1
|
Mackintosh JA. Telomeropathy: pretransplant and posttransplant considerations for clinicians. Curr Opin Pulm Med 2025; 31:366-373. [PMID: 40145203 DOI: 10.1097/mcp.0000000000001169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
PURPOSE OF REVIEW This review examines the current understanding of telomere biology disorders (TBDs) in advanced lung disease, with particular focus on their implications for lung transplantation outcomes and management. RECENT FINDINGS Recent studies have revealed that TBDs are enriched in lung transplant populations, with many idiopathic pulmonary fibrosis transplant recipients having short telomeres and/or carrying variants in telomere-related genes. While survival outcomes remain debated, recipients with short telomeres consistently show increased susceptibility to cytopenias, cytomegalovirus (CMV) infection, and may require modified immunosuppression regimens. New evidence suggests potential protection against acute cellular rejection in some cases, and novel approaches using letermovir for CMV prophylaxis show promise in managing these complex patients. SUMMARY Management of lung transplant recipients with TBDs requires careful consideration of multiorgan manifestations and individualized management strategies. A multidisciplinary approach incorporating genetics, haematology, and hepatology expertise is increasingly essential for optimal outcomes in this unique population.
Collapse
Affiliation(s)
- John A Mackintosh
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Hannan SJ, Iasella CJ, Sciullo M, Moore C, Rivosecci R, Sacha L, Sutton RM, Koshy R, Shigemura N, Sanchez PG, Farah R, Hage CA, Alder JK, McDyer JF. Belatacept as an alternative immunosuppressive agent for bone marrow-sparing in idiopathic pulmonary fibrosis lung transplant recipients with short telomeres. J Heart Lung Transplant 2025:S1053-2498(25)01961-8. [PMID: 40345564 DOI: 10.1016/j.healun.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025] Open
Abstract
As we have previously shown, idiopathic pulmonary fibrosis lung transplant recipients (IPF-LTRs) with short-telomere length are prone to develop significant cytopenias and poor tolerance to cell-cycle inhibitors, specifically mycophenolate mofetil (MMF), post transplant. We investigated the use of belatacept as an alternative immunosuppressive agent in a prospective, open-label cohort of 9 ST-IPF-LTRs at our institution. These patients were either challenged with MMF (majority) or immediately started on belatacept post transplant with the goal to bridge to everolimus, an mammalian target of rapamycin inhibitor that is commonly used post transplant. We describe outcomes in the first-year post transplant, including the incidence of acute cellular rejection, Epstein-Barr virus viremia, and 1 case of post-transplant lymphoproliferative disorder (PTLD) at 13 months. The use of belatacept postlung transplant may be an acceptable short-term alternative therapy to cell-cycle inhibitors in ST-IPF-LTRs with cytopenias but may lead to a higher risk of Epstein-Barr Virus viremia and PTLD when belatacept is used long term in these patients.
Collapse
Affiliation(s)
- Stefanie J Hannan
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Lung Transplant Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carlo J Iasella
- Department of Pharmacy and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania; Lung Transplant Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michel Sciullo
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Lung Transplant Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cody Moore
- Department of Pharmacy and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ryan Rivosecci
- Department of Pharmacy and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lauren Sacha
- Department of Pharmacy and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rachel M Sutton
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Lung Transplant Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ritchie Koshy
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Lung Transplant Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Norihisa Shigemura
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cardiothoracic Surgery, University of Pittsburgh, Chicago, Illinois
| | | | - Rafic Farah
- Medical Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chadi A Hage
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Lung Transplant Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jonathan K Alder
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Lung Transplant Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John F McDyer
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Lung Transplant Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
3
|
Pickering H, Arakawa-Hoyt J, Llamas M, Ishiyama K, Sun Y, Parmar R, Sen S, Bunnapradist S, Hays SR, Singer JP, Schaenman JM, Lanier LL, Reed EF, Calabrese DR, Greenland JR. Cytomegalovirus-associated CD57 + KLRG1 + CD8 + TEMRA T cells are associated with reduced risk of CMV viremia in kidney transplantation and chronic allograft dysfunction in lung transplantation. Hum Immunol 2025; 86:111285. [PMID: 40120236 DOI: 10.1016/j.humimm.2025.111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/18/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Cytomegalovirus (CMV) infection threatens outcomes across solid organ transplantation, but organ-specific differences in CMV immunity are incompletely understood. We investigated whether lung and kidney CMV infection drove similar immune profiles, hypothesizing that CMV-associated T cells would be associated with graft function. We longitudinally examined 41 lung transplant (LTx) recipients and 31 kidney transplant (KTx) recipients with CMV viremia, alongside non-viremic controls. We performed flow cytometry and single-cell protein and transcriptomic profiling (CITE-seq) on blood cells. Chronic lung allograft dysfunction (CLAD)-free survival and glomerular filtration rate decline-free survival were assessed by Cox proportional-hazards models. Terminal effector memory (TEMRA) CD8+ T cells segregated by expression of CD57 and KLRG1. CMV viremia led to expansion of CD57+ TEMRA in both cohorts (P < 0.001). In KTx, increased frequency of CD57+KLRG1+ were associated with viremia control (P = 0.05). In LTx, frequency > median of CD57+KLRG1+ conferred a 67 % reduced risk for CLAD or death (95 % CI; 3-89 % P = 0.04). CD57+KLRG1+ TEMRA showed evidence of cytotoxic and effector function, whereas CD57-KLRG1+ TEMRA showed evidence of exhaustion. CD57+KLRG1+ TEMRA were most active against CMV and reduced risk for viremia in KTx and CLAD in LTx. This population merits increased attention for its potential role in mediating CMV-associated transplant outcomes.
Collapse
Affiliation(s)
- Harry Pickering
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Janice Arakawa-Hoyt
- Department of Microbiology and Immunology, University of California, San Francisco, CA, United States
| | - Megan Llamas
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Kenichi Ishiyama
- Department of Microbiology and Immunology, University of California, San Francisco, CA, United States
| | - Yumeng Sun
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Rajesh Parmar
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Subha Sen
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Suphamai Bunnapradist
- Divison of Nephrology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Steven R Hays
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Jonathan P Singer
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Joanna M Schaenman
- Division of Infectious Diseases, Department of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, CA, United States
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Daniel R Calabrese
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States; Medical Service, San Francisco VA Health Care System, San Francisco, CA, United States
| | - John R Greenland
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States; Medical Service, San Francisco VA Health Care System, San Francisco, CA, United States.
| |
Collapse
|
4
|
Sande CM, Chen S, Mitchell DV, Lin P, Abraham DM, Cheng JM, Gebhard T, Deolikar RJ, Freeman C, Zhou M, Kumar S, Bowman M, Bowman RL, Zheng S, Munkhbileg B, Chen Q, Stanley NL, Guo K, Lapite A, Hausler R, Taylor DM, Corines J, Morrissette JJ, Lieberman DB, Yang G, Shestova O, Gill S, Zheng J, Smith-Simmer K, Banaszak LG, Shoger KN, Reinig EF, Peterson M, Nicholas P, Walne AJ, Dokal I, Rosenheck JP, Oetjen KA, Link DC, Gelman AE, Reilly CR, Dutta R, Lindsley RC, Brundige KJ, Agarwal S, Bertuch AA, Churpek JE, Tague LK, Johnson FB, Olson TS, Babushok DV. ATM-dependent DNA damage response constrains cell growth and drives clonal hematopoiesis in telomere biology disorders. J Clin Invest 2025; 135:e181659. [PMID: 40179146 PMCID: PMC11996883 DOI: 10.1172/jci181659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
Telomere biology disorders (TBDs) are genetic diseases caused by defective telomere maintenance. TBD patients often develop bone marrow failure and have an increased risk of myeloid neoplasms. To better understand the factors underlying hematopoietic outcomes in TBD, we comprehensively evaluated acquired genetic alterations in hematopoietic cells from 166 pediatric and adult TBD patients. Of these patients, 47.6% (28.8% of children, 56.1% of adults) had clonal hematopoiesis. Recurrent somatic alterations involved telomere maintenance genes (7.6%), spliceosome genes (10.4%, mainly U2AF1 p.S34), and chromosomal alterations (20.2%), including 1q gain (5.9%). Somatic variants affecting the DNA damage response (DDR) were identified in 21.5% of patients, including 20 presumed loss-of-function variants in ataxia-telangiectasia mutated (ATM). Using multimodal approaches, including single-cell sequencing, assays of ATM activation, telomere dysfunction-induced foci analysis, and cell-growth assays, we demonstrate telomere dysfunction-induced activation of the ATM-dependent DDR pathway with increased senescence and apoptosis in TBD patient cells. Pharmacologic ATM inhibition, modeling the effects of somatic ATM variants, selectively improved TBD cell fitness by allowing cells to bypass DDR-mediated senescence without detectably inducing chromosomal instability. Our results indicate that ATM-dependent DDR induced by telomere dysfunction is a key contributor to TBD pathogenesis and suggest dampening hyperactive ATM-dependent DDR as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Christopher M. Sande
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Laboratories, Seattle Children’s Hospital, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Stone Chen
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dana V. Mitchell
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ping Lin
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Diana M. Abraham
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessie Minxuan Cheng
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Talia Gebhard
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Drexel University College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Rujul J. Deolikar
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Colby Freeman
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mary Zhou
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sushant Kumar
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Bowman
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert L. Bowman
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shannon Zheng
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bolormaa Munkhbileg
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Qijun Chen
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Natasha L. Stanley
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Children’s Hospital of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathy Guo
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ajibike Lapite
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Ryan Hausler
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Deanne M. Taylor
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - James Corines
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer J.D. Morrissette
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David B. Lieberman
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guang Yang
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Olga Shestova
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Saar Gill
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jiayin Zheng
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kelcy Smith-Simmer
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine and
| | - Lauren G. Banaszak
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine and
| | - Kyle N. Shoger
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine and
| | - Erica F. Reinig
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Madilynn Peterson
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine and
| | - Peter Nicholas
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amanda J. Walne
- Blizard Institute Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Inderjeet Dokal
- Blizard Institute Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Justin P. Rosenheck
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Ohio State University, Columbus, Ohio, USA
| | - Karolyn A. Oetjen
- Division of Oncology, Section of Stem Cell Biology, Department of Medicine
| | - Daniel C. Link
- Division of Oncology, Section of Stem Cell Biology, Department of Medicine
- Department of Pathology & Immunology, and
| | - Andrew E. Gelman
- Division of Oncology, Section of Stem Cell Biology, Department of Medicine
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Christopher R. Reilly
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ritika Dutta
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - R. Coleman Lindsley
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Karyn J. Brundige
- Division of Hematology/Oncology, Boston Children’s Hospital, Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Boston Children’s Hospital, Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alison A. Bertuch
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer and Hematology Centers, Houston, Texas, USA
| | - Jane E. Churpek
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine and
| | - Laneshia K. Tague
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - F. Brad Johnson
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy S. Olson
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daria V. Babushok
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Cortesão C, Balanco L, Ferreira PG. Familial pulmonary fibrosis with dyskeratosis congenita associated with a rare RTEL1 gene mutation. BMJ Case Rep 2025; 18:e265092. [PMID: 40199602 DOI: 10.1136/bcr-2025-265092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
A subset of idiopathic pulmonary fibrosis cases has a familial component. Telomeric mutations, such as those in the Regulator of Telomere Elongation Helicase 1 (RTEL1) gene, have been associated with lung fibrosis and a minority of dyskeratosis congenita (DC) cases.We present the case of a A male in his 50s with pulmonary fibrosis, cryptogenic hepatic cirrhosis, chronic anaemia and thrombocytopenia, lacy skin hyperpigmentation, dystrophic nails and canities. Family history included pulmonary fibrosis in two brothers. Genetic testing identified a RTEL1 mutation (c.3730T>C, p.Cys1244Arg) in heterozygosity, linked to a few cases of pulmonary fibrosis and DC. This mutation was confirmed in one brother and two sons. The patient was started on pirfenidone and referred for respiratory rehabilitation, haematological and transplant evaluations.Recognising family history and extrapulmonary manifestations in familial pulmonary fibrosis can expedite diagnosis, treatment and genetic counselling. Early detection of DC allows timely management of bone marrow failure and malignancy screening.
Collapse
|
6
|
Akopyan K, Younis M, Emtiazjoo AM, Gries C, Khamooshi P, Rackauskas M, Saha BK. Short telomere syndrome in a patient with primary Sjögren's syndrome related interstitial lung disease. Am J Med Sci 2025:S0002-9629(25)00949-8. [PMID: 40068763 DOI: 10.1016/j.amjms.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Interstitial lung disease (ILD) is a known complication of Primary Sjögren's syndrome (SS). We report the case of a 56-year-old man with a history of SS (SS-A positive) who was admitted with ILD exacerbation, causing respiratory failure requiring extracorporeal life support. Given the family history of rapidly progressive ILD and mixed connective tissue disease in his brother, the patient was tested for short telomere syndrome (STS) during hospitalization and found to have leukocyte telomere length (LTL) around the first percentile, suggesting the diagnosis of STS. The patient successfully underwent bilateral lung transplantation while being supported by venovenous extracorporeal membrane oxygenation (VV-ECMO). As STS has been associated with the development of ILD, the coexistence of STS and SS in our patient represents a unique scenario. This case also raises awareness of the connection between other connective tissue diseases (CTDs) and STS in patients diagnosed with ILD.
Collapse
Affiliation(s)
- Kristina Akopyan
- Department of Hospitalist Medicine, University of Florida, Gainesville, FL, USA
| | - Moustafa Younis
- Lung Transplant and ECMO Program, Department of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Amir M Emtiazjoo
- Lung Transplant and ECMO Program, Department of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Cynthia Gries
- Lung Transplant and ECMO Program, Department of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Parnia Khamooshi
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Mindaugas Rackauskas
- Department of Thoracic Surgery, University of Florida, Gainesville, Florida, USA
| | - Biplab K Saha
- Lung Transplant and ECMO Program, Department of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
7
|
Shah PD, Armanios M. Viewpoint: Pre- and post-lung transplant considerations for patients with ultra-short telomere length. Eur Respir J 2025; 65:2401545. [PMID: 39884762 PMCID: PMC11883148 DOI: 10.1183/13993003.01545-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
Lung transplantation remains the only life-extending procedure for patients with idiopathic pulmonary fibrosis (IPF) and related progressive interstitial lung disease (ILD). Discoveries from recent decades have shown that mutations in telomerase and other telomere maintenance genes are their most common inherited risk factor, identifiable in up to 30–35% of families with pulmonary fibrosis [1]. Mutations in nine telomerase and telomere maintenance genes are confirmed to predispose to adult-onset pulmonary fibrosis by co-segregation in large families and functional studies (table 1) [2–13]. They compromise telomerase abundance, recruitment and function [1, 14]. Patients with ultra-short telomere length develop recurrent complications after lung transplantation; therefore, pre-transplant assessment and individualised post-transplant management may improve outcome in carefully defined high risk patient subsets https://bit.ly/3WvfLC1
Collapse
Affiliation(s)
- Pali D Shah
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mary Armanios
- Departments of Oncology, Genetic Medicine and Pathology, Telomere Center at Johns Hopkins, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Lendermon EA, Hage CA. Pulmonary Immunocompromise in Solid Organ Transplantation. Clin Chest Med 2025; 46:149-158. [PMID: 39890285 DOI: 10.1016/j.ccm.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
This article reviews the multitude of factors contributing to immune dysfunction and pulmonary infection risk in solid organ transplant recipients and references relevant clinical scientific reports. The mechanisms of action of individual immunosuppressive agents are explained, and the clinical effects of these drugs are compared. In addition, specialized methods to assess the net state of immunosuppression in individual transplant recipients and their limitations are discussed.
Collapse
Affiliation(s)
- Elizabeth A Lendermon
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, 3459 Fifth Avenue, MUH NW 628, Pittsburgh, PA 15213, USA
| | - Chadi A Hage
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, 3459 Fifth Avenue, MUH NW 628, Pittsburgh, PA 15213, USA; Lung Transplant, University of Pittsburgh Medical Center, 200 Lothrop Street, Suite C-901, Pittsburgh, PA 15213, USA.
| |
Collapse
|
9
|
Southern BD, Gadre SK. Telomeropathies in Interstitial Lung Disease and Lung Transplant Recipients. J Clin Med 2025; 14:1496. [PMID: 40095034 PMCID: PMC11900913 DOI: 10.3390/jcm14051496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/23/2025] [Accepted: 02/09/2025] [Indexed: 03/19/2025] Open
Abstract
Telomeropathies, or telomere biology disorders (TBDs), are syndromes that can cause a number of medical conditions, including interstitial lung disease (ILD), bone marrow failure, liver fibrosis, and other diseases. They occur due to genetic mutations to the telomerase complex enzymes that result in premature shortening of telomeres, the caps on the ends of cellular DNA that protect chromosome length during cell division, leading to early cell senescence and death. Idiopathic pulmonary fibrosis (IPF) is the most common manifestation of the telomere biology disorders, although it has been described in other interstitial lung diseases as well, such as rheumatoid arthritis-associated ILD and chronic hypersensitivity pneumonitis. Telomere-related mutations can be inherited or can occur sporadically. Identifying these patients and offering genetic counseling is important because telomerapathies have been associated with poorer outcomes including death, lung transplantation, hospitalization, and FVC decline. Additionally, treatment with immunosuppressants has been shown to be associated with worse outcomes. Currently, there is no specific treatment for TBD except to transplant the organ that is failing, although there are a number of promising treatment strategies currently under investigation. Shortened telomere length is routinely discovered in patients undergoing lung transplantation for IPF. Testing to detect early TBD in patients with suggestive signs or symptoms can allow for more comprehensive treatment and multidisciplinary care pre- and post-transplant. Patients with TBD undergoing lung transplantation have been reported to have both pulmonary and extrapulmonary complications at a higher frequency than other lung transplant recipients, such as graft-specific complications, increased infections, and complications related to immunosuppressive therapy.
Collapse
Affiliation(s)
- Brian D. Southern
- Integrated Hospital-Care Institute, Department of Pulmonary Medicine, Cleveland Clinic, Cleveland, OH 44195, USA;
| | | |
Collapse
|
10
|
Catalinas-Muñoz E, Jiménez-Gómez M, Díaz-Miravalls J, Quezada-Loaiza CA, Pérez-González VL, De-Pablo-Gafas A, Alonso-Moralejo R. Impact of Telomere Shortening on Post-transplant Outcomes in Interstitial Lung Disease. Transplant Proc 2025; 57:77-81. [PMID: 39755520 DOI: 10.1016/j.transproceed.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/15/2024] [Indexed: 01/06/2025]
Abstract
Shortened telomere length (STL) is associated with increased rates of interstitial lung diseases, malignancy, hematological disorders, and immunosuppressive treatment toxicities. In this single-center retrospective study, we aim to determine whether patients with interstitial lung diseases who have STL, as determined by quantitative PCR of buccal epithelial cells, exhibit worse post-transplant outcomes compared to recipients with normal telomere length. In our series of 26 patients, STL was associated with a higher incidence of chronic kidney disease following lung transplantation (100% vs 55%, P = .042). However, STL was not associated with an increased incidence of acute cellular rejection, infections, cytomegalovirus viremia, cytopenias, elevated liver enzymes, cancer diagnosis, venous thromboembolism, or mortality. Thus, lung transplant recipients with STL are at an increased risk of developing chronic kidney disease during the post-transplant period compared to those with normal telomere length.
Collapse
Affiliation(s)
- Eduardo Catalinas-Muñoz
- Respiratory Medicine Department, Lung Transplant Unit, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Miguel Jiménez-Gómez
- Respiratory Medicine Department, Lung Transplant Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Julia Díaz-Miravalls
- Respiratory Medicine Department, Lung Transplant Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | - Alicia De-Pablo-Gafas
- Respiratory Medicine Department, Lung Transplant Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Rodrigo Alonso-Moralejo
- Respiratory Medicine Department, Lung Transplant Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
11
|
Pennington KM, Simonetto D, Taner T, Mangaonkar AA. Pulmonary, Hepatic, and Allogeneic Hematopoietic Stem Cell Transplantation in Patients with Telomere Biology Disorders. Curr Hematol Malig Rep 2024; 19:293-299. [PMID: 38315384 DOI: 10.1007/s11899-024-00724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
PURPOSE OF THE REVIEW This study aimed to summarize evidence and provide consensus-based guidelines for management of transplantation in patients with telomere biology disorders (TBD). Specifically, this review focuses on clinical management of lung, liver, and bone marrow transplantation in TBD patients. RECENT FINDINGS TBD patients have specific unique biological vulnerabilities such as T cell immunodeficiency, susceptibility to infections, hypersensitivity to chemotherapy and radiation, and cytopenias. Furthermore, multiple organ involvement at diagnosis makes clinical management especially challenging due to higher degree of organ damage, and stress-induced telomeric crisis. Sequential and combined organ transplants, development of novel radiation and alkylator-free conditioning regimen, and use of novel drugs for graft-versus-host disease prophylaxis are some of the recent updates in the field. Multidisciplinary management is essential to optimize transplant outcomes in patients with TBD. In this review, we provide consensus-based transplant management guidelines for clinical management of transplant in TBD.
Collapse
Affiliation(s)
| | - Douglas Simonetto
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, USA.
| | - Timucin Taner
- Departments of Surgery and Immunology, Mayo Clinic, Rochester, USA.
| | | |
Collapse
|
12
|
Zhang D, Eckhardt CM, McGroder C, Benesh S, Porcelli J, Depender C, Bogyo K, Westrich J, Thomas-Wilson A, Jobanputra V, Garcia CK. Clinical Impact of Telomere Length Testing for Interstitial Lung Disease. Chest 2024; 166:1071-1081. [PMID: 38950694 PMCID: PMC11562654 DOI: 10.1016/j.chest.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Shortened telomere length (TL) is a genomic risk factor for fibrotic interstitial lung disease (ILD), but its role in clinical management is unknown. RESEARCH QUESTION What is the clinical impact of TL testing on the management of ILD? STUDY DESIGN AND METHODS Patients were evaluated in the Columbia University ILD clinic and underwent Clinical Laboratory Improvement Amendments-certified TL testing by flow cytometry and fluorescence in situ hybridization (FlowFISH) as part of clinical treatment. Short TL was defined as below the 10th age-adjusted percentile for either granulocytes or lymphocytes by FlowFISH. Patients were offered genetic counseling and testing if they had short TL or a family history of ILD. FlowFISH TL was compared with research quantitative polymerase chain reaction (qPCR) TL measurement. RESULTS A total of 108 patients underwent TL testing, including those with clinical features of short telomere syndrome such as familial pulmonary fibrosis (50%) or extrapulmonary manifestations in the patient (25%) or a relative (41%). The overall prevalence of short TL was 46% and was similar across clinical ILD diagnoses. The number of short telomere clinical features was independently associated with detecting short TL (OR, 2.00; 95% CI, 1.27-3.32). TL testing led to clinical treatment changes for 35 patients (32%), most commonly resulting in reduction or avoidance of immunosuppression. Of the patients who underwent genetic testing (n = 34), a positive or candidate diagnostic finding in telomere-related genes was identified in 10 patients (29%). Inclusion of TL testing below the 1st percentile helped reclassify eight of nine variants of uncertain significance into actionable findings. The quantitative polymerase chain reaction test correlated with FlowFISH, but age-adjusted percentile cutoffs may not be equivalent between the two assays. INTERPRETATION Incorporating TL testing in ILD impacted clinical management and led to the discovery of new actionable genetic variants.
Collapse
Affiliation(s)
- David Zhang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY.
| | | | - Claire McGroder
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Shannon Benesh
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | | | | | - Kelsie Bogyo
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Joseph Westrich
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | | | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY; New York Genome Center, New York, NY
| | - Christine K Garcia
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
13
|
Moneke I, Ogutur ED, Kornyeva A, Fähndrich S, Schibilsky D, Bierbaum S, Czerny M, Stolz D, Passlick B, Jungraithmayr W, Frye BC. Donor age over 55 is associated with worse outcome in lung transplant recipients with idiopathic pulmonary fibrosis. BMC Pulm Med 2024; 24:499. [PMID: 39385110 PMCID: PMC11465681 DOI: 10.1186/s12890-024-03317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Lung transplantation (LTx) remains the only efficient treatment for selected patients with end-stage pulmonary disease. The age limit for the acceptance of donor organs in LTx is still a matter of debate. We here analyze the impact of donor organ age and the underlying pulmonary disease on short- and long-term outcome and survival after LTx. METHODS Donor and recipient characteristics of LTx recipients at our institution between 03/2003 and 12/2021 were analyzed. Statistical analysis was performed using SPSS and GraphPad software. RESULTS In 230 patients analyzed, donor age ≥ 55 years was associated with a higher incidence of severe primary graft dysfunction (PGD2/3) (46% vs. 31%, p = 0.03) and reduced long-term survival after LTx (1-, 5- and 10-year survival: 75%, 54%, 37% vs. 84%, 76%, 69%, p = 0.006). Notably, this was only significant in recipients with idiopathic pulmonary fibrosis (IPF) (PGD: 65%, vs. 37%, p = 0.016; 1-, 5-, and 10-year survival: 62%, 38%, 16% vs. 80%, 76%, 70%, p = 0.0002 respectively). In patients with chronic obstructive pulmonary disease (COPD), donor age had no impact on the incidence of PGD2/3 or survival (21% vs. 27%, p = 0.60 and 68% vs. 72%; p = 0.90 respectively). Moreover, we found higher Torque-teno virus (TTV)-DNA levels after LTx in patients with IPF compared to COPD (X2 = 4.57, p = 0.033). Donor age ≥ 55 is an independent risk factor for reduced survival in the whole cohort and patients with IPF specifically. CONCLUSIONS In recipients with IPF, donor organ age ≥ 55 years was associated with a higher incidence of PGD2/3 and reduced survival after LTx. The underlying pulmonary disease may thus be a relevant factor for postoperative graft function and survival. TRIAL REGISTRATION NUMBER DKRS DRKS00033312.
Collapse
Affiliation(s)
- Isabelle Moneke
- Faculty of Medicine, Department of Thoracic Surgery, Medical Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| | - Ecem Deniz Ogutur
- Faculty of Medicine, Department of Thoracic Surgery, Medical Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Anastasiya Kornyeva
- Faculty of Medicine, Department of Thoracic Surgery, Medical Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Sebastian Fähndrich
- Faculty of Medicine, Department of Pneumology Medical Center, University of Freiburg, Freiburg, Germany
| | - David Schibilsky
- Faculty of Medicine, Clinic for Cardiovascular Surgery, University Heart Centre Freiburg - Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Sibylle Bierbaum
- Faculty of Medicine, Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Martin Czerny
- Faculty of Medicine, Clinic for Cardiovascular Surgery, University Heart Centre Freiburg - Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Daiana Stolz
- Faculty of Medicine, Department of Pneumology Medical Center, University of Freiburg, Freiburg, Germany
| | - Bernward Passlick
- Faculty of Medicine, Department of Pneumology Medical Center, University of Freiburg, Freiburg, Germany
| | - Wolfgang Jungraithmayr
- Faculty of Medicine, Department of Thoracic Surgery, Medical Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Bjoern Christian Frye
- Faculty of Medicine, Department of Pneumology Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Borie R, Ba I, Debray MP, Kannengiesser C, Crestani B. Syndromic genetic causes of pulmonary fibrosis. Curr Opin Pulm Med 2024; 30:473-483. [PMID: 38896087 DOI: 10.1097/mcp.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
PURPOSE OF REVIEW The identification of extra-pulmonary symptoms plays a crucial role in diagnosing interstitial lung disease (ILD). These symptoms not only indicate autoimmune diseases but also hint at potential genetic disorders, suggesting a potential overlap between genetic and autoimmune origins. RECENT FINDINGS Genetic factors contributing to ILD are predominantly associated with telomere (TRG) and surfactant-related genes. While surfactant-related gene mutations typically manifest with pulmonary involvement alone, TRG mutations were initially linked to syndromic forms of pulmonary fibrosis, known as telomeropathies, which may involve hematological and hepatic manifestations with variable penetrance. Recognizing extra-pulmonary signs indicative of telomeropathy should prompt the analysis of TRG mutations, the most common genetic cause of familial pulmonary fibrosis. Additionally, various genetic diseases causing ILD, such as alveolar proteinosis, alveolar hemorrhage, or unclassifiable pulmonary fibrosis, often present as part of syndromes that include hepatic, hematological, or skin disorders. SUMMARY This review explores the main genetic conditions identified over the past two decades.
Collapse
Affiliation(s)
- Raphaël Borie
- Service de Pneumologie A Hôpital Bichat, APHP, Paris, France, Université Paris Cité, Inserm, PHERE, Université Paris Cité
| | | | | | | | - Bruno Crestani
- Service de Pneumologie A Hôpital Bichat, APHP, Paris, France, Université Paris Cité, Inserm, PHERE, Université Paris Cité
| |
Collapse
|
15
|
Lehr CJ, Dalton JE, Dewey EN, Gunsalus PR, Rose J, Valapour M. Differential effects of donor factors on post-transplant survival in lung transplantation. JHLT OPEN 2024; 5:100122. [PMID: 40143895 PMCID: PMC11935449 DOI: 10.1016/j.jhlto.2024.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Background Predicting post-transplant (PT) survival in lung allocation remains an elusive goal. We analyzed the impact of donor factors on PT survival and how these relationships vary among transplant recipients. Methods We studied primary bilateral lung transplant recipients (n = 7,609) from the US Scientific Registry of Transplant Recipients (19 February 2015-1 February 2020). Main and interaction effects were evaluated and adjusted across candidate age, sex, and diagnosis. Models predicting PT survival were compared to the PT Composite Allocation Score model (PT-CAS): (1) Cox regression donor multivariable model (COX), (2) COX + PT-CAS, (3) random forest model (RF), and (4) RF + PT-CAS. Model discrimination and calibration measures were compared. Results Interactions between donor and recipient factors emerged by age: lower survival for donation after circulatory death organs for recipients aged 55 to 69 years, donor smoking for recipients aged 30 to 54 and 70+, Hispanic donor for recipients <30, non-Hispanic Black donor for recipients aged 30+; sex: cytomegalovirus mismatch for males; diagnosis: higher donor recipient weight ratio for diagnosis group C (e.g., cystic fibrosis), donor diabetes for diagnosis group D (e.g., idiopathic pulmonary fibrosis). COX and RF models performed similarly to PT-CAS; however, the combined COX + PT-CAS model had improved discrimination (1-year area under the receiver operator characteristic curve [AUC] PT-CAS 0.609 vs 1-year AUC COX + PT-CAS 0.626) and improved calibration across a broader range of predicted risk. Conclusions The influence of donor factors on recipient PT survival differed by age, sex, and diagnosis. The addition of donor factors to existing models predicting PT survival led to only modest improvement in prediction accuracy. Future efforts may focus on optimizing matching strategies to improve donor utilization.
Collapse
Affiliation(s)
- Carli J. Lehr
- Department of Pulmonary Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Jarrod E. Dalton
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Elizabeth N. Dewey
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Paul R. Gunsalus
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Johnie Rose
- Center for Community Health Integration, Case Western Reserve University, Cleveland, Ohio
| | - Maryam Valapour
- Department of Pulmonary Medicine, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
16
|
Hernandez-Gonzalez F, Pietrocola F, Cameli P, Bargagli E, Prieto-González S, Cruz T, Mendoza N, Rojas M, Serrano M, Agustí A, Faner R, Gómez-Puerta JA, Sellares J. Exploring the Interplay between Cellular Senescence, Immunity, and Fibrosing Interstitial Lung Diseases: Challenges and Opportunities. Int J Mol Sci 2024; 25:7554. [PMID: 39062798 PMCID: PMC11276754 DOI: 10.3390/ijms25147554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Fibrosing interstitial lung diseases (ILDs) are characterized by the gradual and irreversible accumulation of scar tissue in the lung parenchyma. The role of the immune response in the pathogenesis of pulmonary fibrosis remains unclear. In recent years, substantial advancements have been made in our comprehension of the pathobiology driving fibrosing ILDs, particularly concerning various age-related cellular disturbances and immune mechanisms believed to contribute to an inadequate response to stress and increased susceptibility to lung fibrosis. Emerging studies emphasize cellular senescence as a key mechanism implicated in the pathobiology of age-related diseases, including pulmonary fibrosis. Cellular senescence, marked by antagonistic pleiotropy, and the complex interplay with immunity, are pivotal in comprehending many aspects of lung fibrosis. Here, we review progress in novel concepts in cellular senescence, its association with the dysregulation of the immune response, and the evidence underlining its detrimental role in fibrosing ILDs.
Collapse
Affiliation(s)
- Fernanda Hernandez-Gonzalez
- Department of Respiratory Medicine, Respiratory Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain; (A.A.); (J.S.)
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Federico Pietrocola
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Solna, Sweden;
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro-Sciences, University of Siena, 53100 Siena, Italy; (P.C.); (E.B.)
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro-Sciences, University of Siena, 53100 Siena, Italy; (P.C.); (E.B.)
| | - Sergio Prieto-González
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Tamara Cruz
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Nuria Mendoza
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Mauricio Rojas
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Manuel Serrano
- Cambridge Institute of Science, Altos Labs, Cambridge CB21 6GP, UK;
| | - Alvar Agustí
- Department of Respiratory Medicine, Respiratory Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain; (A.A.); (J.S.)
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Rosa Faner
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
- Biomedicine Department, University of Barcelona, 08036 Barcelona, Spain
| | - Jose A. Gómez-Puerta
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Rheumatology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Jacobo Sellares
- Department of Respiratory Medicine, Respiratory Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain; (A.A.); (J.S.)
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| |
Collapse
|
17
|
Lum J, Koval C. The changing landscape of infections in the lung transplant recipient. Curr Opin Pulm Med 2024; 30:382-390. [PMID: 38411211 DOI: 10.1097/mcp.0000000000001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
PURPOSE OF REVIEW Infections in lung transplant recipients remain a major challenge and can affect lung allograft function and cause significant morbidity and mortality. New strategies for the prevention and treatment of infection in lung transplantation have emerged and are reviewed. RECENT FINDINGS For important vaccine preventable infections (VPIs), guidance has been updated for at risk solid organ transplant (SOT) recipients. However, data on the efficacy of newer vaccines in lung transplant, including the respiratory syncytial virus (RSV) vaccine, are limited. Studies demonstrate improved vaccination rate with Infectious Diseases consultation during pretransplant evaluation. Two new antiviral agents for the treatment and prevention of cytomegalovirus (CMV) in SOT, letermovir and maribavir, are being incorporated into clinical care. CMV-specific cell-mediated immune function assays are more widely available. Antibiotics for the management of multidrug resistant pathogens and Burkholderia cepacia complex have been described in case series and case reports in lung transplant. SUMMARY Although new vaccines and novel therapies for preventing and treating infections are available, larger studies evaluating efficacy in lung transplant recipients are needed.
Collapse
Affiliation(s)
- Jessica Lum
- Division of Infectious Diseases, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | |
Collapse
|
18
|
Perrotta F, Sanduzzi Zamparelli S, D’Agnano V, Montella A, Fomez R, Pagliaro R, Schiattarella A, Cazzola M, Bianco A, Mariniello DF. Genomic Profiling for Predictive Treatment Strategies in Fibrotic Interstitial Lung Disease. Biomedicines 2024; 12:1384. [PMID: 39061958 PMCID: PMC11274143 DOI: 10.3390/biomedicines12071384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) has traditionally been considered the archetype of progressive fibrotic interstitial lung diseases (f-ILDs), but several other f-ILDs can also manifest a progressive phenotype. Integrating genomic signatures into clinical practice for f-ILD patients may help to identify patients predisposed to a progressive phenotype. In addition to the risk of progressive pulmonary fibrosis, there is a growing body of literature examining how pharmacogenomics influences treatment response, particularly regarding the efficacy and safety profiles of antifibrotic and immunomodulatory agents. In this narrative review, we discuss current studies in IPF and other forms of pulmonary fibrosis, including systemic autoimmune disorders associated ILDs, sarcoidosis and hypersensitivity pneumonitis. We also provide insights into the future direction of research in this complex field.
Collapse
Affiliation(s)
- Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (V.D.); (A.M.); (R.F.); (R.P.); (A.S.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | | | - Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (V.D.); (A.M.); (R.F.); (R.P.); (A.S.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Antonia Montella
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (V.D.); (A.M.); (R.F.); (R.P.); (A.S.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Ramona Fomez
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (V.D.); (A.M.); (R.F.); (R.P.); (A.S.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Raffaella Pagliaro
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (V.D.); (A.M.); (R.F.); (R.P.); (A.S.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Angela Schiattarella
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (V.D.); (A.M.); (R.F.); (R.P.); (A.S.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (V.D.); (A.M.); (R.F.); (R.P.); (A.S.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | | |
Collapse
|
19
|
Bharti R, Calabrese DR. Innate and adaptive effector immune drivers of cytomegalovirus disease in lung transplantation: a double-edged sword. FRONTIERS IN TRANSPLANTATION 2024; 3:1388393. [PMID: 38993763 PMCID: PMC11235306 DOI: 10.3389/frtra.2024.1388393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/24/2024] [Indexed: 07/13/2024]
Abstract
Up to 90% of the global population has been infected with cytomegalovirus (CMV), a herpesvirus that remains latent for the lifetime of the host and drives immune dysregulation. CMV is a critical risk factor for poor outcomes after solid organ transplant, though lung transplant recipients (LTR) carry the highest risk of CMV infection, and CMV-associated comorbidities compared to recipients of other solid organ transplants. Despite potent antivirals, CMV remains a significant driver of chronic lung allograft dysfunction (CLAD), re-transplantation, and death. Moreover, the extended utilization of CMV antiviral prophylaxis is not without adverse effects, often necessitating treatment discontinuation. Thus, there is a critical need to understand the immune response to CMV after lung transplantation. This review identifies key elements of each arm of the CMV immune response and highlights implications for lung allograft tolerance and injury. Specific attention is paid to cellular subsets of adaptive and innate immune cells that are important in the lung during CMV infection and reactivation. The concept of heterologous immune responses is reviewed in depth, including how they form and how they may drive tissue- and allograft-specific immunity. Other important objectives of this review are to detail the emerging role of NK cells in CMV-related outcomes, in addition to discussing perturbations in CMV immune function stemming from pre-existing lung disease. Finally, this review identifies potential mechanisms whereby CMV-directed treatments may alter the cellular immune response within the allograft.
Collapse
Affiliation(s)
- Reena Bharti
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Daniel R. Calabrese
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| |
Collapse
|
20
|
Martinez S, Sindu D, Nailor MD, Cherrier L, Tokman S, Walia R, Goodlet KJ. Evaluating the efficacy and safety of letermovir compared to valganciclovir for the prevention of human cytomegalovirus disease in adult lung transplant recipients. Transpl Infect Dis 2024; 26:e14279. [PMID: 38742601 DOI: 10.1111/tid.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Lung transplant recipients are at high risk for severe cytomegalovirus (CMV) disease. Off-label use of letermovir (LET) may avert myelotoxicity associated with valganciclovir (VGCV), but data in lung transplantation are limited. This study aims to evaluate the outcomes of LET prophylaxis among lung transplant recipients. METHODS This retrospective, matched cohort study included lung transplant recipients who received LET for primary CMV prophylaxis following VGCV intolerance. Patients were matched 1:1 to historical VGCV controls based on age, serostatus group, and time from transplant. The primary outcome was CMV breakthrough within 1 year post-LET initiation; secondary outcomes included hematologic changes. RESULTS A total of 124 lung transplant recipients were included per group (32% CMV mismatch, D+R-), with LET initiated a median of 9.6 months post-transplantation. One CMV breakthrough event (0.8%) was observed in the LET group versus four (3.2%) in the VGCV group (p = .370). The median (interquartile range) white blood cell (WBC) count was 3.1 (2.1-5.6) at LET initiation which increased to 5.1 (3.9-7.2) at the end of follow-up (p <.001). For VGCV controls, WBC was 4.8 (3.4-7.2) at baseline and 5.4 (3.6-7.2) at the end of follow-up; this difference was not statistically significant (p = .395). Additionally, 98.4% of LET patients experienced ≥1 leukopenia episode in the year prior to LET compared to 71.8% the year after initiation (p <.001). Similar results were observed for neutropenia (48.4% and 17.7%, p <.001). CONCLUSION LET prophylaxis was associated with a low rate of CMV reactivation and leukopenia recovery. LET may represent a reasonable prophylaxis option for lung transplant recipients unable to tolerate VGCV.
Collapse
Affiliation(s)
- Sydni Martinez
- Department of Pharmacy Services, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Devika Sindu
- Division of Transplant Pulmonology, Norton Thoracic Institute, Dignity Health, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Michael D Nailor
- Department of Pharmacy Services, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Lauren Cherrier
- Department of Pharmacy Services, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- Division of Transplant Pulmonology, Norton Thoracic Institute, Dignity Health, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Sofya Tokman
- Division of Transplant Pulmonology, Norton Thoracic Institute, Dignity Health, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Rajat Walia
- Division of Transplant Pulmonology, Norton Thoracic Institute, Dignity Health, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Kellie J Goodlet
- Department of Pharmacy Practice, Midwestern University College of Pharmacy, Glendale, Arizona, USA
| |
Collapse
|
21
|
Visekruna J, Basa M, Grba T, Andjelkovic M, Pavlovic S, Nathan N, Sovtic A. Ultra-Early Diffuse Lung Disease in an Infant with Pathogenic Variant in Telomerase Reverse Transcriptase ( TERT) Gene. Balkan J Med Genet 2024; 27:59-63. [PMID: 39263645 PMCID: PMC11385016 DOI: 10.2478/bjmg-2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
The pathogenic variants in the telomerase reverse transcriptase (TERT) gene have been identified in adults with idiopathic pulmonary fibrosis, while their connection to childhood diffuse lung disease has not yet been described. Within this study, we present a case of a five-month-old, previously healthy infant, with early-onset respiratory failure. The clinical suspicion of diffuse lung disease triggered by cytomegalovirus (CMV) pneumonitis was based on clinical and radiological presentation. Multiorgan involvement was not confirmed. Considering the possible connection between CMV pneumonitis and early-onset respiratory failure, clinical exome sequencing was performed and a novel variant, classified as likely pathogenic in the TERT gene (c.280A>T, p.Lys94Ter) was detected. After segregation analysis yielded negative results, the de novo status of the variant was confirmed. Respiratory support, antiviral and anti-inflammatory therapy offered modest benefits, nevertheless, eighteen months after the initial presentation of disease, an unfavourable outcome occurred. In conclusion, severe viral pneumonia has the potential to induce extremely rare early-onset diffuse lung disease accompanied by chronic respiratory insufficiency. This is linked to pathogenic variants in the TERT gene. Our comprehensive presentation of the patient contributes to valuable insights into the intricate interplay of genetic factors, clinical presentations, and therapeutic outcomes in cases of early-onset respiratory failure.
Collapse
Affiliation(s)
- J Visekruna
- Department of Pulmonology, Mother and Child Health Institute of Serbia, Belgrade, Serbia
| | - M Basa
- Department of Pulmonology, Mother and Child Health Institute of Serbia, Belgrade, Serbia
| | - T Grba
- Department of Pulmonology, Mother and Child Health Institute of Serbia, Belgrade, Serbia
| | - M Andjelkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - S Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - N Nathan
- AP-HP, Sorbonne Université, Pediatric Pulmonology Department and Reference Centre for Rare Lung Disease RespiRare, Armand Trousseau Hospital, Paris, France
- Sorbonne Université, Inserm UMR_S933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Paris, France
| | - A Sovtic
- Department of Pulmonology, Mother and Child Health Institute of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Serbia
| |
Collapse
|
22
|
Hinchie AM, Sanford SL, Loughridge KE, Sutton RM, Parikh AH, Gil Silva AA, Sullivan DI, Chun-On P, Morrell MR, McDyer JF, Opresko PL, Alder JK. A persistent variant telomere sequence in a human pedigree. Nat Commun 2024; 15:4681. [PMID: 38824190 PMCID: PMC11144197 DOI: 10.1038/s41467-024-49072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024] Open
Abstract
The telomere sequence, TTAGGG, is conserved across all vertebrates and plays an essential role in suppressing the DNA damage response by binding a set of proteins termed shelterin. Changes in the telomere sequence impair shelterin binding, initiate a DNA damage response, and are toxic to cells. Here we identify a family with a variant in the telomere template sequence of telomerase, the enzyme responsible for telomere elongation, that led to a non-canonical telomere sequence. The variant is inherited across at least one generation and one family member reports no significant medical concerns despite ~9% of their telomeres converting to the novel sequence. The variant template disrupts telomerase repeat addition processivity and decreased the binding of the telomere-binding protein POT1. Despite these disruptions, the sequence is readily incorporated into cellular chromosomes. Incorporation of a variant sequence prevents POT1-mediated inhibition of telomerase suggesting that incorporation of a variant sequence may influence telomere addition. These findings demonstrate that telomeres can tolerate substantial degeneracy while remaining functional and provide insights as to how incorporation of a non-canonical telomere sequence might alter telomere length dynamics.
Collapse
Affiliation(s)
- Angela M Hinchie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samantha L Sanford
- Environmental and Occupational Health Department, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kelly E Loughridge
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel M Sutton
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anishka H Parikh
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Agustin A Gil Silva
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel I Sullivan
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pattra Chun-On
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew R Morrell
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John F McDyer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia L Opresko
- Environmental and Occupational Health Department, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
- Pharmacology and Chemical Biology Department, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan K Alder
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Belga S, Hussain S, Avery RK, Nauroz Z, Durand CM, King EA, Massie A, Segev DL, Connor AE, Bush EL, Levy RD, Shah P, Werbel WA. Impact of recipient age on mortality among Cytomegalovirus (CMV)-seronegative lung transplant recipients with CMV-seropositive donors. J Heart Lung Transplant 2024; 43:615-625. [PMID: 38061469 DOI: 10.1016/j.healun.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/03/2023] [Accepted: 11/26/2023] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Cytomegalovirus (CMV)-seronegative lung transplant recipients (LTRs) with seropositive donors (CMV D+/R-) have the highest mortality of all CMV serostatuses. Due to immunosenescence and other factors, we hypothesized CMV D+/R- status might disproportionately impact older LTRs. Thus, we investigated whether recipient age modified the relationship between donor CMV status and mortality among CMV-seronegative LTRs. METHODS Adult, CMV-seronegative first-time lung-only recipients were identified through the Scientific Registry of Transplant Recipients between May 2005 and December 2019. We used adjusted multivariable Cox regression to assess the relationship of donor CMV status and death. Interaction between recipient age and donor CMV was assessed via likelihood ratio testing of nested Cox models and by the relative excess risk due to interaction (RERI) and attributable proportion (AP) of joint effects. RESULTS We identified 11,136 CMV-seronegative LTRs. The median age was 59 years; 65.2% were male, with leading transplant indication of idiopathic pulmonary fibrosis (35.6%); and 60.8% were CMV D+/R-. In multivariable modeling, CMV D+/R- status was associated with 27% increased hazard of death (adjusted hazard ratio: 1.27, 95% confidence interval: 1.21-1.34) compared to CMV D-/R-. Recipient age ≥60 years significantly modified the relationship between donor CMV-seropositive status and mortality on the additive scale, including RERI 0.24 and AP 11.4% (p = 0.001), that is, the interaction increased hazard of death by 0.24 and explained 11.4% of mortality in older CMV D+ recipients. CONCLUSIONS Among CMV-seronegative LTRs, donor CMV-seropositive status confers higher risk of posttransplant mortality, which is amplified in older recipients. Future studies should define optimal strategies for CMV prevention and management in older D+/R- LTRs.
Collapse
Affiliation(s)
- Sara Belga
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Sarah Hussain
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robin K Avery
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zeba Nauroz
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine M Durand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth A King
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Allan Massie
- Scientific Registry of Transplant Recipients, Minneapolis, Minnesota, USA; Department of Surgery, New York University Grossman School of Medicine, New York, New York
| | - Dorry L Segev
- Scientific Registry of Transplant Recipients, Minneapolis, Minnesota, USA; Department of Surgery, New York University Grossman School of Medicine, New York, New York
| | - Avonne E Connor
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Errol L Bush
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert D Levy
- Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Pali Shah
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William A Werbel
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
24
|
Kapse B, Budev MM, Singer JP, Greenland JR. Immune aging: biological mechanisms, clinical symptoms, and management in lung transplant recipients. FRONTIERS IN TRANSPLANTATION 2024; 3:1356948. [PMID: 38993782 PMCID: PMC11235310 DOI: 10.3389/frtra.2024.1356948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/23/2024] [Indexed: 07/13/2024]
Abstract
While chronologic age can be precisely defined, clinical manifestations of advanced age occur in different ways and at different rates across individuals. The observed phenotype of advanced age likely reflects a superposition of several biological aging mechanisms which have gained increasing attention as the world contends with an aging population. Even within the immune system, there are multiple age-associated biological mechanisms at play, including telomere dysfunction, epigenetic dysregulation, immune senescence programs, and mitochondrial dysfunction. These biological mechanisms have associated clinical syndromes, such as telomere dysfunction leading to short telomere syndrome (STS), and optimal patient management may require recognition of biologically based aging syndromes. Within the clinical context of lung transplantation, select immune aging mechanisms are particularly pronounced. Indeed, STS is increasingly recognized as an indication for lung transplantation. At the same time, common aging phenotypes may be evoked by the stress of transplantation because lung allografts face a potent immune response, necessitating higher levels of immune suppression and associated toxicities, relative to other solid organs. Age-associated conditions exacerbated by lung transplant include bone marrow suppression, herpes viral infections, liver cirrhosis, hypogammaglobulinemia, frailty, and cancer risk. This review aims to dissect the molecular mechanisms of immune aging and describe their clinical manifestations in the context of lung transplantation. While these mechanisms are more likely to manifest in the context of lung transplantation, this mechanism-based approach to clinical syndromes of immune aging has broad relevance to geriatric medicine.
Collapse
Affiliation(s)
- Bhavya Kapse
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Marie M. Budev
- Department of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jonathan P. Singer
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - John R. Greenland
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- San Francisco VA Health Care System, Medicine, San Francisco, CA, United States
| |
Collapse
|
25
|
Bordas-Martinez J, Miedema JR, Mathot BJ, Seghers L, Galjaard RJH, Raaijmakers MH, Aalbers AM, Wijsenbeek M, Molina-Molina M, Hellemons ME. Outcomes of lung transplantation in patients with telomere-related forms of progressive fibrosing interstitial lung disease pulmonary fibrosis: A systematic review. JHLT OPEN 2024; 3:100054. [PMID: 40145120 PMCID: PMC11935452 DOI: 10.1016/j.jhlto.2024.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Background Lung transplantation (LTX) is the last life-extending option for patients with progressive fibrosing interstitial lung diseases (fILD). Between 12% and 71% of patients with fILD are patients with underlying telomere-dysfunction (trILD) related to pathogenic telomere-related gene (TRG) variants and/or short telomere length. TrILD patients tend to have earlier disease onset, faster progression, and worse prognosis causing them to be referred for LTX more often. Regarding LTX outcomes in trILD, there are contradictory reports on patient and graft survival, as well as numerous other outcomes. There is no consensus on whether trILD is associated with poorer outcomes after LTX and what considerations regarding candidacy are appropriate. Methods We aimed to systematically review LTX outcomes of patients with trILD in comparison to those with non-trILD. Results A systematic literature search yielded 13 studies that met the inclusion criteria including 933 LTX, 281 in trILD, and 652 in non-trILD. Despite large heterogeneity in the methodological study quality and reported outcomes among the studies, patient and graft survival after LTX in trILD did not evidently seem inferior to LTX in non-trILD. However, there may be increased risk of specific complications, such as cytopenias, airway complications, and cytomegalovirus-reactivation. Conclusions In summary, due to large heterogeneity in methodological study quality and reported outcomes, no firm conclusions can be drawn. Patient and graft survival do not seem unequivocally inferior in patients with trILD deemed eligible for LTX. On top of limited available high-quality data, specific patient selection and post-transplant management strategies may affect the currently acquired results. As such, differences may exist regarding transplant-related outcomes, which could require special attention and consideration. Further high-quality comparative studies on LTX outcomes in trILD are needed to draw final conclusions and provide recommendations regarding patient selection and post-transplantation management.
Collapse
Affiliation(s)
- Jaume Bordas-Martinez
- Erasmus MC Transplantation Institute, Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
- Centre of Excellence for Interstitial Lung Disease and Sarcoidosis, Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
- ILD Unit, Department of Respiratory Medicine, Bellvitge University Hospital, IDIBELL, Barcelona University, Hospitalet de Llobregat, CIBERES, Barcelona, Spain
| | - Jelle R. Miedema
- Centre of Excellence for Interstitial Lung Disease and Sarcoidosis, Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bas J. Mathot
- Erasmus MC Transplantation Institute, Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Leonard Seghers
- Erasmus MC Transplantation Institute, Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Robert-Jan H. Galjaard
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | | | - Anna M. Aalbers
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Marlies Wijsenbeek
- Centre of Excellence for Interstitial Lung Disease and Sarcoidosis, Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Maria Molina-Molina
- ILD Unit, Department of Respiratory Medicine, Bellvitge University Hospital, IDIBELL, Barcelona University, Hospitalet de Llobregat, CIBERES, Barcelona, Spain
| | - Merel E. Hellemons
- Erasmus MC Transplantation Institute, Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
- Centre of Excellence for Interstitial Lung Disease and Sarcoidosis, Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
26
|
Ongie L, Raj HA, Stevens KB. Genetic Counseling and Family Screening Recommendations in Patients with Telomere Biology Disorders. Curr Hematol Malig Rep 2023; 18:273-283. [PMID: 37787873 DOI: 10.1007/s11899-023-00713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE OF REVIEW Telomere biology disorders (TBDs) encompass a spectrum of genetic diseases with a common pathogenesis of defects in telomerase function and telomere maintenance causing extremely short telomere lengths. Here, we review the current literature surrounding genetic testing strategies, cascade testing, reproductive implications, and the role of genetic counseling. RECENT FINDINGS The understanding of the genetic causes and clinical symptoms of TBDs continues to expand while genetic testing and telomere length testing are nuanced tools utilized in the diagnosis of this condition. Access to genetic counseling is becoming more abundant and is valuable in supporting patients and their families in making informed decisions. Patient resources and support groups are valuable to this community. Defining which populations should be offered genetic counseling and testing is imperative to provide proper diagnoses and medical management for not only the primary patient, but also their biological relatives.
Collapse
Affiliation(s)
| | - Hannah A Raj
- Team Telomere, Inc., New York, NY, USA
- College of Medicine, University of Illinois, Chicago, IL, USA
| | | |
Collapse
|
27
|
Snyder ME, Anderson MR, Benvenuto LJ, Sutton RM, Bondonese A, Koshy R, Burke R, Clifford S, Craig A, Iasella CJ, Hannan SJ, Popescu I, Zhang Y, Sanchez PG, Alder JK, McDyer JF. Impact of age and telomere length on circulating T cells and rejection risk after lung transplantation for idiopathic pulmonary fibrosis. J Heart Lung Transplant 2023; 42:1666-1677. [PMID: 37544465 PMCID: PMC10839116 DOI: 10.1016/j.healun.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Most idiopathic pulmonary fibrosis (IPF) lung transplant recipients (IPF-LTRs) have short telomere (ST) length. Inherited mutations in telomere-related genes are associated with the development of T cell immunodeficiency. Despite this, IPF-LTRs with telomere-related rare variants are not protected from acute cellular rejection (ACR). We set out to determine the impact of both age and telomere length on the circulating T cell compartment and ACR burden of IPF-LTRs. METHODS We identified 106 IPF-LTRs who had telomere length testing using flowFISH (57 with short telomeres and 49 with long telomeres) as well as a subset from both cohorts who had cryopreserved PBMC at least 1 time point, 6 months posttransplantation. Circulating T cells from before transplantation and at 6 and 12 months posttransplantation were analyzed using multiparameter flow cytometry to study phenotype and functional capacity, and bulk T cell receptor sequencing was performed to study repertoire diversity. Linear regression was used to study the relationship of age and telomere length on early (within 1 year) and late (between 1 and 2 years) ACR. RESULTS IPF-LTRs with ST were found to have premature "aging" of their circulating T cell compartment, with age-agnostic elevations in posttransplant terminal differentiation of CD8+ T cells, increased granzyme B positivity of both CD8+ and CD4+ T cells, upregulation of the exhaustion marker, CD57, and chemotactic protein CCR5, and enhanced T cell receptor clonal expansion. Additionally, we found a significant decline in early ACR burden with increasing age, but only in the ST cohort. CONCLUSIONS IPF-LTRs with ST have premature "aging" of their circulating T cell compartment posttransplantation and a clear age-related decline in ACR burden.
Collapse
Affiliation(s)
- Mark E Snyder
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Starzl Transplantation Institute, Pittsburgh, Pennsylvania.
| | - Michaela R Anderson
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Luke J Benvenuto
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Rachel M Sutton
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Bondonese
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ritchie Koshy
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robin Burke
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah Clifford
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew Craig
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carlo J Iasella
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stefanie J Hannan
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Iulia Popescu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pablo G Sanchez
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan K Alder
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John F McDyer
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Starzl Transplantation Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
28
|
Banaszak LG, Smith-Simmer K, Shoger K, Lovrien L, Malik A, Sandbo N, Sultan S, Guzy R, Lowery EM, Churpek JE. Implementation of a prospective screening strategy to identify adults with a telomere biology disorder among those undergoing lung transplant evaluation for interstitial lung disease. Respir Med 2023; 220:107464. [PMID: 37951311 DOI: 10.1016/j.rmed.2023.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
INTRODUCTION Patients with interstitial lung disease (ILD) secondary to telomere biology disorders (TBD) experience increased morbidity after lung transplantation. Identifying patients with TBD may allow for personalized management to facilitate better outcomes. However, establishing a TBD diagnosis in adults is challenging. METHODS A TBD screening questionnaire was introduced prospectively into the lung transplant evaluation. Patients with ILD screening positive were referred for comprehensive TBD phenotyping and concurrent telomere length measurement and germline genetic testing. RESULTS Of 98 patients, 32 (33%) screened positive. Eight patients (8% of total; 25% of patients with a positive screen) met strict TBD diagnostic criteria, requiring either critically short lymphocyte telomeres (<1st percentile) (n = 4), a pathogenic variant in a TBD-associated gene (n = 1), or both (n = 3) along with a TBD clinical phenotype. Additional patients not meeting strict diagnostic criteria had histories consistent with TBD along with telomere lengths <10th percentile and/or rare variants in TBD-associated genes, highlighting a critical need to refine TBD diagnostic criteria for this patient population. CONCLUSION A TBD phenotype screening questionnaire in patients with ILD undergoing lung transplant evaluation has a diagnostic yield of 25%. Additional gene discovery, rare variant functional testing, and refined TBD diagnostic criteria are needed to realize the maximum benefit of testing for TBD in patients undergoing lung transplantation.
Collapse
Affiliation(s)
- Lauren G Banaszak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Kelcy Smith-Simmer
- Oncology Genetics, University of Wisconsin Carbone Cancer Center, UW Health, Madison, WI, 53705, USA
| | - Kyle Shoger
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lauren Lovrien
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Amy Malik
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Nathan Sandbo
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Samir Sultan
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Robert Guzy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Erin M Lowery
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jane E Churpek
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
29
|
Zhang D, Adegunsoye A, Oldham JM, Kozlitina J, Garcia N, Poonawalla M, Strykowski R, Linderholm AL, Ley B, Ma SF, Noth I, Strek ME, Wolters PJ, Garcia CK, Newton CA. Telomere length and immunosuppression in non-idiopathic pulmonary fibrosis interstitial lung disease. Eur Respir J 2023; 62:2300441. [PMID: 37591536 PMCID: PMC10695771 DOI: 10.1183/13993003.00441-2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Studies suggest a harmful pharmacogenomic interaction exists between short leukocyte telomere length (LTL) and immunosuppressants in idiopathic pulmonary fibrosis (IPF). It remains unknown if a similar interaction exists in non-IPF interstitial lung disease (ILD). METHODS A retrospective, multicentre cohort analysis was performed in fibrotic hypersensitivity pneumonitis (fHP), unclassifiable ILD (uILD) and connective tissue disease (CTD)-ILD patients from five centres. LTL was measured by quantitative PCR for discovery and replication cohorts and expressed as age-adjusted percentiles of normal. Inverse probability of treatment weights based on propensity scores were used to assess the association between mycophenolate or azathioprine exposure and age-adjusted LTL on 2-year transplant-free survival using weighted Cox proportional hazards regression incorporating time-dependent immunosuppressant exposure. RESULTS The discovery and replication cohorts included 613 and 325 patients, respectively. In total, 40% of patients were exposed to immunosuppression and 22% had LTL <10th percentile of normal. fHP and uILD patients with LTL <10th percentile experienced reduced survival when exposed to either mycophenolate or azathioprine in the discovery cohort (mortality hazard ratio (HR) 4.97, 95% CI 2.26-10.92; p<0.001) and replication cohort (mortality HR 4.90, 95% CI 1.74-13.77; p=0.003). Immunosuppressant exposure was not associated with differential survival in patients with LTL ≥10th percentile. There was a significant interaction between LTL <10th percentile and immunosuppressant exposure (discovery pinteraction=0.013; replication pinteraction=0.011). Low event rate and prevalence of LTL <10th percentile precluded subgroup analyses for CTD-ILD. CONCLUSION Similar to IPF, fHP and uILD patients with age-adjusted LTL <10th percentile may experience reduced survival when exposed to immunosuppression.
Collapse
Affiliation(s)
- David Zhang
- Division of Pulmonary and Critical Care Medicine, Columbia University, New York, NY, USA
- These two authors contributed equally to this work
| | - Ayodeji Adegunsoye
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA
- These two authors contributed equally to this work
| | - Justin M Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Julia Kozlitina
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicole Garcia
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Maria Poonawalla
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Rachel Strykowski
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Angela L Linderholm
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, CA, USA
| | - Brett Ley
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Shwu-Fan Ma
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, USA
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mary E Strek
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Paul J Wolters
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Christine Kim Garcia
- Division of Pulmonary and Critical Care Medicine, Columbia University, New York, NY, USA
| | - Chad A Newton
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
30
|
Hannan SJ, Iasella CJ, Sutton RM, Popescu ID, Koshy R, Burke R, Chen X, Zhang Y, Pilewski JM, Hage CA, Sanchez PG, Im A, Farah R, Alder JK, McDyer JF. Lung transplant recipients with telomere-mediated pulmonary fibrosis have increased risk for hematologic complications. Am J Transplant 2023; 23:1590-1602. [PMID: 37392813 PMCID: PMC11062487 DOI: 10.1016/j.ajt.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/31/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
Idiopathic pulmonary fibrosis lung transplant recipients (IPF-LTRs) are enriched for short telomere length (TL) and telomere gene rare variants. A subset of patients with nontransplant short-TL are at increased risk for bone marrow (BM) dysfunction. We hypothesized that IPF-LTRs with short-TL and/or rare variants would be at increased risk for posttransplant hematologic complications. Data were extracted from a retrospective cohort of 72 IPF-LTRs and 72 age-matched non-IPF-LTR controls. Genetic assessment was done using whole genome sequencing or targeted sequence panel. TL was measured using flow cytometry and fluorescence in-situ hybridization (FlowFISH) and TelSeq software. The majority of the IPF-LTR cohort had short-TL, and 26% of IPF-LTRs had rare variants. Compared to non-IPF controls, short-TL IPF-LTRs were more likely to have immunosuppression agents discontinued due to cytopenias (P = .0375), and BM dysfunction requiring BM biopsy was more prevalent (29% vs 4%, P = .0003). IPF-LTRs with short-TL and rare variants had increased requirements for transfusion and growth factor support. Multivariable logistic regression demonstrated that short-TL, rare variants, and lower pretransplant platelet counts were associated with BM dysfunction. Pretransplant TL measurement and genetic testing for rare telomere gene variants identified IPF-LTRs at increased risk for hematologic complications. Our findings support stratification for telomere-mediated pulmonary fibrosis in lung transplant candidates.
Collapse
Affiliation(s)
- Stefanie J Hannan
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Lung Transplant Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carlo J Iasella
- Lung Transplant Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pharmacy and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rachel M Sutton
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Lung Transplant Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Iulia D Popescu
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Lung Transplant Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ritchie Koshy
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Lung Transplant Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robin Burke
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Lung Transplant Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiaoping Chen
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Lung Transplant Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chadi A Hage
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Lung Transplant Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pablo G Sanchez
- Lung Transplant Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Annie Im
- Hillman Cancer Center, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rafic Farah
- Hillman Cancer Center, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jonathan K Alder
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Lung Transplant Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John F McDyer
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Lung Transplant Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
31
|
Stanel SC, Callum J, Rivera-Ortega P. Genetic and environmental factors in interstitial lung diseases: current and future perspectives on early diagnosis of high-risk cohorts. Front Med (Lausanne) 2023; 10:1232655. [PMID: 37601795 PMCID: PMC10435297 DOI: 10.3389/fmed.2023.1232655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Within the wide scope of interstitial lung diseases (ILDs), familial pulmonary fibrosis (FPF) is being increasingly recognized as a specific entity, with earlier onset, faster progression, and suboptimal responses to immunosuppression. FPF is linked to heritable pathogenic variants in telomere-related genes (TRGs), surfactant-related genes (SRGs), telomere shortening (TS), and early cellular senescence. Telomere abnormalities have also been identified in some sporadic cases of fibrotic ILD. Air pollution and other environmental exposures carry additive risk to genetic predisposition in pulmonary fibrosis. We provide a perspective on how these features impact on screening strategies for relatives of FPF patients, interstitial lung abnormalities, ILD multi-disciplinary team (MDT) discussion, and disparities and barriers to genomic testing. We also describe our experience with establishing a familial interstitial pneumonia (FIP) clinic and provide guidance on how to identify patients with telomere dysfunction who would benefit most from genomic testing.
Collapse
Affiliation(s)
- Stefan Cristian Stanel
- Interstitial Lung Disease Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jack Callum
- Interstitial Lung Disease Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Pilar Rivera-Ortega
- Interstitial Lung Disease Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
32
|
Tague LK, Oetjen KA, Mahadev A, Walter MJ, Anthony H, Kreisel D, Link DC, Gelman AE. Increased clonal hematopoiesis involving DNA damage response genes in patients undergoing lung transplantation. JCI Insight 2023; 8:e165609. [PMID: 36853803 PMCID: PMC10132147 DOI: 10.1172/jci.insight.165609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUNDCellular stressors influence the development of clonal hematopoiesis (CH). We hypothesized that environmental, inflammatory, and genotoxic stresses drive the emergence of CH in lung transplant recipients. METHODSWe performed a cross-sectional cohort study of 85 lung transplant recipients to characterize CH prevalence. We evaluated somatic variants using duplex error-corrected sequencing and germline variants using whole exome sequencing. We evaluated CH frequency and burden using χ2 and Poisson regression, and we evaluated associations with clinical and demographic variables and clinical outcomes using χ2, logistic regression, and Cox regression. RESULTSCH in DNA damage response (DDR) genes TP53, PPM1D, and ATM was increased in transplant recipients compared with a control group of older adults (28% versus 0%, adjusted OR [aOR], 12.9 [1.7-100.3], P = 0.0002). Age (OR, 1.13 [1.03-1.25], P = 0.014) and smoking history (OR 4.25 [1.02-17.82], P = 0.048) were associated with DDR CH. Germline variants predisposing to idiopathic pulmonary fibrosis were identified but not associated with CH. DDR CH was associated with increased cytomegalovirus viremia versus patients with no (OR, 7.23 [1.95-26.8], P = 0.018) or non-DDR CH (OR, 7.64 [1.77-32.89], P = 0.024) and mycophenolate discontinuation (aOR, 3.8 [1.3-12.9], P = 0.031). CONCLUSIONCH in DDR genes is prevalent in lung transplant recipients and is associated with posttransplant outcomes including cytomegalovirus activation and mycophenolate intolerance. FUNDINGNIH/NHLBI K01HL155231 (LKT), R25HL105400 (LKT), Foundation for Barnes-Jewish Hospital (LKT), Evans MDS Center at Washington University (KAO, MJW), ASH Scholar Award (KAO), NIH K12CA167540 (KAO), NIH P01AI116501 (AEG, DK), NIH R01HL094601 (AEG), and NIH P01CA101937 (DCL).
Collapse
Affiliation(s)
| | - Karolyn A. Oetjen
- Division of Oncology, Section of Stem Cell Biology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Matthew J. Walter
- Division of Oncology, Section of Stem Cell Biology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Daniel Kreisel
- Department of Surgery, Division of Cardiothoracic Surgery, and
| | - Daniel C. Link
- Division of Oncology, Section of Stem Cell Biology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Andrew E. Gelman
- Department of Surgery, Division of Cardiothoracic Surgery, and
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
33
|
Schratz KE, Flasch DA, Atik CC, Cosner ZL, Blackford AL, Yang W, Gable DL, Vellanki PJ, Xiang Z, Gaysinskaya V, Vonderheide RH, Rooper LM, Zhang J, Armanios M. T cell immune deficiency rather than chromosome instability predisposes patients with short telomere syndromes to squamous cancers. Cancer Cell 2023; 41:807-817.e6. [PMID: 37037617 PMCID: PMC10188244 DOI: 10.1016/j.ccell.2023.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/27/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023]
Abstract
Patients with short telomere syndromes (STS) are predisposed to developing cancer, believed to stem from chromosome instability in neoplastic cells. We tested this hypothesis in a large cohort assembled over the last 20 years. We found that the only solid cancers to which patients with STS are predisposed are squamous cell carcinomas of the head and neck, anus, or skin, a spectrum reminiscent of cancers seen in patients with immunodeficiency. Whole-genome sequencing showed no increase in chromosome instability, such as translocations or chromothripsis. Moreover, STS-associated cancers acquired telomere maintenance mechanisms, including telomerase reverse transcriptase (TERT) promoter mutations. A detailed study of the immune status of patients with STS revealed a striking T cell immunodeficiency at the time of cancer diagnosis. A similar immunodeficiency that impaired tumor surveillance was documented in mice with short telomeres. We conclude that STS patients’ predisposition to solid cancers is due to T cell exhaustion rather than autonomous defects in the neoplastic cells themselves.
Collapse
Affiliation(s)
- Kristen E Schratz
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Telomere Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Diane A Flasch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christine C Atik
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zoe L Cosner
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amanda L Blackford
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wentao Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dustin L Gable
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Paz J Vellanki
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zhimin Xiang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Valeriya Gaysinskaya
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert H Vonderheide
- Abramson Cancer Center, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lisa M Rooper
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mary Armanios
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Telomere Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
34
|
Borie R, Kannengiesser C, Antoniou K, Bonella F, Crestani B, Fabre A, Froidure A, Galvin L, Griese M, Grutters JC, Molina-Molina M, Poletti V, Prasse A, Renzoni E, van der Smagt J, van Moorsel CHM. European Respiratory Society statement on familial pulmonary fibrosis. Eur Respir J 2023; 61:13993003.01383-2022. [PMID: 36549714 DOI: 10.1183/13993003.01383-2022] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Genetic predisposition to pulmonary fibrosis has been confirmed by the discovery of several gene mutations that cause pulmonary fibrosis. Although genetic sequencing of familial pulmonary fibrosis (FPF) cases is embedded in routine clinical practice in several countries, many centres have yet to incorporate genetic sequencing within interstitial lung disease (ILD) services and proper international consensus has not yet been established. An international and multidisciplinary expert Task Force (pulmonologists, geneticists, paediatrician, pathologist, genetic counsellor, patient representative and librarian) reviewed the literature between 1945 and 2022, and reached consensus for all of the following questions: 1) Which patients may benefit from genetic sequencing and clinical counselling? 2) What is known of the natural history of FPF? 3) Which genes are usually tested? 4) What is the evidence for telomere length measurement? 5) What is the role of common genetic variants (polymorphisms) in the diagnostic workup? 6) What are the optimal treatment options for FPF? 7) Which family members are eligible for genetic sequencing? 8) Which clinical screening and follow-up parameters may be considered in family members? Through a robust review of the literature, the Task Force offers a statement on genetic sequencing, clinical management and screening of patients with FPF and their relatives. This proposal may serve as a basis for a prospective evaluation and future international recommendations.
Collapse
Affiliation(s)
- Raphael Borie
- Université Paris Cité, Inserm, PHERE, Hôpital Bichat, AP-HP, Service de Pneumologie A, Centre Constitutif du Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| | | | - Katerina Antoniou
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik, University Hospital, University of Essen, European Reference Network (ERN)-LUNG, ILD Core Network, Essen, Germany
| | - Bruno Crestani
- Université Paris Cité, Inserm, PHERE, Hôpital Bichat, AP-HP, Service de Pneumologie A, Centre Constitutif du Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| | - Aurélie Fabre
- Department of Histopathology, St Vincent's University Hospital and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Antoine Froidure
- Pulmonology Department, Cliniques Universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Liam Galvin
- European Pulmonary Fibrosis Federation, Blackrock, Ireland
| | - Matthias Griese
- Dr von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Jan C Grutters
- ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands
- Division of Heart and Lungs, UMC Utrecht, Utrecht, The Netherlands
| | - Maria Molina-Molina
- Interstitial Lung Disease Unit, Respiratory Department, University Hospital of Bellvitge, IDIBELL, Hospitalet de Llobregat (Barcelona), CIBERES, Barcelona, Spain
| | - Venerino Poletti
- Department of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
- Department of Experimental, Diagnostics and Speciality Medicine, University of Bologna, Bologna, Italy
| | - Antje Prasse
- Department of Pulmonology, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
- Fraunhofer ITEM, Hannover, Germany
| | - Elisabetta Renzoni
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jasper van der Smagt
- Division of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
35
|
Papiris SA, Kannengiesser C, Borie R, Kolilekas L, Kallieri M, Apollonatou V, Ba I, Nathan N, Bush A, Griese M, Dieude P, Crestani B, Manali ED. Genetics in Idiopathic Pulmonary Fibrosis: A Clinical Perspective. Diagnostics (Basel) 2022; 12:2928. [PMID: 36552935 PMCID: PMC9777433 DOI: 10.3390/diagnostics12122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Unraveling the genetic background in a significant proportion of patients with both sporadic and familial IPF provided new insights into the pathogenic pathways of pulmonary fibrosis. AIM The aim of the present study is to overview the clinical significance of genetics in IPF. PERSPECTIVE It is fascinating to realize the so-far underestimated but dynamically increasing impact that genetics has on aspects related to the pathophysiology, accurate and early diagnosis, and treatment and prevention of this devastating disease. Genetics in IPF have contributed as no other in unchaining the disease from the dogma of a "a sporadic entity of the elderly, limited to the lungs" and allowed all scientists, but mostly clinicians, all over the world to consider its many aspects and "faces" in all age groups, including its co-existence with several extra pulmonary conditions from cutaneous albinism to bone-marrow and liver failure. CONCLUSION By providing additional evidence for unsuspected characteristics such as immunodeficiency, impaired mucus, and surfactant and telomere maintenance that very often co-exist through the interaction of common and rare genetic variants in the same patient, genetics have created a generous and pluralistic yet unifying platform that could lead to the understanding of the injurious and pro-fibrotic effects of many seemingly unrelated extrinsic and intrinsic offending factors. The same platform constantly instructs us about our limitations as well as about the heritability, the knowledge and the wisdom that is still missing.
Collapse
Affiliation(s)
- Spyros A. Papiris
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Caroline Kannengiesser
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
- INSERM UMR 1152, Université de Paris, 75018 Paris, France
| | - Raphael Borie
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Lykourgos Kolilekas
- 7th Pulmonary Department, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece
| | - Maria Kallieri
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Vasiliki Apollonatou
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Ibrahima Ba
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
| | - Nadia Nathan
- Peditric Pulmonology Department and Reference Centre for Rare Lung Diseases RespiRare, INSERM UMR_S933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Sorbonne University and APHP, 75012 Paris, France
| | - Andrew Bush
- Paediatrics and Paediatric Respirology, Imperial College, Imperial Centre for Paediatrics and Child Health, Royal Brompton Harefield NHS Foundation Trust, London SW3 6NP, UK
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, 80337 Munich, Germany
| | - Philippe Dieude
- Department of Rheumatology, INSERM U1152, APHP Hôpital Bichat-Claude Bernard, Université de Paris, 75018 Paris, France
| | - Bruno Crestani
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Effrosyni D. Manali
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
36
|
Patel H, Shah JR, Patel DR, Avanthika C, Jhaveri S, Gor K. Idiopathic pulmonary fibrosis: Diagnosis, biomarkers and newer treatment protocols. Dis Mon 2022:101484. [DOI: 10.1016/j.disamonth.2022.101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Luo M, Wang J. Compound heterozygous mutation of RTEL1 in interstitial lung disease complicated with pneumothorax and emphysema: A case report and literature review. Respirol Case Rep 2022; 10:e01032. [PMID: 36090019 PMCID: PMC9446392 DOI: 10.1002/rcr2.1032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/22/2022] [Indexed: 12/25/2022] Open
Abstract
Interstitial lung diseases (ILDs) are common respiratory diseases with limited treatment options and poor prognoses. Early and accurate diagnosis of ILD is challenging and requires a multidisciplinary discussion. We report a 32-year-old patient admitted to our hospital with cough and increasing dyspnea on exertion. Computerized tomography scan of his chest demonstrated diffuse interstitial abnormalities, emphysematous changes, and a pneumothorax. Whole-exome sequencing (WES) and Sanger sequencing indicated a compound mutation of heterozygosity in RTEL1 gene c.2992C > T(p.Arg998*) and c.482T > C(p.Val161Ala). In-silicon analysis revealed the pathogenic nonsense mutation c.2992C > T, which introduced a premature stop codon in exon 30 of RTEL1. The patient is still alive with progressive dyspnea to now. We reviewed the pathophysiology of ILD patients carrying RTEL1 mutations and the roles of RTEL1 mutation in guiding treatment and prognostication in ILD.
Collapse
Affiliation(s)
- Man Luo
- Department of Respiratory Medicine, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
- Department of Translation Medicine Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiao‐Li Wang
- Department of Respiratory Medicine, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
- Department of Translation Medicine Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
- The Fourth Clinical Medical College of Zhejiang Chinese Medical UniversityHangzhouChina
- Zhejiang University Cancer CenterHangzhouChina
| |
Collapse
|
38
|
Koons B, Anderson MR, Smith PJ, Greenland JR, Singer JP. The Intersection of Aging and Lung Transplantation: its Impact on Transplant Evaluation, Outcomes, and Clinical Care. CURRENT TRANSPLANTATION REPORTS 2022; 9:149-159. [PMID: 36341000 PMCID: PMC9632682 DOI: 10.1007/s40472-022-00365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
Purpose Older adults (age ≥ 65 years) are the fastest growing age group undergoing lung transplantation. Further, international consensus document for the selection of lung transplant candidates no longer suggest a fixed upper age limit. Although carefully selected older adults can derive great benefit, understanding which older adults will do well after transplant with improved survival and health-related qualiy of life is key to informed decision-making. Herein, we review the epidemiology of aging in lung transplantation and its impact on outcomes, highlight selected physiological measures that may be informative when evaluating and managing older lung transplant patients, and identify directions for future research. Recent Findings In general, listing and transplanting older, sicker patients has contributed to worse clinical outcomes and greater healthcare use. Emerging evidence suggest that measures of physiological age, such as frailty, body composition, and neurocognitive and psychosocial function, may better identify risk for poor transplant outcomes than chronlogical age. Summary The evidence base to inform transplant decision-making and improvements in care for older adults is small but growing. Multipronged efforts at the intersection of aging and lung transplantation are needed to improve the clinical and patient centered outcomes for this large and growing cohort of patients. Future research should focus on identifying novel and ideally modifiable risk factors for poor outcomes specific to older adults, better approaches to measuring physiological aging (e.g., frailty, body composition, neurocognitive and psychosocial function), and the underlying mechanisms of physiological aging. Finally, interventions that can improve clinical and patient centered outcomes for older adults are needed.
Collapse
Affiliation(s)
- Brittany Koons
- M. Louise Fitzpatrick College of Nursing, Villanova University, 800 Lancaster Avenue, Driscoll Hall Room 350, Villanova, PA 19085, USA
| | - Michaela R. Anderson
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick J. Smith
- Department of Psychiatry and Behavioral Sciences, Division of Behavioral Medicine and Neurosciences, Duke University Medical Center, Durham, NC, USA
| | - John R. Greenland
- Department of Medicine, University of California, San Francisco, CA, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Jonathan P. Singer
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, UC San Francisco, San Francisco, CA, USA
| |
Collapse
|
39
|
Abstract
Telomere biology was first studied in maize, ciliates, yeast, and mice, and in recent decades, it has informed understanding of common disease mechanisms with broad implications for patient care. Short telomere syndromes are the most prevalent premature aging disorders, with prominent phenotypes affecting the lung and hematopoietic system. Less understood are a newly recognized group of cancer-prone syndromes that are associated with mutations that lengthen telomeres. A large body of new data from Mendelian genetics and epidemiology now provides an opportunity to reconsider paradigms related to the role of telomeres in human aging and cancer, and in some cases, the findings diverge from what was interpreted from model systems. For example, short telomeres have been considered potent drivers of genome instability, but age-associated solid tumors are rare in individuals with short telomere syndromes, and T cell immunodeficiency explains their spectrum. More commonly, short telomeres promote clonal hematopoiesis, including somatic reversion, providing a new leukemogenesis paradigm that is independent of genome instability. Long telomeres, on the other hand, which extend the cellular life span in vitro, are now appreciated to be the most common shared germline risk factor for cancer in population studies. Through this contemporary lens, I revisit here the role of telomeres in human aging, focusing on how short and long telomeres drive cancer evolution but through distinct mechanisms.
Collapse
Affiliation(s)
- Mary Armanios
- Departments of Oncology, Genetic Medicine, Pathology, and Molecular Biology and Genetics; Telomere Center at Johns Hopkins; and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
40
|
Newton CA, Oldham JM, Applegate C, Carmichael N, Powell K, Dilling D, Schmidt SL, Scholand MB, Armanios M, Garcia CK, Kropski JA, Talbert J. The Role of Genetic Testing in Pulmonary Fibrosis. Chest 2022; 162:394-405. [PMID: 35337808 PMCID: PMC9424324 DOI: 10.1016/j.chest.2022.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Patients with familial pulmonary fibrosis represent a subset of patients with pulmonary fibrosis in whom inherited gene variation predisposes them to disease development. In the appropriate setting, genetic testing allows for personalized assessment of disease, recognition of clinically relevant extrapulmonary manifestations, and assessing susceptibility in unaffected relatives. However currently, the use of genetic testing is inconsistent, partly because of the lack of guidance regarding high-yield scenarios in which the results of genetic testing can inform clinical decision-making. To address this, the Pulmonary Fibrosis Foundation commissioned a genetic testing work group comprising pulmonologists, geneticists, and genetic counselors from the United States to provide guidance on genetic testing in patients with pulmonary fibrosis. This CHEST special feature presents a concise review of these proceedings and reviews pulmonary fibrosis susceptibility, clinically available genetic testing methods, and clinical scenarios in which genetic testing should be considered.
Collapse
|
41
|
Ma H, Wu X, Li Y, Xia Y. Research Progress in the Molecular Mechanisms, Therapeutic Targets, and Drug Development of Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:963054. [PMID: 35935869 PMCID: PMC9349351 DOI: 10.3389/fphar.2022.963054] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Recent studies have identified the key role of crosstalk between dysregulated epithelial cells, mesenchymal, immune, and endothelial cells in IPF. In addition, genetic mutations and environmental factors (e.g., smoking) have also been associated with the development of IPF. With the recent development of sequencing technology, epigenetics, as an intermediate link between gene expression and environmental impacts, has also been reported to be implicated in pulmonary fibrosis. Although the etiology of IPF is unknown, many novel therapeutic targets and agents have emerged from clinical trials for IPF treatment in the past years, and the successful launch of pirfenidone and nintedanib has demonstrated the promising future of anti-IPF therapy. Therefore, we aimed to gain an in-depth understanding of the underlying molecular mechanisms and pathogenic factors of IPF, which would be helpful for the diagnosis of IPF, the development of anti-fibrotic drugs, and improving the prognosis of patients with IPF. In this study, we summarized the pathogenic mechanism, therapeutic targets and clinical trials from the perspective of multiple cell types, gene mutations, epigenetic and environmental factors.
Collapse
Affiliation(s)
- Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
- *Correspondence: Yong Xia,
| |
Collapse
|
42
|
Guérin C, Crestani B, Dupin C, Kawano-Dourado L, Ba I, Kannengiesser C, Borie R. [Telomeres and lung]. Rev Mal Respir 2022; 39:595-606. [PMID: 35715316 DOI: 10.1016/j.rmr.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Genetic studies of familial forms of interstitial lung disease (ILD) have led to the discovery of telomere-related gene (TRG) mutations (TERT, TERC, RTEL1, PARN, DKC1, TINF2, NAF1, NOP10, NHP2, ACD, ZCCH8) in approximately 30% of familial ILD forms. ILD patients with TRG mutation are also subject to extra-pulmonary (immune-hematological, hepatic and/or mucosal-cutaneous) manifestations. TRG mutations may be associated not only with idiopathic pulmonary fibrosis (IPF), but also with non-IPF ILDs, including idiopathic and secondary ILDs, such as hypersensitivity pneumonitis (HP). The presence of TRG mutation may also be associated with an accelerated decline of forced vital capacity (FVC) or poorer prognosis after lung transplantation, notwithstanding which, usual ILD treatments may be proposed. Lastly, patients and their relatives are called upon to reduce their exposure to environmental lung toxicity, and are likely to derive benefit from specific genetic counseling and pre-symptomatic genetic testing.
Collapse
Affiliation(s)
- C Guérin
- Service de Pneumologie A, Centre de compétences maladies pulmonaires rares, AP-HP, Hôpital Bichat, Paris, France..
| | - B Crestani
- Service de Pneumologie A, Centre de compétences maladies pulmonaires rares, AP-HP, Hôpital Bichat, Paris, France.; INSERM, Unité 1152; Université Paris Diderot, Paris, France
| | - C Dupin
- Service de Pneumologie A, Centre de compétences maladies pulmonaires rares, AP-HP, Hôpital Bichat, Paris, France.; INSERM, Unité 1152; Université Paris Diderot, Paris, France
| | - L Kawano-Dourado
- INSERM, Unité 1152; Université Paris Diderot, Paris, France.; HCor Research Institute, Hôpital de Caracao, Sao Paulo, Brésil.; Département de Pneumologie, InCor, Université de Sao Paulo, Sao Paulo, Brésil
| | - I Ba
- INSERM, Unité 1152; Université Paris Diderot, Paris, France.; Département de Génétique, AP-HP, Hôpital Bichat, Paris, France
| | - C Kannengiesser
- INSERM, Unité 1152; Université Paris Diderot, Paris, France.; Département de Génétique, AP-HP, Hôpital Bichat, Paris, France
| | - R Borie
- Service de Pneumologie A, Centre de compétences maladies pulmonaires rares, AP-HP, Hôpital Bichat, Paris, France.; INSERM, Unité 1152; Université Paris Diderot, Paris, France
| |
Collapse
|
43
|
Abstract
Parenchymal lung disease is the fourth leading cause of death in the United States; among the top causes, it continues on the rise. Telomeres and telomerase have historically been linked to cellular processes related to aging and cancer, but surprisingly, in the recent decade genetic discoveries have linked the most apparent manifestations of telomere and telomerase dysfunction in humans to the etiology of lung disease: both idiopathic pulmonary fibrosis (IPF) and emphysema. The short telomere defect is pervasive in a subset of IPF patients, and human IPF is the phenotype most intimately tied to germline defects in telomere maintenance. One-third of families with pulmonary fibrosis carry germline mutations in telomerase or other telomere maintenance genes, and one-half of patients with apparently sporadic IPF have short telomere length. Beyond explaining genetic susceptibility, short telomere length uncovers clinically relevant syndromic extrapulmonary disease, including a T-cell immunodeficiency and a propensity to myeloid malignancies. Recognition of this subset of patients who share a unifying molecular defect has provided a precision medicine paradigm wherein the telomere-mediated lung disease diagnosis provides more prognostic value than histopathology or multidisciplinary evaluation. Here, we critically evaluate this progress, emphasizing how the genetic findings put forth a new pathogenesis paradigm of age-related lung disease that links telomere abnormalities to alveolar stem senescence, remodeling, and defective gas exchange.
Collapse
Affiliation(s)
- Jonathan K. Alder
- Division of Pulmonary and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh PA, United States
| | - Mary Armanios
- Departments of Oncology and Genetic Medicine, Telomere Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
44
|
Alder JK, Sutton RM, Iasella CJ, Nouraie M, Koshy R, Hannan SJ, Chan EG, Chen X, Zhang Y, Brown M, Popescu I, Veatch M, Saul M, Berndt A, Methé BA, Morris A, Pilewski JM, Sanchez PG, Morrell MR, Shapiro SD, Lindell KO, Gibson KF, Kass DJ, McDyer JF. Lung transplantation for idiopathic pulmonary fibrosis enriches for individuals with telomere-mediated disease. J Heart Lung Transplant 2022; 41:654-663. [PMID: 34933798 PMCID: PMC9038609 DOI: 10.1016/j.healun.2021.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is the most common indication for lung transplantation in North America and variants in telomere-maintenance genes are the most common identifiable cause of IPF. We reasoned that younger IPF patients are more likely to undergo lung transplantation and we hypothesized that lung transplant recipients would be enriched for individuals with telomere-mediated disease due to the earlier onset and more severe disease in these patients. METHODS Individuals with IPF who underwent lung transplantation or were evaluated in an interstitial lung disease specialty clinic who did not undergo lung transplantation were examined. Genetic evaluation was completed via whole genome sequencing (WGS) of 426 individuals and targeted sequencing for 5 individuals. Rare variants in genes previously associated with IPF were classified using the American College of Medical Genetics guidelines. Telomere length from WGS data was measured using TelSeq software. Patient characteristics were collected via medical record review. RESULTS Of 431 individuals, 149 underwent lung transplantation for IPF. The median age of diagnosis of transplanted vs non-transplanted individuals was significantly younger (60 years vs 70 years, respectively, p<0.0001). IPF lung transplant recipients (IPF-LTRs) were twice as likely to have telomere-related rare variants compared to non-transplanted individuals (24% vs 12%, respectively, p=0.0013). IPF-LTRs had shorter telomeres than non-transplanted IPF patients (p=0.0028) and >85% had telomeres below the age-adjusted mean. Post-transplant survival and CLAD were similar amongst IPF-LTRs with rare variants in telomere-maintenance genes compared to those without, as well as in those with short telomeres versus longer telomeres. CONCLUSIONS There is an enrichment for telomere-maintenance gene variants and short telomeres among IPF-LTRs. However, transplant outcomes of survival and CLAD do not differ by gene variants or telomere length within IPF-LTRs. Our findings support individual with telomere-mediated disease should not be excluded from lung transplantation and focusing research efforts on therapies directed toward individuals with short-telomere mediated disease.
Collapse
Affiliation(s)
- Jonathan K Alder
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Rachel M Sutton
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carlo J Iasella
- Department of Pharmacy and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mehdi Nouraie
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ritchie Koshy
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stefanie J Hannan
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ernest G Chan
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaoping Chen
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yingze Zhang
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark Brown
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Iulia Popescu
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melinda Veatch
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melissa Saul
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Annerose Berndt
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Barbara A Methé
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pablo G Sanchez
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew R Morrell
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steven D Shapiro
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kathleen O Lindell
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; College of Nursing, Medical University of South Carolina, Charleston, South Carolina
| | - Kevin F Gibson
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel J Kass
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John F McDyer
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
45
|
Phillips-Houlbracq M, Mal H, Cottin V, Gauvain C, Beier F, Sicre de Fontbrune F, Sidali S, Mornex JF, Hirschi S, Roux A, Weisenburger G, Roussel A, Wémeau-Stervinou L, Le Pavec J, Pison C, Marchand Adam S, Froidure A, Lazor R, Naccache JM, Jouneau S, Nunes H, Reynaud-Gaubert M, Le Borgne A, Boutboul D, Ba I, Boileau C, Crestani B, Kannengiesser C, Borie R. Determinants of survival after lung transplantation in telomerase-related gene mutation carriers: A retrospective cohort. Am J Transplant 2022; 22:1236-1244. [PMID: 34854205 DOI: 10.1111/ajt.16893] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 01/25/2023]
Abstract
Carriers of germline telomerase-related gene (TRG) mutations can show poor prognosis, with an increase in common hematological complications after lung transplantation (LT) for pulmonary fibrosis. The aim of this study was to describe the outcomes after LT in recipients carrying a germline TRG mutation and to identify the predictors of survival. In a multicenter cohort of LT patients, we retrospectively reviewed those carrying pathogenic TRG variations (n = 38; TERT, n = 23, TERC, n = 9, RTEL1, n = 6) between 2009 and 2018. The median age at LT was 54 years (interquartile range [IQR] 46-59); 68% were male and 71% had idiopathic pulmonary fibrosis. During the diagnosis of pulmonary fibrosis, 28 (74%) had a hematological disease, including eight with myelodysplasia. After a median follow-up of 26 months (IQR 15-46), 38 patients received LT. The overall post-LT median survival was 3.75 years (IQR 1.8-NA). The risk of death after LT was increased for patients with myelodysplasia (HR 4.1 [95% CI 1.5-11.5]) or short telomere (HR 2.2 [1.0-5.0]) before LT. After LT, all patients had anemia, 66% had thrombocytopenia, and 39% had neutropenia. Chronic lung allograft dysfunction frequency was 29% at 4 years. The present findings support the use of LT in TRG mutation carriers without myelodysplasia. Hematological evaluation should be systematically performed before LT.
Collapse
Affiliation(s)
- Mathilde Phillips-Houlbracq
- Service de Pneumologie A, Centre de référence des maladies pulmonaires rares (site constitutif), APHP, Hôpital Bichat, Paris, France
| | - Hervé Mal
- Université de Paris and INSERM U1152, Paris, France.,Service de Pneumologie B, APHP, Hôpital Bichat, Paris, France
| | - Vincent Cottin
- Service de Pneumologie, Centre coordonnateur national de référence des maladies pulmonaires rares, Hôpital Louis Pradel, Université Claude Bernard Lyon 1, Université de Lyon, INRAE, ERN-LUNG, Lyon, France
| | - Clément Gauvain
- Service d'oncologie, Hôpital Calmette, CHU de Lille, Lille, France
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | | | - Sabrina Sidali
- Service d'hépatologie, Hôpital Beaujon, APHP, Clichy, France
| | - Jean François Mornex
- Service de Pneumologie, Centre coordonnateur national de référence des maladies pulmonaires rares, Hôpital Louis Pradel, Université Claude Bernard Lyon 1, Université de Lyon, INRAE, ERN-LUNG, Lyon, France
| | - Sandrine Hirschi
- Service de Pneumologie, Centre de compétence des maladies pulmonaires rares, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Antoine Roux
- Service de Pneumologie, Hôpital Foch, Suresnes, France
| | - Gaelle Weisenburger
- Université de Paris and INSERM U1152, Paris, France.,Service de Pneumologie B, APHP, Hôpital Bichat, Paris, France
| | - Arnaud Roussel
- Service de chirurgie vasculaire et thoracique, Hopital Bichat, Paris, France
| | - Lidwine Wémeau-Stervinou
- Service de Pneumologie, Centre de référence des maladies pulmonaires rares (site constitutif), CHU de Lille, Lille, France
| | - Jérôme Le Pavec
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-pulmonaire, Groupe Hospitalier Saint Joseph/Marie-Lannelongue, Le Plessis-Robinson, France.,Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, Université Paris-Sud, INSERM, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Christophe Pison
- Service Hospitalier Universitaire Pneumologie Physiologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | | | - Antoine Froidure
- Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgique
| | - Romain Lazor
- Service de Pneumologie, Centre hospitalier universitaire vaudois, Lausanne, Suisse
| | - Jean-Marc Naccache
- Service de Pneumologie, Centre de référence des maladies pulmonaires rares (site constitutif), Hôpital Tenon, Paris, France
| | - Stéphane Jouneau
- Service de Pneumologie, Centre de compétences des maladies rares pulmonaires, Hôpital Pontchaillou, IRSET UMR 1085, Université de Rennes 1, Rennes, France
| | - Hilario Nunes
- Service de Pneumologie Centre de référence des maladies pulmonaires rares (site constitutif), Hôpital Avicenne, Bobigny, France
| | - Martine Reynaud-Gaubert
- Service de Pneumologie, Centre de compétences des maladies pulmonaires rares, CHU Nord, AP-HM, Marseille, France.,Aix-Marseille Université, IHU Méditerranée Infection, MEPHI, Marseille, France
| | - Aurélie Le Borgne
- Service de Pneumologie, Centre de compétence des maladies pulmonaires rares Hôpital Larrey CHU Toulouse, Toulouse, France
| | - David Boutboul
- Service d'Immunopathologie Clinique, Hôpital St Louis, APHP, Paris, France
| | - Ibrahima Ba
- Laboratoire de Génétique, APHP, Hôpital Bichat, Paris, France
| | | | - Bruno Crestani
- Service de Pneumologie A, Centre de référence des maladies pulmonaires rares (site constitutif), APHP, Hôpital Bichat, Paris, France
| | | | - Raphaël Borie
- Service de Pneumologie A, Centre de référence des maladies pulmonaires rares (site constitutif), APHP, Hôpital Bichat, Paris, France
| | | |
Collapse
|
46
|
Nandavaram S, Chandrashekaran S, Gelman AE. Short Telomeres in Lung Transplantation: Known Unknowns. J Heart Lung Transplant 2022; 41:664-666. [DOI: 10.1016/j.healun.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/30/2022] Open
|
47
|
Choi B, Messika J, Courtwright A, Mornex JF, Hirschi S, Roux A, Le Pavec J, Quêtant S, Froidure A, Lazor R, Reynaud-Gaubert M, Borgne AL, Houlbracq MP, Goldberg H, El-Chemaly S, Borie R. Airway complications in lung transplant recipients with telomere-related interstitial lung disease. Clin Transplant 2021; 36:e14552. [PMID: 34856024 DOI: 10.1111/ctr.14552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Patients with short telomere-related interstitial lung disease (ILD) have worse outcomes after lung transplantation. We hypothesized that post-transplant airway complications, including dehiscence and bronchial stenosis, would be more common in the short telomere ILD lung transplant population. METHODS We conducted a multi-institutional (Brigham and Women's Hospital, Groupe de Transplantation de la SPLF) retrospective cohort study of 63 recipients between 2009 and 2019 with ILD and short telomeres, compared to 4359 recipients from the Scientific Registry of Transplant Recipients with ILD and no known telomeropathy. RESULTS In the short telomere cohort, six recipients (9.5%) developed dehiscence and nine recipients (14.3%) developed stenosis, compared to 60 (1.4%) and 149 (3.4%) in the control, respectively. After adjusting for age, sex, and bilaterality, the presence of short telomeres was associated with higher odds of dehiscence (odds ratio (OR) = 8.24, 95% confidence interval (CI) = 3.34 20.29, p < .001) and stenosis (OR = 4.63, 95% CI 2.21 9.69, p < .001). CONCLUSION The association between the presence of short telomeres and post-transplant dehiscence and stenosis suggest that airway complications may be a contributor to increased morbidity and mortality in patients with telomere-related ILD.
Collapse
Affiliation(s)
- Bina Choi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jonathan Messika
- Physiopathology and Epidemiology of Respiratory Diseases, UMR1152 INSERM and Université de Paris, Paris, France
| | - Andrew Courtwright
- Department of Pulmonary and Critical Care Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jean François Mornex
- Université de Lyon, Université Lyon 1, INRAE, EPHE, IVPC, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Référence des Maladies Pulmonaires Rares, France
| | - Sandrine Hirschi
- Service de Pneumologie, Centre de compétence des maladies pulmonaires rares, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Antoine Roux
- Service de Pneumologie, Hôpital Foch, UVSQ, France
| | - Jérôme Le Pavec
- Service de chirurgie thoracique et de transplantation pulmonaire, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Sébastien Quêtant
- Service Hospitalier Universitaire Pneumologie Physiologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Université Grenoble Alpes, Inserm1055, Grenoble, France
| | - Antoine Froidure
- Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Romain Lazor
- Respiratory Medicine Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Martine Reynaud-Gaubert
- Service de Pneumologie, Centre de compétences des maladies pulmonaires rares, CHU Nord, AP-HM, Marseille, Aix- Marseille Université, IHU Méditerranée Infection, MEPHI, Marseille, France
| | - Aurélie Le Borgne
- Service de Pneumologie, Centre de compétence des maladies pulmonaires rares Hôpital Larrey CHU Toulouse, Toulouse, France
| | - Mathilde Phillips Houlbracq
- Physiopathology and Epidemiology of Respiratory Diseases, UMR1152 INSERM and Université de Paris, Paris, France.,Hôpital Bichat-Claude Bernard, Service de Pneumologie et Transplantation Pulmonaire, APHP.Nord-Université de Paris, Paris, France
| | - Hilary Goldberg
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Raphael Borie
- Physiopathology and Epidemiology of Respiratory Diseases, UMR1152 INSERM and Université de Paris, Paris, France.,Hôpital Bichat-Claude Bernard, Service de Pneumologie et Transplantation Pulmonaire, APHP.Nord-Université de Paris, Paris, France
| | | |
Collapse
|
48
|
A Retrospective Review of Calcineurin Inhibitors’ Impact on Cytomegalovirus Infections in Lung Transplant Recipients. TRANSPLANTOLOGY 2021. [DOI: 10.3390/transplantology2040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Immunosuppressive therapy reduces the risk for allograft rejection but leaves recipients susceptible to infections. Cytomegalovirus (CMV) is one of the most frequent causes for infection after transplantation and increases the risk for allograft rejection. As lung transplant recipients (LTRs) need to be under immunosuppression for life, they are a vulnerable group. To determine the potential association between the development of CMV infection and the calcineurin inhibitor (CNI) blood levels within previous 90 days, a retrospective review of LTRs was performed. Data from recipients who underwent a lung transplantation (LTx) at our center from January 2011 to December 2018 were collected. The studied recipients, after case/control matching, included 128 CMV-infection cases. The median time from the transplant to the first positive CMV viral load was 291.5 days. In our study, more patients were treated with tacrolimus (91.9%) than with cyclosporine (8.1%). Drug blood levels at selected timepoints showed no statistically significant difference between cases and controls. However, we found that CMV infection was more frequent in the donor-seropositive/recipient-seronegative group, interstitial lung disease (ILD) recipients, LTRs who underwent basiliximab induction, cyclosporine treated recipients, and LTRs with lymphopenia (at the time of CMV infection and 90 days before). In this review of LTRs, no association between the CNI blood level and CMV infection was seen, although other immunity-related factors were found to be influencing, i.e., basiliximab induction, cyclosporine treatment, and lymphopenia.
Collapse
|
49
|
Wang P, Leung J, Lam A, Lee S, Calabrese DR, Hays SR, Golden JA, Kukreja J, Singer JP, Wolters PJ, Tang Q, Greenland JR. Lung transplant recipients with idiopathic pulmonary fibrosis have impaired alloreactive immune responses. J Heart Lung Transplant 2021; 41:641-653. [PMID: 34924263 PMCID: PMC9038662 DOI: 10.1016/j.healun.2021.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Telomere dysfunction is associated with idiopathic pulmonary fibrosis (IPF) and worse outcomes following lung transplantation. Telomere dysfunction may impair immunity by upregulating p53 and arresting proliferation, but its influence on allograft-specific immune responses is unknown. We hypothesized that subjects undergoing lung transplantation for IPF would have impaired T cell proliferation to donor antigens. METHODS We analyzed peripheral blood mononuclear cells (PBMC) from 14 IPF lung transplant recipients and 12 age-matched non-IPF subjects, before and 2 years after transplantation, as well as PBMC from 9 non-transplant controls. We quantified T cell proliferation and cytokine secretion to donor antigens. Associations between PBMC telomere length, measured by quantitative PCR, and T cell proliferation to alloantigens were evaluated with generalized estimating equation models. RESULTS IPF subjects demonstrated impaired CD8+ T cell proliferation to donor antigens pre-transplant (p < 0.05). IL-2, IL-7, and IL-15 cytokine stimulation restored T cell proliferation, while p53 upregulation blocked proliferation. IPF subjects had shorter PBMC telomere lengths than non-IPF subjects (p < 0.001), and short PBMC telomere length was associated with impaired CD8+ T cell proliferation to alloantigens (p = 0.002). CONCLUSIONS IPF as an indication for lung transplant is associated with short PBMC telomere length and impaired T cell responses to donor antigens. However, the rescue of proliferation following cytokine exposure suggests that alloimmune anergy could be overcome. Telomere length may inform immunosuppression strategies for IPF recipients.
Collapse
Affiliation(s)
- Ping Wang
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Joey Leung
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - Alice Lam
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - Seoyeon Lee
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Daniel R Calabrese
- Department of Medicine, University of California San Francisco, San Francisco, California; Medical Service, San Francisco VA Health Care System, San Francisco, California
| | - Steven R Hays
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Jeffery A Golden
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Jasleen Kukreja
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - Jonathan P Singer
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Paul J Wolters
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Qizhi Tang
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - John R Greenland
- Department of Medicine, University of California San Francisco, San Francisco, California; Medical Service, San Francisco VA Health Care System, San Francisco, California.
| |
Collapse
|
50
|
Planas-Cerezales L, Arias-Salgado EG, Berastegui C, Montes-Worboys A, González-Montelongo R, Lorenzo-Salazar JM, Vicens-Zygmunt V, Garcia-Moyano M, Dorca J, Flores C, Perona R, Román A, Molina-Molina M. Lung Transplant Improves Survival and Quality of Life Regardless of Telomere Dysfunction. Front Med (Lausanne) 2021; 8:695919. [PMID: 34395476 PMCID: PMC8362799 DOI: 10.3389/fmed.2021.695919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction: Fibrotic interstitial lung diseases (ILDs) are the first indication for lung transplantation (LT). Telomere dysfunction has been associated with poor post-transplant outcomes. The aim of the study was to evaluate the morbi-mortality and quality of life in fibrotic ILDs after lung transplant depending on telomere biology. Methods: Fibrotic ILD patients that underwent lung transplant were allocated to two arms; with or without telomere dysfunction at diagnosis based on the telomere length and telomerase related gene mutations revealed by whole-exome sequencing. Post-transplant evaluation included: (1) short and long-term mortality and complications and (2) quality of life. Results: Fifty-five percent of patients that underwent LT carried rare coding mutations in telomerase-related genes. Patients with telomere shortening more frequently needed extracorporeal circulation and presented a higher rate of early post-transplant hematological complications, longer stay in the intensive care unit (ICU), and a higher number of long-term hospital admissions. However, post-transplant 1-year survival was higher than 80% regardless of telomere dysfunction, with improvement in the quality of life and oxygen therapy withdrawal. Conclusions: Post-transplant morbidity is higher in patients with telomere dysfunction and differs according to elapsed time from transplantation. However, lung transplant improves survival and quality of life and the associated complications are manageable.
Collapse
Affiliation(s)
- Lurdes Planas-Cerezales
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain
| | - Elena G Arias-Salgado
- Biomedical Research Institute CSIC/UAM, IdIPAZ, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Berastegui
- Respiratory Department, Institute of Research, Hospital Universitari Vall d'Hebrón, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Ana Montes-Worboys
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain
| | | | - José M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Vanesa Vicens-Zygmunt
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain
| | | | - Jordi Dorca
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain.,Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Centro Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Rosario Perona
- Biomedical Research Institute CSIC/UAM, IdIPAZ, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Román
- Respiratory Department, Institute of Research, Hospital Universitari Vall d'Hebrón, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - María Molina-Molina
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain.,Centro Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|