1
|
Baranyi G, Harron K, Shen Y, de Hoogh K, Fitzsimons E. The relationship between early life course air pollution exposure and general health in adolescence in the United Kingdom. Sci Rep 2025; 15:10983. [PMID: 40369113 PMCID: PMC12078791 DOI: 10.1038/s41598-025-94107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/11/2025] [Indexed: 05/16/2025] Open
Abstract
Air pollution is associated with health in childhood. However, there is limited evidence on sensitive periods during the first 18 years of life. Data were drawn from the Millennium Cohort Study, a large and nationally representative cohort born in 2000/2002. Self-reported general health was assessed at age 17; number of hospital records were derived from linked health data (Hospital Episode Statistics) for consented participants. Residential history was linked to 25 × 25 m grid resolution annual PM2.5, PM10 and NO2 maps between 2000 and 2019; year-specific air pollution exposure in 200-m buffers around postcode centroids were computed. After adjusting for individual and time-variant area-level confounders, children exposed to higher air pollution in early (2-4 y) (n = 9137; PM2.5: OR = 1.06, 95% CI: 1.01-1.11; PM10: OR = 1.05, 95% CI: 1.01-1.09; NO2: OR = 1.01, 95% CI: 1.00-1.02) and middle childhood (5-7) (n = 9171; PM2.5: OR = 1.04, 95% CI: 1.00-1.07; PM10: OR = 1.03, 95% CI: 1.01-1.06) reported worse general health at age 17. Higher PM2.5 and NO2 exposure in adolescence increased the number of hospital episodes in young adulthood. Individuals from non-White and disadvantaged backgrounds were exposed to higher levels of air pollution. Air pollution in early and middle childhood might contribute to worse general health, with ethnic minority and disadvantaged children being more exposed.
Collapse
Affiliation(s)
- Gergő Baranyi
- Centre for Longitudinal Studies, UCL Institute of Education, University College London, London, UK.
| | - Katie Harron
- Population, Policy and Practice Department, UCL GOS Institute of Child Health, University College London, London, UK
| | - Youchen Shen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Emla Fitzsimons
- Centre for Longitudinal Studies, UCL Institute of Education, University College London, London, UK
| |
Collapse
|
2
|
Zhang JL, Wang TN, Lin PC, Lin KT, Chen YH, Jhang JM, Yao TC, Lin YC, Chen PS. Impacts of night market on indoor air quality and lung function of children in nearby households. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025:10.1038/s41370-025-00755-5. [PMID: 40113881 DOI: 10.1038/s41370-025-00755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Night markets-a unique element of Asian culture-involve various cooking methods and combustion, generating air pollutants with adverse health effects. However, there is no scientific literature on whether air pollutants from night markets affect indoor air quality and the lung function of children in nearby households. OBJECTIVE We evaluated the impacts of night market, specifically market opening days and household distance from the market, on indoor air quality and the lung function of children in nearby households. METHODS Using real-time monitoring equipment, we measured concentrations of particulate matter (PM)1, PM2.5, PM10, carbon dioxide (CO2), carbon monoxide (CO), nitrogen dioxide, sulfur dioxide (SO2), ozone, total volatile organic compound (TVOC), airborne bacteria, and fungi in 58 households located near a night market. Additionally, we assessed the lung function values of children living in these households. RESULTS PM1 and PM2.5 concentrations were significantly higher during opening days than during closing days. The lung function values for children were significantly lower in households located ≤595 m from the market (near group) than in those located >595 m from the market (far group). Higher CO2, CO, SO2, TVOCs, and PM10 concentrations and poor lung function were observed in children in the near group. IMPACT STATEMENT PM1 and PM2.5 concentrations were significantly higher during opening days of the night market than during closing days. Children residing near the night market (≤595 m) exhibited significantly lower lung function values than those living in houses located >595 m from the market.
Collapse
Affiliation(s)
- Jia Lin Zhang
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, Republic of China
| | - Tsu-Nai Wang
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, Republic of China
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan, Republic of China
| | - Pei-Chen Lin
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, Republic of China
| | - Kuan-Ting Lin
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, Republic of China
| | - Yu-Han Chen
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, Republic of China
| | - Jyun-Min Jhang
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, Republic of China
| | - Ting-Ching Yao
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, Republic of China
| | - Yuan-Chung Lin
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, Republic of China.
- Institute of Environmental Engineering, College of Engineering, National Sun Yat-Sen University, Kaohsiung City 807, Taiwan, Republic of China.
- Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan, Republic of China.
- Net Zero Emissions and Resource Recycling Technology Research Center, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, Republic of China.
| | - Pei-Shih Chen
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, Republic of China.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan, Republic of China.
- Institute of Environmental Engineering, College of Engineering, National Sun Yat-Sen University, Kaohsiung City 807, Taiwan, Republic of China.
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, Republic of China.
- Institute of Wildlife Conservation, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung City 912, Taiwan, Republic of China.
| |
Collapse
|
3
|
Chong-Neto HJ, Filho NAR. How does air quality affect the health of children and adolescents? J Pediatr (Rio J) 2025; 101 Suppl 1:S77-S83. [PMID: 39719017 PMCID: PMC11962542 DOI: 10.1016/j.jped.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/26/2024] Open
Abstract
OBJECTIVES To assess how air quality and pollutants affect the health of children and adolescents. SOURCE OF DATA A narrative review of recent literature was conducted using PubMed databases, focusing on studies published between 2015 and 2023. The keywords included "air pollution", "child health", "adolescents", "respiratory diseases" and "cognitive development". The studies were selected based on their relevance to the pediatric community and impacts on air quality, emphasizing original peer-reviewed research and meta-analyses. SYNTHESIS OF DATA Exposure to pollutants in the air during the formative and development years can lead to respiratory disorders, neurodevelopmental impairment, and exacerbated chronic conditions. This review synthesizes current evidence on the relationship between air quality and pediatric health, emphasizing the effects of specific pollutants, mechanisms of harm, and long-term implications. CONCLUSIONS From respiratory disorders to neurodevelopmental problems, air pollution, remains a widespread threat, particularly to vulnerable populations. Immediate actions at the political, community, individual, and industry levels are necessary to mitigate these risks.
Collapse
|
4
|
Akaraci S, Macfarlane A, Rammah A, Courtin E, Lewis E, Miller F, Powell-Bavester J, Mitchell J, Cruz J, Lilliman M, Shoari N, Hajna S, Cummins S, Adedire T, Nafilyan V, Hardelid P. Kids' Environment and Health Cohort: Database Protocol: supplementary appendix. Int J Popul Data Sci 2025; 10:2475. [PMID: 40041099 PMCID: PMC11878347 DOI: 10.23889/ijpds.v10i1.2475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Introduction Environmental exposures are known to affect the health and well-being of populations throughout the life course. Children are particularly susceptible to environmental impacts on educational and health outcomes as they spend more time in their local environments compared to adults. In England, no national, longitudinal dataset linking information about the physical and social environment in and around homes and schools to children's health and education outcomes currently exists. This limits our understanding of how environments might impact the health and well-being of children as they grow up. Objective To establish the Kids' Environment and Health Cohort, a research-ready, de-identified and annually updated national birth cohort of all children born in England from 2006 onwards. Methods The Kids' Environment and Health Cohort will link birth and mortality records, health and educational attainment datasets, to maternal health (up to 12 months prior to their child's birth), and environmental data for all children born in England from 2006 - approximately 11 million children at first build. A subset of children born between 2010 and 2012, and between 2020 and 2022 will be linked to their mothers' 2011 or 2021 Census records, respectively. The cohort database will be held in, and accessed via, a trusted research environment (TRE) at the Office for National Statistics (ONS). All geographical identifiers in the cohort, allowing for linkage to further environmental data, will be securely held by the ONS, separately to the main cohort, and will be encrypted before being shared with researchers. Conclusion The Kids' Environment and Health Cohort will, for the first time, link administrative health and education data to longitudinal environmental exposures for children at national level in England. It will serve as a data resource to support research about the health and well-being of children via improved home and school environments.
Collapse
Affiliation(s)
- Selin Akaraci
- Population, Policy and Practice Research and Teaching Department UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | | | - Amal Rammah
- Population, Policy and Practice Research and Teaching Department UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Emilie Courtin
- Health Inequalities Lab, Department of Health Policy, London School of Economics and Political Science, London, UK
| | | | - Faith Miller
- Population, Policy and Practice Research and Teaching Department UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | | | - Jessica Mitchell
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Joana Cruz
- Population, Policy and Practice Research and Teaching Department UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Matthew Lilliman
- Population, Policy and Practice Research and Teaching Department UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Niloofar Shoari
- Population, Policy and Practice Research and Teaching Department UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Samantha Hajna
- Population, Policy and Practice Research and Teaching Department UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St Catharines, ON, Canada
- MRC Epidemiology Unit, University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | - Steven Cummins
- Population Health Innovation Lab, Department of Public Health, Environments & Society, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | - Pia Hardelid
- Population, Policy and Practice Research and Teaching Department UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| |
Collapse
|
5
|
Jutila OEI, Mullin D, Vieno M, Tomlinson S, Taylor A, Corley J, Deary IJ, Cox SR, Baranyi G, Pearce J, Luciano M, Karlsson IK, Russ TC. Life-course exposure to air pollution and the risk of dementia in the Lothian Birth Cohort 1936. Environ Epidemiol 2025; 9:e355. [PMID: 39669703 PMCID: PMC11634326 DOI: 10.1097/ee9.0000000000000355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/18/2024] [Indexed: 12/14/2024] Open
Abstract
Background Air pollution in later life has been associated with dementia; however, limited research has investigated the association between air pollution across the life course, either at specific life periods or cumulatively. The project investigates the association of air pollution with dementia via a life-course epidemiological approach. Methods Participants of the Lothian Birth Cohort, born in 1936, provided lifetime residential history in 2014. Participant's air pollution exposure for time periods 1935, 1950, 1970, 1980, 1990, 2001, and 2007 was modeled using an atmospheric chemistry transport model. Lifetime cumulative exposures were calculated as time-weighted mean exposure. Of 572 participants, 67 developed all-cause dementia [35 with Alzheimer's dementia (AD)] by wave 5 (~82 years). Cox proportional hazards and competing risk models assessed the association between all-cause dementia and AD with particulate matter (diameter of ≤2.5 µm) PM2.5 and nitrogen dioxide (NO2) exposure at specific life periods and cumulatively. False discovery rate (FDR) correction was applied for multiple testing. Results The mean follow-up was 11.26 years. One standard deviation (SD) higher exposure to air pollution in 1935 (PM2.5 = 14.03 μg/m3, NO2 = 5.35 μg/m3) was positively linked but not statistically significant to all-cause dementia [PM2.5 hazard ratio (HR) = 1.16, 95% confidence interval (CI) = 0.90, 1.49; NO2 HR = 1.13, 95% CI = 0.88, 1.47] and AD (PM2.5 HR = 1.38, 95% CI = 1.00, 1.91; NO2 HR = 1.35, 95% CI = 0.92, 1.99). In the competing risk model, one SD elevated PM2.5 exposure (1.12 μg/m3) in 1990 was inversely associated with dementia (subdistribution HR = 0.82, 95% CI = 0.67, 0.99) at P = 0.034 but not after FDR correction (P FDR = 0.442). Higher cumulative PM2.5 per one SD was associated with an increased risk of all-cause dementia and AD for all accumulation models except for the early-life model. Conclusion The in-utero and early-life exposure to PM2.5 and NO2 was associated with higher AD and all-cause dementia risk, suggesting a sensitive/critical period. Cumulative exposure to PM2.5 across the life course was associated with higher dementia risk. Midlife PM2.5 exposure's negative association with all-cause dementia risk may stem from unaddressed confounders or bias.
Collapse
Affiliation(s)
- Otto-Emil I. Jutila
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom
- Deanary of Molecular, Genetic and Population Health Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Donncha Mullin
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, United Kingdom
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Massimo Vieno
- UK Centre for Ecology & Hydrology (UKCEH), Penicuik, United Kingdom
| | - Samuel Tomlinson
- UK Centre for Ecology & Hydrology (UKCEH), Penicuik, United Kingdom
| | - Adele Taylor
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom
| | - Janie Corley
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom
| | - Ian J. Deary
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon R. Cox
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom
| | - Gergő Baranyi
- Centre for Research on Environment, Society & Health, School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Longitudinal Studies, UCL, London, United Kingdom
| | - Jamie Pearce
- Centre for Research on Environment, Society & Health, School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Michelle Luciano
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Ida K. Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Tom C. Russ
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Sola-Martínez RA, Jiménez-Guerrero P, Sánchez-Solís M, Lozano-Terol G, Gallego-Jara J, Martínez-Vivancos A, Morales E, García-Marcos L, de Diego Puente T. Impact of environmental exposures on exhaled breath and lung function: NELA Birth Cohort. ERJ Open Res 2025; 11:00597-2024. [PMID: 39811551 PMCID: PMC11726542 DOI: 10.1183/23120541.00597-2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction Exposure to environmental factors (i.e. air pollution and second-hand tobacco smoke) have been associated with impaired lung function. However, the impact of environmental factors on lung health is usually evaluated separately and not with an exposomic framework. In this regard, breath analysis could be a noninvasive tool for biomonitoring of global human environmental exposure. Methods Data come from 337 mother-child pairs from the Nutrition in Early Childhood Asthma (NELA) birth cohort. Levels of BTEX (benzene, toluene, ethylbenzene and xylenes) in exhaled breath from mothers and children at 3 months after birth were estimated using gas chromatography-mass spectrometry. Short-term residential exposures (breath sampling day and 15 days before breath sampling) to nitrogen dioxide, particulate matter (PM2.5) and ozone were determined by chemical dispersion/transport modelling. Forced vital capacity, forced expiratory volume in 0.5 s (FEV0.5) and forced expiratory flow at 75% of FVC and at 25%-75% of FVC were measured in infants according to the raised-volume rapid thoracoabdominal compression technique. Results The results showed significant associations between short-term exposure to external agents and levels of benzene and toluene in exhaled breath. It was observed that exhaled levels of benzene and toluene were influenced by smoking status and outdoor air pollution in mothers, and by air pollution in infants (3 months of age). No significant relationship was observed between exposure to maternal tobacco smoking and/or short-term air pollution and lung function in healthy infants. However, there was a significant relationship between FEV0.5 and exhaled toluene in children. Discussion These findings indicated a significant relationship between environmental exposures and exhaled levels of benzene and toluene, suggesting that breath analysis could be a helpful exposure biomonitoring tool.
Collapse
Affiliation(s)
- Rosa A. Sola-Martínez
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
| | - Pedro Jiménez-Guerrero
- Regional Atmospheric Modelling Group, Department of Physics, University of Murcia, Murcia, Spain
| | - Manuel Sánchez-Solís
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
- Pediatric Respiratory and Allergy Units, “Virgen de la Arrixaca” Children's University Clinical Hospital, Murcia, Spain
- Network of Asthma and Adverse and Allergy Reactions (ARADyAL), Health Institute Carlos III, Madrid, Spain
| | - Gema Lozano-Terol
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
| | - Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Adrián Martínez-Vivancos
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Eva Morales
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
- Department of Public Health Sciences, University of Murcia, Murcia, Spain
- CIBER Epidemiología y Salud Pública, Health Institute Carlos III, Madrid, Spain
| | - Luis García-Marcos
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
- Pediatric Respiratory and Allergy Units, “Virgen de la Arrixaca” Children's University Clinical Hospital, Murcia, Spain
- Network of Asthma and Adverse and Allergy Reactions (ARADyAL), Health Institute Carlos III, Madrid, Spain
- T. de Diego Puente and L. García-Marcos contributed equally as joint senior authors
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
- T. de Diego Puente and L. García-Marcos contributed equally as joint senior authors
| | | |
Collapse
|
7
|
Brew BK, Murphy VE, Collison AM, Mattes J, Karmaus W, Morgan G, Jalaludin B, Zosky G, Guo Y, Gibson PG. Approaches in landscape fire smoke pregnancy research and the impact on offspring: A review of knowledge gaps and recommendations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125348. [PMID: 39571712 DOI: 10.1016/j.envpol.2024.125348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
The increase in wildfires and bushfires due to climate change means that more people, including pregnant women and their fetuses will be exposed to landscape fire smoke. Although there is evidence to suggest that pregnancy landscape fire exposure is associated with lower birth weight, preterm birth and pregnancy loss, there is a lack of information on many other perinatal outcomes, as well as information on subsequent respiratory outcomes in children. Furthermore, due to the generally short term (hours/days) and intermittent nature of landscape fire smoke exposure, the knowledge to date has largely relied on natural experiments and ecological studies which can be subject to misclassification of exposure and a lack of precision. On the other hand, general urban outdoor air pollution exposure during pregnancy and subsequent perinatal and respiratory effects has been well studied. In particular, as air exposure modelling has improved so have the adaptations of methods to analyze the effects of air pollution exposure during pregnancy enabling critical windows of exposure to be identified. In this narrative review we summarize the current state of knowledge about the perinatal and respiratory effects of pregnancy landscape fire and particulate matter <2.5 μm in diameter (PM2.5) air pollution exposure, including a comment on analysis methods to date, and an assessment of how methodologies used in general air pollution research in relation to pregnancy exposure can be further harnessed for landscape fire smoke exposure pregnancy research.
Collapse
Affiliation(s)
- Bronwyn K Brew
- School of Medicine and Public Health, University of Newcastle, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| | - Vanessa E Murphy
- School of Medicine and Public Health, University of Newcastle, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Adam M Collison
- School of Medicine and Public Health, University of Newcastle, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Joerg Mattes
- School of Medicine and Public Health, University of Newcastle, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Wilfried Karmaus
- School of Public Health, University of Memphis, Memphis, TN, USA
| | - Geoffrey Morgan
- School of Public Health, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Centre for Safe Air, NHMRC Centre of Research Excellence, Sydney, Australia; HEAL (Healthy Environments and Lives) Network, Sydney, Australia
| | - Bin Jalaludin
- Centre for Safe Air, NHMRC Centre of Research Excellence, Sydney, Australia; HEAL (Healthy Environments and Lives) Network, Sydney, Australia; School of Population Health, University of New South Wales, Kensington, NSW, Australia
| | - Graeme Zosky
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Yuming Guo
- HEAL (Healthy Environments and Lives) Network, Sydney, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Peter G Gibson
- School of Medicine and Public Health, University of Newcastle, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
8
|
Usemann J, Mozun R, Kuehni CE, de Hoogh K, Flueckiger B, Singer F, Zwahlen M, Moeller A, Latzin P. Air pollution exposure during pregnancy and lung function in childhood: The LUIS study. Pediatr Pulmonol 2024; 59:3178-3189. [PMID: 38980223 PMCID: PMC11601026 DOI: 10.1002/ppul.27169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The adverse effects of high air pollution levels on childhood lung function are well-known. Limited evidence exists on the effects of moderate exposure levels during early life on childhood lung function. We investigated the association of exposure to moderate air pollution during pregnancy, infancy, and preschool time with lung function at school age in a Swiss population-based study. METHODS Fine-scale spatiotemporal model estimates of particulate matter with a diameter <2.5 µm (PM2.5) and nitrogen dioxide (NO2) were linked with residential address histories. We compared air pollution exposures within different time windows (whole pregnancy, first, second, and third trimester of pregnancy, first year of life, preschool age) with forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) measured cross-sectionally using linear regression models adjusted for potential confounders. RESULTS We included 2182 children, ages 6-17 years. Prenatal air pollution exposure was associated with reduced lung function at school age. In children aged 12 years, per 10 µg·m-3 increase in PM2.5 during pregnancy, FEV1 was 55 mL lower (95% CI -84 to -25 mL) and FVC 62 mL lower (95% CI -96 to -28 mL). Associations were age-dependent since they were stronger in younger and weaker in older children. PM2.5 exposure after birth was not associated with reduced lung function. There was no association between NO2 exposure and lung function. CONCLUSION In utero lung development is most sensitive to air pollution exposure, since even modest PM2.5 exposure during the prenatal time was associated with reduced lung function, most prominent in younger children.
Collapse
Affiliation(s)
- Jakob Usemann
- Department of Respiratory MedicineUniversity Children's Hospital ZurichZurichSwitzerland
- University Children's Hospital Basel (UKBB)BaselSwitzerland
- Paediatric Respiratory MedicineChildren's University Hospital of Bern, University of BernBernSwitzerland
| | - Rebeca Mozun
- Institute of Social and Preventive MedicineUniversity of BernBernSwitzerland
- Department of Intensive Care and NeonatologyChildren's Research Centre, University Children's Hospital Zurich, University of ZurichZurichSwitzerland
| | - Claudia E. Kuehni
- Paediatric Respiratory MedicineChildren's University Hospital of Bern, University of BernBernSwitzerland
- Institute of Social and Preventive MedicineUniversity of BernBernSwitzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Benjamin Flueckiger
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Florian Singer
- Department of Respiratory MedicineUniversity Children's Hospital ZurichZurichSwitzerland
- Paediatric Respiratory MedicineChildren's University Hospital of Bern, University of BernBernSwitzerland
- Department of Paediatrics and Adolescent Medicine, Division of Paediatric Pulmonology and AllergologyMedical University of GrazGrazAustria
| | - Marcel Zwahlen
- Institute of Social and Preventive MedicineUniversity of BernBernSwitzerland
| | - Alexander Moeller
- Department of Respiratory MedicineUniversity Children's Hospital ZurichZurichSwitzerland
| | - Philipp Latzin
- Paediatric Respiratory MedicineChildren's University Hospital of Bern, University of BernBernSwitzerland
| | | |
Collapse
|
9
|
Choi D, North M, Ahmed M, Belousova N, Vasileva A, Matelski J, Singer LG, Wu JKY, Jeong CH, Evans G, Chow CW. Pollution exposure in the first 3 months post transplant is associated with lower baseline FEV 1 and higher CLAD risk. J Heart Lung Transplant 2024; 43:1987-1997. [PMID: 39142524 DOI: 10.1016/j.healun.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/27/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Exposure to air pollution post-lung transplant has been shown to decrease graft and patient survival. This study examines the impact of air pollution exposure in the first 3 months post-transplant on baseline (i.e., highest) forced expiratory volume in 1 second (FEV1) achieved and development of chronic lung allograft dysfunction (CLAD). METHODS Double-lung transplant recipients (n = 82) were prospectively enrolled for comprehensive indoor and personal environmental monitoring at 6- and 12-week post transplant and followed for >4 years. Associations between clinical and exposure variables were investigated using an exposomics approach followed by analysis with a Cox proportional hazards model. Multivariable analyses were used to examine the impact of air pollution on baseline % predicted FEV1 (defined as the average of the 2 highest values post transplant) and risk of CLAD. RESULTS Multivariable analysis revealed a significant inverse relationship between personal black carbon (BC) levels and baseline % FEV1. The multivariable model indicated that patients with higher-than-median exposure to BC (>350 ng/m3) attained a baseline % FEV1 that was 8.8% lower than those with lower-than-median BC exposure (p = 0.019). Cox proportional hazards model analysis revealed that patients with high personal BC exposure had a 2.4 times higher hazard risk for CLAD than patients with low BC exposure (p = 0.045). CONCLUSIONS Higher personal BC levels during the first 3 months post-transplant decrease baseline FEV1 and double the risk of CLAD. Strategies to reduce BC exposure early following a lung transplant may help improve lung function and long-term outcomes.
Collapse
Affiliation(s)
- Denny Choi
- Division of Respirology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michelle North
- Division of Respirology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Chemical Engineering & Applied Chemistry, Faculty of Applied Sciences and Engineering, University of Toronto, Toronto, Ontario, Canada; Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada
| | - Musawir Ahmed
- Division of Respirology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalia Belousova
- Division of Respirology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anastasiia Vasileva
- Division of Respirology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John Matelski
- Biostatistics Research Unit, University Health Network, Toronto, Ontario, Canada
| | - Lianne G Singer
- Division of Respirology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto Lung Transplant Program, Ajmera Multi-Organ Transplant Unit, University Health Network, Toronto, Ontario, Canada
| | - Joyce K Y Wu
- Division of Respirology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Cheol-Heon Jeong
- Chemical Engineering & Applied Chemistry, Faculty of Applied Sciences and Engineering, University of Toronto, Toronto, Ontario, Canada; Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada
| | - Greg Evans
- Chemical Engineering & Applied Chemistry, Faculty of Applied Sciences and Engineering, University of Toronto, Toronto, Ontario, Canada; Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada
| | - Chung-Wai Chow
- Division of Respirology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Chemical Engineering & Applied Chemistry, Faculty of Applied Sciences and Engineering, University of Toronto, Toronto, Ontario, Canada; Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada; Toronto Lung Transplant Program, Ajmera Multi-Organ Transplant Unit, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Hu CY, Gutierrez-Avila I, He MZ, Lavigne É, Alcala CS, Yitshak-Sade M, Lamadrid-Figueroa H, Tamayo-Ortiz M, Mercado-Garcia A, Just AC, Gennings C, Téllez-Rojo MM, Wright RO, Wright RJ, Rosa MJ. Windows of susceptibility and joint effects of prenatal and postnatal ambient air pollution and temperature exposure on asthma and wheeze in Mexican children. ENVIRONMENT INTERNATIONAL 2024; 193:109122. [PMID: 39536662 PMCID: PMC11622388 DOI: 10.1016/j.envint.2024.109122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Prenatal and early-life exposure to air pollution and extreme temperatures are associated with childhood asthma and wheeze. However, potential windows of susceptibility and their sex-specific and interactive effects have not been fully elucidated. We aimed to identify critical windows of susceptibility and evaluate sex-specific effects in these associations, and evaluate exposure interactions. METHODS We analyzed data from 468 mother-child pairs enrolled in the PROGRESS birth cohort in Mexico City. Daily residential levels of PM2.5, NO2, and temperature were generated from our validated spatiotemporally resolved models from conception to age 4 years. Childhood asthma and wheeze outcomes were collected at 4-6 and 7-8 years. Distributed lag nonlinear models (DLNMs) were used to identify susceptible windows for prenatal weekly-specific and postnatal monthly-specific associations of air pollution and temperature with respiratory outcomes adjusting for covariates. To evaluate sex-specific effects, DLNMs were stratified. Joint effects were assessed using relative excess risk due to interaction and attributable proportion. RESULTS Mid-gestation was a critical window for both PM2.5 (weeks 20-28, cumulative OR: 1.18 [95% CI: 1.01, 1.37]; weeks 19-26, cumulative OR: 1.18 [95% CI: 1.02, 1.36]) and NO2 (weeks 18-25, cumulative OR: 1.16 [95% CI: 1.02, 1.31]) exposure, associated with higher odds of wheeze. Postnatal exposure to PM2.5 and NO2 during the first year of life was also linked to higher odds of wheeze. The warmer and colder temperatures showed mixed effects on respiratory outcomes. We observed a synergistic interaction between high PM2.5 and high temperature exposure during the first year of life, associated with higher odds of current wheeze. The associations of prenatal air pollution and temperature exposure with respiratory outcomes were more pronounced in males. CONCLUSIONS Early-life air pollution exposure contributes to the development of childhood asthma and wheeze, while exposure to temperature showed mixed associations with respiratory outcomes.
Collapse
Affiliation(s)
- Cheng-Yang Hu
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Ivan Gutierrez-Avila
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Mike Z He
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Éric Lavigne
- Population Studies Division, Health Canada, 269 Laurier Avenue West, Ottawa, ON K1A 0K9, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Cecilia S Alcala
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Maayan Yitshak-Sade
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Hector Lamadrid-Figueroa
- Department of Perinatal Health, Center for Population Health Research, National Institute of Public Health (INSP), Av. Universidad #655 Col. Santa Maria Ahuacatitlan C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Marcela Tamayo-Ortiz
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Adriana Mercado-Garcia
- Center for Nutrition and Health Research, National Institute of Public Health, Av. Universidad #655 Col. Santa Maria Ahuacatitlan C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Allan C Just
- Department of Epidemiology, Brown University School of Public Health, 121 S Main St, Providence, RI 02903, USA
| | - Chris Gennings
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Av. Universidad #655 Col. Santa Maria Ahuacatitlan C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Public Health, Icahn School of Medicine at Mount Sinai, 1184 Fifth Avenue, New York, NY 10029, USA; Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Public Health, Icahn School of Medicine at Mount Sinai, 1184 Fifth Avenue, New York, NY 10029, USA; Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Maria José Rosa
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA.
| |
Collapse
|
11
|
Singh S, Goel I, Tripathi S, Ahirwar A, Kumar M, Rana A, Dhar R, Karmakar S. Effect of environmental air pollutants on placental function and pregnancy outcomes: a molecular insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59819-59851. [PMID: 39388084 DOI: 10.1007/s11356-024-35016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Air pollution has become a major health concern, particularly for vulnerable populations such as the elderly, children, and pregnant women. Studies have reported a strong association between prenatal exposure to air pollutants and adverse pregnancy outcomes, including lower birth weight, reduced fetal growth, and an increased frequency of preterm births. This review summarizes the harmful effects of air pollutants, such as particulate matter, on pregnancy and outlines the mechanistic details associated with these adverse outcomes. Particulate pollutant matter may be able to cross the placenta barrier, and alterations in placental functions are central to the detrimental effects of these pollutants. In addition to associations with preeclampsia and gestational hypertension, air pollutants also induce oxidative stress, inflammation, and epigenetic alteration in the placenta. These pollutants can also affect placental homeostasis and endocrine function, contributing to pregnancy complications and possible transgenerational effects. Prenatal air pollution exposure has been linked to reduced cognitive and motor function in infants and newborns, increasing the predisposition to autism spectrum disorders and other neuropsychiatric disorders. This review also summarizes the use of various animal models to study the harmful effects of air pollution on pregnancy and postnatal outcomes. These findings provide valuable insight into the molecular events associated with the process and can aid in risk mitigation and adopting safety measures. Implementing effective environmental protocols and taking appropriate steps may reduce the global disease burden, particularly for developing nations with poor regulatory compliance and large populations of pregnant women.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Isha Goel
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Smita Tripathi
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Ashok Ahirwar
- Department of Lab Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Habsiguda, Hyderabad, India
| | - Anubhuti Rana
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India.
| |
Collapse
|
12
|
Watkins WJ, Course CW, Cousins M, Hart K, Kotecha SJ, Kotecha S. Impact of ambient air pollution on lung function in preterm-born school-aged children. Thorax 2024; 79:553-563. [PMID: 38359924 PMCID: PMC11137460 DOI: 10.1136/thorax-2023-220233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
RATIONALE Increased outdoor air pollution worsens lung function in children. However, these associations are less well studied in preterm-born individuals. OBJECTIVES We assessed associations between ambient air pollutants and spirometry measures in preterm-born children. METHODS The Respiratory Health Outcomes in Neonates study recruited preterm-born children aged 7-12 years who were born at ≤34 week's gestation. We associated four ambient air pollutants (particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), PM10, nitrogen dioxide (NO2) and sulfur dioxide) at time of birth and spirometry assessment and averaged exposure between these two time points with spirometry measures, using linear regression analyses. Gestational age was banded into 23-28, 29-31 and 32-34 week's. Regression models estimated spirometry values against pollutant levels at birth and at the time of spirometry. MEASUREMENTS AND MAIN RESULTS From 565 preterm-born children, 542 (96%) had satisfactory data. After adjustments for early and current life factors, significant detrimental associations were noted between PM10 at birth and per cent predicted forced vital capacity (%FVC) for the 23-28 and 29-31 week's gestation groups and between current PM2.5 and NO2 exposure and %FVC for the 23-28 week's gestation group. No associations with spirometry were noted for the averaged pollution exposure between birth and spirometry. Predictive models showed 5.9% and 7.4% differences in %FVC between the highest and lowest current pollution exposures for PM2.5 and NO2, respectively, in the 23-28 week group. CONCLUSIONS Birth and current exposures to road-traffic-associated pollutants detrimentally affected %FVC in preterm-born school-aged children, who already have compromised lung function.
Collapse
Affiliation(s)
| | | | - Michael Cousins
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, UK
- Department of Paediatrics, Cardiff & Vale University Health Board, Cardiff, UK
| | - Kylie Hart
- Department of Paediatrics, Cardiff & Vale University Health Board, Cardiff, UK
| | - Sarah J Kotecha
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, UK
| | - Sailesh Kotecha
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
13
|
Jia H, Chang Y, Chen Y, Chen X, Zhang H, Hua X, Xu M, Sheng Y, Zhang N, Cui H, Han L, Zhang J, Fu X, Song J. A single-cell atlas of lung homeostasis reveals dynamic changes during development and aging. Commun Biol 2024; 7:427. [PMID: 38589700 PMCID: PMC11001898 DOI: 10.1038/s42003-024-06111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Aging is a global challenge, marked in the lungs by function decline and structural disorders, which affects the health of the elderly population. To explore anti-aging strategies, we develop a dynamic atlas covering 45 cell types in human lungs, spanning from embryonic development to aging. We aim to apply the discoveries of lung's development to address aging-related issues. We observe that both epithelial and immune cells undergo a process of acquisition and loss of essential function as they transition from development to aging. During aging, we identify cellular phenotypic alternations that result in reduced pulmonary compliance and compromised immune homeostasis. Furthermore, we find a distinctive expression pattern of the ferritin light chain (FTL) gene, which increases during development but decreases in various types of lung cells during the aging process.
Collapse
Affiliation(s)
- Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yulin Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiao Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hang Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengda Xu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixuan Sheng
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningning Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Cui
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Han
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Yanan Hospital, Kunming Medical University, Kunming, China
| | - Jian Zhang
- Thoracic Surgery Department, the third affiliated hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.
| | - Xiaodong Fu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
14
|
Yaremenko AV, Pechnikova NA, Porpodis K, Damdoumis S, Aggeli A, Theodora P, Domvri K. Association of Fetal Lung Development Disorders with Adult Diseases: A Comprehensive Review. J Pers Med 2024; 14:368. [PMID: 38672994 PMCID: PMC11051200 DOI: 10.3390/jpm14040368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Fetal lung development is a crucial and complex process that lays the groundwork for postnatal respiratory health. However, disruptions in this delicate developmental journey can lead to fetal lung development disorders, impacting neonatal outcomes and potentially influencing health outcomes well into adulthood. Recent research has shed light on the intriguing association between fetal lung development disorders and the development of adult diseases. Understanding these links can provide valuable insights into the developmental origins of health and disease, paving the way for targeted preventive measures and clinical interventions. This review article aims to comprehensively explore the association of fetal lung development disorders with adult diseases. We delve into the stages of fetal lung development, examining key factors influencing fetal lung maturation. Subsequently, we investigate specific fetal lung development disorders, such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), congenital diaphragmatic hernia (CDH), and other abnormalities. Furthermore, we explore the potential mechanisms underlying these associations, considering the role of epigenetic modifications, transgenerational effects, and intrauterine environmental factors. Additionally, we examine the epidemiological evidence and clinical findings linking fetal lung development disorders to adult respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and other respiratory ailments. This review provides valuable insights for healthcare professionals and researchers, guiding future investigations and shaping strategies for preventive interventions and long-term care.
Collapse
Affiliation(s)
- Alexey V. Yaremenko
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Nadezhda A. Pechnikova
- Laboratory of Chemical Engineering A’, School of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (N.A.P.); (A.A.)
- Saint Petersburg Pasteur Institute, Saint Petersburg 197101, Russia
| | - Konstantinos Porpodis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Savvas Damdoumis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Amalia Aggeli
- Laboratory of Chemical Engineering A’, School of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (N.A.P.); (A.A.)
| | - Papamitsou Theodora
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Kalliopi Domvri
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Pathology Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
15
|
Abellan A, Warembourg C, Mensink-Bout SM, Ambros A, de Castro M, Fossati S, Guxens M, Jaddoe VW, Nieuwenhuijsen MJ, Vrijheid M, Santos S, Casas M, Duijts L. Urban environment during pregnancy and lung function, wheezing, and asthma in school-age children. The generation R study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123345. [PMID: 38219897 DOI: 10.1016/j.envpol.2024.123345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
The urban environment during pregnancy may influence child's respiratory health, but scarce evidence exists on systematic evaluation of multiple urban exposures (e.g., air pollution, natural spaces, noise, built environment) on children's lung function, wheezing, and asthma development. We aimed to examine the association of the urban environment during pregnancy with lung function, preschool wheezing, and school-age asthma. We included 5624 mother-child pairs participating in a population-based prospective birth cohort. We estimated 30 urban environmental exposures including air pollution, road traffic noise, traffic, green spaces, blue spaces, and built environment during pregnancy. At 10 years of age, lung function was measured by spirometry. Information on preschool wheezing and physician-diagnosed school-age asthma was obtained from multiple questionnaires. We described single-exposure associations with respiratory outcomes using an exposome-wide association study. We also identified patterns of urban exposures with hierarchical clustering on principal components analysis and examined their associations with respiratory outcomes using multivariate regression models. Single-exposure analyses showed associations of higher particulate matter (PM) with lower mid-expiratory flow (FEF25-75%) (e.g., for PM < 2.5 μm of diameter [PM2.5] z-score = -0.06 [-0.09, -0.03]) and higher forced expiratory volume in 1s (FEV1) and forced vital capacity (FVC) (e.g., for PM2.5 FEV1 0.05 [0.02, 0.08]) after correction for multiple-hypothesis testing. Cluster analysis described three patterns of urban exposures during pregnancy and showed that the cluster characterised by higher levels of air pollution, noise, walkability, street connectivity, and lower levels of natural spaces were associated with lower FEF25-75% (-0.08 [-0.17, 0.00]), and higher odds of preschool wheezing (1.21 [1.03, 1.43]). This study shows that the characteristics of the urban environment during pregnancy are of relevance to the offspring's respiratory health during childhood.
Collapse
Affiliation(s)
- Alicia Abellan
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Charline Warembourg
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Sara M Mensink-Bout
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Albert Ambros
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Montserrat de Castro
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Serena Fossati
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Vincent Wv Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Mark J Nieuwenhuijsen
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Liesbeth Duijts
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Division of Neonatology, Department of Neonatal and Pediatric Intensive Care, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
16
|
He S, Lundberg B, Hallberg J, Klevebro S, Pershagen G, Eneroth K, Melén E, Bottai M, Gruzieva O. Joint association of air pollution exposure and inflammation-related proteins in relation to infant lung function. Int J Hyg Environ Health 2024; 255:114294. [PMID: 37952388 DOI: 10.1016/j.ijheh.2023.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/21/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND AND AIM Systemic inflammation is one potential mechanism underlying negative impact of air pollution on lung function. Levels of inflammation-related proteins have the potential to characterize infants' susceptibility to air pollution induced lung function impairment. This study aimed to examine the interplay between air pollution exposure and inflammation-related proteins on lung function in 6-months-old infants. METHODS In the EMIL birth cohort from Stockholm (n = 82), dynamic spirometry, along with measurement of plasma levels of 92 systemic inflammation-related proteins (Olink Proseek Multiplex Inflammation panel) have been carried out in infants aged six months. Time-weighted average exposure to particles with an aerodynamic diameter of <10 μm (PM10), <2.5 μm (PM2.5), and nitrogen dioxide (NO2) at residential addresses from birth and onwards was estimated via validated dispersion models. To characterize the abnormality of inflammation-related protein profile, for each protein in each infant, we calculated the relative deviance of the protein level from age- and sex-specific median in terms of its age- and sex-specific interquartile range (IQR), followed by computing the absolute value of the smallest relative deviance, "minimum absolute deviance". Using linear regression models, interaction of air pollution and the abnormal inflammatory profile on lung function was estimated on the additive scale. RESULTS We found joint association of PM exposure and an abnormal inflammatory protein profile in relation to FEV0.5 and FVC. For 0.1 unit increase in minimum absolute deviance, one IQR increase in PM10 was associated with 85.9 ml (95% CI: -122.9, -48.9) additional decrease in FEV0.5, and 72.3 ml (95% CI: -121.5, -23.2) additional decrease in FVC. Similar results were obtained with PM2.5 exposure, while less apparent for NO2. CONCLUSIONS Early life air pollution exposure and abnormal inflammation-related protein profiles may interact synergistically towards lower lung function in infants.
Collapse
Affiliation(s)
- Shizhen He
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Björn Lundberg
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Jenny Hallberg
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Susanna Klevebro
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Eneroth
- Environment and Health Administration, SLB-analys, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Matteo Bottai
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
17
|
Ferguson L, Taylor J, Symonds P, Davies M, Dimitroulopoulou S. Analysis of inequalities in personal exposure to PM 2.5: A modelling study for the Greater London school-aged population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167056. [PMID: 37717780 DOI: 10.1016/j.scitotenv.2023.167056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/17/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Exposure to air pollution can lead to negative health impacts, with children highly susceptible due to their immature immune and lung systems. Childhood exposure may vary by socio-economic status (SES) due to differences in both outdoor and indoor air pollution levels, the latter of which depends on, for example, building quality, overcrowding and occupant behaviours; however, exposure estimates typically rely on the outdoor component only. Quantifying population exposure across SES requires accounting for variations in time-activity patterns, outdoor air pollution concentrations, and concentrations in indoor microenvironments that account for pollution-generating occupant behaviours and building characteristics. Here, we present a model that estimates personal exposure to PM2.5 for ~1.3 million children aged 4-16 years old in the Greater London region from different income groups. The model combines 1) A national time-activity database, which gives the percentage of each group in different residential and non-residential microenvironments throughout a typical day; 2) Distributions of modelled outdoor PM2.5 concentrations; 3) Detailed estimates of domestic indoor concentrations for different housing and occupant typologies from the building physics model, EnergyPlus, and; 4) Non-domestic concentrations derived from a mass-balance approach. The results show differences in personal exposure across socio-economic groups for children, where the median daily exposure across all scenarios (winter/summer and weekends/weekdays) is 17.2 μg/m3 (95%CIs: 12.1 μg/m3-41.2 μg/m3) for children from households in the lowest income quintile versus 14.5 μg/m3 (95%CIs: 11.5 μg/m3 - 27.9 μg/m3) for those in the highest income quintile. Though those from lower-income homes generally fare worse, approximately 57 % of London's school-aged population across all income groups, equivalent to 761,976 children, have a median daily exposure which exceeds guideline 24-h limits set by the World Health Organisation. The findings suggest residential indoor sources of PM2.5 are a large contributor to personal exposure for school children in London. Interventions to reduce indoor exposure in the home (for example, via the maintenance of kitchen extract ventilation and transition to cleaner cooking fuels) should therefore be prioritised along with the continued mitigation of outdoor sources in Greater London.
Collapse
Affiliation(s)
- Lauren Ferguson
- Institute for Environmental Design and Engineering, Bartlett School of Energy, Environment and Resources, University College London, UK; Air Quality and Public Health Group, UK Health Security Agency, Harwell Science and Innovation Campus, Chilton, UK.
| | - Jonathon Taylor
- Department of Civil Engineering, Tampere University, Finland
| | - Phil Symonds
- Institute for Environmental Design and Engineering, Bartlett School of Energy, Environment and Resources, University College London, UK
| | - Michael Davies
- Institute for Environmental Design and Engineering, Bartlett School of Energy, Environment and Resources, University College London, UK
| | - Sani Dimitroulopoulou
- Institute for Environmental Design and Engineering, Bartlett School of Energy, Environment and Resources, University College London, UK; Air Quality and Public Health Group, UK Health Security Agency, Harwell Science and Innovation Campus, Chilton, UK
| |
Collapse
|
18
|
Aguilera J, Konvinse K, Lee A, Maecker H, Prunicki M, Mahalingaiah S, Sampath V, Utz PJ, Yang E, Nadeau KC. Air pollution and pregnancy. Semin Perinatol 2023; 47:151838. [PMID: 37858459 PMCID: PMC10843016 DOI: 10.1016/j.semperi.2023.151838] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Increased fossil fuel usage and extreme climate change events have led to global increases in greenhouse gases and particulate matter with 99% of the world's population now breathing polluted air that exceeds the World Health Organization's recommended limits. Pregnant women and neonates with exposure to high levels of air pollutants are at increased risk of adverse health outcomes such as maternal hypertensive disorders, postpartum depression, placental abruption, low birth weight, preterm birth, infant mortality, and adverse lung and respiratory effects. While the exact mechanism by which air pollution exerts adverse health effects is unknown, oxidative stress as well as epigenetic and immune mechanisms are thought to play roles. Comprehensive, global efforts are urgently required to tackle the health challenges posed by air pollution through policies and action for reducing air pollution as well as finding ways to protect the health of vulnerable populations in the face of increasing air pollution.
Collapse
Affiliation(s)
- Juan Aguilera
- Department of Health Promotion and Behavioral Sciences, University of Texas Health Science Center at Houston, School of Public Health, El Paso, Texas
| | | | - Alexandra Lee
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford University, Palo Alto, CA
| | - Holden Maecker
- Institute for Immunity, Transplantation, and Infection, School of Medicine, Stanford University, Stanford, CA
| | - Mary Prunicki
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Shruthi Mahalingaiah
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA; Division of Reproductive Endocrinology and Infertility, Department of OB/GYN, Massachusetts General Hospital, Boston, MA
| | - Vanitha Sampath
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Paul J Utz
- Department of Medicine, Stanford University, Palo Alto, CA
| | - Emily Yang
- Department of Medicine, Stanford University, Palo Alto, CA
| | - Kari C Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA.
| |
Collapse
|
19
|
Meng L, Gui S, Ouyang Z, Wu Y, Zhuang Y, Pang Q, Fan R. Low-dose bisphenols exposure sex-specifically induces neurodevelopmental toxicity in juvenile rats and the antagonism of EGCG. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132074. [PMID: 37473573 DOI: 10.1016/j.jhazmat.2023.132074] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Bisphenols (BPs) can negatively affect neurobehaviors in rats, whereas the mechanism remains unclear. Here, the mechanism of BPs-induced neurodevelopmental toxicity and its effective detoxification measures were investigated in vitro and in vivo. In in vitro experiments, primary hippocampal neurons from neonatal rats of different genders were treated with bisphenol A (BPA), bisphenol S (BPS) and bisphenol B (BPB) at 1 nM-100 μM, epigallocatechin gallate (EGCG) and G15, an antagonist of G protein-coupled estrogen receptor (GPER) for 7 d. Results indicated that BPs affected neuronal morphogenesis, impaired GABA synthesis and Glu/GABA homeostasis. Neuronal morphogenetic damage induced by low-doses BPA may be mediated by GPER. Neurotoxicity of BPS is weaker than BPA and BPB. In in vivo studies, exposure to BPA (0.5 μg/kg·bw/day) on PND 10-40 caused oxidative stress and inflammation in rat hippocampus, disrupted neuronal morphogenesis and neurotransmitter homeostasis, ultimately impaired spatial memory of rats. Males are more sensitive to BPA exposure than females. Both in vivo and in vitro studies indicated that EGCG, a phytoestrogen, can alleviate BPA-induced neurotoxicity. Taken together, low-doses BPA exposure sex-specifically disrupted neurodevelopment and further impaired learning and memory ability in rats, which may be mediated by GPER. Promisingly, EGCG effectively mitigated the BPA-induced neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Lingxue Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shiheng Gui
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zedong Ouyang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yajuan Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Youling Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
20
|
Aithal SS, Sachdeva I, Kurmi OP. Air quality and respiratory health in children. Breathe (Sheff) 2023; 19:230040. [PMID: 37377853 PMCID: PMC10292770 DOI: 10.1183/20734735.0040-2023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/14/2023] [Indexed: 06/29/2023] Open
Abstract
Air pollution is a leading modifiable risk factor for various cardio-respiratory outcomes globally, both for children and for adults. Children are particularly susceptible to the adverse effects of air pollution due to various physiological and behavioural factors. Children are at a higher risk of outcomes such as acute respiratory infections, asthma and decreased lung function due to air pollution exposure; the risk varies in different geographical regions, depending on the source of air pollution, duration of exposures and concentration. Prenatal exposure to air pollution may also contribute to adverse respiratory outcomes later in life.
Collapse
Affiliation(s)
| | - Ishaan Sachdeva
- Department of Mathematics and Sciences, Brock University, St. Catharines, ON, Canada
| | - Om P. Kurmi
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, McMaster University, Hamilton, ON, Canada
- Faculty Centre for Intelligent Healthcare, Coventry University, Coventry, UK
- Nexus Institute of Research and Innovation, Lalitpur, Nepal
| |
Collapse
|
21
|
Yadav A, Pacheco SE. Prebirth effects of climate change on children's respiratory health. Curr Opin Pediatr 2023; 35:344-349. [PMID: 36974440 DOI: 10.1097/mop.0000000000001241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
PURPOSE OF REVIEW To date, there is no evidence that humanity will implement appropriate mitigation measures to avoid the catastrophic impact of climate change on the planet and human health. Vulnerable populations such as pregnant women and children will be the most affected. This review highlights epidemiologic data on climate change-related prenatal environmental exposures affecting the fetus and children's respiratory health. RECENT FINDINGS Research on outcomes of prenatal exposure to climate change-related environmental changes and pediatric pulmonary health is limited. In addition to adverse pregnancy outcomes known to affect lung development, changes in lung function, increased prevalence of wheezing, atopy, and respiratory infections have been associated with prenatal exposure to increased temperatures, air pollution, and maternal stress. The mechanisms behind these changes are ill-defined, although oxidative stress, impaired placental functioning, and epigenetic modifications have been observed. However, the long-term impact of these changes remains unknown. SUMMARY The detrimental impact of the climate crisis on pediatric respiratory health begins before birth, highlighting the inherent vulnerability of pregnant women and children. Research and advocacy, along with mitigation and adaptation measures, must be implemented to protect pregnant women and children, the most affected but the least responsible for the climate crisis.
Collapse
Affiliation(s)
- Aravind Yadav
- Division of Pulmonary Medicine, Department of Pediatrics, The University of Texas Health Science Center, McGovern Medical School, Houston, Texas, USA
| | | |
Collapse
|
22
|
Lepeule J, Pin I, Boudier A, Quentin J, Lyon-Caen S, Supernant K, Seyve E, Chartier R, Slama R, Siroux V. Pre-natal exposure to NO 2 and PM 2.5 and newborn lung function: An approach based on repeated personal exposure measurements. ENVIRONMENTAL RESEARCH 2023; 226:115656. [PMID: 36906269 DOI: 10.1016/j.envres.2023.115656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT While strong evidence supports adverse effects of pre-natal air pollution on child's lung function, previous studies rarely considered fine particulate matter (PM2.5) or the potential role of offspring sex and no study examined the effects of pre-natal PM2.5 on the lung function of the newborn. AIM We examined overall and sex-specific associations of personal pre-natal exposure to PM2.5 and nitrogen (NO2) with newborn lung function measurements. METHODS This study relied on 391 mother-child pairs from the French SEPAGES cohort. PM2.5 and NO2 exposure was estimated by the average concentration of pollutants measured by sensors carried by the pregnant women during repeated periods of one week. Lung function was assessed with tidal breathing analysis (TBFVL) and nitrogen multiple breath washout (N2MBW) test, performed at 7 weeks. Associations between pre-natal exposure to air pollutants and lung function indicators were estimated by linear regression models adjusted for potential confounders, and then stratified by sex. RESULTS Mean exposure to NO2 and PM2.5 during pregnancy was 20.2 μg/m3 and 14.3 μg/m3, respectively. A 10 μg/m3 increase in PM2.5 maternal personal exposure during pregnancy was associated with an adjusted 2.5 ml (2.3%) decrease in the functional residual capacity of the newborn (p-value = 0.11). In females, functional residual capacity was decreased by 5.2 ml (5.0%) (p = 0.02) and tidal volume by 1.6 ml (p = 0.08) for each 10 μg/m3 increase in PM2.5. No association was found between maternal NO2 exposure and newborns lung function. CONCLUSIONS Personal pre-natal PM2.5 exposure was associated with lower lung volumes in female newborns, but not in males. Our results provide evidence that pulmonary effects of air pollution exposure can be initiated in utero. These findings have long term implications for respiratory health and may provide insights into the underlying mechanisms of PM2.5 effects.
Collapse
Affiliation(s)
- Johanna Lepeule
- Université Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000, Grenoble, France.
| | - Isabelle Pin
- Université Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000, Grenoble, France; Pediatric Department, Grenoble Alpes University Hospital, Grenoble, France
| | - Anne Boudier
- Université Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000, Grenoble, France; Pediatric Department, Grenoble Alpes University Hospital, Grenoble, France
| | - Joane Quentin
- Université Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000, Grenoble, France; Pediatric Department, Grenoble Alpes University Hospital, Grenoble, France
| | - Sarah Lyon-Caen
- Université Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000, Grenoble, France
| | - Karine Supernant
- Université Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000, Grenoble, France
| | - Emie Seyve
- Université Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000, Grenoble, France
| | | | - Remy Slama
- Université Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000, Grenoble, France
| | - Valérie Siroux
- Université Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000, Grenoble, France
| |
Collapse
|
23
|
Grenville J, Granell R, Dodd J. Lung function and cognitive ability in children: a UK birth cohort study. BMJ Open Respir Res 2023; 10:10/1/e001528. [PMID: 37130649 PMCID: PMC10163472 DOI: 10.1136/bmjresp-2022-001528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/10/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Decreased adult lung function is associated with subsequent impairment in cognition. A similar relationship in early life could be of great policy importance, since childhood cognitive ability determines key adult outcomes, including socioeconomic status and mortality. We aimed to expand the very limited data available on this relationship in children, and hypothesised that reduced lung function would be longitudinally associated with decreased cognitive ability. METHODS Lung function was measured at age 8 (forced expiratory volume in one second (FEV1), forced vital capacity (FVC); % predicted), and cognitive ability was measured at ages 8 (Wechsler Intelligence Scale for Children, third edition) and 15 (Wechsler Abbreviated Scale of Intelligence), in the Avon Longitudinal Study of Parents and Children. Potential confounders were identified as preterm birth, birth weight, breastfeeding duration, prenatal maternal smoking, childhood environmental tobacco smoke exposure, socioeconomic status and prenatal/childhood air pollution exposure. Univariable and multivariable linear models (n range=2332-6672) were fitted to assess the cross-sectional and longitudinal associations of lung function with cognitive ability, and change in cognitive ability between ages 8 and 15. RESULTS In univariate analyses, both FEV1 and FVC at age 8 were associated with cognitive ability at both ages, but after adjustment, only FVC was associated with full-scale IQ (FSIQ) at ages 8 (β=0.09 (95% CI 0.05 to 0.12; p<0.001)) and 15 (β=0.06 (0.03 to 0.10; p=0.001)). We did not find evidence of an association between either lung function parameter and interval change in standardised FSIQ. DISCUSSION Reduced FVC, but not FEV1, is independently associated with decreased cognitive ability in children. This low-magnitude association attenuates between ages 8 and 15, while no association is evident with longitudinal change in cognitive ability. Our results support a link between FVC and cognition across the life course, possibly due to shared genetic or environmental risk, rather than causation.
Collapse
Affiliation(s)
- Jack Grenville
- Respiratory Medicine, Cardiff and Vale University Health Board, Cardiff, Wales, UK
| | - Raquel Granell
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - James Dodd
- Academic Respiratory Unit, University of Bristol, Bristol, UK
- Respiratory Medicine, North Bristol NHS Trust, Bristol, UK
| |
Collapse
|
24
|
Neophytou AM, Lutzker L, Good KM, Mann JK, Noth EM, Holm SM, Costello S, Tyner T, Nadeau KC, Eisen EA, Lurmann F, Hammond SK, Balmes JR. Associations between prenatal and early-life air pollution exposure and lung function in young children: Exploring influential windows of exposure on lung development. ENVIRONMENTAL RESEARCH 2023; 222:115415. [PMID: 36738772 PMCID: PMC9974878 DOI: 10.1016/j.envres.2023.115415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Evidence in the literature suggests that air pollution exposures experienced prenatally and early in life can be detrimental to normal lung development, however the specific timing of critical windows during development is not fully understood. OBJECTIVES We evaluated air pollution exposures during the prenatal and early-life period in association with lung function at ages 6-9, in an effort to identify potentially influential windows of exposure for lung development. METHODS Our study population consisted of 222 children aged 6-9 from the Fresno-Clovis metro area in California with spirometry data collected between May 2015 and May 2017. We used distributed-lag non-linear models to flexibly model the exposure-lag-response for monthly average exposure to fine particulate matter (PM2.5) and ozone (O3) during the prenatal months and first three years of life in association with forced vital capacity (FVC), and forced expiratory volume in the first second (FEV1), adjusted for covariates. RESULTS PM2.5 exposure during the prenatal period and the first 3-years of life was associated with lower FVC and FEV1 assessed at ages 6-9. Specifically, an increase from the 5th percentile of the observed monthly average exposure (7.55 μg/m3) to the median observed exposure (12.69 μg/m3) for the duration of the window was associated with 0.42 L lower FVC (95% confidence interval (CI): -0.82, -0.03) and 0.38 L lower FEV1 (95% CI: -0.75, -0.02). The shape of the lag-response indicated that the second half of pregnancy may be a particularly influential window of exposure. Associations for ozone were not as strong and typically CIs included the null. CONCLUSIONS Our findings indicate that prenatal and early-life exposures to PM2.5 are associated with decreased lung function later in childhood. Exposures during the latter months of pregnancy may be especially influential.
Collapse
Affiliation(s)
- Andreas M Neophytou
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Liza Lutzker
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Kristen M Good
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Division of Disease Control and Public Health Response, Colorado Department of Public Health and Environment, Denver, CO, USA
| | - Jennifer K Mann
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Elizabeth M Noth
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Stephanie M Holm
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA
| | - Sadie Costello
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Tim Tyner
- University of California, San Francisco-Fresno, Fresno, CA, USA; Central California Asthma Collaborative, Fresno, CA, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, USA; Department of Environmental Health. Harvard T.H. Chan School of Public Health, Boston MA, USA
| | - Ellen A Eisen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | | | - S Katharine Hammond
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - John R Balmes
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; University of California, San Francisco-Fresno, Fresno, CA, USA
| |
Collapse
|
25
|
Outdoor Air Pollution and Childhood Respiratory Disease: The Role of Oxidative Stress. Int J Mol Sci 2023; 24:ijms24054345. [PMID: 36901776 PMCID: PMC10001616 DOI: 10.3390/ijms24054345] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The leading mechanisms through which air pollutants exert their damaging effects are the promotion of oxidative stress, the induction of an inflammatory response, and the deregulation of the immune system by reducing its ability to limit infectious agents' spreading. This influence starts in the prenatal age and continues during childhood, the most susceptible period of life, due to a lower efficiency of oxidative damage detoxification, a higher metabolic and breathing rate, and enhanced oxygen consumption per unit of body mass. Air pollution is involved in acute disorders like asthma exacerbations and upper and lower respiratory infections, including bronchiolitis, tuberculosis, and pneumoniae. Pollutants can also contribute to the onset of chronic asthma, and they can lead to a deficit in lung function and growth, long-term respiratory damage, and eventually chronic respiratory illness. Air pollution abatement policies, applied in the last decades, are contributing to mitigating air quality issues, but more efforts should be encouraged to improve acute childhood respiratory disease with possible positive long-term effects on lung function. This narrative review aims to summarize the most recent studies on the links between air pollution and childhood respiratory illness.
Collapse
|
26
|
Rosa MJ, Lamadrid-Figueroa H, Alcala C, Colicino E, Tamayo-Ortiz M, Mercado-Garcia A, Kloog I, Just AC, Bush D, Carroll KN, Téllez-Rojo MM, Wright RO, Gennings C, Wright RJ. Associations between early-life exposure to PM 2.5 and reductions in childhood lung function in two North American longitudinal pregnancy cohort studies. Environ Epidemiol 2023; 7:e234. [PMID: 36777528 PMCID: PMC9915957 DOI: 10.1097/ee9.0000000000000234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/12/2022] [Indexed: 12/16/2022] Open
Abstract
Data integration of epidemiologic studies across different geographic regions can provide enhanced exposure contrast and statistical power to examine adverse respiratory effects of early-life exposure to particulate matter <2.5 microns in diameter (PM2.5). Methodological tools improve our ability to combine data while more fully accounting for study heterogeneity. Methods Analyses included children enrolled in two longitudinal birth cohorts in Boston, Massachusetts, and Mexico City. Propensity score matching using the 1:3 nearest neighbor with caliper method was used. Residential PM2.5 exposure was estimated from 2 months before birth to age 6 years using a validated satellite-based spatiotemporal model. Lung function was tested at ages 6-11 years and age, height, race, and sex adjusted z scores were estimated for FEV1, FVC, FEF25-75%, and FEV1/FVC. Using distributed lag nonlinear models, we examined associations between monthly averaged PM2.5 levels and lung function outcomes adjusted for covariates, in unmatched and matched pooled samples. Results In the matched pooled sample, PM2.5 exposure between postnatal months 35-44 and 35-52 was associated with lower FEV1 and FVC z scores, respectively. A 5 µg/m3 increase in PM2.5 was associated with a reduction in FEV1 z score of 0.13 (95% CI = -0.26, -0.01) and a reduction in FVC z score of 0.13 (95% CI = -0.25, -0.01). Additionally PM2.5 during postnatal months 23-39 was associated with a reduction in FEF25-75% z score of 0.31 (95% CI = -0.57, -0.05). Conclusions Methodological tools enhanced our ability to combine multisite data while accounting for study heterogeneity. Ambient PM2.5 exposure in early childhood was associated with lung function reductions in middle childhood.
Collapse
Affiliation(s)
- Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hector Lamadrid-Figueroa
- Department of Perinatal Health, Center for Population Health Research, National Institute of Public Health (INSP), Cuernavaca, Mexico
| | - Cecilia Alcala
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Institute of Social Security (IMSS) Mexico City, Mexico
| | - Adriana Mercado-Garcia
- Center for Nutrition and Health Research, National Institute of Public Health (INSP), Cuernavaca, Mexico
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Douglas Bush
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kecia N. Carroll
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Martha María Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health (INSP), Cuernavaca, Mexico
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rosalind J. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
27
|
Bauer SE, Rhoads E, Wall BL, Sanders DB. The Effects of Air Pollution in Pediatric Respiratory Disease. Am J Respir Crit Care Med 2023; 207:346-348. [PMID: 36154892 DOI: 10.1164/rccm.202107-1583rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Sarah E Bauer
- Division of Pediatric Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children, Indianapolis, Indiana; and.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Eli Rhoads
- Division of Pediatric Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children, Indianapolis, Indiana; and.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brittany L Wall
- Division of Pediatric Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children, Indianapolis, Indiana; and.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Don B Sanders
- Division of Pediatric Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children, Indianapolis, Indiana; and.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
28
|
Zeng X, Tian G, Zhu J, Yang F, Zhang R, Li H, An Z, Li J, Song J, Jiang J, Liu D, Wu W. Air pollution associated acute respiratory inflammation and modification by GSTM1 and GSTT1 gene polymorphisms: a panel study of healthy undergraduates. Environ Health 2023; 22:14. [PMID: 36703205 PMCID: PMC9881318 DOI: 10.1186/s12940-022-00954-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Epidemiological evidence has linked air pollution with adverse respiratory outcomes, but the mechanisms underlying susceptibility to air pollution remain unclear. This study aimed to investigate the role of glutathione S-transferase (GST) polymorphism in the association between air pollution and lung function levels. A total of 75 healthy young volunteers aged 18-20 years old were recruited for six follow-up visits and examinations. Spirometry was conducted to obtain lung function parameters such as forced vital capacity (FVC), and forced expiratory volume in 1 s (FEV1). Nasal fluid concentrations of interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), and 8-epi-prostaglandin F2α (8-epi-PGF2a) were measured using ELISA kits. Linear mixed-effect models were used to evaluate the association of air pollutants with respiratory outcomes. Additionally, polymorphisms of glutathione S-transferase mu 1 (GSTM1) and glutathione S-transferase theta 1 (GSTT1) were estimated to explore its role in the association between air pollutants and lung function. We found that short-term exposure to atmospheric particulates such as PM2.5 and PM10 can cause an increase in nasal biomarkers of inflammation, oxidative stress, and lung function, while air gaseous pollutant exposure is linked with decreased lung function, except for CO. Stratification analyses showed that an increase in nasal inflammatory cytokines caused by exposure to atmospheric particulates is more obvious in subjects with GSTM1-sufficient (GSTM1+) than GSTM1-null (GSTM1-), while elevated lung function levels due to air particles are more significant in subjects with the genotype of GSTM1- when compared to GSTM1+. As for air gaseous pollutants, decreased lung function levels caused by O3, SO2, and NO2 exposure is more manifest in subjects with the genotype of GSTM1- compared to GSTM1+. Taken together, short-term exposure to air pollutants is associated with alterations in nasal biomarkers and lung function levels in young healthy adults, and susceptible genotypes play an important mediation role in the association between exposure to air pollutants and inflammation, oxidative stress, and lung function levels.
Collapse
Affiliation(s)
- Xiang Zeng
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang Province, China
| | - Ge Tian
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Jingfang Zhu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Fuyun Yang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Rui Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Huijun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Dongling Liu
- School of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang Province, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China.
| |
Collapse
|
29
|
Genowska A, Strukcinskiene B, Jamiołkowski J, Abramowicz P, Konstantynowicz J. Emission of Industrial Air Pollution and Mortality Due to Respiratory Diseases: A Birth Cohort Study in Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1309. [PMID: 36674065 PMCID: PMC9859275 DOI: 10.3390/ijerph20021309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Air pollution is a major risk factor for public health worldwide, but evidence linking this environmental problem with the mortality of children in Central Europe is limited. OBJECTIVE To investigate the relationship between air pollution due to the emission of industry-related particulate matter and mortality due to respiratory diseases under one year of age. METHODS A retrospective birth cohort analysis of the dataset including 2,277,585 children from all Polish counties was conducted, and the dataset was matched with 248 deaths from respiratory diseases under one year of age. Time to death during the first 365 days of life was used as a dependent variable. Harmful emission was described as total particle pollution (TPP) from industries. The survival analysis was performed using the Cox proportional hazards model for the emission of TPP at the place of residence of the mother and child, adjusted individual characteristics, demographic factors, and socioeconomic status related to the contextual level. RESULTS Infants born in areas with extremely high emission of TPP had a significantly higher risk of mortality due to respiratory diseases: hazard ratio (HR) = 1.781 [95% confidence interval (CI): 1.175, 2.697], p = 0.006, compared with those born in areas with the lowest emission levels. This effect was persistent when significant factors were adjusted at individual and contextual levels (HR = 1.959 [95% CI: 1.058, 3.628], p = 0.032). The increased risk of mortality was marked between the 50th and 150th days of life, coinciding with the highest exposure to TPP. CONCLUSIONS The emission of TPP from industries is associated with mortality due to respiratory diseases under one year of age. A considerable proportion of children's deaths could be prevented in Poland, especially in urban areas, if air pollution due to the emission of particle pollution is reduced.
Collapse
Affiliation(s)
- Agnieszka Genowska
- Department of Public Health, Medical University of Bialystok, 15-295 Bialystok, Poland
| | | | - Jacek Jamiołkowski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Paweł Abramowicz
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, University Children′s Clinical Hospital, 15-274 Bialystok, Poland
| | - Jerzy Konstantynowicz
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, University Children′s Clinical Hospital, 15-274 Bialystok, Poland
| |
Collapse
|
30
|
Marsal A, Slama R, Lyon-Caen S, Borlaza LJS, Jaffrezo JL, Boudier A, Darfeuil S, Elazzouzi R, Gioria Y, Lepeule J, Chartier R, Pin I, Quentin J, Bayat S, Uzu G, Siroux V. Prenatal Exposure to PM2.5 Oxidative Potential and Lung Function in Infants and Preschool- Age Children: A Prospective Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:17004. [PMID: 36695591 PMCID: PMC9875724 DOI: 10.1289/ehp11155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Fine particulate matter (PM 2.5 ) has been found to be detrimental to respiratory health of children, but few studies have examined the effects of prenatal PM 2.5 oxidative potential (OP) on lung function in infants and preschool children. OBJECTIVES We estimated the associations of personal exposure to PM 2.5 and OP during pregnancy on offspring objective lung function parameters and compared the strengths of associations between both exposure metrics. METHODS We used data from 356 mother-child pairs from the SEPAGES cohort. PM filters collected twice during a week were analyzed for OP, using the dithiothreitol (DTT) and the ascorbic acid (AA) assays, quantifying the exposure of each pregnant woman. Lung function was assessed with tidal breathing analysis (TBFVL) and nitrogen multiple-breath washout (N 2 MBW ) test, performed at 6 wk, and airwave oscillometry (AOS) performed at 3 y. Associations of prenatal PM 2.5 mass and OP with lung function parameters were estimated using multiple linear regressions. RESULTS In neonates, an interquartile (IQR) increase in OP v DTT (0.89 nmol / min / m 3 ) was associated with a decrease in functional residual capacity (FRC) measured by N 2 MBW [β = - 2.26 mL ; 95% confidence interval (CI): - 4.68 , 0.15]. Associations with PM 2.5 showed similar patterns in comparison with OP v DTT but of smaller magnitude. Lung clearance index (LCI) and TBFVL parameters did not show any clear association with the exposures considered. At 3 y, increased frequency-dependent resistance of the lungs (Rrs 7 - 19 ) from AOS tended to be associated with higher OP v DTT (β = 0.09 hPa × s / L ; 95% CI: - 0.06 , 0.24) and OP v AA (IQR = 1.14 nmol / min / m 3 ; β = 0.12 hPa × s / L ; 95% CI: - 0.04 , 0.27) but not with PM 2.5 (IQR = 6.9 μ g / m 3 ; β = 0.02 hPa × s / L ; 95% CI: - 0.13 , 0.16). Results for FRC and Rrs 7 - 19 remained similar in OP models adjusted on PM 2.5 . DISCUSSION Prenatal exposure to OP v DTT was associated with several offspring lung function parameters over time, all related to lung volumes. https://doi.org/10.1289/EHP11155.
Collapse
Affiliation(s)
- Anouk Marsal
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
- Agence de l’environnement et de la Maîtrise de l’Energie, Angers, France
| | - Rémy Slama
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Sarah Lyon-Caen
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Lucille Joanna S. Borlaza
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Jean-Luc Jaffrezo
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Anne Boudier
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Pediatric Department, CHU Grenoble Alpes, Grenoble, France
| | - Sophie Darfeuil
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Rhabira Elazzouzi
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Yoann Gioria
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Johanna Lepeule
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Ryan Chartier
- RTI International, Research Triangle Park, North Carolina, USA
| | - Isabelle Pin
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Pediatric Department, CHU Grenoble Alpes, Grenoble, France
| | - Joane Quentin
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Inserm UA07 STOBE Laboratory, Grenoble, France
| | - Gaëlle Uzu
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Valérie Siroux
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - the SEPAGES cohort study group
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Pediatric Department, CHU Grenoble Alpes, Grenoble, France
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Inserm UA07 STOBE Laboratory, Grenoble, France
- RTI International, Research Triangle Park, North Carolina, USA
- Agence de l’environnement et de la Maîtrise de l’Energie, Angers, France
| |
Collapse
|
31
|
Carraro S, Ferraro VA, Zanconato S. Impact of air pollution exposure on lung function and exhaled breath biomarkers in children and adolescents. J Breath Res 2022; 16. [PMID: 35947967 DOI: 10.1088/1752-7163/ac8895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/10/2022] [Indexed: 11/12/2022]
Abstract
A growing number of scientific papers focus on the description and quantification of the detrimental effects of pollution exposure on human health. The respiratory system is one of the main targets of these effects and children are potentially a vulnerable population. Many studies analyzed the effects of short- and long-term exposure to air pollutants on children's respiratory function. Aim of the present narrative review is to summarize the results of the available cohort studies which investigated how children's lung function is affected by exposure to air pollution. In addition, an overview is provided on the association, in children, between pollution exposure and exhaled breath biomarkers, as possible indicators of the pathogenetic mechanisms involved in pollution-related lung damages. The identified cohort studies suggest that, beside the possible impact of recent exposure, early and lifetime exposure are the variables most consistently associated with a reduction in lung function parameters in both children and adolescents. As for the effect of air pollution exposure on exhaled breath biomarkers, the available studies show an association with increased exhaled nitric oxide, with increased concentrations of malondialdehyde and 8-isoprostane in exhaled breath condensate (EBC), and with EBC acidification. These studies, therefore, suggest lung inflammation and oxidative stress as possible pathogenetic mechanisms involved in pollution related lung damages. Taken together, the available data underscore the importance of the development and application of policies aimed at reducing air pollutant concentration, since the protection of children's lung function can have a beneficial impact on adults' respiratory health in the future.
Collapse
Affiliation(s)
- Silvia Carraro
- Women's and Children's Health Department, University of Padova, via Giustiniani 3, Padova, 35128, ITALY
| | - Valentina Agnese Ferraro
- Women's and Children's Health Department, University of Padova, via Giustiniani, 3, Padova, 35128, ITALY
| | - Stefania Zanconato
- Women's and Children's Health Department, University of Padova, via Giustiniani 3, Padova, 35128, ITALY
| |
Collapse
|
32
|
Gheissari R, Liao J, Garcia E, Pavlovic N, Gilliland FD, Xiang AH, Chen Z. Health Outcomes in Children Associated with Prenatal and Early-Life Exposures to Air Pollution: A Narrative Review. TOXICS 2022; 10:toxics10080458. [PMID: 36006137 PMCID: PMC9415268 DOI: 10.3390/toxics10080458] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 06/04/2023]
Abstract
(1) Background: The developmental origins of health and disease (DOHaD) hypothesis links adverse fetal exposures with developmental mal-adaptations and morbidity later in life. Short- and long-term exposures to air pollutants are known contributors to health outcomes; however, the potential for developmental health effects of air pollution exposures during gestation or early-childhood have yet to be reviewed and synthesized from a DOHaD lens. The objective of this study is to summarize the literature on cardiovascular and metabolic, respiratory, allergic, and neuropsychological health outcomes, from prenatal development through early childhood, associated with early-life exposures to outdoor air pollutants, including traffic-related and wildfire-generated air pollutants. (2) Methods: We conducted a search using PubMed and the references of articles previously known to the authors. We selected papers that investigated health outcomes during fetal or childhood development in association with early-life ambient or source-specific air pollution exposure. (3) Results: The current literature reports that prenatal and early-childhood exposures to ambient and traffic-related air pollutants are associated with a range of adverse outcomes in early life, including cardiovascular and metabolic, respiratory and allergic, and neurodevelopmental outcomes. Very few studies have investigated associations between wildfire-related air pollution exposure and health outcomes during prenatal, postnatal, or childhood development. (4) Conclusion: Evidence from January 2000 to January 2022 supports a role for prenatal and early-childhood air pollution exposures adversely affecting health outcomes during development. Future studies are needed to identify both detrimental air pollutants from the exposure mixture and critical exposure time periods, investigate emerging exposure sources such as wildfire, and develop feasible interventional tools.
Collapse
Affiliation(s)
- Roya Gheissari
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Jiawen Liao
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Erika Garcia
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Nathan Pavlovic
- Sonoma Technology Inc., 1450 N. McDowell Blvd., Suite 200, Petaluma, CA 94954, USA
| | - Frank D. Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Anny H. Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91107, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
33
|
Ranzani OT, Bhogadi S, Milà C, Kulkarni B, Balakrishnan K, Sambandam S, Garcia-Aymerich J, Marshall JD, Kinra S, Tonne C. Association of ambient and household air pollution with lung function in young adults in an peri-urban area of South-India: A cross-sectional study. ENVIRONMENT INTERNATIONAL 2022; 165:107290. [PMID: 35594814 DOI: 10.1016/j.envint.2022.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Although there is evidence for the association between air pollution and decreased lung function in children, evidence for adolescents and young adults is scarce. For a peri-urban area in India, we evaluated the association of ambient PM2.5 and household air pollution with lung function for young adults who had recently attained their expected maximum lung function. METHODS We measured, using a standardized protocol, forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) in participants aged 20-26 years from the third follow-up of the population-based APCAPCS cohort (2010-2012) in 28 Indian villages. We estimated annual average PM2.5outdoors at residence using land-use regression. Biomass cooking fuel (a proxy for levels of household air pollution) was self-reported. We fitted a within-between linear-mixed model with random intercepts by village, adjusting for potential confounders. RESULTS We evaluated 1,044 participants with mean age of 22.8 (SD = 1) years (range 20-26 years); 327 participants (31%) were female. Only males reported use of tobacco smoking (9% of all participants, 13% of males). The mean ambient PM2.5 exposure was 32.9 (SD = 2.8) µg/m3; 76% reported use of biomass as cooking fuel. The adjusted association between 1 µg/m3 increase in PM2.5 was -27 ml (95% CI, -89 to 34) for FEV1 and -5 ml (95% CI, -93 to 76) for FVC. The adjusted association between use of biomass was -112 ml (95% CI, -211 to -13) for FEV1 and -142 ml (95% CI, -285 to 0) for FVC. The adjusted association was of greater magnitude for those with unvented stove (-158 ml, 95% CI, -279 to -36 for FEV1 and -211 ml, 95% CI, -386 to -36 for FVC). CONCLUSIONS We observed negative associations between ambient PM2.5 and household air pollution and lung function in young adults who had recently attained their maximum lung function.
Collapse
Affiliation(s)
- Otavio T Ranzani
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública, Madrid, Spain
| | | | - Carles Milà
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Bharati Kulkarni
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Kalpana Balakrishnan
- Department of Environmental Health Engineering, Sri Ramachandra University (SRU), Chennai, India
| | - Sankar Sambandam
- Department of Environmental Health Engineering, Sri Ramachandra University (SRU), Chennai, India
| | - Judith Garcia-Aymerich
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Julian D Marshall
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Sanjay Kinra
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Cathryn Tonne
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública, Madrid, Spain.
| |
Collapse
|
34
|
Lundberg B, Gruzieva O, Eneroth K, Melén E, Persson Å, Hallberg J, Pershagen G. Air pollution exposure impairs lung function in infants. Acta Paediatr 2022; 111:1788-1794. [PMID: 35582781 PMCID: PMC9543871 DOI: 10.1111/apa.16412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022]
Abstract
Aim To assess associations between air pollution exposure and infant lung function. Methods Healthy infants from Stockholm were recruited to two cohorts (n = 99 and n = 78). Infant spirometry included plethysmography and raised volume forced expiratory flows. In pooled analyses, lung function at ~6 months of age was related to time‐weighted average air pollution levels at residential addresses from birth until the lung function test. The pollutants included particulate matter with an aerodynamic diameter < 10 μm (PM10) or <2.5 μm and nitrogen dioxide. Results There were significant inverse relations between air pollution exposure during infancy and forced expiratory volume at 0.5 s (FEV0.5) as well as forced vital capacity (FVC) for all pollutants. For example, the decline was 10.1 ml (95% confidence interval 1.3–18.8) and 10.3 ml (0.5–20.1) in FEV0.5 and FVC, respectively, for an interquartile increment of 5.3 μg/m3 in PM10. Corresponding associations for minute ventilation and functional residual capacity were 43.3 ml/min (−9.75–96.3) and 0.84 ml (−4.14–5.82). Conclusions Air pollution exposure was associated with impaired infant lung function measures related to airway calibre and lung volume, suggesting that comparatively low levels of air pollution negatively affect lung function in early life.
Collapse
Affiliation(s)
- Björn Lundberg
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset Stockholm Sweden
| | - Olena Gruzieva
- Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm Stockholm Sweden
| | - Kristina Eneroth
- Environment and Health Administration, SLB‐analys Stockholm Sweden
| | - Erik Melén
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset Stockholm Sweden
| | - Åsa Persson
- Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
| | - Jenny Hallberg
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset Stockholm Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm Stockholm Sweden
| |
Collapse
|
35
|
Prenatal Exposure to Traffic-Related Air Pollution and the DNA Methylation in Cord Blood Cells: MOCEH Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063292. [PMID: 35328979 PMCID: PMC8949945 DOI: 10.3390/ijerph19063292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023]
Abstract
Particulate matter with a diameter of ≤10 µm (PM10) and nitrogen dioxide (NO2) affect the DNA methylation in the fetus, but epigenetic studies regarding prenatal exposure to air pollution in Asia are lacking. Therefore, this study aimed to assess whether there is any association between the ambient concentrations of PM10 and NO2 and CpG methylation in the cord blood DNA by using a Korean birth cohort. The concentrations of the air pollutants were incorporated into the final LUR model by using the maternal address data. The methylation level was determined using HumanMethylationEPIC BeadChip and a linear regression analysis model. A multipollutant model including both PM10 and NO2 and models with single pollutants were used for each trimester exposure. The number of differentially methylated positions was the largest for midpregnancy exposure in both the single pollutant models and the multipollutant regression analysis. Additionally, gene-set analysis regarding midpregnancy exposure revealed four gene ontology terms (cellular response to staurosporine, positive regulation of cytoskeleton organization, neurotransmitter transport, and execution phase of apoptosis). In conclusion, these findings show an association between prenatal PM10 and NO2 exposure and DNA methylation in several CpG sites in cord blood cells, especially for midpregnancy exposure.
Collapse
|
36
|
Urrutia-Pereira M, Guidos-Fogelbach G, Solé D. Climate changes, air pollution and allergic diseases in childhood and adolescence. J Pediatr (Rio J) 2022; 98 Suppl 1:S47-S54. [PMID: 34896064 PMCID: PMC9510908 DOI: 10.1016/j.jped.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To analyze the impacts of climate change on the development of immature respiratory and immune systems in children. SOURCE OF DATA The authors of the present study performed a non-systematic review of English, Spanish, and Portuguese articles published in the last five years in databases such as PubMed, EMBASE, and SciELO. The terms used were air pollution OR climate changes OR smoke, AND children OR health. SYNTHESIS OF DATA The increase in the prevalence of some diseases, such as allergic ones, is attributed to the interactions between genetic potential and the environment. However, disordered growth combined with inadequate waste management has caused problems for the planet, such as heatwaves, droughts, forest fires, increased storms and floods, interference in food crops and their nutritional values, changes in the infectious disease pattern, and air pollution resulting from the continuous use of fossil fuels. Children, beings still in the development stage with immature respiratory and immune systems, are the primary victims of the climate crisis. CONCLUSIONS The authors documented that prenatal and postnatal exposure to ambient air pollutants will accelerate or worsen the morbidity and mortality of many health conditions, including allergic diseases. Ambient air pollutants change the microbiota, interfere with the immune response, and take direct action on the skin and respiratory epithelium, which facilitates the penetration of allergens. Understanding how the children and adolescent health and well-being are affected by climate change is an urgent matter.
Collapse
Affiliation(s)
| | - Guillermo Guidos-Fogelbach
- Instituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Postgraduate Department, Mexico City, Mexico
| | - Dirceu Solé
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Pediatria, Divisão de Alergia, Imunologia Clínica e Reumatologia, São Paulo, SP, Brazil.
| |
Collapse
|
37
|
Stapleton A, Casas M, García J, García R, Sunyer J, Guerra S, Abellan A, Lavi I, Dobaño C, Vidal M, Gascon M. Associations between pre- and postnatal exposure to air pollution and lung health in children and assessment of CC16 as a potential mediator. ENVIRONMENTAL RESEARCH 2022; 204:111900. [PMID: 34419474 DOI: 10.1016/j.envres.2021.111900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/27/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Early life exposure to air pollution can affect lung health. Previous studies have not assessed the implications of both pre- and postnatal exposure to air pollutants on lung function at repeated ages during childhood. In addition, there is the need to identify potential mediators of such effect. OBJECTIVES To longitudinally assess the association between pre- and postnatal air pollution exposure and lung function during childhood. We also aimed to explore the role of Club cell secretory protein (CC16) as a potential mediator in this association. METHODOLOGY We included 487 mother-child pairs from the INMA (INfancia y Medio Ambiente) Sabadell birth cohort, recruited between 2004 and 2006. Air pollution exposure was estimated for pregnancy, pre-school age, and school-age using temporally adjusted land use regression (LUR) modelling. Lung function was measured at ages 4, 7, 9 and 11 by spirometry. At age 4, serum CC16 levels were determined in 287 children. Multivariable linear regression models and linear mixed modelling were applied, while considering potential confounders. RESULTS Prenatal exposure to Particulate Matter (PM)10 and PMcoarse had the most consistent associations with reduced lung function in cross-sectional models. Associations with postnatal exposure were less consistent. Increasing CC16 levels at 4 years were associated with an increase in FEF25-75 (β = 120.4 mL, 95% CI: 6.30, 234.5) from 4 to 11 years of age. No statistically significant associations were found between pre- or postnatal air pollution and CC16 at age 4. CONCLUSION Increasing levels of air pollution exposure, particularly prenatal PM10 and PMcoarse exposure, were associated with a reduction in lung function. We were not able to confirm our hypothesis on the mediation role of CC16 in this association, however our results encourage further exploration of this possibility in future studies.
Collapse
Affiliation(s)
- Anna Stapleton
- Maastricht University, Faculty of Health, Medicine and Life Sciences, the Netherlands
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Judith García
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Raquel García
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Stefano Guerra
- ISGlobal, Barcelona, Spain; Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Alicia Abellan
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Spanish Consortium for research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | | - Carlota Dobaño
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Mireia Gascon
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
38
|
García-Serna AM, Martín-Orozco E, Jiménez-Guerrero P, Hernández-Caselles T, Pérez-Fernández V, Cantero-Cano E, Muñoz-García M, Molina-Ruano MD, Rojo-Atenza E, García-Marcos L, Morales E, Garcia‐Marcos L, Gimenez‐Banon MJ, Martinez‐Torres A, Morales E, Perez‐Fernandez V, Sanchez‐Solis M, Nieto A, Prieto‐Sanchez MT, Sanchez‐Ferrer M, Fernanez‐Palacios L, Gomez‐Gomez VP, Martinez‐Gracia C, Peso‐Echarri P, Ros‐Berruezo G, Santaella‐Pacual M, Gazquez A, Larque E, Pastor‐Fajardo MT, Sanchez‐Campillo M, Serrano‐Munuera A, Zornoza‐Moreno M, Jimenez‐Guerrero P, Adomnei E, Arense‐Gonzalo JJ, Mendiola J, Navarro‐Lafuente F, Torres‐Cantero AM, Salvador‐Garcia C, Segovia‐Hernández M, Yagüe‐Guirao G, Valero‐Guillén PL, Aviles‐Plaza FV, Cabezas‐Herrera J, Martinez‐Lopez A, Martinez‐Villanueva M, Noguera‐Velasco JA, Franco‐Garcia A, Garcia‐Serna AM, Hernandez‐Caselles T, Martin‐Orozco E, Norte‐Muñoz M, Canovas M, Cantero‐Cano E, de Diego T, Pastor JM, Sola‐Martínez RA, Esteban‐Gil A, Fernández‐Breis JT, Alcántara MV, Hernández S, López‐Soler C. Cytokine profiles in cord blood in relation to prenatal traffic-related air pollution: The NELA cohort. Pediatr Allergy Immunol 2022; 33:e13732. [PMID: 35212052 DOI: 10.1111/pai.13732] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Outdoor air pollution may disturb immune system development. We investigated whether gestational exposure to traffic-related air pollutants (TRAP) is associated with unstimulated cytokine profiles in newborns. METHODS Data come from 235 newborns of the NELA cohort. Innate response-related cytokines (IL-6, IFN-α, IL1-β, and TNF-α), Th1-related (IFN-γ and IL-2), Th2-related (IL-4, IL-5, and IL-13), Th17-related (IL-17 and IL-23), and immunomodulatory cytokine IL-10 were quantified in the supernatant of unstimulated whole umbilical cord blood cells after 7 days of culture using the Luminex technology. Dispersion/chemical transport modeling was used to estimate long-term (whole pregnancy and trimesters) and short-term (15 days before delivery) residential exposures to traffic-related nitrogen dioxide (NO2 ), particulate matter (PM2.5 and PM10 ), and ozone (O3 ). We fitted multivariable logistic regression, Bayesian kernel machine regression (BKMR), and weighted quantile sum (WQS) regression models. RESULTS NO2 during the whole pregnancy increased the odds of detection of IL-1β (OR per 10 µg/m3 increase = 1.37; 95% CI, 1.02, 1.85) and IL-6 (OR per 10 µg/m3 increase = 1.32; 95% CI 1.00, 1.75). Increased odds of detected concentrations of IL-10 was found in newborns exposed during whole pregnancy to higher levels of NO2 (OR per 10 µg/m3 increase = 1.30; 95% CI 0.99, 1.69), PM10 (OR per 10 µg/m3 increase = 1.49; 95% CI 0.95, 2.33), and PM2.5 (OR per 5 µg/m3 increase = 1.56; 95% CI 0.97, 2.51). Exposure to O3 during the whole pregnancy increased the odds of detected IL-13 (OR per 10 µg/m3 increase = 1.22; 95% CI 1.01, 1.49). WQS model revealed first and third trimesters of gestation as windows of higher susceptibility. CONCLUSIONS Gestational exposure to TRAP may increase detection of pro-inflammatory, Th2-related, and T regulatory cytokines in newborns. These changes might influence immune system responses later in life.
Collapse
Affiliation(s)
- Azahara M García-Serna
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Elena Martín-Orozco
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Network of Asthma and Adverse and Allergic Reactions (ARADyAL), Madrid, Spain
| | - Pedro Jiménez-Guerrero
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Regional Atmospheric Modelling Group, Department of Physics, University of Murcia, Murcia, Spain
| | - Trinidad Hernández-Caselles
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Network of Asthma and Adverse and Allergic Reactions (ARADyAL), Madrid, Spain
| | - Virginia Pérez-Fernández
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Department of Public Health Sciences, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | | | | - María Dolores Molina-Ruano
- Obstetrics & Gynecology Service, Virgen de la Arrixaca University Clinical Hospital, University of Murcia, Murcia, Spain
| | - Encarna Rojo-Atenza
- Obstetrics & Gynecology Service, Virgen de la Arrixaca University Clinical Hospital, University of Murcia, Murcia, Spain
| | - Luis García-Marcos
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Network of Asthma and Adverse and Allergic Reactions (ARADyAL), Madrid, Spain.,Pediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children's Hospital, University of Murcia, Murcia, Spain
| | - Eva Morales
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Department of Public Health Sciences, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Decrue F, Gorlanova O, Salem Y, Vienneau D, de Hoogh K, Gisler A, Usemann J, Korten I, Nahum U, Sinues P, Schulzke S, Fuchs O, Latzin P, Röösli M, Frey U. Increased Impact of Air Pollution on Lung Function in Preterm versus Term Infants: The BILD Study. Am J Respir Crit Care Med 2022; 205:99-107. [PMID: 34587471 DOI: 10.1164/rccm.202102-0272oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rationale: Infants born prematurely have impaired capacity to deal with oxidative stress shortly after birth. Objectives: We hypothesize that the relative impact of exposure to air pollution on lung function is higher in preterm than in term infants. Methods: In the prospective BILD (Basel-Bern Infant Lung Development) birth cohort of 254 preterm and 517 term infants, we investigated associations of particulate matter ⩽10 μm in aerodynamic diameter (PM10) and nitrogen dioxide with lung function at 44 weeks' postconceptional age and exhaled markers of inflammation and oxidative stress response (fractional exhaled nitric oxide [FeNO]) in an explorative hypothesis-driven study design. Multilevel mixed-effects models were used and adjusted for known confounders. Measurements and Main Results: Significant associations of PM10 during the second trimester of pregnancy with lung function and FeNO were found in term and preterm infants. Importantly, we observed stronger positive associations in preterm infants (born 32-36 wk), with an increase of 184.9 (95% confidence interval [CI], 79.1-290.7) ml/min [Formula: see text]e per 10-μg/m3 increase in PM10, than in term infants (75.3; 95% CI, 19.7-130.8 ml/min) (pprematurity × PM10 interaction = 0.04, after multiple comparison adjustment padj = 0.09). Associations of PM10 and FeNO differed between moderate to late preterm (3.4; 95% CI, -0.1 to 6.8 ppb) and term (-0.3; 95% CI, -1.5 to 0.9 ppb) infants, and the interaction with prematurity was significant (pprematurity × PM10 interaction = 0.006, padj = 0.036). Conclusions: Preterm infants showed significantly higher susceptibility even to low to moderate prenatal air pollution exposure than term infants, leading to increased impairment of postnatal lung function. FeNO results further elucidate differences in inflammatory/oxidative stress response when comparing preterm infants with term infants.
Collapse
Affiliation(s)
- Fabienne Decrue
- University Children's Hospital Basel UKBB.,Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olga Gorlanova
- University Children's Hospital Basel UKBB.,Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yasmin Salem
- University Children's Hospital Basel UKBB.,Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Danielle Vienneau
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute Basel, Basel, Switzerland
| | - Kees de Hoogh
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute Basel, Basel, Switzerland
| | | | - Jakob Usemann
- University Children's Hospital Basel UKBB.,Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Division of Respiratory Medicine, University Children's Hospital of Zürich, Zürich, Switzerland; and
| | - Insa Korten
- University Children's Hospital Basel UKBB.,Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Uri Nahum
- University Children's Hospital Basel UKBB.,Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Pablo Sinues
- University Children's Hospital Basel UKBB.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | | | - Oliver Fuchs
- University Children's Hospital Basel UKBB.,Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- University Children's Hospital Basel UKBB.,Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin Röösli
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute Basel, Basel, Switzerland
| | - Urs Frey
- University Children's Hospital Basel UKBB.,Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | |
Collapse
|
40
|
Forno E, Abman SH, Singh J, Robbins ME, Selvadurai H, Schumacker PT, Robinson PD. Update in Pediatrics 2020. Am J Respir Crit Care Med 2021; 204:274-284. [PMID: 34126039 DOI: 10.1164/rccm.202103-0605up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Erick Forno
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Steven H Abman
- Department of Pediatrics, Children's Hospital Colorado, Denver, Colorado.,University of Colorado Anschutz School of Medicine, Denver, Colorado
| | - Jagdev Singh
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mary E Robbins
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hiran Selvadurai
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Paul T Schumacker
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paul D Robinson
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
41
|
Zhu C, Maharajan K, Liu K, Zhang Y. Role of atmospheric particulate matter exposure in COVID-19 and other health risks in human: A review. ENVIRONMENTAL RESEARCH 2021; 198:111281. [PMID: 33961825 PMCID: PMC8096764 DOI: 10.1016/j.envres.2021.111281] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 05/04/2023]
Abstract
Due to intense industrialization and urbanization, air pollution has become a serious global concern as a hazard to human health. Epidemiological studies found that exposure to atmospheric particulate matter (PM) causes severe health problems in human and significant damage to the physiological systems. In recent days, PM exposure could be related as a carrier for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus transmission and Coronavirus disease 2019 (COVID-19) infection. Hence, it is important to understand the adverse effects of PM in human health. This review aims to provide insights on the detrimental effects of PM in various human health problems including respiratory, circulatory, nervous, and immune system along with their possible toxicity mechanisms. Overall, this review highlights the potential relationship of PM with several life-limiting human diseases and their significance for better management strategies.
Collapse
Affiliation(s)
- Chengyue Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Kannan Maharajan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China.
| |
Collapse
|
42
|
Air pollution and lung function in children. J Allergy Clin Immunol 2021; 148:1-14. [PMID: 34238501 DOI: 10.1016/j.jaci.2021.05.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/30/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022]
Abstract
In this narrative review, we summarize the literature and provide updates on recent studies of air pollution exposures and child lung function and lung function growth. We include exposures to outdoor air pollutants that are monitored and regulated through air quality standards, and air pollutants that are not routinely monitored or directly regulated, including wildfires, indoor biomass and coal burning, gas and wood stove use, and volatile organic compounds. Included is a more systematic review of the recent literature on long-term air pollution and child lung function because this is an indicator of future adult respiratory health and exposure assessment tools have improved dramatically in recent years. We present "summary observations" and "knowledge gaps." We end by discussing what is known about what can be done at the individual/household, local/regional, and national levels to overcome structural impediments, reduce air pollution exposures, and improve child lung function. We found a large literature on adverse air pollution effects on children's lung function level and growth; however, many questions remain. Important areas needing further research include whether early-life effects are fixed or reversible; and what are windows of increased susceptibility, long-term effects of repeated wildfire events, and effects of air quality interventions.
Collapse
|
43
|
Abstract
Rationale: Outdoor air pollution contributes to asthma development and exacerbations, yet its effects on airway pathology have not been defined in children. Objectives: To explore the possible link between air pollution and airway pathology, we retrospectively examined the relationship between environmental pollutants and pathological changes in bronchial biopsy specimens from children undergoing a clinically indicated bronchoscopy. Methods: Structural and inflammatory changes (basement membrane [BM] thickness, epithelial loss, eosinophils, neutrophils, macrophages, mast cells, and lymphocytes) were quantified in biopsy specimens by using immunohistochemistry. The association between exposure to particulate matter less than 10 μm in aerodynamic diameter (PM10), SO2 and NO2 and biopsy findings was evaluated by using a generalized additive model with Gamma family to allow for overdispersion, adjusted for atmospheric pressure, temperature, humidity, and wheezing. Results: Overall, 98 children were included (age 5.3 ± 2.9 yr; 53 with wheezing/45 without wheezing). BM thickness increased with prolonged exposure to PM10 (rate ratio [RR], 1.29; 95% confidence interval [CI], 1.09–1.52), particularly in children with wheezing. Prolonged exposure to PM10 was also associated with eosinophilic inflammation in children with wheezing (RR, 3.16; 95% CI, 1.35–7.39). Conversely, in children without wheezing, increased PM10 exposure was associated with a reduction of eosinophilic inflammation (RR, 0.12; 95% CI, 0.02–0.6) and neutrophilic inflammation (RR, 0.36; 95% CI, 0.14–0.89). Moreover, NO2 exposure was also linked to reductions in neutrophil infiltration (RR, 0.57; 95% CI, 0.34–0.93) and eosinophil infiltration (RR, 0.33; 95% CI, 0.14–0.77). Conclusions: Different patterns of association were observed in children with wheezing and in children without wheezing. In children without wheezing, exposure to PM10 and NO2 was linked to reduced eosinophilic and neutrophilic inflammation. Conversely, in children with wheezing, prolonged exposure to PM10 was associated with increased BM thickness and eosinophilic inflammation, suggesting that it might contribute to asthma development by promoting airway remodeling and inflammation.
Collapse
|
44
|
Bettiol A, Gelain E, Milanesio E, Asta F, Rusconi F. The first 1000 days of life: traffic-related air pollution and development of wheezing and asthma in childhood. A systematic review of birth cohort studies. Environ Health 2021; 20:46. [PMID: 33865406 PMCID: PMC8053261 DOI: 10.1186/s12940-021-00728-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/12/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND The first 1000 days of life -including pregnancy and the first 2 years after birth- represent a critical window for health interventions. This systematic review aimed to summarize the evidence on the relationship between traffic-related air pollutants exposure in the first 1000 days of life and the development of wheezing and asthma, with a particular focus on windows of exposure. METHODS Medline and Embase were searched from January 2000 to May 2020 to retrieve population-based birth-cohort studies, including registries, providing quantitative information on the association between exposure to traffic-related air pollutants during pregnancy or early life, and the risk of developing wheezing and asthma in childhood. Screening and selection of the articles were completed independently by three reviewers. The quality of studies was assessed using the Newcastle-Ottawa scale. RESULTS Out of 9681 records retrieved, 26 studies from 21 cohorts were included. The most common traffic-related air pollutant markers were particulate matter (PM) and nitric oxides (NOx). The variability in terms of pollutants, exposure assessment methods, and exposure levels chosen to present the results did not allow a meta-analysis. Exposure to PM and NOx in pregnancy (10 cohorts) was consistently associated with an increased risk of asthma development, while the association with wheezing development was unclear. The second trimester of pregnancy seemed to be particularly critical for asthma risk. As for exposure during early life (15 cohorts), most studies found a positive association between PM (7/10 studies) and NOx (11/13 studies) and the risk of asthma development, while the risk of wheezing development was controversial. The period of postnatal exposure, however, was less precisely defined and a partial overlap between the period of exposure measurement and that of outcome development was present in a consistent number of studies (14 out of 15) raising doubts on the associations found. CONCLUSIONS Traffic-related air pollution during pregnancy is associated with an increased risk of asthma development among children and adolescents. The relationship between exposure in the first two years of life and the development of wheezing and asthma needs to be confirmed in studies with more precise exposure assessment.
Collapse
Affiliation(s)
- Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Gelain
- Coordinating Centre for Paediatric Rare Diseases, Meyer Children’s University Hospital, Florence, Italy
| | | | - Federica Asta
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | - Franca Rusconi
- Unit of Epidemiology, Meyer Children’s University Hospital, Viale Pieraccini 24, 50139 Florence, Italy
| |
Collapse
|
45
|
Zhao Q, Kress S, Markevych I, Berdel D, von Berg A, Gappa M, Koletzko S, Bauer CP, Schulz H, Standl M, Heinrich J, Schikowski T. Long-term Air Pollution Exposure Under European Union Limits and Adolescents' Lung Function: Modifying Effect of Abnormal Weight in the GINIplus and LISA Birth Cohorts. Chest 2021; 160:249-258. [PMID: 33581096 DOI: 10.1016/j.chest.2021.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Abnormal weights, eg, obesity, has shown a strong modifying effect on the association between air pollution exposure and lung function impairment in adults. RESEARCH QUESTION How might weight status modify the effects of long-term air pollution exposure on adolescents' lung function, particularly in areas with pollution levels much lower than the current European Union (EU) air quality standards? STUDY DESIGN AND METHODS In this observational study, we investigated 2,224 adolescents from the German Infant Study on the Influence of Nutrition Intervention Plus Environmental and Genetic Influences on Allergy Development and the Influence of Life Style Factors on the Development of the Immune System and Allergies in East and West Germany birth cohorts. Lung function was measured at age 15 years. Underweight, normal weight, and overweight or obese were defined using percentiles of BMI. Average concentrations of air pollution were modelled at residential addresses at four exposure windows between 0 and 15 years. Multivariate linear regression models were fitted by weight group on lung function with exposure at each window or cumulative exposure since birth. RESULTS The median air pollution concentrations were half to two-thirds of the EU standards. Significant associations were observed only for individuals who were underweight and overweight or obese. For example, per interquartile range increase in nitrogen dioxide at the 15-year exposure window, FEV1 declined by -2.9% (95% CI, -5.2% to -0.5%) for the underweight group and -3.4% (95% CI, -5.4% to -1.2%) for the overweight or obese group. Similarly, longer exposure to moderate-level air pollution since birth was associated significantly with lung function impairment for groups with abnormal weight. INTERPRETATION Exposure to low to moderate levels of air pollution was associated with lung function impairment for adolescents with abnormal weight. Longer exposure aggravated the adverse effect. Whether a critical exposure window since birth exists warrants further exploration.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Sara Kress
- Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Iana Markevych
- Institute of Psychology, Jagiellonian University, Krakow, Poland
| | - Dietrich Berdel
- Formerly: the Research Institute, Department of Pediatrics, Marien-Hospital Wesel, Wesel, Germany
| | - Andrea von Berg
- Formerly: the Research Institute, Department of Pediatrics, Marien-Hospital Wesel, Wesel, Germany
| | - Monika Gappa
- Department of Pediatrics, Evangelisches Krankenhaus, Düsseldorf, Germany
| | - Sibylle Koletzko
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilians University of Munich, Munich, Germany; Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Carl-Peter Bauer
- Department of Pediatrics, Technical University of Munich, Munich, Germany
| | - Holger Schulz
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilians University of Munich, Munich, Germany; Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population & Global Health, The University of Melbourne, Melbourne, Australia
| | - Tamara Schikowski
- Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
46
|
Zhao Q, Kress S, Markevych I, Berdel D, von Berg A, Gappa M, Koletzko S, Bauer CP, Schulz H, Standl M, Heinrich J, Schikowski T. Air pollution during infancy and lung function development into adolescence: The GINIplus/LISA birth cohorts study. ENVIRONMENT INTERNATIONAL 2021; 146:106195. [PMID: 33099064 DOI: 10.1016/j.envint.2020.106195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Limited evidence exists on how air pollution exposure during infancy, i.e. the first year of life, may affect lung function development into adolescence. OBJECTIVES To investigate the association between exposure to air pollution during the first-year of life and lung function development up to the age of 15 in Germany. METHODS We investigated 915 children from the GINIplus and LISA birth cohorts from Munich (n = 181) and Wesel (n = 734), who had at least two spirometric measurements at ages 6, 10 and 15. Z-scores of forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) were calculated. Annual average concentrations of nitrogen dioxide, particulate matter with diameters <2.5, <10 and 2.5-10 µm (PM2.5/10/coarse), and PM2.5 absorbance at home addresses during the first-year of life, were estimated by land-use regression models. Associations between infancy exposure and lung function changes were fitted using multivariable linear mixed models with adjustment for potential confounders. RESULTS For per interquartile range increase in air pollutants during the first-year life, FEV1 z-scores declined annually by -0.012 (95% confidence interval (CI): -0.014, -0.009) for PM2.5 to -0.023 (95%CI: -0.028, -0.018) for PMcoarse. The declines in FVC were lower than FEV1 [-0.006 (95%CI: -0.008, -0.003) to -0.011 (95%CI: -0.019, -0.003)]. In Munich, the attenuations were only significant for FEV1. Effect estimates of infancy exposure for certain air pollutants were higher for groups with asthma, older maternal age, and breastfeeding <12 weeks than their counterparts. DISCUSSION Infancy exposure to higher air pollution may reduce lung function development up to adolescence, with airway size more affected than lung volume restriction. The potential modifying effects of maternal age, asthmatic status of children and breastfeeding warrant further exploration.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Sara Kress
- Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Iana Markevych
- Institute of Psychology, Jagiellonian University, Krakow, Poland
| | - Dietrich Berdel
- Research Institute, Department of Pediatrics, Marien-Hospital Wesel, Wesel, Germany
| | - Andrea von Berg
- Research Institute, Department of Pediatrics, Marien-Hospital Wesel, Wesel, Germany
| | - Monika Gappa
- Department of Pediatrics, Evangelisches Krankenhaus, Düsseldorf, Germany
| | - Sibylle Koletzko
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilians University of Munich, Munich, Germany; Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Carl-Peter Bauer
- Department of Pediatrics, Technical University of Munich, Munich, Germany
| | - Holger Schulz
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilians University of Munich, Munich, Germany; Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population & Global Health, The University of Melbourne, Melbourne, Australia
| | - Tamara Schikowski
- Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
47
|
Steinle S, Johnston HJ, Loh M, Mueller W, Vardoulakis S, Tantrakarnapa K, Cherrie JW. In Utero Exposure to Particulate Air Pollution during Pregnancy: Impact on Birth Weight and Health through the Life Course. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8948. [PMID: 33271938 PMCID: PMC7730886 DOI: 10.3390/ijerph17238948] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/05/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022]
Abstract
In high-income countries, and increasingly in lower- and middle-income countries, chronic non-communicable diseases (NCDs) have become the primary health burden. It is possible that in utero exposure to environmental pollutants such as particulate matter (PM) may have an impact on health later in life, including the development of NCDs. Due to a lack of data on foetal growth, birth weight is often used in epidemiologic studies as a proxy to assess impacts on foetal development and adverse birth outcomes since it is commonly recorded at birth. There are no research studies with humans that directly link PM exposure in utero to birth weight (BW) and subsequently, the effects of lower BW on health outcomes in old age. It is, however, plausible that such associations exist, and it is thus important to assess the potential public health impacts of PM across the life course, and it is plausible to use birth weight as an indicator of risk. We therefore split this narrative review into two parts. In the first part, we evaluated the strength of the evidence on the impact of PM exposure during the entire pregnancy on birth weight outcomes in ten meta-analyses. In the second part, we reviewed the literature linking lower birth weight to childhood and adult chronic cardiovascular disease to explore the potential implications of PM exposure in utero on health later in life. Within the reviewed meta-studies on birth weight, there is sufficient evidence that PM pollution is associated with lower birth weight, i.e., the majority of meta-studies found statistically significant reductions in birth weight. From the second part of the review, it is evident that there is good evidence of associations between lower birth weight and subsequent cardiovascular disease risk. It is thus plausible that in utero exposure to PM is associated with lower birth weight and persisting biological changes that could be associated with adverse health effects in adulthood. Based on the reviewed evidence, however, the magnitude of later life cardiovascular health impacts from in utero exposure and its impact on BW are likely to be small compared to health effects from exposure to particulate air pollution over a whole lifetime.
Collapse
Affiliation(s)
- Susanne Steinle
- Institute of Occupational Medicine, Research Avenue North, Edinburgh EH14 4AP, UK; (S.S.); (M.L.); (W.M.); (S.V.)
| | - Helinor J. Johnston
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Riccarton, Edinburgh EH14 4AS, UK;
| | - Miranda Loh
- Institute of Occupational Medicine, Research Avenue North, Edinburgh EH14 4AP, UK; (S.S.); (M.L.); (W.M.); (S.V.)
| | - William Mueller
- Institute of Occupational Medicine, Research Avenue North, Edinburgh EH14 4AP, UK; (S.S.); (M.L.); (W.M.); (S.V.)
| | - Sotiris Vardoulakis
- Institute of Occupational Medicine, Research Avenue North, Edinburgh EH14 4AP, UK; (S.S.); (M.L.); (W.M.); (S.V.)
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra ACT 2601, Australia
| | - Kraichat Tantrakarnapa
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, MAHIDOL University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand;
| | - John W. Cherrie
- Institute of Occupational Medicine, Research Avenue North, Edinburgh EH14 4AP, UK; (S.S.); (M.L.); (W.M.); (S.V.)
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Riccarton, Edinburgh EH14 4AS, UK;
| |
Collapse
|
48
|
Rice MB, Mein SA. Prenatal Air Pollution and Child Lung Function: The Impossible Search for a Vulnerable Trimester. Am J Respir Crit Care Med 2020; 202:15-16. [PMID: 32271613 PMCID: PMC7328328 DOI: 10.1164/rccm.202003-0764ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Mary B Rice
- Department of MedicineBeth Israel Deaconess Medical CenterBoston, Massachusetts
| | - Stephen A Mein
- Department of MedicineBeth Israel Deaconess Medical CenterBoston, Massachusetts
| |
Collapse
|