1
|
Liu XR, Li M, Hao QQ, Yu YJ, Liao C, Yu R, Kong DL, Wang Y. Unraveling cysteinyl leukotrienes and their receptors in inflammation through the brain-gut-lung axis. Virulence 2025; 16:2502555. [PMID: 40351036 PMCID: PMC12077450 DOI: 10.1080/21505594.2025.2502555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025] Open
Abstract
Cysteinyl leukotrienes (CysLTs), as potent lipid inflammatory mediators, play a pivotal role in systemic multi-organ inflammation and inter-organ communication through interactions with their receptors (CysLTRs). However, However, the function of CysLT3R is unclear and lacks a network of cross-organ metabolite interactions, and the clinical use of leukotriene receptor antagonists (LTRAs) has certain limitations. This review systematically synthesizes existing evidence and proposes future directions by clarifying receptor subtype specificity, optimizing targeted therapies, exploring CysLTs' applications in neuroimmunology, and elucidating the dual roles of CysLTs in chronic inflammation. It is indicated that CysLTs activate eosinophils, mast cells, and airway tuft cells, driving type 2 immune responses and mucus secretion in the lungs, thereby exacerbating respiratory diseases such as asthma. In the nervous system, CysLTs aggravate neurodegenerative disorders like cerebral ischemia and Alzheimer's disease by disrupting the blood-brain barrier, promoting glial activation, and inducing neuronal damage. In the gut, CysLTs regulate anti-helminth immunity via the tuft cell-ILC2 pathway and collaborate with prostaglandin D2 (PGD2) to modulate bile excretion and mucosal protection. Furthermore, CysLTs mediate communication through the gut-lung and gut-brain axes via metabolites such as succinate, contributing to cross-organ inflammatory regulation. In conclusion, this review highlights the complex roles of CysLTs in chronic inflammation, providing a theoretical foundation for precise intervention in multi-organ inflammatory diseases, which provides a theoretical framework for precision interventions in multi-organ inflammatory diseases and inspires interdisciplinary breakthroughs.
Collapse
Affiliation(s)
- Xiao-Ru Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Ming Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qian-Qian Hao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Ya-Jie Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Cai Liao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Rui Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - De-Lei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Boehm T, Jilma B. Are leukotrienes really the world's best bronchoconstrictors and at least 100 to 1000 times more potent than histamine? Drug Discov Today 2025; 30:104349. [PMID: 40180311 DOI: 10.1016/j.drudis.2025.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
It has been stated numerous times that leukotrienes are 100 to 1000 times more potent compared with histamine, but is this statement correct? Can we really compare a charged mono-cation with lipoid amphiphiles in their ability to penetrate an epithelial cell layer after inhalation challenge? In this review we question the shift in clinical and drug development attention from histamine towards leukotriene receptor antagonists for the treatment of chronic asthma and acute asthma exacerbations. The presented data indicate that histamine very likely plays a much more important role than previously assumed. It is time to rethink mediator involvement during bronchospasm and shift attention back to histamine.
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
3
|
Alvarado-Vazquez PA, Mendez-Enriquez E, Salomonsson M, Kopac P, Koren A, Bidovec-Stojkovic U, Škrgat S, Simonson OE, Yasinska V, Dahlén SE, Pejler G, Janson C, Korosec P, Malinovschi A, Hallgren J. Targeting of the IL-5 pathway in severe asthma reduces mast cell progenitors. J Allergy Clin Immunol 2025; 155:1310-1320. [PMID: 39521285 DOI: 10.1016/j.jaci.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Therapies targeting IL-5 or its receptor (IL-5Rα) are currently used to treat patients with severe eosinophilic asthma. OBJECTIVE We sought to investigate the impact of anti-IL-5 and anti-IL-5Rα biological therapies on mast cells (MCs) and their progenitors. METHODS Surface IL-5Rα expression was investigated on MCs and their progenitors in mouse lungs and bone marrow and in human lungs and blood. Isolated human MC progenitors cultured in the presence or absence of IL-5 were analyzed in vitro. Circulating MC progenitors were quantified in patients with severe asthma before and after anti-IL-5 (mepolizumab) or anti-IL-5Rα (benralizumab) therapy. Gene expression analysis of MC progenitors was performed before and after anti-IL-5Rα therapy. RESULTS Approximately 50% of the human primary lung MCs and 30% of the human MC progenitors from individuals with allergic asthma expressed IL-5Rα. In patients with mild to moderate allergic asthma and mice with acute allergic airway inflammation, the fraction of IL-5Rα+ MC progenitors was elevated. In addition, IL-5 promoted the proliferation and/or survival of isolated human MC progenitors. Furthermore, patients with severe asthma from 2 independent cohorts demonstrated a reduction in blood MC progenitors after anti-IL-5 or anti-IL-5Rα treatment. This was associated with improved asthma control as well as a decline in both blood eosinophils and TH2 cells. Finally, the blood MC progenitors remaining after anti-IL-5Rα (benralizumab) treatment exhibited a downregulated expression of genes involved in growth and proliferation. CONCLUSIONS This study introduces the possibility that the clinical effects of targeting IL-5/IL-5Rα in severe asthma may also involve reduction of MC populations.
Collapse
Affiliation(s)
| | - Erika Mendez-Enriquez
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Maya Salomonsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Peter Kopac
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia; Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Koren
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | | | - Sabina Škrgat
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia; Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Oscar E Simonson
- Department of Surgical Sciences, Uppsala University, Uppsala University Hospital, Uppsala, Sweden; Department of Cardiothoracic Surgery and Anesthesiology, Uppsala University Hospital, Uppsala, Sweden
| | - Valentyna Yasinska
- Clinical Lung and Allergy Research Unit, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergology, Karolinska University Hospital, Solna, Sweden
| | - Sven-Erik Dahlén
- Clinical Lung and Allergy Research Unit, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergology, Karolinska University Hospital, Solna, Sweden; Integrative Metabolomics Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Christer Janson
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Peter Korosec
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia; Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Andrei Malinovschi
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Skevaki C, Tafo P, Bahmer T, Abdo M, Watz H, Pedersen F, Herzmann C, Rabe KF, Renz H, Nockher WA. Differential expression of eicosanoid pathways after whole blood stimulation in asthma patients. World Allergy Organ J 2025; 18:101047. [PMID: 40235674 PMCID: PMC11999605 DOI: 10.1016/j.waojou.2025.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/13/2025] [Accepted: 03/12/2025] [Indexed: 04/17/2025] Open
Abstract
Objectives Asthma is a heterogeneous disease regarding its pathophysiology, clinical symptoms, and response to treatment. Eicosanoids are important inflammatory mediators, able to either promote or attenuate the underlying chronic airway inflammation. We compared eicosanoid expression patterns in the blood circulation and in stimulated blood leukocytes of asthma patients to identify differences in eicosanoid release which may be related to airway inflammation. Methods Blood was collected from 198 adult asthmatic patients and 63 healthy controls, participating in the German Center for Lung Research (DZL) ALLIANCE cohort. Eicosanoid release from leukocytes was analyzed using heparinized whole blood after in vitro stimulation with zymosan. Additionally, circulating eicosanoids were measured directly from ethylenediaminetetraacetic acid (EDTA) plasma. Eicosanoids were extracted via solid phase extraction and quantified by high-performance-liquid-chromatography-tandem-mass-spectrometry (HPLC-MS2). Results Eicosanoid levels were low in blood circulation with no significant differences between asthmatics and controls, except for leukotriene E4 (LTE4) which was slightly elevated in asthmatics. After in vitro stimulation we observed an inhibition of prostaglandin and thromboxane biosynthesis only in patients with severe asthma which was related to the regular use of systemic corticosteroids. In contrast, a significant increase was shown for formation of the 5-Lipoxygenase (5-LOX) product LTE4 in steroid-naïve asthmatics with moderate as well as severe disease severity but not in subjects with systemic steroid treatment. Furthermore 15-Hydorxyeicosatetraenoic acid (15-HETE) production was elevated in asthmatic patients with mild-to-moderate disease activity but dropped down in severe asthmatics. Conclusions Profiling of eicosanoid production in stimulated whole blood samples showed a specific biosynthesis pattern of asthmatic patients, which is influenced by the use of systemic corticosteroids.
Collapse
Affiliation(s)
- Chrysanthi Skevaki
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-University Marburg, University of Giessen Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, Germany
| | - Pavel Tafo
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-University Marburg, University of Giessen Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, Germany
| | - Thomas Bahmer
- LungenClinic Grosshansdorf GmbH, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
- Universitätsklinikum Schleswig-Holstein Campus Kiel, Internal Medicine Department I, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| | - Mustafa Abdo
- LungenClinic Grosshansdorf GmbH, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf GmbH, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Frauke Pedersen
- LungenClinic Grosshansdorf GmbH, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Christian Herzmann
- Forschungszentrum Borstel, Klinisches Studienzentrum, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Klaus F. Rabe
- LungenClinic Grosshansdorf GmbH, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-University Marburg, University of Giessen Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, Germany
| | - Wolfgang Andreas Nockher
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-University Marburg, University of Giessen Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
5
|
Ismail AI, Hyder Ali IA, Wong CK, Ban AYL, Mz Zahrah F, Lem LK, Abu Bakar Z, Alaga A, Omar A, Samsudin A, Lai SL, Gandhi A. A Retrospective Study Evaluating Asthma Control in Patients on Fluticasone Propionate/Salmeterol Proactive Regular Dosing with a History of Uncontrolled Asthma. Pulm Ther 2025; 11:25-40. [PMID: 39520649 PMCID: PMC11861446 DOI: 10.1007/s41030-024-00278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION The MERIT study in Malaysia is a real-world retrospective, observational, multicenter study that evaluated asthma control in patients with uncontrolled asthma who were switched from as-needed (pro re nata [PRN]) budesonide/formoterol or inhaled corticosteroid (ICS) whenever a short-acting beta-agonist (SABA) was taken, to proactive regular dosing of fluticasone propionate/salmeterol (FP/SAL PRD). METHODS Data from the medical records of patients who were stepped up to FP/SAL PRD were extracted retrospectively at baseline and follow-up (between 3 and 6 months after stepping up to FP/SAL PRD). The primary endpoint was the percentage of patients with improvement in asthma control assessed via the Asthma Control Test (ACT). Secondary endpoints included safety and the percentage of patients with moderate and severe exacerbations. Additionally, patient-reported use of reliever medication, systemic corticosteroids, emergency department visits, or hospitalization was also analyzed. RESULTS One hundred twenty patients with uncontrolled asthma who were stepped up to FP/SAL PRD were enrolled in the study. Of these, 76 (63.3%) patients were on prior budesonide/formoterol PRN, and 44 (36.7%) were on prior ICS with SABA PRN treatment. After stepping up to FP/SAL PRD with a mean follow-up of 5.8 months, 110 (91.7%) patients achieved asthma control at the follow-up visit (p < 0.001). Similar improvements were observed regardless of prior PRN regimen. A statistically significant improvement was observed in the mean ACT score at the follow-up visit (p < 0.0001). The proportion of patients with moderate and severe exacerbations was also reduced after stepping up to FP/SAL PRD, with no adverse events reported. Over 80% of patients reported a decrease in the use of systemic corticosteroids, visits to the emergency department, or hospitalization. CONCLUSION This study highlights the effectiveness of the FP/SAL PRD treatment approach in patients with uncontrolled asthma on a PRN treatment regimen.
Collapse
Affiliation(s)
- Ahmad Izuanuddin Ismail
- Hospital Al-Sultan Abdullah, Faculty of Medicine, Universiti Teknologi MARA, Shah Alam, Malaysia.
| | | | - Chee Kuan Wong
- Universiti Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Andrea Yu-Lin Ban
- Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, Kuala Lumpur, Malaysia
| | | | | | | | | | - Azza Omar
- Hospital Raja Perempuan Zainab 2, Kota Bharu, Malaysia
| | | | | | | |
Collapse
|
6
|
Martelo-Vidal L, Vázquez-Mera S, Miguéns-Suárez P, Bravo-López SB, Makrinioti H, Domínguez-Arca V, de-Miguel-Díez J, Gómez-Carballa A, Salas A, González-Barcala FJ, Salgado FJ, Nieto-Fontarigo JJ. Urinary Proteome and Exosome Analysis Protocol for the Discovery of Respiratory Diseases Biomarkers. Biomolecules 2025; 15:60. [PMID: 39858454 PMCID: PMC11762655 DOI: 10.3390/biom15010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/04/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
This study aims to develop a protocol for respiratory disease-associated biomarker discovery by combining urine proteome studies with urinary exosome components analysis (i.e., miRNAs). To achieve this, urine was DTT treated to decrease uromodulin, then concentrated and ultracentrifuged. Proteomic analyses of exosome-free urine were performed using LC-MS/MS. Simultaneously, miRNA expression from urine exosomes was measured using either RTqPCR (pre-amplification) or nCounter Nanostring (non-amplication) analyses. We detected 548 different proteins in exosome-free urine samples (N = 5) with high confidence (FDR < 1%), many of them being expressed in different non-renal tissues. Specifically, lung-related proteins were overrepresented (Fold enrichment = 1.31; FDR = 0.0335) compared to whole human proteome, and 10-15% were already described as protein biomarkers for several pulmonary diseases. Urine proteins identified belong to several functional categories important in respiratory pathology. We could confirm the expression of miRNAs previously connected to respiratory diseases (i.e., miR-16-5p, miR-21-5p, miR-146a-5p, and miR-215-5p) in urine exosomes by RTqPCR. Finally, we detected 333 miRNAs using Nanostring, 15 of them up-regulated in T2high asthma (N = 4) compared to T2low asthma (N = 4) and healthy subjects (N = 4). Therefore, this protocol combining the urinary proteome (exosome free) with the study of urinary exosome components (i.e., miRNAs) holds great potential for molecular biomarker discovery of non-renal and particularly respiratory pathologies.
Collapse
Affiliation(s)
- Laura Martelo-Vidal
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Sara Vázquez-Mera
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Pablo Miguéns-Suárez
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Susana Belén Bravo-López
- Proteomic Service, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Heidi Makrinioti
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Vicente Domínguez-Arca
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Bioprocess Engineering Group, Instituto de Investigacións Mariñas (IIM-CSIC), 36208 Vigo, Spain
| | - Javier de-Miguel-Díez
- Respiratory Department, Hospital General Universitario Gregorio Marañón, 28009 Madrid, Spain;
- Health Research Institute Gregorio Marañón (IISGM), 28009 Madrid, Spain
- Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alberto Gómez-Carballa
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (A.G.-C.); (A.S.)
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), 28029 Madrid, Spain
| | - Antonio Salas
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (A.G.-C.); (A.S.)
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), 28029 Madrid, Spain
| | - Francisco Javier González-Barcala
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Respiratory Medicine, University Hospital Complex of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Department of Medicine, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Francisco Javier Salgado
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Juan José Nieto-Fontarigo
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Metzler G, Day LA, King RC, Fernández-Metzler C, Das A, Davis TG, Bajrami B, Bretschneider T, Kvaskoff D. Prostaglandin Metabolites Analysis in Urine by LC-MS/MS. Methods Mol Biol 2025; 2855:147-154. [PMID: 39354306 DOI: 10.1007/978-1-0716-4116-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The analysis of prostaglandin urinary metabolites is valuable for assessing physiological processes and identifying disease biomarkers. These metabolites, derived from the breakdown of prostaglandins, offer a noninvasive means to gauge prostaglandin production and its potential impact on various biological functions. We report an efficient LC-MS method of four commonly analyzed prostaglandin urinary metabolites including tetranor-PGEM (derived from PGE2), tetranor-PGDM, 11β-PGF2α, and 2,3-dinor-11β-PGF2α (derived from PGD2). Each metabolite possesses distinct characteristics and clinical applications, collectively contributing to our understanding of prostaglandin-mediated pathways.
Collapse
Affiliation(s)
- Guille Metzler
- PharmaCadence Analytical Services, LLC, Hatfield, PA, USA
| | - Lily A Day
- PharmaCadence Analytical Services, LLC, Hatfield, PA, USA
| | - Richard C King
- PharmaCadence Analytical Services, LLC, Hatfield, PA, USA
| | | | - Amitava Das
- Immunology and Respiratory Disease, Boehringer-Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - T Gregg Davis
- Immunology and Respiratory Disease, Boehringer-Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Besnik Bajrami
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Tom Bretschneider
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David Kvaskoff
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.
| |
Collapse
|
8
|
Hayashi H, Ishii M, Hasegawa Y, Taniguchi M. Critical pathomechanisms of NSAID-exacerbated respiratory disease (N-ERD) clarified by treatment with omalizumab, an anti-IgE antibody. Allergol Int 2025; 74:51-65. [PMID: 39419650 DOI: 10.1016/j.alit.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Characteristic symptoms of NSAID-exacerbated respiratory disease (N-ERD) include asthma, chronic eosinophilic rhinosinusitis with nasal polyposis, cysteinyl LT (CysLT) overproduction and NSAIDs hypersensitivity. Some N-ERD patients present with episodic treatment-resistant extra-respiratory symptoms (CysLT-associated coronary artery vasospasm, gastroenteritis, or skin rash). Even when using standard treatments for respiratory and extra-respiratory symptoms, including systemic corticosteroids and aspirin desensitization, it is difficult to control the clinical symptoms and severe type 2 inflammation involved with mast cells, eosinophils, ILC2s, and platelet activation. Few treatment options are applicable in a clinical setting. Therefore, identifying effective treatments is essential for managing N-ERD patients who suffer from these conditions. Our previous observational study demonstrated 12-month omalizumab treatment of N-ERD was clinically effective against respiratory symptoms. Despite the remaining eosinophilia, omalizumab significantly reduced urinary LTE4 and PGD2 metabolites to near normal levels at steady state. Based on the preliminary study, we demonstrated that omalizumab induced tolerance to aspirin in N-ERD patients 3 months after therapy initiation and suppressed activation of mast cells during 24 h of initiation in a randomized manner. Moreover, omalizumab had significant efficacy against extra-respiratory symptoms at baseline (lacking aspirin exposure) as well as throughout aspirin challenge. This review addresses the latest discoveries related to N-ERD pathogenesis and the significant effectiveness of omalizumab on N-ERD as a mast cell stabilizer. Our findings regarding omalizumab-associated mast cell inhibitory effects are indirect evidence that mast cell dysregulation and, possibly, IgE are pivotal components of N-ERD.
Collapse
Affiliation(s)
- Hiroaki Hayashi
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan; Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Makoto Ishii
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan; National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Masami Taniguchi
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| |
Collapse
|
9
|
Zeng J, Usemann J, Singh KD, Jochmann A, Trachsel D, Frey U, Sinues P. Pharmacometabolomics via real-time breath analysis captures metabotypes of asthmatic children associated with salbutamol responsiveness. iScience 2024; 27:111446. [PMID: 39697593 PMCID: PMC11652886 DOI: 10.1016/j.isci.2024.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/26/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Asthma is a widespread respiratory disease affecting millions of children. Salbutamol is a well-established bronchodilator available to treat asthma. However, response to bronchodilators is very heterogeneous, particularly in children. Pharmacometabolomics via exhaled breath analysis holds promise for patient stratification. Here, we integrate a real-time breath analysis platform in the workflow of an outpatient clinic to provide a detailed metabolic snapshot of patients with asthma undergoing standard clinical evaluations. We observed significant metabolic changes associated with salbutamol inhalation within ∼1 h. Our data supports the hypothesis that sphingolipid metabolism and arginine biosynthesis mediate the bronchodilator effect of salbutamol. Clustering analysis of 30 metabolites associated with these pathways revealed characteristic metabotypes related to clinical phenotypes of poor bronchodilator responsiveness. We propose that such a metabolic fingerprinting approach may be of utility in clinical practice to quantify response to inhaled medications or asthma outcomes.
Collapse
Affiliation(s)
- Jiafa Zeng
- Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- University Children’s Hospital Basel UKBB, University of Basel, 4056 Basel, Switzerland
| | - Jakob Usemann
- University Children’s Hospital Basel UKBB, University of Basel, 4056 Basel, Switzerland
| | - Kapil Dev Singh
- Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- University Children’s Hospital Basel UKBB, University of Basel, 4056 Basel, Switzerland
| | - Anja Jochmann
- University Children’s Hospital Basel UKBB, University of Basel, 4056 Basel, Switzerland
| | - Daniel Trachsel
- University Children’s Hospital Basel UKBB, University of Basel, 4056 Basel, Switzerland
| | - Urs Frey
- Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- University Children’s Hospital Basel UKBB, University of Basel, 4056 Basel, Switzerland
| | - Pablo Sinues
- Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- University Children’s Hospital Basel UKBB, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Chiang CC, Cheng WJ, Dela Cruz JRMS, Raviraj T, Wu NL, Korinek M, Hwang TL. Neutrophils in Atopic Dermatitis. Clin Rev Allergy Immunol 2024; 67:21-39. [PMID: 39294505 PMCID: PMC11638293 DOI: 10.1007/s12016-024-09004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/20/2024]
Abstract
Neutrophils have a critical role in inflammation. Recent studies have identified their distinctive presence in certain types of atopic dermatitis (AD), yet their exact function remains unclear. This review aims to compile studies elucidating the role of neutrophils in AD pathophysiology. Proteins released by neutrophils, including myeloperoxidase, elastase, and lipocalin, contribute to pruritus progression in AD. Neutrophilic oxidative stress and the formation of neutrophil extracellular traps may further worsen AD. Elevated neutrophil elastase and high-mobility group box 1 protein expression in AD patients' skin exacerbates epidermal barrier defects. Neutrophil-mast cell interactions in allergic inflammation steer the immunological response toward Th2 imbalance and activate the Th17 pathway, particularly in response to allergens or infections linked to AD. Notably, drugs alleviating pruritic symptoms in AD inhibit neutrophilic inflammation. In conclusion, these findings underscore that neutrophils may be therapeutic targets for AD symptoms, emphasizing their inclusion in AD treatment strategies.
Collapse
Affiliation(s)
- Chih-Chao Chiang
- Department of Nutrition and Health Sciences, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Puxin Fengze Chinese Medicine Clinic, Taoyuan, Taiwan
| | - Wei-Jen Cheng
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Joseph Renz Marion Santiago Dela Cruz
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Thiyagarajan Raviraj
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Nan-Lin Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.
- Institute of Biomedical Sciences and Department of Medicine, Mackay Medical College, New Taipei, Taiwan.
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
| |
Collapse
|
11
|
Tanabe N, Hara Y, Shimizu K, Marumo S, Miyata J, Morita K, Watanabe T, Oishi K, Yamaguchi M, Asai K, Nakano Y, Hirano T, Matsunaga K, Koya T, Matsumoto H, Fukunaga K, Konno S, Kaneko T, Hirai T. A protocol for a Japanese prospective cohort evaluating the features of patients with uncontrolled asthma achieving clinical remission: J-CIRCLE. Respir Investig 2024; 62:1209-1214. [PMID: 39500243 DOI: 10.1016/j.resinv.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/06/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Increasing expectations that biologics can be used as disease-modifying agents have introduced the concept of clinical remission (CR) in managements of severe asthma. Given the clinical relevance of computed tomography (CT) and blood biomarkers, we hypothesized that further refinement of CR criteria as well as incorporation of CT and blood biomarkers as indicators for structural and biological remission (SR, BR) would enable predicting long-term disease stability in patients with severe asthma treated with biologics. METHODS This Japanese multicenter prospective observational cohort will enroll patients with severe asthma who will start a new biologic (including a change from another biologic). The enrolled patients will be longitudinally followed up for 3 years. At enrollment, patients will undergo postbronchodilator spirometry, blood tests, fractional exhaled nitric oxide, chest and sinus CT, and patient-reported outcome questionnaires. Follow-up examinations will be performed at 1, 3, 6, 12, 24, and 36 months. The rates of CR resulting from different criteria after 1 year of treatment with biologics will be compared, and factors associated with long-term disease stability after 3 years of biologic treatments will be identified. DISCUSSION This multicenter study in Japan will provide data that will help establish more appropriate criteria for CR, structural remission, and biological remission to predict long-term disease stability in patients with severe asthma who receive biologic therapy. ETHICS AND DISSEMINATION The study was approved by the Ethics Committee of Kyoto University (No. R4419, approval date June 11th, 2024). TRIAL REGISTRATION The University Hospital Medical Information Network (UMIN000053771).
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kaoruko Shimizu
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Marumo
- Respiratory Disease Center, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Jun Miyata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kyohei Morita
- Department of Respiratory Medicine, Osaka Red Cross Hospital, Osaka, Japan
| | - Tetsuya Watanabe
- Department of Respiratory Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Keiji Oishi
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Masafumi Yamaguchi
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Tsunahiko Hirano
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Toshiyuki Koya
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hisako Matsumoto
- Department of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Chen L, Brustad N, Kim M, Luo Y, Wang T, Ali M, Prince N, Chen Y, Chu S, Begum S, Mendez K, Kelly RS, Schoos AM, Rasmussen MA, Zurita J, Kolmert J, Stokholm J, Litonjua A, Weiss ST, Bønnelykke K, Wheelock CE, Lasky-Su J, Chawes B. Urinary eicosanoid levels in early life and risk of atopic disease in childhood. J Allergy Clin Immunol 2024; 154:670-678. [PMID: 38825025 PMCID: PMC12042789 DOI: 10.1016/j.jaci.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Eicosanoids are lipid mediators including thromboxanes (TXs), prostaglandins (PGs), and leukotrienes with a pathophysiological role in established atopic disease. However, their role in the inception of disease is unclear. This study aimed to investigate the association between urinary eicosanoids in early life and development of atopic disease. METHODS This study quantified the levels of 21 eicosanoids in urine from children from the COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood 2010) (age 1 year, n = 450) and VDAART (Vitamin D Antenatal Asthma Reduction Trial) (age 3 years, n = 575) mother-child cohorts and analyzed the associations with development of wheeze/asthma, atopic dermatitis, and biomarkers of type-2 inflammation, applying false discovery rate of 5% (FDR5%) multiple testing correction. RESULTS In both cohorts, analyses adjusted for environmental determinants showed that higher TXA2 eicosanoids in early life were associated with increased risk of developing atopic dermatitis (P < FDR5%) and type-2 inflammation (P < .05). In VDAART, lower PGE2 and PGI2 eicosanoids and higher isoprostanes were also associated with increased risk of atopic dermatitis (P < FDR5%). For wheeze/asthma, analyses in COPSAC2010 showed that lower isoprostanes and PGF2 eicosanoids and higher PGD2 eicosanoids at age 1 year associated with an increased risk at age 1-10 years (P < .05), whereas analyses in VDAART showed that lower PGE2 and higher TXA2 eicosanoids at age 3 years associated with an increased risk at 6 years (P < FDR5%). CONCLUSIONS This study suggests that early life perturbations in the eicosanoid metabolism are present before the onset of atopic disease in childhood, which provides pathophysiological insight in the inception of atopic diseases.
Collapse
Affiliation(s)
- Liang Chen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Nicklas Brustad
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Min Kim
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Yang Luo
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Tingting Wang
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mina Ali
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Nicole Prince
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Yulu Chen
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Su Chu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Sofina Begum
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Kevin Mendez
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Ann-Marie Schoos
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Morten A Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Slagelse, Denmark
| | - Javier Zurita
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Kolmert
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark; Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Slagelse, Denmark
| | - Augusto Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Hughes ML, Kuiper G, Hoskovec L, WeMott S, Young BN, Benka-Coker W, Quinn C, Erlandson G, Martinez N, Mendoza J, Dooley G, Magzamen S. Association of ambient air pollution and pesticide mixtures on respiratory inflammatory markers in agricultural communities. ENVIRONMENTAL RESEARCH, HEALTH : ERH 2024; 2:035007. [PMID: 38962451 PMCID: PMC11220826 DOI: 10.1088/2752-5309/ad52ba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/04/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
Air pollution exposure is associated with adverse respiratory health outcomes. Evidence from occupational and community-based studies also suggests agricultural pesticides have negative health impacts on respiratory health. Although populations are exposed to multiple inhalation hazards simultaneously, multidomain mixtures (e.g. environmental and chemical pollutants of different classes) are rarely studied. We investigated the association of ambient air pollution-pesticide exposure mixtures with urinary leukotriene E4 (LTE4), a respiratory inflammation biomarker, for 75 participants in four Central California communities over two seasons. Exposures included three criteria air pollutants estimated via the Community Multiscale Air Quality model (fine particulate matter, ozone, and nitrogen dioxide) and urinary metabolites of organophosphate (OP) pesticides (total dialkyl phosphates (DAPs), total diethyl phosphates (DE), and total dimethyl phosphates (DM)). We implemented multiple linear regression models to examine associations in single pollutant models adjusted for age, sex, asthma status, occupational status, household member occupational status, temperature, and relative humidity, and evaluated whether associations changed seasonally. We then implemented Bayesian kernel machine regression (BKMR) to analyse these criteria air pollutants, DE, and DM as a mixture. Our multiple linear regression models indicated an interquartile range (IQR) increase in total DAPs was associated with an increase in urinary LTE4 in winter (β: 0.04, 95% CI: [0.01, 0.07]). Similarly, an IQR increase in total DM was associated with an increase in urinary LTE4 in winter (β:0.03, 95% CI: [0.004, 0.06]). Confidence intervals for all criteria air pollutant effect estimates included the null value. BKMR analysis revealed potential non-linear interactions between exposures in our air pollution-pesticide mixture, but all confidence intervals contained the null value. Our analysis demonstrated a positive association between OP pesticide metabolites and urinary LTE4 in a low asthma prevalence population and adds to the limited research on the joint effects of ambient air pollution and pesticides mixtures on respiratory health.
Collapse
Affiliation(s)
- Matthew L Hughes
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Grace Kuiper
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Lauren Hoskovec
- Department of Statistics, Colorado State University, Fort Collins, CO, United States of America
| | - Sherry WeMott
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Bonnie N Young
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Wande Benka-Coker
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States of America
- Department of Environmental Studies, Dickinson College, Carlisle, PA, United States of America
| | - Casey Quinn
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States of America
| | - Grant Erlandson
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Nayamin Martinez
- Central California Environmental Justice Network, Fresno, CA, United States of America
| | - Jesus Mendoza
- Central California Environmental Justice Network, Fresno, CA, United States of America
| | - Greg Dooley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
14
|
Djukanović R, Brinkman P, Kolmert J, Gomez C, Schofield J, Brandsma J, Shapanis A, Skipp PJS, Postle A, Wheelock C, Dahlen SE, Sterk PJ, Brown T, Jackson DJ, Mansur A, Pavord I, Patel M, Brightling C, Siddiqui S, Bradding P, Sabroe I, Saralaya D, Chishimba L, Porter J, Robinson D, Fowler S, Howarth PH, Little L, Oliver T, Hill K, Stanton L, Allen A, Ellis D, Griffiths G, Harrison T, Akenroye A, Lasky-Su J, Heaney L, Chaudhuri R, Kurukulaaratchy R. Biomarker Predictors of Clinical Efficacy of the Anti-IgE Biologic Omalizumab in Severe Asthma in Adults: Results of the SoMOSA Study. Am J Respir Crit Care Med 2024; 210:288-297. [PMID: 38635834 PMCID: PMC11348961 DOI: 10.1164/rccm.202310-1730oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024] Open
Abstract
Background: The anti-IgE monoclonal antibody omalizumab is widely used for severe asthma. This study aimed to identify biomarkers that predict clinical improvement during 1 year of omalizumab treatment. Methods: One-year open-label Study of Mechanisms of action of Omalizumab in Severe Asthma (SoMOSA) involving 216 patients with severe (Global Initiative for Asthma step 4/5) uncontrolled atopic asthma (at least two severe exacerbations in the previous year) taking high-dose inhaled corticosteroids and long-acting β-agonists with or without maintenance oral corticosteroids. It had two phases: 0-16 weeks, to assess early clinical improvement by Global Evaluation of Therapeutic Effectiveness (GETE); and 16-52 weeks, to assess late responses based on ⩾50% reduction in exacerbations or mOCS dose. All participants provided samples (exhaled breath, blood, sputum, urine) before and after 16 weeks of omalizumab treatment. Measurements and Main Results: A total of 191 patients completed phase 1; 63% had early improvement. Of 173 who completed phase 2, 69% had reduced exacerbations by ⩾50% and 57% (37 of 65) taking mOCSs had reduced their dose by ⩾50%. The primary outcomes 2,3-dinor-11-β-PGF2α, GETE score, and standard clinical biomarkers (blood and sputum eosinophils, exhaled nitric oxide, serum IgE) did not predict either clinical response. Five volatile organic compounds and five plasma lipid biomarkers strongly predicted the ⩾50% reduction in exacerbations (receiver operating characteristic areas under the curve of 0.780 and 0.922, respectively) and early responses (areas under the curve of 0.835 and 0.949, respectively). In an independent cohort, gas chromatography/mass spectrometry biomarkers differentiated between severe and mild asthma. Conclusions: This is the first discovery of omics biomarkers that predict improvement in asthma with biologic agent treatment. Prospective validation and development for clinical use is justified.
Collapse
Affiliation(s)
- Ratko Djukanović
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and National Institute for Health and Care Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Paul Brinkman
- Department of Respiratory Medicine, Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| | - Johan Kolmert
- Institute of Environmental Medicine, Karolinska Institutet, and the Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Cristina Gomez
- Institute of Environmental Medicine, Karolinska Institutet, and the Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - James Schofield
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and National Institute for Health and Care Research Southampton Biomedical Research Centre, Southampton, United Kingdom
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Joost Brandsma
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and National Institute for Health and Care Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Andy Shapanis
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Paul J. S. Skipp
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and National Institute for Health and Care Research Southampton Biomedical Research Centre, Southampton, United Kingdom
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Anthony Postle
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and National Institute for Health and Care Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Craig Wheelock
- Institute of Environmental Medicine, Karolinska Institutet, and the Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Sven-Erik Dahlen
- Institute of Environmental Medicine, Karolinska Institutet, and the Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Peter J. Sterk
- Department of Respiratory Medicine, Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| | - Thomas Brown
- Portsmouth Hospitals University National Health Service Trust, Queen Alexandra Hospital, Portsmouth, United Kingdom
| | - David J. Jackson
- Guy’s Severe Asthma Centre, School of Immunology & Microbial Sciences, King’s College London, London, United Kingdom
| | - Adel Mansur
- University of Birmingham and Heartlands Hospital, University Hospitals Birmingham National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Ian Pavord
- Oxford Respiratory National Institute for Health and Care Research Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mitesh Patel
- Respiratory Medicine and R&D, University Hospitals Plymouth National Health Service Trust, Plymouth, United Kingdom
| | - Christopher Brightling
- Institute for Lung Health and Leicester National Institute for Health and Care Research Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Salman Siddiqui
- Institute for Lung Health and Leicester National Institute for Health and Care Research Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Peter Bradding
- Institute for Lung Health and Leicester National Institute for Health and Care Research Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Ian Sabroe
- Clinical Research Facility, Sheffield Teaching Hospitals National Health Service Foundation Trust, Sheffield, United Kingdom
| | - Dinesh Saralaya
- Bradford Institute for Health Research and the National Patient Recruitment Centre, Bradford, United Kingdom
| | - Livingstone Chishimba
- Clinical Sciences, Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Joanna Porter
- University College London Respiratory and National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Douglas Robinson
- University College London Respiratory and National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Stephen Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre and National Institute for Health and Care Research Manchester Biomedical Research Centre, Manchester University Hospitals National Health Service Foundation Trust, Manchester, United Kingdom
| | - Peter H. Howarth
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and National Institute for Health and Care Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Louisa Little
- Southampton Clinical Trials Unit, University of Southampton, and University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom
| | - Thomas Oliver
- Southampton Clinical Trials Unit, University of Southampton, and University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom
| | - Kayleigh Hill
- Southampton Clinical Trials Unit, University of Southampton, and University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom
| | - Louise Stanton
- Southampton Clinical Trials Unit, University of Southampton, and University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom
| | - Alexander Allen
- Southampton Clinical Trials Unit, University of Southampton, and University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom
| | - Deborah Ellis
- Southampton Clinical Trials Unit, University of Southampton, and University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom
| | - Gareth Griffiths
- Southampton Clinical Trials Unit, University of Southampton, and University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom
| | - Tim Harrison
- Nottingham Respiratory National Institute for Health and Care Research Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ayobami Akenroye
- Division of Allergy and Clinical Immunology and
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Liam Heaney
- Wellcome-Wolfson Institute for Experimental Medicine, Belfast, Northern Ireland; and
| | - Rekha Chaudhuri
- Gartnavel General Hospital and School of Infection & Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Ramesh Kurukulaaratchy
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and National Institute for Health and Care Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| |
Collapse
|
15
|
Woo SD, Park HS, Yang EM, Ban GY, Park HS. 8-Iso-prostaglandin F2α as a biomarker of type 2 low airway inflammation and remodeling in adult asthma. Ann Allergy Asthma Immunol 2024; 133:73-80.e2. [PMID: 38615737 DOI: 10.1016/j.anai.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Although 8-iso-prostaglandin F2a has been proposed as a potential biomarker for oxidative stress in airway diseases, its specific role in asthma remains poorly understood. OBJECTIVE To evaluate the diagnostic potential of 8-iso-prostaglandin F2a in assessing airway inflammation, airway remodeling, airway hyperresponsiveness, and oxidative stress in asthma. METHODS Blood and urine concentrations of 8-iso-prostaglandin F2a were quantified using liquid chromatography-tandem mass spectrometry in 128 adults with asthma who had maintained antiasthma medications. Their correlations with clinical data, sputum cell counts, lung function parameters, and serum markers of epithelial/neutrophil activity and airway remodeling were then analyzed. RESULTS The urinary 8-iso-prostaglandin F2a concentrations were significantly higher in patients with noneosinophilic asthma than in those with eosinophilic asthma (P < .05). The area under the curve was 0.678, indicating moderate diagnostic accuracy for noneosinophilic asthma. There were significant correlations with neutrophilic inflammation markers and airway remodeling markers (all P < .05). Negative correlations were observed with forced expiratory volume in 1 second (%), forced expiratory volume in 1 second/forced vital capacity, forced expiratory flow at 25% to 75% of forced vital capacity, and serum club cell protein 16 levels (all P < .05). High 8-iso-prostaglandin F2a concentrations were also noted in obese and smoking subgroups (all P < .05). However, the serum 8-iso-prostaglandin F2a concentrations were not correlated with these asthma-related parameters. CONCLUSION Urinary 8-iso-prostaglandin F2a concentrations are a potential biomarker for phenotyping severe asthma, particularly noneosinophilic asthma, offering oxidative stress-induced epithelial inflammation/remodeling as an additional target in asthma management.
Collapse
Affiliation(s)
- Seong-Dae Woo
- Department of Pulmonary, Allergy, and Critical Care Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hee Sun Park
- Department of Pulmonary, Allergy, and Critical Care Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Eun-Mi Yang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ga-Young Ban
- Department of Pulmonary, Allergy, and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine Institute for Life Sciences, Seoul, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
16
|
Lin Y, Wang X, Chen R, Weil T, Ge Y, Stapleton HM, Bergin MH, Zhang J(J. Arachidonic Acid Metabolites in Self-collected Biospecimens Following Campfire Exposure: Exploring Non-invasive Biomarkers of Wildfire Health Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:201-207. [PMID: 38828437 PMCID: PMC11144521 DOI: 10.1021/acs.estlett.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Climate change has contributed to increased frequency and intensity of wildfire. Studying its acute effects is limited due to unpredictable nature of wildfire occurrence, which necessitates readily deployable techniques to collect biospecimens. To identify biomarkers of wildfire's acute effects, we conducted this exploratory study in eight healthy campers (four men and four women) who self-collected nasal fluid, urine, saliva, and skin wipes at different time points before, during, and after 4-hour exposure to wood smoke in a camping event. Concentrations of black carbon in the air and polycyclic aromatic hydrocarbons in participants' silicone wristbands were significantly elevated during the exposure session. Among 30 arachidonic acid metabolites measured, lipoxygenase metabolites were more abundant in nasal fluid and saliva, whereas cyclooxygenase and non-enzymatic metabolites were more abundant in urine. We observed drastic increases, at 8 hours following the exposure, in urinary levels of PGE2 (398%) and 15-keto-PGF2α (191%) (FDR<10%), with greater increases in men (FDR < 0.01%) than in women. No significant changes were observed for other metabolites in urine or the other biospecimens. Our results suggest urinary PGE2 and 15-keto-PGF2α as promising biomarkers reflecting pathophysiologic (likely sex-dependent) changes induced by short-term exposure to wildfire.
Collapse
Affiliation(s)
- Yan Lin
- Duke Global Health Institute, Duke University, Durham, NC, 27710, United States
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| | - Xiangtian Wang
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| | - Ruoxue Chen
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| | - Tenley Weil
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| | - Yihui Ge
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| | - Michael H. Bergin
- Duke Global Health Institute, Duke University, Durham, NC, 27710, United States
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27710, United States
| | - Junfeng (Jim) Zhang
- Duke Global Health Institute, Duke University, Durham, NC, 27710, United States
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| |
Collapse
|
17
|
Bergantini L, Baker J, Bossios A, Braunstahl GJ, Conemans LH, Lombardi F, Mathioudakis AG, Pobeha P, Ricciardolo FLM, Prada Romero LP, Schleich F, Snelgrove RJ, Trinkmann F, Uller L, Beech A. ERS International Congress 2023: highlights from the Airway Diseases Assembly. ERJ Open Res 2024; 10:00891-2023. [PMID: 38529346 PMCID: PMC10962455 DOI: 10.1183/23120541.00891-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 03/27/2024] Open
Abstract
In this review, early career and senior members of Assembly 5 (Airway Diseases, Asthma, COPD and Chronic Cough) present key recent findings pertinent to airway diseases that were presented during the European Respiratory Society International Congress 2023 in Milan, Italy, with a particular focus on asthma, COPD, chronic cough and bronchiectasis. During the congress, an increased number of symposia, workshops and abstract presentations were organised. In total, 739 abstracts were submitted for Assembly 5 and the majority of these were presented by early career members. These data highlight the increased interest in this group of respiratory diseases.
Collapse
Affiliation(s)
- Laura Bergantini
- Respiratory Disease Unit, Department of Medical Sciences, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - James Baker
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Apostolos Bossios
- Karolinska Severe Asthma Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gert-Jan Braunstahl
- Franciscus Gasthuis and Vlietland Hospital, Rotterdam, The Netherlands
- Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Francesco Lombardi
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alexander G. Mathioudakis
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Pavol Pobeha
- Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Fabio Luigi Massimo Ricciardolo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Institute of Translational Pharmacology, National Research Council (IFT-CNR), Palermo, Italy
| | | | - Florence Schleich
- Respiratory Medicine, CHU Sart-Tilman B35, University of Liège, GIGA I3, Liège, Belgium
| | | | - Frederik Trinkmann
- Department of Pneumology and Critical Care Medicine, Thoraxklinik at Heidelberg University Hospital, Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Biomedical Informatics, Center for Preventive Medicine and Digital Health, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Uller
- Department of Experimental Medical Science, Unit of Respiratory Immunopharmacology, Lund University, Lund, Sweden
| | - Augusta Beech
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
18
|
Sieminska J, Kolmert J, Zurita J, Benkestock K, Revol-Cavalier J, Niklinski J, Reszec J, Dahlén SE, Ciborowski M, Wheelock CE. A single extraction 96-well method for LC-MS/MS quantification of urinary eicosanoids, steroids and drugs. Prostaglandins Other Lipid Mediat 2024; 170:106789. [PMID: 37879396 DOI: 10.1016/j.prostaglandins.2023.106789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Urinary eicosanoid concentrations reflect inflammatory processes in multiple diseases and have been used as biomarkers of disease as well as suggested for patient stratification in precision medicine. However, implementation of urinary eicosanoid profiling in large-scale analyses is restricted due to sample preparation limits. Here we demonstrate a single solid-phase extraction of 300 µL urine in 96-well-format for prostaglandins, thromboxanes, isoprostanes, cysteinyl-leukotriene E4 and the linoleic acid-derived dihydroxy-octadecenoic acids (9,10- and 12,13-DiHOME). A simultaneous screening protocol was also developed for cortisol/cortisone and 7 exogenous steroids as well as 3 cyclooxygenase inhibitors. Satisfactory performance for quantification of eicosanoids with an appropriate internal standard was demonstrated for intra-plate analyses (CV = 8.5-15.1%) as well as for inter-plate (n = 35) from multiple studies (CV = 22.1-34.9%). Storage stability was evaluated at - 20 °C, and polar tetranors evidenced a 50% decrease after 5 months, while the remaining eicosanoids evidenced no significant degradation. All eicosanoids were stable over 3.5-years in urine stored at - 80 °C. This method will facilitate the implementation of urinary eicosanoid quantification in large-scale screening.
Collapse
Affiliation(s)
- Julia Sieminska
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Metabolomics Laboratory, Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Johan Kolmert
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Javier Zurita
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Johanna Revol-Cavalier
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
| | - Joanna Reszec
- Department of Medical Patomorphology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
| | - Sven-Erik Dahlén
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland.
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
19
|
Chen CY, Wu KH, Guo BC, Lin WY, Chang YJ, Wei CW, Lin MJ, Wu HP. Personalized Medicine in Severe Asthma: From Biomarkers to Biologics. Int J Mol Sci 2023; 25:182. [PMID: 38203353 PMCID: PMC10778979 DOI: 10.3390/ijms25010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Severe asthma is a complex and heterogeneous clinical condition presented as chronic inflammation of the airways. Conventional treatments are mainly focused on symptom control; however, there has been a shift towards personalized medicine. Identification of different phenotypes driven by complex pathobiological mechanisms (endotypes), especially those driven by type-2 (T2) inflammation, has led to improved treatment outcomes. Combining biomarkers with T2-targeting monoclonal antibodies is crucial for developing personalized treatment strategies. Several biological agents, including anti-immunoglobulin E, anti-interleukin-5, and anti-thymic stromal lymphopoietin/interleukin-4, have been approved for the treatment of severe asthma. These biological therapies have demonstrated efficacy in reducing asthma exacerbations, lowering eosinophil count, improving lung function, diminishing oral corticosteroid use, and improving the quality of life in selected patients. Severe asthma management is undergoing a profound transformation with the introduction of ongoing and future biological therapies. The availability of novel treatment options has facilitated the adoption of phenotype/endotype-specific approaches and disappearance of generic interventions. The transition towards precision medicine plays a crucial role in meticulously addressing the individual traits of asthma pathobiology. An era of tailored strategies has emerged, allowing for the successful targeting of immune-inflammatory responses that underlie uncontrolled T2-high asthma. These personalized approaches hold great promise for improving the overall efficacy and outcomes in the management of severe asthma. This article comprehensively reviews currently available biological agents and biomarkers for treating severe asthma. With the expanding repertoire of therapeutic options, it is becoming increasingly crucial to comprehend the influencing factors, understand the pathogenesis, and track treatment progress in severe asthma.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Emergency Medicine, Tungs’ Taichung Metro Harbor Hospital, Taichung 435403, Taiwan; (C.-Y.C.); (C.-W.W.)
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Bei-Cyuan Guo
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan;
| | - Wen-Ya Lin
- Division of Pediatric Emergency Medicine, Department of Pediatrics, Taichung Veteran General Hospital, Taichung 43503, Taiwan;
| | - Yu-Jun Chang
- Laboratory of Epidemiology and Biostastics, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Chih-Wei Wei
- Department of Emergency Medicine, Tungs’ Taichung Metro Harbor Hospital, Taichung 435403, Taiwan; (C.-Y.C.); (C.-W.W.)
| | - Mao-Jen Lin
- Division of Cardiology, Department of Medicine, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 97002, Taiwan
| | - Han-Ping Wu
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| |
Collapse
|
20
|
Nordström A, Jangard M, Svedberg M, Ryott M, Kumlin M. Distinct eicosanoid patterns in severe recalcitrant nasal polyposis. Int Forum Allergy Rhinol 2023; 13:2043-2054. [PMID: 37179460 DOI: 10.1002/alr.23181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Although altered eicosanoid levels are related to disease severity in chronic rhinosinusitis with nasal polyps (CRSwNP), identifying patients prone to recurrent nasal polyps (NPs) is still difficult. We investigated levels of nasally secreted eicosanoids before and after NP surgery in patients with or without NP recurrence (NPR) and explored potential endotypes based on pre-surgical eicosanoid levels. METHODS Levels of leukotriene (LT) E4 , LTB4 , prostaglandin (PG) D2 , PGE2 and 15(S) hydroxyeicosatetraenoic acid (15[S]-HETE) were measured in nasal secretions with specific immunoassays at pre-surgery (n = 38) and 6 and 12 months post-surgery (n = 35), with NPR identified endoscopically. Pre- and post-surgical levels were compared between patients with and without NPR. Eicosanoid patterns among patients were explored with cluster analysis and evaluated with clinical parameters. RESULTS Patients with recurrent NPs had pronounced pre-surgical levels of nasal 15(S)-HETE, PGD2 and LTE4 . From pre-surgery to 12 months post-surgery, NPR was associated with significant decreases of 15(S)-HETE and PGD2 relative to non-recurrence, whereas levels of LTE4 decreased at 6 months but increased again at 12 months. Clustering revealed three potential endotypes. Clusters 1 and 3 featured high and low eicosanoid levels, respectively. Cluster 2 had higher levels of LTE4 and PGD2 , lower levels of PGE2 and LTB4 , and more cases of recurrent NPs and previous NP surgeries. CONCLUSION Elevated nasal LTE4 12 months post-surgery in NP recurrent subjects suggests that postoperative LTE4 measurements may indicate rapid NP regrowth. A distinct nasal eicosanoid profile may be used for the identification of the most severe recalcitrant patients in need of targeted immunomodulatory therapies.
Collapse
Affiliation(s)
- Axel Nordström
- Department of Health Promotion Science, Sophiahemmet University, Stockholm, Sweden
| | - Mattias Jangard
- Department of Otorhinolaryngology, Sophiahemmet Hospital, Stockholm, Sweden
| | - Marie Svedberg
- Department of Health Promotion Science, Sophiahemmet University, Stockholm, Sweden
| | - Michael Ryott
- Department of Otorhinolaryngology, Sophiahemmet Hospital, Stockholm, Sweden
| | - Maria Kumlin
- Department of Health Promotion Science, Sophiahemmet University, Stockholm, Sweden
| |
Collapse
|
21
|
Yang CC, Lee IT, Lin YJ, Wu WB, Hsiao LD, Yang CM. Thrombin-Induced COX-2 Expression and PGE 2 Synthesis in Human Tracheal Smooth Muscle Cells: Role of PKCδ/Pyk2-Dependent AP-1 Pathway Modulation. Int J Mol Sci 2023; 24:15130. [PMID: 37894811 PMCID: PMC10606820 DOI: 10.3390/ijms242015130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, we confirmed that thrombin significantly increases the production of COX-2 and PGE2 in human tracheal smooth muscle cells (HTSMCs), leading to inflammation in the airways and lungs. These molecules are well-known contributors to various inflammatory diseases. Here, we investigated in detail the involved signaling pathways using specific inhibitors and small interfering RNAs (siRNAs). Our results demonstrated that inhibitors targeting proteins such as protein kinase C (PKC)δ, proline-rich tyrosine kinase 2 (Pyk2), c-Src, epidermal growth factor receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), or activator protein-1 (AP-1) effectively reduced thrombin-induced COX-2 and PGE2 production. Additionally, transfection with siRNAs against PKCδ, Pyk2, c-Src, EGFR, protein kinase B (Akt), or c-Jun mitigated these responses. Furthermore, our observations revealed that thrombin stimulated the phosphorylation of key components of the signaling cascade, including PKCδ, Pyk2, c-Src, EGFR, Akt, and c-Jun. Thrombin activated COX-2 promoter activity through AP-1 activation, a process that was disrupted by a point-mutated AP-1 site within the COX-2 promoter. Finally, resveratrol (one of the most researched natural polyphenols) was found to effectively inhibit thrombin-induced COX-2 expression and PGE2 release in HTSMCs through blocking the activation of Pyk2, c-Src, EGFR, Akt, and c-Jun. In summary, our findings demonstrate that thrombin-induced COX-2 and PGE2 generation involves a PKCδ/Pyk2/c-Src/EGFR/PI3K/Akt-dependent AP-1 activation pathway. This study also suggests the potential use of resveratrol as an intervention for managing airway inflammation.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Taoyuan, Taoyuan 333008, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Yan-Jyun Lin
- Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung 406040, Taiwan;
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Li-Der Hsiao
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| |
Collapse
|
22
|
Dasgupta S, Ghosh N, Bhattacharyya P, Roy Chowdhury S, Chaudhury K. Metabolomics of asthma, COPD, and asthma-COPD overlap: an overview. Crit Rev Clin Lab Sci 2023; 60:153-170. [PMID: 36420874 DOI: 10.1080/10408363.2022.2140329] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The two common progressive lung diseases, asthma and chronic obstructive pulmonary disease (COPD), are the leading causes of morbidity and mortality worldwide. Asthma-COPD overlap, referred to as ACO, is another complex pulmonary disease that manifests itself with features of both asthma and COPD. The disease has no clear diagnostic or therapeutic guidelines, thereby making both diagnosis and treatment challenging. Though a number of studies on ACO have been documented, gaps in knowledge regarding the pathophysiologic mechanism of this disorder exist. Addressing this issue is an urgent need for improved diagnostic and therapeutic management of the disease. Metabolomics, an increasingly popular technique, reveals the pathogenesis of complex diseases and holds promise in biomarker discovery. This comprehensive narrative review, comprising 99 original research articles in the last five years (2017-2022), summarizes the scientific advances in terms of metabolic alterations in patients with asthma, COPD, and ACO. The analytical tools, nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS), commonly used to study the expression of the metabolome, are discussed. Challenges frequently encountered during metabolite identification and quality assessment are highlighted. Bridging the gap between phenotype and metabotype is envisioned in the future.
Collapse
Affiliation(s)
- Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Nilanjana Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
23
|
Makrinioti H, Zhu Z, Camargo CA, Fainardi V, Hasegawa K, Bush A, Saglani S. Application of Metabolomics in Obesity-Related Childhood Asthma Subtyping: A Narrative Scoping Review. Metabolites 2023; 13:328. [PMID: 36984768 PMCID: PMC10054720 DOI: 10.3390/metabo13030328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Obesity-related asthma is a heterogeneous childhood asthma phenotype with rising prevalence. Observational studies identify early-life obesity or weight gain as risk factors for childhood asthma development. The reverse association is also described, children with asthma have a higher risk of being obese. Obese children with asthma have poor symptom control and an increased number of asthma attacks compared to non-obese children with asthma. Clinical trials have also identified that a proportion of obese children with asthma do not respond as well to usual treatment (e.g., inhaled corticosteroids). The heterogeneity of obesity-related asthma phenotypes may be attributable to different underlying pathogenetic mechanisms. Although few childhood obesity-related asthma endotypes have been described, our knowledge in this field is incomplete. An evolving analytical profiling technique, metabolomics, has the potential to link individuals' genetic backgrounds and environmental exposures (e.g., diet) to disease endotypes. This will ultimately help define clinically relevant obesity-related childhood asthma subtypes that respond better to targeted treatment. However, there are challenges related to this approach. The current narrative scoping review summarizes the evidence for metabolomics contributing to asthma subtyping in obese children, highlights the challenges associated with the implementation of this approach, and identifies gaps in research.
Collapse
Affiliation(s)
- Heidi Makrinioti
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Valentina Fainardi
- Clinica Pediatrica, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College, London SW7 2AZ, UK
- Centre for Paediatrics and Child Health, Imperial College, London SW7 2AZ, UK
- Royal Brompton Hospital, London SW3 6NP, UK
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College, London SW7 2AZ, UK
- Centre for Paediatrics and Child Health, Imperial College, London SW7 2AZ, UK
- Royal Brompton Hospital, London SW3 6NP, UK
| |
Collapse
|
24
|
Laidlaw TM, Boyce JA. Updates on immune mechanisms in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2023; 151:301-309. [PMID: 36184313 PMCID: PMC9905222 DOI: 10.1016/j.jaci.2022.08.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Aspirin-exacerbated respiratory disease has fascinated and frustrated specialists in allergy/immunology, pulmonology, and otorhinolaryngology for decades. It generally develops in previously healthy young adults and is unremitting and challenging to treat. The classical triad of asthma, nasal polyposis, and pathognomonic respiratory reactions to aspirin and other cyclooxygenase-1 inhibitors is accompanied by high levels of mast cell activation, cysteinyl leukotriene production, platelet activation, and severe type 2 respiratory inflammation. The "unbraking" of mast cell activation and further cysteinyl leukotriene generation induced by cyclooxygenase-1 inhibition reflect an idiosyncratic dependency on cyclooxygenase-1-derived products, likely prostaglandin E2, to maintain a tenuous homeostasis. Although cysteinyl leukotrienes are clear disease effectors, little else was known about their cellular sources and targets, and the contributions from other mediators and type 2 respiratory inflammation effector cells to disease pathophysiology were unknown until recently. The applications of targeted biological therapies, single-cell genomics, and transgenic animal approaches have substantially advanced our understanding of aspirin-exacerbated respiratory disease pathogenesis and treatment and have also revealed disease heterogeneity. This review covers novel insights into the immunopathogenesis of aspirin-exacerbated respiratory disease from each of these lines of research, including the roles of lipid mediators, effector cell populations, and inflammatory cytokines, discusses unanswered questions regarding cause and pathogenesis, and considers potential future therapeutic options.
Collapse
Affiliation(s)
- Tanya M Laidlaw
- Department of Medicine, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Jeff and Penny Vinik Center for Translational Immunology Research, Boston, Mass.
| | - Joshua A Boyce
- Department of Medicine, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Jeff and Penny Vinik Center for Translational Immunology Research, Boston, Mass
| |
Collapse
|
25
|
Pawelzik SC, Arnardottir H, Sarajlic P, Mahdi A, Vigor C, Zurita J, Zhou B, Kolmert J, Galano JM, Religa D, Durand T, Wheelock CE, Bäck M. Decreased oxidative stress and altered urinary oxylipidome by intravenous omega-3 fatty acid emulsion in a randomized controlled trial of older subjects hospitalized for COVID-19. Free Radic Biol Med 2023; 194:308-315. [PMID: 36509313 PMCID: PMC9733960 DOI: 10.1016/j.freeradbiomed.2022.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Proinflammatory bioactive lipid mediators and oxidative stress are increased in coronavirus disease 2019 (COVID-19). The randomized controlled single-blind trial COVID-Omega-F showed that intravenous omega-3 polyunsaturated fatty acids (n-3 PUFA) shifted the plasma lipid signature of COVID-19 towards increased proresolving precursor levels and decreased leukotoxin diols, associated with a beneficial immunodulatory response. The present study aimed to determine the effects of n-3 PUFA on the urinary oxylipidome and oxidative stress in COVID-19. From the COVID-Omega-F trial, 20 patients hospitalized for COVID-19 had available serial urinary samples collected at baseline, after 24-48 h, and after completing 5 days treatment with one daily intravenous infusion (2 mL/kg) of either placebo (NaCl; n = 10) or a lipid emulsion containing 10 g of n-3 PUFA per 100 mL (n = 10). Urinary eicosanoids and isoprostanes were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Erythrocytes obtained at the different time-points from n = 10 patients (n = 5 placebo and n = 5 n-3 PUFA) were used for determination of reactive oxygen species. Intravenous n-3 PUFA emulsion administration altered eicosanoid metabolites towards decreased levels for mediators of inflammation and thrombosis, and increased levels of the endothelial function mediator prostacyclin. Furthermore, non-enzymatic metabolism was skewed towards n-3 PUFA-derived metabolites with potential anti-inflammatory and pro-resolving effects. The oxidative stress marker 15-F2t-isoprostane was significantly lower in patients receiving n-3 PUFA treatment, who also exhibited significantly decreased erythrocyte oxidative stress compared with placebo-treated patients. These findings point to additional beneficial effects of intravenous n-3 PUFA emulsion treatment through a beneficial oxylipin profile and decreased oxidative stress in COVID-19.
Collapse
Affiliation(s)
- Sven-Christian Pawelzik
- Department of Medicine, Karolinska Institutet, Theme Heart, Vessels, and Neuro, Karolinska University Hospital, Stockholm, Sweden
| | - Hildur Arnardottir
- Department of Medicine, Karolinska Institutet, Theme Heart, Vessels, and Neuro, Karolinska University Hospital, Stockholm, Sweden
| | - Philip Sarajlic
- Department of Medicine, Karolinska Institutet, Theme Heart, Vessels, and Neuro, Karolinska University Hospital, Stockholm, Sweden
| | - Ali Mahdi
- Department of Medicine, Karolinska Institutet, Theme Heart, Vessels, and Neuro, Karolinska University Hospital, Stockholm, Sweden
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, Pôle Recherche Chimie Balard, 34293, Cedex 5, Montpellier, France
| | - Javier Zurita
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bingqing Zhou
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, Pôle Recherche Chimie Balard, 34293, Cedex 5, Montpellier, France
| | - Johan Kolmert
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, Pôle Recherche Chimie Balard, 34293, Cedex 5, Montpellier, France
| | - Dorota Religa
- Department of Neurobiology, Karolinska Institutet and Theme Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, Pôle Recherche Chimie Balard, 34293, Cedex 5, Montpellier, France
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Bäck
- Department of Medicine, Karolinska Institutet, Theme Heart, Vessels, and Neuro, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
26
|
Agache I, Shamji MH, Kermani NZ, Vecchi G, Favaro A, Layhadi JA, Heider A, Akbas DS, Filipaviciute P, Wu LYD, Cojanu C, Laculiceanu A, Akdis CA, Adcock IM. Multidimensional endotyping using nasal proteomics predicts molecular phenotypes in the asthmatic airways. J Allergy Clin Immunol 2023; 151:128-137. [PMID: 36154846 DOI: 10.1016/j.jaci.2022.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Unsupervised clustering of biomarkers derived from noninvasive samples such as nasal fluid is less evaluated as a tool for describing asthma endotypes. OBJECTIVE We sought to evaluate whether protein expression in nasal fluid would identify distinct clusters of patients with asthma with specific lower airway molecular phenotypes. METHODS Unsupervised clustering of 168 nasal inflammatory and immune proteins and Shapley values was used to stratify 43 patients with severe asthma (endotype of noneosinophilic asthma) using a 2 "modeling blocks" machine learning approach. This algorithm was also applied to nasal brushings transcriptomics from U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes). Feature reduction and functional gene analysis were used to compare proteomic and transcriptomic clusters. Gene set variation analysis provided enrichment scores of the endotype of noneosinophilic asthma protein signature within U-BIOPRED sputum and blood. RESULTS The nasal protein machine learning model identified 2 severe asthma endotypes, which were replicated in U-BIOPRED nasal transcriptomics. Cluster 1 patients had significant airway obstruction, small airways disease, air trapping, decreased diffusing capacity, and increased oxidative stress, although only 4 of 18 were current smokers. Shapley identified 20 cluster-defining proteins. Forty-one proteins were significantly higher in cluster 1. Pathways associated with proteomic and transcriptomic clusters were linked to TH1, TH2, neutrophil, Janus kinase-signal transducer and activator of transcription, TLR, and infection activation. Gene set variation analysis of the nasal protein and gene signatures were enriched in subjects with sputum neutrophilic/mixed granulocytic asthma and in subjects with a molecular phenotype found in sputum neutrophil-high subjects. CONCLUSIONS Protein or gene analysis may indicate molecular phenotypes within the asthmatic lower airway and provide a simple, noninvasive test for non-type 2 immune response asthma that is currently unavailable.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania; Theramed Healthcare, Brasov, Romania.
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, United Kingdom; NIHR Biomedical Research Centre, London, United Kingdom.
| | - Nazanin Zounemat Kermani
- National Heart and Lung Institute, Imperial College London, United Kingdom; Data Science Institute, Imperial College London, United Kingdom
| | | | | | - Janice A Layhadi
- National Heart and Lung Institute, Imperial College London, United Kingdom; NIHR Biomedical Research Centre, London, United Kingdom
| | - Anja Heider
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Didem Sanver Akbas
- National Heart and Lung Institute, Imperial College London, United Kingdom; NIHR Biomedical Research Centre, London, United Kingdom
| | - Paulina Filipaviciute
- National Heart and Lung Institute, Imperial College London, United Kingdom; NIHR Biomedical Research Centre, London, United Kingdom
| | - Lily Y D Wu
- National Heart and Lung Institute, Imperial College London, United Kingdom; NIHR Biomedical Research Centre, London, United Kingdom
| | - Catalina Cojanu
- Faculty of Medicine, Transylvania University, Brasov, Romania; Theramed Healthcare, Brasov, Romania
| | - Alexandru Laculiceanu
- Faculty of Medicine, Transylvania University, Brasov, Romania; Theramed Healthcare, Brasov, Romania
| | - Cezmi A Akdis
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, United Kingdom; NIHR Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
27
|
Radzikowska U, Baerenfaller K, Cornejo‐Garcia JA, Karaaslan C, Barletta E, Sarac BE, Zhakparov D, Villaseñor A, Eguiluz‐Gracia I, Mayorga C, Sokolowska M, Barbas C, Barber D, Ollert M, Chivato T, Agache I, Escribese MM. Omics technologies in allergy and asthma research: An EAACI position paper. Allergy 2022; 77:2888-2908. [PMID: 35713644 PMCID: PMC9796060 DOI: 10.1111/all.15412] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023]
Abstract
Allergic diseases and asthma are heterogenous chronic inflammatory conditions with several distinct complex endotypes. Both environmental and genetic factors can influence the development and progression of allergy. Complex pathogenetic pathways observed in allergic disorders present a challenge in patient management and successful targeted treatment strategies. The increasing availability of high-throughput omics technologies, such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics allows studying biochemical systems and pathophysiological processes underlying allergic responses. Additionally, omics techniques present clinical applicability by functional identification and validation of biomarkers. Therefore, finding molecules or patterns characteristic for distinct immune-inflammatory endotypes, can subsequently influence its development, progression, and treatment. There is a great potential to further increase the effectiveness of single omics approaches by integrating them with other omics, and nonomics data. Systems biology aims to simultaneously and longitudinally understand multiple layers of a complex and multifactorial disease, such as allergy, or asthma by integrating several, separated data sets and generating a complete molecular profile of the condition. With the use of sophisticated biostatistics and machine learning techniques, these approaches provide in-depth insight into individual biological systems and will allow efficient and customized healthcare approaches, called precision medicine. In this EAACI Position Paper, the Task Force "Omics technologies in allergic research" broadly reviewed current advances and applicability of omics techniques in allergic diseases and asthma research, with a focus on methodology and data analysis, aiming to provide researchers (basic and clinical) with a desk reference in the field. The potential of omics strategies in understanding disease pathophysiology and key tools to reach unmet needs in allergy precision medicine, such as successful patients' stratification, accurate disease prognosis, and prediction of treatment efficacy and successful prevention measures are highlighted.
Collapse
Affiliation(s)
- Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Christine‐Kühne Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Katja Baerenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Swiss Institute of Bioinformatics (SIB)DavosSwitzerland
| | - José Antonio Cornejo‐Garcia
- Research LaboratoryIBIMA, ARADyAL Instituto de Salud Carlos III, Regional University Hospital of Málaga, UMAMálagaSpain
| | - Cagatay Karaaslan
- Department of Biology, Molecular Biology SectionFaculty of ScienceHacettepe UniversityAnkaraTurkey
| | - Elena Barletta
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Swiss Institute of Bioinformatics (SIB)DavosSwitzerland
| | - Basak Ezgi Sarac
- Department of Biology, Molecular Biology SectionFaculty of ScienceHacettepe UniversityAnkaraTurkey
| | - Damir Zhakparov
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Swiss Institute of Bioinformatics (SIB)DavosSwitzerland
| | - Alma Villaseñor
- Centre for Metabolomics and Bioanalysis (CEMBIO)Department of Chemistry and BiochemistryFacultad de FarmaciaUniversidad San Pablo‐CEU, CEU UniversitiesMadridSpain,Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| | - Ibon Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain,Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Cristobalina Mayorga
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain,Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain,Andalusian Centre for Nanomedicine and Biotechnology – BIONANDMálagaSpain
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Christine‐Kühne Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO)Department of Chemistry and BiochemistryFacultad de FarmaciaUniversidad San Pablo‐CEU, CEU UniversitiesMadridSpain
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| | - Markus Ollert
- Department of Infection and ImmunityLuxembourg Institute of HealthyEsch‐sur‐AlzetteLuxembourg,Department of Dermatology and Allergy CenterOdense Research Center for AnaphylaxisOdense University Hospital, University of Southern DenmarkOdenseDenmark
| | - Tomas Chivato
- Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain,Department of Clinic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| | | | - Maria M. Escribese
- Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| |
Collapse
|
28
|
Säfholm J, Abma W, Bankova LG, Boyce JA, Al-Ameri M, Orre AC, Wheelock CE, Dahlén SE, Adner M. Cysteinyl-maresin 3 inhibits IL-13 induced airway hyperresponsiveness through alternative activation of the CysLT 1 receptor. Eur J Pharmacol 2022; 934:175257. [PMID: 36116518 DOI: 10.1016/j.ejphar.2022.175257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Cysteinyl-maresins, also known as maresin-conjugates in tissue regeneration (MCTRs), are recently discovered lipid mediators proposed to reduce airway inflammation. OBJECTIVE To investigate the influence of MCTRs on IL-13-induced airway hyperresponsiveness in isolated human and mice airways. METHODS Before responsiveness to contractile agonists were assessed in myographs, human small bronchi were cultured for 2 days and mouse tracheas were cultured for 1-4 days. During the culture procedure airways were exposed to interleukin (IL)-13 in the presence or absence of MCTRs. Signalling mechanisms were explored using pharmacologic agonists and antagonists, and genetically modified mice. RESULTS IL-13 treatment increased contractions to histamine, carbachol and leukotriene D4 (LTD4) in human small bronchi, and to 5-hydroxytryptamine (5-HT) in mouse trachea. In both preparations, co-incubation of the explanted tissues with MCTR3 reduced the IL-13 induced enhancement of contractions. In mouse trachea, this inhibitory effect of MCTR3 was blocked by three different CysLT1 receptor antagonists (montelukast, zafirlukast and pobilukast) during IL-13 exposure. Likewise, MCTR3 failed to reduce the IL-13-induced 5-HT responsiveness in mice deficient of the CysLT1 receptor. However, co-incubation with the classical CysLT1 receptor agonist LTD4 did not alter the IL-13-induced 5-HT hyperreactivity. CONCLUSIONS MCTR3, but not LTD4, decreased the IL-13-induced airway hyperresponsiveness by activation of the CysLT1 receptor. The distinct actions of the two lipid mediators on the CysLT1 receptor suggest an alternative signalling pathway appearing under inflammatory conditions, where this new action of MCTR3 implicates potential to inhibit airway hyperresponsiveness in asthma.
Collapse
Affiliation(s)
- Jesper Säfholm
- Institute of Environmental Medicine, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden; Centre for Allergy Research, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden
| | - Willem Abma
- Institute of Environmental Medicine, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden; Centre for Allergy Research, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden
| | - Lora G Bankova
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Joshua A Boyce
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mamdoh Al-Ameri
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Stockholm, Sweden; Department of Cardiothoracic Surgery and Anesthesiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ann-Charlotte Orre
- Department of Cardiothoracic Surgery and Anesthesiology, Karolinska University Hospital, Stockholm, Sweden
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Institute of Environmental Medicine, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden; Centre for Allergy Research, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Adner
- Institute of Environmental Medicine, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden; Centre for Allergy Research, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden.
| |
Collapse
|
29
|
Tang X, Rönnberg E, Säfholm J, Thulasingam M, Trauelsen M, Schwartz TW, Wheelock CE, Dahlén S, Nilsson G, Haeggström JZ. Activation of succinate receptor 1 boosts human mast cell reactivity and allergic bronchoconstriction. Allergy 2022; 77:2677-2687. [PMID: 35122266 PMCID: PMC9545225 DOI: 10.1111/all.15245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/31/2021] [Accepted: 01/23/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND SUCNR1 is a sensor of extracellular succinate, a Krebs cycle intermediate generated in excess during oxidative stress and has been linked to metabolic regulation and inflammation. While mast cells express SUCNR1, its role in mast cell reactivity and allergic conditions such as asthma remains to be elucidated. METHODS Cord blood-derived mast cells and human mast cell line LAD-2 challenged by SUCNR1 ligands were analyzed for the activation and mediator release. Effects on mast cell-dependent bronchoconstriction were assessed in guinea pig trachea and isolated human small bronchi challenged with antigen and anti-IgE, respectively. RESULTS SUCNR1 is abundantly expressed on human mast cells. Challenge with succinate, or the synthetic non-metabolite agonist cis-epoxysuccinate, renders mast cells hypersensitive to IgE-dependent activation, resulting in augmented degranulation and histamine release, de novo biosynthesis of eicosanoids and cytokine secretion. The succinate-potentiated mast cell reactivity was attenuated by SUCNR1 knockdown and selective SUCNR1 antagonists and could be tuned by pharmacologically targeting protein kinase C and extracellular signal-regulated kinase. Both succinate and cis-epoxysuccinate dose-dependently potentiated antigen-induced contraction in a mast cell-dependent guinea pig airway model, associated with increased generation of cysteinyl-leukotrienes and histamine in trachea. Similarly, cis-epoxysuccinate aggravated IgE-receptor-induced contraction of human bronchi, which was blocked by SUCNR1 antagonism. CONCLUSION SUCNR1 amplifies IgE-receptor-induced mast cell activation and allergic bronchoconstriction, suggesting a role for this pathway in aggravation of allergic asthma, thus linking metabolic perturbations to mast cell-dependent inflammation.
Collapse
Affiliation(s)
- Xiao Tang
- Division of Physiological Chemistry IIDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Elin Rönnberg
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska Institutet, and Karolinska University HospitalSolnaSweden
| | - Jesper Säfholm
- Unit of Experimental Asthma and Allergy ResearchInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Madhuranayaki Thulasingam
- Division of Physiological Chemistry IIDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Mette Trauelsen
- Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Thue W. Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Craig E. Wheelock
- Division of Physiological Chemistry IIDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Sven‐Erik Dahlén
- Unit of Experimental Asthma and Allergy ResearchInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden,Department of Respiratory MedicineKarolinska University Hospital HuddingeStockholmSweden
| | - Gunnar Nilsson
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska Institutet, and Karolinska University HospitalSolnaSweden,Department of Medical SciencesUppsala UniversityUppsalaSweden
| | - Jesper Z. Haeggström
- Division of Physiological Chemistry IIDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| |
Collapse
|
30
|
Wang M, Deng R. Effects of carbon black nanoparticles and high humidity on the lung metabolome in Balb/c mice with established allergic asthma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65100-65111. [PMID: 35484453 DOI: 10.1007/s11356-022-20349-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
In respiratory diseases, the induction of allergic asthma has gradually aroused public concerns. Co-exposures of environmental risk factors such as nanoparticles and high humidity could play important roles in the development of allergic asthma. However, the relevant researches are still lacking and the involved mechanisms, especially metabolic changes, remain unclear. We took the lead in studying the combined induction effect and underlying mechanisms of carbon black nanoparticles (CB NPs) and high humidity on allergic asthma. In this work, murine models of allergic asthma were established with ovalbumin under the single and combined exposures of 15 μg/kg CB NPs and 90% relative humidity. The two risk factors, particularly their co-exposure, exhibited adjuvant effect on airway hyperresponsiveness, remodeling, and inflammation in Balb/c mice. Untargeted metabolomics identified the potential biomarkers in lung for asthma occurrence and for asthma exacerbation caused by CB NPs and high humidity. The significantly dysregulated metabolic pathways in asthmatic mice were proposed, and the disturbed metabolic pathways under the exposures of CB NPs and/or high humidity were mainly implicated in asthma symptoms. This work sheds light on the understanding for health risks of NP pollutions and high environmental humidity and contributes to useful biomarker identification and asthma control.
Collapse
Affiliation(s)
- Mingpu Wang
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China
| | - Rui Deng
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
31
|
Nordström A, Jangard M, Svedberg M, Ryott M, Kumlin M. Levels of eicosanoids in nasal secretions associated with nasal polyp severity in chronic rhinosinusitis. Prostaglandins Leukot Essent Fatty Acids 2022; 184:102474. [PMID: 35917595 DOI: 10.1016/j.plefa.2022.102474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 12/29/2022]
Abstract
Severe nasal polyposis and mucosal inflammation, in patients with chronic rhinosinusitis (CRS) may include a dysregulated eicosanoid profile, but a clinical role for eicosanoids in CRS with nasal polyps (NP; CRSwNP) remains to be elucidated. This study focused on assessing levels and clinical implications of inflammatory mediators in nasal secretions and urine from patients with different NP severity or Aspirin Exacerbated Respiratory Disease (AERD). Levels of leukotrienes E4 and B4, prostaglandins D2 and E2 as well as 15(S)-hydroxyeicosatetraenoic acid were measured with enzyme immunoassays and cytokines with magnetic bead immunoassays. Patients with CRSwNP were subdivided based on NP score; CRSwNP-low (NP score ≤ 4, n = 11) or CRSwNP-high (NP score ≥ 5, n = 32) and compared to CRS without polyps (CRSsNP, n = 12), CRSwNP-AERD (n = 11) and individuals without CRS (n = 25). Smell test score, fractional exhaled nitric oxide (FeNO), blood eosinophils and Sinonasal outcome test-22 were assessed as clinical markers. Leukotriene E4, prostaglandin D2 and 15(S)-hydroxyeicosatetraenoic acid in nasal secretions correlated with NP score. Nasal leukotriene E4 also correlated with FeNO and smell test score, with highest levels found in CRSwNP-AERD. Levels of prostaglandin D2 in nasal secretion as well as urinary levels of the prostaglandin D2 metabolite 11β-prostaglandin F2α differed between CRSNP-high and CRSwNP-low. Urinary 11β-prostaglandin F2α was associated with asthma comorbidity whereas a similar association with prostaglandin D2 in nasal secretions was not observed. In conclusion, subdividing patients based on NP severity in combination with analysis of eicosanoids in non-invasively collected nasal secretions, may have clinical implications when assessing CRS disease severity.
Collapse
Affiliation(s)
- Axel Nordström
- Department of Health Promotion Science, Sophiahemmet University, Stockholm, Sweden.
| | - Mattias Jangard
- Department of Otorhinolaryngology, Sophiahemmet Hospital, Stockholm, Sweden
| | - Marie Svedberg
- Department of Health Promotion Science, Sophiahemmet University, Stockholm, Sweden
| | - Michael Ryott
- Department of Otorhinolaryngology, Sophiahemmet Hospital, Stockholm, Sweden
| | - Maria Kumlin
- Department of Health Promotion Science, Sophiahemmet University, Stockholm, Sweden
| |
Collapse
|
32
|
Prostanoid Metabolites as Biomarkers in Human Disease. Metabolites 2022; 12:metabo12080721. [PMID: 36005592 PMCID: PMC9414732 DOI: 10.3390/metabo12080721] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Prostaglandins (PGD2, PGE2, PGF2α), prostacyclin (PGI2), and thromboxane A2 (TXA2) together form the prostanoid family of lipid mediators. As autacoids, these five primary prostanoids propagate intercellular signals and are involved in many physiological processes. Furthermore, alterations in their biosynthesis accompany a wide range of pathological conditions, which leads to substantially increased local levels during disease. Primary prostanoids are chemically instable and rapidly metabolized. Their metabolites are more stable, integrate the local production on a systemic level, and their analysis in various biological matrices yields valuable information under different pathological settings. Therefore, prostanoid metabolites may be used as diagnostic, predictive, or prognostic biomarkers in human disease. Although their potential as biomarkers is great and extensive research has identified major prostanoid metabolites that serve as target analytes in different biofluids, the number of studies that correlate prostanoid metabolite levels to disease outcome is still limited. We review the metabolism of primary prostanoids in humans, summarize the levels of prostanoid metabolites in healthy subjects, and highlight existing biomarker studies. Since analysis of prostanoid metabolites is challenging because of ongoing metabolism and limited half-lives, an emphasis of this review lies on the reliable measurement and interpretation of obtained levels.
Collapse
|
33
|
Pérez MM, Pimentel VE, Fuzo CA, da Silva-Neto PV, Toro DM, Fraga-Silva TFC, Gardinassi LG, Oliveira CNS, Souza COS, Torre-Neto NT, de Carvalho JCS, De Leo TC, Nardini V, Feitosa MR, Parra RS, da Rocha JJR, Feres O, Vilar FC, Gaspar GG, Constant LF, Ostini FM, Degiovani AM, Amorim AP, Viana AL, Fernandes APM, Maruyama SR, Russo EMS, Santos IKFM, Bonato VLD, Cardoso CRB, Sorgi CA, Dias-Baruffi M, Faccioli LH. Acetylcholine, Fatty Acids, and Lipid Mediators Are Linked to COVID-19 Severity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:250-261. [PMID: 35768148 DOI: 10.4049/jimmunol.2200079] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
Abstract
Lipid and cholinergic mediators are inflammatory regulators, but their role in the immunopathology of COVID-19 is still unclear. Here, we used human blood and tracheal aspirate (TA) to investigate whether acetylcholine (Ach), fatty acids (FAs), and their derived lipid mediators (LMs) are associated with COVID-19 severity. First, we analyzed the perturbation profile induced by SARS-CoV-2 infection in the transcriptional profile of genes related to the ACh and FA/LM pathways. Blood and TA were used for metabolomic and lipidomic analyses and for quantification of leukocytes, cytokines, and ACh. Differential expression and coexpression gene network data revealed a unique transcriptional profile associated with ACh and FA/LM production, release, and cellular signaling. Transcriptomic data were corroborated by laboratory findings: SARS-CoV-2 infection increased plasma and TA levels of arachidonic acid, 5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid, 11-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic acid, and ACh. TA samples also exhibited high levels of PGE2, thromboxane B2, 12-oxo-5Z,8Z,10E,14Z-eicosatetraenoic acid, and 6-trans-leukotriene B4 Bioinformatics and experimental approaches demonstrated robust correlation between transcriptional profile in Ach and FA/LM pathways and parameters of severe COVID-19. As expected, the increased neutrophil-to-lymphocyte ratio, neutrophil counts, and cytokine levels (IL-6, IL-10, IL-1β, and IL-8) correlated with worse clinical scores. Glucocorticoids protected severe and critical patients and correlated with reduced Ach levels in plasma and TA samples. We demonstrated that pulmonary and systemic hyperinflammation in severe COVID-19 are associated with high levels of Ach and FA/LM. Glucocorticoids favored the survival of patients with severe/critical disease, and this effect was associated with a reduction in ACh levels.
Collapse
Affiliation(s)
- Malena M Pérez
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vinícius E Pimentel
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto São Paulo, Brazil
| | - Carlos A Fuzo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Pedro V da Silva-Neto
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Programa de Pós-Graduação em Biociências e Biotecnologia Aplicadas à Farmácia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Programa de Pós-graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Diana M Toro
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Programa de Pós-Graduação em Biociências e Biotecnologia Aplicadas à Farmácia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Programa de Pós-graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Thais F C Fraga-Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz G Gardinassi
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Camilla N S Oliveira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto São Paulo, Brazil
| | - Camila O S Souza
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto São Paulo, Brazil
| | - Nicola T Torre-Neto
- Departamento de Química. Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jonatan C S de Carvalho
- Departamento de Química. Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thais C De Leo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Viviani Nardini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marley R Feitosa
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rogerio S Parra
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José J R da Rocha
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Omar Feres
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando C Vilar
- Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Gilberto G Gaspar
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Leticia F Constant
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Fátima M Ostini
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Augusto M Degiovani
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Alessandro P Amorim
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Angelina L Viana
- Departamento de Enfermagem Materno-Infantil e Saúde Pública, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana P M Fernandes
- Departamento de Enfermagem Geral e Especializada, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sandra R Maruyama
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Elisa M S Russo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Isabel K F M Santos
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Vânia L D Bonato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Cristina R B Cardoso
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos A Sorgi
- Departamento de Química. Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcelo Dias-Baruffi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil;
| | | |
Collapse
|
34
|
Couillard S, Shrimanker R, Lemaire-Paquette S, Hynes GM, Borg C, Connolly C, Thulborn SJ, Moran A, Poole S, Morgan S, Powell T, Pavord I, Hinks T. Longitudinal changes in sputum and blood inflammatory mediators during FeNO suppression testing. Thorax 2022; 77:thoraxjnl-2021-217994. [PMID: 35803725 PMCID: PMC9411876 DOI: 10.1136/thoraxjnl-2021-217994] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 05/28/2022] [Indexed: 11/03/2022]
Abstract
To explore whether fractional exhaled nitric oxide (FeNO) non-suppression identifies corticosteroid resistance, we analysed inflammatory mediator changes during a FeNO suppression test with monitored high-intensity corticosteroid therapy. In linear mixed-effects models analysed over time, the 15 clinically distinct 'suppressors' (ie, ≥42% FeNO suppression) normalised Asthma Control Questionnaire scores (mean±SD, start to end of test: 2.8±1.4 to 1.4±0.9, p<0.0001) and sputum eosinophil counts (median (IQR), start to end of test: 29% (6%-41%) to 1% (1%-5%), p=0.0003) while significantly decreasing sputum prostaglandin D2 (254 (89-894) to 93 (49-209) pg/mL, p=0.004) and numerically decreasing other type-2 cytokine, chemokine and alarmin levels. In comparison, the 19 non-suppressors had persistent sputum eosinophilia (10% (1%-67%) despite high-intensity therapy) with raised end-test inflammatory mediator levels (1.9 (0.9-2.8)-fold greater than suppressors). FeNO non-suppression during monitored treatment implies biological corticosteroid resistance.
Collapse
Affiliation(s)
- Simon Couillard
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Rahul Shrimanker
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Samuel Lemaire-Paquette
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gareth M Hynes
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Catherine Borg
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Clare Connolly
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Samantha Jane Thulborn
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Angela Moran
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Poole
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sophie Morgan
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Timothy Powell
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ian Pavord
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Timothy Hinks
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Ryu MH, Gómez C, Yuen ACY, Brook JR, Wheelock CE, Carlsten C. Urinary Eicosanoid Levels Reflect Allergen and Diesel Exhaust Coexposure and Are Linked to Impaired Lung Function. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7107-7118. [PMID: 35044166 DOI: 10.1021/acs.est.1c07268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Eicosanoids are potent regulators of homeostasis and inflammation. Co-exposure to allergen and diesel exhaust (DE) have been shown to lead to eosinophilic inflammation, impaired airflow, and increased airway responsiveness. It is not clear whether eicosanoids mediate the mechanism by which these exposures impair lung function. We conducted a randomized, double-blinded, and four-arm crossover study. Fourteen allergen-sensitized participants were exposed to four conditions: negative control; allergen-alone exposure; DE and allergen coexposure; coexposure with particle-reducing technology applied. Quantitative metabolic profiling of urinary eicosanoids was performed using LC-MS/MS. As expected, allergen inhalation increased eicosanoids. The prostacyclin metabolite 2,3-dinor-6-keto-PGF1α (PGF1α, prostaglandin F1α) increased with coexposure, but particle depletion suppressed this pathway. Individuals with a high genetic risk score demonstrated a greater increase in isoprostane metabolites following coexposure. Causal mediation analyses showed that allergen induced airflow impairment was mediated via leukotriene E4 and tetranor-prostaglandin D metabolite. Overall, DE exposure did not augment the allergen's effect on urinary eicosanoids, except insofar as variant genotypes conferred susceptibility to the addition of DE in terms of isoprostane metabolites. These findings will add to the body of previous controlled human exposure studies and provide greater insight into how complex environmental exposures in urban air may influence individuals with sensitivity to aeroallergens.
Collapse
Affiliation(s)
- Min Hyung Ryu
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Cristina Gómez
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 65, Sweden
- Unit of Lung and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Agnes C Y Yuen
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Jeffrey R Brook
- Occupational and Environmental Health Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 1P8, Canada
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 65, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm SE-171 76, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Christopher Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| |
Collapse
|
36
|
Xu S, Panettieri RA, Jude J. Metabolomics in asthma: A platform for discovery. Mol Aspects Med 2022; 85:100990. [PMID: 34281719 PMCID: PMC9088882 DOI: 10.1016/j.mam.2021.100990] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
Asthma, characterized by airway hyperresponsiveness, inflammation and remodeling, is a chronic airway disease with complex etiology. Severe asthma is characterized by frequent exacerbations and poor therapeutic response to conventional asthma therapy. A clear understanding of cellular and molecular mechanisms of asthma is critical for the discovery of novel targets for optimal therapeutic control of asthma. Metabolomics is emerging as a powerful tool to elucidate novel disease mechanisms in a variety of diseases. In this review, we summarize the current status of knowledge in asthma metabolomics at systemic and cellular levels. The findings demonstrate that various metabolic pathways, related to energy metabolism, macromolecular biosynthesis and redox signaling, are differentially modulated in asthma. Airway smooth muscle cell plays pivotal roles in asthma by contributing to airway hyperreactivity, inflammatory mediator release and remodeling. We posit that metabolomic profiling of airway structural cells, including airway smooth muscle cells, will shed light on molecular mechanisms of asthma and airway hyperresponsiveness and help identify novel therapeutic targets.
Collapse
Affiliation(s)
- Shengjie Xu
- Rutgers Institute for Translational Medicine & Science, Rutgers, The State University of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA; Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine & Science, Rutgers, The State University of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA; Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA; Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA
| | - Joseph Jude
- Rutgers Institute for Translational Medicine & Science, Rutgers, The State University of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA; Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA; Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
37
|
Understanding human mast cells: lesson from therapies for allergic and non-allergic diseases. Nat Rev Immunol 2022; 22:294-308. [PMID: 34611316 DOI: 10.1038/s41577-021-00622-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Mast cells have crucial roles in allergic and other inflammatory diseases. Preclinical approaches provide circumstantial evidence for mast cell involvement in many diseases, but these studies have major limitations - for example, there is still a lack of suitable mouse models for some mast cell-driven diseases such as urticaria. Some approaches for studying mast cells are invasive or can induce severe reactions, and very few mediators or receptors are specific for mast cells. Recently, several drugs that target human mast cells have been developed. These include monoclonal antibodies and small molecules that can specifically inhibit mast cell degranulation via key receptors (such as FcεRI), that block specific signal transduction pathways involved in mast cell activation (for example, BTK), that silence mast cells via inhibitory receptors (such as Siglec-8) or that reduce mast cell numbers and prevent their differentiation by acting on the mast/stem cell growth factor receptor KIT. In this Review, we discuss the existing and emerging therapies that target mast cells, and we consider how these treatments can help us to understand mast cell functions in disease.
Collapse
|
38
|
Banafea GH, Bakhashab S, Alshaibi HF, Natesan Pushparaj P, Rasool M. The role of human mast cells in allergy and asthma. Bioengineered 2022; 13:7049-7064. [PMID: 35266441 PMCID: PMC9208518 DOI: 10.1080/21655979.2022.2044278] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mast cells are tissue-inhabiting cells that play an important role in inflammatory diseases of the airway tract. Mast cells arise in the bone marrow as progenitor cells and complete their differentiation in tissues exposed to the external environment, such as the skin and respiratory tract, and are among the first to respond to bacterial and parasitic infections. Mast cells express a variety of receptors that enable them to respond to a wide range of stimulants, including the high-affinity FcεRI receptor. Upon initial contact with an antigen, mast cells are sensitized with IgE to recognize the allergen upon further contact. FcεRI-activated mast cells are known to release histamine and proteases that contribute to asthma symptoms. They release a variety of cytokines and lipid mediators that contribute to immune cell accumulation and tissue remodeling in asthma. Mast cell mediators trigger inflammation and also have a protective effect. This review aims to update the existing knowledge on the mediators released by human FcεRI-activated mast cells, and to unravel their pathological and protective roles in asthma and allergy. In addition, we highlight other diseases that arise from mast cell dysfunction, the therapeutic approaches used to address them, and fill the gaps in our current knowledge. Mast cell mediators not only trigger inflammation but may also have a protective effect. Given the differences between human and animal mast cells, this review focuses on the mediators released by human FcεRI-activated mast cells and the role they play in asthma and allergy.
Collapse
Affiliation(s)
- Ghalya H Banafea
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda F Alshaibi
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
39
|
Janson C, Bjermer L, Lehtimäki L, Kankaanranta H, Karjalainen J, Altraja A, Yasinska V, Aarli B, Rådinger M, Hellgren J, Lofdahl M, Howarth PH, Porsbjerg C. Eosinophilic airway diseases: basic science, clinical manifestations and future challenges. Eur Clin Respir J 2022; 9:2040707. [PMID: 35251534 PMCID: PMC8896196 DOI: 10.1080/20018525.2022.2040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Eosinophils have a broad range of functions, both homeostatic and pathological, mediated through an array of cell surface receptors and specific secretory granules that promote interactions with their microenvironment. Eosinophil development, differentiation, activation, survival and recruitment are closely regulated by a number of type 2 cytokines, including interleukin (IL)-5, the key driver of eosinophilopoiesis. Evidence shows that type 2 inflammation, driven mainly by interleukin (IL)-4, IL-5 and IL-13, plays an important role in the pathophysiology of eosinophilic airway diseases, including asthma, chronic rhinosinusitis with nasal polyps, eosinophilic granulomatosis with polyangiitis and hypereosinophilic syndrome. Several biologic therapies have been developed to suppress type 2 inflammation, namely mepolizumab, reslizumab, benralizumab, dupilumab, omalizumab and tezepelumab. While these therapies have been associated with clinical benefits in a range of eosinophilic diseases, their development has highlighted several challenges and directions for future research. These include the need for further information on disease progression and identification of treatable traits, including clinical characteristics or biomarkers that will improve the prediction of treatment response. The Nordic countries have a long tradition of collaboration using patient registries and Nordic asthma registries provide unique opportunities to address these research questions. One example of such a registry is the NORdic Dataset for aSThmA Research (NORDSTAR), a longitudinal population-based dataset containing all 3.3 million individuals with asthma from four Nordic countries (Denmark, Finland, Norway and Sweden). Large-scale, real-world registry data such as those from Nordic countries may provide important information regarding the progression of eosinophilic asthma, in addition to clinical characteristics or biomarkers that could allow targeted treatment and ensure optimal patient outcomes.
Collapse
Affiliation(s)
- Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Skane University Hospital, Lund, Sweden
| | - Lauri Lehtimäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Allergy Centre, Tampere University Hospital, Tampere, Finland
| | - Hannu Kankaanranta
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Respiratory Medicine, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Jussi Karjalainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Allergy Centre, Tampere University Hospital, Tampere, Finland
| | - Alan Altraja
- Department of Pulmonology, University of Tartu and Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | - Valentyna Yasinska
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Huddinge, Sweden
| | - Bernt Aarli
- Department of Clinical Science, University of Bergen and Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Hellgren
- Department of Otorhinolaryngology, University of Gothenburg, Gothenburg, Sweden
| | | | - Peter H Howarth
- Respiratory Medical Franchise, GSK, Brentford, Middlesex, UK
| | - Celeste Porsbjerg
- Department of Respiratory Medicine, Bispebjerg Hospital and Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Persistent unresolved inflammation results in a number of pathologic respiratory diseases including asthma, cystic fibrosis, acute respiratory distress syndrome (ARDS) and coronavirus disease 2019 (COVID-19)-associated ARDS. Inflammation resolution is an active series of biologic processes orchestrated by a family of bioactive specialized pro-resolving mediators (SPMs) derived from essential omega-3 and omega-6 polyunsaturated fatty acids (PUFAs). In this review, we highlight recent findings on dysregulated inflammation resolution in common respiratory diseases and recent literature on SPM generation with PUFA dietary supplementation with relevance to diseases of respiratory inflammation. RECENT FINDINGS Human studies and preclinical models of diseases of lung inflammation have revealed disequilibrium in the levels of pro-inflammatory versus pro-resolving mediators. Recent studies identified actions for SPMs on regulating prophlogistic host responses and stimulating inflammation resolution pathways in inflammatory respiratory diseases. SUMMARY Dietary marine oils are enriched in PUFAs and contain parent omega-3 and omega-6 fatty acids and precursors for conversion to SPMs. Nutritional supplementation with fish oils can boost SPM levels and offer a therapeutic approach targeting inflammation resolution pathways for diseases of lung inflammation.
Collapse
Affiliation(s)
- R. Elaine Cagnina
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melody G. Duvall
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julie Nijmeh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce D. Levy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
41
|
Heterogeneous Condition of Asthmatic Children Patients: A Narrative Review. CHILDREN 2022; 9:children9030332. [PMID: 35327702 PMCID: PMC8947522 DOI: 10.3390/children9030332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022]
Abstract
Currently, asthma represents the most common chronic disorder in children, showing an increasingly consistent burden worldwide. Childhood asthma, similar to what happens in adults, is a diversified disease with a great variability of phenotypes, according to genetic predisposition of patients, age, severity of symptoms, grading of risk, and comorbidities, and cannot be considered a singular well-defined disorder, but rather a uniquely assorted disorder with variable presentations throughout childhood. Despite several developments occurring in recent years in pediatric asthma, above all, in the management of the disease, some essential areas, such as the improvement of pediatric asthma outcomes, remain a hot topic. Most treatments of the type 2 (T2) target phenotype of asthma, in which IL-4, IL-5, and IL-13 modulate the central signals of inflammatory reactions. Although, there may be an unresolved need to identify new biomarkers used as predictors to improve patient stratification using disease systems and to aid in the selection of treatments. Moreover, we are globally facing many dramatic challenges, including climate change and the SARS-CoV2 pandemic, which have a considerable impact on children and adolescent asthma. Preventive strategies, including allergen immunotherapy and microbiome evaluation, and targeted therapeutic strategies are strongly needed in this population. Finally, the impact of asthma on sleep disorders has been reviewed.
Collapse
|
42
|
Bohnacker S, Hartung F, Henkel F, Quaranta A, Kolmert J, Priller A, Ud-Dean M, Giglberger J, Kugler LM, Pechtold L, Yazici S, Lechner A, Erber J, Protzer U, Lingor P, Knolle P, Chaker AM, Schmidt-Weber CB, Wheelock CE, Esser-von Bieren J. Mild COVID-19 imprints a long-term inflammatory eicosanoid- and chemokine memory in monocyte-derived macrophages. Mucosal Immunol 2022; 15:515-524. [PMID: 35288643 PMCID: PMC9038526 DOI: 10.1038/s41385-021-00482-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023]
Abstract
Monocyte-derived macrophages (MDM) drive the inflammatory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and they are a major source of eicosanoids in airway inflammation. Here we report that MDM from SARS-CoV-2-infected individuals with mild disease show an inflammatory transcriptional and metabolic imprint that lasts for at least 5 months after SARS-CoV-2 infection. MDM from convalescent SARS-CoV-2-infected individuals showed a downregulation of pro-resolving factors and an increased production of pro-inflammatory eicosanoids, particularly 5-lipoxygenase-derived leukotrienes. Leukotriene synthesis was further enhanced by glucocorticoids and remained elevated at 3–5 months, but had returned to baseline at 12 months post SARS-CoV-2 infection. Stimulation with SARS-CoV-2 spike protein or LPS triggered exaggerated prostanoid-, type I IFN-, and chemokine responses in post COVID-19 MDM. Thus, SARS-CoV-2 infection leaves an inflammatory imprint in the monocyte/ macrophage compartment that drives aberrant macrophage effector functions and eicosanoid metabolism, resulting in long-term immune aberrations in patients recovering from mild COVID-19.
Collapse
Affiliation(s)
- Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Franziska Hartung
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Fiona Henkel
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Alessandro Quaranta
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Johan Kolmert
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- The Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Alina Priller
- Institute of Molecular Immunology and Experimental Oncology, University Hospital rechts der Isar, Technical University of Munich (TUM), School of Medicine, 81675, Munich, Germany
| | - Minhaz Ud-Dean
- Institute of Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany
| | - Johanna Giglberger
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital rechts der Isar, Technical University of Munich (TUM), School of Medicine, 81675, Munich, Germany
| | - Luisa M Kugler
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital rechts der Isar, Technical University of Munich (TUM), School of Medicine, 81675, Munich, Germany
| | - Lisa Pechtold
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital rechts der Isar, Technical University of Munich (TUM), School of Medicine, 81675, Munich, Germany
| | - Sarah Yazici
- Institute of Molecular Immunology and Experimental Oncology, University Hospital rechts der Isar, Technical University of Munich (TUM), School of Medicine, 81675, Munich, Germany
| | - Antonie Lechner
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Johanna Erber
- Department of Internal Medicine II, University Hospital rechts der Isar, Technical University of Munich (TUM), School of Medicine, 81675, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich (TUM), School of Medicine and Helmholtz Zentrum München, 81675, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
| | - Paul Lingor
- Department of Neurology, University Hospital rechts der Isar, Technical University Munich (TUM), School of Medicine, 81675, Munich, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, University Hospital rechts der Isar, Technical University of Munich (TUM), School of Medicine, 81675, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
| | - Adam M Chaker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital rechts der Isar, Technical University of Munich (TUM), School of Medicine, 81675, Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
- German Center of Lung Research (DZL), Munich partner site, Munich, Germany
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 141-86, Stockholm, Sweden
- Gunma Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany.
| |
Collapse
|
43
|
Sokolowska M, Rovati GE, Diamant Z, Untersmayr E, Schwarze J, Lukasik Z, Sava F, Angelina A, Palomares O, Akdis C, O'Mahony L, Jesenak M, Pfaar O, Torres MJ, Sanak M, Dahlén S, Woszczek G. Effects of non-steroidal anti-inflammatory drugs and other eicosanoid pathway modifiers on antiviral and allergic responses: EAACI task force on eicosanoids consensus report in times of COVID-19. Allergy 2022; 77:2337-2354. [PMID: 35174512 PMCID: PMC9111413 DOI: 10.1111/all.15258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Abstract
Non‐steroidal anti‐inflammatory drugs (NSAIDs) and other eicosanoid pathway modifiers are among the most ubiquitously used medications in the general population. Their broad anti‐inflammatory, antipyretic, and analgesic effects are applied against symptoms of respiratory infections, including SARS‐CoV‐2, as well as in other acute and chronic inflammatory diseases that often coexist with allergy and asthma. However, the current pandemic of COVID‐19 also revealed the gaps in our understanding of their mechanism of action, selectivity, and interactions not only during viral infections and inflammation, but also in asthma exacerbations, uncontrolled allergic inflammation, and NSAIDs‐exacerbated respiratory disease (NERD). In this context, the consensus report summarizes currently available knowledge, novel discoveries, and controversies regarding the use of NSAIDs in COVID‐19, and the role of NSAIDs in asthma and viral asthma exacerbations. We also describe here novel mechanisms of action of leukotriene receptor antagonists (LTRAs), outline how to predict responses to LTRA therapy and discuss a potential role of LTRA therapy in COVID‐19 treatment. Moreover, we discuss interactions of novel T2 biologicals and other eicosanoid pathway modifiers on the horizon, such as prostaglandin D2 antagonists and cannabinoids, with eicosanoid pathways, in context of viral infections and exacerbations of asthma and allergic diseases. Finally, we identify and summarize the major knowledge gaps and unmet needs in current eicosanoid research.
Collapse
Affiliation(s)
- Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - G Enrico Rovati
- Department of Pharmaceutical Sciences Section of Pharmacology and Biosciences University of Milan Milano Italy
| | - Zuzana Diamant
- Department of Respiratory Medicine and Allergology Skane University Hospital Lund Sweden
- Department Microbiology Immunology and Transplantation Ku Leuven, Catholic University of Leuven Belgium
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Jürgen Schwarze
- Child Life and Health and Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Zuzanna Lukasik
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- VIB Center for Inflammation Research Ghent University Ghent Belgium
| | - Florentina Sava
- London North Genomic Laboratory Hub Great Ormond Street Hospital for Children NHS Foundation Trust London UK
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Liam O'Mahony
- Departments of Medicine and Microbiology APC Microbiome IrelandUniversity College Cork Cork Ireland
| | - Milos Jesenak
- Department of Pulmonology and Phthisiology Department of Allergology and Clinical Immunology Department of Pediatrics Jessenius Faculty of Medicine in Martin Comenius University in BratislavaUniversity Teaching Hospital in Martin Slovakia
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital MarburgPhilipps‐Universität Marburg Marburg Germany
| | - María José Torres
- Allergy Unit Málaga Regional University Hospital‐IBIMA‐UMA Málaga Spain
| | - Marek Sanak
- Department of Medicine Jagiellonian University Medical College Krakow Poland
| | - Sven‐Erik Dahlén
- Institute of Environmental Medicine and the Centre for Allergy Research, Karolinska Institute, and the Department of Respiratory Medicine Karolinska University Hospital Stockholm Sweden
| | - Grzegorz Woszczek
- Asthma UK Centre in Allergic Mechanisms of Asthma School of Immunology and Microbial Sciences King's College London London UK
| |
Collapse
|
44
|
Badi YE, Pavel AB, Pavlidis S, Riley JH, Bates S, Kermani NZ, Knowles R, Kolmert J, Wheelock CE, Worsley S, Uddin M, Alving K, Bakke PS, Behndig A, Caruso M, Chanez P, Fleming LJ, Fowler SJ, Frey U, Howarth P, Horváth I, Krug N, Maitland-van der Zee AH, Montuschi P, Roberts G, Sanak M, Shaw DE, Singer F, Sterk PJ, Djukanovic R, Dahlen SE, Guo YK, Chung KF, Guttman-Yassky E, Adcock IM. Mapping atopic dermatitis and anti-IL-22 response signatures to type 2-low severe neutrophilic asthma. J Allergy Clin Immunol 2022; 149:89-101. [PMID: 33891981 DOI: 10.1016/j.jaci.2021.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/11/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Transcriptomic changes in patients who respond clinically to biological therapies may identify responses in other tissues or diseases. OBJECTIVE We sought to determine whether a disease signature identified in atopic dermatitis (AD) is seen in adults with severe asthma and whether a transcriptomic signature for patients with AD who respond clinically to anti-IL-22 (fezakinumab [FZ]) is enriched in severe asthma. METHODS An AD disease signature was obtained from analysis of differentially expressed genes between AD lesional and nonlesional skin biopsies. Differentially expressed genes from lesional skin from therapeutic superresponders before and after 12 weeks of FZ treatment defined the FZ-response signature. Gene set variation analysis was used to produce enrichment scores of AD and FZ-response signatures in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes asthma cohort. RESULTS The AD disease signature (112 upregulated genes) encompassing inflammatory, T-cell, TH2, and TH17/TH22 pathways was enriched in the blood and sputum of patients with asthma with increasing severity. Patients with asthma with sputum neutrophilia and mixed granulocyte phenotypes were the most enriched (P < .05). The FZ-response signature (296 downregulated genes) was enriched in asthmatic blood (P < .05) and particularly in neutrophilic and mixed granulocytic sputum (P < .05). These data were confirmed in sputum of the Airway Disease Endotyping for Personalized Therapeutics cohort. IL-22 mRNA across tissues did not correlate with FZ-response enrichment scores, but this response signature correlated with TH22/IL-22 pathways. CONCLUSIONS The FZ-response signature in AD identifies severe neutrophilic asthmatic patients as potential responders to FZ therapy. This approach will help identify patients for future asthma clinical trials of drugs used successfully in other chronic diseases.
Collapse
Affiliation(s)
- Yusef Eamon Badi
- National Heart and Lung Institute, the Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, London, United Kingdom; Data Science Institute, Imperial College London, London, United Kingdom
| | - Ana B Pavel
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Biomedical Engineering, The University of Mississippi, Oxford, Miss
| | - Stelios Pavlidis
- Data Science Institute, Imperial College London, London, United Kingdom
| | - John H Riley
- GSK Respiratory Therapeutic Area Unit, Stevenage, United Kingdom
| | - Stewart Bates
- GSK Respiratory Therapeutic Area Unit, Stevenage, United Kingdom
| | | | | | - Johan Kolmert
- Centre for Allergy Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Sally Worsley
- GSK Value Evidence and Outcomes, Brentford, United Kingdom
| | - Mohib Uddin
- Respiratory Global Medicines Development, AstraZeneca, Gothenburg, Sweden
| | - Kjell Alving
- Department of Women's and Children's Health: Paediatric Research, Uppsala University, Uppsala, Sweden
| | - Per S Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Annelie Behndig
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pascal Chanez
- Aix-Marseille Universite, Assistance Publique des Hopitaux de Marseille, Clinic des Bronches, Allergies et Sommeil, Marseille, France
| | - Louise J Fleming
- National Heart and Lung Institute, the Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Manchester Academic Health Science Centre and NIHR Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Urs Frey
- University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Peter Howarth
- Clinical and Experimental Sciences and Human Development in Health, University of Southampton Faculty of Medicine, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, United Kingdom
| | - Ildikó Horváth
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | | | | | - Paolo Montuschi
- Pharmacology, Catholic University of the Sacred Heart, Agostino Gemelli University Hospital Foundation, Rome, Italy
| | - Graham Roberts
- Clinical and Experimental Sciences and Human Development in Health, University of Southampton Faculty of Medicine, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, United Kingdom
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Dominick E Shaw
- University of Nottingham, NIHR Biomedical Research Centre, Nottingham, United Kingdom
| | - Florian Singer
- Division of Respiratory Medicine, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Peter J Sterk
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ratko Djukanovic
- Clinical and Experimental Sciences and Human Development in Health, University of Southampton Faculty of Medicine, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, United Kingdom
| | - Sven-Eric Dahlen
- Centre for Allergy Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Yi-Ke Guo
- Data Science Institute, Imperial College London, London, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, the Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Emma Guttman-Yassky
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ian M Adcock
- National Heart and Lung Institute, the Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, London, United Kingdom.
| |
Collapse
|
45
|
Gladine C, Fedorova M. The clinical translation of eicosanoids and other oxylipins, although challenging, should be actively pursued. J Mass Spectrom Adv Clin Lab 2021; 21:27-30. [PMID: 34820674 PMCID: PMC8600996 DOI: 10.1016/j.jmsacl.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/02/2023] Open
Key Words
- CE, cholesteryl ester
- CVD, cardiovascular disease
- LDL, low density lipoprotein
- NFκB, nuclear factor kappa B
- PC, phosphatidylcholine
- PL, phospholipid
- PPAR, peroxisome proliferator-activated receptor
- PUFA, polyunsaturated fatty acid
- TG, triglyceride
- oxCE, oxidized CE
- oxLDL, oxidized LDL
- oxTG, oxidized TG
Collapse
Affiliation(s)
- Cécile Gladine
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany.,Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
46
|
Reinke SN, Naz S, Chaleckis R, Gallart-Ayala H, Kolmert J, Kermani NZ, Tiotiu A, Broadhurst DI, Lundqvist A, Olsson H, Ström M, Wheelock ÅM, Gómez C, Ericsson M, Sousa AR, Riley JH, Bates S, Scholfield J, Loza M, Baribaud F, Bakke PS, Caruso M, Chanez P, Fowler SJ, Geiser T, Howarth P, Horváth I, Krug N, Montuschi P, Behndig A, Singer F, Musial J, Shaw DE, Dahlén B, Hu S, Lasky-Su J, Sterk PJ, Chung KF, Djukanovic R, Dahlén SE, Adcock IM, Wheelock CE. Urinary metabotype of severe asthma evidences decreased carnitine metabolism independent of oral corticosteroid treatment in the U-BIOPRED study. Eur Respir J 2021; 59:13993003.01733-2021. [PMID: 34824054 PMCID: PMC9245194 DOI: 10.1183/13993003.01733-2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/28/2021] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Asthma is a heterogeneous disease with poorly defined phenotypes. Severe asthmatics often receive multiple treatments including oral corticosteroids (OCS). Treatment may modify the observed metabotype, rendering it challenging to investigate underlying disease mechanisms. Here, we aimed to identify dysregulated metabolic processes in relation to asthma severity and medication. METHODS Baseline urine was collected prospectively from healthy participants (n=100), mild-to-moderate asthmatics (n=87) and severe asthmatics (n=418) in the cross-sectional U-BIOPRED cohort; 12-18-month longitudinal samples were collected from severe asthmatics (n=305). Metabolomics data were acquired using high-resolution mass spectrometry and analysed using univariate and multivariate methods. RESULTS Ninety metabolites were identified, with 40 significantly altered (p<0.05, FDR<0.05) in severe asthma and 23 by OCS use. Multivariate modelling showed that observed metabotypes in healthy participants and mild-to-moderate asthmatics differed significantly from severe asthmatics (p=2.6×10-20), OCS-treated asthmatics differed significantly from non-treated (p=9.5×10-4), and longitudinal metabotypes demonstrated temporal stability. Carnitine levels evidenced the strongest OCS-independent decrease in severe asthma. Reduced carnitine levels were associated with mitochondrial dysfunction via decreases in pathway enrichment scores of fatty acid metabolism and reduced expression of the carnitine transporter SLC22A5 in sputum and bronchial brushings. CONCLUSIONS This is the first large-scale study to delineate disease- and OCS-associated metabolic differences in asthma. The widespread associations with different therapies upon the observed metabotypes demonstrate the necessity to evaluate potential modulating effects on a treatment- and metabolite-specific basis. Altered carnitine metabolism is a potentially actionable therapeutic target that is independent of OCS treatment, highlighting the role of mitochondrial dysfunction in severe asthma.
Collapse
Affiliation(s)
- Stacey N Reinke
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia.,equal contribution
| | - Shama Naz
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,equal contribution
| | - Romanas Chaleckis
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Gunma Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Hector Gallart-Ayala
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Johan Kolmert
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Angelica Tiotiu
- National Heart and Lung Institute, Imperial College, London, U.K.,Department of Pulmonology, University Hospital of Nancy, Nancy, France
| | - David I Broadhurst
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia
| | - Anders Lundqvist
- Respiratory & Immunology, BioPharmaceuticals R&D, DMPK, Research and Early Development, AstraZeneca, Gothenburg, Sweden
| | - Henric Olsson
- Translational Science and Experimental Medicine, Research and Early Development, AstraZeneca, Gothenburg, Sweden
| | - Marika Ström
- Respiratory Medicine Unit, K2 Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Åsa M Wheelock
- Respiratory Medicine Unit, K2 Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Cristina Gómez
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Ericsson
- Department of Clinical Pharmacology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | - James Scholfield
- Faculty of Medicine, Southampton University and NIHR Southampton Respiratory Biomedical Research Center, University Hospital Southampton, Southampton, U.K
| | - Matthew Loza
- Janssen Research and Development, High Wycombe, U.K
| | | | - Per S Bakke
- Institute of Medicine, University of Bergen, Bergen, Norway
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences and Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Pascal Chanez
- Assistance Publique des Hôpitaux de Marseille, Clinique des Bronches, Allergies et Sommeil, Aix Marseille Université, Marseille, France
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, School of Biological Sciences, Medicine and Health, University of Manchester, and Manchester Academic Health Science Centre and NIHR Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, U.K
| | - Thomas Geiser
- Department of Pulmonary Medicine, University Hospital, University of Bern, Switzerland
| | - Peter Howarth
- Faculty of Medicine, Southampton University and NIHR Southampton Respiratory Biomedical Research Center, University Hospital Southampton, Southampton, U.K
| | - Ildikó Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Paolo Montuschi
- Pharmacology, Catholic University of the Sacred Heart, Rome, Italy
| | - Annelie Behndig
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
| | - Florian Singer
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Jacek Musial
- Dept of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Dominick E Shaw
- Nottingham NIHR Biomedical Research Centre, University of Nottingham, U.K
| | - Barbro Dahlén
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Sile Hu
- Data Science Institute, Imperial College, London, U.K
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter J Sterk
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College, London, U.K
| | - Ratko Djukanovic
- Faculty of Medicine, Southampton University and NIHR Southampton Respiratory Biomedical Research Center, University Hospital Southampton, Southampton, U.K
| | - Sven-Erik Dahlén
- The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College, London, U.K
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden .,Gunma Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
47
|
Tiotiu A, Badi Y, Kermani NZ, Sanak M, Kolmert J, Wheelock CE, Hansbro PM, Dahlén SE, Sterk PJ, Djukanovic R, Guo Y, Mumby S, Adcock IM, Chung KF. Association of Differential Mast Cell Activation to Granulocytic Inflammation in Severe Asthma. Am J Respir Crit Care Med 2021; 205:397-411. [PMID: 34813381 DOI: 10.1164/rccm.202102-0355oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Mast cells (MC) play a role in inflammation and both innate and adaptive immunity but their involvement in severe asthma (SA) remains undefined. OBJECTIVE We investigated the phenotypic characteristics of the U-BIOPRED asthma cohort by applying published MC activation signatures to the sputum cell transcriptome. METHODS 84 SA, 20 mild/moderate (MMA) asthma, and 16 non-asthmatic healthy participants were studied. We calculated enrichment scores (ES) for nine MC activation signatures by asthma severity, sputum granulocyte status and three previously-defined sputum molecular phenotypes or transcriptome-associated clusters (TAC1, 2, 3) using gene-set variation analysis. RESULTS MC signatures except unstimulated, repeated FcεR1-stimulated and IFNγ-stimulated were enriched in SA. A FcεR1-IgE-stimulated and a single cell signature from asthmatic bronchial biopsies were highly enriched in eosinophilic asthma and in the TAC1 molecular phenotype. Subjects with a high ES for these signatures had elevated sputum levels of similar genes and pathways. IL-33- and LPS-stimulated MC signatures had greater ES in neutrophilic and mixed granulocytic asthma and in the TAC2 molecular phenotype. These subjects exhibited neutrophil, NF-κB, and IL-1β/TNFα pathway activation. The IFNγ-stimulated signature had the greatest ES in TAC2 and TAC3 that was associated with responses to viral infection. Similar results were obtained in an independent ADEPT asthma cohort. CONCLUSIONS Gene signatures of MC activation allow the detection of SA phenotypes and indicate that MC can be induced to take on distinct transcriptional phenotypes associated with specific clinical phenotypes. IL-33-stimulated MCs signature was associated with severe neutrophilic asthma while IgE-activated MC with an eosinophilic phenotype.
Collapse
Affiliation(s)
- Angelica Tiotiu
- National Heart and Lung Institute Division of Respiratory Science, 228067, London, United Kingdom of Great Britain and Northern Ireland.,University Hospital Centre Nancy, 26920, Nancy, France
| | - Yusef Badi
- National Heart and Lung Institute Division of Respiratory Science, 228067, London, United Kingdom of Great Britain and Northern Ireland
| | | | - Marek Sanak
- Jagiellonian University School of Medicine, Department of Medicine, Kraków, Poland
| | - Johan Kolmert
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden
| | - Craig E Wheelock
- Karolinska Institutet, 27106, Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Philip M Hansbro
- University of Technology Sydney, 1994, Sydney, New South Wales, Australia
| | - Sven-Erik Dahlén
- Karolinska Intitutet, Centre for Allergy Research, Stockholm, Sweden
| | - Peter J Sterk
- University of Amsterdam, 1234, Amsterdam, Netherlands
| | - Ratko Djukanovic
- Southampton University, Clinical and Experimental Sciences and Southampton NIHR Respiratory Biomedical Research Unit, Southampton, United Kingdom of Great Britain and Northern Ireland
| | - Yike Guo
- Imperial College London, 4615, London, United Kingdom of Great Britain and Northern Ireland
| | - Sharon Mumby
- Imperial College London, 4615, London, United Kingdom of Great Britain and Northern Ireland
| | - Ian M Adcock
- NHLI, Imperial College London, Airways Disease, London, United Kingdom of Great Britain and Northern Ireland
| | - Kian Fan Chung
- National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland;
| | | |
Collapse
|
48
|
Mikus MS, Kolmert J, Andersson LI, Östling J, Knowles RG, Gómez C, Ericsson M, Thörngren JO, Khoonsari PE, Dahlén B, Kupczyk M, De Meulder B, Auffray C, Bakke PS, Beghe B, Bel EH, Caruso M, Chanez P, Chawes B, Fowler SJ, Gaga M, Geiser T, Gjomarkaj M, Horváth I, Howarth PH, Johnston SL, Joos G, Krug N, Montuschi P, Musial J, Niżankowska-Mogilnicka E, Olsson HK, Papi A, Rabe KF, Sandström T, Shaw DE, Siafakas NM, Uhlen M, Riley JH, Bates S, Middelveld RJM, Wheelock CE, Chung KF, Adcock IM, Sterk PJ, Djukanovic R, Nilsson P, Dahlén SE, James A. Plasma proteins elevated in severe asthma despite oral steroid use and unrelated to Type-2 inflammation. Eur Respir J 2021; 59:13993003.00142-2021. [PMID: 34737220 PMCID: PMC8850689 DOI: 10.1183/13993003.00142-2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022]
Abstract
Rationale Asthma phenotyping requires novel biomarker discovery. Objectives To identify plasma biomarkers associated with asthma phenotypes by application of a new proteomic panel to samples from two well-characterised cohorts of severe (SA) and mild-to-moderate (MMA) asthmatics, COPD subjects and healthy controls (HCs). Methods An antibody-based array targeting 177 proteins predominantly involved in pathways relevant to inflammation, lipid metabolism, signal transduction and extracellular matrix was applied to plasma from 525 asthmatics and HCs in the U-BIOPRED cohort, and 142 subjects with asthma and COPD from the validation cohort BIOAIR. Effects of oral corticosteroids (OCS) were determined by a 2-week, placebo-controlled OCS trial in BIOAIR, and confirmed by relation to objective OCS measures in U-BIOPRED. Results In U-BIOPRED, 110 proteins were significantly different, mostly elevated, in SA compared to MMA and HCs. 10 proteins were elevated in SA versus MMA in both U-BIOPRED and BIOAIR (alpha-1-antichymotrypsin, apolipoprotein-E, complement component 9, complement factor I, macrophage inflammatory protein-3, interleukin-6, sphingomyelin phosphodiesterase 3, TNF receptor superfamily member 11a, transforming growth factor-β and glutathione S-transferase). OCS treatment decreased most proteins, yet differences between SA and MMA remained following correction for OCS use. Consensus clustering of U-BIOPRED protein data yielded six clusters associated with asthma control, quality of life, blood neutrophils, high-sensitivity C-reactive protein and body mass index, but not Type-2 inflammatory biomarkers. The mast cell specific enzyme carboxypeptidase A3 was one major contributor to cluster differentiation. Conclusions The plasma proteomic panel revealed previously unexplored yet potentially useful Type-2-independent biomarkers and validated several proteins with established involvement in the pathophysiology of SA. Application of new proteomic panel in two established European asthma cohorts identifies plasma proteins associated with disease severity independently of Type-2 inflammation, suggesting potentially useful novel biomarkers and therapeutic targets.https://bit.ly/3jtTq5m
Collapse
Affiliation(s)
- Maria Sparreman Mikus
- Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden .,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johan Kolmert
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Lars I Andersson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Cristina Gómez
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Ericsson
- Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - John-Olof Thörngren
- Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Payam Emami Khoonsari
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Solna, Sweden
| | - Barbro Dahlén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Maciej Kupczyk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, University of Lodz, Lodz, Poland
| | | | - Charles Auffray
- European Institute for Systems Biology and Medicine, Lyon, France
| | - Per S Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bianca Beghe
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabeth H Bel
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pascal Chanez
- Assistance Publique des Hôpitaux de Marseille, Clinique des Bronches, Allergies et Sommeil, Aix Marseille Université, Marseille, France
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester; Manchester Academic Health Science Centre and NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Mina Gaga
- Respiratory Medicine Dept and Asthma Centre, Athens Chest Hospital "Sotiria", University of Athens, Athens, Greece
| | - Thomas Geiser
- Department for Pulmonary Medicine, University Hospital and University of Bern, Bern, Switzerland
| | - Mark Gjomarkaj
- Institute for Research and Biomedical Innovation, Italian National Research Council, Palermo, Italy
| | - Ildikó Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Peter H Howarth
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Guy Joos
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Paolo Montuschi
- Department of Pharmacology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Jacek Musial
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | | | - Henric K Olsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alberto Papi
- Division of lnternal and Cardiorespiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Klaus F Rabe
- Department of Internal Medicine, Christian Albrechts University Kiel, Kiel, Germany
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Dominick E Shaw
- Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Nikolaos M Siafakas
- Department of Thoracic Medicine, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Mathias Uhlen
- Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - John H Riley
- Respiratory Therapeutic Unit, GlaxoSmithKline, London, UK
| | - Stewart Bates
- Respiratory Therapeutic Unit, GlaxoSmithKline, London, UK
| | - Roelinde J M Middelveld
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter J Sterk
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ratko Djukanovic
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Peter Nilsson
- Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Anna James
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
49
|
Miranda D, Zanatta A, Miles E, Calder P, Nishiyama A. Leukotriene B 4 limits the effectiveness of fish oil in an animal model of asthma. Heliyon 2021; 7:e08326. [PMID: 34816034 PMCID: PMC8591350 DOI: 10.1016/j.heliyon.2021.e08326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022] Open
Abstract
This study aimed to evaluate the levels of eicosanoids derived from arachidonic acid (ARA) in the lungs of asthmatic rats supplemented with fish oil. The present data gives insight into the action of fish oil in asthma, related to its inability to modify the contractile capacity of tracheal smooth muscle reported previously in a model of asthma in rats. Male Wistar rats were supplemented daily with 1 g of fish oil/kg of body weight for 21 days. They were exposed to ovalbumin (OVA) after previous sensitization with OVA to induce asthma. Pulmonary levels of five eicosanoids were measured using immunoassay kits: PGE2, TXB2, LTB4, LXA4, and 8-iso PGF2α. In asthmatic rats, supplementation with fish oil resulted in lower concentrations of lung eicosanoids produced by cyclooxygenase-2 and 15-lipoxygenase: PGE2, TXB2, and LXA4, respectively. Fish oil supplementation also decreased the non-enzymatically produced eicosanoid 8-iso PGF2α. Fish oil supplementation did not affect LTB4, a metabolite of 5-lipoxygenase. The limited efficacy of fish oil supplementation in asthmatic rats is associated with a lack of action in reducing the levels of LTB4 in the lungs. Thus, fish oil differentially modulates the concentrations of eicosanoids derived from ARA via specific pathways in an animal model of asthma.
Collapse
Affiliation(s)
- D.T.S.Z. Miranda
- Departamento de Fisiologia, Centro Politécnico, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, CEP 81531-990, Curitiba, Brazil
| | - A.L. Zanatta
- Departamento de Fisiologia, Centro Politécnico, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, CEP 81531-990, Curitiba, Brazil
| | - E.A. Miles
- School of Human Development & Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, United Kingdom
| | - P.C. Calder
- School of Human Development & Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, United Kingdom
| | - A. Nishiyama
- Departamento de Fisiologia, Centro Politécnico, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, CEP 81531-990, Curitiba, Brazil
| |
Collapse
|
50
|
Rupani H, Fong WCG, Kyyaly A, Kurukulaaratchy RJ. Recent Insights into the Management of Inflammation in Asthma. J Inflamm Res 2021; 14:4371-4397. [PMID: 34511973 PMCID: PMC8421249 DOI: 10.2147/jir.s295038] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
The present prevailing inflammatory paradigm in asthma is of T2-high inflammation orchestrated by key inflammatory cells like Type 2 helper lymphocytes, innate lymphoid cells group 2 and associated cytokines. Eosinophils are key components of this T2 inflammatory pathway and have become key therapeutic targets. Real-world evidence on the predominant T2-high nature of severe asthma is emerging. Various inflammatory biomarkers have been adopted in clinical practice to aid asthma characterization including airway measures such as bronchoscopic biopsy and lavage, induced sputum analysis, and fractional exhaled nitric oxide. Blood measures like eosinophil counts have also gained widespread usage and multicomponent algorithms combining different parameters are now appearing. There is also growing interest in potential future biomarkers including exhaled volatile organic compounds, micro RNAs and urinary biomarkers. Additionally, there is a growing realisation that asthma is a heterogeneous state with numerous phenotypes and associated treatable traits. These may show particular inflammatory patterns and merit-specific management approaches that could improve asthma patient outcomes. Inhaled corticosteroids (ICS) remain the mainstay of asthma management but their use earlier in the course of disease is being advocated. Recent evidence suggests potential roles for ICS in combination with long-acting beta-agonists (LABA) for as needed use in mild asthma whilst maintenance and reliever therapy regimes have gained widespread acceptance. Other anti-inflammatory strategies including ultra-fine particle ICS, leukotriene receptor antagonists and macrolide antibiotics may show efficacy in particular phenotypes too. Monoclonal antibody biologic therapies have recently entered clinical practice with significant impacts on asthma outcomes. Understanding of the efficacy and use of those agents is becoming clearer with a growing body of real-world evidence as is their potential applicability to other treatable comorbid traits. In conclusion, the evolving understanding of T2 driven inflammation alongside a treatable traits disease model is enhancing therapeutic approaches to address inflammation in asthma.
Collapse
Affiliation(s)
- Hitasha Rupani
- Department of Respiratory Medicine, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Wei Chern Gavin Fong
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight NHS Trust, Isle of Wight, UK
| | - Aref Kyyaly
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight NHS Trust, Isle of Wight, UK
| | - Ramesh J Kurukulaaratchy
- Department of Respiratory Medicine, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight NHS Trust, Isle of Wight, UK
- NIHR Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|