1
|
Dorscheid D, Gauvreau GM, Georas SN, Hiemstra PS, Varricchi G, Lambrecht BN, Marone G. Airway epithelial cells as drivers of severe asthma pathogenesis. Mucosal Immunol 2025:S1933-0219(25)00029-7. [PMID: 40154790 DOI: 10.1016/j.mucimm.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/31/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Our understanding of the airway epithelium's role in driving asthma pathogenesis has evolved over time. From being regarded primarily as a physical barrier that could be damaged via inflammation, the epithelium is now known to actively contribute to asthma development through interactions with the immune system. The airway epithelium contains multiple cell types with specialized functions spanning barrier action, mucociliary clearance, immune cell recruitment, and maintenance of tissue homeostasis. Environmental insults may cause direct or indirect injury to the epithelium leading to impaired barrier function, epithelial remodelling, and increased release of inflammatory mediators. In severe asthma, the epithelial barrier repair process is inhibited and the response to insults is exaggerated, driving downstream inflammation. Genetic and epigenetic mechanisms also maintain dysregulation of the epithelial barrier, adding to disease chronicity. Here, we review the role of the airway epithelium in severe asthma and how targeting the epithelium can contribute to asthma treatment.
Collapse
Affiliation(s)
- Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gail M Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Steve N Georas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Bart N Lambrecht
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| |
Collapse
|
2
|
Ritzmann F, Brand M, Bals R, Wegmann M, Beisswenger C. Role of Epigenetics in Chronic Lung Disease. Cells 2025; 14:251. [PMID: 39996724 PMCID: PMC11853132 DOI: 10.3390/cells14040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Epigenetics regulates gene expression and thus cellular processes that underlie the pathogenesis of chronic lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary fibrosis (IPF). Environmental factors (e.g., air pollution, smoking, infections, poverty), but also conditions such as gastroesophageal reflux, induce epigenetic changes long before lung disease is diagnosed. Therefore, epigenetic signatures have the potential to serve as biomarkers that can be used to identify younger patients who are at risk for premature loss of lung function or diseases such as IPF. Epigenetic analyses also contribute to a better understanding of chronic lung disease. This can be used directly to improve therapies, as well as for the development of innovative drugs. Here, we highlight the role of epigenetics in the development and progression of chronic lung disease, with a focus on DNA methylation.
Collapse
Affiliation(s)
- Felix Ritzmann
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (M.B.); (R.B.)
| | - Michelle Brand
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (M.B.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Robert Bals
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (M.B.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Michael Wegmann
- Division of Lung Immunology, Priority Area Asthma and Allergy, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany;
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (M.B.); (R.B.)
| |
Collapse
|
3
|
Mandanas MV, Barrett NA. Epithelial sensing in allergic disease. Curr Opin Immunol 2024; 91:102490. [PMID: 39326203 PMCID: PMC11609016 DOI: 10.1016/j.coi.2024.102490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Epithelial cells provide a first line of immune defense by maintaining barrier function, orchestrating mucociliary clearance, secreting antimicrobial molecules, and generating sentinel signals to both activate innate immune cells and shape adaptive immunity. Although epithelial alarmins play a particularly important role in the initiation of type 2 inflammation in response to allergens, the mechanisms by which epithelial cells sense the environment and regulate the generation and release of alarmins have been poorly understood. Recent studies have identified new sensors and signaling pathways used by barrier epithelial cells to elicit type 2 inflammation, including a novel pathway for the release of interleukin-33 from the nucleus that depends on apoptotic signaling. These recent findings have implications in the development of allergic diseases, from atopic eczema to food allergy, rhinitis, and asthma.
Collapse
Affiliation(s)
- Michael V Mandanas
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, MA, USA; Department of Immunology, Harvard Medical School, MA, USA
| | - Nora A Barrett
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, MA, USA; Department of Medicine, Harvard Medical School, MA, USA.
| |
Collapse
|
4
|
Bell CG. Epigenomic insights into common human disease pathology. Cell Mol Life Sci 2024; 81:178. [PMID: 38602535 PMCID: PMC11008083 DOI: 10.1007/s00018-024-05206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The epigenome-the chemical modifications and chromatin-related packaging of the genome-enables the same genetic template to be activated or repressed in different cellular settings. This multi-layered mechanism facilitates cell-type specific function by setting the local sequence and 3D interactive activity level. Gene transcription is further modulated through the interplay with transcription factors and co-regulators. The human body requires this epigenomic apparatus to be precisely installed throughout development and then adequately maintained during the lifespan. The causal role of the epigenome in human pathology, beyond imprinting disorders and specific tumour suppressor genes, was further brought into the spotlight by large-scale sequencing projects identifying that mutations in epigenomic machinery genes could be critical drivers in both cancer and developmental disorders. Abrogation of this cellular mechanism is providing new molecular insights into pathogenesis. However, deciphering the full breadth and implications of these epigenomic changes remains challenging. Knowledge is accruing regarding disease mechanisms and clinical biomarkers, through pathogenically relevant and surrogate tissue analyses, respectively. Advances include consortia generated cell-type specific reference epigenomes, high-throughput DNA methylome association studies, as well as insights into ageing-related diseases from biological 'clocks' constructed by machine learning algorithms. Also, 3rd-generation sequencing is beginning to disentangle the complexity of genetic and DNA modification haplotypes. Cell-free DNA methylation as a cancer biomarker has clear clinical utility and further potential to assess organ damage across many disorders. Finally, molecular understanding of disease aetiology brings with it the opportunity for exact therapeutic alteration of the epigenome through CRISPR-activation or inhibition.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
5
|
Kelly A, Lavender P. Epigenetic Approaches to Identifying Asthma Endotypes. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:130-141. [PMID: 38528381 DOI: 10.4168/aair.2024.16.2.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 03/27/2024]
Abstract
The prevalence of asthma escalated rapidly in the late 20th century. In 2019, the World Health Organization estimated the global number of people affected by the condition to be approximately 260 million, causing 450,000 deaths during that year. While there have been advances in therapeutics with the emergence of biologics targeting T2-high asthma, there is still little clarity on the mechanisms underlying the origins of both the condition and all of its endotypes. Several biomarkers for particular asthma phenotypes have been documented. These are generally identified from transcriptomics and proteomics protocols and tend to be biased to T2-high phenotypes. In this review, we summarize some suggestions that analysis of epigenomes may provide alternative datasets that inform of broader asthma endotypes and might highlight pathways amenable for therapeutic intervention.
Collapse
Affiliation(s)
- Audrey Kelly
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London, London, United Kingdom
| | - Paul Lavender
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London, London, United Kingdom.
| |
Collapse
|
6
|
Wu T, He J, Yan S, Li J, Chen K, Zhang D, Cheng M, Xiang Z, Fang Y. Human placental extract suppresses mast cell activation and induces mast cell apoptosis. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:98. [PMID: 38012745 PMCID: PMC10683163 DOI: 10.1186/s13223-023-00850-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Human placental extract (HPE) has been documented to facilitate the healing of certain disorders including allergy. However, the effects of HPE on the functionality of mast cells, a critical cell type in allergic diseases, have not been reported. METHODS To investigate the effects of HPE on the regulation of allergy with respect to the biological functions of mast cells, the mast cell line C57 or HMC-1 cells were treated with HPE followed by the assessment of cell proliferation, apoptosis, activation, chemotaxis and phagocytosis. Mouse peritoneal mast cells were also investigated for their responses to induction of apoptosis by HPE in vivo. Furthermore, the effect of HPE on mast cell degranulation was confirmed using the passive cutaneous anaphylaxis (PCA) assay, an acute allergy model. RESULTS HPE was capable of suppressing mast cell proliferation and inducing mast cell apoptosis. Mast cell degranulation in response to compound 48/80- or anti-DNP IgE and DNP-mediated activation was suppressed. In addition, treatment with HPE compromised the production of cytokines by mast cells and cell chemotaxis. These observations were consistent with the dampened passive cutaneous anaphylaxis (PCA) assay following treatment with HPE. CONCLUSION This study revealed a suppressive effect of HPE on overall mast cell activities, suggesting a potential regulatory role of HPE on the alleviation of allergic diseases through mast cells.
Collapse
Affiliation(s)
- Tongqian Wu
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyi Street 28, Guiyang, 550004, Guizhou, China
- School of Laboratory Science, Guizhou Medical University, Guiyang, China
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jingjing He
- School of Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Shirong Yan
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyi Street 28, Guiyang, 550004, Guizhou, China
- School of Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Jing Li
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyi Street 28, Guiyang, 550004, Guizhou, China
- School of Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Ke Chen
- School of Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Dingshan Zhang
- School of Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Mingliang Cheng
- Department of Infectious Disease, Affiliated Hospital of Guizhou Medical University, Guiyi Street 28, Guiyang, 550004, Guizhou, China.
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Yu Fang
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyi Street 28, Guiyang, 550004, Guizhou, China.
- School of Laboratory Science, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
7
|
Zhu Z, Li Y, Freishtat RJ, Celedón JC, Espinola JA, Harmon B, Hahn A, Camargo CA, Liang L, Hasegawa K. Epigenome-wide association analysis of infant bronchiolitis severity: a multicenter prospective cohort study. Nat Commun 2023; 14:5495. [PMID: 37679381 PMCID: PMC10485022 DOI: 10.1038/s41467-023-41300-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Bronchiolitis is the most common lower respiratory infection in infants, yet its pathobiology remains unclear. Here we present blood DNA methylation data from 625 infants hospitalized with bronchiolitis in a 17-center prospective study, and associate them with disease severity. We investigate differentially methylated CpGs (DMCs) for disease severity. We characterize the DMCs based on their association with cell and tissues types, biological pathways, and gene expression. Lastly, we also examine the relationships of severity-related DMCs with respiratory and immune traits in independent cohorts. We identify 33 DMCs associated with severity. These DMCs are differentially methylated in blood immune cells. These DMCs are also significantly enriched in multiple tissues (e.g., lung) and cells (e.g., small airway epithelial cells), and biological pathways (e.g., interleukin-1-mediated signaling). Additionally, these DMCs are associated with respiratory and immune traits (e.g., asthma, lung function, IgE levels). Our study suggests the role of DNA methylation in bronchiolitis severity.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yijun Li
- Department of Epidemiology, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Juan C Celedón
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janice A Espinola
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Andrea Hahn
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Division of Infectious Diseases, Children's National Hospital, Washington, DC, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H.Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Morin A, Thompson EE, Helling BA, Shorey-Kendrick LE, Faber P, Gebretsadik T, Bacharier LB, Kattan M, O'Connor GT, Rivera-Spoljaric K, Wood RA, Barnes KC, Mathias RA, Altman MC, Hansen K, McEvoy CT, Spindel ER, Hartert T, Jackson DJ, Gern JE, McKennan CG, Ober C. A functional genomics pipeline to identify high-value asthma and allergy CpGs in the human methylome. J Allergy Clin Immunol 2023; 151:1609-1621. [PMID: 36754293 PMCID: PMC10859971 DOI: 10.1016/j.jaci.2022.12.828] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 02/09/2023]
Abstract
BACKGROUND DNA methylation of cytosines at cytosine-phosphate-guanine (CpG) dinucleotides (CpGs) is a widespread epigenetic mark, but genome-wide variation has been relatively unexplored due to the limited representation of variable CpGs on commercial high-throughput arrays. OBJECTIVES To explore this hidden portion of the epigenome, this study combined whole-genome bisulfite sequencing with in silico evidence of gene regulatory regions to design a custom array of high-value CpGs. This study focused on airway epithelial cells from children with and without allergic asthma because these cells mediate the effects of inhaled microbes, pollution, and allergens on asthma and allergic disease risk. METHODS This study identified differentially methylated regions from whole-genome bisulfite sequencing in nasal epithelial cell DNA from a total of 39 children with and without allergic asthma of both European and African ancestries. This study selected CpGs from differentially methylated regions, previous allergy or asthma epigenome-wide association studies (EWAS), or genome-wide association study loci, and overlapped them with functional annotations for inclusion on a custom Asthma&Allergy array. This study used both the custom and EPIC arrays to perform EWAS of allergic sensitization (AS) in nasal epithelial cell DNA from children in the URECA (Urban Environment and Childhood Asthma) birth cohort and using the custom array in the INSPIRE [Infant Susceptibility to Pulmonary Infections and Asthma Following RSV Exposure] birth cohort. Each CpG on the arrays was assigned to its nearest gene and its promotor capture Hi-C interacting gene and performed expression quantitative trait methylation (eQTM) studies for both sets of genes. RESULTS Custom array CpGs were enriched for intermediate methylation levels compared to EPIC CpGs. Intermediate methylation CpGs were further enriched among those associated with AS and for eQTMs on both arrays. CONCLUSIONS This study revealed signature features of high-value CpGs and evidence for epigenetic regulation of genes at AS EWAS loci that are robust to race/ethnicity, ascertainment, age, and geography.
Collapse
Affiliation(s)
- Andréanne Morin
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Emma E Thompson
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | | | - Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Ore
| | - Pieter Faber
- Genomics Core, University of Chicago, Chicago, Ill
| | - Tebeb Gebretsadik
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Leonard B Bacharier
- Department of Pediatrics, Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn
| | - Meyer Kattan
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - George T O'Connor
- Pulmonary Center, Boston University School of Medicine, Boston, Mass
| | | | - Robert A Wood
- Department of Pediatrics, Johns Hopkins University, Baltimore, Md
| | | | | | - Matthew C Altman
- Systems Immunology Division, Benaroya Research Institute Systems, Seattle, Wash; Department of Medicine, University of Washington, Seattle, Wash
| | - Kasper Hansen
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| | - Cindy T McEvoy
- Department of Pediatrics, Oregon Health and Science University, Portland, Ore
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Ore
| | - Tina Hartert
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Chris G McKennan
- Department of Statistics, University of Pittsburgh, Pittsburgh, Pa.
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill.
| |
Collapse
|
9
|
Wang J, Zhou Y, Zhang H, Hu L, Liu J, Wang L, Wang T, Zhang H, Cong L, Wang Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:138. [PMID: 36964157 PMCID: PMC10039055 DOI: 10.1038/s41392-023-01344-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 03/26/2023] Open
Abstract
Allergic diseases such as allergic rhinitis (AR), allergic asthma (AAS), atopic dermatitis (AD), food allergy (FA), and eczema are systemic diseases caused by an impaired immune system. Accompanied by high recurrence rates, the steadily rising incidence rates of these diseases are attracting increasing attention. The pathogenesis of allergic diseases is complex and involves many factors, including maternal-fetal environment, living environment, genetics, epigenetics, and the body's immune status. The pathogenesis of allergic diseases exhibits a marked heterogeneity, with phenotype and endotype defining visible features and associated molecular mechanisms, respectively. With the rapid development of immunology, molecular biology, and biotechnology, many new biological drugs have been designed for the treatment of allergic diseases, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-5, and anti-thymic stromal lymphopoietin (TSLP)/IL-4, to control symptoms. For doctors and scientists, it is becoming more and more important to understand the influencing factors, pathogenesis, and treatment progress of allergic diseases. This review aimed to assess the epidemiology, pathogenesis, and therapeutic interventions of allergic diseases, including AR, AAS, AD, and FA. We hope to help doctors and scientists understand allergic diseases systematically.
Collapse
Affiliation(s)
- Ji Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Yumei Zhou
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Honglei Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linhan Hu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Juntong Liu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000210, China
| | - Tianyi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Haiyun Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linpeng Cong
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Qi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China.
| |
Collapse
|
10
|
Aegerter H, Lambrecht BN. The Pathology of Asthma: What Is Obstructing Our View? ANNUAL REVIEW OF PATHOLOGY 2023; 18:387-409. [PMID: 36270294 DOI: 10.1146/annurev-pathol-042220-015902] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite the advent of sophisticated and efficient new biologics to treat inflammation in asthma, the disease persists. Even following treatment, many patients still experience the well-known symptoms of wheezing, shortness of breath, and coughing. What are we missing? Here we examine the evidence that mucus plugs contribute to a substantial portion of disease, not only by physically obstructing the airways but also by perpetuating inflammation. In this way, mucus plugs may act as an immunogenic stimulus even in the absence of allergen or with the use of current therapeutics. The alterations of several parameters of mucus biology, driven by type 2 inflammation, result in sticky and tenacious sputum, which represents a potent threat, first due to the difficulties in expectoration and second by acting as a platform for viral, bacterial, or fungal colonization that allows exacerbations. Therefore, in this way, mucus plugs are an overlooked but critical feature of asthmatic airway disease.
Collapse
Affiliation(s)
- Helena Aegerter
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
11
|
DeVries A, McCauley K, Fadrosh D, Fujimura KE, Stern DA, Lynch SV, Vercelli D. Maternal prenatal immunity, neonatal trained immunity, and early airway microbiota shape childhood asthma development. Allergy 2022; 77:3617-3628. [PMID: 35841380 PMCID: PMC9712226 DOI: 10.1111/all.15442] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/25/2022] [Accepted: 06/11/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND The path to childhood asthma is thought to initiate in utero and be further promoted by postnatal exposures. However, the underlying mechanisms remain underexplored. We hypothesized that prenatal maternal immune dysfunction associated with increased childhood asthma risk (revealed by low IFN-γ:IL-13 secretion during the third trimester of pregnancy) alters neonatal immune training through epigenetic mechanisms and promotes early-life airway colonization by asthmagenic microbiota. METHODS We examined epigenetic, immunologic, and microbial features potentially related to maternal prenatal immunity (IFN-γ:IL-13 ratio) and childhood asthma in a birth cohort of mother-child dyads sampled pre-, peri-, and postnatally (N = 155). Epigenome-wide DNA methylation and cytokine production were assessed in cord blood mononuclear cells (CBMC) by array profiling and ELISA, respectively. Nasopharyngeal microbiome composition was characterized at age 2-36 months by 16S rRNA sequencing. RESULTS Maternal prenatal immune status related to methylome profiles in neonates born to non-asthmatic mothers. A module of differentially methylated CpG sites enriched for microbe-responsive elements was associated with childhood asthma. In vitro responsiveness to microbial products was impaired in CBMCs from neonates born to mothers with the lowest IFN-γ:IL-13 ratio, suggesting defective neonatal innate immunity in those who developed asthma during childhood. These infants exhibited a distinct pattern of upper airway microbiota development characterized by early-life colonization by Haemophilus that transitioned to a Moraxella-dominated microbiota by age 36 months. CONCLUSIONS Maternal prenatal immune status shapes asthma development in her child by altering the epigenome and trained innate immunity at birth, and is associated with pathologic upper airway microbial colonization in early life.
Collapse
Affiliation(s)
- Avery DeVries
- Asthma and Airway Disease Research CenterThe University of ArizonaTucsonArizonaUSA
- The BIO5 InstituteThe University of ArizonaTucsonArizonaUSA
| | - Kathryn McCauley
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Benioff Center for Microbiome MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Douglas Fadrosh
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kei E. Fujimura
- Genetic Disease LabCalifornia Department of Public HealthRichmondCaliforniaUSA
| | - Debra A. Stern
- Asthma and Airway Disease Research CenterThe University of ArizonaTucsonArizonaUSA
| | - Susan V. Lynch
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Benioff Center for Microbiome MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Donata Vercelli
- Asthma and Airway Disease Research CenterThe University of ArizonaTucsonArizonaUSA
- The BIO5 InstituteThe University of ArizonaTucsonArizonaUSA
- Department of Cellular and Molecular MedicineThe University of ArizonaTucsonArizonaUSA
- Arizona Center for the Biology of Complex DiseasesThe University of ArizonaTucsonArizonaUSA
| |
Collapse
|
12
|
Jia G, Zhong X, Im HK, Schoettler N, Pividori M, Hogarth DK, Sperling AI, White SR, Naureckas ET, Lyttle CS, Terao C, Kamatani Y, Akiyama M, Matsuda K, Kubo M, Cox NJ, Ober C, Rzhetsky A, Solway J. Discerning asthma endotypes through comorbidity mapping. Nat Commun 2022; 13:6712. [PMID: 36344522 PMCID: PMC9640644 DOI: 10.1038/s41467-022-33628-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Asthma is a heterogeneous, complex syndrome, and identifying asthma endotypes has been challenging. We hypothesize that distinct endotypes of asthma arise in disparate genetic variation and life-time environmental exposure backgrounds, and that disease comorbidity patterns serve as a surrogate for such genetic and exposure variations. Here, we computationally discover 22 distinct comorbid disease patterns among individuals with asthma (asthma comorbidity subgroups) using diagnosis records for >151 M US residents, and re-identify 11 of the 22 subgroups in the much smaller UK Biobank. GWASs to discern asthma risk loci for individuals within each subgroup and in all subgroups combined reveal 109 independent risk loci, of which 52 are replicated in multi-ancestry meta-analysis across different ethnicity subsamples in UK Biobank, US BioVU, and BioBank Japan. Fourteen loci confer asthma risk in multiple subgroups and in all subgroups combined. Importantly, another six loci confer asthma risk in only one subgroup. The strength of association between asthma and each of 44 health-related phenotypes also varies dramatically across subgroups. This work reveals subpopulations of asthma patients distinguished by comorbidity patterns, asthma risk loci, gene expression, and health-related phenotypes, and so reveals different asthma endotypes.
Collapse
Affiliation(s)
- Gengjie Jia
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
| | - Xue Zhong
- Department of Medicine and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Hae Kyung Im
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Nathan Schoettler
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Milton Pividori
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - D Kyle Hogarth
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Anne I Sperling
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Steven R White
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | | | | | - Chikashi Terao
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, 420-8527, Japan
- Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yoichiro Kamatani
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Computational Biology and Medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Masato Akiyama
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Nancy J Cox
- Department of Medicine and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| | - Andrey Rzhetsky
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA.
- Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Genomics, Genetics, and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
13
|
Maggi E, Parronchi P, Azzarone BG, Moretta L. A pathogenic integrated view explaining the different endotypes of asthma and allergic disorders. Allergy 2022; 77:3267-3292. [PMID: 35842745 DOI: 10.1111/all.15445] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
The inflammation of allergic diseases is characterized by a complex interaction between type 2 and type 3 immune responses, explaining clinical symptoms and histopathological patterns. Airborne stimuli activate the mucosal epithelium to release a number of molecules impacting the activity of resident immune and environmental cells. Signals from the mucosal barrier, regulatory cells, and the inflamed tissue are crucial conditions able to modify innate and adaptive effector cells providing the selective homing of eosinophils or neutrophils. The high plasticity of resident T- and innate lymphoid cells responding to external signals is the prerequisite to explain the multiplicity of endotypes of allergic diseases. This notion paved the way for the huge use of specific biologic drugs interfering with pathogenic mechanisms of inflammation. Based on the response of the epithelial barrier, the activity of resident regulatory cells, and functions of structural non-lymphoid environmental cells, this review proposes some immunopathogenic scenarios characterizing the principal endotypes which can be associated with a precise phenotype of asthma. Recent literature indicates that similar concepts can also be applied to the inflammation of other non-respiratory allergic disorders. The next challenges will consist in defining specific biomarker(s) of each endotype allowing for a quick diagnosis and the most effective personalized therapy.
Collapse
Affiliation(s)
- Enrico Maggi
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Parronchi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | | | - Lorenzo Moretta
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
14
|
Wu GR, Zhou M, Wang Y, Zhou Q, Zhang L, He L, Zhang S, Yu Q, Xu Y, Zhao J, Xiong W, Wang CY. Blockade of Mbd2 by siRNA-loaded liposomes protects mice against OVA-induced allergic airway inflammation via repressing M2 macrophage production. Front Immunol 2022; 13:930103. [PMID: 36090987 PMCID: PMC9453648 DOI: 10.3389/fimmu.2022.930103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo address the role of methyl-CpG-binding domain 2 (MBD2) in the pathogenesis of asthma and its potential as a target for the asthmatic therapy.MethodsStudies were conducted in asthmatic patients and macrophage-specific Mbd2 knockout mice to dissect the role of MBD2 in asthma pathogenesis. Additionally, RNAi-based therapy with Mbd2 siRNA-loaded liposomes was conducted in an ovalbumin (OVA)-induced allergic airway inflammation mouse model.ResultsAsthmatic patients and mice challenged with OVA exhibited upregulated MBD2 expression in macrophages, especially in alternatively activated (M2) macrophages. In particular, macrophage-specific knockout of Mbd2 protected mice from OVA-induced allergic airway inflammation and suppressed the M2 program. Notably, intratracheal administration of liposomes carrying Mbd2 siRNA decreased the expression of Mbd2 and prevented OVA-induced allergic airway inflammation in mice, as indicated by the attenuated airway inflammation and mucus production.ConclusionsThe above data indicate that Mbd2 implicates in the pathogenesis of asthma predominantly by regulating the polarization of M2 macrophages, which supports that Mbd2 could be a viable target for treatment of asthma in clinical settings.
Collapse
Affiliation(s)
- Guo-Rao Wu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qing Zhou
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Long He
- Department of Clinical Laboratory, Shanghai East Hospital; School of Medicine, Tongji University, Shanghai, China
| | - Shu Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qilin Yu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
- Department of Respiratory and Critical Care Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Cong-Yi Wang, ; Weining Xiong,
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
- *Correspondence: Cong-Yi Wang, ; Weining Xiong,
| |
Collapse
|
15
|
Hafez RA, Hassan ME, Haggag MG, Atef N, Abdallah AL, Gerges MA. Association of Interleukin 13 rs20541 Gene Polymorphism and Serum Periostin with Asthma and Allergic Conjunctivitis Among Egyptian Patients. J Asthma Allergy 2022; 15:971-982. [PMID: 35923761 PMCID: PMC9342469 DOI: 10.2147/jaa.s373098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Raghda Abdellatif Hafez
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Manar E Hassan
- Microbiology, Immunology and Parasitology Department, Research Institute of Ophthalmology, Giza, Egypt
| | - Maha G Haggag
- Microbiology, Immunology and Parasitology Department, Research Institute of Ophthalmology, Giza, Egypt
| | - Nora Atef
- Cancer Epidemiology and Biostatistics Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Alshimaa L Abdallah
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marian A Gerges
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Correspondence: Marian A Gerges, Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt, Tel +2 01003819530, Email
| |
Collapse
|
16
|
Sharma S, Yang IV, Schwartz DA. Epigenetic regulation of immune function in asthma. J Allergy Clin Immunol 2022; 150:259-265. [PMID: 35717251 PMCID: PMC9378596 DOI: 10.1016/j.jaci.2022.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022]
Abstract
Asthma is a common complex respiratory disease characterized by chronic airway inflammation and partially reversible airflow obstruction resulting from genetic and environmental determinants. Because epigenetic marks influence gene expression and can be modified by both environmental exposures and genetic variation, they are increasingly recognized as relevant to the pathogenesis of asthma and may be a key link between environmental exposures and asthma susceptibility. Unlike changes to DNA sequence, epigenetic signatures are dynamic and reversible, creating an opportunity for not only therapeutic targets but may serve as biomarkers to follow disease course and identify molecular subtypes in heterogeneous diseases such as asthma. In this review, we will examine the relationship between asthma and 3 key epigenetic processes that modify gene expression: DNA methylation, modification of histone tails, and noncoding RNAs. In addition to presenting a comprehensive assessment of the existing epigenetic studies focusing on immune regulation in asthma, we will discuss future directions for epigenetic investigation in allergic airway disease.
Collapse
Affiliation(s)
- Sunita Sharma
- Divisions of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo.
| | - Ivana V Yang
- Divisions of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo; Divisions of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - David A Schwartz
- Divisions of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| |
Collapse
|
17
|
Legaki E, Arsenis C, Taka S, Papadopoulos NG. DNA methylation biomarkers in asthma and rhinitis: Are we there yet? Clin Transl Allergy 2022; 12:e12131. [PMID: 35344303 PMCID: PMC8967268 DOI: 10.1002/clt2.12131] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 12/16/2022] Open
Abstract
The study of epigenetics has improved our understanding of mechanisms underpinning gene‐environment interactions and is providing new insights in the pathophysiology of respiratory allergic diseases. We reviewed the literature on DNA methylation patterns across different tissues in asthma and/or rhinitis and attempted to elucidate differentially methylated loci that could be used to characterize asthma or rhinitis. Although nasal and bronchial epithelia are similar in their histological structure and cellular composition, genetic and epigenetic regulation may differ across tissues. Advanced methods have enabled comprehensive, high‐throughput methylation profiling of different tissues (bronchial or nasal epithelial cells, whole blood or isolated mononuclear cells), in subjects with respiratory conditions, aiming to elucidate gene regulation mechanisms and identify new biomarkers. Several genes and CpGs have been suggested as asthma biomarkers, though research on allergic rhinitis is still lacking. The most common differentially methylated loci presented in both blood and nasal samples are ACOT7, EPX, KCNH2, SIGLEC8, TNIK, FOXP1, ATPAF2, ZNF862, ADORA3, ARID3A, IL5RA, METRNL and ZFPM1. Overall, there is substantial variation among studies, (i.e. sample sizes, age groups and disease phenotype). Greater variability of analysis method detailed phenotypic characterization and age stratification should be taken into account in future studies.
Collapse
Affiliation(s)
- Evangelia Legaki
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Christos Arsenis
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Styliani Taka
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Nikolaos G. Papadopoulos
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| |
Collapse
|
18
|
Trained immunity in type 2 immune responses. Mucosal Immunol 2022; 15:1158-1169. [PMID: 36065058 PMCID: PMC9705254 DOI: 10.1038/s41385-022-00557-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023]
Abstract
Immunological memory of innate immune cells, also termed "trained immunity", allows for cross-protection against distinct pathogens, but may also drive chronic inflammation. Recent studies have shown that memory responses associated with type 2 immunity do not solely rely on adaptive immune cells, such as T- and B cells, but also involve the innate immune system and epithelial cells. Memory responses have been described for monocytes, macrophages and airway epithelial cells of asthmatic patients as well as for macrophages and group 2 innate lymphoid cells (ILC2) from allergen-sensitized or helminth-infected mice. The metabolic and epigenetic mechanisms that mediate allergen- or helminth-induced reprogramming of innate immune cells are only beginning to be uncovered. Trained immunity has been implicated in helminth-driven immune regulation and allergen-specific immunotherapy, suggesting its exploitation in future therapies. Here, we discuss recent advances and key remaining questions regarding the mechanisms and functions of trained type 2 immunity in infection and inflammation.
Collapse
|
19
|
Soliai MM, Kato A, Helling BA, Stanhope CT, Norton JE, Naughton KA, Klinger AI, Thompson EE, Clay SM, Kim S, Celedón JC, Gern JE, Jackson DJ, Altman MC, Kern RC, Tan BK, Schleimer RP, Nicolae DL, Pinto JM, Ober C. Multi-omics colocalization with genome-wide association studies reveals a context-specific genetic mechanism at a childhood onset asthma risk locus. Genome Med 2021; 13:157. [PMID: 34629083 PMCID: PMC8504130 DOI: 10.1186/s13073-021-00967-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWASs) have identified thousands of variants associated with asthma and other complex diseases. However, the functional effects of most of these variants are unknown. Moreover, GWASs do not provide context-specific information on cell types or environmental factors that affect specific disease risks and outcomes. To address these limitations, we used an upper airway epithelial cell (AEC) culture model to assess transcriptional and epigenetic responses to rhinovirus (RV), an asthma-promoting pathogen, and provide context-specific functional annotations to variants discovered in GWASs of asthma. METHODS Genome-wide genetic, gene expression, and DNA methylation data in vehicle- and RV-treated upper AECs were collected from 104 individuals who had a diagnosis of airway disease (n=66) or were healthy participants (n=38). We mapped cis expression and methylation quantitative trait loci (cis-eQTLs and cis-meQTLs, respectively) in each treatment condition (RV and vehicle) in AECs from these individuals. A Bayesian test for colocalization between AEC molecular QTLs and adult onset asthma and childhood onset asthma GWAS SNPs, and a multi-ethnic GWAS of asthma, was used to assign the function to variants associated with asthma. We used Mendelian randomization to demonstrate DNA methylation effects on gene expression at asthma colocalized loci. RESULTS Asthma and allergic disease-associated GWAS SNPs were specifically enriched among molecular QTLs in AECs, but not in GWASs from non-immune diseases, and in AEC eQTLs, but not among eQTLs from other tissues. Colocalization analyses of AEC QTLs with asthma GWAS variants revealed potential molecular mechanisms of asthma, including QTLs at the TSLP locus that were common to both the RV and vehicle treatments and to both childhood onset and adult onset asthma, as well as QTLs at the 17q12-21 asthma locus that were specific to RV exposure and childhood onset asthma, consistent with clinical and epidemiological studies of these loci. CONCLUSIONS This study provides evidence of functional effects for asthma risk variants in AECs and insight into RV-mediated transcriptional and epigenetic response mechanisms that modulate genetic effects in the airway and risk for asthma.
Collapse
Affiliation(s)
- Marcus M Soliai
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA.
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, USA.
| | - Atsushi Kato
- Departments of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Britney A Helling
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA
| | | | - James E Norton
- Departments of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Aiko I Klinger
- Departments of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emma E Thompson
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Selene M Clay
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Soyeon Kim
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Matthew C Altman
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
- Systems Immunology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Robert C Kern
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bruce K Tan
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert P Schleimer
- Departments of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dan L Nicolae
- Department of Statistics, University of Chicago, Chicago, IL, USA
| | - Jayant M Pinto
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Carole Ober
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA.
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
20
|
Gutierrez MJ, Perez GF, Gomez JL, Rodriguez-Martinez CE, Castro-Rodriguez JA, Nino G. Genes, environment, and developmental timing: New insights from translational approaches to understand early origins of respiratory diseases. Pediatr Pulmonol 2021; 56:3157-3165. [PMID: 34388306 PMCID: PMC8858026 DOI: 10.1002/ppul.25598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
Over the past decade, "omics" approaches have advanced our understanding of the molecular programming of the airways in humans. Several studies have identified potential molecular mechanisms that contribute to early life epigenetic reprogramming, including DNA methylation, histone modifications, microRNAs, and the homeostasis of the respiratory mucosa (epithelial function and microbiota). Current evidence supports the notion that early infancy is characterized by heightened susceptibility to airway genetic reprogramming in response to the first exposures in life, some of which can have life-long consequences. Here, we summarize and analyze the latest insights from studies that support a novel epigenetic paradigm centered on human maturational and developmental programs including three cardinal elements: genes, environment, and developmental timing. The combination of these factors is likely responsible for the functional trajectory of the respiratory system at the molecular, functional, and clinical levels.
Collapse
Affiliation(s)
- Maria J Gutierrez
- Division of Pediatric Allergy and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Geovanny F Perez
- Division of Pediatric Pulmonology, Oishei Children's Hospital, University at Buffalo, Buffalo, New York, USA
| | - Jose L Gomez
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Carlos E Rodriguez-Martinez
- Department of Pediatrics, Universidad Nacional de Colombia, Bogota, Colombia.,Department of Pediatric Pulmonology and Pediatric Critical Care Medicine, School of Medicine, Universidad El Bosque, Bogota, Colombia
| | - Jose A Castro-Rodriguez
- Department of Pediatric Pulmonology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, Washington D.C., USA
| |
Collapse
|
21
|
Role of Epigenetics in the Pathogenesis, Treatment, Prediction, and Cellular Transformation of Asthma. Mediators Inflamm 2021; 2021:9412929. [PMID: 34566492 PMCID: PMC8457970 DOI: 10.1155/2021/9412929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Asthma is a mysterious disease with heterogeneity in etiology, pathogenesis, and clinical phenotypes. Although ongoing studies have provided a better understanding of asthma, its natural history, progression, pathogenesis, diversified phenotypes, and even the exact epigenetic linkage between childhood asthma and adult-onset/old age asthma remain elusive in many aspects. Asthma heritability has been established through genetic studies, but genetics is not the only influencing factor in asthma. The increasing incidence and some unsolved queries suggest that there may be other elements related to asthma heredity. Epigenetic mechanisms link genetic and environmental factors with developmental trajectories in asthma. This review provides an overview of asthma epigenetics and its components, including several epigenetic studies on asthma, and discusses the epigenetic linkage between childhood asthma and adult-onset/old age asthma. Studies involving asthma epigenetics present valuable novel approaches to solve issues related to asthma. Asthma epigenetic research guides us towards gene therapy and personalized T cell therapy, directs the discovery of new therapeutic agents, predicts long-term outcomes in severe cases, and is also involved in the cellular transformation of childhood asthma to adult-onset/old age asthma.
Collapse
|
22
|
Chen R, Piao LZ, Liu L, Zhang XF. DNA methylation and gene expression profiles to identify childhood atopic asthma associated genes. BMC Pulm Med 2021; 21:292. [PMID: 34525985 PMCID: PMC8444351 DOI: 10.1186/s12890-021-01655-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Asthma is a chronic inflammatory disorder of the airways involving many different factors. This study aimed to screen for the critical genes using DNA methylation/CpGs and miRNAs involved in childhood atopic asthma. Methods DNA methylation and gene expression data (Access Numbers GSE40732 and GSE40576) were downloaded from the Gene Expression Omnibus database. Each set contains 194 peripheral blood mononuclear cell (PBMC) samples of 97 children with atopic asthma and 97 control children. Differentially expressed genes (DEGs) with DNA methylation changes were identified. Pearson correlation analysis was used to select genes with an opposite direction of expression and differences in methylation levels, and then Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. Protein–protein interaction network and miRNA–target gene regulatory networks were then constructed. Finally, important genes related to asthma were screened. Results A total of 130 critical DEGs with DNA methylation changes were screened from children with atopic asthma and compared with control samples from healthy children. GO and KEGG pathway enrichment analysis found that critical genes were primarily related to 24 GO terms and 10 KEGG pathways. In the miRNA–target gene regulatory networks, 9 KEGG pathways were identified. Analysis of the miRNA–target gene network noted an overlapping KEGG signaling pathway, hsa04060: cytokine-cytokine receptor interaction, in which the gene CCL2, directly related to asthma, was involved. This gene is targeted by eight asthma related miRNAs (hsa-miR-206, hsa-miR-19a, hsa-miR-9,hsa-miR-22, hsa-miR-33b, hsa-miR-122, hsa-miR-1, and hsa-miR-23b). The genes IL2RG and CCl4 were also involved in this pathway. Conclusions The present study provides a novel insight into the underlying molecular mechanism of childhood atopic asthma.
Collapse
Affiliation(s)
- Rui Chen
- Department of Pediatrics, The Third Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Li-Zhen Piao
- Department of Pediatrics, The Third Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Ling Liu
- Department of Pediatrics, The Third Hospital of Jilin University, Changchun, 130033, Jilin, China.
| | - Xiao-Fei Zhang
- Department of Pediatrics, The Third Hospital of Jilin University, Changchun, 130033, Jilin, China.
| |
Collapse
|
23
|
Mitamura Y, Ogulur I, Pat Y, Rinaldi AO, Ardicli O, Cevhertas L, Brüggen MC, Traidl-Hoffmann C, Akdis M, Akdis CA. Dysregulation of the epithelial barrier by environmental and other exogenous factors. Contact Dermatitis 2021; 85:615-626. [PMID: 34420214 PMCID: PMC9293165 DOI: 10.1111/cod.13959] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022]
Abstract
The “epithelial barrier hypothesis” proposes that the exposure to various epithelial barrier–damaging agents linked to industrialization and urbanization underlies the increase in allergic diseases. The epithelial barrier constitutes the first line of physical, chemical, and immunological defense against environmental factors. Recent reports have shown that industrial products disrupt the epithelial barriers. Innate and adaptive immune responses play an important role in epithelial barrier damage. In addition, recent studies suggest that epithelial barrier dysfunction plays an essential role in the pathogenesis of the atopic march by allergen sensitization through the transcutaneous route. It is evident that external factors interact with the immune system, triggering a cascade of complex reactions that damage the epithelial barrier. Epigenetic and microbiome changes modulate the integrity of the epithelial barrier. Robust and simple measurements of the skin barrier dysfunction at the point‐of‐care are of significant value as a biomarker, as recently reported using electrical impedance spectroscopy to directly measure barrier defects. Understanding epithelial barrier dysfunction and its mechanism is key to developing novel strategies for the prevention and treatment of allergic diseases. The aim of this review is to summarize recent studies on the pathophysiological mechanisms triggered by environmental factors that contribute to the dysregulation of epithelial barrier function.
Collapse
Affiliation(s)
- Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos.,Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos.,Department of Medical Microbiology, Faculty of Medicine, Aydin Menderes University, Aydin, Turkey
| | - Arturo O Rinaldi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos.,Department of Microbiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos.,Department of Medical Immunology, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Marie-Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education, Davos.,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Claudia Traidl-Hoffmann
- Christine Kühne-Center for Allergy Research and Education, Davos.,Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos.,Christine Kühne-Center for Allergy Research and Education, Davos
| |
Collapse
|
24
|
IL-13 Augments Histone Demethylase JMJD2B/KDM4B Expression Levels, Activity, and Nuclear Translocation in Airway Fibroblasts in Asthma. J Immunol Res 2021; 2021:6629844. [PMID: 33688506 PMCID: PMC7920726 DOI: 10.1155/2021/6629844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 01/10/2023] Open
Abstract
Purpose Asthma is one of the most common obstructive pulmonary diseases worldwide. Epigenetic alterations, including DNA methylation and histone modifications, have been reported to contribute to asthma pathogenesis. Since the inflammation mediator and remodeling trigger, IL-13, is known to play a central role in the pathophysiology of asthma, this study was aimed to identify novel IL-13-regulated epigenetic modifiers in asthma that may contribute to subepithelial fibrosis. Methods Publicly available transcriptomic datasets from Gene Expression Omnibus (GEO) were used to identify differentially expressed genes on an epigenetic level upon IL-13 exposure in lung fibroblasts. Bronchial fibroblasts isolated from healthy and asthmatic individuals were assessed for the gene and protein expression levels of the identified gene at baseline and upon IL-13 treatment using qRT-PCR and western blotting, respectively. Its subcellular localization and tissue distribution were examined in bronchial fibroblasts as well as bronchial biopsies by immunofluorescence and immunohistochemical analysis, respectively. Results Bioinformatic analysis revealed the differential expression of the histone demethylase JMJD2B/KDM4B, a well-known epigenetic modulator that leads to the demethylation of different lysine residues on histones, in IL-13-treated lung fibroblasts. The baseline expression levels of JMJD2B were higher in asthmatic fibroblasts and in bronchial biopsies in comparison to healthy ones. There was also an increase in JMJD2B activity as evidenced by the demethylation of its downstream target, H3K36me3. Furthermore, IL-13 stimulation induced JMJD2B expression and further demethylation of H3K36me3 in asthmatic fibroblasts. This was accompanied by increased translocation of JMJD2B into the nucleus. Conclusion This study highlights the novel pathological involvement of the histone demethylase JMJD2B/KDM4B in asthmatic airway fibroblasts that are regulated by IL-13. Clinical implications. Given that there is no single therapeutic medicine to effectively treat the various subtypes of asthma, this study provides promising insights into JMJD2B as a new therapeutic target that could potentially improve the treatment and management of asthma.
Collapse
|
25
|
Hellings PW, Steelant B. Epithelial barriers in allergy and asthma. J Allergy Clin Immunol 2021; 145:1499-1509. [PMID: 32507228 PMCID: PMC7270816 DOI: 10.1016/j.jaci.2020.04.010] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 12/23/2022]
Abstract
The respiratory epithelium provides a physical, functional, and immunologic barrier to protect the host from the potential harming effects of inhaled environmental particles and to guarantee maintenance of a healthy state of the host. When compromised, activation of immune/inflammatory responses against exogenous allergens, microbial substances, and pollutants might occur, rendering individuals prone to develop chronic inflammation as seen in allergic rhinitis, chronic rhinosinusitis, and asthma. The airway epithelium in asthma and upper airway diseases is dysfunctional due to disturbed tight junction formation. By putting the epithelial barrier to the forefront of the pathophysiology of airway inflammation, different approaches to diagnose and target epithelial barrier defects are currently being developed. Using single-cell transcriptomics, novel epithelial cell types are being unraveled that might play a role in chronicity of respiratory diseases. We here review and discuss the current understandings of epithelial barrier defects in type 2-driven chronic inflammation of the upper and lower airways, the estimated contribution of these novel identified epithelial cells to disease, and the current clinical challenges in relation to diagnosis and treatment of allergic rhinitis, chronic rhinosinusitis, and asthma.
Collapse
Affiliation(s)
- Peter W Hellings
- Clinical Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, Leuven, Belgium; Department of Otorhinolaryngology, University Hospital Ghent, Laboratory of Upper Airway Research, Ghent, Belgium.
| | - Brecht Steelant
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, Leuven, Belgium; Department of Otorhinolaryngology, Head and Neck Surgery, University of Crete School of Medicine, Heraklion, Crete, Greece
| |
Collapse
|
26
|
Epithelial dysfunction in chronic respiratory diseases, a shared endotype? Curr Opin Pulm Med 2021; 26:20-26. [PMID: 31688241 DOI: 10.1097/mcp.0000000000000638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Epithelial barrier defects are being appreciated in various inflammatory disorders; however, causal underlying mechanisms are lacking. In this review, we describe the disruption of the airway epithelium with regard to upper and lower airway diseases, the role of epigenetic alterations underlying this process, and potential novel ways of interfering with dysfunctional epithelial barriers as a novel therapeutic approach. RECENT FINDINGS A defective epithelial barrier, impaired innate defence mechanisms or hampered epithelial cell renewal are found in upper and lower airway diseases. Barrier dysfunction might facilitate the entrance of foreign substances, initiating and facilitating the onset of disease. Latest data provided novel insights for possible involvement of epigenetic alterations induced by inflammation or other unknown mechanisms as a potential mechanism responsible for epithelial defects. Additionally, these mechanisms might precede disease development, and represent a novel therapeutic approach for restoring epithelial defects. SUMMARY A better understanding of the role of epigenetics in driving and maintaining epithelial defects in various inflammatory diseases, using state-of-the-art biology tools will be crucial in designing novel therapies to protect or reconstitute a defective airway epithelial barrier.
Collapse
|
27
|
Formation of nasal polyps: The roles of innate type 2 inflammation and deposition of fibrin. J Allergy Clin Immunol 2020; 145:740-750. [PMID: 32145873 DOI: 10.1016/j.jaci.2020.01.027] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/28/2022]
Abstract
Chronic rhinosinusitis (CRS) is one of the most common chronic diseases worldwide. It is a heterogeneous disease, and geographical or ethnic differences in inflammatory pattern in nasal mucosa are major issues. Tissue eosinophilia in CRS is highly associated with extensive sinus disease, recalcitrance, and a higher nasal polyp (NP) recurrence rate after surgery. The prevalence of eosinophilic CRS (ECRS) is increasing in Asian countries within the last 2 decades, and this trend appears to be occurring across the world. International consensus criteria for ECRS are required for the accurate understanding of disease pathology and precision medicine. In a multicenter large-scale epidemiological survey, the "Japanese Epidemiological Survey of Refractory Eosinophilic Chronic Rhinosinusitis study," ECRS was definitively defined when the eosinophil count in nasal mucosa is greater than or equal to 70 eosinophils/hpf (magnification, ×400), and this study proposed an algorithm that classifies CRS into 4 groups according to disease severity. The main therapeutic goal with ECRS is to eliminate or diminish the bulk of NP tissue. NPs are unique abnormal lesions that grow from the lining of the nasal and paranasal sinuses, and type 2 inflammation plays a critical role in NP development in patients with ECRS. An imbalance between protease and endogenous protease inhibitors might play a pivotal role in the initiation and exacerbation of type 2 inflammation in ECRS. Intraepithelial mast cells in NPs, showing a tryptase+, chymase- phenotype, may also enhance type 2 inflammation. Intense edema and reduced fibrosis are important histological features of eosinophilic NPs. Mucosal edema mainly consists of exuded plasma protein, and excessive fibrin deposition would be expected to contribute to the retention of proteins from capillaries and thereby perpetuate mucosal edema that may play an etiological role in NPs. Upregulation of the coagulation cascade and downregulation of fibrinolysis strongly induce abnormal fibrin deposition in nasal mucosa, and type 2 inflammation plays a central role in the imbalance of coagulation and fibrinolysis.
Collapse
|
28
|
Patel R, Solatikia F, Zhang H, Wolde A, Kadalayil L, Karmaus W, Ewart S, Arathimos R, Relton C, Ring S, Henderson AJ, Arshad SH, Holloway JW. Sex-specific associations of asthma acquisition with changes in DNA methylation during adolescence. Clin Exp Allergy 2020; 51:318-328. [PMID: 33150670 DOI: 10.1111/cea.13776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Underlying biological mechanisms involved in sex differences in asthma status changes from pre- to post-adolescence are unclear. DNA methylation (DNAm) has been shown to be associated with the risk of asthma. OBJECTIVE We hypothesized that asthma acquisition from pre- to post-adolescence was associated with changes in DNAm during this period at asthma-associated cytosine-phosphate-guanine (CpG) sites and such an association was sex-specific. METHODS Subjects from the Isle of Wight birth cohort (IOWBC) with DNAm in blood at ages 10 and 18 years (n = 124 females, 151 males) were studied. Using a training-testing approach, epigenome-wide CpGs associated with asthma were identified. Logistic regression was used to examine sex-specific associations of DNAm changes with asthma acquisition between ages 10 and 18 at asthma-associated CpGs. The ALSPAC birth cohort was used for independent replication. To assess functional relevance of identified CpGs, association of DNAm with gene expression in blood was assessed. RESULTS We identified 535 CpGs potentially associated with asthma. Significant interaction effects of DNAm changes and sex on asthma acquisition in adolescence were found at 13 of the 535 CpGs in IOWBC (P-values <1.0 × 10-3 ). In the replication cohort, consistent interaction effects were observed at 10 of the 13 CpGs. At 7 of these 10 CpGs, opposite DNAm changes across adolescence were observed between sexes in both cohorts. In both cohorts, cg20891917, located on IFRD1 linked to asthma, shows strong sex-specific effects on asthma transition (P-values <.01 in both cohorts). CONCLUSION AND CLINICAL RELEVANCE Gender reversal in asthma acquisition is associated with opposite changes in DNAm (males vs females) from pre- to post-adolescence at asthma-associated CpGs. These CpGs are potential biomarkers of sex-specific asthma acquisition in adolescence.
Collapse
Affiliation(s)
- Rutu Patel
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Farnaz Solatikia
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA.,Department of Mathematical Sciences, University of Memphis, Memphis, TN, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Alemayehu Wolde
- Department of Mathematical Sciences, University of Memphis, Memphis, TN, USA
| | - Latha Kadalayil
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Ryan Arathimos
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,National Institute for Health Research Bristol Biomedical Research Centre, University of Bristol, University Hospitals Bristol NHS Foundation Trust, Bristol, UK.,Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,National Institute for Health Research Bristol Biomedical Research Centre, University of Bristol, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Susan Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,National Institute for Health Research Bristol Biomedical Research Centre, University of Bristol, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | | | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,David Hide Asthma and Allergy Research Centre, Isle of Wight, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
29
|
Liu T, Sun Y, Bai W. The Role of Epigenetics in the Chronic Sinusitis with Nasal Polyp. Curr Allergy Asthma Rep 2020; 21:1. [PMID: 33236242 DOI: 10.1007/s11882-020-00976-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common and heterogeneous inflammatory disease. The underlying epigenetic mechanisms and treatment of CRSwNP are partially understood. Of the different epigenetic changes in CRSwNP, histone deacetylases (HDACs), methylation of DNA, and the levels of miRNA are widely studied. Here, we review the human studies of epigenetic mechanisms in CRSwNP. RECENT FINDINGS The promoters of COL18A1, PTGES, PLAT, and TSLP genes are hypermethylated in CRSwNP compared with those of controls, while the promoters of PGDS, ALOX5AP, LTB4R, IL-8, and FZD5 genes are hypomethylated in CRSwNP. Promoter hypermethylation suppresses the gene expression, while promoter hypomethylation increases the gene expression. Studies have shown the elevation in the levels of HDAC2, HDAC4, and H3K4me3 in CRSwNP. In CRSwNP patients, there is also an upregulation of certain miRNAs including miR-125b, miR-155, miR-19a, miR-142-3p, and miR-21 and downregulation of miR-4492. Epigenetics takes part in the immunology of CRSwNP and may give rise to endotypes of CRSwNP. Both HDAC2 and the miRNA including miR-18a, miR-124a, and miR-142-3p may take function in the regulation of glucocorticoid resistance. HDAC inhibitors and KDM2B have shown effectiveness in decreasing nasal polyp, and DNA methyltransferase (DNMT) or HDAC inhibitors may have a potential efficacy for the treatment of CRSwNP. Recent advances in the epigenetics of CRSwNP have led to the identification of several potential therapeutic targets for this disease. The use of epigenetics may provide novel and effective biomarkers and therapies for the treatment of nasal polyp.
Collapse
Affiliation(s)
- Tiancong Liu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yang Sun
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Weiliang Bai
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
30
|
Chiba Y, Ueda C, Kohno N, Yamashita M, Miyakawa Y, Ando Y, Suto W, Hirabayashi T, Takenoya F, Takasaki I, Kamei J, Sakai H, Shioda S. Attenuation of relaxing response induced by pituitary adenylate cyclase-activating polypeptide in bronchial smooth muscle of experimental asthma. Am J Physiol Lung Cell Mol Physiol 2020; 319:L786-L793. [PMID: 32877227 DOI: 10.1152/ajplung.00315.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bronchomotor tone is regulated by contraction and relaxation of airway smooth muscle (ASM). A weakened ASM relaxation might be a cause of airway hyperresponsiveness (AHR), a characteristic feature of bronchial asthma. Pituitary adenylyl cyclase-activating polypeptide (PACAP) is known as a mediator that causes ASM relaxation. To date, whether or not the PACAP responsiveness is changed in asthmatic ASM is unknown. The current study examined the hypothesis that relaxation induced by PACAP is reduced in bronchial smooth muscle (BSM) of allergic asthma. The ovalbumin (OA)-sensitized mice were repeatedly challenged with aerosolized OA to induce asthmatic reaction. Twenty-four hours after the last antigen challenge, the main bronchial smooth muscle (BSM) tissues were isolated. Tension study showed a BSM hyperresponsiveness to acetylcholine in the OA-challenged mice. Both quantitative RT-PCR and immunoblot analyses revealed a significant decrease in PAC1 receptor expression in BSMs of the diseased mice. Accordingly, in the antigen-challenged group, the PACAP-induced PAC1 receptor-mediated BSM relaxation was significantly attenuated, whereas the relaxation induced by vasoactive intestinal polypeptide was not changed. These findings suggest that the relaxation induced by PACAP is impaired in BSMs of experimental asthma due to a downregulation of its binding partner PAC1 receptor. Impaired BSM responsiveness to PACAP might contribute to the AHR in asthma.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Chihiro Ueda
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Naoko Kohno
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Michio Yamashita
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Yui Miyakawa
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Yusuke Ando
- Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Wataru Suto
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Takahiro Hirabayashi
- Peptide Drug Innovation Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Fumiko Takenoya
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Ichiro Takasaki
- Department of Pharmacology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Seiji Shioda
- Peptide Drug Innovation Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
31
|
Thompson EE, Dang Q, Mitchell-Handley B, Rajendran K, Ram-Mohan S, Solway J, Ober C, Krishnan R. Cytokine-induced molecular responses in airway smooth muscle cells inform genome-wide association studies of asthma. Genome Med 2020; 12:64. [PMID: 32690065 PMCID: PMC7370514 DOI: 10.1186/s13073-020-00759-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 06/26/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A challenge in the post-GWAS era is to assign function to disease-associated variants. However, available resources do not include all tissues or environmental exposures that are relevant to all diseases. For example, exaggerated bronchoconstriction of airway smooth muscle cells (ASMCs) defines airway hyperresponsiveness (AHR), a cardinal feature of asthma. However, the contribution of ASMC to genetic and genomic studies has largely been overlooked. Our study aimed to address the gap in data availability from a critical tissue in genomic studies of asthma. METHODS We developed a cell model of AHR to discover variants associated with transcriptional, epigenetic, and cellular responses to two AHR promoting cytokines, IL-13 and IL-17A, and performed a GWAS of bronchial responsiveness (BRI) in humans. RESULTS Our study revealed significant response differences between ASMCs from asthma cases and controls, including genes implicated in asthma susceptibility. We defined molecular quantitative trait loci (QTLs) for expression (eQTLs) and methylation (meQTLs), and cellular QTLs for contractility (coQTLs) and performed a GWAS of BRI in human subjects. Variants in asthma GWAS were significantly enriched for ASM QTLs and BRI-associated SNPs, and near genes enriched for ASM function, many with small P values that did not reach stringent thresholds of significance in GWAS. CONCLUSIONS Our study identified significant differences between ASMCs from asthma cases and controls, potentially reflecting trained tolerance in these cells, as well as a set of variants, overlooked in previous GWAS, which reflect the AHR component of asthma.
Collapse
Affiliation(s)
- Emma E Thompson
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA.
| | - Quynh Dang
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Kavitha Rajendran
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sumati Ram-Mohan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Julian Solway
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Carole Ober
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Long A, Bunning B, Sampath V, DeKruyff RH, Nadeau KC. Epigenetics and the Environment in Airway Disease: Asthma and Allergic Rhinitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:153-181. [PMID: 32445095 DOI: 10.1007/978-981-15-3449-2_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Asthma and rhinitis are complex, heterogeneous diseases characterized by chronic inflammation of the upper and lower airways. While genome-wide association studies (GWAS) have identified a number of susceptible loci and candidate genes associated with the pathogenesis of asthma and allergic rhinitis (AR), the risk-associated alleles account for only a very small percent of the genetic risk. In allergic airway and other complex diseases, it is thought that epigenetic modifications, including DNA methylation, histone modifications, and non-coding microRNAs, caused by complex interactions between the underlying genome and the environment may account for some of this "missing heritability" and may explain the high degree of plasticity in immune responses. In this chapter, we will focus on the current knowledge of classical epigenetic modifications, DNA methylation and histone modifications, and their potential role in asthma and AR. In particular, we will review epigenetic variations associated with maternal airway disease, demographics, environment, and non-specific associations. The role of specific genetic haplotypes in environmentally induced epigenetic changes are also discussed. A major limitation of many of the current studies of asthma epigenetics is that they evaluate epigenetic modifications in both allergic and non-allergic asthma, making it difficult to distinguish those epigenetic modifications that mediate allergic asthma from those that mediate non-allergic asthma. Additionally, most DNA methylation studies in asthma use peripheral or cord blood due to poor accessibility of airway cells or tissue. Unlike DNA sequences, epigenetic alterations are quite cell- and tissue-specific, and epigenetic changes found in airway tissue or cells may be discordant from that of circulating blood. These two confounding factors should be considered when reviewing epigenetic studies in allergic airway disease.
Collapse
Affiliation(s)
- Andrew Long
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94305, USA.,Department of Pharmacy, Lucile Packard Children's Hospital, Stanford, CA, 94304, USA
| | - Bryan Bunning
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94305, USA
| | - Vanitha Sampath
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94305, USA
| | - Rosemarie H DeKruyff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94305, USA
| | - Kari C Nadeau
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
33
|
Jackson ND, Everman JL, Chioccioli M, Feriani L, Goldfarbmuren KC, Sajuthi SP, Rios CL, Powell R, Armstrong M, Gomez J, Michel C, Eng C, Oh SS, Rodriguez-Santana J, Cicuta P, Reisdorph N, Burchard EG, Seibold MA. Single-Cell and Population Transcriptomics Reveal Pan-epithelial Remodeling in Type 2-High Asthma. Cell Rep 2020; 32:107872. [PMID: 32640237 PMCID: PMC8046336 DOI: 10.1016/j.celrep.2020.107872] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
The type 2 cytokine-high asthma endotype (T2H) is characterized by IL-13-driven mucus obstruction of the airways. To further investigate this incompletely understood pathobiology, we characterize IL-13 effects on human airway epithelial cell cultures using single-cell RNA sequencing, finding that IL-13 generates a distinctive transcriptional state for each cell type. Specifically, we discover a mucus secretory program induced by IL-13 in all cell types which converts both mucus and defense secretory cells into a metaplastic state with emergent mucin production and secretion, while leading to ER stress and cell death in ciliated cells. The IL-13-remodeled epithelium secretes a pathologic, mucin-imbalanced, and innate immunity-depleted proteome that arrests mucociliary motion. Signatures of IL-13-induced cellular remodeling are mirrored by transcriptional signatures characteristic of the nasal airway epithelium within T2H versus T2-low asthmatic children. Our results reveal the epithelium-wide scope of T2H asthma and present candidate therapeutic targets for restoring normal epithelial function.
Collapse
Affiliation(s)
- Nathan D Jackson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Jamie L Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | | | - Luigi Feriani
- Department of Physics, University of Cambridge, Cambridge, CB2 3AX, UK
| | | | - Satria P Sajuthi
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Cydney L Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Roger Powell
- Department of Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO 80045, USA
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO 80045, USA
| | - Joe Gomez
- Department of Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO 80045, USA
| | - Cole Michel
- Department of Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO 80045, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sam S Oh
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Pietro Cicuta
- Department of Physics, University of Cambridge, Cambridge, CB2 3AX, UK
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO 80045, USA
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA; Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado-AMC, Aurora, CO 80045, USA.
| |
Collapse
|
34
|
Vermeulen CJ, Xu CJ, Vonk JM, Ten Hacken NHT, Timens W, Heijink IH, Nawijn MC, Boekhoudt J, van Oosterhout AJ, Affleck K, Weckmann M, Koppelman GH, van den Berge M. Differential DNA methylation in bronchial biopsies between persistent asthma and asthma in remission. Eur Respir J 2020; 55:13993003.01280-2019. [PMID: 31699840 DOI: 10.1183/13993003.01280-2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/18/2019] [Indexed: 11/05/2022]
Abstract
Approximately 40% of asthmatics experience remission of asthma symptoms. A better understanding of biological pathways leading to asthma remission may provide insight into new therapeutic targets for asthma. As an important mechanism of gene regulation, investigation of DNA methylation provides a promising approach. Our objective was to identify differences in epigenome wide DNA methylation levels in bronchial biopsies between subjects with asthma remission and subjects with persistent asthma or healthy controls.We analysed differential DNA methylation in bronchial biopsies from 26 subjects with persistent asthma, 39 remission subjects and 70 healthy controls, using the limma package. The comb-p tool was used to identify differentially methylated regions. DNA methylation of CpG-sites was associated to expression of nearby genes from the same biopsies to understand function.Four CpG-sites and 42 regions were differentially methylated between persistent asthma and remission. DNA methylation at two sites was correlated i n cis with gene expression at ACKR2 and DGKQ Between remission subjects and healthy controls 1163 CpG-sites and 328 regions were differentially methylated. DNA methylation was associated with expression of a set of genes expressed in ciliated epithelium.CpGs differentially methylated between remission and persistent asthma identify genetic loci associated with resolution of inflammation and airway responsiveness. Despite the absence of symptoms, remission subjects have a DNA methylation profile that is distinct from that of healthy controls, partly due to changes in cellular composition, with a higher gene expression signal related to ciliated epithelium in remission versus healthy controls.
Collapse
Affiliation(s)
- Cornelis J Vermeulen
- Dept of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands .,University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Cheng-Jian Xu
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands.,Dept of Pediatric Pulmonology and Pediatric Allergology, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands.,CiiM & TWINCORE, Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Judith M Vonk
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands.,Dept of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nick H T Ten Hacken
- Dept of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Wim Timens
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands.,Dept of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Irene H Heijink
- Dept of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands.,Dept of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn C Nawijn
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands.,Dept of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jeunard Boekhoudt
- Dept of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Karen Affleck
- Allergic Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, UK
| | - Markus Weckmann
- Dept of Pediatric Pneumology and Allergology, University Medical Center of Schlesswig-Holstein, Airway Research Centre North, Member of the German Centre of Lung Research, Lübeck, Germany
| | - Gerard H Koppelman
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands.,Dept of Pediatric Pulmonology and Pediatric Allergology, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | - Maarten van den Berge
- Dept of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
35
|
Qi C, Jiang Y, Yang IV, Forno E, Wang T, Vonk JM, Gehring U, Smit HA, Milanzi EB, Carpaij OA, Berg M, Hesse L, Brouwer S, Cardwell J, Vermeulen CJ, Acosta-Pérez E, Canino G, Boutaoui N, van den Berge M, Teichmann SA, Nawijn MC, Chen W, Celedón JC, Xu CJ, Koppelman GH. Nasal DNA methylation profiling of asthma and rhinitis. J Allergy Clin Immunol 2020; 145:1655-1663. [PMID: 31953105 DOI: 10.1016/j.jaci.2019.12.911] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/27/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Epigenetic signatures in the nasal epithelium, which is a primary interface with the environment and an accessible proxy for the bronchial epithelium, might provide insights into mechanisms of allergic disease. OBJECTIVE We aimed to identify and interpret methylation signatures in nasal epithelial brushes associated with rhinitis and asthma. METHODS Nasal epithelial brushes were obtained from 455 children at the 16-year follow-up of the Dutch Prevention and Incidence of Asthma and Mite Allergy birth cohort study. Epigenome-wide association studies were performed on children with asthma, rhinitis, and asthma and/or rhinitis (AsRh) by using logistic regression, and the top results were replicated in 2 independent cohorts of African American and Puerto Rican children. Significant CpG sites were related to environmental exposures (pets, active and passive smoking, and molds) during secondary school and were correlated with gene expression by RNA-sequencing (n = 244). RESULTS The epigenome-wide association studies identified CpG sites significantly associated with rhinitis (n = 81) and AsRh (n = 75), but not with asthma. We significantly replicated 62 of 81 CpG sites with rhinitis and 60 of 75 with AsRh, as well as 1 CpG site with asthma. Methylation of cg03565274 was negatively associated with AsRh and positively associated with exposure to pets during secondary school. DNA methylation signals associated with AsRh were mainly driven by specific IgE-positive subjects. DNA methylation related to gene transcripts that were enriched for immune pathways and expressed in immune and epithelial cells. Nasal CpG sites performed well in predicting AsRh. CONCLUSIONS We identified replicable DNA methylation profiles of asthma and rhinitis in nasal brushes. Exposure to pets may affect nasal epithelial methylation in relation to asthma and rhinitis.
Collapse
Affiliation(s)
- Cancan Qi
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yale Jiang
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa; School of Medicine, Tsinghua University, Beijing, China
| | - Ivana V Yang
- Department of Medicine, University of Colorado, Aurora, Colo
| | - Erick Forno
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Ting Wang
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Judith M Vonk
- Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Henriëtte A Smit
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Edith B Milanzi
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Orestes A Carpaij
- Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marijn Berg
- Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Laura Hesse
- Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sharon Brouwer
- Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Cornelis J Vermeulen
- Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edna Acosta-Pérez
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Nadia Boutaoui
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Maarten van den Berge
- Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom; Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Martijn C Nawijn
- Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wei Chen
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Juan C Celedón
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Cheng-Jian Xu
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Gastroenterology, Hepatology and Endocrinology, Centre for Individualised Infection Medicine, CiiM, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
36
|
Leija-Martínez JJ, Huang F, Del-Río-Navarro BE, Sanchéz-Muñoz F, Romero-Nava R, Muñoz-Hernandez O, Rodríguez-Cortés O, Hall-Mondragon MS. Decreased methylation profiles in the TNFA gene promoters in type 1 macrophages and in the IL17A and RORC gene promoters in Th17 lymphocytes have a causal association with non-atopic asthma caused by obesity: A hypothesis. Med Hypotheses 2019; 134:109527. [PMID: 31877441 DOI: 10.1016/j.mehy.2019.109527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022]
Abstract
Obesity is a serious public health problem worldwide and has been associated in epidemiological studies with a unique type of non-atopic asthma, although the causal association of asthma and obesity has certain criteria, such as the strength of association, consistency, specificity, temporality, biological gradient, coherence, analogy and experimentation; nevertheless, the biological plausibility of this association remains uncertain. Various mechanisms have been postulated, such as immunological, hormonal, mechanical, environmental, genetic and epigenetic mechanisms. Our hypothesis favours immunological mechanisms because some cytokines, such as tumour necrosis factor alpha (TNF-α) and interleukin (IL)-17A, are responsible for orchestrating low-grade systemic inflammation associated with obesity; however, these cytokines are regulated by epigenetic mechanisms, such as gene promoter methylation.
Collapse
Affiliation(s)
- José J Leija-Martínez
- Universidad Nacional Autónoma de México, Mexico City, Mexico; Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico
| | - Fengyang Huang
- Universidad Nacional Autónoma de México, Mexico City, Mexico; Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico.
| | - Blanca E Del-Río-Navarro
- Universidad Nacional Autónoma de México, Mexico City, Mexico; Hospital Infantil de México Federico Gómez, Department of Pediatric Allergy Clinical Immunology, Mexico City, Mexico
| | - Fausto Sanchéz-Muñoz
- Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Rodrigo Romero-Nava
- Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico; Laboratory of Pharmacology, Department of Health Sciences, Division of Health and Biological Sciences, Metropolitan Autonomous University of Iztapalapa, Mexico City, Mexico
| | | | - Octavio Rodríguez-Cortés
- Laboratorio 103, SEPI, Escuela Superior de Medicina, Instituto Politécnico Nacional, Calle Plan de San Luis y Díaz Mirón S/N, Casco de Santo Tomas, Miguel Hidalgo, 11340 Ciudad de México, Mexico
| | | |
Collapse
|
37
|
Hudon Thibeault AA, Laprise C. Cell-Specific DNA Methylation Signatures in Asthma. Genes (Basel) 2019; 10:E932. [PMID: 31731604 PMCID: PMC6896152 DOI: 10.3390/genes10110932] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022] Open
Abstract
Asthma is a complex trait, often associated with atopy. The genetic contribution has been evidenced by familial occurrence. Genome-wide association studies allowed for associating numerous genes with asthma, as well as identifying new loci that have a minor contribution to its phenotype. Considering the role of environmental exposure on asthma development, an increasing amount of literature has been published on epigenetic modifications associated with this pathology and especially on DNA methylation, in an attempt to better understand its missing heritability. These studies have been conducted in different tissues, but mainly in blood or its peripheral mononuclear cells. However, there is growing evidence that epigenetic changes that occur in one cell type cannot be directly translated into another one. In this review, we compare alterations in DNA methylation from different cells of the immune system and of the respiratory tract. The cell types in which data are obtained influences the global status of alteration of DNA methylation in asthmatic individuals compared to control (an increased or a decreased DNA methylation). Given that several genes were cell-type-specific, there is a great need for comparative studies on DNA methylation from different cells, but from the same individuals in order to better understand the role of epigenetics in asthma pathophysiology.
Collapse
Affiliation(s)
- Andrée-Anne Hudon Thibeault
- Département des sciences fondamentales, Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada;
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada
- Quebec Respiratory Health Network, Quebec, G1V 4G5 QC, Canada
| | - Catherine Laprise
- Département des sciences fondamentales, Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada;
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada
- Quebec Respiratory Health Network, Quebec, G1V 4G5 QC, Canada
| |
Collapse
|
38
|
Interleukin-13 Stimulation Reveals the Cellular and Functional Plasticity of the Airway Epithelium. Ann Am Thorac Soc 2019; 15:S98-S102. [PMID: 29676620 DOI: 10.1513/annalsats.201711-868mg] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
About 50% of patients with asthma exhibit chronic airway inflammation driven by the type 2 cytokines interleukin (IL)-4, IL-5, and IL-13. These patients with type 2-high asthma experience more allergic symptoms, greater airway hyperresponsiveness, and more severe mucus obstruction than patients with type 2-low asthma. Mouse models of asthma have shown that much of the airway dysfunction in these models can be generated by IL-13 stimulation of the airway epithelium alone. Both in vivo mouse model studies and in vitro studies of human mucociliary airway epithelial cultures have shown that IL-13 induces cellular remodeling of the airway epithelium through proliferation-independent transdifferentiation processes. In both humans and mice, IL-13 stimulation of the airway epithelium results in generation of hypersecretory mucin 5AC (MUC5AC)-expressing mucus cells. Whereas club cells have been shown to be the source of these mucin 5AC-positive mucus cells in mice, the origin of these mucus cells in humans is unclear. In humans, chronic IL-13 stimulation appears to result in loss of ciliated cells. Moreover, IL-13 stimulation can block ciliated cell differentiation from human basal airway epithelial cells. Coincident with IL-13 cellular remodeling are reported decreases in mucociliary transport and ciliary beat frequency. These IL-13-mediated changes in mucociliary function are accompanied by disorganization of cilia, a decrease in the ratio of mucin 5B (MUC5B) to mucin 5AC, and mucus gel tethering to the epithelial surface by mucin 5AC. These airway epithelial responses to IL-13 are mediated by multiple transcription factors, including signal transducer and activator of transcription-6 (STAT6), SAM pointed domain-containing Ets transcription factor (SPDEF), Forkhead box A2 (FOXA2), and Forkhead box J1 (FOXJ1). In addition, analysis of RNA-sequencing data derived from airway epithelial cells shows how IL-13 stimulation promotes broad changes in gene expression across the transcriptome. These results reveal the plastic nature of airway epithelial cells that enables the epithelium to undergo remodeling and functional shifts in response to IL-13 stimulation. With use of new technology, future studies should lead to greater understanding of how IL-13 and other stimuli of disease bring about airway epithelial remodeling, which may aid in the development of therapies that ameliorate airway dysfunction in asthma and other diseases.
Collapse
|
39
|
Qi C, Xu CJ, Koppelman GH. The role of epigenetics in the development of childhood asthma. Expert Rev Clin Immunol 2019; 15:1287-1302. [PMID: 31674254 DOI: 10.1080/1744666x.2020.1686977] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: The development of childhood asthma is caused by a combination of genetic factors and environmental exposures. Epigenetics describes mechanisms of (heritable) regulation of gene expression that occur without changes in DNA sequence. Epigenetics is strongly related to aging, is cell-type specific, and includes DNA methylation, noncoding RNAs, and histone modifications.Areas covered: This review summarizes recent epigenetic studies of childhood asthma in humans, which mostly involve studies of DNA methylation published in the recent five years. Environmental exposures, in particular cigarette smoking, have significant impact on epigenetic changes, but few of these epigenetic signals are also associated with asthma. Several asthma-associated genetic variants relate to DNA methylation. Epigenetic signals can be better understood by studying their correlation with gene expression, which revealed higher presence and activation of blood eosinophils in asthma. Strong associations of nasal methylation signatures and atopic asthma were identified, which were replicable across different populations.Expert commentary: Epigenetic markers have been strongly associated with asthma, and might serve as biomarker of asthma. The causal and longitudinal relationships between epigenetics and disease, and between environmental exposures and epigenetic changes need to be further investigated. Efforts should be made to understand cell-type-specific epigenetic mechanisms in asthma.
Collapse
Affiliation(s)
- Cancan Qi
- Dept. of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cheng-Jian Xu
- Dept. of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Gastroenterology, Hepatology and Endocrinology, CiiM, Centre for individualised infection medicine, A joint venture between Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Gerard H Koppelman
- Dept. of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
40
|
Corley J, Cox SR, Harris SE, Hernandez MV, Maniega SM, Bastin ME, Wardlaw JM, Starr JM, Marioni RE, Deary IJ. Epigenetic signatures of smoking associate with cognitive function, brain structure, and mental and physical health outcomes in the Lothian Birth Cohort 1936. Transl Psychiatry 2019; 9:248. [PMID: 31591380 PMCID: PMC6779733 DOI: 10.1038/s41398-019-0576-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/29/2019] [Indexed: 12/18/2022] Open
Abstract
Recent advances in genome-wide DNA methylation (DNAm) profiling for smoking behaviour have given rise to a new, molecular biomarker of smoking exposure. It is unclear whether a smoking-associated DNAm (epigenetic) score has predictive value for ageing-related health outcomes which is independent of contributions from self-reported (phenotypic) smoking measures. Blood DNA methylation levels were measured in 895 adults aged 70 years in the Lothian Birth Cohort 1936 (LBC1936) study using the Illumina 450K assay. A DNA methylation score based on 230 CpGs was used as a proxy for smoking exposure. Associations between smoking variables and health outcomes at age 70 were modelled using general linear modelling (ANCOVA) and logistic regression. Additional analyses of smoking with brain MRI measures at age 73 (n = 532) were performed. Smoking-DNAm scores were positively associated with self-reported smoking status (P < 0.001, eta-squared ɳ2 = 0.63) and smoking pack years (r = 0.69, P < 0.001). Higher smoking DNAm scores were associated with variables related to poorer cognitive function, structural brain integrity, physical health, and psychosocial health. Compared with phenotypic smoking, the methylation marker provided stronger associations with all of the cognitive function scores, especially visuospatial ability (P < 0.001, partial eta-squared ɳp2 = 0.022) and processing speed (P < 0.001, ɳp2 = 0.030); inflammatory markers (all P < 0.001, ranges from ɳp2 = 0.021 to 0.030); dietary patterns (healthy diet (P < 0.001, ɳp2 = 0.052) and traditional diet (P < 0.001, ɳp2 = 0.032); stroke (P = 0.006, OR 1.48, 95% CI 1.12, 1.96); mortality (P < 0.001, OR 1.59, 95% CI 1.42, 1.79), and at age 73; with MRI volumetric measures (all P < 0.001, ranges from ɳp2 = 0.030 to 0.052). Additionally, education was the most important life-course predictor of lifetime smoking tested. Our results suggest that a smoking-associated methylation biomarker typically explains a greater proportion of the variance in some smoking-related morbidities in older adults, than phenotypic measures of smoking exposure, with some of the accounted-for variance being independent of phenotypic smoking status.
Collapse
Affiliation(s)
- Janie Corley
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK.
| | - Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Maria Valdéz Hernandez
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Brain Research Imaging Centre, Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Susana Muñoz Maniega
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Brain Research Imaging Centre, Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Brain Research Imaging Centre, Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Joanna M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Brain Research Imaging Centre, Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Royal Victoria Building, Western General Hospital, Porterfield Road, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| |
Collapse
|
41
|
Singanayagam A, Loo SL, Calderazzo M, Finney LJ, Trujillo Torralbo MB, Bakhsoliani E, Girkin J, Veerati P, Pathinayake PS, Nichol KS, Reid A, Footitt J, Wark PAB, Grainge CL, Johnston SL, Bartlett NW, Mallia P. Antiviral immunity is impaired in COPD patients with frequent exacerbations. Am J Physiol Lung Cell Mol Physiol 2019; 317:L893-L903. [PMID: 31513433 PMCID: PMC6962603 DOI: 10.1152/ajplung.00253.2019] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Patients with frequent exacerbations represent a chronic obstructive pulmonary disease (COPD) subgroup requiring better treatment options. The aim of this study was to determine the innate immune mechanisms that underlie susceptibility to frequent exacerbations in COPD. We measured sputum expression of immune mediators and bacterial loads in samples from patients with COPD at stable state and during virus-associated exacerbations. In vitro immune responses to rhinovirus infection in differentiated primary bronchial epithelial cells (BECs) sampled from patients with COPD were additionally evaluated. Patients were stratified as frequent exacerbators (≥2 exacerbations in the preceding year) or infrequent exacerbators (<2 exacerbations in the preceding year) with comparisons made between these groups. Frequent exacerbators had reduced sputum cell mRNA expression of the antiviral immune mediators type I and III interferons and reduced interferon-stimulated gene (ISG) expression when clinically stable and during virus-associated exacerbation. A role for epithelial cell-intrinsic innate immune dysregulation was identified: induction of interferons and ISGs during in vitro rhinovirus (RV) infection was also impaired in differentiated BECs from frequent exacerbators. Frequent exacerbators additionally had increased sputum bacterial loads at 2 wk following virus-associated exacerbation onset. These data implicate deficient airway innate immunity involving epithelial cells in the increased propensity to exacerbations observed in some patients with COPD. Therapeutic approaches to boost innate antimicrobial immunity in the lung could be a viable strategy for prevention and treatment of frequent exacerbations.
Collapse
Affiliation(s)
- Aran Singanayagam
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Su-Ling Loo
- Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Maria Calderazzo
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Lydia J Finney
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Eteri Bakhsoliani
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jason Girkin
- Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Punnam Veerati
- Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Prabuddha S Pathinayake
- Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Kristy S Nichol
- Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Andrew Reid
- Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Joseph Footitt
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter A B Wark
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | | | - Sebastian L Johnston
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nathan W Bartlett
- Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Patrick Mallia
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
42
|
Shi K, Ge MN, Chen XQ. Coordinated DNA Methylation and Gene Expression Data for Identification of the Critical Genes Associated with Childhood Atopic Asthma. J Comput Biol 2019; 27:109-120. [PMID: 31460781 DOI: 10.1089/cmb.2019.0194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Asthma is a chronic inflammatory disorder of airways that involves in many cells and factors. This study aimed to screen critical genes and miRNAs involved in childhood atopic asthma. DNA methylation and gene expression data (access numbers GSE65163 and GSE65204) were downloaded from Gene Expression Omnibus (GEO) database, which included 72 atopic asthmatic subject samples and 69 healthy samples. The differentially expressed genes (DEGs) with DNA methylation changes were identified, followed by Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Gene coexpression network and miRNA-target gene regulatory networks were then constructed. Besides, we screened critical drug molecules that have high correlation with atopic asthma in children. A total of 146 critical DEGs with DNA methylation changes were screened from atopic asthmatic samples compared with healthy control samples. GO and KEGG pathway enrichment analysis showed that the critical genes were mainly related to 20 GO terms and 13 KEGG pathways. In the coexpression network, tumor necrosis factor (TNF) and major histocompatibility complex, class II, DP alpha 1 (HLA-DPA1) were identified that were significantly related to immune response process. Analysis of miRNA-target gene network showed that hsa-miR-148b had the highest number of target genes(degree = 21). Besides, we found that Alsterpaullone had a correlation value closest to -1 (correlation = -0.884, p = 0.0031), which indicated that the agent might be considered as a potential agent that antagonized to asthma. The dysregulation of TNF, HLA-DPA1, and miR-148b might be related to the immune response of childhood atopic asthma.
Collapse
Affiliation(s)
- Ke Shi
- Department of Pediatrics and No. 904th Hospital of the Joint Logistics Support Force of PLA, Wuxi, China
| | - Meng-Na Ge
- Department of Pharmacy, No. 904th Hospital of the Joint Logistics Support Force of PLA, Wuxi, China
| | - Xiao-Qiao Chen
- Department of Pediatrics and No. 904th Hospital of the Joint Logistics Support Force of PLA, Wuxi, China
| |
Collapse
|
43
|
Abstract
Current management of severe asthma relying either on guidelines (bulk approach) or on disease phenotypes (stratified approach) did not improve the burden of the disease. Several severe phenotypes are described: clinical, functional, morphological, inflammatory, molecular and microbiome-related. However, phenotypes do not necessarily relate to or give insights into the underlying pathogenetic mechanisms which are described by the disease endotypes. Based on the major immune-inflammatory pathway involved type-2 high, type-2 low and mixed endotypes are described for severe asthma, with several shared pathogenetic pathways such as genetic and epigenetic, metabolic, neurogenic and remodelling subtypes. The concept of multidimensional endotyping as un unbiased approach to severe asthma is discussed, together with new tools and targets facilitating the shift from the stratified to the precision medicine approach.
Collapse
|
44
|
Abstract
Asthma is a genetically and phenotypically complex disease that has a major impact on global health. Signs and symptoms of asthma are caused by the obstruction of airflow through the airways. The epithelium that lines the airways plays a major role in maintaining airway patency and in host defense. The epithelium initiates responses to inhaled or aspirated substances, including allergens, viruses, and bacteria, and epithelial-derived cytokines are important in the recruitment and activation of immune cells in the airway. Changes in the structure and function of the airway epithelium are a prominent feature of asthma. Approximately half of individuals with asthma have evidence of active type 2 immune responses in the airway. In these individuals, epithelial cytokines promote type 2 responses, and responses to type 2 cytokines result in increased epithelial mucus production and other effects that cause airway obstruction. Recent work also implicates other epithelial responses, including interleukin-17, interferon and ER stress responses, that may contribute to asthma pathogenesis and provide new targets for therapy.
Collapse
Affiliation(s)
- Luke R Bonser
- Lung Biology Center, University of California San Francisco, San Francisco, CA, United States
| | - David J Erle
- Lung Biology Center, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
45
|
Reese SE, Xu CJ, den Dekker HT, Lee MK, Sikdar S, Ruiz-Arenas C, Merid SK, Rezwan FI, Page CM, Ullemar V, Melton PE, Oh SS, Yang IV, Burrows K, Söderhäll C, Jima DD, Gao L, Arathimos R, Küpers LK, Wielscher M, Rzehak P, Lahti J, Laprise C, Madore AM, Ward J, Bennett BD, Wang T, Bell DA, Vonk JM, Håberg SE, Zhao S, Karlsson R, Hollams E, Hu D, Richards AJ, Bergström A, Sharp GC, Felix JF, Bustamante M, Gruzieva O, Maguire RL, Gilliland F, Baïz N, Nohr EA, Corpeleijn E, Sebert S, Karmaus W, Grote V, Kajantie E, Magnus MC, Örtqvist AK, Eng C, Liu AH, Kull I, Jaddoe VWV, Sunyer J, Kere J, Hoyo C, Annesi-Maesano I, Arshad SH, Koletzko B, Brunekreef B, Binder EB, Räikkönen K, Reischl E, Holloway JW, Jarvelin MR, Snieder H, Kazmi N, Breton CV, Murphy SK, Pershagen G, Anto JM, Relton CL, Schwartz DA, Burchard EG, Huang RC, Nystad W, Almqvist C, Henderson AJ, Melén E, Duijts L, Koppelman GH, London SJ. Epigenome-wide meta-analysis of DNA methylation and childhood asthma. J Allergy Clin Immunol 2019; 143:2062-2074. [PMID: 30579849 PMCID: PMC6556405 DOI: 10.1016/j.jaci.2018.11.043] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/01/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Epigenetic mechanisms, including methylation, can contribute to childhood asthma. Identifying DNA methylation profiles in asthmatic patients can inform disease pathogenesis. OBJECTIVE We sought to identify differential DNA methylation in newborns and children related to childhood asthma. METHODS Within the Pregnancy And Childhood Epigenetics consortium, we performed epigenome-wide meta-analyses of school-age asthma in relation to CpG methylation (Illumina450K) in blood measured either in newborns, in prospective analyses, or cross-sectionally in school-aged children. We also identified differentially methylated regions. RESULTS In newborns (8 cohorts, 668 cases), 9 CpGs (and 35 regions) were differentially methylated (epigenome-wide significance, false discovery rate < 0.05) in relation to asthma development. In a cross-sectional meta-analysis of asthma and methylation in children (9 cohorts, 631 cases), we identified 179 CpGs (false discovery rate < 0.05) and 36 differentially methylated regions. In replication studies of methylation in other tissues, most of the 179 CpGs discovered in blood replicated, despite smaller sample sizes, in studies of nasal respiratory epithelium or eosinophils. Pathway analyses highlighted enrichment for asthma-relevant immune processes and overlap in pathways enriched both in newborns and children. Gene expression correlated with methylation at most loci. Functional annotation supports a regulatory effect on gene expression at many asthma-associated CpGs. Several implicated genes are targets for approved or experimental drugs, including IL5RA and KCNH2. CONCLUSION Novel loci differentially methylated in newborns represent potential biomarkers of risk of asthma by school age. Cross-sectional associations in children can reflect both risk for and effects of disease. Asthma-related differential methylation in blood in children was substantially replicated in eosinophils and respiratory epithelium.
Collapse
Affiliation(s)
- Sarah E Reese
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Cheng-Jian Xu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Herman T den Dekker
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mi Kyeong Lee
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Sinjini Sikdar
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Carlos Ruiz-Arenas
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Simon K Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway; Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Phillip E Melton
- Curtin/UWA Centre for Genetic Origins of Health and Disease, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia; School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia
| | - Sam S Oh
- Department of Medicine, University of California San Francisco, San Francisco, Calif
| | - Ivana V Yang
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Kimberley Burrows
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Cilla Söderhäll
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Dereje D Jima
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
| | - Lu Gao
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Ryan Arathimos
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom; School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Leanne K Küpers
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom; Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Peter Rzehak
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland; Helsinki Collegium for Advanced Studies, University of Helsinki, Helsinki, Finland
| | - Catherine Laprise
- Centre intégré universitaire de santé et de services sociaux du Saguenay, Saguenay, Quebec, Canada; Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Quebec, Canada
| | - Anne-Marie Madore
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Quebec, Canada
| | - James Ward
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Brian D Bennett
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Tianyuan Wang
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Douglas A Bell
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Judith M Vonk
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Siri E Håberg
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Shanshan Zhao
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Elysia Hollams
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Donglei Hu
- Department of Medicine, University of California San Francisco, San Francisco, Calif
| | - Adam J Richards
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Gemma C Sharp
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom; Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Janine F Felix
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mariona Bustamante
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Rachel L Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC; Department of Community and Family Medicine, Duke University Medical Center, Durham, NC
| | - Frank Gilliland
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Nour Baïz
- Epidemiology of Allergic and Respiratory Diseases Department, IPLESP, INSERM and UPMC Sorbonne Université, Paris, France
| | - Ellen A Nohr
- Research Unit for Gynaecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Eva Corpeleijn
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sylvain Sebert
- Biocenter Oulu, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Genomics of Complex Diseases, School of Public Health, Imperial College London, London, United Kingdom
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, Tenn
| | - Veit Grote
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Eero Kajantie
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland; Department of Obstetrics and Gynaecology, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Maria C Magnus
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom; Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Anne K Örtqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Celeste Eng
- Department of Medicine, University of California San Francisco, San Francisco, Calif
| | | | - Inger Kull
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children's Hospital, Södersjukhuset, Stockholm, Sweden
| | - Vincent W V Jaddoe
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jordi Sunyer
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden; Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC; Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Isabella Annesi-Maesano
- Epidemiology of Allergic and Respiratory Diseases Department, IPLESP, INSERM and UPMC Sorbonne Université, Paris, France
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; David Hide Asthma and Allergy Research Centre, Isle of Wight, United Kingdom
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elisabeth B Binder
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Ga; Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Eva Reischl
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum Muenchen, Munich, Germany
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, United Kingdom; Biocenter Oulu, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nabila Kazmi
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom; School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC; Nicholas School of the Environment, Duke University, Durham, NC
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Josep Maria Anto
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Caroline L Relton
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - David A Schwartz
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, Calif; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, Calif
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Wenche Nystad
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - A John Henderson
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Sachs' Children's Hospital, Södersjukhuset, Stockholm, Sweden
| | - Liesbeth Duijts
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stephanie J London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC.
| |
Collapse
|
46
|
Blocking histone deacetylase activity as a novel target for epithelial barrier defects in patients with allergic rhinitis. J Allergy Clin Immunol 2019; 144:1242-1253.e7. [PMID: 31082457 DOI: 10.1016/j.jaci.2019.04.027] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND A defective epithelial barrier is found in patients with allergic rhinitis (AR) and asthma; however, the underlying mechanisms remain poorly understood. Histone deacetylase (HDAC) activity has been identified as a crucial driver of allergic inflammation and tight junction dysfunction. OBJECTIVE We investigated whether HDAC activity has been altered in patients with AR and in a mouse model of house dust mite (HDM)-induced allergic asthma and whether it contributed to epithelial barrier dysfunction. METHODS Primary nasal epithelial cells of control subjects and patients with AR were cultured at the air-liquid interface to study transepithelial electrical resistance and paracellular flux of fluorescein isothiocyanate-dextran (4 kDa) together with mRNA expression and immunofluorescence staining of tight junctions. Air-liquid interface cultures were stimulated with different concentrations of JNJ-26481585, a broad-spectrum HDAC inhibitor. In vivo the effect of JNJ-26481585 on mucosal permeability and tight junction function was evaluated in a mouse model of HDM-induced allergic airway inflammation. RESULTS General HDAC activity was greater in nasal epithelial cells of patients with AR and correlated inversely with epithelial integrity. Treatment of nasal epithelial cells with JNJ-26481585 restored epithelial integrity by promoting tight junction expression and protein reorganization. HDM-sensitized mice were treated with JNJ-26481585 to demonstrate the in vivo role of HDACs. Treated mice did not have allergic airway inflammation and had no bronchial hyperreactivity. Moreover, JNJ-26481585 treatment restored nasal mucosal function by promoting tight junction expression. CONCLUSION Our findings identify increased HDAC activity as a potential tissue-injury mechanism responsible for dysregulated epithelial cell repair, leading to defective epithelial barriers in AR. Blocking HDAC activity is a promising novel target for therapeutic intervention in patients with airway diseases.
Collapse
|
47
|
Epigenetic Modifications in Placenta are Associated with the Child's Sensitization to Allergens. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1315257. [PMID: 31111043 PMCID: PMC6500694 DOI: 10.1155/2019/1315257] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 12/28/2022]
Abstract
Prenatal environmental exposures are considered to contribute to the development of allergic sensitization by epigenetic mechanisms. The role of histone acetylation in the placenta has not been examined yet. We hypothesized that placental histone acetylation at the promoter regions of allergy-related immune regulatory genes is associated with the development of sensitization to allergens in the child. Histones H3 and H4 acetylation at the promoter regions of 6 selected allergy-related immune regulatory genes was assessed by a chromatin immunoprecipitation assay in 173 term placentas collected in the prospective birth-cohort ALADDIN. The development of IgE sensitization to allergens in the children was followed from 6 months up to 5 years of age. We discovered significant associations of histone acetylation levels with decreased risk of allergic sensitization in 3 genes. Decreased risk of sensitization to food allergens was associated with higher H3 acetylation levels in placentas at the IFNG and SH2B3 genes, and for H4 acetylation in HDAC4. Higher HDAC4 H4 acetylation levels were also associated with a decreased risk of sensitization to aeroallergens. In conclusion, our results suggest that acetylation of histones in placenta has a potential to predict the development of sensitization to allergens in children.
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Epigenetic marks are emerging as mediators of genetics and the environment on complex disease phenotypes, including childhood asthma and allergy. RECENT FINDINGS Epigenome-wide association studies over the past year have added to the growing body of evidence supporting significant associations of epigenetic regulation of gene expression and asthma and allergy. Studies in children have identified signatures of eosinophils in peripheral blood, Th2 cell transcription factors and cytokines in peripheral blood mononuclear cells, and epithelial dysfunction in the respiratory epithelium. Importantly, studies at birth have begun to decipher the contribution of epigenetic marks to asthma inception. Few studies have also begun to address the contribution of genetics and the environment to these associations. SUMMARY Next generation of epigenome-wide association studies that will deal with confounders, study the influence of the genetics and environment, and incorporate multiple datasets to provide better interpretation of the findings are on the horizon. Identification of key epigenetic marks that are shaped by genetics and the environment, and impact transcription of specific genes will help us have a better understanding of etiology, heterogeneity and severity of asthma, and will also empower us to develop biologically driven therapeutics and biomarkers for secondary prevention of this disease.
Collapse
|
49
|
Agache I, Akdis CA. Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic diseases. J Clin Invest 2019; 129:1493-1503. [PMID: 30855278 PMCID: PMC6436902 DOI: 10.1172/jci124611] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A rapidly developing paradigm for modern health care is a proactive and individualized response to patients' symptoms, combining precision diagnosis and personalized treatment. Precision medicine is becoming an overarching medical discipline that will require a better understanding of biomarkers, phenotypes, endotypes, genotypes, regiotypes, and theratypes of diseases. The 100-year-old personalized allergen-specific management of allergic diseases has particularly contributed to early awareness in precision medicine. Polyomics, big data, and systems biology have demonstrated a profound complexity and dynamic variability in allergic disease between individuals, as well as between regions. Escalating health care costs together with questionable efficacy of the current management of allergic diseases facilitated the emergence of the endotype-driven approach. We describe here a precision medicine approach that stratifies patients based on disease mechanisms to optimize management of allergic diseases.
Collapse
Affiliation(s)
- Ioana Agache
- Transylvania University, Faculty of Medicine, Brasov, Romania
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne – Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
50
|
Pecak M, Korošec P, Kunej T. Multiomics Data Triangulation for Asthma Candidate Biomarkers and Precision Medicine. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:392-409. [PMID: 29927718 DOI: 10.1089/omi.2018.0036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Asthma is a common complex disorder and has been subject to intensive omics research for disease susceptibility and therapeutic innovation. Candidate biomarkers of asthma and its precision treatment demand that they stand the test of multiomics data triangulation before they can be prioritized for clinical applications. We classified the biomarkers of asthma after a search of the literature and based on whether or not a given biomarker candidate is reported in multiple omics platforms and methodologies, using PubMed and Web of Science, we identified omics studies of asthma conducted on diverse platforms using keywords, such as asthma, genomics, metabolomics, and epigenomics. We extracted data about asthma candidate biomarkers from 73 articles and developed a catalog of 190 potential asthma biomarkers (167 human, 23 animal data), comprising DNA loci, transcripts, proteins, metabolites, epimutations, and noncoding RNAs. The data were sorted according to 13 omics types: genomics, epigenomics, transcriptomics, proteomics, interactomics, metabolomics, ncRNAomics, glycomics, lipidomics, environmental omics, pharmacogenomics, phenomics, and integrative omics. Importantly, we found that 10 candidate biomarkers were apparent in at least two or more omics levels, thus promising potential for further biomarker research and development and precision medicine applications. This multiomics catalog reported herein for the first time contributes to future decision-making on prioritization of biomarkers and validation efforts for precision medicine in asthma. The findings may also facilitate meta-analyses and integrative omics studies in the future.
Collapse
Affiliation(s)
- Matija Pecak
- 1 Department of Animal Science, Biotechnical Faculty, University of Ljubljana , Domzale, Slovenia
| | - Peter Korošec
- 2 Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases , Golnik, Slovenia
| | - Tanja Kunej
- 1 Department of Animal Science, Biotechnical Faculty, University of Ljubljana , Domzale, Slovenia
| |
Collapse
|