1
|
Ali U, Chopra M, Knight G. Trajectories of platelet indices and their association with mortality in the ICU-a longitudinal cohort study. Scand J Clin Lab Invest 2025; 85:1-10. [PMID: 39831566 DOI: 10.1080/00365513.2025.2453903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/04/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
While thrombocytopenia's link to mortality is known, the prognostic impact of longitudinal trajectories of platelet indices in combination with analysis of thrombocytopenia's mediating role remains unexplored. This is the first study that addresses this significant gap by investigating the association between seven platelet indices trajectory subphenotypes and ICU mortality, considering thrombocytopenia's mediating influence. Four hundred and twenty-one adult ICU patients were enrolled in this longitudinal cohort study. Three trajectories were identified for each platelet index, namely: descending, stable, and ascending, and using a regression, receiver-operating characteristic curve, and mediation analysis, their associations with 90-day mortality were evaluated with the mediating effect of thrombocytopenia. The findings were adjusted (prefixed 'a') for covariates. The heterogeneous trajectories significantly associated with 90-day mortality included: descending platelet count (PC) [aOR, 2.75 (CI, 1.56-4.85), p = 0.0005, aAUC, 0.783], descending plateletcrit (PCT) [aOR, 3.49 (CI, 1.88-6.46), p = 0.0001, aAUC, 0.802], ascending platelet distribution width (PDW) [aOR, 2.04 (CI, 1.13-3.71), p = 0.0188, aAUC, 0.776], and ascending percent-immature platelet fraction (%-IPF) [aOR, 2.25 (CI, 1.29-3.94), p = 0.0045, aAUC, 0.778], with 11.6% (p = 0.027), 12.0% (p = 0.019), 22.1% (p = 0.011), and 15.9% (p = 0.024) effects mediated by thrombocytopenia, respectively. In contrast, ascending mean platelet volume (MPV) was significantly and independently associated with mortality [aOR, 3.04 (CI, 1.45-6.39), p = 0.0033, aAUC, 0.781], without the effect mediated by thrombocytopenia (p = 0.056). The trajectories of platelet-large cell ratio (P-LCR) and absolute-immature platelet count (A-IPF) were not significantly associated with the risk of mortality (p > 0.05). This study demonstrated that descending PC and PCT and ascending PDW and %-IPF, mediated by thrombocytopenia, and ascending MPV, without mediation by thrombocytopenia, are useful longitudinal trajectories for predicting 90-day mortality in the ICU.
Collapse
Affiliation(s)
- Usman Ali
- Department of Haematology, The Royal London Hospital, London, UK
| | - Mridula Chopra
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Gavin Knight
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
2
|
Jacob S, Kosaka Y, Bhatlekar S, Denorme F, Benzon H, Moody A, Moody V, Tugolukova E, Hull G, Kishimoto N, Manne BK, Guo L, Souvenir R, Seliger BJ, Eustes AS, Hoerger K, Tolley ND, Fatahian AN, Boudina S, Christiani DC, Wei Y, Ju C, Campbell RA, Rondina MT, Abel ED, Bray PF, Weyrich AS, Rowley JW. Mitofusin-2 Regulates Platelet Mitochondria and Function. Circ Res 2024; 134:143-161. [PMID: 38156445 PMCID: PMC10872864 DOI: 10.1161/circresaha.123.322914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Single-nucleotide polymorphisms linked with the rs1474868 T allele (MFN2 [mitofusin-2] T/T) in the human mitochondrial fusion protein MFN2 gene are associated with reduced platelet MFN2 RNA expression and platelet counts. This study investigates the impact of MFN2 on megakaryocyte and platelet biology. METHODS Mice with megakaryocyte/platelet deletion of Mfn2 (Mfn2-/- [Mfn2 conditional knockout]) were generated using Pf4-Cre crossed with floxed Mfn2 mice. Human megakaryocytes were generated from cord blood and platelets isolated from healthy subjects genotyped for rs1474868. Ex vivo approaches assessed mitochondrial morphology, function, and platelet activation responses. In vivo measurements included endogenous/transfused platelet life span, tail bleed time, transient middle cerebral artery occlusion, and pulmonary vascular permeability/hemorrhage following lipopolysaccharide-induced acute lung injury. RESULTS Mitochondria was more fragmented in megakaryocytes derived from Mfn2-/- mice and from human cord blood with MFN2 T/T genotype compared with control megakaryocytes. Human resting platelets of MFN2 T/T genotype had reduced MFN2 protein, diminished mitochondrial membrane potential, and an increased rate of phosphatidylserine exposure during ex vivo culture. Platelet counts and platelet life span were reduced in Mfn2-/- mice accompanied by an increased rate of phosphatidylserine exposure in resting platelets, especially aged platelets, during ex vivo culture. Mfn2-/- also decreased platelet mitochondrial membrane potential (basal) and activated mitochondrial oxygen consumption rate, reactive oxygen species generation, calcium flux, platelet-neutrophil aggregate formation, and phosphatidylserine exposure following dual agonist activation. Ultimately, Mfn2-/- mice showed prolonged tail bleed times, decreased ischemic stroke infarct size after cerebral ischemia-reperfusion, and exacerbated pulmonary inflammatory hemorrhage following lipopolysaccharide-induced acute lung injury. Analysis of MFN2 SNPs in the iSPAAR study (Identification of SNPs Predisposing to Altered ALI Risk) identified a significant association between MFN2 and 28-day mortality in patients with acute respiratory distress syndrome. CONCLUSIONS Mfn2 preserves mitochondrial phenotypes in megakaryocytes and platelets and influences platelet life span, function, and outcomes of stroke and lung injury.
Collapse
Affiliation(s)
- Shancy Jacob
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Yasuhiro Kosaka
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Seema Bhatlekar
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Frederik Denorme
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Haley Benzon
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Alexandra Moody
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Victoria Moody
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | | | - Grayson Hull
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Nina Kishimoto
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Bhanu K. Manne
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Li Guo
- Bloodworks Northwest Research Institute, Seattle, WA
- Division of Hematology and Oncology, University of Utah, Seattle, WA
| | - Rhonda Souvenir
- David Geffen School of Medicine and University of California, Los Angeles (UCLA), Health, Los Angeles, CA
| | | | | | - Kelly Hoerger
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Neal D. Tolley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Amir N. Fatahian
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Sihem Boudina
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Yongyue Wei
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, 100191, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Can Ju
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Robert A. Campbell
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT
- Department of Pathology, University of Utah Heath, Salt Lake City, UT
| | - Matthew T. Rondina
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT
- Department of Pathology, University of Utah Heath, Salt Lake City, UT
- Department of Internal Medicine and the GRECC, George E. Wahlen VAMC, Salt Lake City, UT
| | - E. Dale Abel
- David Geffen School of Medicine and University of California, Los Angeles (UCLA), Health, Los Angeles, CA
| | - Paul F. Bray
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Andrew S. Weyrich
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK
| | - Jesse W. Rowley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
3
|
Chen J, Tang J, Nie M, Li Y, Wurfel MM, Meyer NJ, Wei Y, Zhao Y, Frank AJ, Thompson BT, Christiani DC, Chen F, Zhang R. WNT9A Affects Late-Onset Acute Respiratory Distress Syndrome and 28-Day Survival: Evidence from a Three-Step Multiomics Study. Am J Respir Cell Mol Biol 2023; 69:220-229. [PMID: 37094100 PMCID: PMC10399141 DOI: 10.1165/rcmb.2022-0416oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/24/2023] [Indexed: 04/26/2023] Open
Abstract
Late-onset (more than 48 h after ICU admission) acute respiratory distress syndrome (ARDS) is associated with shorter survival time and higher mortality; however, the underlying molecular targets remain unclear. As the WNT gene family is known to drive inflammation, immunity, and tissue fibrosis, all of which are closely related to the pathogenesis and prognosis of ARDS, we aim to investigate the associations of the WNT family with late-onset ARDS and 28-day survival. Genetic (n = 380), epigenetic (n = 185), transcriptional (n = 160), and protein (n = 300) data of patients with ARDS were extracted from the MEARDS (Molecular Epidemiology of ARDS) cohort. We used sure independence screening to identify late onset-related genetic biomarkers and constructed a genetic score on the basis of eight SNPs, which was associated with risk for late-onset ARDS (odds ratio [OR], 2.72; P = 3.81 × 10-14) and survival (hazard ratio [HR], 1.28; P = 0.008). The associations were further externally validated in the iSPAAR (Identification of SNPs Predisposing to Altered Acute Lung Injury Risk) (ORlate onset, 2.49 [P = 0.006]; HRsurvival, 1.87 [P = 0.045]) and MESSI (Molecular Epidemiology of Severe Sepsis in the ICU) (ORlate onset, 4.12 [P = 0.026]; HRsurvival, 1.45 [P = 0.036]) cohorts. Furthermore, we functionally interrogated the six mapped genes of eight SNPs in the multiomics data and noted associations of WNT9A (WNT family member 9A) in epigenetic (ORlate onset, 2.95 [P = 9.91 × 10-4]; HRsurvival, 1.53 [P = 0.011]) and protein (ORlate onset, 1.42 [P = 0.035]; HRsurvival, 1.38 [P = 0.011]) data. The mediation analysis indicated that the effects of WNT9A on ARDS survival were mediated by late onset (HRindirect, 1.12 [P = 0.014] for genetic data; HRindirect, 1.05 [P = 0.030] for protein data). The essential roles of WNT9A in immunity and fibrosis may explain the different trajectories of recovery and dysfunction between early- and late-onset ARDS, providing clues for ARDS treatment.
Collapse
Affiliation(s)
- Jiajin Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, and
| | - Jiaqi Tang
- Department of Biostatistics, Center for Global Health, School of Public Health, and
| | - Mengli Nie
- Department of Biostatistics, Center for Global Health, School of Public Health, and
| | - Yi Li
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Mark M. Wurfel
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yongyue Wei
- Department of Biostatistics, Center for Global Health, School of Public Health, and
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Yang Zhao
- Department of Biostatistics, Center for Global Health, School of Public Health, and
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Angela J. Frank
- Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - B. Taylor Thompson
- Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - David C. Christiani
- Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts; and
| | - Feng Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, and
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Ruyang Zhang
- Department of Biostatistics, Center for Global Health, School of Public Health, and
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts; and
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
4
|
Bai Y, Li M, Chen S, Zhang Z, Huang X, Xia J, Zhan Q. Incidence, outcomes and risk factors of barotrauma in veno-venous extracorporeal membrane oxygenation for acute respiratory distress syndrome. Respir Med 2023; 213:107248. [PMID: 37080477 DOI: 10.1016/j.rmed.2023.107248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Although acute respiratory distress syndrome (ARDS) patients are provided a lung rest strategy during extracorporeal membrane oxygenation (ECMO) treatment, the exact conditions of barotrauma is unclear. Therefore, we analyzed the epidemiology and risk factors for barotrauma in ARDS patients using ECMO in a single, large ECMO center in China. METHODS A retrospective analysis was performed on 127 patients with ARDS received veno-venous (VV) ECMO who met the Berlin definition. The epidemiology and risk factors for barotrauma during ECMO were analyzed. RESULTS Among 127 patients with ARDS treated with ECMO, barotrauma occurred in 24 (18.9%) during ECMO and 9 (7.1%) after ECMO decannulation, mainly in the late stage of ARDS (75%) and ≥8 days during ECMO (54.2%). Univariate and multivariate analyses showed that younger ARDS patients (OR = 0.953, 95%CI 0.923-0.983, p = 0.003) and those with pneumocystis jirovecii pneumonia (PJP) (OR = 3.15, 95%CI 1.070-9.271, p = 0.037), elevated body temperature after establishing ECMO (OR = 2.997, 95%CI 1.325-6.779, p = 0.008) and low platelet count after establishing ECMO (OR = 0.985, 95%CI 0.972-0.998, p = 0.02) had an increased risk of barotrauma during ECMO. There was no difference in ventilator parameters between patients with and without barotrauma. Barotrauma during ECMO was mainly related to the etiology of the disease and disease state. CONCLUSION There is a high incidence of barotrauma in ARDS patients during ECMO, even after ECMO decannulation. Young age, PJP, elevated body temperature and low platelet count after establishing ECMO are risk factors of barotrauma, and those patients should be closely monitored by imaging, especially in the late stage of ARDS.
Collapse
Affiliation(s)
- Yu Bai
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Min Li
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Shengsong Chen
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Zeyu Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xu Huang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jingen Xia
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Qingyuan Zhan
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
5
|
Battaglini D, Al-Husinat L, Normando AG, Leme AP, Franchini K, Morales M, Pelosi P, Rocco PR. Personalized medicine using omics approaches in acute respiratory distress syndrome to identify biological phenotypes. Respir Res 2022; 23:318. [PMID: 36403043 PMCID: PMC9675217 DOI: 10.1186/s12931-022-02233-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022] Open
Abstract
In the last decade, research on acute respiratory distress syndrome (ARDS) has made considerable progress. However, ARDS remains a leading cause of mortality in the intensive care unit. ARDS presents distinct subphenotypes with different clinical and biological features. The pathophysiologic mechanisms of ARDS may contribute to the biological variability and partially explain why some pharmacologic therapies for ARDS have failed to improve patient outcomes. Therefore, identifying ARDS variability and heterogeneity might be a key strategy for finding effective treatments. Research involving studies on biomarkers and genomic, metabolomic, and proteomic technologies is increasing. These new approaches, which are dedicated to the identification and quantitative analysis of components from biological matrixes, may help differentiate between different types of damage and predict clinical outcome and risk. Omics technologies offer a new opportunity for the development of diagnostic tools and personalized therapy in ARDS. This narrative review assesses recent evidence regarding genomics, proteomics, and metabolomics in ARDS research.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Lou'i Al-Husinat
- Department of Clinical Medical Sciences, Faculty of Medicine, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Ana Gabriela Normando
- Brazilian Biosciences National Laboratory, LNBio, Brazilian Center for Research in Energy and Materials, CNPEM, Campinas, Brazil
| | - Adriana Paes Leme
- Brazilian Biosciences National Laboratory, LNBio, Brazilian Center for Research in Energy and Materials, CNPEM, Campinas, Brazil
| | - Kleber Franchini
- Brazilian Biosciences National Laboratory, LNBio, Brazilian Center for Research in Energy and Materials, CNPEM, Campinas, Brazil
| | - Marcelo Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia Rm Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Chen J, Gao X, Shen S, Xu J, Sun Z, Lin R, Dai Z, Su L, Christiani DC, Chen F, Zhang R, Wei Y. Association of longitudinal platelet count trajectory with ICU mortality: A multi-cohort study. Front Immunol 2022; 13:936662. [PMID: 36059447 PMCID: PMC9437551 DOI: 10.3389/fimmu.2022.936662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivePlatelet (PLT) engages in immune and inflammatory responses, all of which are related to the prognosis of critically ill patients. Although thrombocytopenia at ICU admission contributes to in-hospital mortality, PLT is repeatedly measured during ICU hospitalization and the role of longitudinal PLT trajectory remains unclear. We aimed to identify dynamic PLT trajectory patterns and evaluate their relationships with mortality risk and thrombocytopenia.MethodsWe adopted a three-phase, multi-cohort study strategy. Firstly, longitudinal PLT trajectory patterns within the first four ICU days and their associations with 28-day survival were tested in the eICU Collaborative Research Database (eICU-CRD) and independently validated in the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Secondly, the relationships among PLT trajectory patterns, thrombocytopenia, and 28-day mortality were explored and validated. Finally, a Mortality GRade system for ICU dynamically monitoring patients (Mortality-GRID) was developed to quantify the mortality risk based on longitudinal PLT, which was further validated in the Molecular Epidemiology of Acute Respiratory Distress Syndrome (MEARDS) cohort.ResultsA total of 35,332 ICU patients were included from three cohorts. Trajectory analysis clustered patients into ascending (AS), stable (ST), or descending (DS) PLT patterns. DS patients with high baseline PLT decline quickly, resulting in poor prognosis. AS patients have low baseline PLT but recover quickly, favoring a better prognosis. ST patients maintain low PLT, having a moderate prognosis in between (HRSTvsAS = 1.26, 95% CI: 1.14–1.38, P = 6.15 × 10−6; HRDSvsAS = 1.58, 95% CI: 1.40–1.79, P = 1.41 × 10−13). The associations remained significant in patients without thrombocytopenia during the entire ICU hospitalization and were robust in sensitivity analyses and stratification analyses. Further, the trajectory pattern was a warning sign of thrombocytopenia, which mediated 27.2% of the effects of the PLT trajectory on 28-day mortality (HRindirect = 1.11, 95% CI: 1.06–1.17, P = 9.80 × 10−6). Mortality-GRID well predicts mortality risk, which is in high consistency with that directly estimated in MEARDS (r = 0.98, P = 1.30 × 10−23).ConclusionLongitudinal PLT trajectory is a complementary predictor to baseline PLT for patient survival, even in patients without risk of thrombocytopenia. Mortality-GRID could identify patients at high mortality risk.
Collapse
Affiliation(s)
- Jiajin Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xi Gao
- Department of Immunology, School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Sipeng Shen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jingyuan Xu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhe Sun
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruilang Lin
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhixiang Dai
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Feng Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruyang Zhang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- *Correspondence: Ruyang Zhang, ; Yongyue Wei,
| | - Yongyue Wei
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- *Correspondence: Ruyang Zhang, ; Yongyue Wei,
| |
Collapse
|
7
|
Huang DY, Wang GM, Ke ZR, Zhou Y, Yang HH, Ma TL, Guan CX. Megakaryocytes in pulmonary diseases. Life Sci 2022; 301:120602. [DOI: 10.1016/j.lfs.2022.120602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023]
|
8
|
Xiao C, Qin Z, Xiao J, Li Q, He T, Li S, Shen F. Association between basal platelet count and all-cause mortality in critically ill patients with acute respiratory failure: a secondary analysis from the eICU collaborative research database. Am J Transl Res 2022; 14:1685-1694. [PMID: 35422956 PMCID: PMC8991150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Evidence regarding the correlation between platelet count and all-cause mortality in critically ill patients with acute respiratory failure (ARF) is limited. Therefore, the aim of the study was to evaluate whether platelet count was associated with all-cause mortality in critical patients with ARF by using the electronic intensive care unit (eICU) Collaborative Research Database (eICU-CRD). METHODS In this retrospective multicenter cohort study, the data of 26961 patients with ARF hospitalized in ICUs between 2014 and 2015 were collected. The independent variable was log2 basal platelet count, and the dependent variables were all-cause in-hospital and ICU mortality. Covariates including demographic data, Acute Physiology and Chronic Health Evaluation (APACHE) IV score, supportive treatment, and comorbidities were collected. RESULTS In the fully adjusted model, log2 basal platelet count was negatively associated with all-cause mortality both in hospital [RR: 0.87, 95% CI: 0.84-0.91] and in ICU [RR: 0.87, 95% CI: 0.83-0.92]. A non-linear relationship between log2 basal platelet count and all-cause in-hospital and ICU mortality was identified by the nonlinearity test. The inflection points we got were 6.83 and 6.86 respectively (after inverse log2 logarithmic conversion, the platelet counts were 114×109/L and 116×109/L, respectively). On the right side of the inflection point, however, no association was observed between blood platelets and all-cause in-hospital (RR: 0.96, 95% CI: 0.88-1.03) and ICU mortality (RR: 0.97, 95% CI: 0.91-1.04). CONCLUSIONS For patients with ARF in ICU, platelet count was negatively associated with all-cause in-hospital and ICU mortality when the platelet count was less than 114×109/L and 116×109/L respectively, but when the platelet count was higher, we failed to observe a correlation between them. The safe ranges of platelet count for hospital stay and ICU stay were 78×109/L-145×109/L and 89×109/L-147×109/L respectively.
Collapse
Affiliation(s)
- Chuan Xiao
- Department of Intensive Care Unit, The Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
| | - Zuoan Qin
- Department of Cardiology, The First People’s Hospital of Changde CityChangde 415003, Hunan, China
| | - Jingjing Xiao
- Department of Intensive Care Unit, The Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
| | - Qing Li
- Department of Intensive Care Unit, The Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
| | - Tianhui He
- Department of Intensive Care Unit, The Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
| | - Shuwen Li
- Department of Intensive Care Unit, The Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
| | - Feng Shen
- Department of Intensive Care Unit, The Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
| |
Collapse
|
9
|
Shah FA, Meyer NJ, Angus DC, Awdish R, Azoulay É, Calfee CS, Clermont G, Gordon AC, Kwizera A, Leligdowicz A, Marshall JC, Mikacenic C, Sinha P, Venkatesh B, Wong HR, Zampieri FG, Yende S. A Research Agenda for Precision Medicine in Sepsis and Acute Respiratory Distress Syndrome: An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2021; 204:891-901. [PMID: 34652268 PMCID: PMC8534611 DOI: 10.1164/rccm.202108-1908st] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Precision medicine focuses on the identification of therapeutic strategies that are effective for a group of patients based on similar unifying characteristics. The recent success of precision medicine in non-critical care settings has resulted from the confluence of large clinical and biospecimen repositories, innovative bioinformatics, and novel trial designs. Similar advances for precision medicine in sepsis and in the acute respiratory distress syndrome (ARDS) are possible but will require further investigation and significant investment in infrastructure. Methods: This project was funded by the American Thoracic Society Board of Directors. A multidisciplinary and diverse working group reviewed the available literature, established a conceptual framework, and iteratively developed recommendations for the Precision Medicine Research Agenda for Sepsis and ARDS. Results: The following six priority recommendations were developed by the working group: 1) the creation of large richly phenotyped and harmonized knowledge networks of clinical, imaging, and multianalyte molecular data for sepsis and ARDS; 2) the implementation of novel trial designs, including adaptive designs, and embedding trial procedures in the electronic health record; 3) continued innovation in the data science and engineering methods required to identify heterogeneity of treatment effect; 4) further development of the tools necessary for the real-time application of precision medicine approaches; 5) work to ensure that precision medicine strategies are applicable and available to a broad range of patients varying across differing racial, ethnic, socioeconomic, and demographic groups; and 6) the securement and maintenance of adequate and sustainable funding for precision medicine efforts. Conclusions: Precision medicine approaches that incorporate variability in genomic, biologic, and environmental factors may provide a path forward for better individualizing the delivery of therapies and improving care for patients with sepsis and ARDS.
Collapse
|
10
|
Giannini HM, Meyer NJ. Genetics of Acute Respiratory Distress Syndrome: Pathways to Precision. Crit Care Clin 2021; 37:817-834. [PMID: 34548135 DOI: 10.1016/j.ccc.2021.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Clinical risk factors alone fail to fully explain acute respiratory distress syndrome (ARDS) risk or ARDS death, suggesting that individual risk factors contribute. The goals of genomic ARDS studies include better mechanistic understanding, identifying dysregulated pathways that may be amenable to pharmacologic targeting, using genomic causal inference techniques to find measurable traits with meaning, and deconvoluting ARDS heterogeneity by proving reproducible subpopulations that may share a unique biology. This article discusses the latest advances in ARDS genomics, provides historical perspective, and highlights some of the ways that the coronavirus disease 2019 (COVID-19) pandemic is accelerating genomic ARDS research.
Collapse
Affiliation(s)
- Heather M Giannini
- University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5038 Gates Building, Philadelphia, PA 19104, USA
| | - Nuala J Meyer
- University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5038 Gates Building, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Yu Y, Jiang P, Sun P, Su N, Lin F. Pulmonary coagulation and fibrinolysis abnormalities that favor fibrin deposition in the lungs of mouse antibody-mediated transfusion-related acute lung injury. Mol Med Rep 2021; 24:601. [PMID: 34165170 PMCID: PMC8240174 DOI: 10.3892/mmr.2021.12239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Transfusion-related acute lung injury (TRALI) is a life-threatening disease caused by blood transfusion. However, its pathogenesis is poorly understood and specific therapies are not available. Experimental and clinical studies have indicated that alveolar fibrin deposition serves a pathological role in acute lung injuries. The present study investigated whether pulmonary fibrin deposition occurs in a TRALI mouse model and the possible mechanisms underlying this deposition. The TRALI model was established by priming male Balb/c mice with lipopolysaccharide (LPS) 18 h prior to injection of an anti-major histocompatibility complex class I (MHC-I) antibody. Untreated mice and mice administered LPS plus isotype antibody served as controls. At 2 h after TRALI induction, blood and lung tissue were collected. Disease characteristics were assessed based on lung tissue histology, inflammatory responses and alterations in the alveolar-capillary barrier. Immunofluorescence staining was used to detect pulmonary fibrin deposition, platelets and fibrin-platelet interactions. Levels of plasminogen activator inhibitor-1 (PAI-1), thrombin-antithrombin complex (TATc), tissue factor pathway inhibitor (TFPI), coagulation factor activity and fibrin degradation product (FDP) in lung tissue homogenates were measured. Severe lung injury, increased inflammatory responses and a damaged alveolar-capillary barrier in the LPS-primed, anti-MHC-I antibody-administered mice indicated that the TRALI model was successfully established. Fibrin deposition, fibrin-platelet interactions and platelets accumulation in the lungs of mouse models were clearly promoted. Additionally, levels of TATc, coagulation factor V (FV), TFPI and PAI-1 were elevated, whereas FDP level was decreased in TRALI mice. In conclusion, both impaired fibrinolysis and enhanced coagulation, which might be induced by boosted FV activity, increased pulmonary platelets accumulation and enhanced fibrin-platelet interactions and contributed to pulmonary fibrin deposition in TRALI mice. The results provided a therapeutic rationale to target abnormalities in either coagulation or fibrinolysis pathways for antibody-mediated TRALI.
Collapse
Affiliation(s)
- Yunhong Yu
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Pan Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Na Su
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Fangzhao Lin
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| |
Collapse
|
12
|
Xu JY, Liu AR, Wu ZS, Xie JF, Qu XX, Li CH, Meng SS, Liu SQ, Yang CS, Liu L, Huang YZ, Guo FM, Yang Y, Qiu HB. Nucleotide polymorphism in ARDS outcome: a whole exome sequencing association study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:780. [PMID: 34268393 PMCID: PMC8246154 DOI: 10.21037/atm-20-5728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/07/2021] [Indexed: 11/29/2022]
Abstract
Background Genetic locus were identified associated with acute respiratory distress syndrome (ARDS). Our goal was to explore the associations between genetic variants and ARDS outcome, as well as subphenotypes. Methods This was a single-center, prospective observational trial enrolling adult ARDS patients. After baseline data were collected, blood samples were drawn to perform whole exome sequencing, single nucleotide polymorphism (SNP)/insertion-deletion to explore the quantitative and functional associations between genetic variants and ICU outcome, clinical subphenotypes. Then the lung injury burden (LIB), which was defined as the ratio of nonsynonymous SNP number per megabase of DNA, was used to evaluate its value in predicting ARDS outcome. Results A total of 105 ARDS patients were enrolled in the study, including 70 survivors and 35 nonsurvivors. Based on the analysis of a total of 65,542 nonsynonymous SNP, LIB in survivors was significantly higher than nonsurvivors [1,892 (1,848–1,942)/MB versus 1,864 (1,829–1,910)/MB, P=0.018], while GO analysis showed that 60 functions were correlated with ARDS outcome, KEGG enrichment analysis showed that SNP/InDels were enriched in 13 pathways. Several new SNPs were found potentially associated with ARDS outcome. Analysis of LIB was used to determine its outcome predicting ability, the area under the ROC curve of which was only 0.6103, and increase to 0.712 when combined with APACHE II score. Conclusions Genetic variants are associated with ARDS outcome and subphenotypes; however, their prognostic value still need to be verified by larger trials. Trial registration Clinicaltrials.gov NCT02644798. Registered 20 April 2015.
Collapse
Affiliation(s)
- Jing-Yuan Xu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ai-Ran Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zong-Sheng Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jian-Feng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao-Xiao Qu
- Center for Genetics & Genomics Analysis, Genesky Biotechnologies Inc., Shanghai, China
| | - Cai-Hua Li
- Center for Genetics & Genomics Analysis, Genesky Biotechnologies Inc., Shanghai, China
| | - Shan-Shan Meng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Song-Qiao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Cong-Shan Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ying-Zi Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feng-Mei Guo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hai-Bo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
13
|
Chen X, Zhong J, Han D, Yao F, Zhao J, Wagenaar GTM, Yang C, Walther FJ. Close Association Between Platelet Biogenesis and Alveolarization of the Developing Lung. Front Pediatr 2021; 9:625031. [PMID: 34026682 PMCID: PMC8138595 DOI: 10.3389/fped.2021.625031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/13/2021] [Indexed: 01/19/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a neonatal chronic lung disease characterized by an arrest in alveolar and vascular development. BPD is secondary to lung immaturity, ventilator-induced lung injury, and exposure to hyperoxia in extremely premature infants, leading to a lifelong impairment of lung function. Recent studies indicate that the lung plays an important role in platelet biogenesis. However, the dynamic change of platelet production during lung development and BPD pathogenesis remains to be elucidated. We investigated the dynamic change of platelet parameters in extremely premature infants during BPD development, and in newborn rats during their normal development from birth to adulthood. We further studied the effect of hyperoxia exposure on platelet production and concomitant pulmonary maldevelopment in an experimental BPD rat model induced by prolonged exposure to hyperoxia. We detected a physiological increase in platelet count from birth to 36 weeks postmenstrual age in extremely premature infants, but platelet counts in extremely premature infants who developed BPD were persistently lower than gestational age-matched controls. In line with clinical findings, exposure to hyperoxia significantly decreased the platelet count in neonatal rats. Lung morphometry analysis demonstrated that platelet counts stabilized with the completion of lung alveolarization in rats. Our findings indicate a close association between platelet biogenesis and alveolarization in the developing lung. This phenomenon might explain the reduced platelet count in extremely premature infants with BPD.
Collapse
Affiliation(s)
- Xueyu Chen
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Junyan Zhong
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Dongshan Han
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Fang Yao
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Jie Zhao
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | | | - Chuanzhong Yang
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Frans J Walther
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| |
Collapse
|
14
|
Bhatraju PK, Cohen M, Nagao RJ, Morrell ED, Kosamo S, Chai XY, Nance R, Dmyterko V, Delaney J, Christie JD, Liu KD, Mikacenic C, Gharib SA, Liles WC, Zheng Y, Christiani DC, Himmelfarb J, Wurfel MM. Genetic variation implicates plasma angiopoietin-2 in the development of acute kidney injury sub-phenotypes. BMC Nephrol 2020; 21:284. [PMID: 32680471 PMCID: PMC7368773 DOI: 10.1186/s12882-020-01935-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/07/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND We previously identified two acute kidney injury (AKI) sub-phenotypes (AKI-SP1 and AKI-SP2) with different risk of poor clinical outcomes and response to vasopressor therapy. Plasma biomarkers of endothelial dysfunction (tumor necrosis factor receptor-1, angiopoietin-1 and 2) differentiated the AKI sub-phenotypes. However, it is unknown whether these biomarkers are simply markers or causal mediators in the development of AKI sub-phenotypes. METHODS We tested for associations between single-nucleotide polymorphisms within the Angiopoietin-1, Angiopoietin-2, and Tumor Necrosis Factor Receptor 1A genes and AKI- SP2 in 421 critically ill subjects of European ancestry. Top performing single-nucleotide polymorphisms (FDR < 0.05) were tested for cis-biomarker expression and whether genetic risk for AKI-SP2 is mediated through circulating biomarkers. We also completed in vitro studies using human kidney microvascular endothelial cells. Finally, we calculated the renal clearance of plasma biomarkers using 20 different timed urine collections. RESULTS A genetic variant, rs2920656C > T, near ANGPT2 was associated with reduced risk of AKI-SP2 (odds ratio, 0.45; 95% CI, 0.31-0.66; adjusted FDR = 0.003) and decreased plasma angiopoietin-2 (p = 0.002). Causal inference analysis showed that for each minor allele (T) the risk of developing AKI-SP2 decreases by 16%. Plasma angiopoietin-2 mediated 41.5% of the rs2920656 related risk for AKI-SP2. Human kidney microvascular endothelial cells carrying the T allele of rs2920656 produced numerically lower levels of angiopoietin-2 although this was not statistically significant (p = 0.07). Finally, analyses demonstrated that angiopoietin-2 is minimally renally cleared in critically ill subjects. CONCLUSION Genetic mediation analysis provides supportive evidence that angiopoietin-2 plays a causal role in risk for AKI-SP2.
Collapse
Affiliation(s)
- Pavan K Bhatraju
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, 325 9th Avenue, Seattle, WA, 98104, USA.
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, USA.
| | - Max Cohen
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, 325 9th Avenue, Seattle, WA, 98104, USA
| | - Ryan J Nagao
- Department of Bioengineering, University of Washington and Center for Cardiovascular Biology, Seattle, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | - Eric D Morrell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, 325 9th Avenue, Seattle, WA, 98104, USA
| | - Susanna Kosamo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, 325 9th Avenue, Seattle, WA, 98104, USA
| | - Xin-Ya Chai
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, 325 9th Avenue, Seattle, WA, 98104, USA
| | - Robin Nance
- Department of Epidemiology, University of Washington, Seattle, USA
| | - Victoria Dmyterko
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, 325 9th Avenue, Seattle, WA, 98104, USA
| | - Joseph Delaney
- Department of Epidemiology, University of Washington, Seattle, USA
| | - Jason D Christie
- Division of Pulmonary, Allergy, and Critical Care and Center for Clinical Epidemiology and Biostatistics, Department of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Kathleen D Liu
- Divisions of Nephrology and Critical Care Medicine, University of California San Francisco, San Francisco, USA
| | - Carmen Mikacenic
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, 325 9th Avenue, Seattle, WA, 98104, USA
| | - Sina A Gharib
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, 325 9th Avenue, Seattle, WA, 98104, USA
| | - W Conrad Liles
- Department of Medicine, University of Washington, Seattle, USA
| | - Ying Zheng
- Department of Bioengineering, University of Washington and Center for Cardiovascular Biology, Seattle, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | - David C Christiani
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, Harvard University and Pulmonary and Critical Care Division, Cambridge, USA
- Department of Medicine, MA General Hospital/Harvard Medical School, Boston, USA
| | - Jonathan Himmelfarb
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, USA
| | - Mark M Wurfel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, 325 9th Avenue, Seattle, WA, 98104, USA
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, USA
| |
Collapse
|
15
|
Li Y, Iida H, Kimata K, Zhuo L, Ota A, Kimura S, Yin X, Deie M, Ushida T. Establishment of a mouse model for injury-induced scar formation and the accompanying chronic pain: Comprehensive microarray analysis of molecular expressions in fibrosis and hyperalgesia. Mol Pain 2019; 15:1744806919892389. [PMID: 31749400 PMCID: PMC6997725 DOI: 10.1177/1744806919892389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Surgery is often accompanied by scar formation, which results in a
pathological state called fibrosis. Fibrosis is characterized by the excess
deposition of extracellular matrix molecules in the connective tissue,
leading to tissue contracture and chronic pain. To understand the molecular
mechanisms underlying these processes and their causative relationships, we
performed comprehensive analyses of gene expression changes in the hind paw
tissue of a mouse model established by generating a scar in the sole. Results Subcutaneous tissue was extensively stripped from the sole of the operation
group mice, while a needle was inserted in the sole of the sham group mice.
Pain threshold, as evaluated by mechanical stimulation with von Frey fiber,
decreased rapidly in the operated (ipsilateral) paw and a day later in the
nonoperated (contralateral) paw. The reductions were maintained for more
than three weeks, suggesting that chronic pain spread to the other tissues
via the central nervous system. RNA from the paw and the dorsal root
ganglion (L3–L5) tissues were subjected to microarray analyses one and two
weeks following the operation. The expressions of a number of genes,
especially those coding for extracellular matrix molecules and peripheral
perceptive nerve receptors, were altered in the operation group mice paw
tissues. The expression of few genes was altered in the dorsal root ganglion
tissues; distinct upregulation of some nociceptive genes such as
cholecystokinin B receptor was observed. Results of real-time polymerase
chain reaction and immune and histochemical staining of some of the gene
products confirmed the results of the microarray analysis. Conclusion Analyses using a novel mouse model revealed the extensive involvement of
extracellular matrix-related genes and peripheral perceptive nerve receptor
genes resulting in scar formation with chronic pain. Future bioinformatics
analyses will explore the association between these relationships.
Collapse
Affiliation(s)
- Yuqiang Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, School of Physical Education and Health, East China Normal University, Shanghai, China.,Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Hiroki Iida
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Koji Kimata
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Lisheng Zhuo
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University, Nagakute, Japan
| | - Shinya Kimura
- Department of Rehabilitation Medicine, Aichi Medical University, Nagakute, Japan
| | - Xiaojian Yin
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, School of Physical Education and Health, East China Normal University, Shanghai, China
| | - Masataka Deie
- Department of Orthopaedic Surgery, Aichi Medical University, Nagakute, Japan
| | - Takahiro Ushida
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
16
|
Lynn H, Sun X, Casanova N, Gonzales-Garay M, Bime C, Garcia JGN. Genomic and Genetic Approaches to Deciphering Acute Respiratory Distress Syndrome Risk and Mortality. Antioxid Redox Signal 2019; 31:1027-1052. [PMID: 31016989 PMCID: PMC6939590 DOI: 10.1089/ars.2018.7701] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Acute respiratory distress syndrome (ARDS) is a severe, highly heterogeneous critical illness with staggering mortality that is influenced by environmental factors, such as mechanical ventilation, and genetic factors. Significant unmet needs in ARDS are addressing the paucity of validated predictive biomarkers for ARDS risk and susceptibility that hamper the conduct of successful clinical trials in ARDS and the complete absence of novel disease-modifying therapeutic strategies. Recent Advances: The current ARDS definition relies on clinical characteristics that fail to capture the diversity of disease pathology, severity, and mortality risk. We undertook a comprehensive survey of the available ARDS literature to identify genes and genetic variants (candidate gene and limited genome-wide association study approaches) implicated in susceptibility to developing ARDS in hopes of uncovering novel biomarkers for ARDS risk and mortality and potentially novel therapeutic targets in ARDS. We further attempted to address the well-known health disparities that exist in susceptibility to and mortality from ARDS. Critical Issues: Bioinformatic analyses identified 201 ARDS candidate genes with pathway analysis indicating a strong predominance in key evolutionarily conserved inflammatory pathways, including reactive oxygen species, innate immunity-related inflammation, and endothelial vascular signaling pathways. Future Directions: Future studies employing a system biology approach that combines clinical characteristics, genomics, transcriptomics, and proteomics may allow for a better definition of biologically relevant pathways and genotype-phenotype connections and result in improved strategies for the sub-phenotyping of diverse ARDS patients via molecular signatures. These efforts should facilitate the potential for successful clinical trials in ARDS and yield a better fundamental understanding of ARDS pathobiology.
Collapse
Affiliation(s)
- Heather Lynn
- Department of Physiological Sciences and University of Arizona, Tucson, Arizona.,Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Xiaoguang Sun
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Nancy Casanova
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | | | - Christian Bime
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Joe G N Garcia
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
17
|
Lefrançais E, Looney MR. Platelet Biogenesis in the Lung Circulation. Physiology (Bethesda) 2019; 34:392-401. [PMID: 31577166 PMCID: PMC6957358 DOI: 10.1152/physiol.00017.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/22/2022] Open
Abstract
Megakaryocytes are normal cellular components of the blood returning to the heart and entering the lungs, and historical data has pointed to a role of the lungs in platelet production. Recent studies using intravital microscopy have demonstrated that platelet release occurs in the lung from bone marrow megakaryocytes that embolize into the lung circulation.
Collapse
Affiliation(s)
- Emma Lefrançais
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mark R Looney
- Departments of Medicine and Laboratory Medicine, University of California, San Francisco, CA
| |
Collapse
|
18
|
Gomez JL, Himes BE, Kaminski N. Precision Medicine in Critical Illness: Sepsis and Acute Respiratory Distress Syndrome. PRECISION IN PULMONARY, CRITICAL CARE, AND SLEEP MEDICINE 2019. [PMCID: PMC7120471 DOI: 10.1007/978-3-030-31507-8_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Sepsis and the acute respiratory distress syndrome (ARDS) each cause substantial morbidity and mortality. In contrast to other lung diseases, the entire course of disease in these syndromes is measured in days to weeks rather than months to years, which raises unique challenges in achieving precision medicine. We review advances in sepsis and ARDS resulting from omics studies, including those involving genome-wide association, gene expression, targeted proteomics, and metabolomics approaches. We focus on promising evidence of biological subtypes in both sepsis and ARDS that consistently display high risk for death. In sepsis, a gene expression signature with dysregulated adaptive immune signaling has evidence for a differential response to systemic steroid therapy, whereas in ARDS, a hyperinflammatory pattern identified in plasma using targeted proteomics responded more favorably to randomized interventions including high positive end-expiratory pressure, volume conservative fluid therapy, and simvastatin therapy. These early examples suggest heterogeneous biology that may be challenging to detect by clinical factors alone and speak to the promise of a precision approach that targets the right treatment at the right time to the right patient.
Collapse
Affiliation(s)
- Jose L. Gomez
- Assistant Professor Pulmonary, Critical Care and Sleep Medicine Section, Department of Medicine, Yale University School of Medicine, New Haven, CT USA
| | - Blanca E. Himes
- Assistant Professor of Informatics, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA USA
| | - Naftali Kaminski
- Boehringer-Ingelheim Endowed, Professor of Internal Medicine, Chief of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
19
|
Thille AW, Mauri T, Talmor D. Update in Critical Care Medicine 2017. Am J Respir Crit Care Med 2019; 197:1382-1388. [PMID: 29554433 DOI: 10.1164/rccm.201801-0055up] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Arnaud W Thille
- 1 Réanimation Médicale, Centre Hospitalier Universitaire de Poitiers, Poitiers, France.,2 INSERM Centre d'Investigation Clinique 1402 ALIVE, Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers, France
| | - Tommaso Mauri
- 3 Department of Anesthesia, Critical Care and Emergency, Maggiore Policlinico Hospital, University of Milan, Milan, Italy; and
| | - Daniel Talmor
- 4 Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston Massachusetts
| |
Collapse
|
20
|
Hernández-Beeftink T, Guillen-Guio B, Villar J, Flores C. Genomics and the Acute Respiratory Distress Syndrome: Current and Future Directions. Int J Mol Sci 2019; 20:E4004. [PMID: 31426444 PMCID: PMC6721149 DOI: 10.3390/ijms20164004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/05/2019] [Accepted: 08/11/2019] [Indexed: 12/19/2022] Open
Abstract
The excessive hospital mortality associated with acute respiratory distress syndrome (ARDS) in adults mandates an urgent need for developing new therapies and tools for the early risk assessment of these patients. ARDS is a heterogeneous syndrome with multiple different pathogenetic processes contributing differently in different patients depending on clinical as well as genetic factors. Identifying genetic-based biomarkers holds the promise for establishing effective predictive and prognostic stratification methods and for targeting new therapies to improve ARDS outcomes. Here we provide an updated review of the available evidence supporting the presence of genetic factors that are predictive of ARDS development and of fatal outcomes in adult critically ill patients and that have been identified by applying different genomic and genetic approaches. We also introduce other incipient genomics approximations, such as admixture mapping, metagenomics and genome sequencing, among others, that will allow to boost this knowledge and likely reveal new genetic predictors of ARDS susceptibility and prognosis among critically ill patients.
Collapse
Affiliation(s)
- Tamara Hernández-Beeftink
- Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria 35010, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife 38010, Spain
| | - Beatriz Guillen-Guio
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife 38010, Spain
| | - Jesús Villar
- Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria 35010, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife 38010, Spain.
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid 28029, Spain.
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife 38600, Spain.
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Santa Cruz de Tenerife 38200, Spain.
| |
Collapse
|
21
|
Platelets inhibit apoptotic lung epithelial cell death and protect mice against infection-induced lung injury. Blood Adv 2019; 3:432-445. [PMID: 30733303 PMCID: PMC6373758 DOI: 10.1182/bloodadvances.2018026286] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/09/2019] [Indexed: 12/17/2022] Open
Abstract
Thrombocytopenia is associated with worse outcomes in patients with acute respiratory distress syndrome, which is most commonly caused by infection and marked by alveolar-capillary barrier disruption. However, the mechanisms by which platelets protect the lung alveolar-capillary barrier during infectious injury remain unclear. We found that natively thrombocytopenic Mpl -/- mice deficient in the thrombopoietin receptor sustain severe lung injury marked by alveolar barrier disruption and hemorrhagic pneumonia with early mortality following acute intrapulmonary Pseudomonas aeruginosa (PA) infection; barrier disruption was attenuated by platelet reconstitution. Although PA infection was associated with a brisk neutrophil influx, depletion of airspace neutrophils failed to substantially mitigate PA-triggered alveolar barrier disruption in Mpl -/- mice. Rather, PA cell-free supernatant was sufficient to induce lung epithelial cell apoptosis in vitro and in vivo and alveolar barrier disruption in both platelet-depleted mice and Mpl -/- mice in vivo. Cell-free supernatant from PA with genetic deletion of the type 2 secretion system, but not the type 3 secretion system, mitigated lung epithelial cell death in vitro and lung injury in Mpl -/- mice. Moreover, platelet releasates reduced poly (ADP ribose) polymerase cleavage and lung injury in Mpl -/- mice, and boiling of platelet releasates, but not apyrase treatment, abrogated PA supernatant-induced lung epithelial cell cytotoxicity in vitro. These findings indicate that while neutrophil airspace influx does not potentiate infectious lung injury in the thrombocytopenic host, platelets and their factors protect against severe pulmonary complications from pathogen-secreted virulence factors that promote host cell death even in the absence of overt infection.
Collapse
|
22
|
Rondina MT, Zimmerman GA. The Role of Platelets in Inflammation. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
23
|
Reilly JP, Wang F, Jones TK, Palakshappa JA, Anderson BJ, Shashaty MGS, Dunn TG, Johansson ED, Riley TR, Lim B, Abbott J, Ittner CAG, Cantu E, Lin X, Mikacenic C, Wurfel MM, Christiani DC, Calfee CS, Matthay MA, Christie JD, Feng R, Meyer NJ. Plasma angiopoietin-2 as a potential causal marker in sepsis-associated ARDS development: evidence from Mendelian randomization and mediation analysis. Intensive Care Med 2018; 44:1849-1858. [PMID: 30343317 PMCID: PMC6697901 DOI: 10.1007/s00134-018-5328-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE A causal biomarker for acute respiratory distress syndrome (ARDS) could fuel precision therapy options. Plasma angiopoietin-2 (ANG2), a vascular permeability marker, is a strong candidate on the basis of experimental and observational evidence. We used genetic causal inference methods-Mendelian randomization and mediation-to infer potential effects of plasma ANG2. METHODS We genotyped 703 septic subjects, measured ICU admission plasma ANG2, and performed a quantitative trait loci (QTL) analysis to determine variants in the ANGPT2 gene associated with plasma ANG2 (p < 0.005). We then used linear regression and post-estimation analysis to genetically predict plasma ANG2 and tested genetically predicted ANG2 for ARDS association using logistic regression. We estimated the proportion of the genetic effect explained by plasma ANG2 using mediation analysis. RESULTS Plasma ANG2 was strongly associated with ARDS (OR 1.59 (95% CI 1.35, 1.88) per log). Five ANGPT2 variants were associated with ANG2 in European ancestry subjects (n = 404). Rs2442608C, the most extreme cis QTL (coefficient 0.22, 95% CI 0.09-0.36, p = 0.001), was associated with higher ARDS risk: adjusted OR 1.38 (95% CI 1.01, 1.87), p = 0.042. No significant QTL were identified in African ancestry subjects. Genetically predicted plasma ANG2 was associated with ARDS risk: adjusted OR 2.25 (95% CI 1.06-4.78), p = 0.035. Plasma ANG2 mediated 34% of the rs2442608C-related ARDS risk. CONCLUSIONS In septic European ancestry subjects, the strongest ANG2-determining ANGPT2 genetic variant is associated with higher ARDS risk. Plasma ANG2 may be a causal factor in ARDS development. Strategies to reduce plasma ANG2 warrant testing to prevent or treat sepsis-associated ARDS.
Collapse
Affiliation(s)
- John P Reilly
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Fan Wang
- Department of Molecular Cardiology, Cleveland Clinic Lerner Research Institute, Cleveland, USA
| | - Tiffanie K Jones
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Jessica A Palakshappa
- Pulmonary, Critical Care, Allergy, and Immunologic Medicine, Wake Forest School of Medicine, Winston-Salem, USA
| | - Brian J Anderson
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Michael G S Shashaty
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Thomas G Dunn
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Erik D Johansson
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Thomas R Riley
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Brian Lim
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Jason Abbott
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA
| | - Caroline A G Ittner
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Edward Cantu
- Divison of Cardiothoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Xihong Lin
- Harvard University T.H. Chan School of Public Health, Boston, USA
| | - Carmen Mikacenic
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, USA
| | - Mark M Wurfel
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, USA
| | - David C Christiani
- Harvard University T.H. Chan School of Public Health, Boston, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, USA
| | - Carolyn S Calfee
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA
| | - Jason D Christie
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, USA
| | - Rui Feng
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, USA
| | - Nuala J Meyer
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Karhausen JA, Qi W, Smeltz AM, Li YJ, Shah SH, Kraus WE, Mathew JP, Podgoreanu MV, Kertai MD. Genome-Wide Association Study Links Receptor Tyrosine Kinase Inhibitor Sprouty 2 to Thrombocytopenia after Coronary Artery Bypass Surgery. Thromb Haemost 2018; 118:1572-1585. [PMID: 30103242 DOI: 10.1055/s-0038-1667199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Thrombocytopenia after cardiac surgery independently predicts stroke, acute kidney injury and death. To understand the underlying risks and mechanisms, we analysed genetic variations associated with thrombocytopenia in patients undergoing coronary artery bypass grafting (CABG) surgery. MATERIALS AND METHODS Study subjects underwent isolated on-pump CABG surgery at Duke University Medical Center. Post-operative thrombocytopenia was defined as platelet count < 100 × 109/L. Using a logistic regression model adjusted for clinical risk factors, we performed a genome-wide association study in a discovery cohort (n = 860) and validated significant findings in a replication cohort (n = 296). Protein expression was assessed in isolated platelets by immunoblot. RESULTS A total of 63 single-nucleotide polymorphisms met a priori discovery thresholds for replication, but only 1 (rs9574547) in the intergenic region upstream of sprouty 2 (SPRY2) met nominal significance in the replication cohort. The minor allele of rs9574547 was associated with a lower risk for thrombocytopenia (discovery cohort, odds ratio, 0.45, 95% confidence interval, 0.30-0.67, p = 9.76 × 10-5) with the overall association confirmed by meta-analysis (meta-p = 7.88 × 10-6). Immunoblotting demonstrated expression of SPRY2 and its dynamic regulation during platelet activation. Treatment with a functional SPRY2 peptide blunted platelet extracellular signal-regulated kinase (ERK) phosphorylation after agonist stimulation. CONCLUSION We identified the association of a genetic polymorphism in the intergenic region of SPRY2 with a decreased incidence of thrombocytopenia after CABG surgery. Because SPRY2-an endogenous receptor tyrosine kinase inhibitor-is present in platelets and modulates essential signalling pathways, these findings support a role for SPRY2 as a novel modulator of platelet responses after cardiac surgery.
Collapse
Affiliation(s)
- Jörn A Karhausen
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Duke University, Durham, North Carolina, United States
| | - Wenjing Qi
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Duke University, Durham, North Carolina, United States
| | - Alan M Smeltz
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Duke University, Durham, North Carolina, United States
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Duke University, Durham, North Carolina, United States.,Molecular Physiology Institute, Duke University Medical Center, Duke University, Durham, North Carolina, United States
| | - Svati H Shah
- Molecular Physiology Institute, Duke University Medical Center, Duke University, Durham, North Carolina, United States.,Division of Cardiology, Department of Medicine, Duke University Medical Center, Duke University, Durham, North Carolina, United States
| | - William E Kraus
- Molecular Physiology Institute, Duke University Medical Center, Duke University, Durham, North Carolina, United States.,Division of Cardiology, Department of Medicine, Duke University Medical Center, Duke University, Durham, North Carolina, United States
| | - Joseph P Mathew
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Duke University, Durham, North Carolina, United States
| | - Mihai V Podgoreanu
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Duke University, Durham, North Carolina, United States
| | - Miklos D Kertai
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Duke University, Durham, North Carolina, United States.,Department of Anesthesiology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, United States
| | | |
Collapse
|
25
|
Middleton EA, Rondina MT, Schwertz H, Zimmerman GA. Amicus or Adversary Revisited: Platelets in Acute Lung Injury and Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2018; 59:18-35. [PMID: 29553813 PMCID: PMC6039872 DOI: 10.1165/rcmb.2017-0420tr] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Platelets are essential cellular effectors of hemostasis and contribute to disease as circulating effectors of pathologic thrombosis. These are their most widely known biologic activities. Nevertheless, recent observations demonstrate that platelets have a much more intricate repertoire beyond these traditional functions and that they are specialized for contributions to vascular barrier integrity, organ repair, antimicrobial host defense, inflammation, and activities across the immune continuum. Paradoxically, on the basis of clinical investigations and animal models of disease, some of these newly discovered activities of platelets appear to contribute to tissue injury. Studies in the last decade indicate unique interactions of platelets and their precursor, the megakaryocyte, in the lung and implicate platelets as essential effectors in experimental acute lung injury and clinical acute respiratory distress syndrome. Additional discoveries derived from evolving work will be required to precisely define the contributions of platelets to complex subphenotypes of acute lung injury and to determine if these remarkable and versatile blood cells are therapeutic targets in acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Elizabeth A. Middleton
- Division of Pulmonary and Critical Care Medicine, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Matthew T. Rondina
- Division of General Internal Medicine, Department of Internal Medicine
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Hansjorg Schwertz
- Division of Vascular Surgery, Department of Surgery, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A. Zimmerman
- Division of Pulmonary and Critical Care Medicine, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
26
|
Hussain M, Xu C, Ahmad M, Majeed A, Lu M, Wu X, Tang L, Wu X. Acute Respiratory Distress Syndrome: Bench-to-Bedside Approaches to Improve Drug Development. Clin Pharmacol Ther 2018; 104:484-494. [PMID: 29484641 PMCID: PMC7162218 DOI: 10.1002/cpt.1034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/11/2018] [Accepted: 01/21/2018] [Indexed: 12/20/2022]
Abstract
Despite 50 years of extensive research, no definite drug is currently available to treat acute respiratory distress syndrome (ARDS), and the supportive therapies remain the mainstay of treatment. To improve drug development for ARDS, researchers need to deeply analyze the “omics” approaches, reevaluate the suitable therapeutic targets, resolve the problems of inadequate animal modeling, develop the strategies to reduce the heterogeneity, and reconsider new therapeutic and analytical approaches for better designs of clinical trials.
Collapse
Affiliation(s)
- Musaddique Hussain
- Department of Pharmacology, Hangzhou City, 310058, China.,The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, 310058, China
| | - Chengyun Xu
- Department of Pharmacology, Hangzhou City, 310058, China.,The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, 310058, China
| | - Mashaal Ahmad
- Department of Pharmacology, Hangzhou City, 310058, China.,The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, 310058, China
| | - Abdul Majeed
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Meiping Lu
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, 310006, China
| | - Xiling Wu
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, 310006, China
| | - Lanfang Tang
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, 310006, China
| | - Ximei Wu
- Department of Pharmacology, Hangzhou City, 310058, China.,The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, 310058, China
| |
Collapse
|
27
|
Jones TK, Meyer NJ. What's in a Number? Platelet Count Dynamics as a Novel Mediator of Acute Respiratory Distress Syndrome Survival. Am J Respir Crit Care Med 2017; 195:1285-1287. [PMID: 28504601 DOI: 10.1164/rccm.201611-2264ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Tiffanie K Jones
- 1 Pulmonary, Allergy, and Critical Care Medicine University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania
| | - Nuala J Meyer
- 1 Pulmonary, Allergy, and Critical Care Medicine University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Stark BC, Lanier MH, Cooper JA. CARMIL family proteins as multidomain regulators of actin-based motility. Mol Biol Cell 2017; 28:1713-1723. [PMID: 28663287 PMCID: PMC5491179 DOI: 10.1091/mbc.e17-01-0019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 12/23/2022] Open
Abstract
CARMILs are large multidomain proteins that regulate the actin-binding activity of capping protein (CP), a major capper of actin filament barbed ends in cells. CARMILs bind directly to CP and induce a conformational change that allosterically decreases but does not abolish its actin-capping activity. The CP-binding domain of CARMIL consists of the CP-interaction (CPI) and CARMIL-specific interaction (CSI) motifs, which are arranged in tandem. Many cellular functions of CARMILs require the interaction with CP; however, a more surprising result is that the cellular function of CP in cells appears to require binding to a CARMIL or another protein with a CPI motif, suggesting that CPI-motif proteins target CP and modulate its actin-capping activity. Vertebrates have three highly conserved genes and expressed isoforms of CARMIL with distinct and overlapping localizations and functions in cells. Various domains of these CARMIL isoforms interact with plasma membranes, vimentin intermediate filaments, SH3-containing class I myosins, the dual-GEF Trio, and other adaptors and signaling molecules. These biochemical properties suggest that CARMILs play a variety of membrane-associated functions related to actin assembly and signaling. CARMIL mutations and variants have been implicated in several human diseases. We focus on roles for CARMILs in signaling in addition to their function as regulators of CP and actin.
Collapse
Affiliation(s)
- Benjamin C Stark
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - M Hunter Lanier
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
29
|
Reilly JP, Christie JD, Meyer NJ. Fifty Years of Research in ARDS. Genomic Contributions and Opportunities. Am J Respir Crit Care Med 2017; 196:1113-1121. [PMID: 28481621 PMCID: PMC5694838 DOI: 10.1164/rccm.201702-0405cp] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
Clinical factors alone poorly explain acute respiratory distress syndrome (ARDS) risk and ARDS outcome. In the search for individual factors that may influence ARDS risk, the past 20 years have witnessed the identification of numerous genes and genetic variants that are associated with ARDS. The field of ARDS genomics has cycled from candidate gene association studies to bias-free approaches that identify new candidates, and increasing effort is made to understand the functional consequences that may underlie significant associations. More recently, methodologies of causal inference are being applied to maximize the information gained from genetic associations. Although challenges of sample size, both recognized and unrecognized phenotypic heterogeneity, and the paucity of early ARDS lung tissue limit some applications of the rapidly evolving field of genomic investigation, ongoing genetic research offers unique contributions to elucidating ARDS pathogenesis and the paradigm of precision ARDS medicine.
Collapse
Affiliation(s)
- John P. Reilly
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine
- Center for Translational Lung Biology, and
| | - Jason D. Christie
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine
- Center for Translational Lung Biology, and
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine
- Center for Translational Lung Biology, and
| |
Collapse
|
30
|
Shimatani T, Ohshimo S, Shime N. Next Step to Understanding Subphenotypes of Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2017; 196:795-796. [PMID: 28406711 DOI: 10.1164/rccm.201703-0604le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Meyer NJ, Calfee CS. Novel translational approaches to the search for precision therapies for acute respiratory distress syndrome. THE LANCET. RESPIRATORY MEDICINE 2017; 5:512-523. [PMID: 28664850 PMCID: PMC7103930 DOI: 10.1016/s2213-2600(17)30187-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/30/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023]
Abstract
In the 50 years since acute respiratory distress syndrome (ARDS) was first described, substantial progress has been made in identifying the risk factors for and the pathogenic contributors to the syndrome and in characterising the protein expression patterns in plasma and bronchoalveolar lavage fluid from patients with ARDS. Despite this effort, however, pharmacological options for ARDS remain scarce. Frequently cited reasons for this absence of specific drug therapies include the heterogeneity of patients with ARDS, the potential for a differential response to drugs, and the possibility that the wrong targets have been studied. Advances in applied biomolecular technology and bioinformatics have enabled breakthroughs for other complex traits, such as cardiovascular disease or asthma, particularly when a precision medicine paradigm, wherein a biomarker or gene expression pattern indicates a patient's likelihood of responding to a treatment, has been pursued. In this Review, we consider the biological and analytical techniques that could facilitate a precision medicine approach for ARDS.
Collapse
Affiliation(s)
- Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine and Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carolyn S Calfee
- Department of Medicine and Department of Anesthesia, University of California, San Francisco, CA, USA.
| |
Collapse
|
32
|
Zhang R, Wang Z, Tejera P, Frank AJ, Wei Y, Su L, Zhu Z, Guo Y, Chen F, Bajwa EK, Thompson BT, Christiani DC. Late-onset moderate to severe acute respiratory distress syndrome is associated with shorter survival and higher mortality: a two-stage association study. Intensive Care Med 2016; 43:399-407. [PMID: 28032130 DOI: 10.1007/s00134-016-4638-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/23/2016] [Indexed: 01/04/2023]
Abstract
PURPOSE To evaluate the association between acute respiratory distress syndrome (ARDS) onset time and prognosis. METHODS Patients with moderate to severe ARDS (N = 876) were randomly assigned into derivation (N = 520) and validation (N = 356) datasets. Both 28-day and 60-day survival times after ARDS onset were analyzed. A data-driven cutoff point between early- and late-onset ARDS was determined on the basis of mortality risk effects of onset times. We estimated the hazard ratio (HR) and odds ratio (OR) of late-onset ARDS using a multivariate Cox proportional hazards model of survival time and a multivariate logistic regression model of mortality rate, respectively. RESULTS Late-onset ARDS, defined as onset over 48 h after intensive care unit (ICU) admission (N = 273, 31%), was associated with shorter 28-day survival time: HR = 2.24, 95% CI 1.48-3.39, P = 1.24 × 10-4 (derivation); HR = 2.16, 95% CI 1.33-3.51, P = 1.95 × 10-3 (validation); and HR = 2.00, 95% CI 1.47-2.72, P = 1.10 × 10-5 (combined dataset). Late-onset ARDS was also associated with shorter 60-day survival time: HR = 1.70, 95% CI 1.16-2.48, P = 6.62 × 10-3 (derivation); HR = 1.78, 95% CI 1.15-2.75, P = 9.80 × 10-3 (validation); and HR = 1.59, 95% CI 1.20-2.10, P = 1.22 × 10-3 (combined dataset). Meanwhile, late-onset ARDS was associated with higher 28-day mortality rate (OR = 1.46, 95% CI 1.04-2.06, P = 0.0305) and 60-day mortality rate (OR = 1.44, 95% CI 1.03-2.02, P = 0.0313). CONCLUSIONS Late-onset moderate to severe ARDS patients had both shorter survival time and higher mortality rate in 28-day and 60-day observations.
Collapse
Affiliation(s)
- Ruyang Zhang
- Department of Environmental Health, Harvard School of Public Health, Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 665 Hunting Avenue, Building I Room 1401, Boston, MA, 02115, USA
- Department of Biostatistics, Ministry of Education Key Laboratory for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health/Harvard School of Public Health, Nanjing, China
| | - Zhaoxi Wang
- Department of Environmental Health, Harvard School of Public Health, Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 665 Hunting Avenue, Building I Room 1401, Boston, MA, 02115, USA
| | - Paula Tejera
- Department of Environmental Health, Harvard School of Public Health, Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 665 Hunting Avenue, Building I Room 1401, Boston, MA, 02115, USA
| | - Angela J Frank
- Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yongyue Wei
- Department of Biostatistics, Ministry of Education Key Laboratory for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health/Harvard School of Public Health, Nanjing, China
| | - Li Su
- Department of Environmental Health, Harvard School of Public Health, Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 665 Hunting Avenue, Building I Room 1401, Boston, MA, 02115, USA
| | - Zhaozhong Zhu
- Department of Environmental Health, Harvard School of Public Health, Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 665 Hunting Avenue, Building I Room 1401, Boston, MA, 02115, USA
| | - Yichen Guo
- Department of Environmental Health, Harvard School of Public Health, Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 665 Hunting Avenue, Building I Room 1401, Boston, MA, 02115, USA
| | - Feng Chen
- Department of Biostatistics, Ministry of Education Key Laboratory for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health/Harvard School of Public Health, Nanjing, China
| | - Ednan K Bajwa
- Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - B Taylor Thompson
- Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard School of Public Health, Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 665 Hunting Avenue, Building I Room 1401, Boston, MA, 02115, USA.
- Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health/Harvard School of Public Health, Nanjing, China.
- Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|