1
|
Khoury WEI, Chan SY. When cell teamwork turns toxic. eLife 2025; 14:e106689. [PMID: 40207910 PMCID: PMC11984950 DOI: 10.7554/elife.106689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
In pulmonary hypertension, a combination of metabolic and mechanical dysfunction leads to irreversible vascular damage.
Collapse
Affiliation(s)
- Wadih EI Khoury
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical CenterPittsburghUnited States
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical CenterPittsburghUnited States
| |
Collapse
|
2
|
Crnkovic S, Thekkekara Puthenparampil H, Mulch S, Biasin V, Radic N, Wilhelm J, Bartkuhn M, Bonyadi Rad E, Wawrzen A, Matzer I, Mitra A, Leib RD, Nagy BM, Sahu-Osen A, Valzano F, Bordag N, Evermann M, Hoetzenecker K, Olschewski A, Ljubojevic-Holzer S, Wygrecka M, Stenmark K, Marsh LM, de Jesus Perez V, Kwapiszewska G. Adventitial fibroblasts direct smooth muscle cell-state transition in pulmonary vascular disease. eLife 2025; 13:RP98558. [PMID: 40208251 PMCID: PMC11984959 DOI: 10.7554/elife.98558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Background Pulmonary vascular remodeling is a progressive pathological process characterized by functional alterations within pulmonary artery smooth muscle cells (PASMCs) and adventitial fibroblasts (PAAFs). Mechanisms driving the transition to a diseased phenotype remain elusive. Methods We combined transcriptomic and proteomic profiling with phenotypic characterization of source-matched cells from healthy controls and individuals with idiopathic pulmonary arterial hypertension (IPAH). Bidirectional cellular crosstalk was examined using direct and indirect co-culture models, and phenotypic responses were assessed via transcriptome analysis. Results PASMC and PAAF undergo distinct phenotypic shifts during pulmonary vascular remodeling, with limited shared features, such as reduced mitochondrial content and hyperpolarization. IPAH-PASMC exhibit increased glycosaminoglycan production and downregulation of contractile machinery, while IPAH-PAAF display a hyperproliferative phenotype. We identified alterations in extracellular matrix components, including laminin and collagen, alongside pentraxin-3 and hepatocyte growth factor, as potential regulators of PASMC phenotypic transitions mediated by PAAF. Conclusions While PASMCs and PAAFs retain their core cellular identities, they acquire distinct disease-associated states. These findings provide new insights into the dynamic interplay of pulmonary vascular mesenchymal cells in disease pathogenesis. Funding This work was supported by Cardio-Pulmonary Institute EXC 2026 390649896 (GK) and Austrian Science Fund (FWF) grant I 4651-B (SC).
Collapse
Affiliation(s)
- Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Medical University of Graz, Lung Research ClusterGrazAustria
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Center for Lung Research, Justus-Liebig University GiessenGiessenGermany
| | | | - Shirin Mulch
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Center for Lung Research, Justus-Liebig University GiessenGiessenGermany
| | - Valentina Biasin
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Medical University of Graz, Lung Research ClusterGrazAustria
| | - Nemanja Radic
- Medical University of Graz, Lung Research ClusterGrazAustria
| | - Jochen Wilhelm
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Center for Lung Research, Justus-Liebig University GiessenGiessenGermany
| | - Marek Bartkuhn
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Center for Lung Research, Justus-Liebig University GiessenGiessenGermany
| | | | - Alicja Wawrzen
- Medical University of Graz, Lung Research ClusterGrazAustria
| | - Ingrid Matzer
- Medical University of Graz, Lung Research ClusterGrazAustria
| | - Ankita Mitra
- Department of Medicine, Stanford University School of MedicineStanfordUnited States
| | - Ryan D Leib
- Mass Spectrometry Laboratory, Stanford University School of MedicineStanfordUnited States
| | | | - Anita Sahu-Osen
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
| | | | - Natalie Bordag
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Medical University of Graz, Lung Research ClusterGrazAustria
| | | | | | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Medical University of Graz, Lung Research ClusterGrazAustria
| | | | - Malgorzata Wygrecka
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Center for Lung Research, Justus-Liebig University GiessenGiessenGermany
| | - Kurt Stenmark
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of ColoradoAuroraUnited States
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Medical University of Graz, Lung Research ClusterGrazAustria
| | | | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Medical University of Graz, Lung Research ClusterGrazAustria
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Center for Lung Research, Justus-Liebig University GiessenGiessenGermany
| |
Collapse
|
3
|
Liu F, Qiao W, Han W, Fan X, Chen Y, Lu R, Zhai Y, Pan T, Yuan X, Song X, Zhang D. Using network analysis to identify central symptoms of depression and anxiety in different profiles of infertility patients. BMC Psychiatry 2025; 25:229. [PMID: 40069660 PMCID: PMC11899931 DOI: 10.1186/s12888-025-06637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Depression and anxiety were not only common but also with serious consequence in infertility patients. The current study endeavors to define distinct depression and anxiety profiles of infertility patients and identify central symptoms within different profiles to facilitate targeted interventions. METHOD The research employed K-means Clustering to delineate the depression and anxiety profiles, followed by a repetition of the analysis using Latent Class Analysis (LCA). Furthermore, network analysis was utilized to identify central symptoms within the various profiles. RESULT K‑means Clustering identified Cluster 1 (16.15%), Cluster 2 (37.08%) and Cluster 3 (46.77%), while LCA yielded the low-risk group (47.23%), the mild-risk group (34.46%) and the high-risk group (18.31%). A majority of patients in the three clusters were predominantly in a single LCA-derived patient class (88.38-100%). Network analysis revealed that connections within each symptom in PHQ-9 and GAD-7 were stronger than those between symptoms. Furthermore, PHQ 2 ("sad mood"), GAD 1 ("nervousness") and GAD 2 ("uncontrollable worry") were identified as the central symptoms in Cluster 1 GAD 3 ("excessive worry"), GAD 2 ("uncontrollable worry") and GAD 5 ("restlessness") emerged as the central symptoms in Cluster 2) Additionally, PHQ 4 ("fatigue"), GAD 6 ("irritability") and GAD 3 ("excessive worry") were identified as the central symptoms in Cluster 3. CONCLUSIONS We defined three distinct depression and anxiety profiles among infertility patients and pinpointed central symptoms within each profile. These findings underscore the importance of directing research towards those central symptoms within each profile in order to develop targeted intervention strategies.
Collapse
Affiliation(s)
- Fang Liu
- Department of Operation Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Qiao
- Department of Operation Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenju Han
- Department of Reproductive Center, Dalian Women and Children's Medical Group, Dalian, China
| | - Xueming Fan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingbo Chen
- Department of Operation Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruonan Lu
- Department of Operation Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujie Zhai
- Department of Operation Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianci Pan
- Department of Reproductive Center, Dalian Women and Children's Medical Group, Dalian, China
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China.
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou, China.
| | - Dongqing Zhang
- Department of Operation Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Li H, Liu Q, Liu C, Wang S, Zhang Y, Pan J, Liu K, Huang S, Chu T, Shang L, Song Q, Feng K, Wu Z. Identification of SNHG11 as a Therapeutic Target in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2025; 72:244-257. [PMID: 39265177 DOI: 10.1165/rcmb.2023-0428oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/12/2024] [Indexed: 09/14/2024] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening condition characterized by pulmonary vascular remodeling and endothelial dysfunction. Current therapies primarily target vasoactive imbalances but often fail to address adverse vascular remodeling. Long noncoding RNAs (lncRNAs), which are key regulators of various cellular processes, remain underexplored in the context of PH. To investigate the role of lncRNA in PH, we performed a comprehensive analysis using weighted gene coexpression network analysis on the GSE113439 dataset, comprising human lung tissue samples from different PH subtypes. Our analysis identified the lncRNA SNHG11 as consistently downregulated in PH. Functional assays in human pulmonary artery endothelial cells demonstrated that SNHG11 plays a critical role in modulating inflammation, cell proliferation, apoptosis, and the Janus kinase/signal transducers and activators of transcription and mitogen-activated protein kinase signaling pathways. Mechanistically, SNHG11 influences the stability of PRPF8, a crucial mRNA spliceosome component, thereby affecting multiple cellular functions beyond splicing. In vivo experiments using a hypoxic rat model showed that knockdown of SNHG11 alleviates PH development and improves right ventricular function. These findings highlight SNHG11 as a key regulator in PH pathogenesis and suggest it as a potential therapeutic target.
Collapse
Affiliation(s)
- Huayang Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Quan Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chiyu Liu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shunjun Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Changsha Medical University, Changsha, China; and
| | - Yitao Zhang
- Department of Cardiology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinyu Pan
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Kaizheng Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Suiqing Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tongxin Chu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liqun Shang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qingyang Song
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Kangni Feng
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhongkai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
Prasad RR, Kumar S, Zhang H, Li M, Hu CJ, Riddle S, McKeon BA, Frid M, Hoetzenecker K, Crnkovic S, Kwapiszewska G, Tuder RM, Stenmark KR. An intracellular complement system drives metabolic and proinflammatory reprogramming of vascular fibroblasts in pulmonary hypertension. JCI Insight 2025; 10:e184141. [PMID: 39946184 PMCID: PMC11949053 DOI: 10.1172/jci.insight.184141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
The complement system is central to the innate immune response, playing a critical role in proinflammatory and autoimmune diseases such as pulmonary hypertension (PH). Recent discoveries highlight the emerging role of intracellular complement, or the "complosome," in regulating cellular processes such as glycolysis, mitochondrial dynamics, and inflammatory gene expression. This study investigated the hypothesis that intracellular complement proteins C3, CFB, and CFD are upregulated in PH fibroblasts (PH-Fibs) and drive their metabolic and inflammatory states, contributing to PH progression. Our results revealed a pronounced upregulation of CFD, CFB, and C3 in PH-Fibs from human samples and bovine models, both in vivo and in vitro. The finding of elevated levels of C3 activation fragments, including C3b, C3d, and C3a, emphasized enhanced C3 activity. PH-Fibs exhibited notable metabolic reprogramming and increased levels of proinflammatory mediators such as MCP1, SDF1, IL-6, IL-13, and IL-33. Silencing CFD via shRNA reduced CFB activation and C3a production, while normalizing glycolysis, tricarboxylic acid (TCA) cycle activity, and fatty acid metabolism. Metabolomic and gene expression analyses of CFD-knockdown PH-Fibs revealed restored metabolic and inflammatory profiles, underscoring CFD's crucial role in these changes. This study emphasizes the crucial role of intracellular complement in PH pathogenesis, highlighting the potential for complement-targeted therapies in PH.
Collapse
Affiliation(s)
- Ram Raj Prasad
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Sushil Kumar
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Hui Zhang
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Min Li
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Cheng-Jun Hu
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Suzette Riddle
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Brittany A. McKeon
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - M.G. Frid
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Otto Loewi Research Center, Lung Research Cluster, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Center for Lung Research, Justus Liebig University Giessen, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Otto Loewi Research Center, Lung Research Cluster, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Center for Lung Research, Justus Liebig University Giessen, Germany
| | - Rubin M. Tuder
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
- Department of Lung Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kurt R. Stenmark
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| |
Collapse
|
6
|
Xiong P, Huang Q, Mao Y, Qian H, Yang Y, Mou Z, Deng X, Wang G, He B, You Z. Identification of an immune-related gene panel for the diagnosis of pulmonary arterial hypertension using bioinformatics and machine learning. Int Immunopharmacol 2025; 144:113694. [PMID: 39616855 DOI: 10.1016/j.intimp.2024.113694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 12/15/2024]
Abstract
OBJECTIVE This study aimed to screen an immune-related gene (IRG) panel and develop a novel approach for diagnosing pulmonary arterial hypertension (PAH) utilizing bioinformatics and machine learning (ML). METHODS Gene expression profiles were retrieved from the Gene Expression Omnibus (GEO) database to identify differentially expressed immune-related genes (IRG-DEGs). We employed five machine learning algorithms-LASSO, random forest (RF), boosted regression trees (BRT), XGBoost, and support vector machine recursive feature elimination (SVM-RFE) to identify biomarkers derived from IRG-DEGs associated with the diagnosis of PAH, incorporating them into the IRG-DEGs panel. Validation of these biomarker levels in lung tissue was conducted in a hypoxia-induced mouse model of PAH, investigating the correlation between AIMP1, IL-15, GLRX, SOD1, Fulton's index (RVHI), and the ratio of pulmonary artery medial thickness to external diameter (MT%). Subsequently, we developed a nomogram model based on the IRG-DEGs panel in lung tissue for diagnosing PAH. The expression, distribution, and pseudotime analysis of these biomarkers across various immune cell types were assessed using single-cell sequencing datasets. Finally, we evaluated the diagnostic utility of the nomogram model based on the IRG-DEGs panel in peripheral blood mononuclear cells (PBMCs) for diagnosing PAH. RESULTS A total of 36 upregulated and 17 downregulated IRG-DEGs were identified in lung tissue from patients with PAH. AIMP1, IL-15, GLRX, and SOD1 were subsequently selected as novel immune-related biomarkers for PAH through the aforementioned machine learning algorithms and incorporated into the IRG-DEGs panel. Experimental results from mice with PAH validated that the expression levels of AIMP1, IL-15, and GLRX in lung tissue were elevated, while SOD1 expression was significantly reduced. Additionally, GLRX and AIMP1 exhibited positive correlations with Fulton's index (RVHI). The expression levels of GLRX, IL-15, and AIMP1 showed positive correlations with MT%, whereas SOD1 exhibited negative correlations with MT%. Analysis of single-cell sequencing data further revealed that the levels of IRG-DEG panel members gradually increased during the pseudotime trajectory from PBMCs to macrophages, correlating with macrophage activation. The area under the curve (AUC) for diagnosing PAH using a nomogram model based on the IRG-DEGs panel derived from lung tissue samples and PBMCs was ≥0.969 and 0.900, respectively. CONCLUSIONS We developed an IRG-DEGs panel containing AIMP1, IL-15, GLRX, and SOD1, which may facilitate the diagnosis of pulmonary arterial hypertension (PAH). These findings provide novel insights that may enhance diagnostic and therapeutic approaches for PAH.
Collapse
Affiliation(s)
- Pan Xiong
- Department of General Practice, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Qiuhong Huang
- Department of General Practice, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Yang Mao
- Department of General Practice, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Hang Qian
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Yi Yang
- Department of General Practice, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Ziye Mou
- Department of General Practice, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xiaohui Deng
- Department of General Practice, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Guansong Wang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.
| | - Binfeng He
- Department of General Practice, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.
| | - Zaichun You
- Department of General Practice, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.
| |
Collapse
|
7
|
Petrow E, Feng C, Frazer-Abel A, Marangoni RG, Lutz K, Nichols WC, Holers VM, Ritchlin C, White RJ, Korman BD. Utility of factor D and other alternative complement factors as biomarkers in systemic sclerosis-associated pulmonary arterial hypertension (SSc-PAH). Semin Arthritis Rheum 2024; 69:152554. [PMID: 39298973 PMCID: PMC11606736 DOI: 10.1016/j.semarthrit.2024.152554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Activation of the complement cascade is thought to play a role in scleroderma vasculopathy. We previously showed that complement factor D was elevated in patients with limited cutaneous SSc and pulmonary arterial hypertension (PAH). In this study, we sought to assess multiple relevant components of the complement cascade to determine if they are altered in SSc-PAH, as well as their potential utility as biomarkers of disease severity and progression. METHODS Complement components (n = 14) were measured using multiplex assays in 156 patients with SSc-PAH from a multi-site repository and were compared to 33 patients with SSc without PAH, and 40 healthy controls. Data were evaluated for correlations between complement levels, right heart catheterization measures, and clinical endpoints including 6-minute walk distance. To assess complement longitudinally, serum complement levels were assayed at 0, 4, 12, 24, 36 and 48 weeks in 52 SSc-PAH patients who participated in a prior clinical trial. RESULTS We found that factor D was significantly elevated in SSc-PAH compared to SSc without PAH (p < 0.0001) and was highly sensitive and specific for SSc-PAH (AUC=0.82, p < 0.001). In SSc-PAH patients, alterations in factor H, C4, and factor D were associated with measures of PAH disease severity including right heart catheterization measurements (cardiac output, right atrial pressure, and VO2 max), survival, and 6-minute walk distance. No significant changes in complement levels or clinical associations were seen over time or associated with treatment in the longitudinal clinical trial study. CONCLUSION Our work confirms prior studies demonstrating a role for complement activation in SSc vascular disease and elevations of factor D in a large SSc-PAH population. Further, factor H and other complement factors are associated with severity of PAH including mortality. Taken together, these findings suggest that the alternative complement pathway plays a role in SSc-PAH pathogenesis and may serve as a biomarker to inform diagnosis and prognosis.
Collapse
Affiliation(s)
- Eva Petrow
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, United States.
| | - Changyong Feng
- Department of Biostatistics and Computational Biology, University of Rochester, Saunders Research Building, 265 Crittenden Boulevard, Box 630, Rochester, NY 14642, United States.
| | - Ashley Frazer-Abel
- Exsera BioLabs, University of Colorado School of Medicine, 1775 Aurora Court, Mail Stop B115, Aurora, CO 80045, United States.
| | - Roberta Goncalves Marangoni
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, United States.
| | - Katie Lutz
- Division of Human Genetics, Cincinnati Children's Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave, ML7016, Cincinnati, OH 45229, United States.
| | - William C Nichols
- Division of Human Genetics, Cincinnati Children's Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave, ML7016, Cincinnati, OH 45229, United States.
| | - V Michael Holers
- Departments of Medicine and Immunology, Division of Rheumatology, University of Colorado School of Medicine, 1775 North Aurora Court, 3102, Aurora, CO 80045, United States.
| | - Christopher Ritchlin
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, United States.
| | - R James White
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Box 692, Rochester NY 14642, United States.
| | - Benjamin D Korman
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, United States.
| |
Collapse
|
8
|
Fernandez-Gonzalez A, Mukhia A, Nadkarni J, Willis GR, Reis M, Zhumka K, Vitali S, Liu X, Galls A, Mitsialis SA, Kourembanas S. Immunoregulatory Macrophages Modify Local Pulmonary Immunity and Ameliorate Hypoxic Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2024; 44:e288-e303. [PMID: 39387119 PMCID: PMC11697987 DOI: 10.1161/atvbaha.124.321264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Macrophages play a significant role in the onset and progression of vascular disease in pulmonary hypertension, and cell-based immunotherapies aimed at treating vascular remodeling are lacking. We aimed to evaluate the effect of pulmonary administration of macrophages modified to have an anti-inflammatory/proresolving phenotype in attenuating early pulmonary inflammation and progression of experimentally induced pulmonary hypertension. METHODS Mouse bone marrow-derived macrophages were polarized in vitro to a regulatory (M2reg) phenotype. M2reg profile and anti-inflammatory capacity were assessed in vitro upon lipopolysaccharide/IFNγ (interferon-γ) restimulation, before their administration to 8- to 12-week-old mice. M2reg protective effect was evaluated at early (2-4 days) and late (4 weeks) time points during hypoxia (8.5% O2) exposure. Levels of inflammatory markers were quantified in alveolar macrophages and whole lung, while pulmonary hypertension development was ascertained by right ventricular systolic pressure (RVSP) and right ventricular hypertrophy measurements. Bronchoalveolar lavage from M2reg-transplanted hypoxic mice was collected and its inflammatory potential evaluated on naive bone marrow-derived macrophages. RESULTS M2reg macrophages expressing Tgfβ, Il10, and Cd206 demonstrated a stable anti-inflammatory phenotype in vitro, by downregulating the induction of proinflammatory cytokines and surface molecules (Cd86, Il6, and Tnfα) upon a subsequent proinflammatory stimulus. A single dose of M2regs attenuated hypoxic monocytic recruitment and perivascular inflammation. Early hypoxic lung and alveolar macrophage inflammation leading to pulmonary hypertension development was significantly reduced, and, importantly, M2regs attenuated right ventricular hypertrophy, right ventricular systolic pressure, and vascular remodeling at 4 weeks post-treatment. CONCLUSIONS Adoptive transfer of M2regs halts the recruitment of monocytes and modifies the hypoxic lung microenvironment, potentially changing the immunoreactivity of recruited macrophages and restoring normal immune functionality of the lung. These findings provide new mechanistic insights into the diverse role of macrophage phenotype on lung vascular homeostasis that can be explored as novel therapeutic targets.
Collapse
MESH Headings
- Animals
- Hypoxia/complications
- Hypoxia/metabolism
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/immunology
- Hypertension, Pulmonary/etiology
- Disease Models, Animal
- Mice, Inbred C57BL
- Phenotype
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/immunology
- Lung/immunology
- Lung/metabolism
- Lung/physiopathology
- Mice
- Male
- Cells, Cultured
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/prevention & control
- Vascular Remodeling
- Inflammation Mediators/metabolism
- Macrophages/metabolism
- Macrophages/immunology
- Cytokines/metabolism
Collapse
Affiliation(s)
- Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Amit Mukhia
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Janhavi Nadkarni
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Gareth R. Willis
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Monica Reis
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Kristjan Zhumka
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Sally Vitali
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Division of Critical Care Medicine, Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children’s Hospital Boston, Boston, Massachusetts
| | - Xianlan Liu
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Alexandra Galls
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - S. Alex Mitsialis
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Stella Kourembanas
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Williams J, Iheagwam FN, Maroney SP, Schmitt LR, Brown RD, Krafsur GM, Frid MG, McCabe MC, Gandjeva A, Williams KJ, Luyendyk JP, Saviola AJ, Tuder RM, Stenmark K, Hansen KC. A bovine model of hypoxia-induced pulmonary hypertension reveals a gradient of immune and matrisome response with a complement signature found in circulation. Am J Physiol Cell Physiol 2024; 327:C1666-C1680. [PMID: 39495247 PMCID: PMC11684870 DOI: 10.1152/ajpcell.00274.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/19/2024] [Accepted: 09/11/2024] [Indexed: 11/05/2024]
Abstract
Pulmonary hypertension (PH) is a progressive vascular disease characterized by vascular remodeling, stiffening, and luminal obstruction, driven by dysregulated cell proliferation, inflammation, and extracellular matrix (ECM) alterations. Despite the recognized contribution of ECM dysregulation to PH pathogenesis, the precise molecular alterations in the matrisome remain poorly understood. In this study, we employed a matrisome-focused proteomics approach to map the protein composition in a young bovine calf model of acute hypoxia-induced PH. Our findings reveal distinct alterations in the matrisome along the pulmonary vascular axis, with the most prominent changes observed in the main pulmonary artery. Key alterations included a strong immune response and wound repair signature, characterized by increased levels of complement components, coagulation cascade proteins, and provisional matrix markers. In addition, we observed upregulation of ECM-modifying enzymes, growth factors, and core ECM proteins implicated in vascular stiffening, such as collagens, periostin, tenascin-C, and fibrin(ogen). Notably, these alterations correlated with increased mean pulmonary arterial pressure and vascular remodeling. In the plasma, we identified increased levels of complement components, indicating a systemic inflammatory response accompanying the vascular remodeling. Our findings shed light on the dynamic matrisome remodeling in early-stage PH, implicating a wound-healing trajectory with distinct patterns from the main pulmonary artery to the distal vasculature. This study provides novel insights into the immune cell infiltration and matrisome alterations associated with PH pathogenesis and highlights potential biomarkers and therapeutic targets within the matrisome landscape.NEW & NOTEWORTHY Extensive immune cell infiltration and matrisome alterations associated with hypoxia-induced pulmonary hypertension in a large mammal model. Matrisome components correlate with increased resistance to identify candidate alterations that drive biomechanical manifestations of the disease.
Collapse
Affiliation(s)
- Jason Williams
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, United States
| | - Franklyn N Iheagwam
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, United States
| | - Sean P Maroney
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, United States
| | - Lauren R Schmitt
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, United States
| | - R Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Greta M Krafsur
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Maria G Frid
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Maxwell C McCabe
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, United States
| | - Aneta Gandjeva
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kurt J Williams
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, United States
| | - Rubin M Tuder
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Kurt Stenmark
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, United States
| |
Collapse
|
10
|
Guo Z, Zhang Y, Peng Z, Rao H, Yang J, Chen Z, Song W, Wan Q, Chen H, Wang M. Complement factor B, not the membrane attack complex component C9, promotes neointima formation after arterial wire injury. Atherosclerosis 2024; 399:118586. [PMID: 39500113 DOI: 10.1016/j.atherosclerosis.2024.118586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND AIMS Vascular restenosis due to neointima hyperplasia limits the long-term patency of stented arteries, resulting in angioplasty failure. The complement system has been implicated in restenosis. This study aimed to investigate the role of complement factor B (fB), an essential component of the alternative pathway of complement activation, in neointima formation. METHODS Angioplasty wire injury was conducted using 12-week-old mice deficient in fB or C9 (the main component of the membrane attacking complex, C5b-9) and littermate controls and neointima formation were assessed. Vascular smooth muscle cell (SMC) and endothelial cell (EC) proliferation and migration were examined in vitro. RESULTS fB was mainly detected in SMCs of stenotic arteries from humans and mice. Deletion of fB substantially reduced the neointima area and intima-to-media area ratio without affecting the media area at 28 days after injury. At 7 days after injury, fB deficiency decreased SMC proliferation, unaltering neointimal macrophage infiltration and EC reendothelialization. Vascular SMC-expressed fB, not the circulation-sourced fB, played an essential role in SMC proliferation and migration in vitro. fB deficient mice exhibited lower levels of the soluble form of C5b-9, however, deletion of C9 did not alter neointima formation after wire injury, consistent with the null impact of C9 deficiency on SMC proliferation in vitro. CONCLUSIONS fB promotes neointima formation following wire-induced artery injury independent of forming the membrane-attacking complex. This is attributable to fB-dependent SMC proliferation and migration without affecting EC function. Targeting fB might protect against restenosis after percutaneous coronary intervention.
Collapse
MESH Headings
- Animals
- Neointima
- Cell Proliferation
- Cell Movement
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Humans
- Mice, Knockout
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/injuries
- Mice, Inbred C57BL
- Disease Models, Animal
- Mice
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Male
- Complement Membrane Attack Complex/metabolism
- Cells, Cultured
- Vascular System Injuries/pathology
- Vascular System Injuries/genetics
- Vascular System Injuries/metabolism
Collapse
Affiliation(s)
- Ziyi Guo
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yuze Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zekun Peng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Haojie Rao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jianfeng Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zengrong Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Wenchao Song
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qing Wan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Hong Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China; Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China; National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China.
| |
Collapse
|
11
|
DeVaughn H, Rich HE, Shadid A, Vaidya PK, Doursout MF, Shivshankar P. Complement Immune System in Pulmonary Hypertension-Cooperating Roles of Circadian Rhythmicity in Complement-Mediated Vascular Pathology. Int J Mol Sci 2024; 25:12823. [PMID: 39684535 PMCID: PMC11641342 DOI: 10.3390/ijms252312823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Originally discovered in the 1890s, the complement system has traditionally been viewed as a "compliment" to the body's innate and adaptive immune response. However, emerging data have shown that the complement system is a much more complex mechanism within the body involved in regulating inflammation, gene transcription, attraction of macrophages, and many more processes. Sustained complement activation contributes to autoimmunity and chronic inflammation. Pulmonary hypertension is a disease with a poor prognosis and an average life expectancy of 2-3 years that leads to vascular remodeling of the pulmonary arteries; the pulmonary arteries are essential to host homeostasis, as they divert deoxygenated blood from the right ventricle of the heart to the lungs for gas exchange. This review focuses on direct links between the complement system's involvement in pulmonary hypertension, along with autoimmune conditions, and the reliance on the complement system for vascular remodeling processes of the pulmonary artery. Furthermore, circadian rhythmicity is highlighted as the disrupted homeostatic mechanism in the inflammatory consequences in the vascular remodeling within the pulmonary arteries, which could potentially open new therapeutic cues. The current treatment options for pulmonary hypertension are discussed with clinical trials using complement inhibitors and potential therapeutic targets that impact immune cell functions and complement activation, which could alleviate symptoms and block the progression of the disease. Further research on complement's involvement in interstitial lung diseases and pulmonary hypertension could prove beneficial for our understanding of these various diseases and potential treatment options to prevent vascular remodeling of the pulmonary arteries.
Collapse
Affiliation(s)
- Hunter DeVaughn
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Haydn E. Rich
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
| | - Anthony Shadid
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
| | - Priyanka K. Vaidya
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
| | - Marie-Francoise Doursout
- Department of Anesthesiology, Critical Care and Pain Medicine, UTHealth-McGovern Medical School, Houston, TX 77030, USA;
| | - Pooja Shivshankar
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
12
|
Kazmirczak F, Vogel NT, Prisco SZ, Patterson MT, Annis J, Moon RT, Hartweck LM, Mendelson JB, Kim M, Calixto Mancipe N, Markowski T, Higgins L, Guerrero C, Kremer B, Blake ML, Rhodes CJ, Williams JW, Brittain EL, Prins KW. Ferroptosis-Mediated Inflammation Promotes Pulmonary Hypertension. Circ Res 2024; 135:1067-1083. [PMID: 39421926 PMCID: PMC11560515 DOI: 10.1161/circresaha.123.324138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Mitochondrial dysfunction, characterized by impaired lipid metabolism and heightened reactive oxygen species generation, results in lipid peroxidation and ferroptosis. Ferroptosis is an inflammatory mode of cell death that promotes complement activation and macrophage recruitment. In pulmonary arterial hypertension (PAH), pulmonary arterial endothelial cells exhibit cellular phenotypes that promote ferroptosis. Moreover, there is ectopic complement deposition and inflammatory macrophage accumulation in the pulmonary vasculature. However, the effects of ferroptosis inhibition on these pathogenic mechanisms and the cellular landscape of the pulmonary vasculature are incompletely defined. METHODS Multiomics and physiological analyses evaluated how ferroptosis inhibition-modulated preclinical PAH. The impact of adeno-associated virus 1-mediated expression of the proferroptotic protein ACSL (acyl-CoA synthetase long-chain family member) 4 on PAH was determined, and a genetic association study in humans further probed the relationship between ferroptosis and pulmonary hypertension. RESULTS Ferrostatin-1, a small-molecule ferroptosis inhibitor, mitigated PAH severity in monocrotaline rats. RNA-sequencing and proteomics analyses demonstrated ferroptosis was associated with PAH severity. RNA-sequencing, proteomics, and confocal microscopy revealed complement activation and proinflammatory cytokines/chemokines were suppressed by ferrostatin-1. In addition, ferrostatin-1 combatted changes in endothelial, smooth muscle, and interstitial macrophage abundance and gene activation patterns as revealed by deconvolution RNA-sequencing. Ferroptotic pulmonary arterial endothelial cell damage-associated molecular patterns restructured the transcriptomic signature and mitochondrial morphology, promoted the proliferation of pulmonary artery smooth muscle cells, and created a proinflammatory phenotype in monocytes in vitro. Adeno-associated virus 1-Acsl4 induced an inflammatory PAH phenotype in rats. Finally, single-nucleotide polymorphisms in 6 ferroptosis genes identified a potential link between ferroptosis and pulmonary hypertension severity in the Vanderbilt BioVU repository. CONCLUSIONS Ferroptosis promotes PAH through metabolic and inflammatory mechanisms in the pulmonary vasculature.
Collapse
Affiliation(s)
| | - Neal T Vogel
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute (N.T.V., S.Z.P., R.T.M., L.M.H., J.B.M., M.K., B.K., M.L.B., K.W.P.), University of Minnesota, Minneapolis, MN
| | - Sasha Z Prisco
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute (N.T.V., S.Z.P., R.T.M., L.M.H., J.B.M., M.K., B.K., M.L.B., K.W.P.), University of Minnesota, Minneapolis, MN
| | - Michael T Patterson
- Center for Immunology (M.T.P., J.W.W.), University of Minnesota, Minneapolis, MN
| | - Jeffrey Annis
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.A., E.L.B.)
| | - Ryan T Moon
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute (N.T.V., S.Z.P., R.T.M., L.M.H., J.B.M., M.K., B.K., M.L.B., K.W.P.), University of Minnesota, Minneapolis, MN
| | - Lynn M Hartweck
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute (N.T.V., S.Z.P., R.T.M., L.M.H., J.B.M., M.K., B.K., M.L.B., K.W.P.), University of Minnesota, Minneapolis, MN
| | - Jenna B Mendelson
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute (N.T.V., S.Z.P., R.T.M., L.M.H., J.B.M., M.K., B.K., M.L.B., K.W.P.), University of Minnesota, Minneapolis, MN
| | - Minwoo Kim
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute (N.T.V., S.Z.P., R.T.M., L.M.H., J.B.M., M.K., B.K., M.L.B., K.W.P.), University of Minnesota, Minneapolis, MN
| | | | - Todd Markowski
- Department of Biochemistry, Molecular Biology, and Biophysics, Center for Metabolomics and Proteomics (T.M., L.H., C.G.), University of Minnesota, Minneapolis, MN
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology, and Biophysics, Center for Metabolomics and Proteomics (T.M., L.H., C.G.), University of Minnesota, Minneapolis, MN
| | - Candace Guerrero
- Department of Biochemistry, Molecular Biology, and Biophysics, Center for Metabolomics and Proteomics (T.M., L.H., C.G.), University of Minnesota, Minneapolis, MN
| | - Ben Kremer
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute (N.T.V., S.Z.P., R.T.M., L.M.H., J.B.M., M.K., B.K., M.L.B., K.W.P.), University of Minnesota, Minneapolis, MN
| | - Madelyn L Blake
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute (N.T.V., S.Z.P., R.T.M., L.M.H., J.B.M., M.K., B.K., M.L.B., K.W.P.), University of Minnesota, Minneapolis, MN
| | - Christopher J Rhodes
- National Heart and Lung Institute, Imperial College, London, United Kingdom (C.J.R.)
| | - Jesse W Williams
- Center for Immunology (M.T.P., J.W.W.), University of Minnesota, Minneapolis, MN
- Department of Integrative Biology and Physiology (J.W.W.), University of Minnesota, Minneapolis, MN
| | - Evan L Brittain
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.A., E.L.B.)
| | - Kurt W Prins
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute (N.T.V., S.Z.P., R.T.M., L.M.H., J.B.M., M.K., B.K., M.L.B., K.W.P.), University of Minnesota, Minneapolis, MN
| |
Collapse
|
13
|
Mickael C, Jordan M, Posey JN, Tuder RM, Nozik ES, Thurman JM, Stenmark KR, Graham BB, Delaney CA. Activation of platelets and the complement system in mice with Schistosoma-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L661-L668. [PMID: 39254088 PMCID: PMC11563640 DOI: 10.1152/ajplung.00165.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Schistosomiasis-induced pulmonary hypertension (PH) presents a significant global health burden, yet the underlying mechanisms remain poorly understood. Here, we investigate the involvement of platelets and the complement system in the initiation events leading to Schistosoma-induced PH. We demonstrate that Schistosoma exposure leads to thrombocytopenia, platelet accumulation in the lung, and platelet activation. In addition, we observed increased plasma complement anaphylatoxins C3a and C5a, indicative of complement system activation, and elevated platelet expression of C1q, C3, decay activating factor (DAF), and complement C3a and C5a receptors. Our findings suggest the active involvement of platelets in responding to complement system signals induced by Schistosoma exposure and form the basis for future mechanistic studies on how complement may regulate platelet activation and promote the development of Schistosoma-induced PH.NEW & NOTEWORTHY Schistosomiasis-induced pulmonary hypertension (PH) is a significant global health burden, yet the underlying mechanisms remain poorly understood. We demonstrate that Schistosoma exposure leads to platelet accumulation in the lung and platelet activation. We observed increased plasma levels of C3a and C5a, indicative of complement system activation, and elevated expression of platelet complement proteins and receptors. These findings underscore the role of platelets and complement in the inflammatory responses associated with Schistosoma-induced PH.
Collapse
Grants
- K01HL161024 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R25HL146166 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Entelligence Young Investigator Award Entelligence
- Early Career Investigator American Thoracic Society (ATS)
- P01HL152961 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 1R35HL139726 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL135872 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01DK076690 HHS | National Institutes of Health (NIH)
Collapse
Affiliation(s)
- Claudia Mickael
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Mariah Jordan
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Janelle N Posey
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Rubin M Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Eva S Nozik
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Joshua M Thurman
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kurt R Stenmark
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, United States
| | - Brian B Graham
- Department of Medicine, University of California, San Francisco, California, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, United States
| | - Cassidy A Delaney
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
14
|
Zhang S, Wang J, Wen J, Xin Q, Wang J, Ju Z, Luan Y. MSC-derived exosomes attenuates pulmonary hypertension via inhibiting pulmonary vascular remodeling. Exp Cell Res 2024; 442:114256. [PMID: 39299482 DOI: 10.1016/j.yexcr.2024.114256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a serious cardiopulmonary disease with significant morbidity and mortality. Vascular obstruction leads to a continuous increase in pulmonary vascular resistance, vascular remodeling, and right ventricular hypertrophy and failure, which are the main pathological features of PH. Currently, the treatments for PH are very limited, so new methods are urgently needed. Msenchymal stem cells-derived exosomes have been shown to have significant therapeutic effects in PH, however, the mechanism still very blurry. Here, we investigated the possible mechanism by which umbilical cord mesenchymal stem cell-derived exosomes (hUC-MSC-EXO) inhibited monocrotaline (MCT)-induced pulmonary vascular remodeling in a rat model of PH by regulating the NF-κB/BMP signaling pathway. Our data revealed that hUC-MSC-EXO could significantly attenuate MCT-induced PH and right ventricular hypertrophy. Moreover, the protein expression level of BMPR2, BMP-4, BMP-9 and ID1 was significantly increased, but NF-κB p65, p-NF-κB-p65 and BMP antagonists Gremlin-1 was increased in vitro and vivo. Collectively, this study revealed that the mechanism of hUC-MSC-EXO attenuates pulmonary hypertension may be related to inhibition of NF-κB signaling to further activation of BMP signaling. The present study provided a promising therapeutic strategy for PH vascular remodeling.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Emergency, The Second Hospital of Shandong University, PR China
| | - Junfu Wang
- College of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, PR China
| | - Jiang Wen
- Institute of Medical Sciences, The Second Hospital of Shandong University, No. 247, Beiyuan Dajie, Jinan, 250000, PR China
| | - Qian Xin
- Institute of Medical Sciences, The Second Hospital of Shandong University, No. 247, Beiyuan Dajie, Jinan, 250000, PR China
| | - Jue Wang
- Institute of Medical Sciences, The Second Hospital of Shandong University, No. 247, Beiyuan Dajie, Jinan, 250000, PR China
| | - Zhiye Ju
- Department of Ultrasound, Shandong Provincial Public Health Clinical Center, No. 46, Lishan Road, Jinan, 250000, PR China.
| | - Yun Luan
- Institute of Medical Sciences, The Second Hospital of Shandong University, No. 247, Beiyuan Dajie, Jinan, 250000, PR China.
| |
Collapse
|
15
|
Zhou QY, Liu W, Gong SX, Tian Y, Ma XF, Wang AP. Pulmonary artery smooth muscle cell pyroptosis promotes the proliferation of PASMCs by paracrine IL‑1β and IL‑18 in monocrotaline‑induced pulmonary arterial hypertensive rats. Exp Ther Med 2024; 28:394. [PMID: 39171148 PMCID: PMC11336803 DOI: 10.3892/etm.2024.12683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a common vascular disease, and pulmonary vascular remodeling is a pivotal pathophysiological mechanism of PAH. Major pathological changes of pulmonary arterial remodeling, including proliferation, hypertrophy and enhanced secretory activity, can occur in pulmonary artery smooth muscle cells (PASMCs). Multiple active factors and cytokines play important roles in PAH. However, the regulatory mechanisms of the active factors and cytokines in PAH remain unclear. The present study aimed to reveal the crucial role of PASMC pyroptosis in PAH and to elucidate the intrinsic mechanisms. To establish the PAH rat models, Sprague-Dawley rats were injected intraperitoneally with monocrotaline (MCT) at a dose of 60 mg/kg. The expression of proteins and interleukins were detected by western blotting and ELISA assay. The results indicated that the pyroptosis of PASMCs is significantly increased in MCT-induced PAH rats. Notably, pyroptotic PASMCs can secret IL-1β and IL-18 to promote the proliferation of PASMCs. On this basis, inhibiting the secretion of IL-1β and IL-18 can markedly inhibit PASMC proliferation. Collectively, the findings of the present study indicate a critical role for PASMC pyroptosis in MCT-induced PAH rats, prompting a new preventive and therapeutic strategy for PAH.
Collapse
Affiliation(s)
- Qin-Yi Zhou
- Department of Cardiology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421002, P.R. China
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wang Liu
- Department of Cardiology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421002, P.R. China
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ying Tian
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiao-Feng Ma
- Department of Cardiology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421002, P.R. China
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
16
|
Oldham WM. Exploring the Molecular Signatures of Pulmonary Vascular Lesions. Am J Respir Crit Care Med 2024; 210:256-257. [PMID: 38780073 PMCID: PMC11348971 DOI: 10.1164/rccm.202404-0695ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Affiliation(s)
- William M Oldham
- Department of Medicine Brigham and Women's Hospital and Harvard Medical School Boston, Massachusetts
| |
Collapse
|
17
|
Tuder RM, Gandjeva A, Williams S, Kumar S, Kheyfets VO, Hatton-Jones KM, Starr JR, Yun J, Hong J, West NP, Stenmark KR. Digital Spatial Profiling Identifies Distinct Molecular Signatures of Vascular Lesions in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2024; 210:329-342. [PMID: 38568479 PMCID: PMC11348978 DOI: 10.1164/rccm.202307-1310oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/03/2024] [Indexed: 06/09/2024] Open
Abstract
Rationale: Idiopathic pulmonary arterial hypertension (IPAH) is characterized by extensive pulmonary vascular remodeling caused by plexiform and obliterative lesions, media hypertrophy, inflammatory cell infiltration, and alterations of the adventitia. Objective: We sought to test the hypothesis that microscopic IPAH vascular lesions express unique molecular profiles, which collectively are different from control pulmonary arteries. Methods: We used digital spatial transcriptomics to profile the genomewide differential transcriptomic signature of key pathological lesions (plexiform, obliterative, intima+media hypertrophy, and adventitia) in IPAH lungs (n = 11) and compared these data with the intima+media hypertrophy and adventitia of control pulmonary artery (n = 5). Measurements and Main Results: We detected 8,273 transcripts in the IPAH lesions and control lung pulmonary arteries. Plexiform lesions and IPAH adventitia exhibited the greatest number of differentially expressed genes when compared with intima+media hypertrophy and obliterative lesions. Plexiform lesions in IPAH showed enrichment for 1) genes associated with transforming growth factor β signaling and 2) mutated genes affecting the extracellular matrix and endothelial-mesenchymal transformation. Plexiform lesions and IPAH adventitia showed upregulation of genes involved in immune and IFN signaling, coagulation, and complement pathways. Cellular deconvolution indicated variability in the number of vascular and inflammatory cells between IPAH lesions, which underlies the differential transcript profiling. Conclusions: IPAH lesions express unique molecular transcript profiles enriched for pathways involving pathogenetic pathways, including genetic disease drivers, innate and acquired immunity, hypoxia sensing, and angiogenesis signaling. These data provide a rich molecular-structural framework in IPAH vascular lesions that inform novel biomarkers and therapeutic targets in this highly morbid disease.
Collapse
Affiliation(s)
- Rubin M. Tuder
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Department of Medicine
- Program in Translational Lung Research, Division of Pulmonary and Critical Care Sciences, Department of Medicine
| | - Aneta Gandjeva
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Department of Medicine
- Program in Translational Lung Research, Division of Pulmonary and Critical Care Sciences, Department of Medicine
| | - Sarah Williams
- Queensland Cyber Infrastructure Foundation, St. Lucia, Queensland, Australia
- Griffith Institute for Drug Discovery
| | - Sushil Kumar
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Department of Medicine
| | - Vitaly O. Kheyfets
- Program in Translational Lung Research, Division of Pulmonary and Critical Care Sciences, Department of Medicine
- Division of Pediatric Critical Care Medicine and Cardiovascular Pulmonary Research Laboratory, and
- Department of Biomedical Informatics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado
| | | | - Jacqueline R. Starr
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | - Jeong Yun
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | - Jason Hong
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Nicholas P. West
- Menzies Health Institute, and
- School of Pharmacy and Medical Science, Griffith University, Nathan, Queensland, Australia
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Department of Medicine
- Division of Pediatric Critical Care Medicine and Cardiovascular Pulmonary Research Laboratory, and
| |
Collapse
|
18
|
Wang G, Gan X, Chen X, Zeng Q, Zhang Z, Li J, Guo Z, Hou LC, Xu J, Kang H, Guo F. Genomic Insights into the Role of TOP Gene Family in Soft-Tissue Sarcomas: Implications for Prognosis and Therapy. Adv Biol (Weinh) 2024; 8:e2300678. [PMID: 38837283 DOI: 10.1002/adbi.202300678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/19/2024] [Indexed: 06/07/2024]
Abstract
This study focuses on the role of topoisomerases (TOPs) in sarcomas (SARCs), highlighting TOPs' influence on sarcoma prognosis through mRNA expression, genetic mutations, immune infiltration, and DNA methylation analysis using transcriptase sequencing and other techniques. The findings indicate that TOP gene mutations correlate with increased inflammation, immune cell infiltration, DNA repair abnormalities, and mitochondrial fusion genes alterations, all of which negatively affect sarcoma prognosis. Abnormal TOP expression may independently affect sarcoma patients' survival. Cutting-edge genomic tools such as Oncomine, gene expression profiling interactive analysis (GEPIA), and cBio Cancer Genomics Portal (cBioPortal) are utilized to explore the TOP gene family (TOP1/1MT/2A/2B/3A/3B) in soft-tissue sarcomas (STSs). This in-depth analysis reveals a notable upregulation of TOP mRNA in STS patients arcoss various SARC subtypes, French Federation Nationale des Centres de Lutte Contre le Cancer classification (FNCLCC) grades, and specific molecular profiles correlating with poorer clinical outcomes. Furthermore, this investigation identifies distinct patterns of immune cell infiltration, genetic mutations, and somatic copy number variations linked to TOP genes that inversely affect patient survival rates. These findings underscore the diagnostic and therapeutic relevance of the TOP gene suite in STSs.
Collapse
Affiliation(s)
- Genchun Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xin Gan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qunqian Zeng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhuoran Zhang
- The Second Clinical School of Hubei University of Medicine, Shiyan City, Hubei, 442000, China
| | - Jiantao Li
- The Fifth Clinical School of Hubei University of Medicine, Shiyan City, Hubei, 442000, China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Liang Cai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - JingTing Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hao Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| |
Collapse
|
19
|
Li J, Shi S, Yan W, Shen Y, Liu C, Xu J, Xu G, Lu L, Song H. Preliminary Mechanism of Glial Maturation Factor β on Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. Adv Biol (Weinh) 2024; 8:e2300623. [PMID: 38640923 DOI: 10.1002/adbi.202300623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/22/2024] [Indexed: 04/21/2024]
Abstract
Recent evidence suggests that glia maturation factor β (GMFβ) is important in the pathogenesis of pulmonary arterial hpertension (PAH), but the underlying mechanism is unknown. To clarify whether GMFβ can be involved in pulmonary vascular remodeling and to explore the role of the IL-6-STAT3 pathway in this process, the expression of GMFβ in PAH rats is examined and the expression of downstream molecules including periostin (POSTN) and interleukin-6 (IL-6) is measured using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The location and expression of POSTN is also tested in PAH rats using immunofluorescence. It is proved that GMFβ is upregulated in the lungs of PAH rats. Knockout GMFβ alleviated the MCT-PAH by reducing right ventricular systolic pressure (RVSP), mean pulmonary arterial pressure (mPAP), and pulmonary vascular remodeling. Moreover, the inflammation of the pulmonary vasculature is ameliorated in PAH rats with GMFβ absent. In addition, the IL-6-STAT3 signaling pathway is activated in PAH; knockout GMFβ reduced POSTN and IL-6 production by inhibiting the IL-6-STAT3 signaling pathway. Taken together, these findings suggest that knockout GMFβ ameliorates PAH in rats by inhibiting the IL-6-STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jie Li
- Department of Rehabilitation Medicine, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Street, Muping District, Yantai, 264199, China
| | - Si Shi
- Department of Ophthalmology, Shanghai Tongji Hospital affiliated to Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xincun Rd, Putuo District, Shanghai, 200072, China
| | - Wenwen Yan
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University 389 Xincun Rd, Putuo District, Shanghai, 200065, China
| | - Yuqin Shen
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University 389 Xincun Rd, Putuo District, Shanghai, 200065, China
| | - Caiying Liu
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 1239 Siping Rd, Shanghai, 200092, China
| | - Jinyuan Xu
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 1239 Siping Rd, Shanghai, 200092, China
| | - Guotong Xu
- Department of Pharmacology, Tongji University School of Medicine, 1239 Siping Rd, Shanghai, 200092, China
| | - Lixia Lu
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 1239 Siping Rd, Shanghai, 200092, China
| | - Haoming Song
- Department of General Practice, Tongji Hospital, School of Medicine, Tongji University 389 Xincun Rd, Putuo District, Shanghai, 200065, China
| |
Collapse
|
20
|
Kumar S, Mickael C, Kumar R, Prasad RR, Campbell NV, Zhang H, Li M, McKeon BA, Allen TE, Graham BB, Yu YRA, Stenmark KR. Single cell transcriptomic analyses reveal diverse and dynamic changes of distinct populations of lung interstitial macrophages in hypoxia-induced pulmonary hypertension. Front Immunol 2024; 15:1372959. [PMID: 38690277 PMCID: PMC11059952 DOI: 10.3389/fimmu.2024.1372959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Hypoxia is a common pathological driver contributing to various forms of pulmonary vascular diseases leading to pulmonary hypertension (PH). Pulmonary interstitial macrophages (IMs) play pivotal roles in immune and vascular dysfunction, leading to inflammation, abnormal remodeling, and fibrosis in PH. However, IMs' response to hypoxia and their role in PH progression remain largely unknown. We utilized a murine model of hypoxia-induced PH to investigate the repertoire and functional profiles of IMs in response to acute and prolonged hypoxia, aiming to elucidate their contributions to PH development. Methods We conducted single-cell transcriptomic analyses to characterize the repertoire and functional profiles of murine pulmonary IMs following exposure to hypobaric hypoxia for varying durations (0, 1, 3, 7, and 21 days). Hallmark pathways from the mouse Molecular Signatures Database were utilized to characterize the molecular function of the IM subpopulation in response to hypoxia. Results Our analysis revealed an early acute inflammatory phase during acute hypoxia exposure (Days 1-3), which was resolved by Day 7, followed by a pro-remodeling phase during prolonged hypoxia (Days 7-21). These phases were marked by distinct subpopulations of IMs: MHCIIhiCCR2+EAR2+ cells characterized the acute inflammatory phase, while TLF+VCAM1hi cells dominated the pro-remodeling phase. The acute inflammatory phase exhibited enrichment in interferon-gamma, IL-2, and IL-6 pathways, while the pro-remodeling phase showed dysregulated chemokine production, hemoglobin clearance, and tissue repair profiles, along with activation of distinct complement pathways. Discussion Our findings demonstrate the existence of distinct populations of pulmonary interstitial macrophages corresponding to acute and prolonged hypoxia exposure, pivotal in regulating the inflammatory and remodeling phases of PH pathogenesis. This understanding offers potential avenues for targeted interventions, tailored to specific populations and distinct phases of the disease. Moreover, further identification of triggers for pro-remodeling IMs holds promise in unveiling novel therapeutic strategies for pulmonary hypertension.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Pediatrics and Cardiovascular Pulmonary Research Laboratory, University of Colorado School of Medicine, Aurora, CO, United States
| | - Claudia Mickael
- Division of Pulmonary Sciences and Critical Care Medicine, Cardiovascular Pulmonary Research Laboratory, University of Colorado School of Medicine, Aurora, CO, United States
| | - Rahul Kumar
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Ram Raj Prasad
- Department of Pediatrics and Cardiovascular Pulmonary Research Laboratory, University of Colorado School of Medicine, Aurora, CO, United States
| | - Nzali V Campbell
- Department of Pediatrics and Cardiovascular Pulmonary Research Laboratory, University of Colorado School of Medicine, Aurora, CO, United States
| | - Hui Zhang
- Department of Pediatrics and Cardiovascular Pulmonary Research Laboratory, University of Colorado School of Medicine, Aurora, CO, United States
| | - Min Li
- Department of Pediatrics and Cardiovascular Pulmonary Research Laboratory, University of Colorado School of Medicine, Aurora, CO, United States
| | - B Alexandre McKeon
- Department of Pediatrics and Cardiovascular Pulmonary Research Laboratory, University of Colorado School of Medicine, Aurora, CO, United States
| | - Thaddeus E Allen
- Division of Pulmonary Sciences and Critical Care Medicine, Cardiovascular Pulmonary Research Laboratory, University of Colorado School of Medicine, Aurora, CO, United States
| | - Brian B Graham
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Yen-Rei A Yu
- Division of Pulmonary Sciences and Critical Care Medicine, Cardiovascular Pulmonary Research Laboratory, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kurt R Stenmark
- Department of Pediatrics and Cardiovascular Pulmonary Research Laboratory, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
21
|
Guo J, Cui B, Zheng J, Yu C, Zheng X, Yi L, Zhang S, Wang K. Platelet-derived microparticles and their cargos: The past, present and future. Asian J Pharm Sci 2024; 19:100907. [PMID: 38623487 PMCID: PMC11016590 DOI: 10.1016/j.ajps.2024.100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 04/17/2024] Open
Abstract
All eukaryotic cells can secrete extracellular vesicles, which have a double-membrane structure and are important players in the intercellular communication involved in a variety of important biological processes. Platelets form platelet-derived microparticles (PMPs) in response to activation, injury, or apoptosis. This review introduces the origin, pathway, and biological functions of PMPs and their importance in physiological and pathological processes. In addition, we review the potential applications of PMPs in cancer, vascular homeostasis, thrombosis, inflammation, neural regeneration, biomarkers, and drug carriers to achieve targeted drug delivery. In addition, we comprehensively report on the origin, biological functions, and applications of PMPs. The clinical transformation, high heterogeneity, future development direction, and limitations of the current research on PMPs are also discussed in depth. Evidence has revealed that PMPs play an important role in cell-cell communication, providing clues for the development of PMPs as carriers for relevant cell-targeted drugs. The development history and prospects of PMPs and their cargos are explored in this guidebook.
Collapse
Affiliation(s)
- Jingwen Guo
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001 China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Bufeng Cui
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001 China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Jie Zheng
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001 China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Chang Yu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xuran Zheng
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Lixin Yi
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Simeng Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Keke Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001 China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
22
|
Sanges S, Tian W, Dubucquoi S, Chang JL, Collet A, Launay D, Nicolls MR. B-cells in pulmonary arterial hypertension: friend, foe or bystander? Eur Respir J 2024; 63:2301949. [PMID: 38485150 PMCID: PMC11043614 DOI: 10.1183/13993003.01949-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/01/2024] [Indexed: 04/22/2024]
Abstract
There is an unmet need for new therapeutic strategies that target alternative pathways to improve the prognosis of patients with pulmonary arterial hypertension (PAH). As immunity has been involved in the development and progression of vascular lesions in PAH, we review the potential contribution of B-cells in its pathogenesis and evaluate the relevance of B-cell-targeted therapies. Circulating B-cell homeostasis is altered in PAH patients, with total B-cell lymphopenia, abnormal subset distribution (expansion of naïve and antibody-secreting cells, reduction of memory B-cells) and chronic activation. B-cells are recruited to the lungs through local chemokine secretion, and activated by several mechanisms: 1) interaction with lung vascular autoantigens through cognate B-cell receptors; 2) costimulatory signals provided by T follicular helper cells (interleukin (IL)-21), type 2 T helper cells and mast cells (IL-4, IL-6 and IL-13); and 3) increased survival signals provided by B-cell activating factor pathways. This activity results in the formation of germinal centres within perivascular tertiary lymphoid organs and in the local production of pathogenic autoantibodies that target the pulmonary vasculature and vascular stabilisation factors (including angiotensin-II/endothelin-1 receptors and bone morphogenetic protein receptors). B-cells also mediate their effects through enhanced production of pro-inflammatory cytokines, reduced anti-inflammatory properties by regulatory B-cells, immunoglobulin (Ig)G-induced complement activation, and IgE-induced mast cell activation. Precision-medicine approaches targeting B-cell immunity are a promising direction for select PAH conditions, as suggested by the efficacy of anti-CD20 therapy in experimental models and a trial of rituximab in systemic sclerosis-associated PAH.
Collapse
Affiliation(s)
- Sébastien Sanges
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), F-59000 Lille, France
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-first authorship
| | - Wen Tian
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-first authorship
| | - Sylvain Dubucquoi
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Institut d'Immunologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Jason L Chang
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Aurore Collet
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Institut d'Immunologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - David Launay
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), F-59000 Lille, France
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-last authorship
| | - Mark R Nicolls
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-last authorship
| |
Collapse
|
23
|
Zuo Y, Li B, Gao M, Xiong R, He R, Li N, Geng Q. Novel insights and new therapeutic potentials for macrophages in pulmonary hypertension. Respir Res 2024; 25:147. [PMID: 38555425 PMCID: PMC10981837 DOI: 10.1186/s12931-024-02772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
Inflammation and immune processes underlie pulmonary hypertension progression. Two main different activated phenotypes of macrophages, classically activated M1 macrophages and alternatively activated M2 macrophages, are both involved in inflammatory processes related to pulmonary hypertension. Recent advances suggest that macrophages coordinate interactions among different proinflammatory and anti-inflammatory mediators, and other cellular components such as smooth muscle cells and fibroblasts. In this review, we summarize the current literature on the role of macrophages in the pathogenesis of pulmonary hypertension, including the origin of pulmonary macrophages and their response to triggers of pulmonary hypertension. We then discuss the interactions among macrophages, cytokines, and vascular adventitial fibroblasts in pulmonary hypertension, as well as the potential therapeutic benefits of macrophages in this disease. Identifying the critical role of macrophages in pulmonary hypertension will contribute to a comprehensive understanding of this pathophysiological abnormality, and may provide new perspectives for pulmonary hypertension management.
Collapse
Affiliation(s)
- Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Boyang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Minglang Gao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
24
|
Dai L, Chen Y, Wu J, He Z, Zhang Y, Zhang W, Xie Y, Zeng H, Zhong X. A novel complement C3 inhibitor CP40-KK protects against experimental pulmonary arterial hypertension via an inflammasome NLRP3 associated pathway. J Transl Med 2024; 22:164. [PMID: 38365806 PMCID: PMC10870435 DOI: 10.1186/s12967-023-04741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/20/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary disease characterized by complement dependent and proinflammatory activation of macrophages. However, effective treatment for complement activation in PAH is lacking. We aimed to explore the effect and mechanism of CP40-KK (a newly identified analog of selective complement C3 inhibitor CP40) in the PAH model. METHODS We used western blotting, immunohistochemistry, and immunofluorescence staining of lung tissues from the monocrotaline (MCT)-induced rat PAH model to study macrophage infiltration, NLPR3 inflammasome activation, and proinflammatory cytokines (IL-1β and IL-18) release. Surface plasmon resonance (SPR), ELISA, and CH50 assays were used to test the affinity between CP40-KK and rat/human complement C3. CP40-KK group rats only received CP40-KK (2 mg/kg) by subcutaneous injection at day 15 to day 28 continuously. RESULTS C3a was significantly upregulated in the plasma of MCT-treated rats. SPR, ELISA, and CH50 assays revealed that CP40-KK displayed similar affinity binding to human and rat complement C3. Pharmacological inhibition of complement C3 cleavage (CP40-KK) could ameliorate MCT-induced NLRP3 inflammasome activity, pulmonary vascular remodeling, and right ventricular hypertrophy. Mechanistically, increased proliferation of pulmonary arterial smooth muscle cells is closely associated with macrophage infiltration, NLPR3 inflammasome activation, and proinflammatory cytokines (IL-1β and IL-18) release. Besides, C3a enhanced IL-1β activity in macrophages and promoted pulmonary arterial smooth muscle cell proliferation in vitro. CONCLUSION Our findings suggest that CP40-KK treatment was protective in the MCT-induced rat PAH model, which might serve as a therapeutic option for PAH.
Collapse
Affiliation(s)
- Lei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Yu Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Jinhua Wu
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530000, Guangxi, China
| | - Zhen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Yueqi Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Wenjun Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Yang Xie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China.
| | - Xiaodan Zhong
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China.
| |
Collapse
|
25
|
Piao C, Zhang WM, Deng J, Zhou M, Liu TT, Zheng S, Jia LX, Song WC, Liu Y, Du J. Activation of the alternative complement pathway modulates inflammation in thoracic aortic aneurysm/dissection. Am J Physiol Cell Physiol 2024; 326:C647-C658. [PMID: 38189133 DOI: 10.1152/ajpcell.00210.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/07/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024]
Abstract
Thoracic aortic aneurysm/dissection (TAAD) is a lethal vascular disease, and several pathological factors participate in aortic medial degeneration. We previously discovered that the complement C3a-C3aR axis in smooth muscle cells promotes the development of thoracic aortic dissection (TAD) through regulation of matrix metalloproteinase 2. However, discerning the specific complement pathway that is activated and elucidating how inflammation of the aortic wall is initiated remain unknown. We ascertained that the plasma levels of C3a and C5a were significantly elevated in patients with TAD and that the levels of C3a, C4a, and C5a were higher in acute TAD than in chronic TAD. We also confirmed the activation of the complement in a TAD mouse model. Subsequently, knocking out Cfb (Cfb) or C4 in mice with TAD revealed that the alternative pathway and Cfb played a significant role in the TAD process. Activation of the alternative pathway led to generation of the anaphylatoxins C3a and C5a, and knocking out their receptors reduced the recruitment of inflammatory cells to the aortic wall. Moreover, we used serum from wild-type mice or recombinant mice Cfb as an exogenous source of Cfb to treat Cfb KO mice and observed that it exacerbated the onset and rupture of TAD. Finally, we knocked out Cfb in the FBN1C1041G/+ Marfan-syndrome mice and showed that the occurrence of TAA was reduced. In summary, the alternative complement pathway promoted the development of TAAD by recruiting infiltrating inflammatory cells. Targeting the alternative pathway may thus constitute a strategy for preventing the development of TAAD.NEW & NOTEWORTHY The alternative complement pathway promoted the development of TAAD by recruiting infiltrating inflammatory cells. Targeting the alternative pathway may thus constitute a strategy for preventing the development of TAAD.
Collapse
Affiliation(s)
- Chunmei Piao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Wen-Mei Zhang
- Department of Respiratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jing Deng
- School of Basic Medical Sciences, Yanbian University, Yanji, China
| | - Mei Zhou
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Ting-Ting Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Shuai Zheng
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Li-Xin Jia
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Wen-Chao Song
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Yan Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
26
|
Detsika MG, Palamaris K, Dimopoulou I, Kotanidou A, Orfanos SE. The complement cascade in lung injury and disease. Respir Res 2024; 25:20. [PMID: 38178176 PMCID: PMC10768165 DOI: 10.1186/s12931-023-02657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The complement system is an important arm of immune defense bringing innate and adaptive immunity. Although originally regarded as a major complementary defense mechanism against pathogens, continuously emerging evidence has uncovered a central role of this complex system in several diseases including lung pathologies. MAIN BODY Complement factors such as anaphylatoxins C3a and C5a, their receptors C3aR, C5aR and C5aR2 as well as complement inhibitory proteins CD55, CD46 and CD59 have been implicated in pathologies such as the acute respiratory distress syndrome, pneumonia, chronic obstructive pulmonary disease, asthma, interstitial lung diseases, and lung cancer. However, the exact mechanisms by which complement factors induce these diseases remain unclear. Several complement-targeting monoclonal antibodies are reported to treat lung diseases. CONCLUSIONS The complement system contributes to the progression of the acute and chronic lung diseases. Better understanding of the underlying mechanisms will provide groundwork to develop new strategy to target complement factors for treatment of lung diseases.
Collapse
Affiliation(s)
- M G Detsika
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece.
| | - K Palamaris
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - I Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece
| | - A Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece
| | - S E Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece.
| |
Collapse
|
27
|
Li M, Pan W, Tian D, Chen D, Zhang X, Zhang Y, Chen S, Zhou D, Ge J. Diagnostic Value of Serum Galectin-3 Binding Protein Level in Patients with Pulmonary Arterial Hypertension. Curr Vasc Pharmacol 2024; 22:67-77. [PMID: 38038005 DOI: 10.2174/0115701611268078231010072521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) still lacks effective biomarkers to assist in its diagnosis and prognosis. Galectin-3 binding protein (Gal-3BP) plays a role in immune and inflammatory diseases. OBJECTIVE This study aimed to evaluate Gal-3BP as a prognostic and predictive factor in patients with PAH. METHODS From January 2017 to December 2019, we enrolled 167 consecutive PAH patients and 58 healthy controls. Right heart catheterization (RHC) was used to diagnose PAH. Serum Gal-3BP levels were measured by high-sensitivity human enzyme-linked immunosorbent assay (ELISA). RESULTS Serum Gal-3BP levels in the PAH group were significantly higher compared with the control group (4.87±2.09 vs 2.22±0.86 μg/mL, p<0.001). Gal-3BP level was correlated with several hemodynamic parameters obtained from RHC (p<0.001). Multivariate linear regression analysis showed that Gal-3BP was a risk factor for PAH (odds ratio (OR)=2.947, 95% CI: 1.821-4.767, p<0.001). The optimal cut-off value of serum Gal-3BP level for predicting PAH was 2.89 μg/mL (area under the curve (AUC)=0.860, 95 % CI: 0.811-0.910, p<0.001). Kaplan-Meier analysis showed that Gal-3BP levels above the median (4.87 μg/mL) were associated with an increased risk of death in patients with PAH (hazard ratio (HR)=8.868, 95 % CI: 3.631-21.65, p<0.0001). Cox multivariate risk regression analysis showed that Gal-3BP was a risk factor for death in PAH patients (HR=2.779, 95 % CI: 1.823-4.237, p<0.001). CONCLUSION Serum Gal-3BP levels were increased in patients with PAH, and levels of Gal-3BP were associated with the severity of PAH. Gal-3BP might have predictive value for the diagnosis and prognosis of PAH.
Collapse
Affiliation(s)
- Mingfei Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Wenzhi Pan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Dan Tian
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dandan Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xiaochun Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yuan Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Shasha Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Daxin Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
28
|
D'Addario CA, Matsumura S, Kitagawa A, Lainer GM, Zhang F, D'silva M, Khan MY, Froogh G, Gruzdev A, Zeldin DC, Schwartzman ML, Gupte SA. Global and endothelial G-protein coupled receptor 75 (GPR75) knockout relaxes pulmonary artery and mitigates hypoxia-induced pulmonary hypertension. Vascul Pharmacol 2023; 153:107235. [PMID: 37742819 PMCID: PMC10841449 DOI: 10.1016/j.vph.2023.107235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
RATIONALE Pulmonary hypertension (PH) is a multifactorial disease with a poor prognosis and inadequate treatment options. We found two-fold higher expression of the orphan G-Protein Coupled Receptor 75 (GPR75) in leukocytes and pulmonary arterial smooth muscle cells from idiopathic PH patients and from lungs of C57BL/6 mice exposed to hypoxia. We therefore postulated that GPR75 signaling is critical to the pathogenesis of PH. METHODS To test this hypothesis, we exposed global (Gpr75-/-) and endothelial cell (EC) GPR75 knockout (EC-Gpr75-/-) mice and wild-type (control) mice to hypoxia (10% oxygen) or normal atmospheric oxygen for 5 weeks. We then recorded echocardiograms and performed right heart catheterizations. RESULTS Chronic hypoxia increased right ventricular systolic and diastolic pressures in wild-type mice but not Gpr75-/- or EC-Gpr75-/- mice. In situ hybridization and qPCR results revealed that Gpr75 expression was increased in the alveoli, airways and pulmonary arteries of mice exposed to hypoxia. In addition, levels of chemokine (CC motif) ligand 5 (CCL5), a low affinity ligand of GPR75, were increased in the lungs of wild-type, but not Gpr75-/-, mice exposed to hypoxia, and CCL5 enhanced hypoxia-induced contraction of intra-lobar pulmonary arteries in a GPR75-dependent manner. Gpr75 knockout also increased pulmonary cAMP levels and decreased contraction of intra-lobar pulmonary arteries evoked by endothelin-1 or U46619 in cAMP-protein kinase A-dependent manner. CONCLUSION These results suggest GPR75 has a significant role in the development of hypoxia-induced PH.
Collapse
Affiliation(s)
| | - Shun Matsumura
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Atsushi Kitagawa
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Gregg M Lainer
- Department of Cardiology, and Heart and Vascular Institute, Westchester Medical Center and New York Medical College, Valhalla, NY 10595, USA
| | - Frank Zhang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Melinee D'silva
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Mohammad Y Khan
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Ghezal Froogh
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Artiom Gruzdev
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Darryl C Zeldin
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
29
|
Ding Y, Ou Y, Yan H, Liu F, Li H, Li P, Xie G, Cui X, Guo W. Uncovering the Neural Correlates of Anhedonia Subtypes in Major Depressive Disorder: Implications for Intervention Strategies. Biomedicines 2023; 11:3138. [PMID: 38137360 PMCID: PMC10740577 DOI: 10.3390/biomedicines11123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Major depressive disorder (MDD) represents a serious public health concern, negatively affecting individuals' quality of life and making a substantial contribution to the global burden of disease. Anhedonia is a core symptom of MDD and is associated with poor treatment outcomes. Variability in anhedonia components within MDD has been observed, suggesting heterogeneity in psychopathology across subgroups. However, little is known about anhedonia subgroups in MDD and their underlying neural correlates across subgroups. To address this question, we employed a hierarchical cluster analysis based on Temporal Experience of Pleasure Scale subscales in 60 first-episode, drug-naive MDD patients and 32 healthy controls. Then we conducted a connectome-wide association study and whole-brain voxel-wise functional analyses for identified subgroups. There were three main findings: (1) three subgroups with different anhedonia profiles were identified using a data mining approach; (2) several parts of the reward network (especially pallidum and dorsal striatum) were associated with anticipatory and consummatory pleasure; (3) different patterns of within- and between-network connectivity contributed to the disparities of anhedonia profiles across three MDD subgroups. Here, we show that anhedonia in MDD is not uniform and can be categorized into distinct subgroups, and our research contributes to the understanding of neural underpinnings, offering potential treatment directions. This work emphasizes the need for tailored approaches in the complex landscape of MDD. The identification of homogeneous, stable, and neurobiologically valid MDD subtypes could significantly enhance our comprehension and management of this multifaceted condition.
Collapse
Affiliation(s)
- Yudan Ding
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.D.); (H.Y.); (G.X.)
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.D.); (H.Y.); (G.X.)
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.D.); (H.Y.); (G.X.)
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China;
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, China;
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar 161006, China;
| | - Guangrong Xie
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.D.); (H.Y.); (G.X.)
| | - Xilong Cui
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.D.); (H.Y.); (G.X.)
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.D.); (H.Y.); (G.X.)
| |
Collapse
|
30
|
Wang GC, Gan X, Zeng YQ, Chen X, Kang H, Huang SW, Hu WH. The Role of NCS1 in Immunotherapy and Prognosis of Human Cancer. Biomedicines 2023; 11:2765. [PMID: 37893139 PMCID: PMC10604305 DOI: 10.3390/biomedicines11102765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The Neural Calcium Sensor1 (NCS1) is a crucial protein that binds to Ca2+ and is believed to play a role in regulating tumor invasion and cell proliferation. However, the role of NCS1 in immune infiltration and cancer prognosis is still unknown. Our study aimed to explore the expression profile, immune infiltration pattern, prognostic value, biological function, and potential compounds targeting NCS1 using public databases. High expression of NCS1 was detected by immune histochemical staining in LIHC (Liver hepatocellular carcinoma), BRCA (Breast invasive carcinoma), KIRC (Kidney renal clear cell carcinoma), and SKCM (Skin Cutaneous Melanoma). The expression of NCS1 in cancer was determined by TCGA (The Cancer Genome Atlas Program), GTEx (The Genotype-Tissue Expression), the Kaplan-Meier plotter, GEO (Gene Expression Omnibus), GEPIA2.0 (Gene Expression Profiling Interactive Analysis 2.0), HPA (The Human Protein Atlas), UALCAN, TIMER2.0, TISIDB, Metascape, Drugbank, chEMBL, and ICSDB databases. NCS1 has genomic mutations as well as aberrant DNA methylation in multiple cancers compared to normal tissues. Also, NCS1 was significantly different in the immune microenvironment, tumor mutational burden (TMB), microsatellite instability (MSI), and immune infiltrate-associated cells in different cancers, which could be used for the typing of immune and molecular subtypes of cancer and the presence of immune checkpoint resistance in several cancers. Univariate regression analysis, multivariate regression analysis, and gene enrichment analysis to construct prognostic models revealed that NCS1 is involved in immune regulation and can be used as a prognostic biomarker for SKCM, LIHC, BRCA, COAD, and KIRC. These results provide clues from a bioinformatic perspective and highlight the importance of NCS1 in a variety of cancers.
Collapse
Affiliation(s)
- Gen-Chun Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Gan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun-Qian Zeng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuai-Wen Huang
- Department of General Practice, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei-Hua Hu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
31
|
Sakarin S, Rungsipipat A, Surachetpong SD. Perivascular inflammatory cells and their association with pulmonary arterial remodelling in dogs with pulmonary hypertension due to myxomatous mitral valve disease. Vet Res Commun 2023; 47:1505-1521. [PMID: 36976445 DOI: 10.1007/s11259-023-10106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Pulmonary hypertension (PH), an increase in pulmonary arterial pressure (PAP), may occur in dogs affected with myxomatous mitral valve disease (MMVD). Recent studies suggest that an accumulation of perivascular inflammatory cells may be involved with medial thickening which is a sign of the pulmonary artery remodelling in PH. The aim of this study was to characterise perivascular inflammatory cells in the surrounding pulmonary arteries of dogs with PH due to MMVD compared to MMVD dogs and healthy control dogs. Nineteen lung samples were collected from cadavers of small-breed dogs (control n = 5; MMVD n = 7; MMVD + PH n = 7). Toluidine blue stain and multiple IHC targeting α-SMA, vWF, CD20, CD68 and CD3 was performed to examine intimal and medial thickening, assess muscularisation of the small pulmonary arteries and characterise perivascular leucocytes. Medial thickening without intimal thickening of pulmonary arteries and muscularisation of normally non-muscularised small pulmonary arteries was observed in the MMVD and MMVD + PH groups compared with the control group. The perivascular numbers of B lymphocytes, T lymphocytes and macrophages was significantly increased in the MMVD + PH group compared with the MMVD and control groups. In contrast, the perivascular number of mast cells was significantly higher in the MMVD group compared with the MMVD + PH and control groups. This study suggested that pulmonary artery remodelling as medial thickening and muscularisation of the normally non-muscular small pulmonary arteries is accompanied by the accumulation of perivascular inflammatory cells.
Collapse
Affiliation(s)
- Siriwan Sakarin
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anudep Rungsipipat
- Companion Animal Cancer Research Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirilak Disatian Surachetpong
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
32
|
Rothman A, Mann D, Nunez JA, Tarmidi R, Restrepo H, Sarukhanov V, Williams R, Evans WN. A Bioinformatic Algorithm based on Pulmonary Endoarterial Biopsy for Targeted Pulmonary Arterial Hypertension Therapy. Open Respir Med J 2023; 17:e187430642308160. [PMID: 38655076 PMCID: PMC11037516 DOI: 10.2174/18743064-v17-230927-2023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 04/26/2024] Open
Abstract
Background Optimal pharmacological therapy for pulmonary arterial hypertension (PAH) remains unclear, as pathophysiological heterogeneity may affect therapeutic outcomes. A ranking methodology based on pulmonary vascular genetic expression analysis could assist in medication selection and potentially lead to improved prognosis. Objective To describe a bioinformatics approach for ranking currently approved pulmonary arterial antihypertensive agents based on gene expression data derived from percutaneous endoarterial biopsies in an animal model of pulmonary hypertension. Methods We created a chronic PAH model in Micro Yucatan female swine by surgical anastomosis of the left pulmonary artery to the descending aorta. A baseline catheterization, angiography and pulmonary endoarterial biopsy were performed. We obtained pulmonary vascular biopsy samples by passing a biopsy catheter through a long 8 French sheath, introduced via the carotid artery, into 2- to 3-mm peripheral pulmonary arteries. Serial procedures were performed on days 7, 21, 60, and 180 after surgical anastomosis. RNA microarray studies were performed on the biopsy samples. Results Utilizing the medical literature, we developed a list of PAH therapeutic agents, along with a tabulation of genes affected by these agents. The effect on gene expression from pharmacogenomic interactions was used to rank PAH medications at each time point. The ranking process allowed the identification of a theoretical optimum three-medication regimen. Conclusion We describe a new potential paradigm in the therapy for PAH, which would include endoarterial biopsy, molecular analysis and tailored pharmacological therapy for patients with PAH.
Collapse
Affiliation(s)
- Abraham Rothman
- Children’s Heart Center Nevada, 3131 La Canada, Suite 230, Las Vegas, NV 89169, USA
- Department of Pediatrics, Division of Pediatric Cardiology, Kirk Kerkorian School of Medicine at UNLV, 2040 W. Charleston Blvd Ste. 402, Las Vegas, NV 89109, USA
| | - David Mann
- Vascular Biosciences, 72 Santa Felicia Drive, Goleta, CA, 93117, USA
| | - Jose A. Nunez
- Vascular Biosciences, 72 Santa Felicia Drive, Goleta, CA, 93117, USA
- College of Engineering, University of California, Santa Barbara, Lagoon Rd, Santa Barbara, CA 93106, USA
| | - Reinhardt Tarmidi
- Vascular Biosciences, 72 Santa Felicia Drive, Goleta, CA, 93117, USA
- College of Engineering, University of California, Santa Barbara, Lagoon Rd, Santa Barbara, CA 93106, USA
| | - Humberto Restrepo
- Children’s Heart Center Nevada, 3131 La Canada, Suite 230, Las Vegas, NV 89169, USA
- Department of Pediatrics, Division of Pediatric Cardiology, Kirk Kerkorian School of Medicine at UNLV, 2040 W. Charleston Blvd Ste. 402, Las Vegas, NV 89109, USA
| | - Valeri Sarukhanov
- Children’s Heart Center Nevada, 3131 La Canada, Suite 230, Las Vegas, NV 89169, USA
| | - Roy Williams
- Vascular Biosciences, 72 Santa Felicia Drive, Goleta, CA, 93117, USA
- Institute of Genomic Medicine, University of California, San Diego, 9500 Gilman Drive #0761, La Jolla, CA 92093, USA
| | - William N. Evans
- Children’s Heart Center Nevada, 3131 La Canada, Suite 230, Las Vegas, NV 89169, USA
- Department of Pediatrics, Division of Pediatric Cardiology, Kirk Kerkorian School of Medicine at UNLV, 2040 W. Charleston Blvd Ste. 402, Las Vegas, NV 89109, USA
| |
Collapse
|
33
|
Fernandez-Gonzalez A, Mukhia A, Nadkarni J, Willis GR, Reis M, Zhumka K, Vitali S, Liu X, Galls A, Mitsialis SA, Kourembanas S. Immunoregulatory macrophages modify local pulmonary immunity and ameliorate hypoxic-pulmonary hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551394. [PMID: 37577587 PMCID: PMC10418169 DOI: 10.1101/2023.07.31.551394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Rationale Macrophages play a central role in the onset and progression of vascular disease in pulmonary hypertension (PH) and cell-based immunotherapies aimed at treating vascular remodeling are lacking. Objective To evaluate the effect of pulmonary administration of macrophages modified to have an anti-inflammatory/pro-resolving phenotype in attenuating early pulmonary inflammation and progression of experimentally induced PH. Methods Mouse bone marrow derived macrophages (BMDMs) were polarized in vitro to a regulatory (M2 reg ) phenotype. M2 reg profile and anti-inflammatory capacity were assessed in vitro upon lipopolysaccharide (LPS)/interferon-γ (IFNγ) restimulation, before their administration to 8- to 12-week-old mice. M2 reg protective effect was tested at early (2 to 4 days) and late (4 weeks) time points during hypoxia (8.5% O 2 ) exposure. Levels of inflammatory markers were quantified in alveolar macrophages and whole lung, while PH development was ascertained by right ventricular systolic pressure (RSVP) and right ventricular hypertrophy (RVH) measurements. Bronchoalveolar lavage (BAL) from M2 reg -transplanted hypoxic mice was collected, and its inflammatory potential tested on naïve BMDMs. Results M2 reg macrophages demonstrated a stable anti-inflammatory phenotype upon a subsequent pro-inflammatory stimulus by maintaining the expression of specific anti-inflammatory markers (Tgfß, Il10 and Cd206) and downregulating the induction of proinflammatory cytokines and surface molecules (Cd86, Il6 and Tnfα). A single dose of M2 regs attenuated the hypoxic monocytic recruitment and perivascular inflammation. Early hypoxic lung and alveolar macrophage inflammation leading to PH development was significantly reduced and, importantly, M2 regs attenuated RVH, RVSP and vascular remodeling at 4 weeks post treatment. Conclusions Adoptive transfer of M2 regs halts the recruitment of monocytes and modifies the hypoxic lung microenvironment, potentially changing the immunoreactivity of recruited macrophages and restoring normal immune functionality of the lung. These findings provide new mechanistic insights on the diverse role of macrophage phenotype on lung vascular homeostasis that can be explored as novel therapeutic targets.
Collapse
|
34
|
Plecitá-Hlavatá L, Brázdová A, Křivonosková M, Hu CJ, Phang T, Tauber J, Li M, Zhang H, Hoetzenecker K, Crnkovic S, Kwapiszewska G, Stenmark KR. Microenvironmental regulation of T-cells in pulmonary hypertension. Front Immunol 2023; 14:1223122. [PMID: 37497214 PMCID: PMC10368362 DOI: 10.3389/fimmu.2023.1223122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction In pulmonary hypertension (PH), pulmonary arterial remodeling is often accompanied by perivascular inflammation. The inflammation is characterized by the accumulation of activated macrophages and lymphocytes within the adventitial stroma, which is comprised primarily of fibroblasts. The well-known ability of fibroblasts to secrete interleukins and chemokines has previously been implicated as contributing to this tissue-specific inflammation in PH vessels. We were interested if pulmonary fibroblasts from PH arteries contribute to microenvironmental changes that could activate and polarize T-cells in PH. Methods We used single-cell RNA sequencing of intact bovine distal pulmonary arteries (dPAs) from PH and control animals and flow cytometry, mRNA expression analysis, and respirometry analysis of blood-derived bovine/human T-cells exposed to conditioned media obtained from pulmonary fibroblasts of PH/control animals and IPAH/control patients (CM-(h)PH Fibs vs CM-(h)CO Fibs). Results Single-cell RNA sequencing of intact bovine dPAs from PH and control animals revealed a pro-inflammatory phenotype of CD4+ T-cells and simultaneous absence of regulatory T-cells (FoxP3+ Tregs). By exposing T-cells to CM-(h)PH Fibs we stimulated their proinflammatory differentiation documented by increased IFNγ and decreased IL4, IL10, and TGFβ mRNA and protein expression. Interestingly, we demonstrated a reduction in the number of suppressive T-cell subsets, i.e., human/bovine Tregs and bovine γδ T-cells treated with CM-(h)PH-Fibs. We also noted inhibition of anti-inflammatory cytokine expression (IL10, TGFβ, IL4). Pro-inflammatory polarization of bovine T-cells exposed to CM-PH Fibs correlated with metabolic shift to glycolysis and lactate production with increased prooxidant intracellular status as well as increased proliferation of T-cells. To determine whether metabolic reprogramming of PH-Fibs was directly contributing to the effects of PH-Fibs conditioned media on T-cell polarization, we treated PH-Fibs with the HDAC inhibitor SAHA, which was previously shown to normalize metabolic status and examined the effects of the conditioned media. We observed significant suppression of inflammatory polarization associated with decreased T-cell proliferation and recovery of mitochondrial energy metabolism. Conclusion This study demonstrates how the pulmonary fibroblast-derived microenvironment can activate and differentiate T-cells to trigger local inflammation, which is part of the vascular wall remodeling process in PH.
Collapse
Affiliation(s)
- Lydie Plecitá-Hlavatá
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Andrea Brázdová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Monika Křivonosková
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Cheng-Jun Hu
- Department of Craniofacial Biology School of Dental Medicine, University of Colorado, Aurora, CO, United States
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Aurora, CO, United States
| | - Tzu Phang
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Aurora, CO, United States
| | - Jan Tauber
- Laboratory of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Min Li
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Aurora, CO, United States
| | - Hui Zhang
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Aurora, CO, United States
| | | | - Slaven Crnkovic
- Otto Loewi Research Center, Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center, Giessen, Germany
| | - Grazyna Kwapiszewska
- Otto Loewi Research Center, Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center, Giessen, Germany
| | - Kurt R. Stenmark
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
35
|
Huang W, Liu H, Pan Y, Wang X, Yang H, Wang D, Lin J, Zhang H. A modified primary culture method of rat pulmonary vein smooth muscle cells. J Cardiothorac Surg 2023; 18:146. [PMID: 37069582 PMCID: PMC10111653 DOI: 10.1186/s13019-023-02233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/02/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Although the pressure of pulmonary vein increases before pulmonary artery in pulmonary hypertension due to left heart disease (PH-LHD), only a few studies have assessed pulmonary vein smooth muscle cells (PVSMCs) because of the lack of a simple and feasible isolation method. METHODS In this study, we introduced a simple method to obtain PVSMCs. Primary pulmonary veins were removed by puncture needle cannula guidance. Then, PVSMCs were cultured by the tissue explant method and purified by the differential adhesion method. The cells were characterized by hematoxylin-eosin (HE) staining, immunohistochemistry, western blotting, and immunofluorescence to observe the morphology and verify the expression of alpha-smooth muscle actin (α-SMA). RESULTS The HE staining results showed that the pulmonary vein media was thinner than the pulmonary artery, the intima and adventitia of the pulmonary vein were removed by this method, and the obtained cells with good activity exhibited morphological characteristics of smooth muscle cells. In addition, higher α-SMA expression was observed in the cells obtained by our isolation method than in the traditional method. CONCLUSION This study established a simple and feasible method to isolate and culture PVSMCs that might facilitate the cytological experiments for PH-LHD.
Collapse
Affiliation(s)
- Wenhui Huang
- Critical Care Medicine, Union Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350001, P.R. China
- Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, 350004, P.R. China
| | - Hongjin Liu
- Department of Cardiovascular Surgery, Union Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350001, P.R. China
| | - Yichao Pan
- Department of Cardiovascular Surgery, Union Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350001, P.R. China
| | - Xueying Wang
- Critical Care Medicine, Union Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350001, P.R. China
| | - Hongwei Yang
- Department of Cardiovascular Surgery, Union Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350001, P.R. China
| | - Danjie Wang
- Critical Care Medicine, Union Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350001, P.R. China
| | - Jing Lin
- Department of Cardiovascular Surgery, Union Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350001, P.R. China
| | - Hui Zhang
- Critical Care Medicine, Union Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350001, P.R. China.
- Critical Care Medicine, Union Hospital of Fujian Medical University, NO.29 Xinquan Road, Gulou District, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
36
|
Ren Y, Zhang H. Emerging role of exosomes in vascular diseases. Front Cardiovasc Med 2023; 10:1090909. [PMID: 36937921 PMCID: PMC10017462 DOI: 10.3389/fcvm.2023.1090909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/11/2023] [Indexed: 03/06/2023] Open
Abstract
Exosomes are biological small spherical lipid bilayer vesicles secreted by most cells in the body. Their contents include nucleic acids, proteins, and lipids. Exosomes can transfer material molecules between cells and consequently have a variety of biological functions, participating in disease development while exhibiting potential value as biomarkers and therapeutics. Growing evidence suggests that exosomes are vital mediators of vascular remodeling. Endothelial cells (ECs), vascular smooth muscle cells (VSMCs), inflammatory cells, and adventitial fibroblasts (AFs) can communicate through exosomes; such communication is associated with inflammatory responses, cell migration and proliferation, and cell metabolism, leading to changes in vascular function and structure. Essential hypertension (EH), atherosclerosis (AS), and pulmonary arterial hypertension (PAH) are the most common vascular diseases and are associated with significant vascular remodeling. This paper reviews the latest research progress on the involvement of exosomes in vascular remodeling through intercellular information exchange and provides new ideas for understanding related diseases.
Collapse
Affiliation(s)
- Yi Ren
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Honggang Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
Gu S, Goel K, Forbes LM, Kheyfets VO, Yu YRA, Tuder RM, Stenmark KR. Tensions in Taxonomies: Current Understanding and Future Directions in the Pathobiologic Basis and Treatment of Group 1 and Group 3 Pulmonary Hypertension. Compr Physiol 2023; 13:4295-4319. [PMID: 36715285 PMCID: PMC10392122 DOI: 10.1002/cphy.c220010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the over 100 years since the recognition of pulmonary hypertension (PH), immense progress and significant achievements have been made with regard to understanding the pathophysiology of the disease and its treatment. These advances have been mostly in idiopathic pulmonary arterial hypertension (IPAH), which was classified as Group 1 Pulmonary Hypertension (PH) at the Second World Symposia on PH in 1998. However, the pathobiology of PH due to chronic lung disease, classified as Group 3 PH, remains poorly understood and its treatments thus remain limited. We review the history of the classification of the five groups of PH and aim to provide a state-of-the-art review of the understanding of the pathogenesis of Group 1 PH and Group 3 PH including insights gained from novel high-throughput omics technologies that have revealed heterogeneities within these categories as well as similarities between them. Leveraging the substantial gains made in understanding the genomics, epigenomics, proteomics, and metabolomics of PAH to understand the full spectrum of the complex, heterogeneous disease of PH is needed. Multimodal omics data as well as supervised and unbiased machine learning approaches after careful consideration of the powerful advantages as well as of the limitations and pitfalls of these technologies could lead to earlier diagnosis, more precise risk stratification, better predictions of disease response, new sub-phenotype groupings within types of PH, and identification of shared pathways between PAH and other types of PH that could lead to new treatment targets. © 2023 American Physiological Society. Compr Physiol 13:4295-4319, 2023.
Collapse
Affiliation(s)
- Sue Gu
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Colorado, USA
- Cardiovascular Pulmonary Research Lab, University of Colorado School of Medicine, Colorado, USA
- National Jewish Health, Denver, Colorodo, USA
| | - Khushboo Goel
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Colorado, USA
- National Jewish Health, Denver, Colorodo, USA
| | - Lindsay M. Forbes
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Colorado, USA
| | - Vitaly O. Kheyfets
- Cardiovascular Pulmonary Research Lab, University of Colorado School of Medicine, Colorado, USA
| | - Yen-rei A. Yu
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Colorado, USA
- Cardiovascular Pulmonary Research Lab, University of Colorado School of Medicine, Colorado, USA
| | - Rubin M. Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Colorado, USA
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Colorado, USA
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Lab, University of Colorado School of Medicine, Colorado, USA
- Department of Pediatrics Section of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Colorado, USA
| |
Collapse
|
38
|
Li X, Zhang X, Hou X, Bing X, Zhu F, Wu X, Guo N, Zhao H, Xu F, Xia M. Obstructive sleep apnea-increased DEC1 regulates systemic inflammation and oxidative stress that promotes development of pulmonary arterial hypertension. Apoptosis 2022; 28:432-446. [PMID: 36484960 DOI: 10.1007/s10495-022-01797-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Obstructive sleep apnea (OSA), characterized by chronic intermittent hypoxia (CIH), is a common risk factor for pulmonary arterial hypertension (PAH). As a hypoxia-induced transcription factor, differentially expressed in chondrocytes (DEC1) negatively regulates the transcription of peroxisome proliferative activated receptor-γ (PPARγ), a recognized protective factor of PAH. However, whether and how DEC1 is associated with PAH pathogenesis remains unclear. In the present study, we found that DEC1 was increased in lungs and pulmonary arterial smooth muscle cells (PASMCs) of rat models of OSA-associated PAH. Oxidative indicators and inflammatory cytokines were also elevated in the blood of the rats. Similarly, hypoxia-treated PASMCs displayed enhanced DEC1 expression and reduced PPARγ expression in vitro. Functionally, DEC1 overexpression exacerbated reactive oxygen species (ROS) production and the expression of pro-inflammatory cytokines (such as TNFα, IL-1β, IL-6, and MCP-1) in PASMCs. Conversely, shRNA knockdown of Dec1 increased PPARγ expression but attenuated hypoxia-induced oxidative stress and inflammatory responses in PASMCs. Additionally, DEC1 overexpression promoted PASMC proliferation, which was drastically attenuated by a PPARγ agonist rosiglitazone. Collectively, these results suggest that hypoxia-induced DEC1 inhibits PPARγ, and that this is a predominant mechanism underpinning oxidative stress and inflammatory responses in PASMCs during PAH. DEC1 could be used as a potential target to treat PAH.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiang Zhang
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaozhi Hou
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Xin Bing
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Fangyuan Zhu
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Xinhao Wu
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Na Guo
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Hui Zhao
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Fenglei Xu
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China.
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China.
| |
Collapse
|
39
|
Xu J, Liang C, Li J. A signal recognition particle-related joint model of LASSO regression, SVM-RFE and artificial neural network for the diagnosis of systemic sclerosis-associated pulmonary hypertension. Front Genet 2022; 13:1078200. [PMID: 36518216 PMCID: PMC9742487 DOI: 10.3389/fgene.2022.1078200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 08/18/2023] Open
Abstract
Background: Systemic sclerosis-associated pulmonary hypertension (SSc-PH) is one of the most common causes of death in patients with systemic sclerosis (SSc). The complexity of SSc-PH and the heterogeneity of clinical features in SSc-PH patients contribute to the difficulty of diagnosis. Therefore, there is a pressing need to develop and optimize models for the diagnosis of SSc-PH. Signal recognition particle (SRP) deficiency has been found to promote the progression of multiple cancers, but the relationship between SRP and SSc-PH has not been explored. Methods: First, we obtained the GSE19617 and GSE33463 datasets from the Gene Expression Omnibus (GEO) database as the training set, GSE22356 as the test set, and the SRP-related gene set from the MSigDB database. Next, we identified differentially expressed SRP-related genes (DE-SRPGs) and performed unsupervised clustering and gene enrichment analyses. Then, we used least absolute shrinkage and selection operator (LASSO) regression and support vector machine-recursive feature elimination (SVM-RFE) to identify SRP-related diagnostic genes (SRP-DGs). We constructed an SRP scoring system and a nomogram model based on the SRP-DGs and established an artificial neural network (ANN) for diagnosis. We used receiver operating characteristic (ROC) curves to identify the SRP-related signature in the training and test sets. Finally, we analyzed immune features, signaling pathways, and drugs associated with SRP and investigated SRP-DGs' functions using single gene batch correlation analysis-based GSEA. Results: We obtained 30 DE-SRPGs and found that they were enriched in functions and pathways such as "protein targeting to ER," "cytosolic ribosome," and "coronavirus disease-COVID-19". Subsequently, we identified seven SRP-DGs whose expression levels and diagnostic efficacy were validated in the test set. As one signature, the area under the ROC curve (AUC) values for seven SRP-DGs were 0.769 and 1.000 in the training and test sets, respectively. Predictions made using the nomogram model are likely beneficial for SSc-PH patients. The AUC values of the ANN were 0.999 and 0.860 in the training and test sets, respectively. Finally, we discovered that some immune cells and pathways, such as activated dendritic cells, complement activation, and heme metabolism, were significantly associated with SRP-DGs and identified ten drugs targeting SRP-DGs. Conclusion: We constructed a reliable SRP-related ANN model for the diagnosis of SSc-PH and investigated the possible role of SRP in the etiopathogenesis of SSc-PH by bioinformatics methods to provide a basis for precision and personalized medicine.
Collapse
Affiliation(s)
- Jingxi Xu
- North Sichuan Medical College, Nanchong, China
- Department of Rheumatology and Immunology, The First People’s Hospital of Yibin, Yibin, China
| | - Chaoyang Liang
- Department of Rheumatology and Immunology, The First People’s Hospital of Yibin, Yibin, China
| | - Jiangtao Li
- Department of Rheumatology and Immunology, The First People’s Hospital of Yibin, Yibin, China
| |
Collapse
|
40
|
McDonald A, Nicaise A, Sears ER, Bell A, Kummari E, Kaplan BLF. Potential for TCDD to induce regulatory functions in B cells as part of the mechanism for T cell suppression in EAE. Toxicol Appl Pharmacol 2022; 454:116259. [PMID: 36179859 PMCID: PMC10509645 DOI: 10.1016/j.taap.2022.116259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022]
Abstract
Part of the mechanism by which 2,3,7.8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses immune function involves induction of regulatory T cells and suppression of effector T cells. The goal of this project was to examine whether TCDD's suppression of effector T cells was due in part to inducing B regulatory cells (Bregs). TCDD's potential to increase the percentage and/or function of CD24+CD38+ B cells was assessed in response to lipopolysaccharide (LPS) + interleukin (IL)-4 in vitro and in a mild model of experimental autoimmune encephalomyelitis (EAE) in vivo. In vitro, TCDD did not consistently increase the percentage of CD19+CD24+CD38+ cells using splenocytes, purified B cells or bone marrow (BM) cells. However, TCDD increased IL-10 in all three culture preparations, and TCDD increased the percentage of CD5+CD24+CD38+ cells producing IL-10. In EAE, TCDD did not affect the percentage of the CD24+CD38+ cell population in CD19, B220 or CD5 B cells in splenocytes (SPLC), lymph nodes (LN) nor BM cells at end-stage disease. On the other hand, TCDD increased the CD19+CD24+CD38+ percentage in the spinal cord (SC) in EAE. Moreover, TCDD-treated B cells isolated from spleens or TCDD-treated BM cells in EAE mice modestly reduced the ability of naïve effector T cells to express interferon (IFN)-γ and tumor necrosis factor (TNF)-α. Together these data show that TCDD can induce regulatory functions in B cells, although it was not obvious simply by examining the expression of regulatory markers but by assessing function by cytokine production or mixed lymphocyte responses.
Collapse
Affiliation(s)
- Amye McDonald
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Ashleigh Nicaise
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Erin Rushing Sears
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Abigail Bell
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Evangel Kummari
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
41
|
Chen T, Su S, Yang Z, Zhang D, Li Z, Lu D. Srolo Bzhtang reduces inflammation and vascular remodeling via suppression of the MAPK/NF-κB signaling pathway in rats with pulmonary arterial hypertension. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115572. [PMID: 35872290 DOI: 10.1016/j.jep.2022.115572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Srolo Bzhtang (SBT), which consists of Solms-laubachia eurycarpa, Bergenia purpurascens, Glycyrrhiza uralensis, and lac secreted by Laccifer lacca Kerr (Lacciferidae Cockerell), is a well-known traditional Tibetan medicinal formula and was documented to cure "lung-heat" syndrome by eliminating "chiba" in the ancient Tibetan medical work Four Medical Tantras (Rgyud bzhi). Clinically, it is a therapy for pulmonary inflammatory disorders, such as pneumonia, chronic bronchitis, and chronic obstructive pulmonary disease. However, whether and how SBT participates in pulmonary arterial hypertension (PAH) is still unclear. AIM OF THE STUDY We aimed to determine the role of SBT in attenuating pulmonary arterial pressure and vascular remodeling caused by monocrotaline (MCT) and hypoxia. To elucidate the potential mechanism underlying SBT-mediated PAH, we investigated the changes in inflammatory cytokines and mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B (NF-κB) signaling pathway. MATERIALS AND METHODS MCT- and hypoxia-induced PAH rat models were used. After administering SBT for four weeks, the rats were tested for hemodynamic indicators, hematological changes, pulmonary arterial morphological changes, and the levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in serum and lung tissues. Protein expression of the MAPK/NF-κB signaling pathway was determined using western blotting. RESULTS SBT reduced pulmonary arterial pressure, vascular remodeling, and the levels of inflammatory cytokines induced by MCT and hypoxia in rats. Furthermore, SBT significantly suppressed the MAPK/NF-κB signaling pathway. CONCLUSIONS To our knowledge, this is the first study to demonstrate that SBT alleviates MCT- and hypoxia-induced PAH in rats, which is related to its anti-inflammatory actions involving inhibition of the MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Tingting Chen
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China; Medical College, Qinghai University, Xining, 810001, PR China
| | - Shanshan Su
- Technical Center of Xining Customs (Key Laboratory of Food Safety Research In Qinghai Province), Xining, 810003, PR China
| | - Zhanting Yang
- Medical College, Qinghai University, Xining, 810001, PR China
| | - Dejun Zhang
- School of Ecological and Environmental Engineering, Qinghai University, Xining, 810016, PR China
| | - Zhanqiang Li
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China; Medical College, Qinghai University, Xining, 810001, PR China.
| | - Dianxiang Lu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China; Medical College, Qinghai University, Xining, 810001, PR China.
| |
Collapse
|
42
|
The complement C3-complement factor D-C3a receptor signalling axis regulates cardiac remodelling in right ventricular failure. Nat Commun 2022; 13:5409. [PMID: 36109509 PMCID: PMC9478115 DOI: 10.1038/s41467-022-33152-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Failure of the right ventricle plays a critical role in any type of heart failure. However, the mechanism remains unclear, and there is no specific therapy. Here, we show that the right ventricle predominantly expresses alternative complement pathway-related genes, including Cfd and C3aR1. Complement 3 (C3)-knockout attenuates right ventricular dysfunction and fibrosis in a mouse model of right ventricular failure. C3a is produced from C3 by the C3 convertase complex, which includes the essential component complement factor D (Cfd). Cfd-knockout mice also show attenuation of right ventricular failure. Moreover, the plasma concentration of CFD correlates with the severity of right ventricular failure in patients with chronic right ventricular failure. A C3a receptor (C3aR) antagonist dramatically improves right ventricular dysfunction in mice. In summary, we demonstrate the crucial role of the C3-Cfd-C3aR axis in right ventricular failure and highlight potential therapeutic targets for right ventricular failure. Right ventricular (RV) failure is clinically crucial, but there is no specific therapy. Here, the authors show that the complement alternative pathway is activated in RV failure and that blockade of the pathway ameliorates RV failure in mice.
Collapse
|
43
|
Shu T, Liu Y, Zhou Y, Zhou Z, Li B, Xing Y, Yang P, Pang J, Li J, Song X, Ning X, Qi X, Xiong C, Yang H, Chen Q, Chen J, Yu Y, Wang J, Wang C. Inhibition of immunoglobulin E attenuates pulmonary hypertension. NATURE CARDIOVASCULAR RESEARCH 2022; 1:665-678. [PMID: 39196237 DOI: 10.1038/s44161-022-00095-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 06/06/2022] [Indexed: 08/29/2024]
Abstract
Pulmonary hypertension (PH) is a severe cardiopulmonary disease characterized by pulmonary vascular remodeling. Immunoglobulin E (IgE) is known to participate in aortic vascular remodeling, but whether IgE mediates pulmonary vascular disease is unknown. In the present study, we found serum IgE elevation in pulmonary arterial hypertension (PAH) patients, hypoxia-induced PH mice and monocrotaline-induced PH rats. Neutralizing IgE with an anti-IgE antibody was effective in preventing PH development in mice and rat models. The IgE receptor FcεRIα was also upregulated in PH lung tissues and Fcer1a deficiency prevented the development of PH. Single-cell RNA-sequencing revealed that FcεRIα was mostly expressed in mast cells (MCs) and MC-specific Fcer1a knockout protected against PH in mice. IgE-activated MCs produced interleukin (IL)-6 and IL-13, which subsequently promoted vascular muscularization. Clinically approved IgE antibody omalizumab alleviated the progression of established PH in rats. Using genetic and pharmacological approaches, we have demonstrated that blocking IgE-FcεRIα signaling may hold potential for PAH treatment.
Collapse
Affiliation(s)
- Ting Shu
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ying Liu
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yitian Zhou
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Peking Union Medical College, MD Program, Beijing, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bolun Li
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanjiang Xing
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Peiran Yang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Junling Pang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jinqiu Li
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaomin Song
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xin Ning
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xianmei Qi
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Changming Xiong
- Department of Cardiology, Pulmonary Vascular Disease Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hang Yang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianlong Chen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyu Chen
- Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Ying Yu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Chen Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
44
|
Rhodes CJ, Sweatt AJ, Maron BA. Harnessing Big Data to Advance Treatment and Understanding of Pulmonary Hypertension. Circ Res 2022; 130:1423-1444. [PMID: 35482840 PMCID: PMC9070103 DOI: 10.1161/circresaha.121.319969] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pulmonary hypertension is a complex disease with multiple causes, corresponding to phenotypic heterogeneity and variable therapeutic responses. Advancing understanding of pulmonary hypertension pathogenesis is likely to hinge on integrated methods that leverage data from health records, imaging, novel molecular -omics profiling, and other modalities. In this review, we summarize key data sets generated thus far in the field and describe analytical methods that hold promise for deciphering the molecular mechanisms that underpin pulmonary vascular remodeling, including machine learning, network medicine, and functional genetics. We also detail how genetic and subphenotyping approaches enable earlier diagnosis, refined prognostication, and optimized treatment prediction. We propose strategies that identify functionally important molecular pathways, bolstered by findings across multi-omics platforms, which are well-positioned to individualize drug therapy selection and advance precision medicine in this highly morbid disease.
Collapse
Affiliation(s)
- Christopher J Rhodes
- Department of Medicine, National Heart and Lung Institute, Imperial College London, United Kingdom (C.J.R.)
| | - Andrew J Sweatt
- Department of Medicine, National Heart and Lung Institute, Imperial College London, United Kingdom (C.J.R.)
| | - Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (B.A.M.).,Division of Cardiology, VA Boston Healthcare System, West Roxbury, MA (B.A.M.)
| |
Collapse
|
45
|
Wu XH, Ma JL, Ding D, Ma YJ, Wei YP, Jing ZC. Experimental animal models of pulmonary hypertension: Development and challenges. Animal Model Exp Med 2022; 5:207-216. [PMID: 35333455 PMCID: PMC9240731 DOI: 10.1002/ame2.12220] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/20/2022] [Indexed: 12/16/2022] Open
Abstract
Pulmonary hypertension (PH) is clinically divided into 5 major types, characterized by elevation in pulmonary arterial pressure (PAP) and pulmonary vascular resistance (PVR), finally leading to right heart failure and death. The pathogenesis of this arteriopathy remains unclear, leaving it impossible to target pulmonary vascular remodeling and reverse the deterioration of right ventricular (RV) function. Different animal models have been designed to reflect the complex mechanistic origins and pathology of PH, roughly divided into 4 categories according to the modeling methods: non‐invasive models in vivo, invasive models in vivo, gene editing models, and multi‐means joint modeling. Though each model shares some molecular and pathological changes with different classes of human PH, in most cases the molecular etiology of human PH is poorly known. The appropriate use of classic and novel PH animal models is essential for the hunt of molecular targets to reverse severe phenotypes.
Collapse
Affiliation(s)
- Xiao-Han Wu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie-Ling Ma
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Ding
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue-Jiao Ma
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun-Peng Wei
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Cheng Jing
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Funk-Hilsdorf TC, Behrens F, Grune J, Simmons S. Dysregulated Immunity in Pulmonary Hypertension: From Companion to Composer. Front Physiol 2022; 13:819145. [PMID: 35250621 PMCID: PMC8891568 DOI: 10.3389/fphys.2022.819145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
Pulmonary hypertension (PH) represents a grave condition associated with high morbidity and mortality, emphasizing a desperate need for innovative and targeted therapeutic strategies. Cumulative evidence suggests that inflammation and dysregulated immunity interdependently affect maladaptive organ perfusion and congestion as hemodynamic hallmarks of the pathophysiology of PH. The role of altered cellular and humoral immunity in PH gains increasing attention, especially in pulmonary arterial hypertension (PAH), revealing novel mechanistic insights into the underlying immunopathology. Whether these immunophysiological aspects display a universal character and also hold true for other types of PH (e.g., PH associated with left heart disease, PH-LHD), or whether there are unique immunological signatures depending on the underlying cause of disease are points of consideration and discussion. Inflammatory mediators and cellular immune circuits connect the local inflammatory landscape in the lung and heart through inter-organ communication, involving, e.g., the complement system, sphingosine-1-phosphate (S1P), cytokines and subsets of, e.g., monocytes, macrophages, natural killer (NK) cells, dendritic cells (DCs), and T- and B-lymphocytes with distinct and organ-specific pro- and anti-inflammatory functions in homeostasis and disease. Perivascular macrophage expansion and monocyte recruitment have been proposed as key pathogenic drivers of vascular remodeling, the principal pathological mechanism in PAH, pinpointing toward future directions of anti-inflammatory therapeutic strategies. Moreover, different B- and T-effector cells as well as DCs may play an important role in the pathophysiology of PH as an imbalance of T-helper-17-cells (TH17) activated by monocyte-derived DCs, a potentially protective role of regulatory T-cells (Treg) and autoantibody-producing plasma cells occur in diverse PH animal models and human PH. This article highlights novel aspects of the innate and adaptive immunity and their interaction as disease mediators of PH and its specific subtypes, noticeable inflammatory mediators and summarizes therapeutic targets and strategies arising thereby.
Collapse
Affiliation(s)
- Teresa C. Funk-Hilsdorf
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Felix Behrens
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Jana Grune
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Szandor Simmons
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- *Correspondence: Szandor Simmons,
| |
Collapse
|
47
|
Yu Z, Xiao J, Chen X, Ruan Y, Chen Y, Zheng X, Wang Q. Bioactivities and mechanisms of natural medicines in the management of pulmonary arterial hypertension. Chin Med 2022; 17:13. [PMID: 35033157 PMCID: PMC8760698 DOI: 10.1186/s13020-022-00568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and rare disease without obvious clinical symptoms that shares characteristics with pulmonary vascular remodeling. Right heart failure in the terminal phase of PAH seriously threatens the lives of patients. This review attempts to comprehensively outline the current state of knowledge on PAH its pathology, pathogenesis, natural medicines therapy, mechanisms and clinical studies to provide potential treatment strategies. Although PAH and pulmonary hypertension have similar pathological features, PAH exhibits significantly elevated pulmonary vascular resistance caused by vascular stenosis and occlusion. Currently, the pathogenesis of PAH is thought to involve multiple factors, primarily including genetic/epigenetic factors, vascular cellular dysregulation, metabolic dysfunction, even inflammation and immunization. Yet many issues regarding PAH need to be clarified, such as the "oestrogen paradox". About 25 kinds monomers derived from natural medicine have been verified to protect against to PAH via modulating BMPR2/Smad, HIF-1α, PI3K/Akt/mTOR and eNOS/NO/cGMP signalling pathways. Yet limited and single PAH animal models may not corroborate the efficacy of natural medicines, and those natural compounds how to regulate crucial genes, proteins and even microRNA and lncRNA still need to put great attention. Additionally, pharmacokinetic studies and safety evaluation of natural medicines for the treatment of PAH should be undertaken in future studies. Meanwhile, methods for validating the efficacy of natural drugs in multiple PAH animal models and precise clinical design are also urgently needed to promote advances in PAH.
Collapse
Affiliation(s)
- Zhijie Yu
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Jun Xiao
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xiao Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yi Ruan
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yang Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xiaoyuan Zheng
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China.
| | - Qiang Wang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
48
|
Liu F, Yang D, Liu Y, Zhang Q, Chen S, Li W, Ren J, Tian X, Wang X. Use of latent profile analysis and k-means clustering to identify student anxiety profiles. BMC Psychiatry 2022; 22:12. [PMID: 34986837 PMCID: PMC8728926 DOI: 10.1186/s12888-021-03648-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Anxiety disorders are often the first presentation of psychopathology in youth and are considered the most common psychiatric disorders in children and adolescents. This study aimed to identify distinct student anxiety profiles to develop targeted interventions. METHODS A cross-sectional study was conducted with 9738 students in Yingshan County. Background characteristics were collected and Mental Health Test (MHT) were completed. Latent profile analysis (LPA) was applied to define student anxiety profiles, and then the analysis was repeated using k-means clustering. RESULTS LPA yielded 3 profiles: the low-risk, mild-risk and high-risk groups, which comprised 29.5, 38.1 and 32.4% of the sample, respectively. Repeating the analysis using k-means clustering resulted in similar groupings. Most students in a particular k-means cluster were primarily in a single LPA-derived student profile. The multinomial ordinal logistic regression results showed that the high-risk group was more likely to be female, junior, and introverted, to live in a town, to have lower or average academic performance, to have heavy or average academic pressure, and to be in schools that have never or occasionally have organized mental health education activities. CONCLUSIONS The findings suggest that students with anxiety symptoms may be categorized into distinct profiles that are amenable to varying strategies for coordinated interventions.
Collapse
Affiliation(s)
- Fang Liu
- grid.412449.e0000 0000 9678 1884School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122 Liaoning China
| | - Dan Yang
- Nanchong Physical and Mental Hospital (Nanchong Sixth People’s Hospital), No.99 Jincheng Street, Yingshan County, Nanchong, 637000 Sichuan China
| | - Yueguang Liu
- Nanchong Physical and Mental Hospital (Nanchong Sixth People’s Hospital), No.99 Jincheng Street, Yingshan County, Nanchong, 637000 Sichuan China
| | - Qin Zhang
- grid.412449.e0000 0000 9678 1884School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122 Liaoning China
| | - Shiyu Chen
- Nanchong Physical and Mental Hospital (Nanchong Sixth People’s Hospital), No.99 Jincheng Street, Yingshan County, Nanchong, 637000 Sichuan China
| | - Wanxia Li
- Nanchong Physical and Mental Hospital (Nanchong Sixth People’s Hospital), No.99 Jincheng Street, Yingshan County, Nanchong, 637000 Sichuan China
| | - Jidong Ren
- Nanchong Physical and Mental Hospital (Nanchong Sixth People’s Hospital), No.99 Jincheng Street, Yingshan County, Nanchong, 637000 Sichuan China
| | - Xiaobin Tian
- Nanchong Physical and Mental Hospital (Nanchong Sixth People's Hospital), No.99 Jincheng Street, Yingshan County, Nanchong, 637000, Sichuan, China. .,Department of Preventive Medicine, North Sichuan Medical College, No.234 Fujiang Road, Nanchong, 637000, Sichuan, China.
| | - Xin Wang
- School of Health Management, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
49
|
Biological heterogeneity in idiopathic pulmonary arterial hypertension identified through unsupervised transcriptomic profiling of whole blood. Nat Commun 2021; 12:7104. [PMID: 34876579 PMCID: PMC8651638 DOI: 10.1038/s41467-021-27326-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a rare but fatal disease diagnosed by right heart catheterisation and the exclusion of other forms of pulmonary arterial hypertension, producing a heterogeneous population with varied treatment response. Here we show unsupervised machine learning identification of three major patient subgroups that account for 92% of the cohort, each with unique whole blood transcriptomic and clinical feature signatures. These subgroups are associated with poor, moderate, and good prognosis. The poor prognosis subgroup is associated with upregulation of the ALAS2 and downregulation of several immunoglobulin genes, while the good prognosis subgroup is defined by upregulation of the bone morphogenetic protein signalling regulator NOG, and the C/C variant of HLA-DPA1/DPB1 (independently associated with survival). These findings independently validated provide evidence for the existence of 3 major subgroups (endophenotypes) within the IPAH classification, could improve risk stratification and provide molecular insights into the pathogenesis of IPAH.
Collapse
|
50
|
Kumar S, Frid MG, Zhang H, Li M, Riddle S, Brown RD, Yadav SC, Roy MK, Dzieciatkowska ME, D'Alessandro A, Hansen KC, Stenmark KR. Complement-containing small extracellular vesicles from adventitial fibroblasts induce proinflammatory and metabolic reprogramming in macrophages. JCI Insight 2021; 6:e148382. [PMID: 34499621 PMCID: PMC8663554 DOI: 10.1172/jci.insight.148382] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Pulmonary hypertension (PH) is a severe cardiopulmonary disease characterized by complement-dependent, fibroblast-induced perivascular accumulation and proinflammatory activation of macrophages. We hypothesized that, in PH, nanoscale-sized small extracellular vesicles (sEVs), released by perivascular/adventitial fibroblasts, are critical mediators of complement-dependent proinflammatory activation of macrophages. Pulmonary adventitial fibroblasts were isolated from calves with severe PH (PH-Fibs) and age-matched controls (CO-Fibs). PH-Fibs exhibited increased secretion of sEVs, compared with CO-Fibs, and sEV biological activity was tested on mouse and bovine bone marrow-derived macrophages (BMDMs) and showed similar responses. Compared with sEVs derived from CO-Fibs, sEVs derived from PH-Fibs (PH-Fib-sEVs) induced augmented expression of proinflammatory cytokines/chemokines and metabolic genes in BMDMs. Pharmacological blockade of exosome release from PH-Fibs resulted in significant attenuation of proinflammatory activation of BMDMs. "Bottom-up" proteomic analyses revealed significant enrichment of complement and coagulation cascades in PH-Fib-sEVs, including augmented expression of the complement component C3. We therefore examined whether the PH-Fib-sEV-mediated proinflammatory activation of BMDMs was complement C3 dependent. Treatment of PH-Fibs with siC3-RNA significantly attenuated the capacity of PH-Fib-sEVs for proinflammatory activation of BMDMs. PH-Fib-sEVs mediated proglycolytic alterations and complement-dependent activation of macrophages toward a proinflammatory phenotype, as confirmed by metabolomic studies. Thus, fibroblast-released sEVs served as critical mediators of complement-induced perivascular/microenvironmental inflammation in PH.
Collapse
Affiliation(s)
- Sushil Kumar
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Maria G Frid
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Min Li
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - R Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Micaela K Roy
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Monika E Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|