1
|
van Westering-Kroon E, Hundscheid TM, Van Mechelen K, Bartoš F, Abman SH, Villamor E. Sex differences in the risk of bronchopulmonary dysplasia and pulmonary hypertension: a Bayesian meta-analysis. Pediatr Res 2025:10.1038/s41390-025-04145-3. [PMID: 40425846 DOI: 10.1038/s41390-025-04145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/31/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is generally considered to be more frequent in males than in females. We conducted a Bayesian model-averaged (BMA) meta-analysis of studies addressing sex differences in the risk of developing different severities of BPD and BPD-associated pulmonary hypertension (BPD-PH). METHODS We used BMA to calculate Bayes factors (BFs). The BF10 is the ratio of the probability of the data under the alternative hypothesis (presence of sex differences) over the probability of the data under the null hypothesis (absence of sex differences). BPD was classified as BPD28 (Supplementary oxygen at or during 28 days), BPD36 (moderate-to-severe BPD; oxygen at 36 weeks postmenstrual age), mild, moderate, and severe BPD. RESULTS We included 222 studies (541,826 infants). The BMA analysis showed evidence in favor of a male disadvantage in BPD28 (BF10 > 105), BPD36 (BF10 > 1021), and severe BPD (BF10 = 87.55), but not in mild BPD (BF10 = 0.28), or BPD-PH (BF10 = 0.54). The evidence for a male disadvantage in BPD decreased as the gestational age of the cohort decreased. CONCLUSIONS We confirmed the presence of a male disadvantage in moderate-to-severe BPD, but not in less severe forms of BPD or in BPD-PH. The male disadvantage in BPD is much less apparent in the more immature infants. IMPACT This Bayesian meta-analysis confirms that the risk of developing moderate to severe bronchopulmonary dysplasia (BPD) is approximately 20% higher in males than in females. Sex differences in BPD decrease with decreasing gestational age, are heterogeneous across geographic and sociodemographic settings, and have remained persistently stable over time. There is no evidence supporting sex differences in pulmonary hypertension associated with BPD. An important step in the process of individualizing the approach to BPD may be to consider the sex of the infant, as this information can be used to personalize care and potentially improve outcomes.
Collapse
Affiliation(s)
- Elke van Westering-Kroon
- Division of Neonatology, MosaKids Children's Hospital, Maastricht University Medical Centre (MUMC + ), Research Institute for Oncology and Reproduction (GROW), Maastricht University, Maastricht, The Netherlands
| | - Tamara M Hundscheid
- Division of Neonatology, MosaKids Children's Hospital, Maastricht University Medical Centre (MUMC + ), Research Institute for Oncology and Reproduction (GROW), Maastricht University, Maastricht, The Netherlands
| | - Karen Van Mechelen
- Division of Neonatology, MosaKids Children's Hospital, Maastricht University Medical Centre (MUMC + ), Research Institute for Oncology and Reproduction (GROW), Maastricht University, Maastricht, The Netherlands
| | - František Bartoš
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Steven H Abman
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado Anschutz School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Eduardo Villamor
- Division of Neonatology, MosaKids Children's Hospital, Maastricht University Medical Centre (MUMC + ), Research Institute for Oncology and Reproduction (GROW), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
2
|
Zhou D, Wang T, Chen Y, Zheng Y, Zhou Y, Zhang M, Liu A, Hu B, Fu S, Wu R, Chen W, Jiang X, Ye Z, Shi Y, Fu Z, Wang J. Characteristics and sex differences in bronchopulmonary dysplasia-related pulmonary hypertension. BMC Pulm Med 2025; 25:148. [PMID: 40169967 PMCID: PMC11959970 DOI: 10.1186/s12890-025-03585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/06/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) secondary to bronchopulmonary dysplasia (BPD) is associated with increased mortality. This study aims to elucidate the risk factors for BPD-PH development and the long-term prognostic factors in pediatric BPD. METHODS We analyzed 1082 BPD patients under the age of three. Univariate and multivariate regression were performed to determine the final model. Risk stratification was performed based on the predicted risk score, and Kaplan-Meier survival curves were used to compare survival rates. RESULTS The in-hospital mortality rate of severe BPD was three times than non-severe BPD, and pediatric BPD-PH had twice the mortality compared to BPD without PH. The incidence of BPD was 1.7 times higher in males, but there were no sex-specific differences in BPD severity. However, female children with BPD had a higher likelihood of developing BPD-PH and lower survival rates. Females, severity of BPD, congenital diaphragmatic hernia, ventricular septal defect, patent ductus arteriosus, uric acid, aspartate aminotransferase/alanine transaminase (ALT), and albumin were independent factors of PH in BPD. Severity of BPD, PH, severe pneumonia, budesonide use, use of adrenaline or noradrenaline, ALT, and day of respiratory support were independent factors for overall survival in pediatric BPD. Two web servers were constructed based on these predictive factors for risk prediction of BPD-PH ( https://sex-ph.shinyapps.io/Nomapp1/ ) and overall survival prediction in BPD patients ( https://zds88.shinyapps.io/DynNomapp/ ). CONCLUSION This study confirmed sex differences in BPD-PH and emphasized the role of sex in the development and prognosis of the disease. Two web servers predicted personalized PH risk and survival outcomes in BPD.
Collapse
Affiliation(s)
- Dansha Zhou
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, 510005, China
| | - Ting Wang
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Higher Institution Engineering Research Center of Children'S Medical Big Data Intelligent Application, Children'S Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Yulin Zheng
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Yingzhen Zhou
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Higher Institution Engineering Research Center of Children'S Medical Big Data Intelligent Application, Children'S Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Mingxiang Zhang
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Higher Institution Engineering Research Center of Children'S Medical Big Data Intelligent Application, Children'S Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Aofeng Liu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Biao Hu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Shuang Fu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Ruixian Wu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Wei Chen
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Higher Institution Engineering Research Center of Children'S Medical Big Data Intelligent Application, Children'S Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaoli Jiang
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Higher Institution Engineering Research Center of Children'S Medical Big Data Intelligent Application, Children'S Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zehui Ye
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Higher Institution Engineering Research Center of Children'S Medical Big Data Intelligent Application, Children'S Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yuan Shi
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Higher Institution Engineering Research Center of Children'S Medical Big Data Intelligent Application, Children'S Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhou Fu
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Higher Institution Engineering Research Center of Children'S Medical Big Data Intelligent Application, Children'S Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China.
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, 510005, China.
| |
Collapse
|
3
|
Wang H, Li L, Zhou G, Wang L, Wu Z. RPL39 Was Associated With Sex Differences in Pulmonary Arterial Hypertension. Can Respir J 2025; 2025:7139235. [PMID: 39957991 PMCID: PMC11824382 DOI: 10.1155/carj/7139235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) is a malignant cardiovascular disease with a complex etiology, in which several types of cells play important roles. Sex differences in disease susceptibility and survival have been observed in PAH patients, but few studies have analyzed the effect of changes in cell type and number on sex differences in PAH at the single-cell level. In this study, we performed a series of analyses on GSE169471 and GSE228644 datasets and found significant changes in the ratio of several types of cells in male PAH lung tissues. Surprisingly, we found that the ratio of macrophages in male PAH samples was 7 times higher than that in females. Consistently, the ratio of M1 macrophages was also significantly increased in male PAH samples. The different expression genes (DEGs) in macrophages were mainly involved in the ribosome pathway, which is closely related to cell proliferation. Inhibition of ribosomal protein L39 (RPL39), a core gene in the ribosome pathway, can inhibit macrophage proliferation and attenuate the sex differences in PAH. In conclusion, our study suggests that ribosome pathway-associated cell proliferation of macrophages might be associated with sex differences in PAH.
Collapse
Affiliation(s)
- Haixia Wang
- National Health Commission Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (Co-Construction), Department of Scientific Research, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
- Department of Preventive Medicine, Shihezi University Medical School Shihezi, Xinjiang, China
| | - Ling Li
- Department of Preventive Medicine, Shihezi University Medical School Shihezi, Xinjiang, China
| | - Guangyuan Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lu Wang
- Department of Respiratory and Critical Care Medicine, Miyun Teaching Hospital of Capital Medical University, Beijing, China
| | - Zeang Wu
- National Health Commission Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (Co-Construction), Department of Scientific Research, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
4
|
Brownstein AJ, Mura M, Ruffenach G, Channick RN, Saggar R, Kim A, Umar S, Eghbali M, Yang X, Hong J. Dissecting the lung transcriptome of pulmonary fibrosis-associated pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L520-L534. [PMID: 39137526 PMCID: PMC11482468 DOI: 10.1152/ajplung.00166.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
Integrative multiomics can help elucidate the pathophysiology of pulmonary fibrosis (PF)-associated pulmonary hypertension (PH) (PF-PH). Weighted gene coexpression network analysis (WGCNA) was performed on a transcriptomic dataset of explanted lung tissue from 116 patients with PF. Patients were stratified by pulmonary vascular resistance (PVR), and differential gene expression analysis was conducted. Gene modules were correlated with hemodynamics at the time of transplantation and tested for enrichment in the lung transcriptomics signature of an independent pulmonary arterial hypertension (PAH) cohort. We found 1,250 differentially expressed genes between high and low PVR groups. WGCNA identified that black and yellowgreen modules negatively correlated with PVR, whereas the tan and darkgrey modules are positively correlated with PVR in PF-PH. In addition, the tan module showed the strongest enrichment for an independent PAH gene signature, suggesting shared gene expression patterns between PAH and PF-PH. Pharmacotranscriptomic analysis using the Connectivity Map implicated the tan and darkgrey modules as potentially pathogenic in PF-PH, given their combined module signature demonstrated a high negative connectivity score for treprostinil, a medication used in the treatment of PF-PH, and a high positive connectivity score for bone morphogenetic protein (BMP) loss of function. Pathway enrichment analysis revealed that inflammatory pathways and oxidative phosphorylation were downregulated, whereas epithelial-mesenchymal transition was upregulated in modules associated with increased PVR. Our integrative systems biology approach to the lung transcriptome of PF with and without PH identified several PH-associated coexpression modules and gene targets with shared molecular features with PAH warranting further investigation to uncover potential new therapies for PF-PH.NEW & NOTEWORTHY An integrative systems biology approach that included transcriptomic analysis of explanted lung tissue from patients with pulmonary fibrosis (PF) with and without pulmonary hypertension (PH) undergoing lung transplantation, combined with hemodynamic correlation and pharmacotranscriptomics, identified modules of genes associated with pulmonary vascular disease severity. Comparison with an independent pulmonary arterial hypertension (PAH) dataset identified shared gene expression patterns between PAH and PF-PH.
Collapse
Grants
- R01HL147586,R01HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08169982 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08 HL141995 NHLBI NIH HHS
- UL1TR001881 HHS | NIH | National Center for Advancing Translational Sciences (NCATS)
- K08 HL169982 NHLBI NIH HHS
- R01 HL159507 NHLBI NIH HHS
- R01HL16038,K08HL141995 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL161038 NHLBI NIH HHS
- R01 HL159865 NHLBI NIH HHS
- R01 NS117148 NINDS NIH HHS
- R01NS117148,R01NS111378 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- UL1 TR001881 NCATS NIH HHS
- R01HL159507 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Adam J Brownstein
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Marco Mura
- Division of Respirology, Western University, London, Ontario, Canada
| | - Gregoire Ruffenach
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Richard N Channick
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Rajan Saggar
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Airie Kim
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Soban Umar
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States
| | - Jason Hong
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| |
Collapse
|
5
|
Krzyżewska A, Kurakula K. Sex Dimorphism in Pulmonary Arterial Hypertension Associated With Autoimmune Diseases. Arterioscler Thromb Vasc Biol 2024; 44:2169-2190. [PMID: 39145392 DOI: 10.1161/atvbaha.124.320886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Pulmonary hypertension is a rare, incurable, and progressive disease. Although there is increasing evidence that immune disorders, particularly those associated with connective tissue diseases, are a strong predisposing factor in the development of pulmonary arterial hypertension (PAH), there is currently a lack of knowledge about the detailed molecular mechanisms responsible for this phenomenon. Exploring this topic is crucial because patients with an immune disorder combined with PAH have a worse prognosis and higher mortality compared with patients with other PAH subtypes. Moreover, data recorded worldwide show that the prevalence of PAH in women is 2× to even 4× higher than in men, and the ratio of PAH associated with autoimmune diseases is even higher (9:1). Sexual dimorphism in the pathogenesis of cardiovascular disease was explained for many years by the action of female sex hormones. However, there are increasing reports of interactions between sex hormones and sex chromosomes, and differences in the pathogenesis of cardiovascular disease may be controlled not only by sex hormones but also by sex chromosome pathways that are not dependent on the gonads. This review discusses the role of estrogen and genetic factors including the role of genes located on the X chromosome, as well as the potential protective role of the Y chromosome in sexual dimorphism, which is prominent in the occurrence of PAH associated with autoimmune diseases. Moreover, an overview of animal models that could potentially play a role in further investigating the aforementioned link was also reviewed.
Collapse
Affiliation(s)
- Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Poland (A.K.)
| | - Kondababu Kurakula
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Free University Medical Center, the Netherlands (K.K.)
| |
Collapse
|
6
|
Deng J, Wei RQ, Zhang WM, Shi CY, Yang R, Jin M, Piao C. Crocin's role in modulating MMP2/TIMP1 and mitigating hypoxia-induced pulmonary hypertension in mice. Sci Rep 2024; 14:12716. [PMID: 38830933 PMCID: PMC11148111 DOI: 10.1038/s41598-024-62900-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
To explore the molecular pathogenesis of pulmonary arterial hypertension (PAH) and identify potential therapeutic targets, we performed transcriptome sequencing of lung tissue from mice with hypoxia-induced pulmonary hypertension. Our Gene Ontology analysis revealed that "extracellular matrix organization" ranked high in the biological process category, and matrix metallopeptidases (MMPs) and other proteases also played important roles in it. Moreover, compared with those in the normoxia group, we confirmed that MMPs expression was upregulated in the hypoxia group, while the hub gene Timp1 was downregulated. Crocin, a natural MMP inhibitor, was found to reduce inflammation, decrease MMPs levels, increase Timp1 expression levels, and attenuate hypoxia-induced pulmonary hypertension in mice. In addition, analysis of the cell distribution of MMPs and Timp1 in the human lung cell atlas using single-cell RNAseq datasets revealed that MMPs and Timp1 are mainly expressed in a population of fibroblasts. Moreover, in vitro experiments revealed that crocin significantly inhibited myofibroblast proliferation, migration, and extracellular matrix deposition. Furthermore, we demonstrated that crocin inhibited TGF-β1-induced fibroblast activation and regulated the pulmonary arterial fibroblast MMP2/TIMP1 balance by inhibiting the TGF-β1/Smad3 signaling pathway. In summary, our results indicate that crocin attenuates hypoxia-induced pulmonary hypertension in mice by inhibiting TGF-β1-induced myofibroblast activation.
Collapse
Affiliation(s)
- Jing Deng
- School of Basic Medical Sciences, Yanbian University, Yanji, 133000, China
| | - Rui-Qi Wei
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital Affiliated to the Capital Medical University, Beijing, 100020, China
| | - Wen-Mei Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing, 100029, China
| | - Chang-Yu Shi
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital Affiliated to the Capital Medical University, Beijing, 100020, China
| | - Rui Yang
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing, 100029, China
| | - Ming Jin
- School of Basic Medical Sciences, Yanbian University, Yanji, 133000, China.
| | - Chunmei Piao
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
7
|
Dignam JP, Sharma S, Stasinopoulos I, MacLean MR. Pulmonary arterial hypertension: Sex matters. Br J Pharmacol 2024; 181:938-966. [PMID: 37939796 DOI: 10.1111/bph.16277] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex disease of multifactorial origin. While registries have demonstrated that women are more susceptible to the disease, females with PAH have superior right ventricle (RV) function and a better prognosis than their male counterparts, a phenomenon referred to as the 'estrogen paradox'. Numerous pre-clinical studies have investigated the involvement of sex hormones in PAH pathobiology, often with conflicting results. However, recent advances suggest that abnormal estrogen synthesis, metabolism and signalling underpin the sexual dimorphism of this disease. Other sex hormones, such as progesterone, testosterone and dehydroepiandrosterone may also play a role. Several non-hormonal factor including sex chromosomes and epigenetics have also been implicated. Though the underlying pathophysiological mechanisms are complex, several compounds that modulate sex hormones levels and signalling are under investigation in PAH patients. Further elucidation of the estrogen paradox will set the stage for the identification of additional therapeutic targets for this disease.
Collapse
Affiliation(s)
- Joshua P Dignam
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Smriti Sharma
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Ioannis Stasinopoulos
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| |
Collapse
|
8
|
Zuo Y, Li B, Gao M, Xiong R, He R, Li N, Geng Q. Novel insights and new therapeutic potentials for macrophages in pulmonary hypertension. Respir Res 2024; 25:147. [PMID: 38555425 PMCID: PMC10981837 DOI: 10.1186/s12931-024-02772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
Inflammation and immune processes underlie pulmonary hypertension progression. Two main different activated phenotypes of macrophages, classically activated M1 macrophages and alternatively activated M2 macrophages, are both involved in inflammatory processes related to pulmonary hypertension. Recent advances suggest that macrophages coordinate interactions among different proinflammatory and anti-inflammatory mediators, and other cellular components such as smooth muscle cells and fibroblasts. In this review, we summarize the current literature on the role of macrophages in the pathogenesis of pulmonary hypertension, including the origin of pulmonary macrophages and their response to triggers of pulmonary hypertension. We then discuss the interactions among macrophages, cytokines, and vascular adventitial fibroblasts in pulmonary hypertension, as well as the potential therapeutic benefits of macrophages in this disease. Identifying the critical role of macrophages in pulmonary hypertension will contribute to a comprehensive understanding of this pathophysiological abnormality, and may provide new perspectives for pulmonary hypertension management.
Collapse
Affiliation(s)
- Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Boyang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Minglang Gao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
9
|
Bridges J, Ramirez-Guerrero JA, Rosa-Garrido M. Gender-specific genetic and epigenetic signatures in cardiovascular disease. Front Cardiovasc Med 2024; 11:1355980. [PMID: 38529333 PMCID: PMC10962446 DOI: 10.3389/fcvm.2024.1355980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/13/2024] [Indexed: 03/27/2024] Open
Abstract
Cardiac sex differences represent a pertinent focus in pursuit of the long-awaited goal of personalized medicine. Despite evident disparities in the onset and progression of cardiac pathology between sexes, historical oversight has led to the neglect of gender-specific considerations in the treatment of patients. This oversight is attributed to a predominant focus on male samples and a lack of sex-based segregation in patient studies. Recognizing these sex differences is not only relevant to the treatment of cisgender individuals; it also holds paramount importance in addressing the healthcare needs of transgender patients, a demographic that is increasingly prominent in contemporary society. In response to these challenges, various agencies, including the National Institutes of Health, have actively directed their efforts toward advancing our comprehension of this phenomenon. Epigenetics has proven to play a crucial role in understanding sex differences in both healthy and disease states within the heart. This review presents a comprehensive overview of the physiological distinctions between males and females during the development of various cardiac pathologies, specifically focusing on unraveling the genetic and epigenetic mechanisms at play. Current findings related to distinct sex-chromosome compositions, the emergence of gender-biased genetic variations, and variations in hormonal profiles between sexes are highlighted. Additionally, the roles of DNA methylation, histone marks, and chromatin structure in mediating pathological sex differences are explored. To inspire further investigation into this crucial subject, we have conducted global analyses of various epigenetic features, leveraging data previously generated by the ENCODE project.
Collapse
Affiliation(s)
| | | | - Manuel Rosa-Garrido
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
10
|
Kostyunina DS, Pakhomov NV, Jouida A, Dillon E, Baugh JA, McLoughlin P. Transcriptomics and proteomics revealed sex differences in human pulmonary microvascular endothelial cells. Physiol Genomics 2024; 56:194-220. [PMID: 38047313 DOI: 10.1152/physiolgenomics.00051.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/09/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023] Open
Abstract
Marked sexual dimorphism is displayed in the onset and progression of pulmonary hypertension (PH). Females more commonly develop pulmonary arterial hypertension, yet females with pulmonary arterial hypertension and other types of PH have better survival than males. Pulmonary microvascular endothelial cells play a crucial role in pulmonary vascular remodeling and increased pulmonary vascular resistance in PH. Given this background, we hypothesized that there are sex differences in the pulmonary microvascular endothelium basally and in response to hypoxia that are independent of the sex hormone environment. Human pulmonary microvascular endothelial cells (HPMECs) from healthy male and female donors, cultured under physiological shear stress, were analyzed using RNA sequencing and label-free quantitative proteomics. Gene set enrichment analysis identified a number of sex-different pathways in both normoxia and hypoxia, including pathways that regulate cell proliferation. In vitro, the rate of proliferation in female HPMECs was lower than in male HPMECs, a finding that supports the omics results. Interestingly, thrombospondin-1, an inhibitor of proliferation, was more highly expressed in female cells than in male cells. These results demonstrate, for the first time, important differences between female and male HPMECs that persist in the absence of sex hormone differences and identify novel pathways for further investigation that may contribute to sexual dimorphism in pulmonary hypertensive diseases.NEW & NOTEWORTHY There is marked sexual dimorphism in the development and progression of pulmonary hypertension. We show differences in RNA and protein expression between female and male human pulmonary microvascular endothelial cells grown under conditions of physiological shear stress, which identify sex-different cellular pathways both in normoxia and hypoxia. Importantly, these differences were detected in the absence of sex hormone differences. The pathways identified may provide novel targets for the development of sex-specific therapies.
Collapse
Affiliation(s)
- Daria S Kostyunina
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Nikolai V Pakhomov
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Amina Jouida
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Eugene Dillon
- Conway Institute, University College Dublin, Dublin, Ireland
| | - John A Baugh
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Paul McLoughlin
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Alinaghi S, Mohseni M, Fattahi Z, Beheshtian M, Ghodratpour F, Zare Ashrafi F, Arzhangi S, Jalalvand K, Najafipour R, Khorram Khorshid HR, Kahrizi K, Najmabadi H. Genetic Analysis of 27 Y-STR Haplotypes in 11 Iranian Ethnic Groups. ARCHIVES OF IRANIAN MEDICINE 2024; 27:79-88. [PMID: 38619031 PMCID: PMC11017261 DOI: 10.34172/aim.2024.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND The study of Y-chromosomal variations provides valuable insights into male susceptibility in certain diseases like cardiovascular disease (CVD). In this study, we analyzed paternal lineage in different Iranian ethnic groups, not only to identify developing medical etiology, but also to pave the way for gender-specific targeted strategies and personalized medicine in medical genetic research studies. METHODS The diversity of eleven Iranian ethnic groups was studied using 27 Y-chromosomal short tandem repeat (Y-STR) haplotypes from Y-filer® Plus kit. Analysis of molecular variance (AMOVA) based on pair-wise RST along with multidimensional scaling (MDS) calculation and Network phylogenic analysis was employed to quantify the differences between 503 unrelated individuals from each ethnicity. RESULTS Results from AMOVA calculation confirmed that Gilaks and Azeris showed the largest genetic distance (RST=0.35434); however, Sistanis and Lurs had the smallest considerable genetic distance (RST=0.00483) compared to other ethnicities. Although Azeris had a considerable distance from other ethnicities, they were still close to Turkmens. MDS analysis of ethnic groups gave the indication of lack of similarity between different ethnicities. Besides, network phylogenic analysis demonstrated insignificant clustering between samples. CONCLUSION The AMOVA analysis results explain that the close distance of Azeris and Turkmens may be the effect of male-dominant expansions across Central Asia that contributed to historical and demographics of populations in the region. Insignificant differences in network analysis could be the consequence of high mutation events that happened in the Y-STR regions over the years. Considering the ethnic group affiliations in medical research, our results provided an understanding and characterization of Iranian male population for future medical and population genetics studies.
Collapse
Affiliation(s)
- Somayeh Alinaghi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Ghodratpour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farzane Zare Ashrafi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Khadijeh Jalalvand
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Najafipour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
12
|
Wits M, Becher C, de Man F, Sanchez-Duffhues G, Goumans MJ. Sex-biased TGFβ signalling in pulmonary arterial hypertension. Cardiovasc Res 2023; 119:2262-2277. [PMID: 37595264 PMCID: PMC10597641 DOI: 10.1093/cvr/cvad129] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare cardiovascular disorder leading to pulmonary hypertension and, often fatal, right heart failure. Sex differences in PAH are evident, which primarily presents with a female predominance and increased male severity. Disturbed signalling of the transforming growth factor-β (TGFβ) family and gene mutations in the bone morphogenetic protein receptor 2 (BMPR2) are risk factors for PAH development, but how sex-specific cues affect the TGFβ family signalling in PAH remains poorly understood. In this review, we aim to explore the sex bias in PAH by examining sex differences in the TGFβ signalling family through mechanistical and translational evidence. Sex hormones including oestrogens, progestogens, and androgens, can determine the expression of receptors (including BMPR2), ligands, and soluble antagonists within the TGFβ family in a tissue-specific manner. Furthermore, sex-related genetic processes, i.e. Y-chromosome expression and X-chromosome inactivation, can influence the TGFβ signalling family at multiple levels. Given the clinical and mechanistical similarities, we expect that the conclusions arising from this review may apply also to hereditary haemorrhagic telangiectasia (HHT), a rare vascular disorder affecting the TGFβ signalling family pathway. In summary, we anticipate that investigating the TGFβ signalling family in a sex-specific manner will contribute to further understand the underlying processes leading to PAH and likely HHT.
Collapse
Affiliation(s)
- Marius Wits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Clarissa Becher
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Frances de Man
- Department of Pulmonary Medicine, Amsterdam University Medical Center (UMC) (Vrije Universiteit), 1081 HV Amsterdam, The Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
13
|
Khassafi F, Chelladurai P, Valasarajan C, Nayakanti SR, Martineau S, Sommer N, Yokokawa T, Boucherat O, Kamal A, Kiely DG, Swift AJ, Alabed S, Omura J, Breuils-Bonnet S, Kuenne C, Potus F, Günther S, Savai R, Seeger W, Looso M, Lawrie A, Zaugg JB, Tello K, Provencher S, Bonnet S, Pullamsetti SS. Transcriptional profiling unveils molecular subgroups of adaptive and maladaptive right ventricular remodeling in pulmonary hypertension. NATURE CARDIOVASCULAR RESEARCH 2023; 2:917-936. [PMID: 39196250 PMCID: PMC11358157 DOI: 10.1038/s44161-023-00338-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/25/2023] [Indexed: 08/29/2024]
Abstract
Right ventricular (RV) function is critical to prognosis in all forms of pulmonary hypertension. Here we perform molecular phenotyping of RV remodeling by transcriptome analysis of RV tissue obtained from 40 individuals, and two animal models of RV dysfunction of both sexes. Our unsupervised clustering analysis identified 'early' and 'late' subgroups within compensated and decompensated states, characterized by the expression of distinct signaling pathways, while fatty acid metabolism and estrogen response appeared to underlie sex-specific differences in RV adaptation. The circulating levels of several extracellular matrix proteins deregulated in decompensated RV subgroups were assessed in two independent cohorts of individuals with pulmonary arterial hypertension, revealing that NID1, C1QTNF1 and CRTAC1 predicted the development of a maladaptive RV state, as defined by magnetic resonance imaging parameters, and were associated with worse clinical outcomes. Our study provides a resource for subphenotyping RV states, identifying state-specific biomarkers, and potential therapeutic targets for RV dysfunction.
Collapse
Affiliation(s)
- Fatemeh Khassafi
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, Giessen, Germany
| | - Prakash Chelladurai
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, Giessen, Germany
| | - Chanil Valasarajan
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, Giessen, Germany
| | | | - Sandra Martineau
- Pulmonary Hypertension and Vascular Biology Research Group of Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec, Canada
| | - Natascha Sommer
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University, Giessen, Germany
| | - Tetsuro Yokokawa
- Pulmonary Hypertension and Vascular Biology Research Group of Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec, Canada
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Olivier Boucherat
- Pulmonary Hypertension and Vascular Biology Research Group of Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec, Canada
| | - Aryan Kamal
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - David G Kiely
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- NIHR Biomedical Research Center, Sheffield, UK
| | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- NIHR Biomedical Research Center, Sheffield, UK
| | - Samer Alabed
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- NIHR Biomedical Research Center, Sheffield, UK
| | - Junichi Omura
- Pulmonary Hypertension and Vascular Biology Research Group of Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec, Canada
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension and Vascular Biology Research Group of Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec, Canada
| | - Carsten Kuenne
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Francois Potus
- Pulmonary Hypertension and Vascular Biology Research Group of Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec, Canada
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University, Giessen, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University, Giessen, Germany
| | - Mario Looso
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Allan Lawrie
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Judith B Zaugg
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Khodr Tello
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University, Giessen, Germany
| | - Steeve Provencher
- Pulmonary Hypertension and Vascular Biology Research Group of Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension and Vascular Biology Research Group of Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec, Canada.
| | - Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, Giessen, Germany.
- Institute for Lung Health (ILH), Justus-Liebig University, Giessen, Germany.
| |
Collapse
|
14
|
Wiese CB, Avetisyan R, Reue K. The impact of chromosomal sex on cardiometabolic health and disease. Trends Endocrinol Metab 2023; 34:652-665. [PMID: 37598068 PMCID: PMC11090013 DOI: 10.1016/j.tem.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/21/2023]
Abstract
Many aspects of metabolism are sex-biased, from gene expression in metabolic tissues to the prevalence and presentation of cardiometabolic diseases. The influence of hormones produced by male and female gonads has been widely documented, but recent studies have begun to elucidate the impact of genetic sex (XX or XY chromosomes) on cellular and organismal metabolism. XX and XY cells have differential gene dosage conferred by specific genes that escape X chromosome inactivation or the presence of Y chromosome genes that are absent from XX cells. Studies in mouse models that dissociate chromosomal and gonadal sex have uncovered mechanisms for sex-biased epigenetic, transcriptional, and post-transcriptional regulation of gene expression in conditions such as obesity, atherosclerosis, pulmonary hypertension, autoimmune disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Carrie B Wiese
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Rozeta Avetisyan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
15
|
Wei Y, Zhao H, Kalionis B, Huai X, Hu X, Wu W, Jiang R, Gong S, Wang L, Liu J, Xia S, Yuan P, Zhao Q. The Impact of Abnormal Lipid Metabolism on the Occurrence Risk of Idiopathic Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:14280. [PMID: 37762581 PMCID: PMC10532109 DOI: 10.3390/ijms241814280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The aim was to determine whether lipid molecules can be used as potential biomarkers for idiopathic pulmonary arterial hypertension (IPAH), providing important reference value for early diagnosis and treatment. Liquid chromatography-mass spectrometry-based lipidomic assays allow for the simultaneous detection of a large number of lipids. In this study, lipid profiling was performed on plasma samples from 69 IPAH patients and 30 healthy controls to compare the levels of lipid molecules in the 2 groups of patients, and Cox regression analysis was used to identify meaningful metrics, along with receiver operator characteristic curves to assess the ability of the lipid molecules to predict the risk of disease in patients. Among the 14 lipid subclasses tested, 12 lipid levels were significantly higher in IPAH patients than in healthy controls. Free fatty acids (FFA) and monoacylglycerol (MAG) were significantly different between IPAH patients and healthy controls. Logistic regression analysis showed that FFA (OR: 1.239, 95%CI: 1.101, 1.394, p < 0.0001) and MAG (OR: 3.711, 95%CI: 2.214, 6.221, p < 0.001) were independent predictors of IPAH development. Among the lipid subclasses, FFA and MAG have potential as biomarkers for predicting the pathogenesis of IPAH, which may improve the early diagnosis of IPAH.
Collapse
Affiliation(s)
- Yaqin Wei
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, China;
| | - Hui Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women’s Hospital, Parkville 3052, Australia;
| | - Xu Huai
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaoyi Hu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenhui Wu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
| | - Sugang Gong
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
| | - Jinming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
| | - Shijin Xia
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, China;
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
| | - Qinhua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
| |
Collapse
|
16
|
Ye Y, Xu Q, Wuren T. Inflammation and immunity in the pathogenesis of hypoxic pulmonary hypertension. Front Immunol 2023; 14:1162556. [PMID: 37215139 PMCID: PMC10196112 DOI: 10.3389/fimmu.2023.1162556] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Hypoxic pulmonary hypertension (HPH) is a complicated vascular disorder characterized by diverse mechanisms that lead to elevated blood pressure in pulmonary circulation. Recent evidence indicates that HPH is not simply a pathological syndrome but is instead a complex lesion of cellular metabolism, inflammation, and proliferation driven by the reprogramming of gene expression patterns. One of the key mechanisms underlying HPH is hypoxia, which drives immune/inflammation to mediate complex vascular homeostasis that collaboratively controls vascular remodeling in the lungs. This is caused by the prolonged infiltration of immune cells and an increase in several pro-inflammatory factors, which ultimately leads to immune dysregulation. Hypoxia has been associated with metabolic reprogramming, immunological dysregulation, and adverse pulmonary vascular remodeling in preclinical studies. Many animal models have been developed to mimic HPH; however, many of them do not accurately represent the human disease state and may not be suitable for testing new therapeutic strategies. The scientific understanding of HPH is rapidly evolving, and recent efforts have focused on understanding the complex interplay among hypoxia, inflammation, and cellular metabolism in the development of this disease. Through continued research and the development of more sophisticated animal models, it is hoped that we will be able to gain a deeper understanding of the underlying mechanisms of HPH and implement more effective therapies for this debilitating disease.
Collapse
Affiliation(s)
- Yi Ye
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Qinghai-Utah Key Laboratory of High-Altitude Medicine, Xining, China
| | - Qiying Xu
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Qinghai-Utah Key Laboratory of High-Altitude Medicine, Xining, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Qinghai-Utah Key Laboratory of High-Altitude Medicine, Xining, China
| |
Collapse
|
17
|
Conlon FL, Arnold AP. Sex chromosome mechanisms in cardiac development and disease. NATURE CARDIOVASCULAR RESEARCH 2023; 2:340-350. [PMID: 37808586 PMCID: PMC10558115 DOI: 10.1038/s44161-023-00256-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/13/2023] [Indexed: 10/10/2023]
Abstract
Many human diseases, including cardiovascular disease, show differences between men and women in pathology and treatment outcomes. In the case of cardiac disease, sex differences are exemplified by differences in the frequency of specific types of congenital and adult-onset heart disease. Clinical studies have suggested that gonadal hormones are a factor in sex bias. However, recent research has shown that gene and protein networks under non-hormonal control also account for cardiac sex differences. In this review, we describe the sex chromosome pathways that lead to sex differences in the development and function of the heart and highlight how these findings affect future care and treatment of cardiac disease.
Collapse
Affiliation(s)
- Frank L Conlon
- Departments of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
18
|
Reddy KD, Oliver BGG. Sexual dimorphism in chronic respiratory diseases. Cell Biosci 2023; 13:47. [PMID: 36882807 PMCID: PMC9993607 DOI: 10.1186/s13578-023-00998-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Sex differences in susceptibility, severity, and progression are prevalent for various diseases in multiple organ systems. This phenomenon is particularly apparent in respiratory diseases. Asthma demonstrates an age-dependent pattern of sexual dimorphism. However, marked differences between males and females exist in other pervasive conditions such as chronic obstructive pulmonary disease (COPD) and lung cancer. The sex hormones estrogen and testosterone are commonly considered the primary factors causing sexual dimorphism in disease. However, how they contribute to differences in disease onset between males and females remains undefined. The sex chromosomes are an under-investigated fundamental form of sexual dimorphism. Recent studies highlight key X and Y-chromosome-linked genes that regulate vital cell processes and can contribute to disease-relevant mechanisms. This review summarises patterns of sex differences in asthma, COPD and lung cancer, highlighting physiological mechanisms causing the observed dimorphism. We also describe the role of the sex hormones and present candidate genes on the sex chromosomes as potential factors contributing to sexual dimorphism in disease.
Collapse
Affiliation(s)
- Karosham Diren Reddy
- Respiratory and Cellular Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia.
- School of Life Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Brian Gregory George Oliver
- Respiratory and Cellular Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia
- School of Life Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
19
|
Rao R, Chan SY. A dUTY to Protect: Addressing "Y" We See Sex Differences in Pulmonary Hypertension. Am J Respir Crit Care Med 2022; 206:137-139. [PMID: 35549630 PMCID: PMC9887418 DOI: 10.1164/rccm.202204-0653ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Rashmi Rao
- Department of Medicine University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Stephen Y Chan
- Department of Medicine University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Cunningham CM, Li M, Ruffenach G, Doshi M, Aryan L, Hong J, Park J, Hrncir H, Medzikovic L, Umar S, Arnold AP, Eghbali M. Y-Chromosome Gene, Uty, Protects Against Pulmonary Hypertension by Reducing Proinflammatory Chemokines. Am J Respir Crit Care Med 2022; 206:186-196. [PMID: 35504005 PMCID: PMC9887415 DOI: 10.1164/rccm.202110-2309oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rationale: Idiopathic pulmonary arterial hypertension (PAH) is a terminal pulmonary vascular disease characterized by increased pressure, right ventricular failure, and death. PAH exhibits a striking sex bias and is up to four times more prevalent in females. Understanding the molecular basis behind sex differences could help uncover novel therapies. Objectives: We previously discovered that the Y chromosome is protective against hypoxia-induced experimental pulmonary hypertension (PH), which may contribute to sex differences in PAH. Here, we identify the gene responsible for Y-chromosome protection, investigate key downstream autosomal genes, and demonstrate a novel preclinical therapy. Methods: To test the effect of Y-chromosome genes on PH development, we knocked down each Y-chromosome gene expressed in the lung by means of intratracheal instillation of siRNA in gonadectomized male mice exposed to hypoxia and monitored changes in right ventricular and pulmonary artery hemodynamics. We compared the lung transcriptome of Uty knockdown mouse lungs to those of male and female PAH patient lungs to identify common downstream pathogenic chemokines and tested the effects of these chemokines on human pulmonary artery endothelial cells. We further inhibited the activity of these chemokines in two preclinical pulmonary hypertension models to test the therapeutic efficacy. Measurements and Main Results: Knockdown of the Y-chromosome gene Uty resulted in more severe PH measured by increased right ventricular pressure and decreased pulmonary artery acceleration time. RNA sequencing revealed an increase in proinflammatory chemokines Cxcl9 and Cxcl10 as a result of Uty knockdown. We found CXCL9 and CXCL10 significantly upregulated in human PAH lungs, with more robust upregulation in females with PAH. Treatment of human pulmonary artery endothelial cells with CXCL9 and CXCL10 triggered apoptosis. Inhibition of Cxcl9 and Cxcl10 expression in male Uty knockout mice and CXCL9 and CXCL10 activity in female rats significantly reduced PH severity. Conclusions:Uty is protective against PH. Reduction of Uty expression results in increased expression of proinflammatory chemokines Cxcl9 and Cxcl10, which trigger endothelial cell death and PH. Inhibition of CLXC9 and CXLC10 rescues PH development in multiple experimental models.
Collapse
Affiliation(s)
- Christine M. Cunningham
- Division of Molecular Medicine, Department of Anesthesiology,,School of Medicine, Stanford University, Stanford, California;,VA Palo Alto Health Care System, Palo Alto, California; and
| | - Min Li
- Division of Molecular Medicine, Department of Anesthesiology
| | | | - Mitali Doshi
- Division of Molecular Medicine, Department of Anesthesiology,,University of Massachusetts Medical School, Worcester, Massachusetts
| | - Laila Aryan
- Division of Molecular Medicine, Department of Anesthesiology
| | - Jason Hong
- Division of Molecular Medicine, Department of Anesthesiology,,Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - John Park
- Division of Molecular Medicine, Department of Anesthesiology
| | - Haley Hrncir
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, California
| | | | - Soban Umar
- Division of Molecular Medicine, Department of Anesthesiology
| | - Arthur P. Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, California
| | | |
Collapse
|
21
|
McShane A, Mole SE. Sex bias and omission exists in Batten disease research: Systematic review of the use of animal disease models. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166489. [PMID: 35840041 DOI: 10.1016/j.bbadis.2022.166489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Batten disease, also known as the neuronal ceroid lipofuscinoses (NCL), is a group of inherited neurodegenerative disorders mainly affecting children. NCL are characterised by seizures, loss of vision, and progressive motor and cognitive decline, and are the most common form of childhood dementia. At least one type of Batten disease and three types of mouse disease models show sex differences in their severity and progression. Scientific research has a recognised prevalent omission of female animals when using model organisms for basic and preclinical research. Sex bias and omission in research using animal models of Batten disease may affect understanding and treatment development. We conducted a systematic review of research publications since the first identification of NCL genes in 1995, identifying those using animal models. We found that <10 % of these papers considered sex as a biological variable. There was consistent omission of female model organisms in studies. This varied over the period but is improving; one third of papers considered sex as a biological variable in the last decade, and there is a noticeable increase in the last 5 years. The wide-ranging reasons for this published sex bias are discussed, including misunderstanding regarding oestrogen, impact on sample size, and the underrepresentation of female scientists. Their implications for Batten disease and future research are considered. Recommendations going forward support requirements by funders for consideration of sex in all stages of experimental design and implementation, and a role for publishers, families and others with a particular interest in Batten disease.
Collapse
Affiliation(s)
- Annie McShane
- Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology and Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK.
| |
Collapse
|
22
|
Cīrulis A, Hansson B, Abbott JK. Sex-limited chromosomes and non-reproductive traits. BMC Biol 2022; 20:156. [PMID: 35794589 PMCID: PMC9261002 DOI: 10.1186/s12915-022-01357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Sex chromosomes are typically viewed as having originated from a pair of autosomes, and differentiated as the sex-limited chromosome (e.g. Y) has degenerated by losing most genes through cessation of recombination. While often thought that degenerated sex-limited chromosomes primarily affect traits involved in sex determination and sex cell production, accumulating evidence suggests they also influence traits not sex-limited or directly involved in reproduction. Here, we provide an overview of the effects of sex-limited chromosomes on non-reproductive traits in XY, ZW or UV sex determination systems, and discuss evolutionary processes maintaining variation at sex-limited chromosomes and molecular mechanisms affecting non-reproductive traits.
Collapse
Affiliation(s)
- Aivars Cīrulis
- Department of Biology, Lund University, 223 62, Lund, Sweden.
| | - Bengt Hansson
- Department of Biology, Lund University, 223 62, Lund, Sweden
| | | |
Collapse
|
23
|
Abstract
Sex is a key risk factor for many types of cardiovascular disease. It is imperative to understand the mechanisms underlying sex differences to devise optimal preventive and therapeutic approaches for all individuals. Both biological sex (determined by sex chromosomes and gonadal hormones) and gender (social and cultural behaviors associated with femininity or masculinity) influence differences between men and women in disease susceptibility and pathology. Here, we focus on the application of experimental mouse models that elucidate the influence of 2 components of biological sex-sex chromosome complement (XX or XY) and gonad type (ovaries or testes). These models have revealed that in addition to well-known effects of gonadal hormones, sex chromosome complement influences cardiovascular risk factors, such as plasma cholesterol levels and adiposity, as well as the development of atherosclerosis and pulmonary hypertension. One mechanism by which sex chromosome dosage influences cardiometabolic traits is through sex-biased expression of X chromosome genes that escape X inactivation. These include chromatin-modifying enzymes that regulate gene expression throughout the genome. The identification of factors that determine sex-biased gene expression and cardiometabolic traits will expand our mechanistic understanding of cardiovascular disease processes and provide insight into sex differences that remain throughout the lifespan as gonadal hormone levels alter with age.
Collapse
Affiliation(s)
- Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA
- Department of Medicine, David Geffen School of Medicine at UCLA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Carrie B. Wiese
- Department of Human Genetics, David Geffen School of Medicine at UCLA
| |
Collapse
|
24
|
Predescu DN, Mokhlesi B, Predescu SA. The Impact of Sex Chromosomes in the Sexual Dimorphism of Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:582-594. [PMID: 35114193 PMCID: PMC8978209 DOI: 10.1016/j.ajpath.2022.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 02/09/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a sex-biased disease with a poorly understood female prevalence. Emerging research suggests that nonhormonal factors, such as the XX or XY sex chromosome complement and sex bias in gene expression, may also lead to sex-based differences in PAH incidence, penetrance, and progression. Typically, one of females' two X chromosomes is epigenetically silenced to offer a gender-balanced gene expression. Recent data demonstrate that the long noncoding RNA X-inactive specific transcript, essential for X chromosome inactivation and dosage compensation of X-linked gene expression, shows elevated levels in female PAH lung specimens compared with controls. This molecular event leads to incomplete inactivation of the females' second X chromosome, abnormal expression of X-linked gene(s) involved in PAH pathophysiology, and a pulmonary artery endothelial cell (PAEC) proliferative phenotype. Moreover, the pathogenic proliferative p38 mitogen-activated protein kinase/ETS transcription factor ELK1 (Elk1)/cFos signaling is mechanistically linked to the sexually dimorphic proliferative response of PAECs in PAH. Apprehending the complicated relationship between long noncoding RNA X-inactive specific transcript and X-linked genes and how this relationship integrates into a sexually dimorphic proliferation of PAECs and PAH sex paradox remain challenging. We highlight herein new findings related to how the sex chromosome complement and sex-differentiated epigenetic mechanisms to control gene expression are decisive players in the sexual dimorphism of PAH. Pharmacologic interventions in the light of the newly elucidated mechanisms are discussed.
Collapse
Affiliation(s)
- Dan N Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois.
| | - Babak Mokhlesi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Sanda A Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
25
|
Chai T, Qiu C, Xian Z, Lu Y, Zeng Y, Li J. A narrative review of research advances in hypoxic pulmonary hypertension. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:230. [PMID: 35280399 PMCID: PMC8908157 DOI: 10.21037/atm-22-259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/18/2022] [Indexed: 11/23/2022]
Abstract
Background and Objective Hypoxic pulmonary hypertension (HPH) is a pathological syndrome characterized by pulmonary vasoconstriction and pulmonary vascular remodeling caused by hypoxia, which eventually leads to right heart failure or death. There are 2 stages of onset of HPH: hypoxic pulmonary vasoconstriction (HPV) and hypoxic pulmonary vascular remodeling (HPVR). It is an important pathophysiological link in the pathogenesis of chronic obstructive pulmonary disease (COPD) and chronic mountain sickness (CMS), and its severity is closely related to the course and prognosis of COPD and CMS. However, there is a lack of systematic review on the diagnosis, pathogenesis and treatment of HPH. The objective of this paper is to review the diagnosis, pathogenesis, treatment of HPH. Methods In this paper, the method of literature review is adopted to obtain the information about HPH. Based on the literature, comprehensive and systematic review is made. The diagnosis, pathogenesis, treatment of HPH are summarized. Key Content and Findings Right heart catheterization is the gold standard for diagnosing HPH. Hypoxia-inducible factor, oxidative stress, metal metabolism, ion channel, inflammatory cytokines, cell apoptosis and vascular factors are the main pathogenesis of HPH. The treatment of HPH includes long-term oxygen therapy, statins, prostaglandins, phosphodiesterase inhibitor and ET receptor antagonists. Conclusions Although great progress has been made in the pathophysiology and molecular biology of HPH, it is still unclear which factors play a leading role in the pathogenesis of HPH, and no breakthrough has been made in the treatment of HPH. It is believed that the specific mechanism will be revealed as the research continues, and earlier diagnosis and the development of more effective targeted drugs will be the focus of future research.
Collapse
Affiliation(s)
- Tianci Chai
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Chen Qiu
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Zhihong Xian
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Yongzhen Lu
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Yuwei Zeng
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Jie Li
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| |
Collapse
|
26
|
Kelly NJ, Chan SY. Pulmonary Arterial Hypertension: Emerging Principles of Precision Medicine across Basic Science to Clinical Practice. Rev Cardiovasc Med 2022; 23:378. [PMID: 36875282 PMCID: PMC9980296 DOI: 10.31083/j.rcm2311378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an enigmatic and deadly vascular disease with no known cure. Recent years have seen rapid advances in our understanding of the molecular underpinnings of PAH, with an expanding knowledge of the molecular, cellular, and systems-level drivers of disease that are being translated into novel therapeutic modalities. Simultaneous advances in clinical technology have led to a growing list of tools with potential application to diagnosis and phenotyping. Guided by fundamental biology, these developments hold the potential to usher in a new era of personalized medicine in PAH with broad implications for patient management and great promise for improved outcomes.
Collapse
Affiliation(s)
- Neil J Kelly
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
27
|
Grimm SL, Dong X, Zhang Y, Carisey AF, Arnold AP, Moorthy B, Coarfa C, Lingappan K. Effect of sex chromosomes versus hormones in neonatal lung injury. JCI Insight 2021; 6:e146863. [PMID: 34061778 PMCID: PMC8410054 DOI: 10.1172/jci.insight.146863] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
The main mechanisms underlying sexually dimorphic outcomes in neonatal lung injury are unknown. We tested the hypothesis that hormone- or sex chromosome–mediated mechanisms interact with hyperoxia exposure to impact injury and repair in the neonatal lung. To distinguish sex differences caused by gonadal hormones versus sex chromosome complement (XX versus XY), we used the Four Core Genotypes (FCG) mice and exposed them to hyperoxia (95% FiO2, P1–P4: saccular stage) or room air. This model generates XX and XY mice that each have either testes (with Sry, XXM, or XYM) or ovaries (without Sry, XXF, or XYF). Lung alveolarization and vascular development were more severely impacted in XYM and XYF compared with XXF and XXM mice. Cell cycle–related pathways were enriched in the gonadal or chromosomal females, while muscle-related pathways were enriched in the gonadal males, and immune-response–related pathways were enriched in chromosomal males. Female gene signatures showed a negative correlation with human patients who developed bronchopulmonary dysplasia (BPD) or needed oxygen therapy at 28 days. These results demonstrate that chromosomal sex — and not gonadal sex — impacted the response to neonatal hyperoxia exposure. The female sex chromosomal complement was protective and could mediate sex-specific differences in the neonatal lung injury.
Collapse
Affiliation(s)
- Sandra L Grimm
- Molecular and Cellular Biology Department.,Center for Precision Environmental Health, and
| | - Xiaoyu Dong
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Yuhao Zhang
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Alexandre F Carisey
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Arthur P Arnold
- Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Bhagavatula Moorthy
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Cristian Coarfa
- Molecular and Cellular Biology Department.,Center for Precision Environmental Health, and.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Krithika Lingappan
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
28
|
Potus F, Frump AL, Umar S, R. Vanderpool R, Al Ghouleh I, Lai YC. Recent advancements in pulmonary arterial hypertension and right heart failure research: overview of selected abstracts from ATS2020 and emerging COVID-19 research. Pulm Circ 2021; 11:20458940211037274. [PMID: 34434543 PMCID: PMC8381443 DOI: 10.1177/20458940211037274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023] Open
Abstract
Each year the American Thoracic Society (ATS) Conference brings together scientists who conduct basic, translational and clinical research to present on the recent advances in the field of respirology. Due to the Coronavirus Disease of 2019 (COVID-19) pandemic, the ATS2020 Conference was held online in a series of virtual meetings. In this review, we focus on the breakthroughs in pulmonary hypertension research. We have selected 11 of the best basic science abstracts which were presented at the ATS2020 Assembly on Pulmonary Circulation mini-symposium "What's New in Pulmonary Arterial Hypertension (PAH) and Right Ventricular (RV) Signaling: Lessons from the Best Abstracts," reflecting the current state of the art and associated challenges in PH. Particular emphasis is placed on understanding the mechanisms underlying RV failure, the regulation of inflammation, and the novel therapeutic targets that emerged from preclinical research. The pathologic interactions between pulmonary hypertension, right ventricular function and COVID-19 are also discussed.
Collapse
Affiliation(s)
- Francois Potus
- Pulmonary Hypertension Research Group, Centre de Recherche de
l'Institut Universitaire de Cardiologie et Pneumologie de Quebec City, Quebec,
Canada
| | - Andrea L. Frump
- Division of Pulmonary, Critical Care, Sleep and Occupational
Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Soban Umar
- Department of Anesthesiology and Perioperative Medicine, Division of
Molecular Medicine, David Geffen School of Medicine at University of California Los
Angeles, Los Angeles, CA, USA
| | - Rebecca R. Vanderpool
- Division of Translational and Regenerative Medicine, University of
Arizona, Tucson, AZ, USA
| | - Imad Al Ghouleh
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, and
Division of Cardiology, Department of Medicine, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
| | - Yen-Chun Lai
- Division of Pulmonary, Critical Care, Sleep and Occupational
Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
29
|
Qin S, Predescu D, Carman B, Patel P, Chen J, Kim M, Lahm T, Geraci M, Predescu SA. Up-Regulation of the Long Noncoding RNA X-Inactive-Specific Transcript and the Sex Bias in Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1135-1150. [PMID: 33836164 PMCID: PMC8176134 DOI: 10.1016/j.ajpath.2021.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a sex-biased disease. Increased expression and activity of the long-noncoding RNA X-inactive-specific transcript (Xist), essential for X-chromosome inactivation and dosage compensation of X-linked genes, may explain the sex bias of PAH. The present studies used a murine model of plexiform PAH, the intersectin-1s (ITSN) heterozygous knockout (KOITSN+/-) mouse transduced with an ITSN fragment (EHITSN) possessing endothelial cell proliferative activity, in conjunction with molecular, cell biology, biochemical, morphologic, and functional approaches. The data demonstrate significant sex-centered differences with regard to EHITSN-induced alterations in pulmonary artery remodeling, lung hemodynamics, and p38/ETS domain containing protein/c-Fos signaling, altogether leading to a more severe female lung PAH phenotype. Moreover, the long-noncoding RNA-Xist is up-regulated in the lungs of female EHITSN-KOITSN+/- mice compared with that in female wild-type mice, leading to sex-specific modulation of the X-linked gene ETS domain containing protein and its target, two molecular events also characteristic to female human PAH lung. More importantly, cyclin A1 expression in the S and G2/M phases of the cell cycle of synchronized pulmonary artery endothelial cells of female PAH patients is greater versus controls, suggesting functional hyperproliferation. Thus, Xist up-regulation leading to female pulmonary artery endothelial cell sexual dimorphic behavior may provide a better understanding of the origin of sex bias in PAH. Notably, the EHITSN-KOITSN+/- mouse is a unique experimental animal model of PAH that recapitulates most of the sexually dimorphic characteristics of human disease.
Collapse
Affiliation(s)
- Shanshan Qin
- Center for Genetic Medicine, Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Dan Predescu
- Center for Genetic Medicine, Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Brandon Carman
- Center for Genetic Medicine, Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Priyam Patel
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University, Chicago, Illinois
| | - Jiwang Chen
- Pulmonary Critical Care Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Miran Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Tim Lahm
- Health Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark Geraci
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University, Chicago, Illinois
| | - Sanda A Predescu
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University, Chicago, Illinois.
| |
Collapse
|
30
|
Sex and Gender Differences in Lung Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:227-258. [PMID: 34019273 DOI: 10.1007/978-3-030-68748-9_14] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sex differences in the anatomy and physiology of the respiratory system have been widely reported. These intrinsic sex differences have also been shown to modulate the pathophysiology, incidence, morbidity, and mortality of several lung diseases across the life span. In this chapter, we describe the epidemiology of sex differences in respiratory diseases including neonatal lung disease (respiratory distress syndrome, bronchopulmonary dysplasia) and pediatric and adult disease (including asthma, cystic fibrosis, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, lung cancer, lymphangioleiomyomatosis, obstructive sleep apnea, pulmonary arterial hypertension, and respiratory viral infections such as respiratory syncytial virus, influenza, and SARS-CoV-2). We also discuss the current state of research on the mechanisms underlying the observed sex differences in lung disease susceptibility and severity and the importance of considering both sex and gender variables in research studies' design and analysis.
Collapse
|
31
|
Bhargava A, Arnold AP, Bangasser DA, Denton KM, Gupta A, Hilliard Krause LM, Mayer EA, McCarthy M, Miller WL, Raznahan A, Verma R. Considering Sex as a Biological Variable in Basic and Clinical Studies: An Endocrine Society Scientific Statement. Endocr Rev 2021; 42:219-258. [PMID: 33704446 PMCID: PMC8348944 DOI: 10.1210/endrev/bnaa034] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 02/08/2023]
Abstract
In May 2014, the National Institutes of Health (NIH) stated its intent to "require applicants to consider sex as a biological variable (SABV) in the design and analysis of NIH-funded research involving animals and cells." Since then, proposed research plans that include animals routinely state that both sexes/genders will be used; however, in many instances, researchers and reviewers are at a loss about the issue of sex differences. Moreover, the terms sex and gender are used interchangeably by many researchers, further complicating the issue. In addition, the sex or gender of the researcher might influence study outcomes, especially those concerning behavioral studies, in both animals and humans. The act of observation may change the outcome (the "observer effect") and any experimental manipulation, no matter how well-controlled, is subject to it. This is nowhere more applicable than in physiology and behavior. The sex of established cultured cell lines is another issue, in addition to aneuploidy; chromosomal numbers can change as cells are passaged. Additionally, culture medium contains steroids, growth hormone, and insulin that might influence expression of various genes. These issues often are not taken into account, determined, or even considered. Issues pertaining to the "sex" of cultured cells are beyond the scope of this Statement. However, we will discuss the factors that influence sex and gender in both basic research (that using animal models) and clinical research (that involving human subjects), as well as in some areas of science where sex differences are routinely studied. Sex differences in baseline physiology and associated mechanisms form the foundation for understanding sex differences in diseases pathology, treatments, and outcomes. The purpose of this Statement is to highlight lessons learned, caveats, and what to consider when evaluating data pertaining to sex differences, using 3 areas of research as examples; it is not intended to serve as a guideline for research design.
Collapse
Affiliation(s)
- Aditi Bhargava
- Center for Reproductive Sciences, San Francisco, CA, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, CA, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Kate M Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Arpana Gupta
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lucinda M Hilliard Krause
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA
| | - Margaret McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Walter L Miller
- Center for Reproductive Sciences, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institutes of Mental Health, Intramural Research Program, Bethesda, MD, USA
| | - Ragini Verma
- Diffusion and Connectomics In Precision Healthcare Research (DiCIPHR) lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Kostyunina DS, McLoughlin P. Sex Dimorphism in Pulmonary Hypertension: The Role of the Sex Chromosomes. Antioxidants (Basel) 2021; 10:779. [PMID: 34068984 PMCID: PMC8156365 DOI: 10.3390/antiox10050779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
Pulmonary hypertension (PH) is a condition characterised by an abnormal elevation of pulmonary artery pressure caused by an increased pulmonary vascular resistance, frequently leading to right ventricular failure and reduced survival. Marked sexual dimorphism is observed in patients with pulmonary arterial hypertension, a form of pulmonary hypertension with a particularly severe clinical course. The incidence in females is 2-4 times greater than in males, although the disease is less severe in females. We review the contribution of the sex chromosomes to this sex dimorphism highlighting the impact of proteins, microRNAs and long non-coding RNAs encoded on the X and Y chromosomes. These genes are centrally involved in the cellular pathways that cause increased pulmonary vascular resistance including the production of reactive oxygen species, altered metabolism, apoptosis, inflammation, vasoconstriction and vascular remodelling. The interaction with genetic mutations on autosomal genes that cause heritable pulmonary arterial hypertension such as bone morphogenetic protein 2 (BMPR2) are examined. The mechanisms that can lead to differences in the expression of genes located on the X chromosomes between females and males are also reviewed. A better understanding of the mechanisms of sex dimorphism in this disease will contribute to the development of more effective therapies for both women and men.
Collapse
Affiliation(s)
| | - Paul McLoughlin
- Conway Institute, School of Medicine, University College Dublin, Dublin D04 V1W8, Ireland;
| |
Collapse
|
33
|
Hye T, Dwivedi P, Li W, Lahm T, Nozik-Grayck E, Stenmark KR, Ahsan F. Newer insights into the pathobiological and pharmacological basis of the sex disparity in patients with pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1025-L1037. [PMID: 33719549 DOI: 10.1152/ajplung.00559.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) affects more women than men, although affected females tend to survive longer than affected males. This sex disparity in PAH is postulated to stem from the diverse roles of sex hormones in disease etiology. In animal models, estrogens appear to be implicated not only in pathologic remodeling of pulmonary arteries, but also in protection against right ventricular (RV) hypertrophy. In contrast, the male sex hormone testosterone is associated with reduced survival in male animals, where it is associated with increased RV mass, volume, and fibrosis. However, it also has a vasodilatory effect on pulmonary arteries. Furthermore, patients of both sexes show varying degrees of response to current therapies for PAH. As such, there are many gaps and contradictions regarding PAH development, progression, and therapeutic interventions in male versus female patients. Many of these questions remain unanswered, which may be due in part to lack of effective experimental models that can consistently reproduce PAH pulmonary microenvironments in their sex-specific forms. This review article summarizes the roles of estrogens and related sex hormones, immunological and genetical differences, and the benefits and limitations of existing experimental tools to fill in gaps in our understanding of the sex-based variation in PAH development and progression. Finally, we highlight the potential of a new tissue chip-based model mimicking PAH-afflicted male and female pulmonary arteries to study the sex-based differences in PAH and to develop personalized therapies based on patient sex and responsiveness to existing and new drugs.
Collapse
Affiliation(s)
- Tanvirul Hye
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, Texas
| | - Pankaj Dwivedi
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, Missouri
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas
| | - Tim Lahm
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Eva Nozik-Grayck
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, Texas.,Department of Pharmaceutical and Biomedical Sciences, California Northstate University, Elk Grove, California
| |
Collapse
|
34
|
Takase T, Taniguchi M, Hirano Y, Nakazawa G, Miyazaki S, Iwanaga Y. Sex difference in pulmonary hypertension in the evaluation by exercise echocardiography. Pulm Circ 2021; 11:2045894020988453. [PMID: 33614017 PMCID: PMC7869067 DOI: 10.1177/2045894020988453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Male patients with pulmonary hypertension have poor survival than their female counterparts. Poor right ventricular function in men may be one of the major determinants of poor prognosis. This study aimed to investigate the difference in hemodynamics during exercise between men and women by exercise echocardiography. Consecutive patients with pulmonary hypertension who underwent right heart catheterization were enrolled, and survival was analyzed. In patients who underwent exercise echocardiography, the change in tricuspid regurgitation pressure gradient during exercise was calculated at multiple stages (low-, moderate-, and high-load exercise), and the mortality was also recorded. In a total of 93 patients, although there were no differences in pulmonary artery pressure and vascular resistance between sexes, male patients showed poor survival. In patients with exercise echocardiography, change in tricuspid regurgitation pressure gradient at low-load (25 W) exercise was significantly lower in men, although that at maximum-load exercise was not different between men and women. In the Kaplan-Meier analysis, in a median follow-up duration of 1760 days, male patients and those with lower change in tricuspid regurgitation pressure gradient at low-load exercise showed poorer survival (P = 0.002 and 0.026, respectively). In the Cox proportional hazards analysis, the change in tricuspid regurgitation pressure gradient at low-load exercise was independently associated with poor survival after adjustment for age and sex. In conclusion, a lower change in tricuspid regurgitation pressure gradient at low-load exercise was observed in male patients and was a prognostic marker, which may be associated, at least in part, with poorer prognosis in male patients with pulmonary hypertension.
Collapse
Affiliation(s)
- Toru Takase
- Faculty of Medicine, Division of Cardiology, Kindai University, Osakasayama, Japan
| | - Mitsugu Taniguchi
- Division of Cardiology, Osaka Pref. Saiseikai Tondabayashi Hospital, Tondabayashi, Japan
| | - Yutaka Hirano
- Faculty of Medicine, Division of Cardiology, Kindai University, Osakasayama, Japan
| | - Gaku Nakazawa
- Faculty of Medicine, Division of Cardiology, Kindai University, Osakasayama, Japan
| | - Shunichi Miyazaki
- Division of Cardiology, Osaka Pref. Saiseikai Tondabayashi Hospital, Tondabayashi, Japan
| | - Yoshitaka Iwanaga
- Faculty of Medicine, Division of Cardiology, Kindai University, Osakasayama, Japan.,Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
35
|
Arnold AP. Four Core Genotypes and XY* mouse models: Update on impact on SABV research. Neurosci Biobehav Rev 2020; 119:1-8. [PMID: 32980399 PMCID: PMC7736196 DOI: 10.1016/j.neubiorev.2020.09.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
The impact of two mouse models is reviewed, the Four Core Genotypes and XY* models. The models are useful for determining if the causes of sex differences in phenotypes are either hormonal or sex chromosomal, or both. Used together, the models also can distinguish between the effects of X or Y chromosome genes that contribute to sex differences in phenotypes. To date, the models have been used to uncover sex chromosome contributions to sex differences in a wide variety of phenotypes, including brain and behavior, autoimmunity and immunity, cardiovascular disease, metabolism, and Alzheimer's Disease. In some cases, use of the models has been a strategy leading to discovery of specific X or Y genes that protect from or exacerbate disease. Sex chromosome and hormonal factors interact, in some cases to reduce the effects of each other. Future progress will come from more extensive application of these models, and development of similar models in other species.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology & Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, UCLA, 610 Charles Young Drive South, Los Angeles, CA, 90095-7239, United States.
| |
Collapse
|
36
|
At the X-Roads of Sex and Genetics in Pulmonary Arterial Hypertension. Genes (Basel) 2020; 11:genes11111371. [PMID: 33233517 PMCID: PMC7699559 DOI: 10.3390/genes11111371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
Group 1 pulmonary hypertension (pulmonary arterial hypertension; PAH) is a rare disease characterized by remodeling of the small pulmonary arteries leading to progressive elevation of pulmonary vascular resistance, ultimately leading to right ventricular failure and death. Deleterious mutations in the serine-threonine receptor bone morphogenetic protein receptor 2 (BMPR2; a central mediator of bone morphogenetic protein (BMP) signaling) and female sex are known risk factors for the development of PAH in humans. In this narrative review, we explore the complex interplay between the BMP and estrogen signaling pathways, and the potentially synergistic mechanisms by which these signaling cascades increase the risk of developing PAH. A comprehensive understanding of these tangled pathways may reveal therapeutic targets to prevent or slow the progression of PAH.
Collapse
|
37
|
Zawia A, Arnold ND, West L, Pickworth JA, Turton H, Iremonger J, Braithwaite AT, Cañedo J, Johnston SA, Thompson AAR, Miller G, Lawrie A. Altered Macrophage Polarization Induces Experimental Pulmonary Hypertension and Is Observed in Patients With Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol 2020; 41:430-445. [PMID: 33147993 PMCID: PMC7752239 DOI: 10.1161/atvbaha.120.314639] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Supplemental Digital Content is available in the text. To determine whether global reduction of CD68 (cluster of differentiation) macrophages impacts the development of experimental pulmonary arterial hypertension (PAH) and whether this reduction affects the balance of pro- and anti-inflammatory macrophages within the lung. Additionally, to determine whether there is evidence of an altered macrophage polarization in patients with PAH.
Collapse
Affiliation(s)
- Amira Zawia
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| | - Nadine D Arnold
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| | - Laura West
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| | - Josephine A Pickworth
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| | - Helena Turton
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| | - James Iremonger
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| | - Adam T Braithwaite
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| | - Jaime Cañedo
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| | - Simon A Johnston
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| | - A A Roger Thompson
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| | - Gaynor Miller
- Department of Oncology and Metabolism (G.M.), University of Sheffield, United Kingdom.,College of Medical and Dental Science, University of Birmingham, United Kingdom (G.M.)
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| |
Collapse
|
38
|
Gai X, Lin P, He Y, Lu D, Li Z, Liang Y, Ma Y, Cairang N, Zuo M, Bao Y, Gazang Z, Wu X. Echinacoside prevents hypoxic pulmonary hypertension by regulating the pulmonary artery function. J Pharmacol Sci 2020; 144:237-244. [PMID: 33070843 DOI: 10.1016/j.jphs.2020.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/05/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022] Open
Abstract
Hypoxic pulmonary hypertension (HPH) is a progressive and irreversible disease that reduces survival. Echinacoside is a phenylethanoid glycoside from Tibetan herbs known for its vasorelaxant effect and for inhibiting the proliferation of rat pulmonary arterial smooth muscle cells. This study aimed to investigate the effect of echinacoside on HPH. Sprague Dawley rats were housed in a hypobaric hypoxia chamber (4500 m) for 28 days to obtain the HPH model. Echinacoside (3.75, 7.5, 15, 30 and 40 mg/kg) was administered by intraperitoneal injection from the 1st to the 28th day. The mean pulmonary artery pressure (mPAP), right ventricular hypertrophy index, hemoglobin, hematocrit, red blood cell concentration and morphological change of pulmonary arteries were evaluated. Vascular perfusion assay was used to assess the pulmonary artery function. Echinacoside reduced mPAP, hemoglobin, hematocrit, right ventricular hypertrophy index and mean wall thickness% of pulmonary arteries in HPH rats. It significantly increased maximum vasoconstriction percentage of pulmonary arteries induced by noradrenaline in a dose-dependent manner. In addition, it improved the responsiveness of pulmonary arteries to acetylcholine and sodium nitroprusside. Therefore, Echinacoside might be an effective treatment against HPH, since it regulated pulmonary artery endothelium and smooth muscle layer function and improved the remodeling of pulmonary artery.
Collapse
Affiliation(s)
- Xiangyun Gai
- School of Pharmacy, Qinghai Nationalities University, Xining, Qinghai 810007, China
| | - Pengcheng Lin
- School of Pharmacy, Qinghai Nationalities University, Xining, Qinghai 810007, China.
| | - Yanfeng He
- School of Pharmacy, Qinghai Nationalities University, Xining, Qinghai 810007, China
| | - Dianxiang Lu
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810001, China
| | - Zhanqiang Li
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810001, China
| | - Yongxin Liang
- School of Pharmacy, Qinghai Nationalities University, Xining, Qinghai 810007, China
| | - Yuhua Ma
- School of Pharmacy, Qinghai Nationalities University, Xining, Qinghai 810007, China
| | - Nanjia Cairang
- School of Pharmacy, Qinghai Nationalities University, Xining, Qinghai 810007, China
| | - Mingli Zuo
- School of Pharmacy, Qinghai Nationalities University, Xining, Qinghai 810007, China
| | - Yi Bao
- School of Pharmacy, Qinghai Nationalities University, Xining, Qinghai 810007, China
| | - Zhaxi Gazang
- School of Pharmacy, Qinghai Nationalities University, Xining, Qinghai 810007, China
| | - Xuehua Wu
- People's Hospital of Qinghai Province, Xining, Qinghai 810007, China
| |
Collapse
|
39
|
Aryan L, Younessi D, Zargari M, Banerjee S, Agopian J, Rahman S, Borna R, Ruffenach G, Umar S, Eghbali M. The Role of Estrogen Receptors in Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21124314. [PMID: 32560398 PMCID: PMC7352426 DOI: 10.3390/ijms21124314] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular Diseases (CVDs) are the leading cause of death globally. More than 17 million people die worldwide from CVD per year. There is considerable evidence suggesting that estrogen modulates cardiovascular physiology and function in both health and disease, and that it could potentially serve as a cardioprotective agent. The effects of estrogen on cardiovascular function are mediated by nuclear and membrane estrogen receptors (ERs), including estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), and G-protein-coupled ER (GPR30 or GPER). Receptor binding in turn confers pleiotropic effects through both genomic and non-genomic signaling to maintain cardiovascular homeostasis. Each ER has been implicated in multiple pre-clinical cardiovascular disease models. This review will discuss current reports on the underlying molecular mechanisms of the ERs in regulating vascular pathology, with a special emphasis on hypertension, pulmonary hypertension, and atherosclerosis, as well as in regulating cardiac pathology, with a particular emphasis on ischemia/reperfusion injury, heart failure with reduced ejection fraction, and heart failure with preserved ejection fraction.
Collapse
|
40
|
Sex-specific stress response and HMGB1 release in pulmonary endothelial cells. PLoS One 2020; 15:e0231267. [PMID: 32271800 PMCID: PMC7145198 DOI: 10.1371/journal.pone.0231267] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/05/2020] [Indexed: 01/03/2023] Open
Abstract
Women are known to be associated with a higher susceptibility to pulmonary arterial hypertension (PAH). In contrast, male PAH patients have a worse survival prognosis. In this study, we investigated whether the contribution of sex goes beyond the effects of sex hormones by comparing the ability of isolated male and female pulmonary endothelial cells to respire, proliferate and tolerate the stress. Mouse lung endothelial cells (MLEC) were isolated from the lungs of male and female 3-week old mice. Male MLEC showed an increased basal mitochondrial respiration rate, elevated maximal respiration, a significantly greater level of mitochondrial polarization, and a higher rate of proliferation. Exposure of cells to hypoxia (2% of O2 for 24 hours) induced a strong apoptotic response in female but not male MLEC. In contrast, treatment with mitochondrial respiratory Complex III inhibitor Antimycin A (AA, 50μM) mediated severe necrosis specifically in male MLEC, while female cells again responded primarily by apoptosis. The same effect with female cells responding to the stress by apoptosis and male cells responding by necrosis was confirmed in starved pulmonary endothelial cells isolated from human donors. Elevated necrosis seen in male cells was associated with a significant release of damage-associated alarmin, HMGB1. No stimuli induced a significant elevation of HMGB1 secretion in females. We conclude that male cells appear to be protected against mild stress conditions, such as hypoxia, possibly due to increased mitochondrial respiration. In contrast, they are more sensitive to impaired mitochondrial function, to which they respond by necrotic death. Necrosis in male vascular cells releases a significant amount of HMGB1 that could contribute to the pro-inflammatory phenotype known to be associated with the male gender.
Collapse
|
41
|
Arnold AP. Sexual differentiation of brain and other tissues: Five questions for the next 50 years. Horm Behav 2020; 120:104691. [PMID: 31991182 PMCID: PMC7440839 DOI: 10.1016/j.yhbeh.2020.104691] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
This paper is part of the celebration of the 50th anniversary of founding of the journal Hormones and Behavior, the official journal of the Society for Behavioral Neuroendocrinology. All sex differences in phenotypic development stem from the sexual imbalance in X and Y chromosomes, which are the only known differences in XX and XY zygotes. The sex chromosome genes act within cells to cause differences in phenotypes of XX and XY cells throughout the body. In the gonad, they determine the type of gonad, leading to differences in secretion of testicular vs. ovarian hormones, which cause further sex differences in tissue function. These current ideas of sexual differentiation are briefly contrasted with a hormones-only view of sexual differentiation of the last century. The multiple, independent action of diverse sex-biasing agents means that sex-biased factors can be synergistic, increasing sex differences, or compensatory, making the two sexes more equal. Several animal models have been fruitful in demonstrating sex chromosome effects, and interactions with gonadal hormones. MRI studies of human brains demonstrate variation in brain structure associated with both differences in gonadal hormones, and in the number of X and Y chromosomes. Five unanswered questions are posed as a challenge to future investigators to improve understanding of sexual differentiation throughout the body.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department Integrative Biology and Physiology, University of California, Los Angeles, United States of America.
| |
Collapse
|
42
|
Tower J, Pomatto LCD, Davies KJA. Sex differences in the response to oxidative and proteolytic stress. Redox Biol 2020; 31:101488. [PMID: 32201219 PMCID: PMC7212483 DOI: 10.1016/j.redox.2020.101488] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 12/16/2022] Open
Abstract
Sex differences in diseases involving oxidative and proteolytic stress are common, including greater ischemic heart disease, Parkinson disease and stroke in men, and greater Alzheimer disease in women. Sex differences are also observed in stress response of cells and tissues, where female cells are generally more resistant to heat and oxidative stress-induced cell death. Studies implicate beneficial effects of estrogen, as well as cell-autonomous effects including superior mitochondrial function and increased expression of stress response genes in female cells relative to male cells. The p53 and forkhead box (FOX)-family genes, heat shock proteins (HSPs), and the apoptosis and autophagy pathways appear particularly important in mediating sex differences in stress response.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA; Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA90089, USA.
| | - Laura C D Pomatto
- National Institute on General Medical Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kelvin J A Davies
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA; Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA90089, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, USA
| |
Collapse
|
43
|
Sommer N, Ghofrani HA, Pak O, Bonnet S, Provencher S, Sitbon O, Rosenkranz S, Hoeper MM, Kiely DG. Current and future treatments of pulmonary arterial hypertension. Br J Pharmacol 2020; 178:6-30. [PMID: 32034759 DOI: 10.1111/bph.15016] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Therapeutic options for pulmonary arterial hypertension (PAH) have increased over the last decades. The advent of pharmacological therapies targeting the prostacyclin, endothelin, and NO pathways has significantly improved outcomes. However, for the vast majority of patients, PAH remains a life-limiting illness with no prospect of cure. PAH is characterised by pulmonary vascular remodelling. Current research focusses on targeting the underlying pathways of aberrant proliferation, migration, and apoptosis. Despite success in preclinical models, using a plethora of novel approaches targeting cellular GPCRs, ion channels, metabolism, epigenetics, growth factor receptors, transcription factors, and inflammation, successful transfer to human disease with positive outcomes in clinical trials is limited. This review provides an overview of novel targets addressed by clinical trials and gives an outlook on novel preclinical perspectives in PAH. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Natascha Sommer
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Hossein A Ghofrani
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.,Department of Medicine, Imperial College London, London, UK
| | - Oleg Pak
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Sebastien Bonnet
- Groupe de recherche en hypertension pulmonaire Centre de recherche de IUCPQ, Universite Laval Quebec, Quebec City, Quebec, Canada
| | - Steve Provencher
- Groupe de recherche en hypertension pulmonaire Centre de recherche de IUCPQ, Universite Laval Quebec, Quebec City, Quebec, Canada
| | - Olivier Sitbon
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France. AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France. Inserm UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Stephan Rosenkranz
- Klinik III für Innere Medizin, Cologne Cardiovascular Research Center (CCRC), Heart Center at the University of Cologne, Cologne, Germany
| | - Marius M Hoeper
- Department of Respiratory Medicine, Hannover Medical School, Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital and Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
44
|
Chen J, Zhang H, Yu W, Chen L, Wang Z, Zhang T. Expression of pulmonary arterial elastin in rats with hypoxic pulmonary hypertension using H2S. J Recept Signal Transduct Res 2020; 40:383-387. [PMID: 32160810 DOI: 10.1080/10799893.2020.1738482] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Object: This study analyses the changes of pulmonary arterial elastin expression inhibited by hydrogen sulfide (H2S) in rats with hypoxic pulmonary hypertension.Method: The research used 30 healthy rats and randomly divided them into control group, hypoxia group, and hypoxia + sodium hydrosulfide group. Each group contains 10 samples. The right catheterization was selected to measure the mean pulmonary artery pressure (mPAP). The RV/LV + S ratio was calculated through separating the right ventricle and the left ventricle plus the interventricular septum. Optical microscopy was used to observe the changes of pulmonary vascular structure. The research used immunohistochemistry to express the levels of elastin and transforming growth factor beta (TGF-β).Results: The ratios of Mpap and RV/LV + S in the hypoxic group exceed the control group. The hypoxia + sodium hydrosulfide group (hypoxia + NaHS) is lower than the hypoxic group. In the hypoxic group, the elastic expressions of medium and small pulmonary artery smooth muscle cells exceed the control group. The expression of elastin in hypoxic + NaHS medium and small pulmonary artery smooth muscle cells is lower than that of the control group.The protein expression levels of α-SM-actin in muscle arterial smooth muscle of pulmonary arterioles in hypoxic group, control group and hypoxic + NaHS group were 49.84% + 6.27%, 56.84% + 6.38%, 23.82% + 3.84%, 27.51% + 3.24%, 29.00% + 4.05%, 34.72% + 3.38%.Conclusion: Hydrogen sulfide in rats with hypoxic pulmonary hypertension can inhibit the expression of elastin in its extracellular matrix, which also has remarkable regulation function in forming HPH and remodeling hypoxic pulmonary vascular structure.
Collapse
Affiliation(s)
- Juan Chen
- Department of gynaecology and obstetrics, Jinan No.1 people's Hospital, Jinan, People's Republic of China
| | - Haizhou Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University and Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Wancheng Yu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University and Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Lei Chen
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University and Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Zhengjun Wang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University and Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Tao Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University and Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
45
|
Hester J, Ventetuolo C, Lahm T. Sex, Gender, and Sex Hormones in Pulmonary Hypertension and Right Ventricular Failure. Compr Physiol 2019; 10:125-170. [PMID: 31853950 DOI: 10.1002/cphy.c190011] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulmonary hypertension (PH) encompasses a syndrome of diseases that are characterized by elevated pulmonary artery pressure and pulmonary vascular remodeling and that frequently lead to right ventricular (RV) failure and death. Several types of PH exhibit sexually dimorphic features in disease penetrance, presentation, and progression. Most sexually dimorphic features in PH have been described in pulmonary arterial hypertension (PAH), a devastating and progressive pulmonary vasculopathy with a 3-year survival rate <60%. While patient registries show that women are more susceptible to development of PAH, female PAH patients display better RV function and increased survival compared to their male counterparts, a phenomenon referred to as the "estrogen paradox" or "estrogen puzzle" of PAH. Recent advances in the field have demonstrated that multiple sex hormones, receptors, and metabolites play a role in the estrogen puzzle and that the effects of hormone signaling may be time and compartment specific. While the underlying physiological mechanisms are complex, unraveling the estrogen puzzle may reveal novel therapeutic strategies to treat and reverse the effects of PAH/PH. In this article, we (i) review PH classification and pathophysiology; (ii) discuss sex/gender differences observed in patients and animal models; (iii) review sex hormone synthesis and metabolism; (iv) review in detail the scientific literature of sex hormone signaling in PAH/PH, particularly estrogen-, testosterone-, progesterone-, and dehydroepiandrosterone (DHEA)-mediated effects in the pulmonary vasculature and RV; (v) discuss hormone-independent variables contributing to sexually dimorphic disease presentation; and (vi) identify knowledge gaps and pathways forward. © 2020 American Physiological Society. Compr Physiol 10:125-170, 2020.
Collapse
Affiliation(s)
- James Hester
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Corey Ventetuolo
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Department of Health Services, Policy and Practice, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
46
|
Zhou S, Zhu K, Du Y, Jiang H, Li M, Wu P, Xu A, Ding X, Sun L, Cao C, Sun G, Wang R. Estrogen administration reduces the risk of pulmonary arterial hypertension by modulating the miR-133a signaling pathways in rats. Gene Ther 2019; 27:113-126. [PMID: 31562386 DOI: 10.1038/s41434-019-0103-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/25/2022]
Abstract
We aimed to investigate how estrogen (ES) is implicated in the pathogenesis of pulmonary arterial hypertension (PAH) potentially by reducing the extent of vascular remodeling in females. HE assay, Western Blot, IHC, and real-time PCR were carried out to observe the role of ES in regulating miR-133a expression and the levels of MYOSLID, SRF, CTGF, and vascular remodeling in rats. In addition, MTT assay and flow cytometry were utilized to observe how ES affects cell proliferation and cell cycle in PAH. Moreover, luciferase assays were carried out to clarity the regulatory relationship between miR-133a and its downstream targets. ES administration relieved the deregulation of miR-133a, MYOSLID, SRF, and CTGF in PAH rats. In addition, ES also reduced the thickening of blood vessels in PAH rats. ES could activate miR-133a promoter and arrest the cells in the G0/G1 cycle, thus dose-dependently suppressing the proliferation of cells. In addition, the presence of ES, MYOSLID siRNA, or miR-133a precursor all altered the expression of MYOSLID, SP1, SRF, and CTGF, thus establishing a molecular signaling pathway among these factors. Furthermore, miR-133a could bind to SP1, MYOSLID, SRF, and CTGF to reduce their expression. Moreover, SRF was proved to function as an activator of miR-133a promoter. Two feedback loops were established in this study: a negative feedback loop between SRF and miR-133a, and a positive loop among miR-133a/SRF/MLK1/MYOSLID. ES treatment upregulates miR-133a expression and reduces the incidence of PAH and vascular remodeling.
Collapse
Affiliation(s)
- Sijing Zhou
- Hefei Prevention and Treatment Center for Occupational Diseases, 230022, Hefei, China
| | - Ke Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Yongsheng Du
- Department of General Medicine, Hefei Second People's Hospital, Changjiang East Road, 230022, Hefei, China
| | - Huihui Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Min Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Peipei Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Aiqun Xu
- Department of General Medicine, Hefei Second People's Hospital, Changjiang East Road, 230022, Hefei, China
| | - Xing Ding
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Li Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Chao Cao
- Department of Respiratory Medicine, Ningbo First Hospital, 315000, Ningbo, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
| |
Collapse
|
47
|
Yan L, Cogan JD, Hedges LK, Nunley B, Hamid R, Austin ED. The Y Chromosome Regulates BMPR2 Expression via SRY: A Possible Reason "Why" Fewer Males Develop Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2019; 198:1581-1583. [PMID: 30252494 DOI: 10.1164/rccm.201802-0308le] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ling Yan
- 1 Vanderbilt University Medical Center Nashville, Tennessee
| | - Joy D Cogan
- 1 Vanderbilt University Medical Center Nashville, Tennessee
| | - Lora K Hedges
- 1 Vanderbilt University Medical Center Nashville, Tennessee
| | - Bethany Nunley
- 1 Vanderbilt University Medical Center Nashville, Tennessee
| | - Rizwan Hamid
- 1 Vanderbilt University Medical Center Nashville, Tennessee
| | - Eric D Austin
- 1 Vanderbilt University Medical Center Nashville, Tennessee
| |
Collapse
|
48
|
Frump AL, Lahm T. The Y Chromosome Takes the Field to Modify BMPR2 Expression. Am J Respir Crit Care Med 2019; 198:1476-1478. [PMID: 30265580 DOI: 10.1164/rccm.201809-1682ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Andrea L Frump
- 1 Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| | - Tim Lahm
- 1 Department of Medicine Indiana University School of Medicine Indianapolis, Indiana.,2 Department of Cellular and Integrative Physiology Indiana University School of Medicine Indianapolis, Indiana and.,3 Richard L. Roudebush VA Medical Center Indianapolis, Indiana
| |
Collapse
|
49
|
Brittain EL, Thennapan T, Maron BA, Chan SY, Austin ED, Spiekerkoetter E, Bogaard HJ, Guignabert C, Paulin R, Machado RF, Yu PB. Update in Pulmonary Vascular Disease 2016 and 2017. Am J Respir Crit Care Med 2019. [PMID: 29533671 DOI: 10.1164/rccm.201801-0062up] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Evan L Brittain
- 1 Division of Cardiovascular Medicine, Department of Medicine.,2 Vanderbilt Translational and Clinical Cardiovascular Research Center.,3 Pulmonary Vascular Center, Department of Medicine, and
| | | | - Bradley A Maron
- 5 Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,6 Department of Cardiology, Boston VA Healthcare System, Boston, Massachusetts
| | - Stephen Y Chan
- 7 Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Eric D Austin
- 3 Pulmonary Vascular Center, Department of Medicine, and.,8 Pediatric Pulmonary Hypertension Program, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Edda Spiekerkoetter
- 9 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.,10 Vera Moulton Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University, Stanford, California
| | - Harm J Bogaard
- 11 Pulmonary Hypertension Expert Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Christophe Guignabert
- 12 INSERM UMR-S 999, Le Plessis-Robinson, France.,13 Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Roxane Paulin
- 14 Quebec Heart and Lung Institute, Laval University, Quebec, Quebec, Canada; and
| | - Roberto F Machado
- 15 Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Paul B Yu
- 5 Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
50
|
Arnold AP. The mouse as a model of fundamental concepts related to Turner syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:76-85. [PMID: 30779420 DOI: 10.1002/ajmg.c.31681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Abstract
Although XO mice do not show many of the overt phenotypic features of Turner syndrome (TS; 45,X or XO), mice and humans share different classes of genes on the X chromosome that are more or less likely to cause TS phenotypes. Based on the evolutionary history of the sex chromosomes, and the pattern of dosage balancing among sex chromosomal and autosomal genes in functional gene networks, it is possible to prioritize types of X genes for study as potential causes of features of TS. For example, X-Y gene pairs are among the most interesting because of the convergent effects of X and Y genes that both are likely to prevent the effects of TS in XX and XY individuals. Many of the high-priority genes are shared by mouse and human X chromosomes, but are easier to study in genetically tractable mouse models. Several mouse models, used primarily for the study of sex differences in physiology and disease, also produce XO mice that can be investigated to understand the effects of X monosomy. Using these models will lead to the identification of specific X genes that make a difference when present in one or two copies. These studies will help to achieve a better appreciation of the contribution of these specific X genes to the syndromic features of TS.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology and Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California
| |
Collapse
|