiliation(s)
- Alexis Celle
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Pauline Esteves
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Guillaume Cardouat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Fabien Beaufils
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Edmée Eyraud
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Isabelle Dupin
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Elise Maurat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Sabrina Lacomme
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France
| | - Olga Ousova
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Hugues Begueret
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Matthieu Thumerel
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Roger Marthan
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Pierre-Olivier Girodet
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Patrick Berger
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France.
| |
Collapse
|
18
|
Grigorieva NY, Ilushina TP, Kolosova KS. The possibilities of using beta-blocker bisoprolol in patients with stable angina with concomitant bronchial asthma. KARDIOLOGIIA 2022; 62:32-39. [PMID: 35168531 DOI: 10.18087/cardio.2022.1.n1714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Aim To compare efficacy and safety of treatments with the calcium antagonist (CA) verapamil, the cardioselective β-blocker (BB) bisoprolol, and a combination therapy with bisoprolol and amlodipine in patients with stable angina (SA) with concurrent mild and moderate, persistent bronchial asthma (BA). Material and methods This open, prospective, randomized, comparative study included 120 patients with an IHD+BA comorbidity. Of these patients, 60 had mild persistent BA and 60 had moderate persistent BA. Each group was divided into 3 subgroup, each including 20 patients, based on the used regimen of antianginal therapy. Stepwise dose titration was performed every 2 weeks (subgroup 1 received the BB bisoprolol 2.5 mg - 5 mg - 10 mg; subgroup 2 received the CA verapamil 240 mg - 240 mg - 240 mg; subgroup 3 received bisoprolol 2.5 mg followed by the combination treatment with bisoprolol and amlodipine as a fixed combination 5+5 mg). All patients underwent a complete clinical and instrumental examination at baseline and at 2, 4, and 6 weeks of treatment. The antianginal effectivity and the effect on bronchial patency were evaluated. Results In patients with SA and mild persistent BA, the study of external respiration function (ERF) at 2, 4, and 6 weeks of treatment did not detect any significant difference in the forced expiratory volume in 1 second (FEV1) between the treatment subgroups. In patients with SA and moderate persistent BA receiving the treatment, a significant decrease in FEV1 (р=0.022) was observed in subgroup 1 receiving bisoprolol 10 mg at 6 weeks of treatment. In subgroups 2 and 3 during the treatment, significant differences were absent. In patients with SA and mild or moderate persistent BA, the heart rate was significantly decreased in all three subgroups; however, in subgroup 2 receiving verapamil, the changes were considerably smaller than in other subgroups.Conclusion The study results showed that the BB bisoprolol with dose titration every two weeks from 2.5 to 10 mg or the combination treatment with the BB bisoprolol and the CA amlodipine can be used as the antianginal therapy in patients with SA and mild persistent BA. The BB bisoprolol may be used in patients with SA and moderate persistent BA as the antianginal therapy, but only at doses not exceeding 5 mg to avoid the development of bronchial obstruction. The combination therapy with the BB bisoprolol 5 mg and the CA amlodipine 5 mg is indicated to enhance antianginal and vasoprotective effects.
Collapse
Affiliation(s)
- N Yu Grigorieva
- National Research N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - T P Ilushina
- "Central City Hospital of Arzamas", Arzamas, Russia
| | - K S Kolosova
- National Research N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
19
|
Abstract
The serotonin (5-hydroxytryptamine, 5-HT) 2A receptor is most well known as the common target for classic psychedelic compounds. Interestingly, the 5-HT2A receptor is the most widely expressed mammalian serotonin receptor and is found in nearly every examined tissue type including neural, endocrine, endothelial, immune, and muscle, suggesting it could be a novel and pharmacological target for several types of disorders. Despite this, the bulk of research on the 5-HT2A receptor is focused on its role in the central nervous system (CNS). Recently, activation of 5-HT2A receptors has emerged as a new anti-inflammatory strategy. This review will describe recent findings regarding psychedelics as anti-inflammatory compounds, as well as parse out differences in functional selectivity and immune regulation that exist between a number of well-known hallucinogenic compounds.
Collapse
Affiliation(s)
- Thomas W Flanagan
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Charles D Nichols
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
20
|
Luo J, Liu H, Li DKJ, Song B, Zhang Y. Repression of the expression of proinflammatory genes by mitochondrial transcription factor A is linked to its alternative splicing regulation in human lung epithelial cells. BMC Immunol 2021; 22:74. [PMID: 34876009 PMCID: PMC8650232 DOI: 10.1186/s12865-021-00464-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background Mitochondrial transcription factor A (TFAM) is associated with a number of neurodegenerative diseases and also with asthma. TFAM deficiency-induced mitochondrial DNA stress primes the antiviral innate immune response in mouse embryonic fibroblasts. However, the role of TFAM in asthma related inflammation remains obscure. The purpose of this study was to investigate the regulatory mechanism of TFAM in asthma. Results In this study, we overexpressed TFAM in human lung epithelial cells (A549), then obtained the TFAM-regulated transcriptome by Illumina sequencing technology. Transcriptome analysis revealed that TFAM overexpression down-regulated and up-regulated the expression of 642 and 169 differentially expressed genes (DEGs), respectively. The TFAM-repressed genes were strongly enriched in cytokine-mediated signaling pathway, type I interferon- and INF-γ-mediated signaling pathways, and viral response pathways. We also revealed that 2563 alternative splicing events in 1796 alternative splicing genes (ASGs) were de-regulated upon TFAM overexpression. These TFAM-responding ASGs were enriched in DNA repair, nerve growth factor receptor signaling pathway, and also transcription regulation. Further analysis revealed that the promoters of TFAM-repressed DEGs were enriched by DNA binding motifs of transcription factors whose alternative splicing was regulated by TFAM. Conclusions These findings suggest that TFAM regulates not only immune response gene expression in human lung epithelial cells, but also pre-mRNA alternative splicing which may mediate transcriptional regulation; this TFAM-centered gene regulation network could be targeted in developing therapies against various diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00464-2.
Collapse
Affiliation(s)
- Jinsong Luo
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Hong Liu
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Daniel K Jun Li
- ABLife BioBigData Institute, Wuhan, Hubei, China.,Department of Biology and Biotechnology, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei, China
| | - Bin Song
- ABLife BioBigData Institute, Wuhan, Hubei, China
| | - Yi Zhang
- ABLife BioBigData Institute, Wuhan, Hubei, China
| |
Collapse
|
21
|
Mitochondrial Dysfunction in Chronic Respiratory Diseases: Implications for the Pathogenesis and Potential Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5188306. [PMID: 34354793 PMCID: PMC8331273 DOI: 10.1155/2021/5188306] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/30/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are indispensable for energy metabolism and cell signaling. Mitochondrial homeostasis is sustained with stabilization of mitochondrial membrane potential, balance of mitochondrial calcium, integrity of mitochondrial DNA, and timely clearance of damaged mitochondria via mitophagy. Mitochondrial dysfunction is featured by increased generation of mitochondrial reactive oxygen species, reduced mitochondrial membrane potential, mitochondrial calcium imbalance, mitochondrial DNA damage, and abnormal mitophagy. Accumulating evidence indicates that mitochondrial dysregulation causes oxidative stress, inflammasome activation, apoptosis, senescence, and metabolic reprogramming. All these cellular processes participate in the pathogenesis and progression of chronic respiratory diseases, including chronic obstructive pulmonary disease, pulmonary fibrosis, and asthma. In this review, we provide a comprehensive and updated overview of the impact of mitochondrial dysfunction on cellular processes involved in the development of these respiratory diseases. This not only implicates mechanisms of mitochondrial dysfunction for the pathogenesis of chronic lung diseases but also provides potential therapeutic approaches for these diseases by targeting dysfunctional mitochondria.
Collapse
|
22
|
Donovan GM, Wang KCW, Shamsuddin D, Mann TS, Henry PJ, Larcombe AN, Noble PB. Pharmacological ablation of the airway smooth muscle layer-Mathematical predictions of functional improvement in asthma. Physiol Rep 2021; 8:e14451. [PMID: 32533641 PMCID: PMC7292900 DOI: 10.14814/phy2.14451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 12/16/2022] Open
Abstract
Airway smooth muscle (ASM) plays a major role in acute airway narrowing and reducing ASM thickness is expected to attenuate airway hyper‐responsiveness and disease burden. There are two therapeutic approaches to reduce ASM thickness: (a) a direct approach, targeting specific airways, best exemplified by bronchial thermoplasty (BT), which delivers radiofrequency energy to the airway via bronchoscope; and (b) a pharmacological approach, targeting airways more broadly. An example of the less well‐established pharmacological approach is the calcium‐channel blocker gallopamil which in a clinical trial effectively reduced ASM thickness; other agents may act similarly. In view of established anti‐proliferative properties of the macrolide antibiotic azithromycin, we examined its effects in naive mice and report a reduction in ASM thickness of 29% (p < .01). We further considered the potential functional implications of this finding, if it were to extend to humans, by way of a mathematical model of lung function in asthmatic patients which has previously been used to understand the mechanistic action of BT. Predictions show that pharmacological reduction of ASM in all airways of this magnitude would reduce ventilation heterogeneity in asthma, and produce a therapeutic benefit similar to BT. Moreover there are differences in the expected response depending on disease severity, with the pharmacological approach exceeding the benefits provided by BT in more severe disease. Findings provide further proof of concept that pharmacological targeting of ASM thickness will be beneficial and may be facilitated by azithromycin, revealing a new mode of action of an existing agent in respiratory medicine.
Collapse
Affiliation(s)
- Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Respiratory Environmental Health, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Danial Shamsuddin
- Respiratory Environmental Health, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Tracy S Mann
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Peter J Henry
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Alexander N Larcombe
- Respiratory Environmental Health, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
23
|
Benlala I, Dournes G, Girodet PO, Benkert T, Laurent F, Berger P. Evaluation of bronchial wall thickness in asthma using magnetic resonance imaging. Eur Respir J 2021; 59:13993003.00329-2021. [PMID: 34049945 DOI: 10.1183/13993003.00329-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/20/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Bronchial thickening is a pathological feature of asthma that has been evaluated using computed tomography (CT), an ionised radiation technique. Magnetic Resonance Imaging (MRI) with Ultrashort Echo Time (UTE) pulse sequences could be an alternative to CT. OBJECTIVES To measure bronchial dimensions using MRI-UTE in asthmatic patients, by evaluating the accuracy and agreement with CT, by comparing severe and non-severe asthma and by correlating with pulmonary function tests. METHODS We assessed bronchial dimensions (wall area (WA), lumen area (LA), normalised wall area (WA%), and wall thickness (WT)) by MRI-UTE and CT in 15 non-severe and 15 age- and sex-matched severe asthmatic patients (NCT03089346). Accuracy and agreement between MRI and CT was evaluated by paired t-tests and Bland-Altman analysis. Reproducibility was assessed by intra-class correlation coefficient and Bland-Altman analysis. Comparison between non-severe and severe asthmatic parameters was performed by Student-t, Mann-Whitney or Fisher's Exact tests. Correlations were assessed by Pearson or Spearman coefficients. RESULTS LA, WA%, and WT were not significantly different between MRI-UTE and CT, with good correlations and concordance. Inter- and intra-observer reproducibility was moderate to good. WA% and WT were both higher in severe than in non-severe asthmatic patients. WA, WA% and WT were all negatively correlated with FEV1. CONCLUSION We demonstrated that MRI-UTE is an accurate and reliable radiation-free method to assess bronchial wall dimensions in asthma, with enough spatial resolution to differentiate severe from non-severe asthma.
Collapse
Affiliation(s)
- Ilyes Benlala
- Univ. Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, Bordeaux, France.,CHU Bordeaux, Service de Radiologie et d'imagerie diagnostique et interventionnelle, CIC-P 1401, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux (U1045), Centre d'Investigation Clinique (CIC-P 1401), Bordeaux, France
| | - Gaël Dournes
- Univ. Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, Bordeaux, France.,CHU Bordeaux, Service de Radiologie et d'imagerie diagnostique et interventionnelle, CIC-P 1401, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux (U1045), Centre d'Investigation Clinique (CIC-P 1401), Bordeaux, France
| | - Pierre-Olivier Girodet
- Univ. Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, Bordeaux, France.,CHU Bordeaux, Service de Radiologie et d'imagerie diagnostique et interventionnelle, CIC-P 1401, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux (U1045), Centre d'Investigation Clinique (CIC-P 1401), Bordeaux, France
| | - Thomas Benkert
- MR application predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - François Laurent
- Univ. Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, Bordeaux, France.,CHU Bordeaux, Service de Radiologie et d'imagerie diagnostique et interventionnelle, CIC-P 1401, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux (U1045), Centre d'Investigation Clinique (CIC-P 1401), Bordeaux, France
| | - Patrick Berger
- Univ. Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, Bordeaux, France .,CHU Bordeaux, Service de Radiologie et d'imagerie diagnostique et interventionnelle, CIC-P 1401, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux (U1045), Centre d'Investigation Clinique (CIC-P 1401), Bordeaux, France
| |
Collapse
|
24
|
Chetty A, Nielsen HC. Targeting Airway Smooth Muscle Hypertrophy in Asthma: An Approach Whose Time Has Come. J Asthma Allergy 2021; 14:539-556. [PMID: 34079293 PMCID: PMC8164696 DOI: 10.2147/jaa.s280247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/20/2021] [Indexed: 01/13/2023] Open
Abstract
Airway smooth muscle (ASM) cell dysfunction is an important component of several obstructive pulmonary diseases, particularly asthma. External stimuli such as allergens, dust, air pollutants, and change in environmental temperatures provoke ASM cell hypertrophy, proliferation, and migration without adequate mechanistic controls. ASM cells can switch between quiescent, migratory, and proliferative phenotypes in response to extracellular matrix proteins, growth factors, and other soluble mediators. While some aspects of airway hypertrophy and remodeling could have beneficial effects, in many cases these contribute to a clinical phenotype of difficult to control asthma. In this review, we discuss the factors responsible for ASM hypertrophy and proliferation in asthma, focusing on cytokines, growth factors, and ion transporters, and discuss existing and potential approaches that specifically target ASM hypertrophy to reduce the ASM mass and improve asthma symptoms. The goal of this review is to highlight strategies that appear ready for translational investigations to improve asthma therapy.
Collapse
Affiliation(s)
- Anne Chetty
- Tufts Medical Center, Tufts University, Boston, MA, USA
| | | |
Collapse
|
25
|
Esteves P, Blanc L, Celle A, Dupin I, Maurat E, Amoedo N, Cardouat G, Ousova O, Gales L, Bellvert F, Begueret H, Thumerel M, Dupuy JW, Desbenoit N, Marthan R, Girodet PO, Rossignol R, Berger P, Trian T. Crucial role of fatty acid oxidation in asthmatic bronchial smooth muscle remodelling. Eur Respir J 2021; 58:13993003.04252-2020. [PMID: 33833033 DOI: 10.1183/13993003.04252-2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/26/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Bronchial smooth muscle (BSM) remodelling in asthma is related to an increased mitochondrial biogenesis and enhanced BSM cell proliferation in asthma. Since (i) mitochondria produce the highest levels of cellular energy and (ii) fatty acid beta-oxidation is the most powerful way to produce ATP, we hypothesized that, in asthmatic BSM cells, energetic metabolism is shifted towards the beta-oxidation of fatty acids. OBJECTIVES We aimed to characterize BSM cell metabolism in asthma both in vitro and ex vivo to identify a novel target for reducing BSM cell proliferation. METHODS Twenty-one asthmatic and 31 non-asthmatic patients were enrolled. We used metabolomic and proteomic approaches to study BSM cells. Oxidative stress, ATP synthesis, fatty acid endocytosis, metabolite production, metabolic capabilities, mitochondrial networks, cell proliferation and apoptosis were assessed on BSM cells. Fatty acid content was assessed in vivo using MALDI-spectrometry imaging. RESULTS Asthmatic BSM cells were characterized by an increased rate of mitochondrial respiration with a stimulated ATP production and mitochondrial β-oxidation. Fatty acid consumption was increased in asthmatic BSM both in vitro and ex vivo. Proteome remodelling of asthmatic BSM occurred via 2 canonical mitochondrial pathways. The levels of CPT2 and LDL-receptor, which internalize fatty acids through mitochondrial and cell membranes, respectively, were both increased in asthmatic BSM cells. Blocking CPT2 or LDL-receptor drastically and specifically reduced asthmatic BSM cell proliferation. CONCLUSION This study demonstrates a metabolic switch towards mitochondrial beta-oxidation in asthmatic BSM and identifies fatty acid metabolism as a new key target to reduce BSM remodelling in asthma.
Collapse
Affiliation(s)
- Pauline Esteves
- Centre de Recherche Cardio-thoracique de Bordeaux, U1045, MRGM, Functional Genomics Center (CGFB), CIC 1401, CELLOMET, Univ-Bordeaux, Bordeaux, France.,Centre de Recherche Cardio-thoracique de Bordeaux, U1045, U1211, CIC 1401, INSERM, Bordeaux, France
| | - Landry Blanc
- Centre de Recherche Cardio-thoracique de Bordeaux, U1045, MRGM, Functional Genomics Center (CGFB), CIC 1401, CELLOMET, Univ-Bordeaux, Bordeaux, France.,CNRS, UMR5248, Institute of Chemistry & Biology of Membranes & Nano objects, Functional Genomics Center (CGFB), Proteomics Facility, Université de Bordeaux, Bordeaux, France
| | - Alexis Celle
- Centre de Recherche Cardio-thoracique de Bordeaux, U1045, MRGM, Functional Genomics Center (CGFB), CIC 1401, CELLOMET, Univ-Bordeaux, Bordeaux, France.,Centre de Recherche Cardio-thoracique de Bordeaux, U1045, U1211, CIC 1401, INSERM, Bordeaux, France
| | - Isabelle Dupin
- Centre de Recherche Cardio-thoracique de Bordeaux, U1045, MRGM, Functional Genomics Center (CGFB), CIC 1401, CELLOMET, Univ-Bordeaux, Bordeaux, France.,Centre de Recherche Cardio-thoracique de Bordeaux, U1045, U1211, CIC 1401, INSERM, Bordeaux, France
| | - Elise Maurat
- Centre de Recherche Cardio-thoracique de Bordeaux, U1045, MRGM, Functional Genomics Center (CGFB), CIC 1401, CELLOMET, Univ-Bordeaux, Bordeaux, France.,Centre de Recherche Cardio-thoracique de Bordeaux, U1045, U1211, CIC 1401, INSERM, Bordeaux, France
| | - Nivea Amoedo
- Centre de Recherche Cardio-thoracique de Bordeaux, U1045, MRGM, Functional Genomics Center (CGFB), CIC 1401, CELLOMET, Univ-Bordeaux, Bordeaux, France.,Centre de Recherche Cardio-thoracique de Bordeaux, U1045, U1211, CIC 1401, INSERM, Bordeaux, France
| | - Guillaume Cardouat
- Centre de Recherche Cardio-thoracique de Bordeaux, U1045, MRGM, Functional Genomics Center (CGFB), CIC 1401, CELLOMET, Univ-Bordeaux, Bordeaux, France.,Centre de Recherche Cardio-thoracique de Bordeaux, U1045, U1211, CIC 1401, INSERM, Bordeaux, France
| | - Olga Ousova
- Centre de Recherche Cardio-thoracique de Bordeaux, U1045, MRGM, Functional Genomics Center (CGFB), CIC 1401, CELLOMET, Univ-Bordeaux, Bordeaux, France.,Centre de Recherche Cardio-thoracique de Bordeaux, U1045, U1211, CIC 1401, INSERM, Bordeaux, France
| | - Lara Gales
- CNRS 5504, INRA 792, INSA Toulouse, Toulouse Biotechnology Institute, Bio & Chemical Engineering, Université de Toulouse, MetaToul, Toulouse, France
| | - Florian Bellvert
- CNRS 5504, INRA 792, INSA Toulouse, Toulouse Biotechnology Institute, Bio & Chemical Engineering, Université de Toulouse, MetaToul, Toulouse, France
| | - Hugues Begueret
- Service d'exploration fonctionnelle respiratoire, Service de chirurgie thoracique, Service d'anatomopathologie, CIC 1401, CHU de Bordeaux, Bordeaux, France
| | - Matthieu Thumerel
- Centre de Recherche Cardio-thoracique de Bordeaux, U1045, MRGM, Functional Genomics Center (CGFB), CIC 1401, CELLOMET, Univ-Bordeaux, Bordeaux, France.,Centre de Recherche Cardio-thoracique de Bordeaux, U1045, U1211, CIC 1401, INSERM, Bordeaux, France.,Service d'exploration fonctionnelle respiratoire, Service de chirurgie thoracique, Service d'anatomopathologie, CIC 1401, CHU de Bordeaux, Bordeaux, France
| | - Jean-William Dupuy
- Centre de Recherche Cardio-thoracique de Bordeaux, U1045, MRGM, Functional Genomics Center (CGFB), CIC 1401, CELLOMET, Univ-Bordeaux, Bordeaux, France.,CNRS, UMR5248, Institute of Chemistry & Biology of Membranes & Nano objects, Functional Genomics Center (CGFB), Proteomics Facility, Université de Bordeaux, Bordeaux, France
| | - Nicolas Desbenoit
- Centre de Recherche Cardio-thoracique de Bordeaux, U1045, MRGM, Functional Genomics Center (CGFB), CIC 1401, CELLOMET, Univ-Bordeaux, Bordeaux, France.,CNRS, UMR5248, Institute of Chemistry & Biology of Membranes & Nano objects, Functional Genomics Center (CGFB), Proteomics Facility, Université de Bordeaux, Bordeaux, France
| | - Roger Marthan
- Centre de Recherche Cardio-thoracique de Bordeaux, U1045, MRGM, Functional Genomics Center (CGFB), CIC 1401, CELLOMET, Univ-Bordeaux, Bordeaux, France.,Centre de Recherche Cardio-thoracique de Bordeaux, U1045, U1211, CIC 1401, INSERM, Bordeaux, France.,Service d'exploration fonctionnelle respiratoire, Service de chirurgie thoracique, Service d'anatomopathologie, CIC 1401, CHU de Bordeaux, Bordeaux, France
| | - Pierre-Olivier Girodet
- Centre de Recherche Cardio-thoracique de Bordeaux, U1045, MRGM, Functional Genomics Center (CGFB), CIC 1401, CELLOMET, Univ-Bordeaux, Bordeaux, France.,Centre de Recherche Cardio-thoracique de Bordeaux, U1045, U1211, CIC 1401, INSERM, Bordeaux, France.,Service d'exploration fonctionnelle respiratoire, Service de chirurgie thoracique, Service d'anatomopathologie, CIC 1401, CHU de Bordeaux, Bordeaux, France
| | - Rodrigue Rossignol
- Centre de Recherche Cardio-thoracique de Bordeaux, U1045, MRGM, Functional Genomics Center (CGFB), CIC 1401, CELLOMET, Univ-Bordeaux, Bordeaux, France.,Centre de Recherche Cardio-thoracique de Bordeaux, U1045, U1211, CIC 1401, INSERM, Bordeaux, France
| | - Patrick Berger
- Centre de Recherche Cardio-thoracique de Bordeaux, U1045, MRGM, Functional Genomics Center (CGFB), CIC 1401, CELLOMET, Univ-Bordeaux, Bordeaux, France.,Centre de Recherche Cardio-thoracique de Bordeaux, U1045, U1211, CIC 1401, INSERM, Bordeaux, France.,Service d'exploration fonctionnelle respiratoire, Service de chirurgie thoracique, Service d'anatomopathologie, CIC 1401, CHU de Bordeaux, Bordeaux, France.,Co-last author
| | - Thomas Trian
- Centre de Recherche Cardio-thoracique de Bordeaux, U1045, MRGM, Functional Genomics Center (CGFB), CIC 1401, CELLOMET, Univ-Bordeaux, Bordeaux, France .,Centre de Recherche Cardio-thoracique de Bordeaux, U1045, U1211, CIC 1401, INSERM, Bordeaux, France.,Co-last author
| |
Collapse
|
26
|
Beaufils F, Esteves P, Enaud R, Germande O, Celle A, Marthan R, Trian T, Fayon M, Berger P. Mitochondria are involved in bronchial smooth muscle remodeling in severe preschool wheezers. J Allergy Clin Immunol 2021; 148:645-651.e11. [PMID: 33819511 DOI: 10.1016/j.jaci.2021.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Bronchial remodeling is a key feature of asthma that is already present in preschoolers with wheezing. Moreover, bronchial smooth muscle (BSM) remodeling at preschool age is predictive of asthma at school age. However, the mechanism responsible for BSM remodeling in preschoolers with wheezing remains totally unknown. In contrast, in adult asthma, BSM remodeling has been associated with an increase in BSM cell proliferation related to increased mitochondrial mass and biogenesis triggered by an altered calcium homeostasis. Indeed, BSM cell proliferation was decreased in vitro by the calcium channel blocker gallopamil. OBJECTIVE Our aim was to investigate the mechanisms involved in BSM cell proliferation in preschoolers with severe wheezing, with special attention to the role of mitochondria and calcium signaling. METHODS Bronchial tissue samples obtained from 12 preschool controls without wheezing and 10 preschoolers with severe wheezing were used to measure BSM mass and establish primary BSM cell cultures. BSM cell proliferation was assessed by manual counting and flow cytometry, ATP content was assessed by bioluminescence, mitochondrial respiration was assessed by using either the Seahorse or Oroboros technique, mitochondrial mass and biogenesis were assessed by immunoblotting, and calcium response to carbachol was assessed by confocal microscopy. The effect of gallopamil was also evaluated. RESULTS BSM mass, cell proliferation, ATP content, mitochondrial respiration, mass and biogenesis, and calcium response were all increased in preschoolers with severe wheezing compared with in the controls. Gallopamil significantly decreased BSM mitochondrial biogenesis and mass, as well as cell proliferation. CONCLUSION Mitochondria are key players in BSM cell proliferation in preschoolers with severe wheezing and could represent a potential target to treat BSM remodeling at an early stage of the disease.
Collapse
Affiliation(s)
- Fabien Beaufils
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de Pédiatrie médicale, Bordeaux, France
| | - Pauline Esteves
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France
| | - Raphaël Enaud
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de Pédiatrie médicale, Bordeaux, France
| | - Ophélie Germande
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France
| | - Alexis Celle
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France
| | - Roger Marthan
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de Pédiatrie médicale, Bordeaux, France
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France
| | - Michael Fayon
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de Pédiatrie médicale, Bordeaux, France
| | - Patrick Berger
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de Pédiatrie médicale, Bordeaux, France.
| |
Collapse
|
27
|
Role of Airway Smooth Muscle in Inflammation Related to Asthma and COPD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:139-172. [PMID: 33788192 DOI: 10.1007/978-3-030-63046-1_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Airway smooth muscle contributes to both contractility and inflammation in the pathophysiology of asthma and COPD. Airway smooth muscle cells can change the degree of a variety of functions, including contraction, proliferation, migration, and the secretion of inflammatory mediators (phenotype plasticity). Airflow limitation, airway hyperresponsiveness, β2-adrenergic desensitization, and airway remodeling, which are fundamental characteristic features of these diseases, are caused by phenotype changes in airway smooth muscle cells. Alterations between contractile and hyper-contractile, synthetic/proliferative phenotypes result from Ca2+ dynamics and Ca2+ sensitization. Modulation of Ca2+ dynamics through the large-conductance Ca2+-activated K+ channel/L-type voltage-dependent Ca2+ channel linkage and of Ca2+ sensitization through the RhoA/Rho-kinase pathway contributes not only to alterations in the contractile phenotype involved in airflow limitation, airway hyperresponsiveness, and β2-adrenergic desensitization but also to alteration of the synthetic/proliferative phenotype involved in airway remodeling. These Ca2+ signal pathways are also associated with synergistic effects due to allosteric modulation between β2-adrenergic agonists and muscarinic antagonists. Therefore, airway smooth muscle may be a target tissue in the therapy for these diseases. Moreover, the phenotype changing in airway smooth muscle cells with focuses on Ca2+ signaling may provide novel strategies for research and development of effective remedies against both bronchoconstriction and inflammation.
Collapse
|
28
|
Liu G, Philp AM, Corte T, Travis MA, Schilter H, Hansbro NG, Burns CJ, Eapen MS, Sohal SS, Burgess JK, Hansbro PM. Therapeutic targets in lung tissue remodelling and fibrosis. Pharmacol Ther 2021; 225:107839. [PMID: 33774068 DOI: 10.1016/j.pharmthera.2021.107839] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Structural changes involving tissue remodelling and fibrosis are major features of many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Abnormal deposition of extracellular matrix (ECM) proteins is a key factor in the development of tissue remodelling that results in symptoms and impaired lung function in these diseases. Tissue remodelling in the lungs is complex and differs between compartments. Some pathways are common but tissue remodelling around the airways and in the parenchyma have different morphologies. Hence it is critical to evaluate both common fibrotic pathways and those that are specific to different compartments; thereby expanding the understanding of the pathogenesis of fibrosis and remodelling in the airways and parenchyma in asthma, COPD and IPF with a view to developing therapeutic strategies for each. Here we review the current understanding of remodelling features and underlying mechanisms in these major respiratory diseases. The differences and similarities of remodelling are used to highlight potential common therapeutic targets and strategies. One central pathway in remodelling processes involves transforming growth factor (TGF)-β induced fibroblast activation and myofibroblast differentiation that increases ECM production. The current treatments and clinical trials targeting remodelling are described, as well as potential future directions. These endeavours are indicative of the renewed effort and optimism for drug discovery targeting tissue remodelling and fibrosis.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia; St Vincent's Medical School, UNSW Medicine, UNSW, Sydney, NSW, Australia
| | - Tamera Corte
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Mark A Travis
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre and Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Heidi Schilter
- Pharmaxis Ltd, 20 Rodborough Road, Frenchs Forest, Sydney, NSW, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Chris J Burns
- Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Department of Pathology and Medical Biology, Groningen, The Netherlands; Woolcock Institute of Medical Research, Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
29
|
Tsuzuki R, To M, Yamawaki S, Kono Y, To Y. Inhibitory effect of calcium channel blockers on the deterioration of lung function in adult-onset asthma. Ann Allergy Asthma Immunol 2021; 126:731-733. [PMID: 33705916 DOI: 10.1016/j.anai.2021.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Ryuta Tsuzuki
- Department of Allergy and Respiratory Medicine, The Fraternity Memorial Hospital, Tokyo, Japan
| | - Masako To
- Department of Allergy and Respiratory Medicine, The Fraternity Memorial Hospital, Tokyo, Japan
| | - Satoshi Yamawaki
- Department of Allergy and Respiratory Medicine, The Fraternity Memorial Hospital, Tokyo, Japan
| | - Yuta Kono
- Department of Allergy and Respiratory Medicine, The Fraternity Memorial Hospital, Tokyo, Japan; Department of Respiratory Medicine, Tokyo Medical University, Tokyo, Japan
| | - Yasuo To
- Department of Allergy and Respiratory Medicine, The Fraternity Memorial Hospital, Tokyo, Japan.
| |
Collapse
|
30
|
Debray MP, Ghanem M, Khalil A, Taillé C. [Lung imaging in severe asthma]. Rev Mal Respir 2021; 38:41-57. [PMID: 33423858 DOI: 10.1016/j.rmr.2020.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/02/2020] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Asthma is a common disease whose diagnosis does not typically rely on the results of imaging. However, chest CT has gained a key place over the last decade to support the management of patients with difficult to treat and severe asthma. STATE OF THE ART Bronchial wall thickening and mild dilatation or narrowing of bronchial lumen are frequently observed on chest CT in people with asthma. Bronchial wall thickening is correlated to the degree of obstruction and to bronchial wall remodeling and inflammation. Diverse conditions which can mimic asthma should be recognized on CT, including endobronchial tumours, interstitial pneumonias, bronchiectasis and bronchiolitis. Ground-glass opacities and consolidation may be related to transient eosinophilic infiltrates, infection or an associated disease (vasculitis, chronic eosinophilic pneumonia). Hyperdense mucous plugging is highly specific for allergic bronchopulmonary aspergillosis. PERSPECTIVES Airway morphometry, air trapping and quantitative analysis of ventilatory defects, with CT or MRI, can help to identify different morphological subgroups of patients with different functional or inflammatory characteristics. These imaging tools could emerge as new biomarkers for the evaluation of treatment response. CONCLUSION Chest CT is indicated in people with severe asthma to search for additional or alternative diagnoses. Quantitative imaging may contribute to phenotyping this patient group.
Collapse
Affiliation(s)
- M-P Debray
- Service de Radiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, 46, rue Henri Huchard, 75018 Paris; Inserm UMR1152, France.
| | - M Ghanem
- Service de Pneumologie et Centre de Référence constitutif des Maladies Pulmonaires Rares, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, France
| | - A Khalil
- Service de Radiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, 46, rue Henri Huchard, 75018 Paris; Université de Paris, Inserm UMR1152, France
| | - C Taillé
- Service de Pneumologie et Centre de Référence constitutif des Maladies Pulmonaires Rares, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, France; Département Hospitalo-Universitaire FIRE ; Université de Paris ; Inserm UMR 1152 ; LabEx Inflamex, 75018 Paris, France
| |
Collapse
|
31
|
Saunders R, Kaur D, Desai D, Berair R, Chachi L, Thompson RD, Siddiqui SH, Brightling CE. Fibrocyte localisation to the ASM bundle in asthma: bidirectional effects on cell phenotype and behaviour. Clin Transl Immunology 2020; 9:e1205. [PMID: 33209301 PMCID: PMC7662089 DOI: 10.1002/cti2.1205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives Airway hyper‐responsiveness and persistent airflow obstruction contribute to asthma pathogenesis and symptoms, due in part to airway smooth muscle (ASM) hypercontractility and increased ASM mass. Fibrocytes have been shown to localise to the ASM in asthma however it is not known whether fibrocytes localise to the ASM in nonasthmatic eosinophilic bronchitis (NAEB) and chronic obstructive pulmonary disease (COPD). In addition, the potential consequences of fibrocyte localisation to ASM as regards asthma pathophysiology has not been widely studied. Methods Fibrocytes and proliferating cells were enumerated in ASM in bronchial tissue using immunohistochemistry. The effects of primary ASM and fibrocytes upon each other in terms of phenotype and behaviour following co‐culture were investigated by assessing cell number, size, apoptotic status, phenotype and contractility in in vitro cell‐based assays. Results Increased fibrocyte number in the ASM was observed in asthma versus NAEB, but not NAEB and COPD versus controls, and confirmed in asthma versus controls. ASM proliferation was not detectably different in asthmatics versus healthy controls in vivo. No difference in proliferation, apoptotic status or size of ASM was seen following culture with/without fibrocytes. Following co‐culture with ASM from asthmatics versus nonasthmatics, fibrocyte smooth muscle marker expression and collagen gel contraction were greater. Following co‐culture, fibrocyte CD14 expression was restored with the potential to contribute to asthma pathogenesis via monocyte‐mediated processes dependent on the inflammatory milieu. Conclusion Further understanding of mechanisms of fibrocyte recruitment to and/or differentiation within the ASM may identify novel therapeutic targets to modulate ASM dysfunction in asthma.
Collapse
Affiliation(s)
- Ruth Saunders
- Department of Respiratory Sciences Institute for Lung Health University of Leicester Leicester UK
| | - Davinder Kaur
- Department of Respiratory Sciences Institute for Lung Health University of Leicester Leicester UK
| | - Dhananjay Desai
- Department of Respiratory Sciences Institute for Lung Health University of Leicester Leicester UK.,Present address: University Hospitals Coventry & Warwickshire NHS Trust Coventry UK
| | - Rachid Berair
- Department of Respiratory Sciences Institute for Lung Health University of Leicester Leicester UK.,Present address: The Royal Wolverhampton NHS Trust Wolverhampton UK
| | - Latifa Chachi
- Department of Respiratory Sciences Institute for Lung Health University of Leicester Leicester UK
| | | | - Salman H Siddiqui
- Department of Respiratory Sciences Institute for Lung Health University of Leicester Leicester UK
| | - Christopher E Brightling
- Department of Respiratory Sciences Institute for Lung Health University of Leicester Leicester UK
| |
Collapse
|
32
|
Ray A, Jaiswal A, Dutta J, Singh S, Mabalirajan U. A looming role of mitochondrial calcium in dictating the lung epithelial integrity and pathophysiology of lung diseases. Mitochondrion 2020; 55:111-121. [PMID: 32971294 PMCID: PMC7505072 DOI: 10.1016/j.mito.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/20/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022]
Abstract
With the increasing appreciation of mitochondria in modulating cellular homeostasis, various disease biology researchers have started exploring the detailed role of mitochondria in multiple diseases beyond neuronal and muscular diseases. In this context, emerging shreds of evidence in lung biology indicated the meticulous role of lung epithelia in provoking a plethora of lung diseases in contrast to earlier beliefs. As lung epithelia are ceaselessly exposed to the environment, they need to have multiple protective mechanisms to maintain the integrity of lung structure and function. As ciliated airway epithelium and type 2 alveolar epithelia require intense energy for executing their key functions like ciliary beating and surfactant production, it is no surprise that defects in mitochondrial function in these cells could perturb lung homeostasis and engage in the pathophysiology of lung diseases. On one hand, intracellular calcium plays the central role in executing key functions of lung epithelia, and on the other hand maintenance of intracellular calcium needs the buffering role of mitochondria. Thus, the regulation of mitochondrial calcium in lung epithelia seems to be critical in lung homeostasis and could be decisive in the pathogenesis of various lung diseases.
Collapse
Affiliation(s)
- Archita Ray
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish Jaiswal
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sabita Singh
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
33
|
Cloonan SM, Kim K, Esteves P, Trian T, Barnes PJ. Mitochondrial dysfunction in lung ageing and disease. Eur Respir Rev 2020; 29:29/157/200165. [PMID: 33060165 DOI: 10.1183/16000617.0165-2020] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial biology has seen a surge in popularity in the past 5 years, with the emergence of numerous new avenues of exciting mitochondria-related research including immunometabolism, mitochondrial transplantation and mitochondria-microbe biology. Since the early 1960s mitochondrial dysfunction has been observed in cells of the lung in individuals and in experimental models of chronic and acute respiratory diseases. However, it is only in the past decade with the emergence of more sophisticated tools and methodologies that we are beginning to understand how this enigmatic organelle regulates cellular homeostasis and contributes to disease processes in the lung. In this review, we highlight the diverse role of mitochondria in individual lung cell populations and what happens when these essential organelles become dysfunctional with ageing and in acute and chronic lung disease. Although much remains to be uncovered, we also discuss potential targeted therapeutics for mitochondrial dysfunction in the ageing and diseased lung.
Collapse
Affiliation(s)
- Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Dept of Medicine, New York, NY, USA.,School of Medicine, Trinity College Dublin and Tallaght University Hospital, Dublin, Ireland
| | - Kihwan Kim
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Dept of Medicine, New York, NY, USA
| | - Pauline Esteves
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Dépt de Pharmacologie, CIC 1401, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Dépt de Pharmacologie, CIC 1401, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
34
|
Zhang J, Dong L. Status and prospects: personalized treatment and biomarker for airway remodeling in asthma. J Thorac Dis 2020; 12:6090-6101. [PMID: 33209441 PMCID: PMC7656354 DOI: 10.21037/jtd-20-1024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Airway remodeling, as a major characteristic of bronchial asthma, is critical to the progression of this disease, whereas it is of less importance in clinical management. Complying with the current stepwise treatment standard for asthma, the choice of intervention on the clinical status is primarily determined by the patient’s treatment response to airway inflammation. However, a considerable number of asthmatic patients, especially severe asthmatic subjects, remain uncontrolled though they have undergone fortified anti-inflammation treatment. In the past few years, a growing number of biologics specific to asthma phenotypes have emerged, bringing new hope for patients with refractory asthma and severe asthma. While at the same time, the effect of airway remodeling on asthma treatment has become progressively prominent. In the era of personalized treatment, it has become one of the development directions for asthma treatment to find reliable airway remodeling biomarkers to assist in asthma phenotypes classification, and to further combine multiple phenotypes to accurately treat patients. In the present study, the research status of airway remodeling in asthma is reviewed to show the basis for classifying and treating such disease. Besides, several selected airway remodeling biomarkers and possibility to use them in individual treatment are discussed as well. This study considers that continuously optimized mechanisms and emerging biomarkers for airway remodeling in the future may further support individual therapy for asthma patients.
Collapse
Affiliation(s)
- Jintao Zhang
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liang Dong
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
35
|
Wang KCW, Donovan GM, James AL, Noble PB. Asthma: Pharmacological degradation of the airway smooth muscle layer. Int J Biochem Cell Biol 2020; 126:105818. [PMID: 32707120 DOI: 10.1016/j.biocel.2020.105818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
Asthma: A disease characterised by excessive and variable airway narrowing, and pathologies of inflammation and remodelling, particularly thickening of the airway smooth muscle (ASM). Treatment approaches dilate narrowed airways and reduce inflammation; however, remodelling seems largely neglected. This review considers the evolution of remodelling in asthma and whether conventional hypotheses that inflammation causes ASM thickening has mislead the medical community into thinking that anti-inflammatories will remedy this ASM defect. There is instead reasonable evidence that ASM thickening occurs independently of inflammation, such that therapies should employ strategies to directly modify ASM growth. Lessons have been learned from the use of untargeted bronchial thermoplasty and there should also be consideration of pharmacological therapies to ablate ASM. We discuss several new approaches to target ASM remodelling in asthma. A major current obstacle is our inability to image the ASM layer and assess treatment response. In this regard, polarisation-sensitive optical coherence tomography offers future promise.
Collapse
Affiliation(s)
- Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, 6009, Western Australia, Australia; Telethon Kids Institute, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, 1142, New Zealand
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, 6009, Western Australia, Australia; Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, 6009, Western Australia, Australia
| |
Collapse
|
36
|
Beaufils F, Marthan R, Berger P. Bnip3 as a potential target to treat airway smooth muscle remodeling in asthma? Am J Physiol Lung Cell Mol Physiol 2020; 318:L212. [PMID: 31910033 DOI: 10.1152/ajplung.00431.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Fabien Beaufils
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Université de Bordeaux, Bordeaux, France.,Service d'Explorations Fonctionnelles Respiratoires, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | - Roger Marthan
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Université de Bordeaux, Bordeaux, France.,Service d'Explorations Fonctionnelles Respiratoires, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | - Patrick Berger
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Université de Bordeaux, Bordeaux, France.,Service d'Explorations Fonctionnelles Respiratoires, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| |
Collapse
|
37
|
Esteves P, Celle A, Berger P, Trian T. [Bronchial smooth muscle mitochondria: A new target for asthma therapy?]. Rev Mal Respir 2020; 37:201-204. [PMID: 32139106 DOI: 10.1016/j.rmr.2020.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 01/12/2020] [Indexed: 12/30/2022]
Abstract
The main purpose of this review is to highlight mitochondria as a new therapeutic target to prevent bronchial smooth muscle (BSM) remodeling in asthma. Severe asthmatic patients, representing 5-10% of all asthmatics, are characterized by an increased BSM mass which is highly correlated with the severity of the disease and the rate of exacerbations. None of the current asthma therapies are effective in reducing BSM remodelling. This review, based on the current literature, reports the role of mitochondria in BSM, particularly in calcium signaling.
Collapse
Affiliation(s)
- P Esteves
- Université Bordeaux, centre de recherche cardio-thoracique de Bordeaux, U1045, CIC 1401, 33600 Pessac, France; Inserm, centre de recherche cardio-thoracique de Bordeaux, U1045, CIC 1401, 33600 Pessac, France.
| | - A Celle
- Université Bordeaux, centre de recherche cardio-thoracique de Bordeaux, U1045, CIC 1401, 33600 Pessac, France; Inserm, centre de recherche cardio-thoracique de Bordeaux, U1045, CIC 1401, 33600 Pessac, France
| | - P Berger
- Université Bordeaux, centre de recherche cardio-thoracique de Bordeaux, U1045, CIC 1401, 33600 Pessac, France; Inserm, centre de recherche cardio-thoracique de Bordeaux, U1045, CIC 1401, 33600 Pessac, France; CHU de Bordeaux, service d'exploration fonctionnelle respiratoire, CIC 1401, 33604 Pessac, France
| | - T Trian
- Université Bordeaux, centre de recherche cardio-thoracique de Bordeaux, U1045, CIC 1401, 33600 Pessac, France; Inserm, centre de recherche cardio-thoracique de Bordeaux, U1045, CIC 1401, 33600 Pessac, France
| |
Collapse
|
38
|
Saunders R, Kaul H, Berair R, Gonem S, Singapuri A, Sutcliffe AJ, Chachi L, Biddle MS, Kaur D, Bourne M, Pavord ID, Wardlaw AJ, Siddiqui SH, Kay RA, Brook BS, Smallwood RH, Brightling CE. DP 2 antagonism reduces airway smooth muscle mass in asthma by decreasing eosinophilia and myofibroblast recruitment. Sci Transl Med 2020; 11:11/479/eaao6451. [PMID: 30760581 DOI: 10.1126/scitranslmed.aao6451] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 06/15/2018] [Accepted: 01/25/2019] [Indexed: 12/23/2022]
Abstract
Increased airway smooth muscle mass, a feature of airway remodeling in asthma, is the strongest predictor of airflow limitation and contributes to asthma-associated morbidity and mortality. No current drug therapy for asthma is known to affect airway smooth muscle mass. Although there is increasing evidence that prostaglandin D2 type 2 receptor (DP2) is expressed in airway structural and inflammatory cells, few studies have addressed the expression and function of DP2 in airway smooth muscle cells. We report that the DP2 antagonist fevipiprant reduced airway smooth muscle mass in bronchial biopsies from patients with asthma who had participated in a previous randomized placebo-controlled trial. We developed a computational model to capture airway remodeling. Our model predicted that a reduction in airway eosinophilia alone was insufficient to explain the clinically observed decrease in airway smooth muscle mass without a concomitant reduction in the recruitment of airway smooth muscle cells or their precursors to airway smooth muscle bundles that comprise the airway smooth muscle layer. We experimentally confirmed that airway smooth muscle migration could be inhibited in vitro using DP2-specific antagonists in an airway smooth muscle cell culture model. Our analyses suggest that fevipiprant, through antagonism of DP2, reduced airway smooth muscle mass in patients with asthma by decreasing airway eosinophilia in concert with reduced recruitment of myofibroblasts and fibrocytes to the airway smooth muscle bundle. Fevipiprant may thus represent a potential therapy to ameliorate airway remodeling in asthma.
Collapse
Affiliation(s)
| | - Himanshu Kaul
- University of Leicester, Leicester LE3 9QP, UK. .,University of Sheffield, Western Bank, Sheffield S1 4DP, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bourdin A, Adcock I, Berger P, Bonniaud P, Chanson P, Chenivesse C, de Blic J, Deschildre A, Devillier P, Devouassoux G, Didier A, Garcia G, Magnan A, Martinat Y, Perez T, Roche N, Taillé C, Val P, Chanez P. How can we minimise the use of regular oral corticosteroids in asthma? Eur Respir Rev 2020; 29:29/155/190085. [PMID: 32024721 PMCID: PMC9488989 DOI: 10.1183/16000617.0085-2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Options to achieve oral corticosteroid (OCS)-sparing have been triggering increasing interest since the 1970s because of the side-effects of OCSs, and this has now become achievable with biologics. The Société de Pneumologie de Langue Française workshop on OCSs aimed to conduct a comprehensive review of the basics for OCS use in asthma and issue key research questions. Pharmacology and definition of regular use were reviewed by the first working group (WG1). WG2 examined whether regular OCS use is associated with T2 endotype. WG3 reported on the specificities of the paediatric area. Key “research statement proposals” were suggested by WG4. It was found that the benefits of regular OCS use in asthma outside episodes of exacerbations are poorly supported by the existing evidence. However, complete OCS elimination couldn’t be achieved in any available studies for all patients and the panel felt that it was too early to conclude that regular OCS use could be declared criminal. Repeated or prolonged need for OCS beyond 1 g·year−1 should indicate the need for referral to secondary/tertiary care. A strategic sequential plan aiming at reducing overall exposure to OCS in severe asthma was then held as a conclusion of the workshop. A yearly cumulative OCS dose above 1 g should be considered unacceptable in severe asthma and should make the case for referralhttp://bit.ly/34GAYLX
Collapse
Affiliation(s)
- Arnaud Bourdin
- Service des Maladies Respirartoires, CHU Arnaud de Villeneuve, University of Montpellier, Montpellier, France
| | - Ian Adcock
- Thoracic Medicine, Imperial College London, London, UK
| | - Patrick Berger
- Centre de Recherche Cardiothoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
| | | | | | - Cécile Chenivesse
- Centre Hospitalier Regional Universitaire de Lille, Lille, France.,Universite de Lille II, Lille, France
| | - Jacques de Blic
- Pediatric Respiratory Diseases, Necker-Enfants Malades Hospitals, Paris, France
| | | | | | - Gilles Devouassoux
- Pneumologie, Hopital de la Croix-Rousse, HCL, Lyon, France.,Université Claude Bernard lyon1 et INSERM U851, Lyon, France
| | | | | | | | | | - Thierry Perez
- Respiratory, Hopital Calmette, CHRU Lille, Lille, France.,Lung function, Hôpital Calmette, CHRU Lille, Lille, France
| | | | - Camille Taillé
- Service de Pneumologie, Hopital Bichat - Claude-Bernard, Paris, France
| | | | | |
Collapse
|
40
|
Zhu Z, Guo Y, Shi H, Liu CL, Panganiban RA, Chung W, O'Connor LJ, Himes BE, Gazal S, Hasegawa K, Camargo CA, Qi L, Moffatt MF, Hu FB, Lu Q, Cookson WOC, Liang L. Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. J Allergy Clin Immunol 2020; 145:537-549. [PMID: 31669095 PMCID: PMC7010560 DOI: 10.1016/j.jaci.2019.09.035] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Clinical and epidemiologic studies have shown that obesity is associated with asthma and that these associations differ by asthma subtype. Little is known about the shared genetic components between obesity and asthma. OBJECTIVE We sought to identify shared genetic associations between obesity-related traits and asthma subtypes in adults. METHODS A cross-trait genome-wide association study (GWAS) was performed using 457,822 subjects of European ancestry from the UK Biobank. Experimental evidence to support the role of genes significantly associated with both obesity-related traits and asthma through a GWAS was sought by using results from obese versus lean mouse RNA sequencing and RT-PCR experiments. RESULTS We found a substantial positive genetic correlation between body mass index and later-onset asthma defined by asthma age of onset at 16 years or greater (Rg = 0.25, P = 9.56 × 10-22). Mendelian randomization analysis provided strong evidence in support of body mass index causally increasing asthma risk. Cross-trait meta-analysis identified 34 shared loci among 3 obesity-related traits and 2 asthma subtypes. GWAS functional analyses identified potential causal relationships between the shared loci and Genotype-Tissue Expression (GTEx) quantitative trait loci and shared immune- and cell differentiation-related pathways between obesity and asthma. Finally, RNA sequencing data from lungs of obese versus control mice found that 2 genes (acyl-coenzyme A oxidase-like [ACOXL] and myosin light chain 6 [MYL6]) from the cross-trait meta-analysis were differentially expressed, and these findings were validated by using RT-PCR in an independent set of mice. CONCLUSIONS Our work identified shared genetic components between obesity-related traits and specific asthma subtypes, reinforcing the hypothesis that obesity causally increases the risk of asthma and identifying molecular pathways that might underlie both obesity and asthma.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Mass; Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass.
| | - Yanjun Guo
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huwenbo Shi
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass
| | - Cong-Lin Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Ronald Allan Panganiban
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health and Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Wonil Chung
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass
| | - Luke J O'Connor
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pa
| | - Steven Gazal
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Carlos A Camargo
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass; Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, La
| | - Miriam F Moffatt
- Section of Genomic Medicine, National Heart and Lung Institute, London, United Kingdom
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Quan Lu
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health and Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - William O C Cookson
- Section of Genomic Medicine, National Heart and Lung Institute, London, United Kingdom
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Mass.
| |
Collapse
|
41
|
Dupin I, Thumerel M, Maurat E, Coste F, Eyraud E, Begueret H, Trian T, Montaudon M, Marthan R, Girodet PO, Berger P. Fibrocyte accumulation in the airway walls of COPD patients. Eur Respir J 2019; 54:13993003.02173-2018. [DOI: 10.1183/13993003.02173-2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/28/2019] [Indexed: 12/16/2022]
Abstract
The remodelling mechanism and cellular players causing persistent airflow limitation in COPD remain largely elusive. We have recently demonstrated that circulating fibrocytes, a rare population of fibroblast-like cells produced by the bone marrow stroma, are increased in COPD patients during an exacerbation. We aimed to quantify fibrocyte density in situ in bronchial specimens from both control subjects and COPD patients, to define associations with relevant clinical, functional and computed tomography (CT) parameters, and to investigate the effect of the epithelial microenvironment on fibrocyte survival in vitro (“Fibrochir” study).A total of 17 COPD patients and 25 control subjects, all requiring thoracic surgery, were recruited. Using co-immunostaining and image analysis, we identified CD45+ FSP1+ cells as tissue fibrocytes, and quantified their density in distal and proximal bronchial specimens. Fibrocytes, cultured from the blood samples of six COPD patients, were exposed to primary bronchial epithelial cell secretions from control subjects or COPD patients.We demonstrate that fibrocytes are increased in both distal and proximal tissue specimens of COPD patients. The density of fibrocytes is negatively correlated with lung function parameters and positively correlated with bronchial wall thickness as assessed by CT scan. A high density of distal bronchial fibrocytes predicts the presence of COPD with a sensitivity of 83% and a specificity of 70%. Exposure of fibrocytes to COPD epithelial cell supernatant favours cell survival.Our results thus demonstrate an increased density of fibrocytes within the bronchi of COPD patients, which may be promoted by epithelial-derived survival-mediating factors.
Collapse
|
42
|
She YS, Ma LQ, Liu BB, Zhang WJ, Qiu JY, Chen YY, Li MY, Xue L, Luo X, Wang Q, Xu H, Zang DA, Zhao XX, Cao L, Shen J, Peng YB, Zhao P, Yu MF, Chen W, Nie X, Shen C, Chen S, Chen S, Qin G, Dai J, Chen J, Liu QH. Semen cassiae Extract Inhibits Contraction of Airway Smooth Muscle. Front Pharmacol 2018; 9:1389. [PMID: 30564120 PMCID: PMC6288305 DOI: 10.3389/fphar.2018.01389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022] Open
Abstract
β2-adrenoceptor agonists are commonly used as bronchodilators to treat obstructive lung diseases such as asthma and chronic obstructive pulmonary disease (COPD), however, they induce severe side effects. Therefore, developing new bronchodilators is essential. Herbal plants were extracted and the extracts’ effect on airway smooth muscle (ASM) precontraction was assessed. The ethyl alcohol extract of semen cassiae (EESC) was extracted from Semen cassia. The effects of EESC on the ACh- and 80 mM K+-induced sustained precontraction in mouse and human ASM were evaluated. Ca2+ permeant ion channel currents and intracellular Ca2+ concentration were measured. HPLC analysis was employed to determine which compound was responsible for the EESC-induced relaxation. The EESC reversibly inhibited the ACh- and 80 mM K+-induced precontraction. The sustained precontraction depends on Ca2+ influx, and it was mediated by voltage-dependent L-type Ca2+ channels (LVDCCs), store-operated channels (SOCs), TRPC3/STIM/Orai channels. These channels were inhibited by aurantio-obtusin, one component of EESC. When aurantio-obtusin removed, EESC’s action disappeared. In addition, aurantio-obtusin inhibited the precontraction of mouse and human ASM and intracellular Ca2+ increases. These results indicate that Semen cassia-contained aurantio-obtusin inhibits sustained precontraction of ASM via inhibiting Ca2+-permeant ion channels, thereby, which could be used to develop new bronchodilators.
Collapse
Affiliation(s)
- Yu-Shan She
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Li-Qun Ma
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bei-Bei Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wen-Jing Zhang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jun-Ying Qiu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yuan-Yuan Chen
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Meng-Yue Li
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Lu Xue
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xi Luo
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qian Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hao Xu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Dun-An Zang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiao-Xue Zhao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Lei Cao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jinhua Shen
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yong-Bo Peng
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ping Zhao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Meng-Fei Yu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Weiwei Chen
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiaowei Nie
- Lung Transplant Group, Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Chenyou Shen
- Lung Transplant Group, Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Engineering, South-Central University for Nationalities, Wuhan, China
| | - Jingyu Chen
- Lung Transplant Group, Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Qing-Hua Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
43
|
Kume H, Nishiyama O, Isoya T, Higashimoto Y, Tohda Y, Noda Y. Involvement of Allosteric Effect and K Ca Channels in Crosstalk between β₂-Adrenergic and Muscarinic M₂ Receptors in Airway Smooth Muscle. Int J Mol Sci 2018; 19:ijms19071999. [PMID: 29987243 PMCID: PMC6073859 DOI: 10.3390/ijms19071999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/24/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022] Open
Abstract
To advance the development of bronchodilators for asthma and chronic obstructive pulmonary disease (COPD), this study was designed to investigate the mechanism of functional antagonism between β2-adrenergic and muscarinic M2 receptors, focusing on allosteric effects and G proteins/ion channels coupling. Muscarinic receptor antagonists (tiotropium, glycopyrronium, atropine) synergistically enhanced the relaxant effects of β2-adrenergic receptor agonists (procaterol, salbutamol, formoterol) in guinea pig trachealis. This crosstalk was inhibited by iberitoxin, a large-conductance Ca2+-activated K+ (KCa) channel inhibitor, whereas it was increased by verapamil, a L-type voltage-dependent Ca2+ (VDC) channel inhibitor; additionally, it was enhanced after tissues were incubated with pertussis or cholera toxin. This synergism converges in the G proteins (Gi, Gs)/KCa channel/VDC channel linkages. Muscarinic receptor antagonists competitively suppressed, whereas, β2-adrenergic receptor agonists noncompetitively suppressed muscarinic contraction. In concentration-inhibition curves for β2-adrenergic receptor agonists with muscarinic receptor antagonists, EC50 was markedly decreased, and maximal inhibition was markedly increased. Hence, muscarinic receptor antagonists do not bind to allosteric sites on muscarinic receptors. β2-Adrenergic receptor agonists bind to allosteric sites on these receptors; their intrinsic efficacy is attenuated by allosteric modulation (partial agonism). Muscarinic receptor antagonists enhance affinity and efficacy of β2-adrenergic action via allosteric sites in β2-adrenergic receptors (synergism). In conclusion, KCa channels and allosterism may be novel targets of bronchodilator therapy for diseases such as asthma and COPD.
Collapse
Affiliation(s)
- Hiroaki Kume
- Department of Respiratory Medicine and Allergology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama 589-8511, Japan.
| | - Osamu Nishiyama
- Department of Respiratory Medicine and Allergology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama 589-8511, Japan.
| | - Takaaki Isoya
- Department of Respiratory Medicine and Allergology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama 589-8511, Japan.
| | - Yuji Higashimoto
- Department of Respiratory Medicine and Allergology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama 589-8511, Japan.
| | - Yuji Tohda
- Department of Respiratory Medicine and Allergology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama 589-8511, Japan.
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.
| |
Collapse
|
44
|
Debelleix S, Siao-Him Fa V, Begueret H, Berger P, Kamaev A, Ousova O, Marthan R, Fayon M. Montelukast reverses airway remodeling in actively sensitized young mice. Pediatr Pulmonol 2018; 53:701-709. [PMID: 29493871 DOI: 10.1002/ppul.23980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/10/2018] [Indexed: 12/22/2022]
Abstract
UNLABELLED Asthma is characterized by airway hyperresponsiveness (AHR) and inflammation leading to airway remodeling (AR). In children, AR may occur very early prior to the age of 6 years. Treatments to prevent or reverse AR are unknown. AIM We sought to determine (i) whether short allergenic sensitization at a young age in a mouse model may induce enhanced AR and inflammation compared to adults; (ii) the effect of Montelukast on such AR. METHODS Immature and adult Balb/c mice were sensitized and challenged with ovalbumin. AHR and AR were measured using cultured precision-cut lung slices and inflammation by bronchoalveolar lavage. Experiments were repeated after administration of Montelukast. RESULTS OVA-challenged mice developed AHR to methacholine regardless of age of first exposure to OVA. Young mice developed greater thickened basement membrane, increased smooth muscle mass, and increased area of bronchovascular fibrosis compared with adult mice. Cellular infiltrates in BAL differed depending upon animal age at first exposure with higher eosinophilia measured in younger animals. Montelukast decreased ASM mass, BAL cellularity. CONCLUSION We provide thus evidence for a greater degree of AR after allergenic sensitization and challenge in younger mice versus adults. This study provides proof of concept that airway remodeling can be prevented and reversed in this case by anti-asthmatic drug Montelukast in this model.
Collapse
Affiliation(s)
- Stephane Debelleix
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Valérie Siao-Him Fa
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Hugues Begueret
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Patrick Berger
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Andy Kamaev
- Department of general practice, Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia
| | - Olga Ousova
- Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Roger Marthan
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Michael Fayon
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| |
Collapse
|
45
|
Pelletier L, Savignac M. Involvement of ion channels in allergy. Curr Opin Immunol 2018; 52:60-67. [PMID: 29704811 DOI: 10.1016/j.coi.2018.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022]
Abstract
Allergic asthma is a complex disease, often characterized by an inappropriate Th2 response to normally harmless allergens. Epithelial cells damaged or activated by the allergen produce IL-33, TSLP and IL-25, activating ILC2 and dendritic cells. The latter migrate into lymph nodes where they induce Th2-cell commitment. Th2 and other type 2 innate inflammatory cells trigger inflammation and airway hyper-reactivity. The toolbox consisting of the ion channels varies from one cellular type to another and depends on its activation state, offering the possibility to design novel drugs in the field of allergy. We will discuss about some channels as calcium, nonselective cation, potassium and chloride channels that appear as good candidates in allergy.
Collapse
Affiliation(s)
- Lucette Pelletier
- Center of Physiopathology Toulouse Purpan, University Paul Sabatier Toulouse III, INSERM U1043, CNRS UMR 5282, 31024 Toulouse, France.
| | - Magali Savignac
- Center of Physiopathology Toulouse Purpan, University Paul Sabatier Toulouse III, INSERM U1043, CNRS UMR 5282, 31024 Toulouse, France
| |
Collapse
|
46
|
Calcium channel blockers for lung function improvement in asthma: A systematic review and meta-analysis. Ann Allergy Asthma Immunol 2017; 119:518-523.e3. [PMID: 29032888 DOI: 10.1016/j.anai.2017.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/07/2017] [Accepted: 08/21/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND For decades, calcium channel blockers (CCBs) have been believed to play a role in asthma treatment. However, the clinical efficacy of CCBs for lung function improvement in patients with asthma has not been qualitatively evaluated. OBJECTIVE To assess the effect of CCBs vs placebo on lung function test results in adults with asthma. METHODS Various databases were systematically searched to identify all randomized clinical trials with adults with asthma. We aimed to assess the influence of CCBs on forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), peak expiratory flow rate (PEFR), and provocative concentration of bronchoconstrictive agents causing a 20% decrease in FEV1 (PC20) compared with a placebo. All effect estimates were pooled by the generic inverse variance method with random-effects meta-analysis. Subgroup analysis, sensitivity analysis, and heterogeneity investigation were performed. RESULTS Thirty eligible articles with 301 patients were included in this meta-analysis. Our results revealed that in a standard exercise test CCBs could produce a mean maximal percentage decrease in FEV1 of 11.56% (95% confidence interval, 8.97%-14.16%; P < .001) and an increase in postdose FEV1 by 80 mL (95% confidence interval, 0.02-0.15 mL; P = .01). However, there was no statistical significance for CCBs in postdose FVC, PEFR, or PC20 of histamine and methacholine. CONCLUSION CCBs may be beneficial for lung function improvement in asthma, especially in exercise-induced asthma. However, there is a lack of evidence for CCBs protecting asthma patients from chemical irritation.
Collapse
|
47
|
Chen ZY, Zhou SH, Zhou QF, Tang HB. Inflammation and airway remodeling of the lung in guinea pigs with allergic rhinitis. Exp Ther Med 2017; 14:3485-3490. [PMID: 29042937 PMCID: PMC5639300 DOI: 10.3892/etm.2017.4937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/01/2017] [Indexed: 12/11/2022] Open
Abstract
Allergic rhinitis (AR) and asthma belong to the category of type I allergic diseases, whose pathological features are airway remodeling of the lung and allergic inflammation. The aim of the present study was to evaluate inflammation and remodeling of lung tissue in a guinea pig model of AR in order to confirm consistent pathological changes of upper and lower airways in AR. Male guinea pigs were randomly divided into an experimental and a control group (n=10 in each). The AR model was established by sensitization through intraperitoneal injection of ovalbumin for three weeks and bilateral nasal local excitation for twelve weeks. All tissues of nasal mucosa and lung were subjected to hematoxylin and eosin as well as toluidine blue staining, and characteristics of remodeling of lung tissue, including thickness of bronchial wall, epithelial mucosa and smooth muscle were histologically determined. Collagen deposition in lung tissue was observed by Masson's trichrome stain. Severe paroxysmal nose scratching action, frequent sneezing, visible outflow of secretion from the anterior naris and frequent nose friction were observed in the AR model group within 30 min after local excitation. The total symptom scores were significantly increased in the AR model group compared with those in the control group. Obvious inflammatory cell infiltration was observed in the AR model group. Compared with those in the control group, the numbers of eosinophils and mast cells in nasal mucosa and lung tissue were significantly increased. Obvious airway remodeling of the lung was observed in the AR model group. Compared with those in the control group, bronchial wall thickness, epithelial layer thickness and smooth muscle thickness in the airways were significantly increased in the AR model group. Increased collagen deposition was found in the AR model group compared with that in the control group. The results of the present study revealed that inflammation and airway remodeling of lungs arose in guinea pigs with AR, suggesting that pathological changes of upper and lower airways are consistent in this AR model.
Collapse
Affiliation(s)
- Zu-Yao Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shou-Hong Zhou
- Institute of Neuroscience, School of Medicine, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qiao-Feng Zhou
- Department of Pediatrics, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hong-Bo Tang
- Department of Otorhinolaryngology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
48
|
Pathogenesis of asthma: implications for precision medicine. Clin Sci (Lond) 2017; 131:1723-1735. [PMID: 28667070 DOI: 10.1042/cs20160253] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 01/03/2023]
Abstract
The pathogenesis of asthma is complex and multi-faceted. Asthma patients have a diverse range of underlying dominant disease processes and pathways despite apparent similarities in clinical expression. Here, we present the current understanding of asthma pathogenesis. We discuss airway inflammation (both T2HIGH and T2LOW), airway hyperresponsiveness (AHR) and airways remodelling as four key factors in asthma pathogenesis, and also outline other contributory factors such as genetics and co-morbidities. Response to current asthma therapies also varies greatly, which is probably related to the inter-patient differences in pathogenesis. Here, we also summarize how our developing understanding of detailed pathological processes potentially translates into the targeted treatment options we require for optimal asthma management in the future.
Collapse
|
49
|
Tanaka KI, Niino T, Ishihara T, Takafuji A, Takayama T, Kanda Y, Sugizaki T, Tamura F, Kurotsu S, Kawahara M, Mizushima T. Protective and therapeutic effect of felodipine against bleomycin-induced pulmonary fibrosis in mice. Sci Rep 2017; 7:3439. [PMID: 28611390 PMCID: PMC5469778 DOI: 10.1038/s41598-017-03676-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) involves alveolar epithelial injury and abnormal collagen production caused by activated fibroblasts; transforming growth factor (TGF)-β1 is implicated in this activation. In this study, we screened for chemicals capable of inhibiting TGF-β1-induced collagen production in cultured fibroblasts from medicines already in clinical use. We selected felodipine based on its extent of collagen production inhibition, clinical safety profile, and other pharmacological activity. Felodipine is a dihydropyridine Ca2+ channel blocker that has been used clinically to treat patients with high blood pressure. Felodipine suppressed collagen production within LL29 cells in the presence of TGF-β1, but not in its absence. Intratracheal administration of felodipine prevented bleomycin-induced pulmonary fibrosis, alteration of lung mechanics and respiratory dysfunction. Felodipine also improved pulmonary fibrosis, as well as lung and respiratory function when administered after fibrosis development. Furthermore, administration of felodipine suppressed a bleomycin-induced increase in activated fibroblasts in the lung. We also found other dihydropyridine Ca2+ channel blockers (nifedipine and benidipine) inhibited collagen production in vitro and partially prevented bleomycin-induced pulmonary fibrosis, alteration of lung mechanics and respiratory dysfunction in vivo. We propose that these Ca2+ channel blockers may be therapeutically beneficial for IPF patients.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, Japan. .,Division of Drug Discovery and Development, Faculty of Pharmacy, Keio University, Tokyo, Japan.
| | - Tomomi Niino
- Division of Drug Discovery and Development, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Tomoaki Ishihara
- Division of Drug Discovery and Development, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Ayaka Takafuji
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, Japan
| | - Takahiro Takayama
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, Japan
| | - Yuki Kanda
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, Japan
| | - Toshifumi Sugizaki
- Division of Drug Discovery and Development, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Fumiya Tamura
- Division of Drug Discovery and Development, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Shota Kurotsu
- Division of Drug Discovery and Development, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Masahiro Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, Japan
| | | |
Collapse
|
50
|
Kistemaker LEM, Oenema TA, Baarsma HA, Bos IST, Schmidt M, Facchinetti F, Civelli M, Villetti G, Gosens R. The PDE4 inhibitor CHF-6001 and LAMAs inhibit bronchoconstriction-induced remodeling in lung slices. Am J Physiol Lung Cell Mol Physiol 2017; 313:L507-L515. [PMID: 28596292 DOI: 10.1152/ajplung.00069.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 11/22/2022] Open
Abstract
Combination therapy of PDE4 inhibitors and anticholinergics induces bronchoprotection in COPD. Mechanical forces that arise during bronchoconstriction may contribute to airway remodeling. Therefore, we investigated the impact of PDE4 inhibitors and anticholinergics on bronchoconstriction-induced remodeling. Because of the different mechanism of action of PDE4 inhibitors and anticholinergics, we hypothesized functional interactions of these two drug classes. Guinea pig precision-cut lung slices were preincubated with the PDE4 inhibitors CHF-6001 or roflumilast and/or the anticholinergics tiotropium or glycopyorrolate, followed by stimulation with methacholine (10 μM) or TGF-β1 (2 ng/ml) for 48 h. The inhibitory effects on airway smooth muscle remodeling, airway contraction, and TGF-β release were investigated. Methacholine-induced protein expression of smooth muscle-myosin was fully inhibited by CHF-6001 (0.3-100 nM), whereas roflumilast (1 µM) had smaller effects. Tiotropium and glycopyrrolate fully inhibited methacholine-induced airway remodeling (0.1-30 nM). The combination of CHF-6001 and tiotropium or glycopyrrolate, in concentrations partially effective by themselves, fully inhibited methacholine-induced remodeling in combination. CHF-6001 did not affect airway closure and had limited effects on TGF-β1-induced remodeling, but rather, it inhibited methacholine-induced TGF-β release. The PDE4 inhibitor CHF-6001, and to a lesser extent roflumilast, and the LAMAs tiotropium and glycopyrrolate inhibit bronchoconstriction-induced remodeling. The combination of CHF-6001 and anticholinergics was more effective than the individual compounds. This cooperativity might be explained by the distinct mechanisms of action inhibiting TGF-β release and bronchoconstriction.
Collapse
Affiliation(s)
- Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; .,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Research and Development, Aquilo, Groningen, The Netherlands; and
| | - Tjitske A Oenema
- Department of Molecular Pharmacology, University of Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hoeke A Baarsma
- Department of Molecular Pharmacology, University of Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - I Sophie T Bos
- Department of Molecular Pharmacology, University of Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fabrizio Facchinetti
- Corporate Pre-clinical Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Maurizio Civelli
- Corporate Pre-clinical Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Gino Villetti
- Corporate Pre-clinical Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|