1
|
Patsoura A, Baldini G, Puggioni D, Delle Vergini M, Castaniere I, Andrisani D, Gozzi F, Samarelli AV, Raineri G, Michelacci S, Ruini C, Carzoli A, Cuculo A, Marchioni A, Beghè B, Clini E, Cerri S, Tonelli R. The Link Between Sleep-Related Breathing Disorders and Idiopathic Pulmonary Fibrosis: Pathophysiological Mechanisms and Treatment Options-A Review. J Clin Med 2025; 14:2205. [PMID: 40217656 PMCID: PMC11989984 DOI: 10.3390/jcm14072205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/05/2025] [Accepted: 03/15/2025] [Indexed: 04/14/2025] Open
Abstract
In recent years, several studies have examined the impact of sleep-disordered breathing (SBD) on the quality of life and prognosis of patients with idiopathic pulmonary fibrosis (IPF). Among these disorders, obstructive sleep apnea (OSA) and nocturnal hypoxemia (NH) are the most prevalent and extensively studied, whereas central sleep apnea (CSA) has only been documented in recent research. The mechanisms underlying the relationship between IPF and SBDs are complex and remain an area of active investigation. Despite growing recognition of SBDs in IPF, no standardized guidelines exist for their management and treatment, particularly in a population characterized by distinct structural pulmonary abnormalities. This review outlines the pathophysiological connections between sleep-breathing disorders (SBDs) and idiopathic pulmonary fibrosis (IPF), as well as current therapeutic options. A comprehensive literature search using PubMed identified relevant studies, confirming the efficacy of CPAP in treating severe OSA and CSA. While high-flow oxygen therapy has not been validated in this patient cohort, it may offer a potential solution for select patients, particularly the elderly and those with low compliance. Conventional oxygen therapy, however, is limited to cases of isolated nocturnal hypoxemia or mild central sleep apnea.
Collapse
Affiliation(s)
- Athina Patsoura
- Respiratory Disease Unit, Department of Medical and Surgical Sciences of Motherhood and Child, University Hospital of Modena, 41125 Modena, Italy; (A.P.); (G.B.); (D.P.); (M.D.V.); (I.C.); (D.A.); (F.G.); (S.M.); (C.R.); (A.C.); (A.C.); (A.M.); (B.B.); (S.C.); (R.T.)
| | - Giulia Baldini
- Respiratory Disease Unit, Department of Medical and Surgical Sciences of Motherhood and Child, University Hospital of Modena, 41125 Modena, Italy; (A.P.); (G.B.); (D.P.); (M.D.V.); (I.C.); (D.A.); (F.G.); (S.M.); (C.R.); (A.C.); (A.C.); (A.M.); (B.B.); (S.C.); (R.T.)
| | - Daniele Puggioni
- Respiratory Disease Unit, Department of Medical and Surgical Sciences of Motherhood and Child, University Hospital of Modena, 41125 Modena, Italy; (A.P.); (G.B.); (D.P.); (M.D.V.); (I.C.); (D.A.); (F.G.); (S.M.); (C.R.); (A.C.); (A.C.); (A.M.); (B.B.); (S.C.); (R.T.)
| | - Matteo Delle Vergini
- Respiratory Disease Unit, Department of Medical and Surgical Sciences of Motherhood and Child, University Hospital of Modena, 41125 Modena, Italy; (A.P.); (G.B.); (D.P.); (M.D.V.); (I.C.); (D.A.); (F.G.); (S.M.); (C.R.); (A.C.); (A.C.); (A.M.); (B.B.); (S.C.); (R.T.)
| | - Ivana Castaniere
- Respiratory Disease Unit, Department of Medical and Surgical Sciences of Motherhood and Child, University Hospital of Modena, 41125 Modena, Italy; (A.P.); (G.B.); (D.P.); (M.D.V.); (I.C.); (D.A.); (F.G.); (S.M.); (C.R.); (A.C.); (A.C.); (A.M.); (B.B.); (S.C.); (R.T.)
- Experimental Pneumology Laboratory, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.S.); (G.R.)
| | - Dario Andrisani
- Respiratory Disease Unit, Department of Medical and Surgical Sciences of Motherhood and Child, University Hospital of Modena, 41125 Modena, Italy; (A.P.); (G.B.); (D.P.); (M.D.V.); (I.C.); (D.A.); (F.G.); (S.M.); (C.R.); (A.C.); (A.C.); (A.M.); (B.B.); (S.C.); (R.T.)
- Experimental Pneumology Laboratory, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.S.); (G.R.)
- Center for Rare Lung Diseases, University Hospital of Modena, 41125 Modena, Italy
| | - Filippo Gozzi
- Respiratory Disease Unit, Department of Medical and Surgical Sciences of Motherhood and Child, University Hospital of Modena, 41125 Modena, Italy; (A.P.); (G.B.); (D.P.); (M.D.V.); (I.C.); (D.A.); (F.G.); (S.M.); (C.R.); (A.C.); (A.C.); (A.M.); (B.B.); (S.C.); (R.T.)
- Experimental Pneumology Laboratory, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.S.); (G.R.)
- Center for Rare Lung Diseases, University Hospital of Modena, 41125 Modena, Italy
| | - Anna Valeria Samarelli
- Experimental Pneumology Laboratory, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.S.); (G.R.)
| | - Giulia Raineri
- Experimental Pneumology Laboratory, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.S.); (G.R.)
| | - Sofia Michelacci
- Respiratory Disease Unit, Department of Medical and Surgical Sciences of Motherhood and Child, University Hospital of Modena, 41125 Modena, Italy; (A.P.); (G.B.); (D.P.); (M.D.V.); (I.C.); (D.A.); (F.G.); (S.M.); (C.R.); (A.C.); (A.C.); (A.M.); (B.B.); (S.C.); (R.T.)
| | - Cristina Ruini
- Respiratory Disease Unit, Department of Medical and Surgical Sciences of Motherhood and Child, University Hospital of Modena, 41125 Modena, Italy; (A.P.); (G.B.); (D.P.); (M.D.V.); (I.C.); (D.A.); (F.G.); (S.M.); (C.R.); (A.C.); (A.C.); (A.M.); (B.B.); (S.C.); (R.T.)
| | - Andrea Carzoli
- Respiratory Disease Unit, Department of Medical and Surgical Sciences of Motherhood and Child, University Hospital of Modena, 41125 Modena, Italy; (A.P.); (G.B.); (D.P.); (M.D.V.); (I.C.); (D.A.); (F.G.); (S.M.); (C.R.); (A.C.); (A.C.); (A.M.); (B.B.); (S.C.); (R.T.)
| | - Aurelia Cuculo
- Respiratory Disease Unit, Department of Medical and Surgical Sciences of Motherhood and Child, University Hospital of Modena, 41125 Modena, Italy; (A.P.); (G.B.); (D.P.); (M.D.V.); (I.C.); (D.A.); (F.G.); (S.M.); (C.R.); (A.C.); (A.C.); (A.M.); (B.B.); (S.C.); (R.T.)
| | - Alessandro Marchioni
- Respiratory Disease Unit, Department of Medical and Surgical Sciences of Motherhood and Child, University Hospital of Modena, 41125 Modena, Italy; (A.P.); (G.B.); (D.P.); (M.D.V.); (I.C.); (D.A.); (F.G.); (S.M.); (C.R.); (A.C.); (A.C.); (A.M.); (B.B.); (S.C.); (R.T.)
- Experimental Pneumology Laboratory, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.S.); (G.R.)
| | - Bianca Beghè
- Respiratory Disease Unit, Department of Medical and Surgical Sciences of Motherhood and Child, University Hospital of Modena, 41125 Modena, Italy; (A.P.); (G.B.); (D.P.); (M.D.V.); (I.C.); (D.A.); (F.G.); (S.M.); (C.R.); (A.C.); (A.C.); (A.M.); (B.B.); (S.C.); (R.T.)
| | - Enrico Clini
- Respiratory Disease Unit, Department of Medical and Surgical Sciences of Motherhood and Child, University Hospital of Modena, 41125 Modena, Italy; (A.P.); (G.B.); (D.P.); (M.D.V.); (I.C.); (D.A.); (F.G.); (S.M.); (C.R.); (A.C.); (A.C.); (A.M.); (B.B.); (S.C.); (R.T.)
- Experimental Pneumology Laboratory, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.S.); (G.R.)
- Center for Rare Lung Diseases, University Hospital of Modena, 41125 Modena, Italy
| | - Stefania Cerri
- Respiratory Disease Unit, Department of Medical and Surgical Sciences of Motherhood and Child, University Hospital of Modena, 41125 Modena, Italy; (A.P.); (G.B.); (D.P.); (M.D.V.); (I.C.); (D.A.); (F.G.); (S.M.); (C.R.); (A.C.); (A.C.); (A.M.); (B.B.); (S.C.); (R.T.)
- Experimental Pneumology Laboratory, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.S.); (G.R.)
- Center for Rare Lung Diseases, University Hospital of Modena, 41125 Modena, Italy
| | - Roberto Tonelli
- Respiratory Disease Unit, Department of Medical and Surgical Sciences of Motherhood and Child, University Hospital of Modena, 41125 Modena, Italy; (A.P.); (G.B.); (D.P.); (M.D.V.); (I.C.); (D.A.); (F.G.); (S.M.); (C.R.); (A.C.); (A.C.); (A.M.); (B.B.); (S.C.); (R.T.)
- Experimental Pneumology Laboratory, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.S.); (G.R.)
- Center for Rare Lung Diseases, University Hospital of Modena, 41125 Modena, Italy
| |
Collapse
|
2
|
Neelakantan S, Myers KJ, Rizi R, Smith BJ, Avazmohammadi R. An image-based biophysical model of the lung to investigate the effect of pulmonary surfactant on lung function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.15.638361. [PMID: 40027704 PMCID: PMC11870450 DOI: 10.1101/2025.02.15.638361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Lung biomechanics aims to understand the structure-function relationship in the lung under normal and pathological conditions. Pulmonary surfactant has a key structural role in lung function with a significant contribution to the mechanical response of the lungs during respiration. Pulmonary surfactant dynamically regulates surface tension at the air-liquid interface to decrease stiffness during respiration and prevent alveolar collapse during lower volumes. Many lung injuries involve alterations to the contribution of surfactants to lung function. We developed a novel biophysical model using a poroelastic formulation that incorporates pulmonary surfactant dynamics and aims to quantify the contribution of the pulmonary surfactant toward lung compliance. The effect of pulmonary surfactant was modeled as a surface energy function, and the surface behavior was converted to bulk behavior by assuming uniform spherical alveoli. The model was used to simulate respiration and investigate the effect of altered surface tension caused by surfactant dysfunction. The model captured the characteristic sigmoidal inspiratory pressure-volume curve and hysteresis observed during clinical measurements. In addition, the model predicted the expected behavior in surfactant dysfunction in lung injuries. We expect this work to serve as an essential step towards de-convoluting and predicting the contributions of the lung parenchyma and pulmonary surfactant to global and regional lung compliance in health and disease.
Collapse
|
3
|
Tonelli R, Smit MR, Castaniere I, Casa GD, Andrisani D, Gozzi F, Bruzzi G, Cerri S, Samarelli AV, Raineri G, Spagnolo P, Rizzoni R, Ball L, Paulus F, Bos LDJ, Clini E, Marchioni A. Quantitative CT-analysis of over aerated lung tissue and correlation with fibrosis extent in patients with idiopathic pulmonary fibrosis. Respir Res 2024; 25:359. [PMID: 39369240 PMCID: PMC11453093 DOI: 10.1186/s12931-024-02970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/06/2024] [Indexed: 10/07/2024] Open
Abstract
INTRODUCTION The usual interstitial pneumonia (UIP) pattern, hallmark of idiopathic pulmonary fibrosis (IPF), may induce harmful local overdistension during mechanical ventilation given the juxtaposition of different tissue elasticities. Mechanotransduction, linking mechanical stress and strain to molecular pro-fibrotic pathways, likely contributes to fibrosis progression. Understanding the mechanical forces and aeration patterns in the lungs of IPF patients is crucial for unraveling potential mechanisms of disease progression. Quantitative lung computed tomography (CT) can accurately assess the air content of lung regions, thus informing on zonal distension. This study aims to investigate radiological evidence of lung over aeration in spontaneously breathing UIP patients compared to healthy controls during maximal inspiration. METHODS Patients with IPF diagnosis referred to the Center for Rare Lung Diseases of the University Hospital of Modena (Italy) in the period 2020-2023 who underwent High Resolution Computed Tomography (HRCT) scans at residual volume (RV) and total lung capacity (TLC) using standardized protocols were retrospectively considered eligible. Patients with no signs of lung disease at HRCT performed with the same image acquisition protocol nor at pulmonary function test (PFTs) served as controls. Lung segmentation and quantitative analysis were performed using 3D Slicer software. Lung volumes were measured, and specific density thresholds defined over aerated and fibrotic regions. Comparison between over aerated lung at RV and TLC in the two groups and according to lung lobes was sought. Further, the correlation between aerated lung and the extent of fibrosis was assessed and compared at RV and TLC. RESULTS IPF patients (N = 20) exhibited higher over aerated lung proportions than controls (N = 15) both at RV and TLC (4.5% vs. 0.7%, p < 0.0001 and 13.8% vs. 7%, p < 0.0001 respectively). Over aeration increased significantly from RV to TLC in both groups, with no intergroup difference (p = 0.67). Sensitivity analysis revealed significant variations in over aerated lung areas among lobes when passing from RV to TLC with no difference within lobes (p = 0.28). Correlation between over aeration and fibrosis extent was moderate at RV (r = 0.62, p < 0.0001) and weak at TLC (r = 0.27, p = 0.01), being the two significantly different at interpolation analysis (p < 0.0001). CONCLUSIONS This study provides the first evidence of radiological signs of lung over aeration in patients with UIP-pattern patients when passing from RV to TLC. These findings offer new insights into the complex interplay between mechanical forces, lung structure, and fibrosis and warrant larger and longitudinal investigations.
Collapse
Affiliation(s)
- Roberto Tonelli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Marry R Smit
- Intensive Care Unit, Amsterdam University Medical Centers, Location University of Amsterdam, Amsterdam, Netherlands
| | - Ivana Castaniere
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Giovanni Della Casa
- Radiology Unit, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Dario Andrisani
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Filippo Gozzi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Giulia Bruzzi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Stefania Cerri
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
- ERN-Lung, Frankfurt Am Main, Germany
| | - Anna Valeria Samarelli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Paolo Spagnolo
- Respiratory Diseases Unit, University Hospital of Padova, University of Padova, Padua, Italy
| | - Raffella Rizzoni
- Department of Engineering, University of Ferrara, Ferrara, Italy
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Frederique Paulus
- Intensive Care Unit, Amsterdam University Medical Centers, Location University of Amsterdam, Amsterdam, Netherlands
| | - Lieuwe D J Bos
- Intensive Care Unit, Amsterdam University Medical Centers, Location University of Amsterdam, Amsterdam, Netherlands
| | - Enrico Clini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy.
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy.
| | - Alessandro Marchioni
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| |
Collapse
|
4
|
Perlman CE, Knudsen L, Smith BJ. The fix is not yet in: recommendation for fixation of lungs within physiological/pathophysiological volume range in preclinical pulmonary structure-function studies. Am J Physiol Lung Cell Mol Physiol 2024; 327:L218-L231. [PMID: 38712433 PMCID: PMC11444500 DOI: 10.1152/ajplung.00341.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/14/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
Quantitative characterization of lung structures by morphometrical or stereological analysis of histological sections is a powerful means of elucidating pulmonary structure-function relations. The overwhelming majority of studies, however, fix lungs for histology at pressures outside the physiological/pathophysiological respiratory volume range. Thus, valuable information is being lost. In this perspective article, we argue that investigators performing pulmonary histological studies should consider whether the aims of their studies would benefit from fixation at functional transpulmonary pressures, particularly those of end-inspiration and end-expiration. We survey the pressures at which lungs are typically fixed in preclinical structure-function studies, provide examples of conditions that would benefit from histological evaluation at functional lung volumes, summarize available fixation methods, discuss alternative imaging modalities, and discuss challenges to implementing the suggested approach and means of addressing those challenges. We aim to persuade investigators that modifying or complementing the traditional histological approach by fixing lungs at minimal and maximal functional volumes could enable new understanding of pulmonary structure-function relations.
Collapse
Affiliation(s)
- Carrie E Perlman
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, United States
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Bradford J Smith
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
5
|
Zimmermann R, Roeder F, Ruppert C, Smith BJ, Knudsen L. Low-volume ventilation of preinjured lungs degrades lung function via stress concentration and progressive alveolar collapse. Am J Physiol Lung Cell Mol Physiol 2024; 327:L19-L39. [PMID: 38712429 DOI: 10.1152/ajplung.00323.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
Mechanical ventilation can cause ventilation-induced lung injury (VILI). The concept of stress concentrations suggests that surfactant dysfunction-induced microatelectases might impose injurious stresses on adjacent, open alveoli and function as germinal centers for injury propagation. The aim of the present study was to quantify the histopathological pattern of VILI progression and to test the hypothesis that injury progresses at the interface between microatelectases and ventilated lung parenchyma during low-positive end-expiratory pressure (PEEP) ventilation. Bleomycin was used to induce lung injury with microatelectases in rats. Lungs were then mechanically ventilated for up to 6 h at PEEP = 1 cmH2O and compared with bleomycin-treated group ventilated protectively with PEEP = 5 cmH2O to minimize microatelectases. Lung mechanics were measured during ventilation. Afterward, lungs were fixed at end-inspiration or end-expiration for design-based stereology. Before VILI, bleomycin challenge reduced the number of open alveoli [N(alvair,par)] by 29%. No differences between end-inspiration and end-expiration were observed. Collapsed alveoli clustered in areas with a radius of up to 56 µm. After PEEP = 5 cmH2O ventilation for 6 h, N(alvair,par) remained stable while PEEP = 1 cmH2O ventilation led to an additional loss of aerated alveoli by 26%, mainly due to collapse, with a small fraction partly edema filled. Alveolar loss strongly correlated to worsening of tissue elastance, quasistatic compliance, and inspiratory capacity. The radius of areas of collapsed alveoli increased to 94 µm, suggesting growth of the microatelectases. These data provide evidence that alveoli become unstable in neighborhood of microatelectases, which most likely occurs due to stress concentration-induced local vascular leak and surfactant dysfunction.NEW & NOTEWORTHY Low-volume mechanical ventilation in the presence of high surface tension-induced microatelectases leads to the degradation of lung mechanical function via the progressive loss of alveoli. Microatelectases grow at the interfaces of collapsed and open alveoli. Here, stress concentrations might cause injury and alveolar instability. Accumulation of small amounts of alveolar edema can be found in a fraction of partly collapsed alveoli but, in this model, alveolar flooding is not a major driver for degradation of lung mechanics.
Collapse
Affiliation(s)
- Richard Zimmermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Franziska Roeder
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Bradford J Smith
- Department of Bioengineering, College of Engineering, Design & Computing, University of Colorado Denver | Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Gottman DC, Smith BJ. A scale-free model of acute and ventilator-induced lung injury: a network theory approach inspired by seismology. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1392701. [PMID: 38757066 PMCID: PMC11097687 DOI: 10.3389/fnetp.2024.1392701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Introduction Acute respiratory distress syndrome (ARDS) presents a significant clinical challenge, with ventilator-induced lung injury (VILI) being a critical complication arising from life-saving mechanical ventilation. Understanding the spatial and temporal dynamics of VILI can inform therapeutic strategies to mitigate lung damage and improve outcomes. Methods Histological sections from initially healthy mice and pulmonary lavage-injured mice subjected to a second hit of VILI were segmented with Ilastik to define regions of lung injury. A scale-free network approach was applied to assess the correlation between injury regions, with regions of injury represented as 'nodes' in the network and 'edges' quantifying the degree of correlation between nodes. A simulated time series analysis was conducted to emulate the temporal sequence of injury events. Results Automated segmentation identified different lung regions in good agreement with manual scoring, achieving a sensitivity of 78% and a specificity of 85% across 'injury' pixels. Overall accuracy across 'injury', 'air', and 'other' pixels was 81%. The size of injured regions followed a power-law distribution, suggesting a 'rich-get-richer' phenomenon in the distribution of lung injury. Network analysis revealed a scale-free distribution of injury correlations, highlighting hubs of injury that could serve as focal points for therapeutic intervention. Simulated time series analysis further supported the concept of secondary injury events following an initial insult, with patterns resembling those observed in seismological studies of aftershocks. Conclusion The size distribution of injured regions underscores the spatially heterogeneous nature of acute and ventilator-induced lung injury. The application of network theory demonstrates the emergence of injury 'hubs' that are consistent with a 'rich-get-richer' dynamic. Simulated time series analysis demonstrates that the progression of injury events in the lung could follow spatiotemporal patterns similar to the progression of aftershocks in seismology, providing new insights into the mechanisms of injury distribution and propagation. Both phenomena suggest a potential for interventions targeting these injury 'hubs' to reduce the impact of VILI in ARDS management.
Collapse
Affiliation(s)
- Drew C. Gottman
- University of Colorado School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Bradford J. Smith
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
- Section of Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
7
|
Roeder F, Röpke T, Steinmetz LK, Kolb M, Maus UA, Smith BJ, Knudsen L. Exploring alveolar recruitability using positive end-expiratory pressure in mice overexpressing TGF-β1: a structure-function analysis. Sci Rep 2024; 14:8080. [PMID: 38582767 PMCID: PMC10998853 DOI: 10.1038/s41598-024-58213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/26/2024] [Indexed: 04/08/2024] Open
Abstract
Pre-injured lungs are prone to injury progression in response to mechanical ventilation. Heterogeneous ventilation due to (micro)atelectases imparts injurious strains on open alveoli (known as volutrauma). Hence, recruitment of (micro)atelectases by positive end-expiratory pressure (PEEP) is necessary to interrupt this vicious circle of injury but needs to be balanced against acinar overdistension. In this study, the lung-protective potential of alveolar recruitment was investigated and balanced against overdistension in pre-injured lungs. Mice, treated with empty vector (AdCl) or adenoviral active TGF-β1 (AdTGF-β1) were subjected to lung mechanical measurements during descending PEEP ventilation from 12 to 0 cmH2O. At each PEEP level, recruitability tests consisting of two recruitment maneuvers followed by repetitive forced oscillation perturbations to determine tissue elastance (H) and damping (G) were performed. Finally, lungs were fixed by vascular perfusion at end-expiratory airway opening pressures (Pao) of 20, 10, 5 and 2 cmH2O after a recruitment maneuver, and processed for design-based stereology to quantify derecruitment and distension. H and G were significantly elevated in AdTGF-β1 compared to AdCl across PEEP levels. H was minimized at PEEP = 5-8 cmH2O and increased at lower and higher PEEP in both groups. These findings correlated with increasing septal wall folding (= derecruitment) and reduced density of alveolar number and surface area (= distension), respectively. In AdTGF-β1 exposed mice, 27% of alveoli remained derecruited at Pao = 20 cmH2O. A further decrease in Pao down to 2 cmH2O showed derecruitment of an additional 1.1 million alveoli (48%), which was linked with an increase in alveolar size heterogeneity at Pao = 2-5 cmH2O. In AdCl, decreased Pao resulted in septal folding with virtually no alveolar collapse. In essence, in healthy mice alveoli do not derecruit at low PEEP ventilation. The potential of alveolar recruitability in AdTGF-β1 exposed mice is high. H is optimized at PEEP 5-8 cmH2O. Lower PEEP folds and larger PEEP stretches septa which results in higher H and is more pronounced in AdTGF-β1 than in AdCl. The increased alveolar size heterogeneity at Pao = 5 cmH2O argues for the use of PEEP = 8 cmH2O for lung protective mechanical ventilation in this animal model.
Collapse
Affiliation(s)
- Franziska Roeder
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Tina Röpke
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | | | - Martin Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada
| | - Ulrich A Maus
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Disease (DZL), Hannover, Germany
| | - Bradford J Smith
- Department of Bioengineering, College of Engineering Design and Computing, University of Colorado Denver|Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatric Pulmonary and Sleep Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Disease (DZL), Hannover, Germany.
| |
Collapse
|
8
|
Al-Khalisy H, Nieman GF, Kollisch-Singule M, Andrews P, Camporota L, Shiber J, Manougian T, Satalin J, Blair S, Ghosh A, Herrmann J, Kaczka DW, Gaver DP, Bates JHT, Habashi NM. Time-Controlled Adaptive Ventilation (TCAV): a personalized strategy for lung protection. Respir Res 2024; 25:37. [PMID: 38238778 PMCID: PMC10797864 DOI: 10.1186/s12931-023-02615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/25/2023] [Indexed: 01/22/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) alters the dynamics of lung inflation during mechanical ventilation. Repetitive alveolar collapse and expansion (RACE) predisposes the lung to ventilator-induced lung injury (VILI). Two broad approaches are currently used to minimize VILI: (1) low tidal volume (LVT) with low-moderate positive end-expiratory pressure (PEEP); and (2) open lung approach (OLA). The LVT approach attempts to protect already open lung tissue from overdistension, while simultaneously resting collapsed tissue by excluding it from the cycle of mechanical ventilation. By contrast, the OLA attempts to reinflate potentially recruitable lung, usually over a period of seconds to minutes using higher PEEP used to prevent progressive loss of end-expiratory lung volume (EELV) and RACE. However, even with these protective strategies, clinical studies have shown that ARDS-related mortality remains unacceptably high with a scarcity of effective interventions over the last two decades. One of the main limitations these varied interventions demonstrate to benefit is the observed clinical and pathologic heterogeneity in ARDS. We have developed an alternative ventilation strategy known as the Time Controlled Adaptive Ventilation (TCAV) method of applying the Airway Pressure Release Ventilation (APRV) mode, which takes advantage of the heterogeneous time- and pressure-dependent collapse and reopening of lung units. The TCAV method is a closed-loop system where the expiratory duration personalizes VT and EELV. Personalization of TCAV is informed and tuned with changes in respiratory system compliance (CRS) measured by the slope of the expiratory flow curve during passive exhalation. Two potentially beneficial features of TCAV are: (i) the expiratory duration is personalized to a given patient's lung physiology, which promotes alveolar stabilization by halting the progressive collapse of alveoli, thereby minimizing the time for the reopened lung to collapse again in the next expiration, and (ii) an extended inspiratory phase at a fixed inflation pressure after alveolar stabilization gradually reopens a small amount of tissue with each breath. Subsequently, densely collapsed regions are slowly ratcheted open over a period of hours, or even days. Thus, TCAV has the potential to minimize VILI, reducing ARDS-related morbidity and mortality.
Collapse
Affiliation(s)
| | - Gary F Nieman
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | | | - Penny Andrews
- R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Luigi Camporota
- Health Centre for Human and Applied Physiological Sciences, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Joseph Shiber
- University of Florida College of Medicine, Jacksonville, FL, USA
| | | | - Joshua Satalin
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
| | - Sarah Blair
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Auyon Ghosh
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | | | | | | | | | - Nader M Habashi
- R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, USA
| |
Collapse
|
9
|
Mattson CL, Smith BJ. Modeling Ventilator-Induced Lung Injury and Neutrophil Infiltration to Infer Injury Interdependence. Ann Biomed Eng 2023; 51:2837-2852. [PMID: 37592044 PMCID: PMC10842244 DOI: 10.1007/s10439-023-03346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI) are heterogeneous conditions. The spatiotemporal evolution of these heterogeneities is complex, and it is difficult to elucidate the mechanisms driving its progression. Through previous quantitative analyses, we explored the distributions of cellular injury and neutrophil infiltration in experimental VILI and discovered that VILI progression is characterized by both the formation of new injury in quasi-random locations and the expansion of existing injury clusters. Distributions of neutrophil infiltration do not correlate with cell injury progression and suggest a systemic response. To further examine the dynamics of VILI, we have developed a novel computational model that simulates damage (cellular injury progression and neutrophil infiltration) using a stochastic approach. Optimization of the model parameters to fit experimental data reveals that the range and strength of interdependence between existing and new damaged regions both increase as mechanical ventilation patterns become more injurious. The interdependence of cellular injury can be attributed to mechanical tethering forces, while the interdependence of neutrophils is likely due to longer-range cell signaling pathways.
Collapse
Affiliation(s)
- Courtney L Mattson
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, 12705 E. Montview Blvd., Suite 100, Aurora, CO, 80045, USA
| | - Bradford J Smith
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, 12705 E. Montview Blvd., Suite 100, Aurora, CO, 80045, USA.
- Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
10
|
Albert RK, Jurkovich GJ, Connett J, Helgeson ES, Keniston A, Voelker H, Lindberg S, Proper JL, Bochicchio G, Stein DM, Cain C, Tesoriero R, Brown CVR, Davis J, Napolitano L, Carver T, Cipolle M, Cardenas L, Minei J, Nirula R, Doucet J, Miller PR, Johnson J, Inaba K, Kao L. Sigh Ventilation in Patients With Trauma: The SiVent Randomized Clinical Trial. JAMA 2023; 330:1982-1990. [PMID: 37877609 PMCID: PMC10600720 DOI: 10.1001/jama.2023.21739] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023]
Abstract
Importance Among patients receiving mechanical ventilation, tidal volumes with each breath are often constant or similar. This may lead to ventilator-induced lung injury by altering or depleting surfactant. The role of sigh breaths in reducing ventilator-induced lung injury among trauma patients at risk of poor outcomes is unknown. Objective To determine whether adding sigh breaths improves clinical outcomes. Design, Setting, and Participants A pragmatic, randomized trial of sigh breaths plus usual care conducted from 2016 to 2022 with 28-day follow-up in 15 academic trauma centers in the US. Inclusion criteria were age older than 18 years, mechanical ventilation because of trauma for less than 24 hours, 1 or more of 5 risk factors for developing acute respiratory distress syndrome, expected duration of ventilation longer than 24 hours, and predicted survival longer than 48 hours. Interventions Sigh volumes producing plateau pressures of 35 cm H2O (or 40 cm H2O for inpatients with body mass indexes >35) delivered once every 6 minutes. Usual care was defined as the patient's physician(s) treating the patient as they wished. Main Outcomes and Measures The primary outcome was ventilator-free days. Prespecified secondary outcomes included all-cause 28-day mortality. Results Of 5753 patients screened, 524 were enrolled (mean [SD] age, 43.9 [19.2] years; 394 [75.2%] were male). The median ventilator-free days was 18.4 (IQR, 7.0-25.2) in patients randomized to sighs and 16.1 (IQR, 1.1-24.4) in those receiving usual care alone (P = .08). The unadjusted mean difference in ventilator-free days between groups was 1.9 days (95% CI, 0.1 to 3.6) and the prespecified adjusted mean difference was 1.4 days (95% CI, -0.2 to 3.0). For the prespecified secondary outcome, patients randomized to sighs had 28-day mortality of 11.6% (30/259) vs 17.6% (46/261) in those receiving usual care (P = .05). No differences were observed in nonfatal adverse events comparing patients with sighs (80/259 [30.9%]) vs those without (80/261 [30.7%]). Conclusions and Relevance In a pragmatic, randomized trial among trauma patients receiving mechanical ventilation with risk factors for developing acute respiratory distress syndrome, the addition of sigh breaths did not significantly increase ventilator-free days. Prespecified secondary outcome data suggest that sighs are well-tolerated and may improve clinical outcomes. Trial Registration ClinicalTrials.gov Identifier: NCT02582957.
Collapse
Affiliation(s)
| | | | - John Connett
- Division of Biostatistics, University of Minnesota, Minneapolis
| | | | | | - Helen Voelker
- Division of Biostatistics, University of Minnesota, Minneapolis
| | - Sarah Lindberg
- Division of Biostatistics, University of Minnesota, Minneapolis
| | | | - Grant Bochicchio
- Department of Surgery, Washington University, St Louis, St Louis, Missouri
| | | | - Christian Cain
- Department of Surgery, University of Maryland, Baltimore
| | - Ron Tesoriero
- Department of Surgery, University of Maryland, Baltimore
| | | | - James Davis
- Department of Surgery, University of California San Francisco, Fresno
| | | | - Thomas Carver
- Department of Surgery, Medical College of Wisconsin, Milwaukee
| | - Mark Cipolle
- Department of Surgery, Lehigh Valley Health Network, Bethlehem, Pennsylvania
| | - Luis Cardenas
- Department of Surgery, Christiana Care Health System, Wilmington, Delaware
| | - Joseph Minei
- Department of Surgery, University of Texas Southwestern, Dallas
| | | | - Jay Doucet
- Department of Surgery, University of California San Diego
| | - Preston R. Miller
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jeffrey Johnson
- Department of Surgery, Henry Ford Hospital, Detroit, Michigan
| | - Kenji Inaba
- Department of Surgery, University of Southern California Los Angeles County
| | - Lillian Kao
- Department of Surgery, University of Texas, Houston
| |
Collapse
|
11
|
Shah R, Patel N, Emin M, Celik Y, Jimenez A, Gao S, Garfinkel J, Wei Y, Jelic S. Statins Restore Endothelial Protection against Complement Activity in Obstructive Sleep Apnea: A Randomized Clinical Trial. Ann Am Thorac Soc 2023; 20:1029-1037. [PMID: 36912897 PMCID: PMC12039953 DOI: 10.1513/annalsats.202209-761oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/13/2023] [Indexed: 03/14/2023] Open
Abstract
Rationale: Increased cardiovascular risk in obstructive sleep apnea (OSA) persists after continuous positive airway pressure (CPAP) and alternative therapies are needed. Impaired endothelial protection against complement is a cholesterol-dependent process that initiates endothelial inflammation in OSA, which increases cardiovascular risk. Objectives: To investigate directly whether lowering cholesterol improves endothelial protection against complement and its proinflammatory effects in OSA. Methods: Newly diagnosed patients with OSA (n = 87) and OSA-free controls (n = 32) participated. Endothelial cells and blood were collected at baseline, after 4 weeks of CPAP therapy, and again after 4 weeks of 10 mg atorvastatin versus placebo using a randomized, double-blind, parallel-group design. Primary outcome was the proportion of a complement inhibitor, CD59, on the endothelial cell plasma membrane in OSA patients after 4 weeks of statins versus placebo. Secondary outcomes were complement deposition on endothelial cells and circulating levels of its downstream proinflammatory factor, angiopoietin-2, after statins versus placebo. Results: Baseline expression of CD59 was lower, whereas complement deposition on endothelial cells and levels of angiopoietin-2 were greater, in patients with OSA compared with controls. CPAP did not affect expression of CD59 or complement deposition on endothelial cells in patients with OSA, regardless of adherence. Compared with placebo, statins increased expression of endothelial complement protector CD59 and lowered complement deposition in patients with OSA. Good CPAP adherence was associated with increased angiopoietin-2 levels, which was reversed by statins. Conclusions: Statins restore endothelial protection against complement and reduce its downstream proinflammatory effects, suggesting a potential approach to reduce residual cardiovascular risk after CPAP in patients with OSA. Clinical trial registered with www.clinicaltrials.gov (NCT03122639).
Collapse
Affiliation(s)
- Riddhi Shah
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | - Memet Emin
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Yeliz Celik
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | - Su Gao
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Jared Garfinkel
- Department of Biostatistics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Ying Wei
- Department of Biostatistics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Sanja Jelic
- Division of Pulmonary, Allergy, and Critical Care Medicine
| |
Collapse
|
12
|
Taje R, Fabbi E, Sorge R, Elia S, Dauri M, Pompeo E. Adjuvant Transthoracic Negative-Pressure Ventilation in Nonintubated Thoracoscopic Surgery. J Clin Med 2023; 12:4234. [PMID: 37445268 DOI: 10.3390/jcm12134234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND To minimize the risks of barotrauma during nonintubated thoracoscopic-surgery under spontaneous ventilation, we investigated an adjuvant transthoracic negative-pressure ventilation (NPV) method in patients operated on due to severe emphysema or interstitial lung disease. METHODS In this retrospective study, NPV was employed for temporary low oxygen saturation and to achieve end-operative lung re-expansion during nonintubated lung volume reduction surgery (LVRS) for severe emphysema (30 patients, LVRS group) and in the nonintubated wedge resection of undetermined interstitial lung disease (30 patients, wedge-group). The results were compared following 1:1 propensity score matching with equivalent control groups undergoing the same procedures under spontaneous ventilation, with adjuvant positive-pressure ventilation (PPV) performed on-demand through the laryngeal mask. The primary outcomes were changes (preoperative-postoperative value) in the arterial oxygen tension/fraction of the inspired oxygen ratio (ΔPO2/FiO2;) and ΔPaCO2, and lung expansion completeness on a 24 h postoperative chest radiograph (CXR-score, 2: full or 1: incomplete). RESULTS Intergroup comparisons (NPV vs. PPV) showed no differences in demographic and pulmonary function. NPV could be accomplished in all instances with no conversion to general anesthesia with intubation. In the LVRS group, NPV improved ΔPO2/FiO2 (9.3 ± 16 vs. 25.3 ± 30.5, p = 0.027) and ΔPaCO2 (-2.2 ± 3.15 mmHg vs. 0.03 ± 0.18 mmHg, p = 0.008) with no difference in the CXR score, whereas in the wedge group, both ΔPO2/FiO2 (3.1 ± 8.2 vs. 9.9 ± 13.8, p = 0.035) and the CXR score (1.9 ± 0.3 vs. 1.6 ± 0.5, p = 0.04) were better in the NPV subgroup. There was no mortality and no intergroup difference in morbidity. CONCLUSIONS In this retrospective study, NITS with adjuvant transthoracic NPV resulted in better 24 h oxygenation measures than PPV in both the LVRS and wedge groups, and in better lung expansion according to the CXR score in the wedge group.
Collapse
Affiliation(s)
- Riccardo Taje
- Department of Thoracic Surgery, Policlinico Tor Vergata University, V.le Oxford 81, 00133 Rome, Italy
| | - Eleonora Fabbi
- Department of Anesthesia and Intensive Care, Policlinico Tor Vergata University, V.le Oxford 81, 00133 Rome, Italy
| | - Roberto Sorge
- Department of Biostatistics, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Stefano Elia
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100 Campobasso, Italy
| | - Mario Dauri
- Department of Anesthesia and Intensive Care, Policlinico Tor Vergata University, V.le Oxford 81, 00133 Rome, Italy
| | - Eugenio Pompeo
- Department of Thoracic Surgery, Policlinico Tor Vergata University, V.le Oxford 81, 00133 Rome, Italy
| |
Collapse
|
13
|
Knudsen L, Hummel B, Wrede C, Zimmermann R, Perlman CE, Smith BJ. Acinar micromechanics in health and lung injury: what we have learned from quantitative morphology. Front Physiol 2023; 14:1142221. [PMID: 37025383 PMCID: PMC10070844 DOI: 10.3389/fphys.2023.1142221] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Within the pulmonary acini ventilation and blood perfusion are brought together on a huge surface area separated by a very thin blood-gas barrier of tissue components to allow efficient gas exchange. During ventilation pulmonary acini are cyclically subjected to deformations which become manifest in changes of the dimensions of both alveolar and ductal airspaces as well as the interalveolar septa, composed of a dense capillary network and the delicate tissue layer forming the blood-gas barrier. These ventilation-related changes are referred to as micromechanics. In lung diseases, abnormalities in acinar micromechanics can be linked with injurious stresses and strains acting on the blood-gas barrier. The mechanisms by which interalveolar septa and the blood-gas barrier adapt to an increase in alveolar volume have been suggested to include unfolding, stretching, or changes in shape other than stretching and unfolding. Folding results in the formation of pleats in which alveolar epithelium is not exposed to air and parts of the blood-gas barrier are folded on each other. The opening of a collapsed alveolus (recruitment) can be considered as an extreme variant of septal wall unfolding. Alveolar recruitment can be detected with imaging techniques which achieve light microscopic resolution. Unfolding of pleats and stretching of the blood-gas barrier, however, require electron microscopic resolution to identify the basement membrane. While stretching results in an increase of the area of the basement membrane, unfolding of pleats and shape changes do not. Real time visualization of these processes, however, is currently not possible. In this review we provide an overview of septal wall micromechanics with focus on unfolding/folding as well as stretching. At the same time we provide a state-of-the-art design-based stereology methodology to quantify microarchitecture of alveoli and interalveolar septa based on different imaging techniques and design-based stereology.
Collapse
Affiliation(s)
- Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Benjamin Hummel
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Richard Zimmermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Carrie E Perlman
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Bradford J Smith
- Department of Bioengineering, College of Engineering Design and Computing, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatric Pulmonary and Sleep Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
14
|
Abstract
As the world emerges from the COVID-19 pandemic, clinicians and researchers across the world are trying to understand the sequelae in patients recovered from COVID-19 infection. In this article, the authors review post-acute sequelae of SARS-COV-2, interstitial lung disease, and other lung sequelae in patients recovering from COVID-19 infection.
Collapse
|
15
|
Mei S, Tang R, Hu Y, Feng J, Xu Q, Zhou Y, Zhong H, Gao Y, He Z, Xing S. Integrin β3 Mediates Sepsis and Mechanical Ventilation-Associated Pulmonary Fibrosis Through Glycometabolic Reprogramming. J Transl Med 2023; 103:100021. [PMID: 36748196 DOI: 10.1016/j.labinv.2022.100021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/18/2022] [Accepted: 10/17/2022] [Indexed: 01/18/2023] Open
Abstract
Mechanical ventilation (MV) has become a clinical first-line treatment option for patients with respiratory failure. However, it was unclear whether MV further aggravates the process of sepsis-associated pulmonary fibrosis and eventually leads to sepsis and mechanical ventilation-associated pulmonary fibrosis (S-MVPF). This study aimed to explore the mechanism of S-MVPF concerning integrin β3 activation in glycometabolic reprogramming of lung fibroblasts. We found that MV exacerbated sepsis-associated pulmonary fibrosis induced by lipopolysaccharide, which was accompanied by proliferation of lung fibroblasts, increased deposition of collagen in lung tissue, and increased procollagen type I carboxy-terminal propeptide in the bronchoalveolar lavage fluid. A large number of integrin β3- and pyruvate kinase M2-positive fibroblasts were detected in lung tissue after stimulation with lipopolysaccharide and MV, with an increase in lactate dehydrogenase A expression and lactate levels. S-MVPF was primarily attenuated in integrin β3-knockout mice, which also resulted in a decrease in the levels of pyruvate kinase M2, lactate dehydrogenase A, and lactate. In conclusion, MV aggravated sepsis-associated pulmonary fibrosis, with glycometabolic reprogramming mediated by integrin β3 activation. Thus, integrin β3-mediated glycometabolic reprogramming might be a potential therapeutic target for S-MVPF.
Collapse
Affiliation(s)
- Shuya Mei
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ri Tang
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yue Hu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jinhua Feng
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiaoyi Xu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yang Zhou
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Han Zhong
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhengyu He
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Shunpeng Xing
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
16
|
Jyothula SSK, Peters A, Liang Y, Bi W, Shivshankar P, Yau S, Garcha PS, Yuan X, Akkanti B, Collum S, Wareing N, Thandavarayan RA, Poli de Frias F, Rosas IO, Zhao B, Buja LM, Eltzschig HK, Huang HJ, Karmouty-Quintana H. Fulminant lung fibrosis in non-resolvable COVID-19 requiring transplantation. EBioMedicine 2022; 86:104351. [PMID: 36375315 PMCID: PMC9667270 DOI: 10.1016/j.ebiom.2022.104351] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/04/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Coronavirus Disease 2019 (COVID-19) can lead to the development of acute respiratory distress syndrome (ARDS). In some patients with non-resolvable (NR) COVID-19, lung injury can progress rapidly to the point that lung transplantation is the only viable option for survival. This fatal progression of lung injury involves a rapid fibroproliferative response and takes on average 15 weeks from initial symptom presentation. Little is known about the mechanisms that lead to this fulminant lung fibrosis (FLF) in NR-COVID-19. METHODS Using a pre-designed unbiased PCR array for fibrotic markers, we analyzed the fibrotic signature in a subset of NR-COVID-19 lungs. We compared the expression profile against control lungs (donor lungs discarded for transplantation), and explanted tissue from patients with idiopathic pulmonary fibrosis (IPF). Subsequently, RT-qPCR, Western blots and immunohistochemistry were conducted to validate and localize selected pro-fibrotic targets. A total of 23 NR-COVID-19 lungs were used for RT-qPCR validation. FINDINGS We revealed a unique fibrotic gene signature in NR-COVID-19 that is dominated by a hyper-expression of pro-fibrotic genes, including collagens and periostin. Our results also show a significantly increased expression of Collagen Triple Helix Repeat Containing 1(CTHRC1) which co-localized in areas rich in alpha smooth muscle expression, denoting myofibroblasts. We also show a significant increase in cytokeratin (KRT) 5 and 8 expressing cells adjacent to fibroblastic areas and in areas of apparent epithelial bronchiolization. INTERPRETATION Our studies may provide insights into potential cellular mechanisms that lead to a fulminant presentation of lung fibrosis in NR-COVID-19. FUNDING National Institute of Health (NIH) Grants R01HL154720, R01DK122796, R01DK109574, R01HL133900, and Department of Defense (DoD) Grant W81XWH2110032 to H.K.E. NIH Grants: R01HL138510 and R01HL157100, DoD Grant W81XWH-19-1-0007, and American Heart Association Grant: 18IPA34170220 to H.K.-Q. American Heart Association: 19CDA34660279, American Lung Association: CA-622265, Parker B. Francis Fellowship, 1UL1TR003167-01 and The Center for Clinical and Translational Sciences, McGovern Medical School to X.Y.
Collapse
Affiliation(s)
- Soma S K Jyothula
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Advanced Cardiopulmonary Therapies and Transplantation at UTHealth/McGovern Medical School, Houston, TX, USA
| | - Andrew Peters
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yafen Liang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Weizhen Bi
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pooja Shivshankar
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Simon Yau
- Houston Methodist DeBakey Transplant Center, Houston Methodist Hospital, Houston, TX, USA
| | - Puneet S Garcha
- Department of Medicine, Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bindu Akkanti
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Advanced Cardiopulmonary Therapies and Transplantation at UTHealth/McGovern Medical School, Houston, TX, USA
| | - Scott Collum
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nancy Wareing
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Fernando Poli de Frias
- Department of Medicine, Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ivan O Rosas
- Department of Medicine, Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Bihong Zhao
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - L Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Howard J Huang
- Houston Methodist DeBakey Transplant Center, Houston Methodist Hospital, Houston, TX, USA
| | - Harry Karmouty-Quintana
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Advanced Cardiopulmonary Therapies and Transplantation at UTHealth/McGovern Medical School, Houston, TX, USA; UTHealth Pulmonary Center of Excellence, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
17
|
Miao Y, Li X, Yang Y, Zhang J, Chen L, Zhang Q, Li W, Liu Y, Zhang X, Gu R, Yang C. Entrectinib ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting TGF-β1 signaling pathway. Int Immunopharmacol 2022; 113:109427. [DOI: 10.1016/j.intimp.2022.109427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
|
18
|
Extracellular Vesicles Derived from Mesenchymal Stem Cells: A Potential Biodrug for Acute Respiratory Distress Syndrome Treatment. BioDrugs 2022; 36:701-715. [PMID: 36087245 PMCID: PMC9463673 DOI: 10.1007/s40259-022-00555-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 12/15/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe respiratory disease associated with high morbidity and mortality in the clinic. In the face of limited treatment options for ARDS, extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have recently shown promise. They regulate levels of growth factors, cytokines, and other internal therapeutic molecules. The possible therapeutic mechanisms of MSC-EVs include anti-inflammatory, cell injury repair, alveolar fluid clearance, and microbe clearance. The potent therapeutic ability and biocompatibility of MSC-EVs have enabled them as an alternative option to ameliorate ARDS. In this review, recent advances, therapeutic mechanisms, advantages and limitations, as well as improvements of using MSC-EVs to treat ARDS are summarized. This review is expected to provide a brief view of the potential applications of MSC-EVs as novel biodrugs to treat ARDS.
Collapse
|
19
|
Shakil F, Snijder J, Salvatore MM. Why is UIP peripheral? Expert Rev Respir Med 2022; 16:907-915. [PMID: 36066423 DOI: 10.1080/17476348.2022.2119131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The radiology pattern associated with IPF is called UIP. It is unique because unlike any other form of fibrosis it is peripheral in its distribution. We investigated the peripheral nature of UIP and why it was a key feature of IPF the deadliest of the ILDS. AREAS COVERED It is not enough to say that UIP is peripheral but instead as scientists we must ask ourselves why it is peripheral. This review dives into the published hypothesis that includes vascular insult, tensile forces, microaspiration, and inflammation and looks at the pros and cons for each argument, and ultimately comes to its own conclusion. PubMed searches using the below keywords were used to identify papers that described pathogenesis of IPF with regard to a particular theory. EXPERT OPINION In this paper, we will review four ideas that support why UIP is peripheral and propose the most likely explanation given what is currently known about the pathophysiology of IPF.
Collapse
Affiliation(s)
- Faariah Shakil
- Department of Radiology, Columbia University Irving Medical Center, New York, USA
| | - Juan Snijder
- Department of Radiology, Columbia University Irving Medical Center, New York, USA
| | - Mary M Salvatore
- Department of Radiology, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
20
|
Mattson CL, Okamura K, Hume PS, Smith BJ. Spatiotemporal distribution of cellular injury and leukocytes during the progression of ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2022; 323:L281-L296. [PMID: 35700201 PMCID: PMC9423727 DOI: 10.1152/ajplung.00207.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2022] [Accepted: 06/12/2022] [Indexed: 11/22/2022] Open
Abstract
Supportive mechanical ventilation is a necessary lifesaving treatment for acute respiratory distress syndrome (ARDS). This intervention often leads to injury exacerbation by ventilator-induced lung injury (VILI). Patterns of injury in ARDS and VILI are recognized to be heterogeneous; however, quantification of these injury distributions remains incomplete. Developing a more detailed understanding of injury heterogeneity, particularly how it varies in space and time, can help elucidate the mechanisms of VILI pathogenesis. Ultimately, this knowledge can be used to develop protective ventilation strategies that slow disease progression. To expand existing knowledge of VILI heterogeneity, we document the spatial evolution of cellular injury distribution and leukocyte infiltration, on the micro- and macroscales, during protective and injurious mechanical ventilation. We ventilated naïve mice using either high inspiratory pressure and zero positive end-expiratory pressure ventilation or low tidal volume with positive end-expiratory pressure. Distributions of cellular injury, identified with propidium iodide staining, were microscopically analyzed at three levels of injury severity. Cellular injury initiated in diffuse, quasi-random patterns, and progressed through expansion of high-density regions of injured cells termed "injury clusters." The density profile of the expanding injury regions suggests that stress shielding occurs, protecting the already injured regions from further damage. Spatial distribution of leukocytes did not correlate with that of cellular injury or ventilation-induced changes in lung function. These results suggest that protective ventilation protocols should protect the interface between healthy and injured regions to stymie injury propagation.
Collapse
Affiliation(s)
- Courtney L Mattson
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Kayo Okamura
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Patrick S Hume
- Department of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colorado
- Department of Pediatrics, Pulmonary and Sleep Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Bradford J Smith
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, Pulmonary and Sleep Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
21
|
Poole J, Ray D. The Role of Circadian Clock Genes in Critical Illness: The Potential Role of Translational Clock Gene Therapies for Targeting Inflammation, Mitochondrial Function, and Muscle Mass in Intensive Care. J Biol Rhythms 2022; 37:385-402. [PMID: 35880253 PMCID: PMC9326790 DOI: 10.1177/07487304221092727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Earth's 24-h planetary rotation, with predictable light and heat cycles, has driven profound evolutionary adaptation, with prominent impacts on physiological mechanisms important for surviving critical illness. Pathways of interest include inflammation, mitochondrial function, energy metabolism, hypoxic signaling, apoptosis, and defenses against reactive oxygen species. Regulation of these by the cellular circadian clock (BMAL-1 and its network) has an important influence on pulmonary inflammation; ventilator-associated lung injury; septic shock; brain injury, including vasospasm; and overall mortality in both animals and humans. Whether it is cytokines, the inflammasome, or mitochondrial biogenesis, circadian medicine represents exciting opportunities for translational therapy in intensive care, which is currently lacking. Circadian medicine also represents a link to metabolic determinants of outcome, such as diabetes and cardiovascular disease. More than ever, we are appreciating the problem of circadian desynchrony in intensive care. This review explores the rationale and evidence for the importance of the circadian clock in surviving critical illness.
Collapse
Affiliation(s)
- Joanna Poole
- Anaesthetics and Critical Care, Gloucestershire Royal Hospital, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
| | - David Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Gottlieb DJ, Lederer DJ, Kim JS, Tracy RP, Gao S, Redline S, Jelic S. Effect of positive airway pressure therapy of obstructive sleep apnea on circulating Angiopoietin-2. Sleep Med 2022; 96:119-121. [PMID: 35636149 PMCID: PMC9813950 DOI: 10.1016/j.sleep.2022.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) has been identified as a possible contributor to interstitial lung disease. While positive airway pressure (PAP) is effective therapy for OSA, it causes large increases in lung volumes during the night that are potentially deleterious, analogous to ventilator-induced lung injury, although this has not been previously studied. The goal of this study was to assess the impact of PAP therapy on four biomarkers of alveolar epithelial and endothelial injury and extracellular matrix remodeling in patients with OSA. METHODS In 82 patients with moderate to severe OSA who were adherent to PAP therapy, surfactant protein D, osteopontin, angiopoietin-2, and matrix metalloprotease-7 were measured by ELISA in serum samples collected before and 3- to 6-months after initiation of PAP therapy. RESULTS An increase in angiopoietin-2 level of 0.28 ng/mL following PAP therapy was observed (p = 0.007). This finding was replicated in an independent sample of OSA patients. No significant change was detected in surfactant protein D, osteopontin, or matrix metalloprotease-7. CONCLUSIONS This finding raises concern for a possible adverse impact of PAP therapy on vascular endothelium.
Collapse
Affiliation(s)
- Daniel J. Gottlieb
- Medical Service, VA Boston Healthcare System, Boston, MA, USA,Brigham & Women’s Hospital, Boston, MA, USA,Corresponding author. Medical Service, VA Boston Healthcare System, Boston, MA, USA. (D.J. Gottlieb)
| | | | - John S. Kim
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Russell P. Tracy
- University of Vermont Larner College of Medicine, Colchester, VT, USA
| | - Su Gao
- Columbia University Medical Center, New York, NY, USA
| | | | - Sanja Jelic
- Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
23
|
Galdino de Souza D, Santos DS, Simon KS, Morais JAV, Coelho LC, Pacheco TJA, Azevedo RB, Bocca AL, Melo-Silva CA, Longo JPF. Fish Oil Nanoemulsion Supplementation Attenuates Bleomycin-Induced Pulmonary Fibrosis BALB/c Mice. NANOMATERIALS 2022; 12:nano12101683. [PMID: 35630905 PMCID: PMC9145453 DOI: 10.3390/nano12101683] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
Diets rich in omega-3 or -6 fatty acids will produce different profiles for cell membranes phospholipid constitutions. Omegas 3 and 6 are part of the diet and can modulate the inflammatory profile. We evaluated the effects of the oral absorption of fish oil, when associated with a lipid nanoemulsion in an experimental pulmonary inflammatory model. Pulmonary fibrosis is a disease associated with excessive extracellular matrix deposition. We determined to investigate the morphophysiological mechanisms in mice that were pretreated after induction with bleomycin (BLM). The pretreatment was for 21 days with saline solution, sunflower oil (SO), fish oil (FO), and fish oil nanoemulsion (NEW3). The animals received a daily dose of 50 mg/Kg of docosahexaenoic acid DHA and 10 mg/Kg eicosapentaenoic (EPA) (100 mg/Kg), represented by a daily dose of 40 µL of NEW3. The blank group was treated with the same amount daily (40 µL) during the 21 days of pretreatment. The animals were treated with SO and FO, 100 mg/Kg (containing 58 mg/Kg of polyunsaturated fats/higher% linoleic acid) and 100 mg/Kg (50 mg/Kg of DHA and 10 mg/Kg EPA), respectively. A single dose of 5 mg/mL (50 μL) bleomycin sulfate, by the intratracheal surgical method in BALB/cAnNTac (BALB/c). NEW3 significantly reduced fibrotic progression, which can be evidenced by the protection from loss of body mass, increase in respiratory incursions per minute, decreased spacing of alveolar septa, decreased severity of fibrosis, and changes in the respiratory system. NEW3 attenuated the inflammatory changes developed in the experimental model of pulmonary fibrosis, while group SO showed a significant increase in inflammatory changes. This concluded that the presented results demonstrated that is possible to positively modulate the immune and inflamamtory response to an external agressor, by changing the nutitional intake of specific fatty acids, such as omega-3 placed in fish oil. Moreover, these benefits can be improved by the nanoencapsulation of fish oil in lipid nanoemulsions.
Collapse
Affiliation(s)
- Danielle Galdino de Souza
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (D.G.d.S.); (D.S.S.); (J.A.V.M.); (T.J.A.P.); (R.B.A.)
| | - Débora Silva Santos
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (D.G.d.S.); (D.S.S.); (J.A.V.M.); (T.J.A.P.); (R.B.A.)
| | - Karina Smidt Simon
- Applied Immunology Laboratory, Cell Biology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (K.S.S.); (L.C.C.); (A.L.B.)
| | - José Athayde Vasconcelos Morais
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (D.G.d.S.); (D.S.S.); (J.A.V.M.); (T.J.A.P.); (R.B.A.)
| | - Luísa Coutinho Coelho
- Applied Immunology Laboratory, Cell Biology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (K.S.S.); (L.C.C.); (A.L.B.)
| | - Thyago José Arruda Pacheco
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (D.G.d.S.); (D.S.S.); (J.A.V.M.); (T.J.A.P.); (R.B.A.)
| | - Ricardo Bentes Azevedo
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (D.G.d.S.); (D.S.S.); (J.A.V.M.); (T.J.A.P.); (R.B.A.)
| | - Anamélia Lorenzetti Bocca
- Applied Immunology Laboratory, Cell Biology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (K.S.S.); (L.C.C.); (A.L.B.)
| | - César Augusto Melo-Silva
- Respiratory Physiology Laboratory, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil;
| | - João Paulo Figueiró Longo
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (D.G.d.S.); (D.S.S.); (J.A.V.M.); (T.J.A.P.); (R.B.A.)
- Correspondence:
| |
Collapse
|
24
|
Touman A, Kahyat M, Bulkhi A, Khairo M, Alyamani W, Aldobyany AM, Ghaleb N, Ashi H, Alsobaie M, Alqurashi E. Post COVID-19 Chronic Parenchymal Lung Changes. Cureus 2022; 14:e25197. [PMID: 35747023 PMCID: PMC9209776 DOI: 10.7759/cureus.25197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Persistent parenchymal lung changes are an important long-term sequela of COVID-19. There are limited data on this COVID-19 infection sequela characteristics and trajectories. This study aims to evaluate persistent COVID-19-related parenchymal lung changes 10 weeks after acute viral pneumonia and to identify associated risk factors. METHODS This is a retrospective case-control observational study involving 38 COVID-19 confirmed cases using nasopharyngeal swab reverse transcriptase-polymerase chain reaction (RT-PCR) at King Abdullah Medical City (KAMC) Hospital, Makkah. Patients were recruited from the post-COVID-19 interstitial lung disease (ILD) clinic. Referral to this clinic was based on the pulmonology consultant's assessment of hospitalized patients suspected of developing COVID-19-related ILD changes during hospitalization. RESULTS Thirty-eight patients with parenchymal lung changes were evaluated at the ILD clinic. Nineteen patients who had persistent parenchymal changes 10 weeks after the acute illness (group 1) were compared with 19 control patients who had accelerated clinical and/or radiological improvement (group 2). Group 1 was found to have the more severe clinical and radiological disease, with a higher peak value of inflammatory biomarkers. Two risk factors were identified, neutrophil-lymphocyte ratio (NLR) > 3.13 at admission increases the odds ratio (OR) of chronic parenchymal changes by 6.42 and 5.92 in the univariate and multivariate analyses, respectively. Invasive mechanical ventilation had a more profound effect with ORs of 13.09 and 44.5 in the univariate and multivariate analyses, respectively. CONCLUSION Herein, we found that only receiving invasive mechanical ventilation and having NLR >3.13 at admission were strong risk factors for persistent parenchymal lung changes. Neither the clinical severity of the acute illness nor the radiological one is found to predict this outcome. None of the medications received during the acute illness were found to alter the risk for this post-COVID-19 infection sequelae.
Collapse
Affiliation(s)
| | - Mohammed Kahyat
- Department of Pulmonology, King Abdullah Medical City, Makkah, SAU
| | - Adeeb Bulkhi
- Department of Internal Medicine, Umm Al-Qura University, Makkah, SAU
| | - Mutaz Khairo
- Department of Radiology, King Abdullah Medical City, Makkah, SAU
| | - Wael Alyamani
- Department of Radiology, King Abdullah Medical City, Makkah, SAU
| | | | - Nabil Ghaleb
- Department of Pulmonology, King Abdullah Medical City, Makkah, SAU
| | - Hadeel Ashi
- Department of Pulmonology, King Abdullah Medical City, Makkah, SAU
| | | | - Eid Alqurashi
- Department of Pulmonology, King Abdullah Medical City, Makkah, SAU
| |
Collapse
|
25
|
Swarnakar R, Garje Y, Markandeywar N, Mehta S. Exploring the common pathophysiological links between IPF, SSc-ILD and post-COVID fibrosis. Lung India 2022; 39:279-285. [PMID: 35488687 PMCID: PMC9200204 DOI: 10.4103/lungindia.lungindia_89_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 11/04/2022] Open
Abstract
In coronavirus disease 2019 (COVID-19) patients, dysregulated release of matrix metalloproteinases occurs during the inflammatory phase of acute respiratory distress syndrome (ARDS), resulting in epithelial and endothelial injury with excessive fibroproliferation. COVID-19 resembles idiopathic pulmonary fibrosis (IPF) in several aspects. The fibrotic response in IPF is driven primarily by an abnormally activated alveolar epithelial cells (AECs) which release cytokines to activate fibroblasts. Endoplasmic reticulum (ER) stress is postulated to be one of the early triggers in both diseases. Systemic sclerosis (SSc) is a heterogeneous autoimmune rare connective tissue characterised by fibrosis of the skin and internal organs. Interstitial lung disease (ILD) is a common complication and the leading cause of SSc-related death. Several corollaries have been discussed in this paper for new drug development based on the pathogenic events in these three disorders associated with pulmonary fibrosis. A careful consideration of the similarities and differences in the pathogenic events associated with the development of lung fibrosis in post-COVID patients, IPF patients and patients with SSc-ILD may pave the way for precision medicine. Several questions need to be answered through research, which include the potential role of antifibrotics in managing IPF, SSc-ILD and post-COVID fibrosis. Many trials that are underway will ultimately shed light on their potency and place in therapy.
Collapse
Affiliation(s)
- Rajesh Swarnakar
- Department of Respiratory, Critical Care, Sleep Medicine and Interventional Pulmonology, Getwell Hospital and Research Institute, Dhantoli, Maharashtra, India
| | - Yogesh Garje
- Medical Affairs, Sun Pharma Industries Ltd., India
| | | | - Suyog Mehta
- Medical Affairs, Sun Pharma Laboratories Ltd., India
| |
Collapse
|
26
|
Li HH, Wang CW, Chang CH, Huang CC, Hsu HS, Chiu LC. Relationship between Mechanical Ventilation and Histological Fibrosis in Patients with Acute Respiratory Distress Syndrome Undergoing Open Lung Biopsy. J Pers Med 2022; 12:jpm12030474. [PMID: 35330473 PMCID: PMC8954834 DOI: 10.3390/jpm12030474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Mechanical ventilation brings the risk of ventilator-induced lung injury, which can lead to pulmonary fibrosis and prolonged mechanical ventilation. Methods: A retrospective analysis of patients with acute respiratory distress syndrome (ARDS) who received open lung biopsy between March 2006 and December 2019. Results: A total of 68 ARDS patients receiving open lung biopsy with diffuse alveolar damage (DAD; the hallmark pathology of ARDS) were analyzed and stratified into non-fibrosis (n = 56) and fibrosis groups (n = 12). The duration of ventilator usage and time spent in the intensive care unit and hospital stay were all significantly higher in the fibrosis group. Hospital mortality was higher in the fibrosis than in the non-fibrosis group (67% vs. 57%, p = 0.748). A multivariable logistic regression model demonstrated that mechanical power at ARDS diagnosis and ARDS duration before biopsy were independently associated with histological fibrosis at open lung biopsy (odds ratio 1.493 (95% CI 1.014–2.200), p = 0.042; odds ratio 1.160 (95% CI 1.052–1.278), p = 0.003, respectively). Conclusions: Our findings indicate that prompt action aimed at staving off injurious mechanical stretching of lung parenchyma and subsequent progression to fibrosis may have a positive effect on clinical outcomes.
Collapse
Affiliation(s)
- Hsin-Hsien Li
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (H.-H.L.); (H.-S.H.)
- Department of Respiratory Therapy, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan;
| | - Chih-Wei Wang
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
| | - Chih-Hao Chang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
- Department of Thoracic Medicine, New Taipei Municipal TuCheng Hospital and Chang Gung University, Taoyuan 33302, Taiwan
| | - Chung-Chi Huang
- Department of Respiratory Therapy, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan;
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
| | - Han-Shui Hsu
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (H.-H.L.); (H.-S.H.)
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Li-Chung Chiu
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 8467)
| |
Collapse
|
27
|
Michalski JE, Kurche JS, Schwartz DA. From ARDS to pulmonary fibrosis: the next phase of the COVID-19 pandemic? Transl Res 2022; 241:13-24. [PMID: 34547499 PMCID: PMC8452088 DOI: 10.1016/j.trsl.2021.09.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023]
Abstract
While the coronavirus disease 19 (COVID-19) pandemic has transformed the medical and scientific communites since it was first reported in late 2019, we are only beginning to understand the chronic health burdens associated with this disease. Although COVID-19 is a multi-systemic disease, the lungs are the primary source of infection and injury, resulting in pneumonia and, in severe cases, acute respiratory distress syndrome (ARDS). Given that pulmonary fibrosis is a well-recognized sequela of ARDS, many have questioned whether COVID-19 survivors will face long-term pulmonary consequences. This review is aimed at integrating our understanding of the pathophysiologic mechanisms underlying fibroproliferative ARDS with our current knowledge of the pulmonary consequences of COVID-19 disease.
Collapse
Affiliation(s)
- Jacob E Michalski
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Jonathan S Kurche
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; Medicine Service, Pulmonary Section, Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - David A Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
28
|
Scharm SC, Schaefer-Prokop C, Willmann M, Vogel-Claussen J, Knudsen L, Jonigk D, Fuge J, Welte T, Wacker F, Prasse A, Shin HO. Increased regional ventilation as early imaging marker for future disease progression of interstitial lung disease: a feasibility study. Eur Radiol 2022; 32:6046-6057. [PMID: 35357537 PMCID: PMC9381456 DOI: 10.1007/s00330-022-08702-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Idiopathic pulmonary fibrosis (IPF) is a disease with a poor prognosis and a highly variable course. Pathologically increased ventilation-accessible by functional CT-is discussed as a potential predecessor of lung fibrosis. The purpose of this feasibility study was to investigate whether increased regional ventilation at baseline CT and morphological changes in the follow-up CT suggestive for fibrosis indeed occur in spatial correspondence. METHODS In this retrospective study, CT scans were performed at two time points between September 2016 and November 2020. Baseline ventilation was divided into four categories ranging from low, normal to moderately, and severely increased (C1-C4). Correlation between baseline ventilation and volume and density change at follow-up was investigated in corresponding voxels. The significance of the difference of density and volume change per ventilation category was assessed using paired t-tests with a significance level of p ≤ 0.05. The analysis was performed separately for normal (NAA) and high attenuation areas (HAA). RESULTS The study group consisted of 41 patients (73 ± 10 years, 36 men). In both NAA and HAA, significant increases of density and loss of volume were seen in areas of severely increased ventilation (C4) at baseline compared to areas of normal ventilation (C2, p < 0.001). In HAA, morphological changes were more heterogeneous compared to NAA. CONCLUSION Functional CT assessing the extent and distribution of lung parenchyma with pathologically increased ventilation may serve as an imaging marker to prospectively identify lung parenchyma at risk for developing fibrosis. KEY POINTS • Voxelwise correlation of serial CT scans suggests spatial correspondence between increased ventilation at baseline and structural changes at follow-up. • Regional assessment of pathologically increased ventilation at baseline has the potential to prospectively identify tissue at risk for developing fibrosis. • Presence and extent of pathologically increased ventilation may serve as an early imaging marker of disease activity.
Collapse
Affiliation(s)
- Sarah C. Scharm
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Cornelia Schaefer-Prokop
- Department of Radiology, Radboud University, Nijmegen, The Netherlands ,Department of Radiology, Meander Medical Center, Amersfoort, The Netherlands
| | - Moritz Willmann
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Jens Vogel-Claussen
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany ,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Lars Knudsen
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany ,Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany ,Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Jan Fuge
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany ,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany ,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Frank Wacker
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany ,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Antje Prasse
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany ,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Hoen-oh Shin
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany ,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| |
Collapse
|
29
|
Novak C, Ballinger MN, Ghadiali S. Mechanobiology of Pulmonary Diseases: A Review of Engineering Tools to Understand Lung Mechanotransduction. J Biomech Eng 2021; 143:110801. [PMID: 33973005 PMCID: PMC8299813 DOI: 10.1115/1.4051118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/01/2021] [Indexed: 12/17/2022]
Abstract
Cells within the lung micro-environment are continuously subjected to dynamic mechanical stimuli which are converted into biochemical signaling events in a process known as mechanotransduction. In pulmonary diseases, the abrogated mechanical conditions modify the homeostatic signaling which influences cellular phenotype and disease progression. The use of in vitro models has significantly expanded our understanding of lung mechanotransduction mechanisms. However, our ability to match complex facets of the lung including three-dimensionality, multicellular interactions, and multiple simultaneous forces is limited and it has proven difficult to replicate and control these factors in vitro. The goal of this review is to (a) outline the anatomy of the pulmonary system and the mechanical stimuli that reside therein, (b) describe how disease impacts the mechanical micro-environment of the lung, and (c) summarize how existing in vitro models have contributed to our current understanding of pulmonary mechanotransduction. We also highlight critical needs in the pulmonary mechanotransduction field with an emphasis on next-generation devices that can simulate the complex mechanical and cellular environment of the lung. This review provides a comprehensive basis for understanding the current state of knowledge in pulmonary mechanotransduction and identifying the areas for future research.
Collapse
Affiliation(s)
- Caymen Novak
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, 473 West 12th Avenue, Columbus, OH 43210
| | - Megan N. Ballinger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, 473 West 12th Avenue, Columbus, OH 43210
| | - Samir Ghadiali
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, 473 West 12th Avenue, Columbus, OH 43210; Department of Biomedical Engineering, The Ohio State University, 2124N Fontana Labs, 140 West 19th Avenue, Columbus, OH 43210
| |
Collapse
|
30
|
Albert RK. Constant Tidal Volume Ventilation and Surfactant Dysfunction: An Overlooked Cause of Ventilator-Induced Lung Injury. Am J Respir Crit Care Med 2021; 205:152-160. [PMID: 34699343 DOI: 10.1164/rccm.202107-1690cp] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is currently ascribed to volutrauma and/or atelectrauma but the effect of constant tidal volume ventilation (CVTV) has received little attention. This Perspective summarizes the literature documenting that CVTV causes VILI and reviews the mechanisms by which it occurs. Surfactant is continuously inactivated, depleted, displaced or desorbed as a function of the duration of ventilation, the tidal volume, the level of PEEP and possibly the respiratory rate. Accordingly, surfactant must be continuously replenished and secretion primarily depends on intermittent delivery of large ventilatory excursions. The surfactant abnormalities resulting from CVTV result in atelectasis and VILI. While surfactant secretion is reduced by the absence of intermittent deep breaths continuous administration of large tidal volumes depletes surfactant and impairs subsequent secretion. Low or normal lung volumes result in desorption of surfactant. PEEP can be protective by reducing surface film collapse and subsequent film rupture on re-expansion, and/or by reducing surfactant displacement into the airways, but PEEP can also down-regulate surfactant release. Conclusions: The effect of CVTV on surfactant is complex. If attention is not paid to facilitating surfactant secretion and limiting its inactivation, depletion, desorption or displacement surface tension will increase and atelectasis and VILI will occur.
Collapse
Affiliation(s)
- Richard K Albert
- University of Colorado Denver School of Medicine, 12225, Aurora, Colorado, United States;
| |
Collapse
|
31
|
Linking Fibrotic Remodeling and Ultrastructural Alterations of Alveolar Epithelial Cells after Deletion of Nedd4-2. Int J Mol Sci 2021; 22:ijms22147607. [PMID: 34299227 PMCID: PMC8306112 DOI: 10.3390/ijms22147607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/24/2022] Open
Abstract
Our previous study showed that in adult mice, conditional Nedd4-2-deficiency in club and alveolar epithelial type II (AE2) cells results in impaired mucociliary clearance, accumulation of Muc5b and progressive, terminal pulmonary fibrosis within 16 weeks. In the present study, we investigated ultrastructural alterations of the alveolar epithelium in relation to interstitial remodeling in alveolar septa as a function of disease progression. Two, eight and twelve weeks after induction of Nedd4-2 knockout, lungs were fixed and subjected to design-based stereological investigation at the light and electron microscopic level. Quantitative data did not show any abnormalities until 8 weeks compared to controls. At 12 weeks, however, volume of septal wall tissue increased while volume of acinar airspace and alveolar surface area significantly decreased. Volume and surface area of alveolar epithelial type I cells were reduced, which could not be compensated by a corresponding increase of AE2 cells. The volume of collagen fibrils in septal walls increased and was linked with an increase in blood–gas barrier thickness. A high correlation between parameters reflecting interstitial remodeling and abnormal AE2 cell ultrastructure could be established. Taken together, abnormal regeneration of the alveolar epithelium is correlated with interstitial septal wall remodeling.
Collapse
|
32
|
Xu Y, Koya R, Ask K, Zhao R. Engineered microenvironment for the study of myofibroblast mechanobiology. Wound Repair Regen 2021; 29:588-596. [PMID: 34118169 PMCID: PMC8254796 DOI: 10.1111/wrr.12955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Myofibroblasts are mechanosensitive cells and a variety of their behaviours including differentiation, migration, force production and biosynthesis are regulated by the surrounding microenvironment. Engineered cell culture models have been developed to examine the effect of microenvironmental factors such as the substrate stiffness, the topography and strain of the extracellular matrix (ECM) and the shear stress on myofibroblast biology. These engineered models provide well-mimicked, pathophysiologically relevant experimental conditions that are superior to those enabled by the conventional two-dimensional (2D) culture models. In this perspective, we will review the recent advances in the development of engineered cell culture models for myofibroblasts and outline the findings on the myofibroblast mechanobiology under various microenvironmental conditions. These studies have demonstrated the power and utility of the engineered models for the study of microenvironment-regulated cellular behaviours. The findings derived using these models contribute to a greater understanding of how myofibroblast behaviour is regulated in tissue repair and pathological scar formation.
Collapse
Affiliation(s)
- Ying Xu
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Richard Koya
- Department of Obstetrics and Gynecology, University of Chicago Comprehensive Cancer Center, Biological Sciences Division, University of Chicago School of Medicine, Chicago, IL 60637, USA
| | - Kjetil Ask
- Department of Medicine, Div. Respirology, McMaster University, Hamilton, ON, Canada L8N 4A6
- The Research Institute of St. Joe’s Hamilton, Firestone Institute for Respiratory Health, Hamilton, ON, Canada L8N 4A6
| | - Ruogang Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
33
|
Marchioni A, Tonelli R, Cerri S, Castaniere I, Andrisani D, Gozzi F, Bruzzi G, Manicardi L, Moretti A, Demurtas J, Baroncini S, Andreani A, Cappiello GF, Busani S, Fantini R, Tabbì L, Samarelli AV, Clini E. Pulmonary Stretch and Lung Mechanotransduction: Implications for Progression in the Fibrotic Lung. Int J Mol Sci 2021; 22:ijms22126443. [PMID: 34208586 PMCID: PMC8234308 DOI: 10.3390/ijms22126443] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022] Open
Abstract
Lung fibrosis results from the synergic interplay between regenerative deficits of the alveolar epithelium and dysregulated mechanisms of repair in response to alveolar and vascular damage, which is followed by progressive fibroblast and myofibroblast proliferation and excessive deposition of the extracellular matrix. The increased parenchymal stiffness of fibrotic lungs significantly affects respiratory mechanics, making the lung more fragile and prone to non-physiological stress during spontaneous breathing and mechanical ventilation. Given their parenchymal inhomogeneity, fibrotic lungs may display an anisotropic response to mechanical stresses with different regional deformations (micro-strain). This behavior is not described by the standard stress–strain curve but follows the mechano-elastic models of “squishy balls”, where the elastic limit can be reached due to the excessive deformation of parenchymal areas with normal elasticity that are surrounded by inelastic fibrous tissue or collapsed induration areas, which tend to protrude outside the fibrous ring. Increasing evidence has shown that non-physiological mechanical forces applied to fibrotic lungs with associated abnormal mechanotransduction could favor the progression of pulmonary fibrosis. With this review, we aim to summarize the state of the art on the relation between mechanical forces acting on the lung and biological response in pulmonary fibrosis, with a focus on the progression of damage in the fibrotic lung during spontaneous breathing and assisted ventilatory support.
Collapse
Affiliation(s)
- Alessandro Marchioni
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41125 Modena, Italy
- Correspondence:
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Ivana Castaniere
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Dario Andrisani
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41125 Modena, Italy
| | - Filippo Gozzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41125 Modena, Italy
| | - Giulia Bruzzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Linda Manicardi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Antonio Moretti
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Jacopo Demurtas
- Primary Care Department USL Toscana Sud Est-Grosseto, 58100 Grosseto, Italy;
| | - Serena Baroncini
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Alessandro Andreani
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Gaia Francesca Cappiello
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Stefano Busani
- University Hospital of Modena, Anesthesiology Unit, University of Modena Reggio Emilia, 41124 Modena, Italy;
| | - Riccardo Fantini
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Luca Tabbì
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| |
Collapse
|
34
|
Dimbath E, Maddipati V, Stahl J, Sewell K, Domire Z, George S, Vahdati A. Implications of microscale lung damage for COVID-19 pulmonary ventilation dynamics: A narrative review. Life Sci 2021; 274:119341. [PMID: 33716059 PMCID: PMC7946865 DOI: 10.1016/j.lfs.2021.119341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic surges on as vast research is produced to study the novel SARS-CoV-2 virus and the disease state it induces. Still, little is known about the impact of COVID-19-induced microscale damage in the lung on global lung dynamics. This review summarizes the key histological features of SARS-CoV-2 infected alveoli and links the findings to structural tissue changes and surfactant dysfunction affecting tissue mechanical behavior similar to changes seen in other lung injury. Along with typical findings of diffuse alveolar damage affecting the interstitium of the alveolar walls and blood-gas barrier in the alveolar airspace, COVID-19 can cause extensive microangiopathy in alveolar capillaries that further contribute to mechanical changes in the tissues and may differentiate it from previously studied infectious lung injury. Understanding microlevel damage impact on tissue mechanics allows for better understanding of macroscale respiratory dynamics. Knowledge gained from studies into the relationship between microscale and macroscale lung mechanics can allow for optimized treatments to improve patient outcomes in case of COVID-19 and future respiratory-spread pandemics.
Collapse
Affiliation(s)
- Elizabeth Dimbath
- Department of Engineering, College of Engineering and Technology, East Carolina University, Greenville, NC, USA
| | | | - Jennifer Stahl
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Kerry Sewell
- Laupus Library, East Carolina University, Greenville, NC, USA
| | - Zachary Domire
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Stephanie George
- Department of Engineering, College of Engineering and Technology, East Carolina University, Greenville, NC, USA
| | - Ali Vahdati
- Department of Engineering, College of Engineering and Technology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
35
|
Ammendolia DA, Bement WM, Brumell JH. Plasma membrane integrity: implications for health and disease. BMC Biol 2021; 19:71. [PMID: 33849525 PMCID: PMC8042475 DOI: 10.1186/s12915-021-00972-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma membrane integrity is essential for cellular homeostasis. In vivo, cells experience plasma membrane damage from a multitude of stressors in the extra- and intra-cellular environment. To avoid lethal consequences, cells are equipped with repair pathways to restore membrane integrity. Here, we assess plasma membrane damage and repair from a whole-body perspective. We highlight the role of tissue-specific stressors in health and disease and examine membrane repair pathways across diverse cell types. Furthermore, we outline the impact of genetic and environmental factors on plasma membrane integrity and how these contribute to disease pathogenesis in different tissues.
Collapse
Affiliation(s)
- Dustin A Ammendolia
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - William M Bement
- Center for Quantitative Cell Imaging and Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,SickKids IBD Centre, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
36
|
Scharm SC, Vogel-Claussen J, Schaefer-Prokop C, Dettmer S, Knudsen L, Jonigk D, Fuge J, Apel RM, Welte T, Wacker F, Prasse A, Shin HO. Quantification of dual-energy CT-derived functional parameters as potential imaging markers for progression of idiopathic pulmonary fibrosis. Eur Radiol 2021; 31:6640-6651. [PMID: 33725189 PMCID: PMC8379131 DOI: 10.1007/s00330-021-07798-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/04/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The individual course of disease in idiopathic pulmonary fibrosis (IPF) is highly variable. Assessment of disease activity and prospective estimation of disease progression might have the potential to improve therapy management and indicate the onset of treatment at an earlier stage. The aim of this study was to evaluate whether regional ventilation, lung perfusion, and late enhancement can serve as early imaging markers for disease progression in patients with IPF. METHODS In this retrospective study, contrast-enhanced dual-energy CT scans of 32 patients in inspiration and delayed expiration were performed at two time points with a mean interval of 15.4 months. The pulmonary blood volume (PBV) images obtained in the arterial and delayed perfusion phase served as a surrogate for arterial lung perfusion and parenchymal late enhancement. The virtual non-contrast (VNC) images in inspiration and expiration were non-linearly registered to provide regional ventilation images. Image-derived parameters were correlated with longitudinal changes of lung function (FVC%, DLCO%), mean lung density in CT, and CT-derived lung volume. RESULTS Regional ventilation and late enhancement at baseline preceded future change in lung volume (R - 0.474, p 0.006/R - 0.422, p 0.016, respectively) and mean lung density (R - 0.469, p 0.007/R - 0.402, p 0.022, respectively). Regional ventilation also correlated with a future change in FVC% (R - 0.398, p 0.024). CONCLUSION CT-derived functional parameters of regional ventilation and parenchymal late enhancement are potential early imaging markers for idiopathic pulmonary fibrosis progression. KEY POINTS • Functional CT parameters at baseline (regional ventilation and late enhancement) correlate with future structural changes of the lung as measured with loss of lung volume and increase in lung density in serial CT scans of patients with idiopathic pulmonary fibrosis. • Functional CT parameter measurements in high-attenuation areas (- 600 to - 250 HU) are significantly different from normal-attenuation areas (- 950 to - 600 HU) of the lung. • Mean regional ventilation in functional CT correlates with a future change in forced vital capacity (FVC) in pulmonary function tests.
Collapse
Affiliation(s)
- Sarah C Scharm
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Jens Vogel-Claussen
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Cornelia Schaefer-Prokop
- Department of Radiology, Radboud University, Nijmegen, The Netherlands.,Department of Radiology, Meander Medical Center, Amersfoort, The Netherlands
| | - Sabine Dettmer
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Lars Knudsen
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany.,Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany.,Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Jan Fuge
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany.,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Rosa-Marie Apel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany.,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany.,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Frank Wacker
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Antje Prasse
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany.,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Hoen-Oh Shin
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany.
| |
Collapse
|
37
|
Fu Z, Xu YS, Cai CQ. Ginsenoside Rg3 inhibits pulmonary fibrosis by preventing HIF-1α nuclear localisation. BMC Pulm Med 2021; 21:70. [PMID: 33639908 PMCID: PMC7912494 DOI: 10.1186/s12890-021-01426-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/07/2021] [Indexed: 12/20/2022] Open
Abstract
Background Excessive fibroblast proliferation during pulmonary fibrosis leads to structural abnormalities in lung tissue and causes hypoxia and cell injury. However, the mechanisms and effective treatment are still limited. Methods In vivo, we used bleomycin to induce pulmonary fibrosis in mice. IHC and Masson staining were used to evaluate the inhibitory effect of ginsenoside Rg3 in pulmonary fibrosis. In vitro, scanning electron microscopy, transwell and wound healing were used to evaluate the cell phenotype of LL 29 cells. In addition, biacore was used to detect the binding between ginsenoside Rg3 and HIF-1α. Results Here, we found that bleomycin induces the activation of the HIF-1α/TGFβ1 signalling pathway and further enhances the migration and proliferation of fibroblasts through the epithelial mesenchymal transition (EMT). In addition, molecular docking and biacore results indicated that ginsenoside Rg3 can bind HIF-1α. Therefore, Ginsenoside Rg3 can slow down the progression of pulmonary fibrosis by inhibiting the nuclear localisation of HIF-1α. Conclusions This finding suggests that early targeted treatment of hypoxia may have potential value in the treatment of pulmonary fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01426-5.
Collapse
Affiliation(s)
- Zhuo Fu
- Tianjin Medical University, Tianjin, China.,Department of Respiratory, Tianjin Children's Hospital, Tianjin, China
| | - Yong-Sheng Xu
- Department of Respiratory, Tianjin Children's Hospital, Tianjin, China
| | - Chun-Quan Cai
- Department of Neurosurgery, Tianjin Institute of Pediatrics, The Children's Hospital of Tianjin, No.238 Longyan Road, Beichen District, Tianjin, 300400, China.
| |
Collapse
|
38
|
Dettmer S, Scharm S, Shin HO. [Radiological features of interstitial lung diseases]. DER PATHOLOGE 2021; 42:86-94. [PMID: 33496812 DOI: 10.1007/s00292-020-00906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 11/29/2022]
Abstract
In addition to pneumology and pathology, radiology is an essential discipline in the interdisciplinary diagnosis of interstitial lung diseases (ILDs). The gold standard for diagnosis of ILD is computed tomography. Diagnostic findings are based on specific radiological signs such as interlobular septal thickening and nodular changes. From these signs and their distribution within the lung, radiological patterns can be derived, e.g., usual interstitial pneumonia, nonspecific interstitial pneumonia, or organizing pneumonia. Various differential diagnoses result from the radiological pattern, which can then be further limited in an interdisciplinary manner with the clinic and pathology and, if necessary, trigger further diagnostics.The visual assessment of interstitial lung changes requires experience and training and is nevertheless error-prone with high inter- and intraobserver variabilities. Recently, therefore, computer-aided analysis of ILDs has been increasingly promoted. These computer programs analyze the density distribution of the lung parenchyma using parameters such as mean lung density, skewness, and kurtosis thus enabling the quantification and assessment of the course of disease. Furthermore, texture analysis and artificial intelligence are used to characterize parenchymal changes and differentiate between regions of ground glass, reticulation, and honeycombing. Modern dual-energy CT methods allow a combined, regional recording of both the morphology and the function and provide information about regional ventilation and perfusion.
Collapse
Affiliation(s)
- Sabine Dettmer
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
| | - Sarah Scharm
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - Hoen-Oh Shin
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| |
Collapse
|
39
|
Abstract
The SARS-CoV-2 pandemic has already infected in excess of 50 million people worldwide and resulted in 1.2 million deaths. While the majority of those infected will not have long-term pulmonary sequelae, 5%–10% will develop severe COVID-19 pneumonia and acute respiratory distress syndrome (ARDS). The natural history of these severely affected patients is unclear at present, but using our knowledge of closely related coronavirus outbreaks like severe acute respiratory distress syndrome (SARS) and middle east respiratory syndrome (MERS), we would hypothesize that the majority will stabilize or improve over time although some patients will progress to advanced lung fibrosis or post-COVID interstitial lung disease (PC-ILD). Unlike the SARS and MERS outbreaks which affected only a few thousands, the sheer scale of the present pandemic suggests that physicians are likely to encounter large numbers of patients (potentially hundreds of thousands) with PC-ILD. In this review, we discuss the pathogenesis, natural history, and radiology of such patients and touch on clinical, laboratory, and radiographic clues at presentation which might help predict the future development of lung fibrosis. Finally, we discuss the responsible use of antifibrotic drugs such as pirfenidone, nintedanib, and some newer antifibrotics, still in the pipeline. The biological rationale of these drugs and the patient groups where they may have a plausible role will be discussed. We conclude by stressing the importance of careful longitudinal follow-up of multiple cohorts of post-COVID survivors with serial lung function and imaging. This will eventually help to determine the natural history, course, and response to therapy of these patients.
Collapse
Affiliation(s)
- Zarir F Udwadia
- Hinduja Hospital and Research Center, Breach Candy Hospital, Mumbai, Maharashtra, India
| | - Parvaiz A Koul
- Department of Pulmonary Medicine, SKIMS, Srinagar, Jammu and Kashmir, India
| | - Luca Richeldi
- Department of Pulmonary Medicine, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| |
Collapse
|
40
|
Wu Y, Nguyen TL, Perlman CE. Intravenous sulforhodamine B reduces alveolar surface tension, improves oxygenation, and reduces ventilation injury in a respiratory distress model. J Appl Physiol (1985) 2020; 130:1305-1316. [PMID: 33211596 DOI: 10.1152/japplphysiol.00421.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In the neonatal respiratory distress syndrome (NRDS) and acute respiratory distress syndrome (ARDS), mechanical ventilation supports gas exchange but can cause ventilation-induced lung injury (VILI) that contributes to high mortality. Further, surface tension, T, should be elevated and VILI is proportional to T. Surfactant therapy is effective in NRDS but not ARDS. Sulforhodamine B (SRB) is a potential alternative T-lowering therapeutic. In anesthetized male rats, we injure the lungs with 15 min of 42 mL/kg tidal volume, VT, and zero end-expiratory pressure ventilation. Then, over 4 h, we support the rats with protective ventilation-VT of 6 mL/kg with positive end-expiratory pressure. At the start of the support period, we administer intravenous non-T-altering fluorescein (targeting 27 µM in plasma) without or with therapeutic SRB (10 nM). Throughout the support period, we increase inspired oxygen fraction, as necessary, to maintain >90% arterial oxygen saturation. At the end of the support period, we euthanize the rat; sample systemic venous blood for injury marker ELISAs; excise the lungs; combine confocal microscopy and servo-nulling pressure measurement to determine T in situ in the lungs; image fluorescein in alveolar liquid to assess local permeability; and determine lavage protein content and wet-to-dry ratio (W/D) to assess global permeability. Lungs exhibit focal injury. Surface tension is elevated 72% throughout control lungs and in uninjured regions of SRB-treated lungs, but normal in injured regions of treated lungs. SRB administration improves oxygenation, reduces W/D, and reduces plasma injury markers. Intravenous SRB holds promise as a therapy for respiratory distress.NEW & NOTEWORTHY Sulforhodmaine B lowers T in alveolar edema liquid. Given the problematic intratracheal delivery of surfactant therapy for ARDS, intravenous SRB might constitute an alternative therapeutic. In a lung injury model, we find that intravenously administered SRB crosses the injured alveolar-capillary barrier thus reduces T specifically in injured lung regions; improves oxygenation; and reduces the degree of further lung injury. Intravenous SRB administration might help respiratory distress patients, including those with the novel coronavirus, avoid mechanical ventilation or, once ventilated, survive.
Collapse
Affiliation(s)
- You Wu
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | - Tam L Nguyen
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | - Carrie E Perlman
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| |
Collapse
|
41
|
Mechanical ventilation-induced alterations of intracellular surfactant pool and blood-gas barrier in healthy and pre-injured lungs. Histochem Cell Biol 2020; 155:183-202. [PMID: 33188462 PMCID: PMC7910377 DOI: 10.1007/s00418-020-01938-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Mechanical ventilation triggers the manifestation of lung injury and pre-injured lungs are more susceptible. Ventilation-induced abnormalities of alveolar surfactant are involved in injury progression. The effects of mechanical ventilation on the surfactant system might be different in healthy compared to pre-injured lungs. In the present study, we investigated the effects of different positive end-expiratory pressure (PEEP) ventilations on the structure of the blood–gas barrier, the ultrastructure of alveolar epithelial type II (AE2) cells and the intracellular surfactant pool (= lamellar bodies, LB). Rats were randomized into bleomycin-pre-injured or healthy control groups. One day later, rats were either not ventilated, or ventilated with PEEP = 1 or 5 cmH2O and a tidal volume of 10 ml/kg bodyweight for 3 h. Left lungs were subjected to design-based stereology, right lungs to measurements of surfactant proteins (SP−) B and C expression. In pre-injured lungs without ventilation, the expression of SP-C was reduced by bleomycin; while, there were fewer and larger LB compared to healthy lungs. PEEP = 1 cmH2O ventilation of bleomycin-injured lungs was linked with the thickest blood–gas barrier due to increased septal interstitial volumes. In healthy lungs, increasing PEEP levels reduced mean AE2 cell size and volume of LB per AE2 cell; while in pre-injured lungs, volumes of AE2 cells and LB per cell remained stable across PEEPs. Instead, in pre-injured lungs, increasing PEEP levels increased the number and decreased the mean size of LB. In conclusion, mechanical ventilation-induced alterations in LB ultrastructure differ between healthy and pre-injured lungs. PEEP = 1 cmH2O but not PEEP = 5 cmH2O ventilation aggravated septal interstitial abnormalities after bleomycin challenge.
Collapse
|
42
|
Albert K, Krischer JM, Pfaffenroth A, Wilde S, Lopez-Rodriguez E, Braun A, Smith BJ, Knudsen L. Hidden Microatelectases Increase Vulnerability to Ventilation-Induced Lung Injury. Front Physiol 2020; 11:530485. [PMID: 33071807 PMCID: PMC7530907 DOI: 10.3389/fphys.2020.530485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
Mechanical ventilation of lungs suffering from microatelectases may trigger the development of acute lung injury (ALI). Direct lung injury by bleomycin results in surfactant dysfunction and microatelectases at day 1 while tissue elastance and oxygenation remain normal. Computational simulations of alveolar micromechanics 1-day post-bleomycin predict persisting microatelectases throughout the respiratory cycle and increased alveolar strain during low positive end-expiratory pressure (PEEP) ventilation. As such, we hypothesize that mechanical ventilation in presence of microatelectases, which occur at low but not at higher PEEP, aggravates and unmasks ALI in the bleomycin injury model. Rats were randomized and challenged with bleomycin (B) or not (H = healthy). One day after bleomycin instillation the animals were ventilated for 3 h with PEEP 1 (PEEP1) or 5 cmH2O (PEEP5) and a tidal volume of 10 ml/kg bodyweight. Tissue elastance was repetitively measured after a recruitment maneuver to investigate the degree of distal airspace instability. The right lung was subjected to bronchoalveolar lavage (BAL), the left lung was fixed for design-based stereology at light- and electron microscopic level. Prior to mechanical ventilation, lung tissue elastance did not differ. During mechanical ventilation tissue elastance increased in bleomycin-injured lungs ventilated with PEEP = 1 cmH2O but remained stable in all other groups. Measurements at the conclusion of ventilation showed the largest time-dependent increase in tissue elastance after recruitment in B/PEEP1, indicating increased instability of distal airspaces. These lung mechanical findings correlated with BAL measurements including elevated BAL neutrophilic granulocytes as well as BAL protein and albumin in B/PEEP1. Moreover, the increased septal wall thickness and volume of peri-bronchiolar-vascular connective tissue in B/PEEP1 suggested aggravation of interstitial edema by ventilation in presence of microatelectases. At the electron microscopic level, the largest surface area of injured alveolar epithelial was observed in bleomycin-challenged lungs after PEEP = 1 cmH2O ventilation. After bleomycin treatment cellular markers of endoplasmic reticulum stress (p-Perk and p-EIF-2α) were positive within the septal wall and ventilation with PEEP = 1 cmH2O ventilation increased the surface area stained positively for p-EIF-2α. In conclusion, hidden microatelectases are linked with an increased pulmonary vulnerability for mechanical ventilation characterized by an aggravation of epithelial injury.
Collapse
Affiliation(s)
- Karolin Albert
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
| | - Jeanne-Marie Krischer
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
| | - Alexander Pfaffenroth
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
| | - Sabrina Wilde
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hanover, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hanover, Germany.,Institute for Functional Anatomy, Charité, Berlin, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hanover, Germany
| | - Bradford J Smith
- Department of Bioengineering, College of Engineering, Design and Computing, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hanover, Germany
| |
Collapse
|
43
|
Smith BJ, Roy GS, Cleveland A, Mattson C, Okamura K, Charlebois CM, Hamlington KL, Novotny MV, Knudsen L, Ochs M, Hite RD, Bates JHT. Three Alveolar Phenotypes Govern Lung Function in Murine Ventilator-Induced Lung Injury. Front Physiol 2020; 11:660. [PMID: 32695013 PMCID: PMC7338482 DOI: 10.3389/fphys.2020.00660] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/25/2020] [Indexed: 01/03/2023] Open
Abstract
Mechanical ventilation is an essential lifesaving therapy in acute respiratory distress syndrome (ARDS) that may cause ventilator-induced lung injury (VILI) through a positive feedback between altered alveolar mechanics, edema, surfactant inactivation, and injury. Although the biophysical forces that cause VILI are well documented, a knowledge gap remains in the quantitative link between altered parenchymal structure (namely alveolar derecruitment and flooding), pulmonary function, and VILI. This information is essential to developing diagnostic criteria and ventilation strategies to reduce VILI and improve ARDS survival. To address this unmet need, we mechanically ventilated mice to cause VILI. Lung structure was measured at three air inflation pressures using design-based stereology, and the mechanical function of the pulmonary system was measured with the forced oscillation technique. Assessment of the pulmonary surfactant included total surfactant, distribution of phospholipid aggregates, and surface tension lowering activity. VILI-induced changes in the surfactant included reduced surface tension lowering activity in the typically functional fraction of large phospholipid aggregates and a significant increase in the pool of surface-inactive small phospholipid aggregates. The dominant alterations in lung structure at low airway pressures were alveolar collapse and flooding. At higher airway pressures, alveolar collapse was mitigated and the flooded alveoli remained filled with proteinaceous edema. The loss of ventilated alveoli resulted in decreased alveolar gas volume and gas-exchange surface area. These data characterize three alveolar phenotypes in murine VILI: flooded and non-recruitable alveoli, unstable alveoli that derecruit at airway pressures below 5 cmH2O, and alveoli with relatively normal structure and function. The fraction of alveoli with each phenotype is reflected in the proportional changes in pulmonary system elastance at positive end expiratory pressures of 0, 3, and 6 cmH2O.
Collapse
Affiliation(s)
- Bradford J Smith
- Department of Bioengineering, College of Engineering, Design & Computing, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatric Pulmonary and Sleep Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Gregory S Roy
- Vermont Lung Center, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Alyx Cleveland
- Vermont Lung Center, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Courtney Mattson
- Department of Bioengineering, College of Engineering, Design & Computing, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, United States
| | - Kayo Okamura
- Department of Bioengineering, College of Engineering, Design & Computing, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, United States
| | - Chantel M Charlebois
- Vermont Lung Center, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Katharine L Hamlington
- Department of Pediatric Pulmonary and Sleep Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael V Novotny
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hanover, Germany
| | - Matthias Ochs
- Institute of Functional Anatomy, Charité Medical University of Berlin, Berlin, Germany
| | - R Duncan Hite
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Jason H T Bates
- Vermont Lung Center, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
44
|
Perlman CE. The Contribution of Surface Tension-Dependent Alveolar Septal Stress Concentrations to Ventilation-Induced Lung Injury in the Acute Respiratory Distress Syndrome. Front Physiol 2020; 11:388. [PMID: 32670073 PMCID: PMC7332732 DOI: 10.3389/fphys.2020.00388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/01/2020] [Indexed: 01/22/2023] Open
Abstract
In the acute respiratory distress syndrome (ARDS), surface tension, T, is likely elevated. And mechanical ventilation of ARDS patients causes ventilation-induced lung injury (VILI), which is believed to be proportional to T. However, the mechanisms through which elevated T may contribute to VILI have been under-studied. This conceptual analysis considers experimental and theoretical evidence for static and dynamic mechanical mechanisms, at the alveolar scale, through which elevated T exacerbates VILI; potential causes of elevated T in ARDS; and T-dependent means of reducing VILI. In the last section, possible means of reducing T and improving the efficacy of recruitment maneuvers during mechanical ventilation of ARDS patients are discussed.
Collapse
Affiliation(s)
- Carrie E Perlman
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| |
Collapse
|
45
|
Zhang S, Zhang L, Long K, Gao P, Zhang C, Ding P, Chen J, Zhang X, Qian L. Evaluation of clinical efficacy of integrated traditional Chinese and Western medicine in the treatment of acute respiratory distress syndrome. Medicine (Baltimore) 2020; 99:e20341. [PMID: 32569164 PMCID: PMC7310857 DOI: 10.1097/md.0000000000020341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) is a common disease in critically ill patients that has a high incidence and mortality rate worldwide. At present, there is no specific treatment for ARDS. Traditional Chinese medicine has been shown to have good potential in preventing and treating ARDS, especially in reducing the dosages of Western medicines and therefore, adverse drug reactions. The purpose of this study is to compare the clinical efficacy of integrated Chinese and Western medicine to that of Western medicine alone in the treatment of ARDS. METHODS We are proposing a prospective, multicenter, randomized, double-blind, placebo-controlled study in which 110 eligible patients would be enrolled and randomly divided into a Western medicine treatment group and an integrated Chinese and Western medicine treatment group. After 2 weeks of interventions and 1 year of follow-up, the clinical efficacy and safety of Jiawei qianyang dan in ARDS patients would be observed. The outcomes measured would include the Traditional Chinese medicine symptom score, the oxygenation index (PɑO2/FiO2), extravascular pulmonary water index, duration of mechanical ventilation, number of ICU hospitalization days, and the 28-day mortality rate for the 2 groups before and after treatment. The all-cause mortality rate, respiratory failure mortality rate, and readmission rate after 1 year of follow-up will be statistically analyzed and safety will be evaluated. DISCUSSION In this study, we aim to demonstrate the greater clinical efficacy of integrated traditional Chinese and Western medicine in the treatment of ARDS compared to that of Western medicine alone. In order to do this, we hope to provide evidence for the clinically supportive effect of the Jiawei qianyang dan in the treatment of ARDS and therefore demonstrate a more effective treatment.
Collapse
Affiliation(s)
| | - Li Zhang
- Department of Critical Care Medicine
| | | | | | | | - Peng Ding
- Department of Critical Care Medicine
| | - Jun Chen
- Department of Critical Care Medicine
| | | | - Lin Qian
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
46
|
Liu H, Gu C, Liu M, Liu G, Wang Y. NEK7 mediated assembly and activation of NLRP3 inflammasome downstream of potassium efflux in ventilator-induced lung injury. Biochem Pharmacol 2020; 177:113998. [PMID: 32353421 DOI: 10.1016/j.bcp.2020.113998] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Disordered immune regulation and persistent inflammatory damage are the key mechanisms of ventilator-induced lung injury (VILI). NLR family pyrin domain containing 3 (NLRP3) inflammasome activation causes VILI by mediating the formation of inflammatory mediators and infiltration of inflammatory cells, increasing pulmonary capillary membrane permeability, which leads to pulmonary edema and lung tissue damage. What mediates activation of NLRP3 inflammasome in VILI? In this study, we constructed an in vitro cyclic stretch (CS)-stimulated mouse lung epithelial (MLE-12) cell model that was transfected with NIMA-related kinase 7 (NEK7) small interfering RNA (siRNA) or scramble siRNA (sc siRNA) and pretreated with or without glibenclamide (glb). We also established a VILI mouse model, which was pretreated with glibenclamide or oridonin (Ori). Our goal was to investigate the regulatory effects of NEK7 on NLRP3 inflammasome activation and the anti-inflammatory effects of glibenclamide and oridonin on VILI. Mechanical stretch exaggerated the interaction between NEK7 and NLRP3, leading to assembly and activation of NLRP3 inflammasome downstream of potassium efflux. NEK7 depletion and treatment with glibenclamide or oridonin exerted anti-inflammatory effects that alleviated VILI by blocking the interaction between NEK7 and NLRP3, inhibiting NLRP3 inflammasome activation. NEK7 is a vital mediator of NLRP3 inflammasome activation, and glibenclamide or oridonin may be candidates for the development of new therapeutics against VILI driven by the interaction between NEK7 and NLRP3.
Collapse
Affiliation(s)
- Huan Liu
- Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan 250014, China
| | - Changping Gu
- Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan 250014, China
| | - Mengjie Liu
- Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan 250014, China
| | - Ge Liu
- Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan 250014, China
| | - Yuelan Wang
- Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan 250014, China.
| |
Collapse
|
47
|
Cagino LM, Hensley MK, Fortier SM, Dickson RP. Mechanical Stretch: An Important and Understudied Feature of Acute and Chronic Lung Injury. Am J Respir Crit Care Med 2020; 201:992-994. [PMID: 32126178 PMCID: PMC7159420 DOI: 10.1164/rccm.201911-2166rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/02/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Leigh M. Cagino
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| | - Matthew K. Hensley
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| | - Sean M. Fortier
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| | - Robert P. Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan; and
- Michigan Center for Integrative Research in Critical Care, Ann Arbor, Michigan
| |
Collapse
|
48
|
Abstract
Ventilation-induced lung injury results from mechanical stress and strain that occur during tidal ventilation in the susceptible lung. Classical descriptions of ventilation-induced lung injury have focused on harm from positive pressure ventilation. However, injurious forces also can be generated by patient effort and patient–ventilator interactions. While the role of global mechanics has long been recognized, regional mechanical heterogeneity within the lungs also appears to be an important factor propagating clinically significant lung injury. The resulting clinical phenotype includes worsening lung injury and a systemic inflammatory response that drives extrapulmonary organ failures. Bedside recognition of ventilation-induced lung injury requires a high degree of clinical acuity given its indistinct presentation and lack of definitive diagnostics. Yet the clinical importance of ventilation-induced lung injury is clear. Preventing such biophysical injury remains the most effective management strategy to decrease morbidity and mortality in patients with acute respiratory distress syndrome and likely benefits others at risk.
Collapse
Affiliation(s)
- Purnema Madahar
- Center for Acute Respiratory Failure, Columbia University College of Physicians and Surgeons, New York City, NY, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York City, NY, USA.,Department of Medicine, New York-Presbyterian Hospital, New York City, NY, USA
| | - Jeremy R Beitler
- Center for Acute Respiratory Failure, Columbia University College of Physicians and Surgeons, New York City, NY, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York City, NY, USA.,Department of Medicine, New York-Presbyterian Hospital, New York City, NY, USA
| |
Collapse
|
49
|
Borok Z, Horie M, Flodby P, Wang H, Liu Y, Ganesh S, Firth AL, Minoo P, Li C, Beers MF, Lee AS, Zhou B. Grp78 Loss in Epithelial Progenitors Reveals an Age-linked Role for Endoplasmic Reticulum Stress in Pulmonary Fibrosis. Am J Respir Crit Care Med 2020; 201:198-211. [PMID: 31738079 PMCID: PMC6961744 DOI: 10.1164/rccm.201902-0451oc] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/13/2019] [Indexed: 01/26/2023] Open
Abstract
Rationale: Alveolar epithelial cell (AEC) injury and dysregulated repair are implicated in the pathogenesis of pulmonary fibrosis. Endoplasmic reticulum (ER) stress in AEC has been observed in idiopathic pulmonary fibrosis (IPF), a disease of aging.Objectives: To investigate a causal role for ER stress in the pathogenesis of pulmonary fibrosis (PF) and therapeutic potential of ER stress inhibition in PF.Methods: The role of ER stress in AEC dysfunction and fibrosis was studied in mice with tamoxifen (Tmx)-inducible deletion of ER chaperone Grp78, a key regulator of ER homeostasis, in alveolar type II (AT2) cells, progenitors of distal lung epithelium, and in IPF lung slice cultures.Measurements and Main Results:Grp78 deletion caused weight loss, mortality, lung inflammation, and spatially heterogeneous fibrosis characterized by fibroblastic foci, hyperplastic AT2 cells, and increased susceptibility of old and male mice, all features of IPF. Fibrosis was more persistent in more severely injured Grp78 knockout (KO) mice. Grp78 KO AT2 cells showed evidence of ER stress, apoptosis, senescence, impaired progenitor capacity, and activation of TGF-β (transforming growth factor-β)/SMAD signaling. Glucose-regulated protein 78 is reduced in AT2 cells from old mice and patients with IPF, and ER stress inhibitor tauroursodeoxycholic acid ameliorates ER stress and fibrosis in Grp78 KO mouse and IPF lung slice cultures.Conclusions: These results support a causal role for ER stress and resulting epithelial dysfunction in PF and suggest ER stress as a potential mechanism linking aging to IPF. Modulation of ER stress and chaperone function may offer a promising therapeutic approach for pulmonary fibrosis.
Collapse
Affiliation(s)
- Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine
- Hastings Center for Pulmonary Research, Department of Medicine
- Department of Biochemistry and Molecular Medicine
- Norris Comprehensive Cancer Center
| | - Masafumi Horie
- Division of Pulmonary, Critical Care and Sleep Medicine
- Hastings Center for Pulmonary Research, Department of Medicine
| | - Per Flodby
- Division of Pulmonary, Critical Care and Sleep Medicine
- Hastings Center for Pulmonary Research, Department of Medicine
| | - Hongjun Wang
- Division of Pulmonary, Critical Care and Sleep Medicine
- Hastings Center for Pulmonary Research, Department of Medicine
| | - Yixin Liu
- Division of Pulmonary, Critical Care and Sleep Medicine
- Hastings Center for Pulmonary Research, Department of Medicine
| | - Sivagini Ganesh
- Division of Pulmonary, Critical Care and Sleep Medicine
- Hastings Center for Pulmonary Research, Department of Medicine
| | - Amy L Firth
- Division of Pulmonary, Critical Care and Sleep Medicine
- Hastings Center for Pulmonary Research, Department of Medicine
- Department of Stem Cell Biology and Regenerative Medicine, and
| | - Parviz Minoo
- Hastings Center for Pulmonary Research, Department of Medicine
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Changgong Li
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Michael F Beers
- Pulmonary, Allergy, and Critical Care Division of the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine
- Norris Comprehensive Cancer Center
| | - Beiyun Zhou
- Division of Pulmonary, Critical Care and Sleep Medicine
- Hastings Center for Pulmonary Research, Department of Medicine
- Norris Comprehensive Cancer Center
| |
Collapse
|
50
|
Wu H, Yu Y, Huang H, Hu Y, Fu S, Wang Z, Shi M, Zhao X, Yuan J, Li J, Yang X, Bin E, Wei D, Zhang H, Zhang J, Yang C, Cai T, Dai H, Chen J, Tang N. Progressive Pulmonary Fibrosis Is Caused by Elevated Mechanical Tension on Alveolar Stem Cells. Cell 2020; 180:107-121.e17. [DOI: 10.1016/j.cell.2019.11.027] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
|