1
|
Weaver D, Gago S, Bassetti M, Giacobbe DR, Prattes J, Hoenigl M, Reizine F, Guegan H, Gangneux JP, Bromley MJ, Bowyer P. Mycobiome analyses of critically ill COVID-19 patients. Microbiol Spectr 2025; 13:e0411023. [PMID: 39699254 PMCID: PMC11792475 DOI: 10.1128/spectrum.04110-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/07/2024] [Indexed: 12/20/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) is a life-threatening complication in patients with severe COVID-19. Previously, acute respiratory distress syndrome in patients with COVID-19 has been associated with lung fungal dysbiosis, evidenced by reduced microbial diversity and Candida colonization. Increased fungal burden in the lungs of critically ill COVID-19 patients is linked to prolonged mechanical ventilation and increased mortality. However, specific mycobiome signatures associated with severe COVID-19 in the context of survival and antifungal drug prophylaxis have not yet been determined, and such knowledge could have an important impact on treatment. To understand the composition of the respiratory mycobiome in critically ill COVID-19 patients with and without CAPA and the impact of antifungal use in patient outcome, we performed a multinational study of 39 COVID-19 patients in intensive care units (ICUs). Respiratory mycobiome was profiled using internal transcribed spacer 1 sequencing, and Aspergillus fumigatus burden was further validated using quantitative PCR. Fungal communities were investigated using alpha diversity, beta diversity, taxa predominance, and taxa abundances. Respiratory mycobiomes of COVID-19 patients were dominated by Candida and Aspergillus. There was no significant association with corticosteroid use or CAPA diagnosis and respiratory fungal communities. Increased A. fumigatus burden was associated with mortality and, the use of azoles at ICU admission was linked with an absence of A. fumigatus. Our findings suggest that mold-active antifungal treatment at ICU admission may be linked with reduced A. fumigatus-associated mortality in severe COVID-19. However, further studies are warranted on this topic.IMPORTANCEInvasive fungal infections are a serious complication affecting up to a third of patients with severe COVID-19. Nevertheless, our understanding of the fungal communities in the lungs during critically ill COVID-19 remains limited. Evidence suggests a higher fungal burden is associated with prolonged ventilation and higher mortality, although the particular organisms responsible for this link are unclear. Antifungal prophylaxis may be beneficial for reducing the burden of fungal co-infections in COVID-19 intensive care. However, the composition of the fungal microbiome in severe COVID-19 in relation to prophylactic antifungals, as well as how this is associated with survival outcomes, is yet to be studied. Our study provides insights into the lung fungal microbiome in severe COVID-19 and has found antifungal treatment to be associated with lower Aspergillus fumigatus burden and that higher levels of this pathogen are associated with mortality. Therefore, our study suggests mold-active antifungal prophylaxis may be beneficial in severe COVID-19.
Collapse
Affiliation(s)
| | - Sara Gago
- University of Manchester, Manchester, United Kingdom
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Juergen Prattes
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
- Biotech Med, Graz, Austria
- Translational Medical Mycology Research Unit, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Florian Reizine
- Medical Intensive Care Unit, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Hélène Guegan
- CHU Rennes, Inserm, EHESP, Institut de Recherche en Santé, Environnement et Travail (IRSET), Université de Rennes, Rennes, France
- Centre Hospitalier Universitaire de Rennes, Laboratoire de Parasitologie-Mycologie, Centre National de Référence Mycoses et Antifongiques-Laboratoire Associé Asp-C, European Excellence Center for Medical Mycology (ECMM), Rennes, France
| | - Jean-Pierre Gangneux
- CHU Rennes, Inserm, EHESP, Institut de Recherche en Santé, Environnement et Travail (IRSET), Université de Rennes, Rennes, France
- Centre Hospitalier Universitaire de Rennes, Laboratoire de Parasitologie-Mycologie, Centre National de Référence Mycoses et Antifongiques-Laboratoire Associé Asp-C, European Excellence Center for Medical Mycology (ECMM), Rennes, France
| | | | - Paul Bowyer
- University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Wendel-Garcia PD, Ceccato A, Motos A, Franch-Llasat D, Pérez-Moreno MO, Domenech-Spanedda MF, Chamarro-Martí E, Ferrer R, Fernández-Barat L, Riera J, Álvarez-Napagao S, Peñuelas O, Lorente JA, Almansa R, Gabarrús A, de Gonzalo-Calvo D, González J, Añon JM, Barberà C, Barberán J, Blandino-Ortiz A, Bustamante-Munguira E, Caballero J, Carbajales-Pérez C, Carbonell N, Catalán-González M, Barral-Segade P, Mañez R, de la Torre MC, Díaz E, Estella Á, Gallego E, García-Garmendia JL, Garnacho-Montero J, Amaya-Villar R, Gómez JM, Huerta A, Jorge-García RN, Loza-Vázquez A, Marin-Corral J, Martin-Delgado MC, de la Gándara AM, Martínez-Varela IY, López-Messa J, Muñiz-Albaiceta G, Novo MA, Peñasco Y, Pozo-Laderas JC, Ricart P, Sánchez-Miralles Á, Sancho S, Socias L, Solé-Violan J, Suárez-Sipmann F, Tamayo L, Trenado J, Barbé F, Torres A, Roche-Campo F. Empirical antibiotic therapy improves outcomes in mechanically ventilated patients with COVID-19: An emulated targeted trial within a prospective, multicentre cohort study. J Infect 2025; 90:106411. [PMID: 39814268 DOI: 10.1016/j.jinf.2025.106411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Bacterial pulmonary superinfections develop in a substantial proportion of mechanically ventilated COVID-19 patients and are associated with prolonged mechanical ventilation requirements and increased mortality. Albeit recommended, evidence supporting the use of empirical antibiotics at intubation is weak and of low quality. The aim of this study was to elucidate the effect of empirical antibiotics, administered within 24 h of endotracheal intubation, on superinfections, duration of mechanical ventilation, and mortality in mechanically ventilated patients with COVID-19. METHODS Emulated targeted trial by means of a propensity score-matched analysis of a prospective multicentre cohort study of consecutive mechanically ventilated patients admitted to 62 Spanish intensive care units suffering from COVID-19 between March 2020 and February 2021. RESULTS Overall, 8532 critically ill COVID-19 patients were included, of which 2580 mechanically ventilated patients remained after matching. Empirical antibiotics were prescribed to 1665 (64%) at intubation. Pulmonary superinfections developed in 39% and 47% of patients treated with and without empirical antibiotics, respectively (p<0.01). Patients treated with empirical antibiotics had a shorter duration of mechanical ventilation (incidence risk ratio: 0.85 [95% confidence interval (CI), 0.78 - 0.94], p<0.01) and a reduced stay in the intensive care unit (incidence risk ratio: 0.89 [95% CI, 0.82 - 0.97] days, p<0.01). Mortality 28 days after endotracheal intubation was 28% in patients treated with empirical antibiotics as opposed to 32% in patients treated without (odds ratio: 0.76 [95% CI, 0.61 - 0.94], p<0.01). CONCLUSION The administration of empirical antibiotics at intubation in mechanically ventilated COVID-19 patients was associated with a reduced incidence of pulmonary superinfections, a shorter duration of mechanical ventilation and intensive care unit stay, and a lower mortality rate. Notwithstanding these benefits, the applicability of these findings to other viral pneumonias and beyond the pandemic context remains uncertain. REGISTRATION www. CLINICALTRIALS gov (NCT04457505).
Collapse
Affiliation(s)
- Pedro D Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland; Division of Cardiothoracic and Vascular Anaesthesia and Intensive Care Medicine, Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Vienna, Austria.
| | - Adrian Ceccato
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Intensive Care Unit, University Hospital Sagrat Cor, Quironsalud Group, Barcelona, Spain; Critical Care Center, University Hospital Parc Taulí, Institute of Research and Innovation Parc Taulí (I3PT), Sabadell, Spain
| | - Ana Motos
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Department of Pneumology, Hospital Clinic, Barcelona, Spain
| | - Diego Franch-Llasat
- Department of Critical Care Medicine, Hospital Verge de la Cinta, Tortosa, Pere Virgili Institute for Health Research, Spain
| | - Mar O Pérez-Moreno
- Department of Clinical Laboratory Medicine, Hospital Verge de la Cinta, Tortosa, Pere Virgili Institute for Health Research, Spain
| | - Marie F Domenech-Spanedda
- Department of Preventive Medicine, Hospital Verge de la Cinta, Tortosa, Pere Virgili Institute for Health Research, Spain
| | - Elena Chamarro-Martí
- Department of Internal Medicine, Hospital Verge de la Cinta, Tortosa, Pere Virgili Institute for Health Research, Spain
| | - Ricard Ferrer
- Intensive Care Department, SODIR-VHIR Research Group, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Laia Fernández-Barat
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Department of Pneumology, Hospital Clinic, Barcelona, Spain
| | - Jordi Riera
- Intensive Care Department, SODIR-VHIR Research Group, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Oscar Peñuelas
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Department of Critical Care Medicine, University Hospital of Getafe, Madrid, Spain
| | - Jose A Lorente
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Department of Critical Care Medicine, University Hospital of Getafe, Madrid, Spain
| | - Raquel Almansa
- Group for Biomedical Research in Sepsis (BioSepsis), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | | | - David de Gonzalo-Calvo
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRB Lleida, Lleida, Spain
| | - Jessica González
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Department of Pneumology, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain
| | - Jose M Añon
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Department of Critical Care Medicine, University Hospital La Paz, IdiPAZ, Madrid, Spain
| | - Carme Barberà
- Department of Critical Care Medicine, Hospital Santa Maria, Lleida, Spain
| | - José Barberán
- Department of Internal Medicine, University Hospital HM Montepríncipe, Madrid, Spain
| | - Aaron Blandino-Ortiz
- Department of Critical Care Medicine, University Hospital Ramón y Cajal, Madrid, Spain
| | | | - Jesús Caballero
- Department of Critical Care Medicine, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain
| | | | - Nieves Carbonell
- Department of Critical Care Medicine, University Clinic Hospital of Valencia, Valencia, Spain
| | | | - Patricia Barral-Segade
- Department of Critical Care Medicine, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Rafael Mañez
- Department of Critical Care Medicine, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
| | | | - Emili Díaz
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain; Department of Critical Care Medicine, Healthcare Corporation Parc Taulí, Sabadell, Spain
| | - Ángel Estella
- Department and Faculty of Medicine, University Hospital of Jerez, Jerez de la Frontera, Spain
| | - Elena Gallego
- Department of Critical Care Medicine, University Hospital San Pedro de Alcántara, Cáceres, Spain
| | - José L García-Garmendia
- Department of Critical Care Medicine, Hospital San Juan de Dios del Aljarafe, Sevilla, Spain
| | - José Garnacho-Montero
- Department of Critical Care Medicine, University Hospital Virgen Macarena, Sevilla, Spain
| | - Rosario Amaya-Villar
- Department of Critical Care Medicine, University Hospital Virgen del Rocio, Sevilla, Spain
| | - José M Gómez
- Department of Critical Care Medicine, University Hospital Gregorio Marañón, Madrid, Spain
| | - Arturo Huerta
- Pulmonary and Critical Care Division, Sagrada Família Clinic, Barcelona, Spain
| | - Ruth N Jorge-García
- Department of Critical Care Medicine, Hospital Nuestra Señora de Gracia, Zaragoza, Spain
| | - Ana Loza-Vázquez
- Department of Critical Care Medicine, University Hospital Virgen de Valme, Sevilla, Spain
| | | | | | | | | | - Juan López-Messa
- Department of Critical Care Medicine, University Hospital of Palencia, Palencia, Spain
| | - Guillermo Muñiz-Albaiceta
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Department of Functional Biology, Central Hospital of Asturias, Oviedo, Spain
| | - Mariana A Novo
- Department of Critical Care Medicine, University Hospital Son Espases, Palma de Mallorca, Spain
| | - Yhivian Peñasco
- Department of Critical Care Medicine, University Hospital Marqués de Valdecilla, Santander, Spain
| | - Juan C Pozo-Laderas
- Department of Critical Care Medicine, University Hospital Reina Sofia, Córdoba, Spain
| | - Pilar Ricart
- Department of Critical Care Medicine, University Hospital Germans Trias, Badalona, Spain
| | | | - Susana Sancho
- Department of Critical Care Medicine, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Lorenzo Socias
- Department of Critical Care Medicine, Hospital Son Llàtzer, Palma de Mallorca, Spain
| | - Jordi Solé-Violan
- Department of Critical Care Medicine, University Hospital Dr. Negrín, University Fernando Pessoa-Canarias, Las Palmas de Gran Canaria, Spain
| | | | - Luis Tamayo
- Department of Critical Care Medicine, University Hospital Río Hortega, Valladolid, Spain
| | - José Trenado
- Department of Critical Care Medicine, University Hospital Mútua Terrassa, Terrassa, Spain
| | - Ferran Barbé
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Department of Pneumology, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain
| | - Antoni Torres
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Department of Pneumology, Hospital Clinic, Barcelona, Spain
| | - Ferran Roche-Campo
- Department of Critical Care Medicine, Hospital Verge de la Cinta, Tortosa, Pere Virgili Institute for Health Research, Spain
| |
Collapse
|
3
|
Chen X, Wang W, Zhang H, Liang N, Chen D, Li J, Ding W, He Z, Yuan Y, Chu C, Yang Z, Zhao H, Liu Z. Plant-derived natural compounds for the treatment of acute lung injury: A systematic review of their anti-inflammatory effects in animal models. Int Immunopharmacol 2025; 146:113807. [PMID: 39681064 DOI: 10.1016/j.intimp.2024.113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUNDS AND AIMS Acute lung injury (ALI) is a complex pulmonary disease characterized by a severe inflammatory response. The management of ALI presents a formidable challenge due to the intricate nature of its inflammatory cascade. Numerous studies have highlighted the potential therapeutic benefits of plant-derived natural compounds (PNCs) in treating inflammatory diseases. Our study aims to provide robust current evidence regarding the anti-inflammatory effects and underlying molecular mechanisms of PNCs for ALI treatment. MATERIALS AND METHODS The systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the protocol was registered in PROSPERO (CRD42024468401). A comprehensive search was conducted in electronic databases including PubMed, Scopus, Web of Science, Embase, China National Knowledge Infrastructure (CNKI), Chinese Scientific Journal database (VIP), Wanfang database, and China biomedical literature service system (SinoMed) up until November 2023. Preclinical studies published in both English and Chinese were included. RESULTS Our research encompassed 81 studies, comprising a total of 71 PNCs, including flavonoids, phenylpropanoids, terpenoids, polyphenols, alkaloids, saponins, glycosides, and miscellaneous compounds. This systematic review demonstrated that PNCs played a beneficial role on ALI by regulating the immune response and reducing the release of inflammatory mediators and cytokines. The molecular mechanisms were partially associated with the regulation of Th17/Treg responses, promotion of the polarization of M1-type macrophages to M2-type macrophages, induction of immune cell apoptosis, reversal of microbial dysbiosis in the lungs and the gut, epigenetic modification, and the modulation of inflammatory pathways, including NF-κB, MAPK, TLR4/MyD88, NLRP3/Caspase-1, TGF-β/Smad, Nrf2/HO-1, Rho/ROCK, TLR7/MyD88, and PI3K/AKT, thereby alleviating inflammatory responses and lung damage. CONCLUSION The therapeutic effects of PNCs on ALI are mediated through the modulation of immunity and inflammatory pathways. In light of their potential, PNCs represent a promising pharmacological intervention for the treatment of ALI.
Collapse
Affiliation(s)
- Xiangyun Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenlai Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongrui Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Ning Liang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Danni Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiawang Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Ding
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhanzhan He
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yulu Yuan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ce Chu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhen Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Hongxia Zhao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zhenhong Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
4
|
Del Prete V, Piazzesi A, Scanu M, Toto F, Pane S, Berrilli F, Paterno G, Putignani L, di Cave D. Pneumocystis Pneumonia Severity Is Associated with Taxonomic Shifts in the Respiratory Microbiota. Pathogens 2025; 14:82. [PMID: 39861043 PMCID: PMC11768410 DOI: 10.3390/pathogens14010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Pneumonia caused by Pneumocystis jirovecii infection (PCP) is a potentially life-threatening illness, particularly affecting the immunocompromised. The past two decades have shown an increase in PCP incidence; however, the underlying factors that promote disease severity and fatality have yet to be fully elucidated. Recent evidence suggests that the microbiota of the respiratory tract may play a role in stimulating or repressing pulmonary inflammation, as well as the progression of both bacterial and viral pneumonia. Here, we employed 16S rRNA metataxonomic sequencing to profile the respiratory microbiota of patients with mild-moderate and severe PCP. Our results show that the upper and lower airways of PCP patients have bacterial profiles which have been associated with a pro-inflammatory response. Furthermore, we find that severe PCP is associated with lower bacterial diversity and an increase in Prevotella and a decrease in Neisseria. Functionally, severe PCP was associated with a decrease in metabolic pathways of molecules with anti-inflammatory and antimicrobial properties. To our knowledge, this is the first study showing an association of PCP severity with shifts in the respiratory microbiome and may provide some insight into which patients are more susceptible to the more severe manifestations of the disease.
Collapse
Affiliation(s)
- Valentina Del Prete
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (V.D.P.); (F.B.)
| | - Antonia Piazzesi
- Management and Diagnostic Innovations & Clinical Pathways Research Area, Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00144 Rome, Italy; (A.P.); (M.S.); (F.T.)
| | - Matteo Scanu
- Management and Diagnostic Innovations & Clinical Pathways Research Area, Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00144 Rome, Italy; (A.P.); (M.S.); (F.T.)
| | - Francesca Toto
- Management and Diagnostic Innovations & Clinical Pathways Research Area, Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00144 Rome, Italy; (A.P.); (M.S.); (F.T.)
| | - Stefania Pane
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, 00144 Rome, Italy;
| | - Federica Berrilli
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (V.D.P.); (F.B.)
| | - Giovangiacinto Paterno
- Hematology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Management and Diagnostic Innovations & Clinical Pathways Research Area, Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00144 Rome, Italy
| | - David di Cave
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (V.D.P.); (F.B.)
| |
Collapse
|
5
|
Barbeta E, López-Aladid R, Bueno-Freire L, Llonch B, Palomeque A, Motos A, Mellado-Artigas R, Zattera L, Ferrando C, Soler A, Fernández-Barat L, Torres A. Biological effects of pulmonary, blood and gut microbiome alterations in patients with acute respiratory distress syndrome. ERJ Open Res 2025; 11:00667-2024. [PMID: 40008167 PMCID: PMC11849113 DOI: 10.1183/23120541.00667-2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/13/2024] [Indexed: 02/27/2025] Open
Abstract
There is an overlap between the respiratory, blood and gut microbiomes in patients with acute respiratory distress syndrome. Specific taxa in the lungs and blood are associated with an inflammatory response. https://bit.ly/3TdkHd7.
Collapse
Affiliation(s)
- Enric Barbeta
- Surgical Intensive Care Unit, Anesthesiology, Hospital Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Spain
- E. Barbeta and R. López-Aladid contributed equally as joint first authors
| | - Rubén López-Aladid
- Microbiology, Hospital Clinic de Barcelona, Barcelona, Spain
- E. Barbeta and R. López-Aladid contributed equally as joint first authors
| | - Letícia Bueno-Freire
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Spain
| | - Blanca Llonch
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Spain
| | - Andrea Palomeque
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Pulmonology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Anna Motos
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Spain
| | - Ricard Mellado-Artigas
- Surgical Intensive Care Unit, Anesthesiology, Hospital Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Spain
| | - Luigi Zattera
- Surgical Intensive Care Unit, Anesthesiology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Carlos Ferrando
- Surgical Intensive Care Unit, Anesthesiology, Hospital Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Spain
| | - Alba Soler
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Spain
| | - Laia Fernández-Barat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Spain
- L. Fernández-Barat and A. Torres contributed equally to this article as lead authors and supervised the work
| | - Antoni Torres
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Spain
- Pulmonology, Hospital Clinic de Barcelona, Barcelona, Spain
- L. Fernández-Barat and A. Torres contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
6
|
Molina FJ, Botero LE, Isaza JP, Cano LE, López L, Valdés L, Arévalo Arbeláez AJ, Moreno I, Pérez Restrepo LS, Usuga J, Ciuoderis K, Hernandez JP, López-Aladid R, Fernández L, Torres A. Deciphering the lung microbiota in COVID-19 patients: insights from culture analysis, FilmArray pneumonia panel, ventilation impact, and mortality trends. Sci Rep 2024; 14:30035. [PMID: 39627340 PMCID: PMC11615399 DOI: 10.1038/s41598-024-81738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
Few studies have analyzed the role of the lung microbiome in the diagnosis of pulmonary coinfection in ventilated ICU COVID-19 patients. We characterized the lung microbiota in COVID-19 patients with severe pneumonia on invasive mechanical ventilation using full-length 16S rRNA gene sequencing and established its relationship with coinfections, mortality, and the need for mechanical ventilation for more than 7 days. This study included 67 COVID-19 ICU patients. DNA extracted from mini-bronchoalveolar lavage fluid and endotracheal aspirates was amplified by PCR with specific 16S primers (27F and 1492R). General and relative bacterial abundance analysis was also conducted. Alpha diversity was measured by the Shannon and Simpson indices, and differences in the microbiota were established using beta diversity. A linear discriminant analysis (LDA) effect size algorithm was implemented to describe biomarkers. Streptococcus spp. represented 51% of the overall microbial abundance. There were no differences in alpha diversity between the analyzed variables. There was variation in bacterial composition between samples that had positive and negative cultures. The genera Veillonella sp., Granulicatella sp., Enterococcus sp. and Lactiplantibacillus sp., with LDA scores > 2, were biomarkers associated with negative cultures. Rothia sp., with an LDA score > 2, was a biomarker associated with mortality.
Collapse
Affiliation(s)
- Francisco José Molina
- Facultad de Medicina, Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia.
- Intensive Care Unit, Clínica Universitaria Bolivariana, Universidad Pontificia Bolivariana, Medellín, Colombia.
| | - Luz Elena Botero
- Facultad de Medicina, Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Juan Pablo Isaza
- Facultad de Medicina, Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Luz Elena Cano
- Facultad de Medicina, Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia
- Corporación Para Investigaciones Biológicas, Medellín, Colombia
| | - Lucelly López
- Facultad de Medicina, Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Luis Valdés
- Facultad de Medicina, Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | - Isabel Moreno
- GHI One Health Colombia, Universidad Nacional de Colombia, Medellín, Colombia
| | | | - Jaime Usuga
- GHI One Health Colombia, Universidad Nacional de Colombia, Medellín, Colombia
| | - Karl Ciuoderis
- GHI One Health Colombia, Universidad Nacional de Colombia, Medellín, Colombia
| | | | - Rubén López-Aladid
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laia Fernández
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Pulmonology, University of Barcelona, Barcelona, Spain
| | - Antoni Torres
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Pulmonology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Feys S, Cardinali-Benigni M, Lauwers HM, Jacobs C, Stevaert A, Gonçalves SM, Cunha C, Debaveye Y, Hermans G, Heylen J, Humblet-Baron S, Lagrou K, Maessen L, Meersseman P, Peetermans M, Redondo-Rios A, Seldeslachts L, Starick MR, Thevissen K, Vande Velde G, Vandenbriele C, Vanderbeke L, Wilmer A, Naesens L, van de Veerdonk FL, Van Weyenbergh J, Gabaldón T, Wauters J, Carvalho A. Profiling Bacteria in the Lungs of Patients with Severe Influenza Versus COVID-19 with or without Aspergillosis. Am J Respir Crit Care Med 2024; 210:1230-1242. [PMID: 38865563 PMCID: PMC11568435 DOI: 10.1164/rccm.202401-0145oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Rationale: The influence of the lung bacterial microbiome, including potential pathogens, in patients with influenza-associated pulmonary aspergillosis (IAPA) or coronavirus disease (COVID-19)-associated pulmonary aspergillosis (CAPA) has yet to be explored. Objectives: To explore the composition of the lung bacterial microbiome and its association with viral and fungal infection, immunity, and outcome in severe influenza versus COVID-19 with or without aspergillosis. Methods: We performed a retrospective study in mechanically ventilated patients with influenza and COVID-19 with or without invasive aspergillosis in whom BAL for bacterial culture (with or without PCR) was obtained within 2 weeks after ICU admission. In addition, 16S rRNA gene sequencing data and viral and bacterial load of BAL samples from a subset of these patients, and of patients requiring noninvasive ventilation, were analyzed. We integrated 16S rRNA gene sequencing data with existing immune parameter datasets. Measurements and Main Results: Potential bacterial pathogens were detected in 20% (28/142) of patients with influenza and 37% (104/281) of patients with COVID-19, whereas aspergillosis was detected in 38% (54/142) of patients with influenza and 31% (86/281) of patients with COVID-19. A significant association between bacterial pathogens in BAL fluid and 90-day mortality was found only in patients with influenza, particularly patients with IAPA. Patients with COVID-19, but not patients with influenza, showed increased proinflammatory pulmonary cytokine responses to bacterial pathogens. Conclusions: Aspergillosis is more frequently detected in the lungs of patients with severe influenza than bacterial pathogens. Detection of bacterial pathogens associates with worse outcome in patients with influenza, particularly in those with IAPA, but not in patients with COVID-19. The immunological dynamics of tripartite viral-fungal-bacterial interactions deserve further investigation.
Collapse
Affiliation(s)
- Simon Feys
- Medical Intensive Care Unit, Department of General Internal Medicine
- Department of Microbiology, Immunology and Transplantation
| | - Martina Cardinali-Benigni
- Barcelona Supercomputing Centre, Barcelona, Spain
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Cato Jacobs
- Medical Intensive Care Unit, Department of General Internal Medicine
| | | | - Samuel M. Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Yves Debaveye
- Department of Intensive Care Medicine
- Department of Cellular and Molecular Medicine
| | - Greet Hermans
- Medical Intensive Care Unit, Department of General Internal Medicine
- Department of Cellular and Molecular Medicine
| | - Jannes Heylen
- Medical Intensive Care Unit, Department of General Internal Medicine
- Department of Microbiology, Immunology and Transplantation
| | | | - Katrien Lagrou
- Department of Laboratory Medicine and National Reference Center for Mycosis, and
- Department of Microbiology, Immunology and Transplantation
| | - Lenn Maessen
- Medical Intensive Care Unit, Department of General Internal Medicine
| | - Philippe Meersseman
- Medical Intensive Care Unit, Department of General Internal Medicine
- Department of Microbiology, Immunology and Transplantation
| | - Marijke Peetermans
- Medical Intensive Care Unit, Department of General Internal Medicine
- Department of Microbiology, Immunology and Transplantation
| | - Alvaro Redondo-Rios
- Barcelona Supercomputing Centre, Barcelona, Spain
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | | | - Karin Thevissen
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | | | - Christophe Vandenbriele
- Royal Brompton and Harefield, Guy’s and St. Thomas’ National Health Service Foundation Trust, London, United Kingdom
| | - Lore Vanderbeke
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Alexander Wilmer
- Medical Intensive Care Unit, Department of General Internal Medicine
- Department of Microbiology, Immunology and Transplantation
| | - Lieve Naesens
- Department of Microbiology, Immunology and Transplantation
| | | | | | - Toni Gabaldón
- Barcelona Supercomputing Centre, Barcelona, Spain
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain; and
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain
| | - Joost Wauters
- Medical Intensive Care Unit, Department of General Internal Medicine
- Department of Microbiology, Immunology and Transplantation
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
8
|
Garaci E, Pariano M, Nunzi E, Costantini C, Bellet MM, Antognelli C, Russo MA, Romani L. Bacteria and fungi of the lung: allies or enemies? Front Pharmacol 2024; 15:1497173. [PMID: 39584143 PMCID: PMC11584946 DOI: 10.3389/fphar.2024.1497173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Moving from the earlier periods in which the lungs were believed to represent sterile environments, our knowledge on the lung microbiota has dramatically increased, from the first descriptions of the microbial communities inhabiting the healthy lungs and the definition of the ecological rules that regulate its composition, to the identification of the changes that occur in pathological conditions. Despite the limitations of lung as a microbiome reservoir due to the low microbial biomass and abundance, defining its microbial composition and function in the upper and lower airways may help understanding the impact on local homeostasis and its disruption in lung diseases. In particular, the understanding of the metabolic and immune significance of microbes, their presence or lack thereof, in health and disease states could be valuable in development of novel druggable targets in disease treatments. Next-generation sequencing has identified intricate inter-microbe association networks that comprise true mutualistic or antagonistic direct or indirect relationships in the respiratory tract. In this review, the tripartite interaction of bacteria, fungi and the mammalian host is addressed to provide an integrated view of the microbial-host cross-talk in lung health and diseases from an immune and metabolic perspective.
Collapse
Affiliation(s)
- Enrico Garaci
- San Raffaele Research Center, Sulmona, L’Aquila, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Cinzia Antognelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Luigina Romani
- San Raffaele Research Center, Sulmona, L’Aquila, Italy
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
9
|
Röder M, Ng AYKC, Conway Morris A. Bronchoscopic Diagnosis of Severe Respiratory Infections. J Clin Med 2024; 13:6020. [PMID: 39408080 PMCID: PMC11477651 DOI: 10.3390/jcm13196020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
The diagnosis of severe respiratory infections in intensive care remains an area of uncertainty and involves a complex balancing of risks and benefits. Due to the frequent colonisation of the lower respiratory tract in mechanically ventilated patients, there is an ever-present possibility of microbiological samples being contaminated by bystander organisms. This, coupled with the frequency of alveolar infiltrates arising from sterile insults, risks over-treatment and antimicrobial-associated harm. The use of bronchoscopic sampling to obtain protected lower respiratory samples has long been advocated to overcome this problem. The use of bronchoscopy further enables accurate cytological assessment of the alveolar space and direct inspection of the proximal airways for signs of fungal infection or alternative pathologies. With a growing range of molecular techniques, including those based on nucleic acid amplification and even alveolar visualisation and direct bacterial detection, the potential for bronchoscopy is increasing concomitantly. Despite this, there remain concerns regarding the safety of the technique and its benefits versus less invasive sampling techniques. These discussions are reflected in the lack of consensus among international guidelines on the topic. This review will consider the benefits and challenges of diagnostic bronchoscopy in the context of severe respiratory infection.
Collapse
Affiliation(s)
- Maire Röder
- School of Clinical Medicine, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK;
| | | | - Andrew Conway Morris
- Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK;
- Division of Immunology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 0QQ, UK
- JVF Intensive Care Unit, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
10
|
Rana R, Akhtar A. Retrospective Comparison of Influenza and COVID-19-Associated Acute Respiratory Distress Syndrome (ARDS): An Experience From a Tertiary Care Hospital. Cureus 2024; 16:e66636. [PMID: 39258093 PMCID: PMC11386436 DOI: 10.7759/cureus.66636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2024] [Indexed: 09/12/2024] Open
Abstract
Background The COVID-19 pandemic has had a profound impact on global healthcare systems, often compared to seasonal influenza due to similarities in clinical presentation. This study aims to compare the clinical characteristics, comorbidities, and outcomes of critically ill patients with COVID-19 and those with influenza admitted to a tertiary care hospital in Islamabad, Pakistan. Methods This retrospective cohort study included 120 patients, 60 with confirmed COVID-19 and 60 with confirmed influenza, all of whom required ICU admission and mechanical ventilation between January 1, 2021, and January 1, 2024. Data were collected from electronic medical records, including demographic information, comorbidities, and clinical outcomes. Descriptive statistics were used to compare the two groups. Results The median age of COVID-19 patients was 55 years (range 30-78), while that of influenza patients was 58 years (range 31-80). Both groups had a slight male predominance (COVID-19: 66.7%, Influenza: 63.3%). Comorbidities were common in both groups, with 75.0% of COVID-19 patients and 83.3% of influenza patients having at least one comorbidity. The most common comorbidities included hypertension (COVID-19: 30.0%, Influenza: 33.3%) and diabetes (COVID-19: 20.0%, Influenza: 25.0%). Clinical outcomes revealed a higher mortality rate among influenza patients (43.3%) compared to COVID-19 patients (28.3%). ICU admission rates were identical for both groups at 66.7%, and mechanical ventilation was required for 66.7% of ICU-admitted patients in both groups. The presence of cardiovascular comorbidities significantly impacted patient outcomes, with higher mortality observed in influenza patients with such comorbidities (44.7%) compared to COVID-19 patients (28.9%). Conclusion This study highlights the significant burden of both COVID-19 and influenza on critically ill patients, particularly those with cardiovascular comorbidities. While influenza patients in this cohort exhibited higher mortality rates, both groups demonstrated substantial ICU admission rates and a need for mechanical ventilation.
Collapse
Affiliation(s)
- Rizwana Rana
- Critical Care Medicine, Shifa International Hospital, Islamabad, PAK
- Pulmonary Medicine, College of Physicians and Surgeons of Pakistan, Islamabad, PAK
| | - Aftab Akhtar
- Internal Medicine, Shifa International Hospital, Islamabad, PAK
| |
Collapse
|
11
|
Boers LS, van Someren Gréve F, van Hattem JM, de Brabander J, Zwaan T, van Willigen H, Cornelissen M, de Jong M, van der Poll T, Duitman J, Schinkel J, Bos LDJ. Pulmonary herpes simplex virus and cytomegalovirus in patients with acute respiratory distress syndrome related to COVID-19. Intensive Care Med 2024; 50:1251-1264. [PMID: 39017695 PMCID: PMC11306713 DOI: 10.1007/s00134-024-07529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE Human herpesviruses, particularly cytomegalovirus (CMV) and herpes simplex virus (HSV), frequently reactivate in critically ill patients, including those with acute respiratory distress syndrome (ARDS) related to coronavirus disease 2019 (COVID-19). The clinical interpretation of pulmonary herpesvirus reactivation is challenging and there is ongoing debate about its association with mortality and benefit of antiviral medication. We aimed to quantify the incidence and pathogenicity of pulmonary CMV and HSV reactivations in critically ill COVID-19 patients. METHODS Mechanically ventilated COVID-19 patients seropositive for CMV or HSV were included in this observational cohort study. Diagnostic bronchoscopy with bronchoalveolar lavage was performed routinely and analyzed for alveolar viral loads and inflammatory biomarkers. Utilizing joint modeling, we explored the dynamic association between viral load trajectories over time and mortality. We explored alveolar inflammatory biomarker dynamics between reactivated and non-reactivated patients. RESULTS Pulmonary reactivation (> 104 copies/ml) of CMV occurred in 6% of CMV-seropositive patients (9/156), and pulmonary reactivation of HSV in 37% of HSV-seropositive patients (63/172). HSV viral load dynamics prior to or without antiviral treatment were associated with increased 90-day mortality (hazard ratio [HR] 1.24, 95% confidence interval [CI] 1.04-1.47). The alveolar concentration of several inflammatory biomarkers increased with HSV reactivation, including interleukin (IL)-6, IL-1β, granulocyte colony stimulating factor (G-CSF), and tumor necrosis factor (TNF). CONCLUSION In mechanically ventilated COVID-19 patients, HSV reactivations are common, while CMV reactivations were rare. HSV viral load dynamics prior to or without antiviral treatment are associated with mortality. Alveolar inflammation is elevated after HSV reactivation.
Collapse
Affiliation(s)
- Leonoor S Boers
- Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands.
| | - Frank van Someren Gréve
- Medical Microbiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jarne M van Hattem
- Medical Microbiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Justin de Brabander
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Tom Zwaan
- Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands
| | - Hugo van Willigen
- Medical Microbiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Marion Cornelissen
- Medical Microbiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Menno de Jong
- Medical Microbiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Infection and Immunity, Inflammatory Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - JanWillem Duitman
- Infection and Immunity, Inflammatory Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Experimental Immunology (EXIM), Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Janke Schinkel
- Medical Microbiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Lieuwe D J Bos
- Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Li Z, Liu Z, Guo Y, Gao S, Tang Y, Li T, Xuan H. Propolis Alleviates Acute Lung Injury Induced by Heat-Inactivated Methicillin-Resistant Staphylococcus aureus via Regulating Inflammatory Mediators, Gut Microbiota and Serum Metabolites. Nutrients 2024; 16:1598. [PMID: 38892531 PMCID: PMC11175110 DOI: 10.3390/nu16111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Propolis has potential anti-inflammatory properties, but little is known about its efficacy against inflammatory reactions caused by drug-resistant bacteria, and the difference in efficacy between propolis and tree gum is also unclear. Here, an in vivo study was performed to study the effects of ethanol extract from poplar propolis (EEP) and poplar tree gum (EEG) against heat-inactivated methicillin-resistant Staphylococcus aureus (MRSA)-induced acute lung injury (ALI) in mice. Pre-treatment with EEP and EEG (100 mg/kg, p.o.) resulted in significant protective effects on ALI in mice, and EEP exerted stronger activity to alleviate lung tissue lesions and ALI scores compared with that of EEG. Furthermore, EEP significantly suppressed the levels of pro-inflammatory mediators in the lung, including TNF-α, IL-1β, IL-6, and IFN-γ. Gut microbiota analysis revealed that both EEP and EEG could modulate the composition of the gut microbiota, enhance the abundance of beneficial microbiota and reduce the harmful ones, and partly restore the levels of short-chain fatty acids. EEP could modulate more serum metabolites and showed a more robust correlation between serum metabolites and gut microbiota. Overall, these results support the anti-inflammatory effects of propolis in the treatment of ALI, and the necessity of the quality control of propolis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongzhuan Xuan
- School of Life Science, Liaocheng University, Liaocheng 252059, China; (Z.L.); (Z.L.); (Y.G.); (S.G.); (Y.T.); (T.L.)
| |
Collapse
|
13
|
Van Phan H, Tsitsiklis A, Maguire CP, Haddad EK, Becker PM, Kim-Schulze S, Lee B, Chen J, Hoch A, Pickering H, van Zalm P, Altman MC, Augustine AD, Calfee CS, Bosinger S, Cairns CB, Eckalbar W, Guan L, Doni Jayavelu N, Kleinstein SH, Krammer F, Maecker HT, Ozonoff A, Peters B, Rouphael N, Montgomery RR, Reed E, Schaenman J, Steen H, Levy O, Diray-Arce J, Langelier CR. Host-microbe multiomic profiling reveals age-dependent immune dysregulation associated with COVID-19 immunopathology. Sci Transl Med 2024; 16:eadj5154. [PMID: 38630846 PMCID: PMC11931290 DOI: 10.1126/scitranslmed.adj5154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Age is a major risk factor for severe coronavirus disease 2019 (COVID-19), yet the mechanisms behind this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host immune response in the blood and the upper airway, as well as the nasal microbiome in a prospective, multicenter cohort of 1031 vaccine-naïve patients hospitalized for COVID-19 between 18 and 96 years old. We performed mass cytometry, serum protein profiling, anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody assays, and blood and nasal transcriptomics. We found that older age correlated with increased SARS-CoV-2 viral abundance upon hospital admission, delayed viral clearance, and increased type I interferon gene expression in both the blood and upper airway. We also observed age-dependent up-regulation of innate immune signaling pathways and down-regulation of adaptive immune signaling pathways. Older adults had lower naïve T and B cell populations and higher monocyte populations. Over time, older adults demonstrated a sustained induction of pro-inflammatory genes and serum chemokines compared with younger individuals, suggesting an age-dependent impairment in inflammation resolution. Transcriptional and protein biomarkers of disease severity differed with age, with the oldest adults exhibiting greater expression of pro-inflammatory genes and proteins in severe disease. Together, our study finds that aging is associated with impaired viral clearance, dysregulated immune signaling, and persistent and potentially pathologic activation of pro-inflammatory genes and proteins.
Collapse
Affiliation(s)
- Hoang Van Phan
- University of California San Francisco, San Francisco, CA
94115, USA
| | | | | | - Elias K. Haddad
- Drexel University, Tower Health Hospital, Philadelphia, PA
19104, USA
| | - Patrice M. Becker
- National Institute of Allergy and Infectious Diseases,
National Institutes of Health, Bethesda, MD 20814, USA
| | | | - Brian Lee
- Icahn School of Medicine at Mount Sinai, New York, NY
10029, USA
| | - Jing Chen
- Precision Vaccines Program, Boston Children’s
Hospital, Harvard Medical School, Boston, MA 02115, USA
- Research Computing, Department of Information Technology,
Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115,
USA
| | - Annmarie Hoch
- Precision Vaccines Program, Boston Children’s
Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Harry Pickering
- David Geffen School of Medicine, University of California
Los Angeles, Los Angeles, CA 90095, USA
| | - Patrick van Zalm
- Precision Vaccines Program, Boston Children’s
Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew C. Altman
- Benaroya Research Institute, University of Washington,
Seattle, WA 98101, USA
| | - Alison D. Augustine
- National Institute of Allergy and Infectious Diseases,
National Institutes of Health, Bethesda, MD 20814, USA
| | - Carolyn S. Calfee
- University of California San Francisco, San Francisco, CA
94115, USA
| | | | - Charles B. Cairns
- Drexel University, Tower Health Hospital, Philadelphia, PA
19104, USA
| | - Walter Eckalbar
- University of California San Francisco, San Francisco, CA
94115, USA
| | - Leying Guan
- Yale School of Public Health, New Haven, CT 06510,
USA
| | | | | | - Florian Krammer
- Icahn School of Medicine at Mount Sinai, New York, NY
10029, USA
| | | | - Al Ozonoff
- Precision Vaccines Program, Boston Children’s
Hospital, Harvard Medical School, Boston, MA 02115, USA
- Research Computing, Department of Information Technology,
Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115,
USA
| | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA 92037,
USA
| | | | | | | | - Elaine Reed
- David Geffen School of Medicine, University of California
Los Angeles, Los Angeles, CA 90095, USA
| | - Joanna Schaenman
- David Geffen School of Medicine, University of California
Los Angeles, Los Angeles, CA 90095, USA
| | - Hanno Steen
- Precision Vaccines Program, Boston Children’s
Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Boston Children’s
Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Boston Children’s
Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Charles R. Langelier
- University of California San Francisco, San Francisco, CA
94115, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA
94158, USA
| |
Collapse
|
14
|
De Pascale G, Posteraro B, De Maio F, Pafundi PC, Tanzarella ES, Cutuli SL, Lombardi G, Grieco DL, Franchini E, Santarelli G, Infante A, Sanguinetti M, Antonelli M. Lung microbiota composition, respiratory mechanics, and outcomes in COVID-19-related ARDS. Microbiol Spectr 2024; 12:e0357423. [PMID: 38466118 PMCID: PMC10986322 DOI: 10.1128/spectrum.03574-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Few data are available on the lung microbiota composition of patients with coronavirus disease 2019-related acute respiratory distress syndrome (C-ARDS) receiving invasive mechanical ventilation (IMV). Moreover, it has never been investigated whether there is a potential correlation between lung microbiota communities and respiratory mechanics. We performed a prospective observational study in two intensive care units of a university hospital in Italy. Lung microbiota was investigated by bacterial 16S rRNA gene sequencing, performed on bronchoalveolar lavage fluid samples withdrawn after intubation. The lung bacterial communities were analyzed after stratification by respiratory system compliance/predicted body weight (Crs) and ventilatory ratio (VR). Weaning from IMV and hospital survival were assessed as secondary outcomes. In 70 C-ARDS patients requiring IMV from 1 April through 31 December 2020, the lung microbiota composition (phylum taxonomic level, permutational multivariate analysis of variance test) significantly differed between who had low Crs vs those with high Crs (P = 0.010), as well as in patients with low VR vs high VR (P = 0.012). As difference-driving taxa, Proteobacteria (P = 0.017) were more dominant and Firmicutes (P = 0.040) were less dominant in low- vs high-Crs patients. Similarly, Proteobacteria were more dominant in low- vs high-VR patients (P = 0.013). After multivariable regression analysis, we further observed lung microbiota diversity as a negative predictor of weaning from IMV and hospital survival (hazard ratio = 3.31; 95% confidence interval, 1.52-7.20, P = 0.048). C-ARDS patients with low Crs/low VR had a Proteobacteria-dominated lung microbiota. Whether patients with a more diverse lung bacterial community may have more chances to be weaned from IMV and discharged alive from the hospital warrants further large-scale investigations. IMPORTANCE Lung microbiota characteristics were demonstrated to predict ventilator-free days and weaning from mechanical ventilation in patients with acute respiratory distress syndrome (ARDS). In this study, we observed that in severe coronavirus disease 2019 patients with ARDS who require invasive mechanical ventilation, lung microbiota characteristics were associated with respiratory mechanics. Specifically, the lung microbiota of patients with low respiratory system compliance and low ventilatory ratio was characterized by Proteobacteria dominance. Moreover, after multivariable regression analysis, we also found an association between patients' microbiota diversity and a higher possibility of being weaned from mechanical ventilation and discharged alive from the hospital. For these reasons, lung microbiota characterization may help to stratify patient characteristics and orient the delivery of target interventions. (This study has been registered at ClinicalTrials.gov on 17 February 2020 under identifier NCT04271345.). Registered at ClinicalTrials.gov, 17 February 2020 (NCT0427135).
Collapse
Affiliation(s)
- Gennaro De Pascale
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Brunella Posteraro
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Pia Clara Pafundi
- Epidemiology and Biostatistics Research Core Facility, Gemelli Science & Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Eloisa Sofia Tanzarella
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Salvatore Lucio Cutuli
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gianmarco Lombardi
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Domenico Luca Grieco
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Emanuele Franchini
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulia Santarelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Amato Infante
- Dipartimento di Scienze Radiologiche ed Ematologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Massimo Antonelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
15
|
Zheng L, Liu C, Wang H, Zhang J, Mao L, Dong X, Hu S, Li N, Pi D, Qiu J, Xu F, Chen C, Zou Z. Intact lung tissue and bronchoalveolar lavage fluid are both suitable for the evaluation of murine lung microbiome in acute lung injury. MICROBIOME 2024; 12:56. [PMID: 38494479 PMCID: PMC10946114 DOI: 10.1186/s40168-024-01772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/30/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Accumulating clinical evidence suggests that lung microbiome is closely linked to the progression of pulmonary diseases; however, it is still controversial which specimen type is preferred for the evaluation of lung microbiome. METHODS AND RESULTS To address this issue, we established a classical acute lung injury (ALI) mice model by intratracheal instillation of lipopolysaccharides (LPS). We found that the bacterial DNA obtained from the bronchoalveolar lavage fluid (BALF), intact lung tissue [Lung(i)], lung tissue after perfused [Lung(p)], and feces of one mouse were enough for 16S rRNA sequencing, except the BALF of mice treated with phosphate buffer saline (PBS), which might be due to the biomass of lung microbiome in the BALF were upregulated in the mice treated with LPS. Although the alpha diversity among the three specimens from lungs had minimal differences, Lung(p) had higher sample-to-sample variation compared with BALF and Lung(i). Consistently, PCoA analysis at phylum level indicated that BALF was similar to Lung(i), but not Lung(p), in the lungs of mice treated with LPS, suggesting that BALF and Lung(i) were suitable for the evaluation of lung microbiome in ALI. Importantly, Actinobacteria and Firmicutes were identified as the mostly changed phyla in the lungs and might be important factors involved in the gut-lung axis in ALI mice. Moreover, Actinobacteria and Proteobacteria might play indicative roles in the severity of lung injury. CONCLUSION This study shows both Lung(i) and BALF are suitable for the evaluation of murine lung microbiome in ALI, and several bacterial phyla, such as Actinobacteria, may serve as potential biomarkers for the severity of ALI. Video Abstract.
Collapse
Affiliation(s)
- Lijun Zheng
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chengjun Liu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Hongjing Wang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing, 400016, People's Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaomei Dong
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Siyao Hu
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Na Li
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dandan Pi
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Research Center for Environment and Human Health, School of Public Health, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
16
|
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther 2024; 9:19. [PMID: 38228603 PMCID: PMC10791971 DOI: 10.1038/s41392-023-01722-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
The lungs were long thought to be sterile until technical advances uncovered the presence of the lung microbial community. The microbiome of healthy lungs is mainly derived from the upper respiratory tract (URT) microbiome but also has its own characteristic flora. The selection mechanisms in the lung, including clearance by coughing, pulmonary macrophages, the oscillation of respiratory cilia, and bacterial inhibition by alveolar surfactant, keep the microbiome transient and mobile, which is different from the microbiome in other organs. The pulmonary bacteriome has been intensively studied recently, but relatively little research has focused on the mycobiome and virome. This up-to-date review retrospectively summarizes the lung microbiome's history, composition, and function. We focus on the interaction of the lung microbiome with the oropharynx and gut microbiome and emphasize the role it plays in the innate and adaptive immune responses. More importantly, we focus on multiple respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), fibrosis, bronchiectasis, and pneumonia. The impact of the lung microbiome on coronavirus disease 2019 (COVID-19) and lung cancer has also been comprehensively studied. Furthermore, by summarizing the therapeutic potential of the lung microbiome in lung diseases and examining the shortcomings of the field, we propose an outlook of the direction of lung microbiome research.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Zhang S, Boers LS, de Brabander J, van den Heuvel LB, Blok SG, Kullberg RFJ, Smids-Dierdorp BS, Dekker T, Aberson HL, Meijboom LJ, Vlaar APJ, Heunks L, Nossent EJ, van der Poll T, Bos LDJ, Duitman J. The alveolar fibroproliferative response in moderate to severe COVID-19-related acute respiratory distress syndrome and 1-yr follow-up. Am J Physiol Lung Cell Mol Physiol 2024; 326:L7-L18. [PMID: 37933449 DOI: 10.1152/ajplung.00156.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/27/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
COVID-19-related acute respiratory distress syndrome (ARDS) can lead to long-term pulmonary fibrotic lesions. Alveolar fibroproliferative response (FPR) is a key factor in the development of pulmonary fibrosis. N-terminal peptide of procollagen III (NT-PCP-III) is a validated biomarker for activated FPR in ARDS. This study aimed to assess the association between dynamic changes in alveolar FPR and long-term outcomes, as well as mortality in COVID-19 ARDS patients. We conducted a prospective cohort study of 154 COVID-19 ARDS patients. We collected bronchoalveolar lavage (BAL) and blood samples for measurement of 17 pulmonary fibrosis biomarkers, including NT-PCP-III. We assessed pulmonary function and chest computed tomography (CT) at 3 and 12 mo after hospital discharge. We performed joint modeling to assess the association between longitudinal changes in biomarker levels and mortality at day 90 after starting mechanical ventilation. 154 patients with 284 BAL samples were analyzed. Of all patients, 40% survived to day 90, of whom 54 completed the follow-up procedure. A longitudinal increase in NT-PCP-III was associated with increased mortality (HR 2.89, 95% CI: 2.55-3.28; P < 0.001). Forced vital capacity and diffusion for carbon monoxide were impaired at 3 mo but improved significantly at one year after hospital discharge (P = 0.03 and P = 0.004, respectively). There was no strong evidence linking alveolar FPR during hospitalization and signs of pulmonary fibrosis in pulmonary function or chest CT images during 1-yr follow-up. In COVID-19 ARDS patients, alveolar FPR during hospitalization was associated with higher mortality but not with the presence of long-term fibrotic lung sequelae within survivors.NEW & NOTEWORTHY This is the first prospective study on the longitudinal alveolar fibroproliferative response in COVID-19 ARDS and its relationship with mortality and long-term follow-up. We used the largest cohort of COVID-19 ARDS patients who had consecutive bronchoalveolar lavages and measured 17 pulmonary fibroproliferative biomarkers. We found that a higher fibroproliferative response during admission was associated with increased mortality, but not correlated with long-term fibrotic lung sequelae in survivors.
Collapse
Affiliation(s)
- Shiqi Zhang
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Leonoor S Boers
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Justin de Brabander
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Laura B van den Heuvel
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Siebe G Blok
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Robert F J Kullberg
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Barbara S Smids-Dierdorp
- Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Experimental Immunology (EXIM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Tamara Dekker
- Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Experimental Immunology (EXIM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Hella L Aberson
- Experimental Immunology (EXIM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Lilian J Meijboom
- Radiology and Nuclear Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alexander P J Vlaar
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Leo Heunks
- Intensive Care Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Esther J Nossent
- Pulmonary Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Lieuwe D J Bos
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - JanWillem Duitman
- Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Experimental Immunology (EXIM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Infection & Immunity, Inflammatory Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Zhao Y, Sun H, Chen Y, Niu Q, Dong Y, Li M, Yuan Y, Yang X, Sun Q. Butyrate protects against MRSA pneumonia via regulating gut-lung microbiota and alveolar macrophage M2 polarization. mBio 2023; 14:e0198723. [PMID: 37754570 PMCID: PMC10653920 DOI: 10.1128/mbio.01987-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Pneumonia caused by methicillin-resistant Staphylococcus aureus (MRSA) continues to carry a high burden in terms of mortality. With the roles of gut microbiota in mediating lung diseases being gradually uncovered, the details of the molecular mechanism of the "gut-lung axis" mediated by beneficial microorganisms and small-molecule metabolites have gradually attracted the attention of researchers. However, further studies are still necessary to determine the efficacy of microbial-based interventions. Our findings indicate that sodium butyrate (NaB) alleviates MRSA-induced pulmonary inflammation by improving gut-lung microbiota and promoting M2 polarization of alveolar macrophages. Therefore, the preventive administration of NaB might be explored as an effective strategy to control MRSA pneumonia.
Collapse
Affiliation(s)
- Yan Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Haoming Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiwei Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiang Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiting Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Mei Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ye Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
19
|
Gaudet A, Kreitmann L, Nseir S. ICU-Acquired Colonization and Infection Related to Multidrug-Resistant Bacteria in COVID-19 Patients: A Narrative Review. Antibiotics (Basel) 2023; 12:1464. [PMID: 37760760 PMCID: PMC10525572 DOI: 10.3390/antibiotics12091464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
A large proportion of ICU-acquired infections are related to multidrug-resistant bacteria (MDR). Infections caused by these bacteria are associated with increased mortality, and prolonged duration of mechanical ventilation and ICU stay. The aim of this narrative review is to report on the association between COVID-19 and ICU-acquired colonization or infection related to MDR bacteria. Although a huge amount of literature is available on COVID-19 and MDR bacteria, only a few clinical trials have properly evaluated the association between them using a non-COVID-19 control group and accurate design and statistical methods. The results of these studies suggest that COVID-19 patients are at a similar risk of ICU-acquired MDR colonization compared to non-COVID-19 controls. However, a higher risk of ICU-acquired infection related to MDR bacteria has been reported in several studies, mainly ventilator-associated pneumonia and bloodstream infection. Several potential explanations could be provided for the high incidence of ICU-acquired infections related to MDR. Immunomodulatory treatments, such as corticosteroids, JAK2 inhibitors, and IL-6 receptor antagonist, might play a role in the pathogenesis of these infections. Additionally, a longer stay in the ICU was reported in COVID-19 patients, resulting in higher exposure to well-known risk factors for ICU-acquired MDR infections, such as invasive procedures and antimicrobial treatment. Another possible explanation is the surge during successive COVID-19 waves, with excessive workload and low compliance with preventive measures. Further studies should evaluate the evolution of the incidence of ICU-acquired infections related to MDR bacteria, given the change in COVID-19 patient profiles. A better understanding of the immune status of critically ill COVID-19 patients is required to move to personalized treatment and reduce the risk of ICU-acquired infections. The role of specific preventive measures, such as targeted immunomodulation, should be investigated.
Collapse
Affiliation(s)
- Alexandre Gaudet
- Médecine Intensive Réanimation, CHU de Lille, F-59000 Lille, France;
- CNRS, Inserm U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France
| | - Louis Kreitmann
- Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0HS, UK;
- Department of Intensive Care Medicine, Imperial College Healthcare NHS Trust, London NW1 5QH, UK
| | - Saad Nseir
- Médecine Intensive Réanimation, CHU de Lille, F-59000 Lille, France;
- Inserm U1285, Université de Lille, CNRS, UMR 8576-UGSF, F-59000 Lille, France
| |
Collapse
|
20
|
Widere JC, Davis CL, Loomba JJ, Bell TD, Enfield KB, Barros AJ. Early Empiric Antibiotic Use in Patients Hospitalized With COVID-19: A Retrospective Cohort Study. Crit Care Med 2023; 51:1168-1176. [PMID: 37125800 PMCID: PMC10426778 DOI: 10.1097/ccm.0000000000005901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
OBJECTIVE To investigate temporal trends and outcomes associated with early antibiotic prescribing in patients hospitalized with COVID-19. DESIGN Retrospective propensity-matched cohort study using the National COVID Cohort Collaborative (N3C) database. SETTING Sixty-six health systems throughout the United States that were contributing to the N3C database. Centers that had fewer than 500 admissions in their dataset were excluded. PATIENTS Patients hospitalized with COVID-19 were included. Patients were defined to have early antibiotic use if they received at least 3 calendar days of intravenous antibiotics within the first 5 days of admission. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Of 322,867 qualifying first hospitalizations, 43,089 patients received early empiric antibiotics. Antibiotic use declined across all centers in the data collection period, from March 2020 (23%) to June 2022 (9.6%). Average rates of early empiric antibiotic use (EEAU) also varied significantly between centers (deviance explained 7.33% vs 20.0%, p < 0.001). Antibiotic use decreased slightly by day 2 of hospitalization and was significantly reduced by day 5. Mechanical ventilation before day 2 (odds ratio [OR] 3.57; 95% CI, 3.42-3.72), extracorporeal membrane oxygenation before day 2 (OR 2.14; 95% CI, 1.75-2.61), and early vasopressor use (OR 1.85; 95% CI, 1.78-1.93) but not region of residence was associated with EEAU. After propensity matching, EEAU was associated with an increased risk for in-hospital mortality (OR 1.27; 95% CI, 1.23-1.33), prolonged mechanical ventilation (OR 1.65; 95% CI, 1.50-1.82), late broad-spectrum antibiotic exposure (OR 3.24; 95% CI, 2.99-3.52), and late Clostridium difficile infection (OR 1.60; 95% CI, 1.37-1.87). CONCLUSIONS Although treatment of COVID-19 patients with empiric antibiotics has declined during the pandemic, the frequency of use remains high. There is significant inter-center variation in antibiotic prescribing practices and evidence of potential harm. Our findings are hypothesis-generating and future work should prospectively compare outcomes and adverse events.
Collapse
Affiliation(s)
| | - Claire Leilani Davis
- Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Johanna Jean Loomba
- Integrated Translational Health Research Institute of Virginia, University of Virginia, Charlottesville, VA
| | - Taison D Bell
- Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia, Charlottesville, VA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Kyle B Enfield
- Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Andrew Julio Barros
- Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia, Charlottesville, VA
| |
Collapse
|
21
|
de Brabander J, Boers LS, Kullberg RFJ, Zhang S, Nossent EJ, Heunks LMA, Vlaar APJ, Bonta PI, Schultz MJ, van der Poll T, Duitman J, Bos LDJ. Persistent alveolar inflammatory response in critically ill patients with COVID-19 is associated with mortality. Thorax 2023; 78:912-921. [PMID: 37142421 DOI: 10.1136/thorax-2023-219989] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023]
Abstract
INTRODUCTION Patients with COVID-19-related acute respiratory distress syndrome (ARDS) show limited systemic hyperinflammation, but immunomodulatory treatments are effective. Little is known about the inflammatory response in the lungs and if this could be targeted using high-dose steroids (HDS). We aimed to characterise the alveolar immune response in patients with COVID-19-related ARDS, to determine its association with mortality, and to explore the association between HDS treatment and the alveolar immune response. METHODS In this observational cohort study, a comprehensive panel of 63 biomarkers was measured in repeated bronchoalveolar lavage (BAL) fluid and plasma samples of patients with COVID-19 ARDS. Differences in alveolar-plasma concentrations were determined to characterise the alveolar inflammatory response. Joint modelling was performed to assess the longitudinal changes in alveolar biomarker concentrations, and the association between changes in alveolar biomarker concentrations and mortality. Changes in alveolar biomarker concentrations were compared between HDS-treated and matched untreated patients. RESULTS 284 BAL fluid and paired plasma samples of 154 patients with COVID-19 were analysed. 13 biomarkers indicative of innate immune activation showed alveolar rather than systemic inflammation. A longitudinal increase in the alveolar concentration of several innate immune markers, including CC motif ligand (CCL)20 and CXC motif ligand (CXCL)1, was associated with increased mortality. Treatment with HDS was associated with a subsequent decrease in alveolar CCL20 and CXCL1 levels. CONCLUSIONS Patients with COVID-19-related ARDS showed an alveolar inflammatory state related to the innate host response, which was associated with a higher mortality. HDS treatment was associated with decreasing alveolar concentrations of CCL20 and CXCL1.
Collapse
Affiliation(s)
- Justin de Brabander
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Leonoor S Boers
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Robert F J Kullberg
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Shiqi Zhang
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Esther J Nossent
- Pulmonary Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Leo M A Heunks
- Intensive Care Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Alexander P J Vlaar
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Peter I Bonta
- Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Infection & Immunity, Inflammatory Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - JanWillem Duitman
- Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Infection & Immunity, Inflammatory Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Experimental Immunology (EXIM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Lieuwe D J Bos
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Philippot Q, Fekkar A, Gervais A, Le Voyer T, Boers LS, Conil C, Bizien L, de Brabander J, Duitman JW, Romano A, Rosain J, Blaize M, Migaud M, Jeljeli M, Hammadi B, Desmons A, Marchal A, Mayaux J, Zhang Q, Jouanguy E, Borie R, Crestani B, Luyt CE, Adle-Biassette H, Sene D, Megarbane B, Cobat A, Bastard P, Bos LDJ, Casanova JL, Puel A. Autoantibodies Neutralizing Type I IFNs in the Bronchoalveolar Lavage of at Least 10% of Patients During Life-Threatening COVID-19 Pneumonia. J Clin Immunol 2023; 43:1093-1103. [PMID: 37209324 PMCID: PMC10199445 DOI: 10.1007/s10875-023-01512-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023]
Abstract
Autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) are found in the blood of at least 15% of unvaccinated patients with life-threatening COVID-19 pneumonia. We report here the presence of auto-Abs neutralizing type I IFNs in the bronchoalveolar lavage (BAL) of 54 of the 415 unvaccinated patients (13%) with life-threatening COVID-19 pneumonia tested. The 54 individuals with neutralizing auto-Abs in the BAL included 45 (11%) with auto-Abs against IFN-α2, 37 (9%) with auto-Abs against IFN-ω, 54 (13%) with auto-Abs against IFN-α2 and/or ω, and five (1%) with auto-Abs against IFN-β, including three (0.7%) with auto-Abs neutralizing IFN-α2, IFN-ω, and IFN-β, and two (0.5%) with auto-Abs neutralizing IFN-α2 and IFN-β. Auto-Abs against IFN-α2 also neutralize the other 12 subtypes of IFN-α. Paired plasma samples were available for 95 patients. All seven patients with paired samples who had detectable auto-Abs in BAL also had detectable auto-Abs in plasma, and one patient had auto-Abs detectable only in blood. Auto-Abs neutralizing type I IFNs are, therefore, present in the alveolar space of at least 10% of patients with life-threatening COVID-19 pneumonia. These findings suggest that these auto-Abs impair type I IFN immunity in the lower respiratory tract, thereby contributing to hypoxemic COVID-19 pneumonia.
Collapse
Affiliation(s)
- Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France.
- Imagine Institute, Université Paris Cité, Paris, EU, France.
| | - Arnaud Fekkar
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- AP-HP, Groupe Hospitalier La Pitié-Salpêtrière, Service de Parasitologie Mycologie, Paris, EU, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Leonoor S Boers
- Amsterdam UMC, University of Amsterdam, Intensive Care Medicine, Meibergdreef 9, Amsterdam, EU, The Netherlands
| | - Clément Conil
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Justin de Brabander
- Center for Experimental Molecular Medicine, Amsterdam UMC, Amsterdam, EU, Netherlands
| | - Jan Willem Duitman
- Amsterdam UMC, Location AMC, Department of Pulmonary Medicine, University of Amsterdam, 1105 AZ, Amsterdam, EU, The Netherlands
- Amsterdam UMC, Department of Experimental Immunology, Location University of Amsterdam, 1105 AZ, Amsterdam, EU, The Netherlands
- Amsterdam Infection & Immunity, Inflammatory Diseases, 1105 AZ, Amsterdam, EU, The Netherlands
| | - Alessia Romano
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Marion Blaize
- AP-HP, Groupe Hospitalier La Pitié-Salpêtrière, Service de Parasitologie Mycologie, Paris, EU, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Maxime Jeljeli
- Département 3I « Infection, Immunité Et Inflammation », Institut Cochin, INSERM U1016, Université Paris Cité, Paris, EU, France
- Faculté de Médecine, AP-HP-Centre Université de Paris, Hôpital Cochin, Service d'Immunologie Biologique, Université Paris Cité, Paris, EU, France
| | - Boualem Hammadi
- General Chemistry Laboratory, Department of Clinical Chemistry, APHP, Necker Hospital for Sick Children, Paris, EU, France
| | - Aurore Desmons
- Clinical Metabolomic Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Saint Antoine Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP Sorbonne Université), Paris, France
| | - Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Julien Mayaux
- INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, EU, France
- Site Pitié-Salpêtrière, Service de Pneumologie, Médecine Intensive et Réanimation, Département R3S, Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, EU, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Raphael Borie
- Service de Pneumologie A Hôpital Bichat, APHP, Paris, EU, France
- Inserm, PHERE, Université Paris Cité, 75018, Paris, EU, France
| | - Bruno Crestani
- Service de Pneumologie A Hôpital Bichat, APHP, Paris, EU, France
- Inserm, PHERE, Université Paris Cité, 75018, Paris, EU, France
| | - Charles Edouard Luyt
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, AP-HP, Hôpital Pitié-Salpêtrière, Paris, EU, France
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, Paris, EU, France
| | - Homa Adle-Biassette
- AP-HP, Hôpital Lariboisière, Service Anatomie Pathologique and Université de Paris, Paris, EU, France
- Inserm, NeuroDiderot, Paris, EU, France
| | - Damien Sene
- Internal Medicine Department, AP-HP, Lariboisière Hospital, Paris, EU, France
- Université Paris Cité, Paris, EU, France
| | - Bruno Megarbane
- Department of Medical and Toxicological Critical Care, APHP, Lariboisière Hospital, Paris, EU, France
- INSERM UMRS-1144, Paris-University, Paris, EU, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Lieuwe D J Bos
- Amsterdam UMC, University of Amsterdam, Intensive Care Medicine, Meibergdreef 9, Amsterdam, EU, The Netherlands
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, EU, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| |
Collapse
|
23
|
Belizário J, Garay-Malpartida M, Faintuch J. Lung microbiome and origins of the respiratory diseases. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100065. [PMID: 37456520 PMCID: PMC10339129 DOI: 10.1016/j.crimmu.2023.100065] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
The studies on the composition of the human microbiomes in healthy individuals, its variability in the course of inflammation, infection, antibiotic therapy, diets and different pathological conditions have revealed their intra and inter-kingdom relationships. The lung microbiome comprises of major species members of the phylum Bacteroidetes, Firmicutes, Actinobacteria, Fusobacteria and Proteobacteria, which are distributed in ecological niches along nasal cavity, nasopharynx, oropharynx, trachea and in the lungs. Commensal and pathogenic species are maintained in equilibrium as they have strong relationships. Bacterial overgrowth after dysbiosis and/or imbalanced of CD4+ helper T cells, CD8+ cytotoxic T cells and regulatory T cells (Treg) populations can promote lung inflammatory reactions and distress, and consequently acute and chronic respiratory diseases. This review is aimed to summarize the latest advances in resident lung microbiome and its participation in most common pulmonary infections and pneumonia, community-acquired pneumonia (CAP), ventilator-associated pneumonia (VAP), immunodeficiency associated pneumonia, SARS-CoV-2-associated pneumonia, acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD). We briefly describe physiological and immunological mechanisms that selectively create advantages or disadvantages for relative growth of pathogenic bacterial species in the respiratory tract. At the end, we propose some directions and analytical methods that may facilitate the identification of key genera and species of resident and transient microbes involved in the respiratory diseases' initiation and progression.
Collapse
Affiliation(s)
- José Belizário
- School of Arts, Sciences and Humanities of the University of Sao Paulo, Rua Arlindo Bettio, 1000, São Paulo, CEP 03828-000, Brazil
| | - Miguel Garay-Malpartida
- School of Arts, Sciences and Humanities of the University of Sao Paulo, Rua Arlindo Bettio, 1000, São Paulo, CEP 03828-000, Brazil
| | - Joel Faintuch
- Department of Gastroenterology of the Clinics Hospital of the University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, São Paulo, CEP 05403-000, Brazil
| |
Collapse
|
24
|
Britton N, Yang H, Fitch A, Li K, Seyed K, Guo R, Qin S, Zhang Y, Bain W, Shah F, Biswas P, Choi W, Finkelman M, Zhang Y, Haggerty CL, Benos PV, Brooks MM, McVerry BJ, Methe B, Kitsios GD, Morris A. Respiratory Fungal Communities are Associated with Systemic Inflammation and Predict Survival in Patients with Acute Respiratory Failure. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.11.23289861. [PMID: 37292915 PMCID: PMC10246035 DOI: 10.1101/2023.05.11.23289861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rationale Disruption of respiratory bacterial communities predicts poor clinical outcomes in critical illness; however, the role of respiratory fungal communities (mycobiome) is poorly understood. Objectives We investigated whether mycobiota variation in the respiratory tract is associated with host-response and clinical outcomes in critically ill patients. Methods To characterize the upper and lower respiratory tract mycobiota, we performed rRNA gene sequencing (internal transcribed spacer) of oral swabs and endotracheal aspirates (ETA) from 316 mechanically-ventilated patients. We examined associations of mycobiome profiles (diversity and composition) with clinical variables, host-response biomarkers, and outcomes. Measurements and Main Results ETA samples with >50% relative abundance for C. albicans (51%) were associated with elevated plasma IL-8 and pentraxin-3 (p=0.05), longer time-to-liberation from mechanical ventilation (p=0.04) and worse 30-day survival (adjusted hazards ratio (adjHR): 1.96 [1.04-3.81], p=0.05). Using unsupervised clustering, we derived two clusters in ETA samples, with Cluster 2 (39%) showing lower alpha diversity (p<0.001) and higher abundance of C. albicans (p<0.001). Cluster 2 was significantly associated with the prognostically adverse hyperinflammatory subphenotype (odds ratio 2.07 [1.03-4.18], p=0.04) and predicted worse survival (adjHR: 1.81 [1.03-3.19], p=0.03). C. albicans abundance in oral swabs was also associated with the hyperinflammatory subphenotype and mortality. Conclusions Variation in respiratory mycobiota was significantly associated with systemic inflammation and clinical outcomes. C. albicans abundance emerged as a negative predictor in both the upper and lower respiratory tract. The lung mycobiome may play an important role in the biological and clinical heterogeneity among critically ill patients and represent a potential therapeutic target for lung injury in critical illness.
Collapse
Affiliation(s)
- Noel Britton
- Division of Pulmonary Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Haopu Yang
- School of Medicine, Tsinghua University, Beijing, China
| | - Adam Fitch
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kelvin Li
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Khaled Seyed
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Rui Guo
- Department of Critical Care Medicine, First Affiliated Hospital of Chongqing Medical University, China
| | - Shulin Qin
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - William Bain
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Faraaz Shah
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Partha Biswas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Wonseok Choi
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - Yonglong Zhang
- Associates of Cape Cod Inc., East Falmouth, Massachusetts, USA
| | - Catherine L. Haggerty
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Panayiotis V. Benos
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Maria M. Brooks
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Barbara Methe
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
Kuindersma M, Spronk PE. Resolving the Microbial Burden with Tailored Immune Modulation in COVID-19 Acute Respiratory Distress Syndrome? Am J Respir Crit Care Med 2023; 207:494-495. [PMID: 36342426 PMCID: PMC9940153 DOI: 10.1164/rccm.202210-1928le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Marnix Kuindersma
- Department of Intensive Care MedicineGelre HospitalsApeldoorn, the Netherlands,Corresponding author (e-mail: )
| | - Peter E. Spronk
- Department of Intensive Care MedicineGelre HospitalsApeldoorn, the Netherlands,Expertise Center for Intensive Care Rehabilitation ApeldoornApeldoorn, the Netherlands
| |
Collapse
|
26
|
Fenn D, Abdel-Aziz MI, van Oort PMP, Brinkman P, Ahmed WM, Felton T, Artigas A, Póvoa P, Martin-Loeches I, Schultz MJ, Dark P, Fowler SJ, Bos LDJ, Ahmed WM, Raventos AA, Bannard-Smith J, Bos LDJ, Camprubi M, Coelho L, Dark P, Davie A, Diaz E, Goma G, Felton T, Fowler SJ, Goodacre R, Johnson C, Knobel H, Lawal O, Leopold JH, Martin-Loeches I, Nijsen TME, van Oort PMP, Povoa P, Rattray NJW, Rijnders G, Schultz MJ, Steenwelle R, Sterk PJ, Valles J, Verhoeckx F, Vink A, Weda H, White IR, Winters T, Zakharkina T. Composition and diversity analysis of the lung microbiome in patients with suspected ventilator-associated pneumonia. Crit Care 2022; 26:203. [PMID: 35794610 PMCID: PMC9261066 DOI: 10.1186/s13054-022-04068-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background Ventilator-associated pneumonia (VAP) is associated with high morbidity and health care costs, yet diagnosis remains a challenge. Analysis of airway microbiota by amplicon sequencing provides a possible solution, as pneumonia is characterised by a disruption of the microbiome. However, studies evaluating the diagnostic capabilities of microbiome analysis are limited, with a lack of alignment on possible biomarkers. Using bronchoalveolar lavage fluid (BALF) from ventilated adult patients suspected of VAP, we aimed to explore how key characteristics of the microbiome differ between patients with positive and negative BALF cultures and whether any differences could have a clinically relevant role. Methods BALF from patients suspected of VAP was analysed using 16s rRNA sequencing in order to: (1) differentiate between patients with and without a positive culture; (2) determine if there was any association between microbiome diversity and local inflammatory response; and (3) correctly identify pathogens detected by conventional culture. Results Thirty-seven of 90 ICU patients with suspected VAP had positive cultures. Patients with a positive culture had significant microbiome dysbiosis with reduced alpha diversity. However, gross compositional variance was not strongly associated with culture positivity (AUROCC range 0.66–0.71). Patients with a positive culture had a significantly higher relative abundance of pathogenic bacteria compared to those without [0.45 (IQR 0.10–0.84), 0.02 (IQR 0.004–0.09), respectively], and an increased interleukin (IL)-1β was associated with reduced species evenness (rs = − 0.33, p < 0.01) and increased pathogenic bacteria presence (rs = 0.28, p = 0.013). Untargeted 16s rRNA pathogen detection was limited by false positives, while the use of pathogen-specific relative abundance thresholds showed better diagnostic accuracy (AUROCC range 0.89–0.998). Conclusion Patients with positive BALF culture had increased dysbiosis and genus dominance. An increased caspase-1-dependent IL-1b expression was associated with a reduced species evenness and increased pathogenic bacterial presence, providing a possible causal link between microbiome dysbiosis and lung injury development in VAP. However, measures of diversity were an unreliable predictor of culture positivity and 16s sequencing used agnostically could not usefully identify pathogens; this could be overcome if pathogen-specific relative abundance thresholds are used. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-04068-z.
Collapse
|
27
|
Kullberg RFJ, de Brabander J, Boers LS, Bos LDJ, Wiersinga WJ. Reply to: Microbial Burden-associated Cytokine Storm May Explain Non-Resolving ARDS in COVID-19 Patients. Am J Respir Crit Care Med 2022; 206:1183-1184. [PMID: 35867884 PMCID: PMC9704841 DOI: 10.1164/rccm.202207-1346le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
28
|
Yasuma T, D’Alessandro-Gabazza CN, Kobayashi T, Gabazza EC, Fujimoto H. Microbial Burden-associated Cytokine Storm May Explain Nonresolving Acute Respiratory Distress Syndrome in Patients with COVID-19. Am J Respir Crit Care Med 2022; 206:1182-1183. [PMID: 35867882 PMCID: PMC9704827 DOI: 10.1164/rccm.202207-1266le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
29
|
Merenstein C, Bushman FD, Collman RG. Alterations in the respiratory tract microbiome in COVID-19: current observations and potential significance. MICROBIOME 2022; 10:165. [PMID: 36195943 PMCID: PMC9532226 DOI: 10.1186/s40168-022-01342-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
SARS-CoV-2 infection causes COVID-19 disease, which can result in consequences ranging from undetectable to fatal, focusing attention on the modulators of outcomes. The respiratory tract microbiome is thought to modulate the outcomes of infections such as influenza as well as acute lung injury, raising the question to what degree does the airway microbiome influence COVID-19? Here, we review the results of 56 studies examining COVID-19 and the respiratory tract microbiome, summarize the main generalizations, and point to useful avenues for further research. Although the results vary among studies, a few consistent findings stand out. The diversity of bacterial communities in the oropharynx typically declined with increasing disease severity. The relative abundance of Haemophilus and Neisseria also declined with severity. Multiple microbiome measures tracked with measures of systemic immune responses and COVID outcomes. For many of the conclusions drawn in these studies, the direction of causality is unknown-did an alteration in the microbiome result in increased COVID severity, did COVID severity alter the microbiome, or was some third factor the primary driver, such as medication use. Follow-up mechanistic studies can help answer these questions. Video Abstract.
Collapse
Affiliation(s)
- Carter Merenstein
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Ronald G. Collman
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
30
|
Koukaki E, Rovina N, Tzannis K, Sotiropoulou Z, Loverdos K, Koutsoukou A, Dimopoulos G. Fungal Infections in the ICU during the COVID-19 Era: Descriptive and Comparative Analysis of 178 Patients. J Fungi (Basel) 2022; 8:881. [PMID: 36012869 PMCID: PMC9410292 DOI: 10.3390/jof8080881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND COVID-19-associated fungal infections seem to be a concerning issue. The aim of this study was to assess the incidence of fungal infections, the possible risk factors, and their effect on outcomes of critically ill patients with COVID-19. METHODS A retrospective observational study was conducted in the COVID-19 ICU of the First Respiratory Department of National and Kapodistrian University of Athens in Sotiria Chest Diseases Hospital between 27 August 2020 and 10 November 2021. RESULTS Here, 178 patients were included in the study. Nineteen patients (10.7%) developed fungal infection, of which five had COVID-19 associated candidemia, thirteen had COVID-19 associated pulmonary aspergillosis, and one had both. Patients with fungal infection were younger, had a lower Charlson Comorbidity Index, and had a lower PaO2/FiO2 ratio upon admission. Regarding health-care factors, patients with fungal infections were treated more frequently with Tocilizumab, a high regimen of dexamethasone, continuous renal replacement treatment, and were supported more with ECMO. They also had more complications, especially infections, and subsequently developed septic shock more frequently. Finally, patients with fungal infections had a longer length of ICU stay, as well as length of mechanical ventilation, although no statistically significant difference was reported on 28-day and 90-day mortality. CONCLUSIONS Fungal infections seem to have a high incidence in COVID-19 critically ill patients and specific risk factors are identified. However, fungal infections do not seem to burden on mortality.
Collapse
Affiliation(s)
- Evangelia Koukaki
- ICU, 1st Department of Pulmonary Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikoletta Rovina
- ICU, 1st Department of Pulmonary Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Kimon Tzannis
- 2nd Propaedeutic Department of Internal Medicine, ATTIKON University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Zoi Sotiropoulou
- ICU, 1st Department of Pulmonary Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Loverdos
- ICU, 1st Department of Pulmonary Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonia Koutsoukou
- ICU, 1st Department of Pulmonary Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Dimopoulos
- ICU, 1st Department of Pulmonary Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
31
|
Valentino MS, Esposito C, Colosimo S, Caprio AM, Puzone S, Guarino S, Marzuillo P, Miraglia del Giudice E, Di Sessa A. Gut microbiota and COVID-19: An intriguing pediatric perspective. World J Clin Cases 2022; 10:8076-8087. [PMID: 36159525 PMCID: PMC9403663 DOI: 10.12998/wjcc.v10.i23.8076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) involvement has been reported in approximately 50% of patients with coronavirus disease 2019 (COVID-19), which is due to the pathogenic role of inflammation and the intestinal function of the angiotensin-converting enzyme 2 and its receptor. Accumulating adult data has pointed out that gut dysbiosis might occur in these patients with a potential impact on the severity of the disease, however the role of gut microbiota in susceptibility and severity of COVID-19 disease in children is still poorly known. During the last decades, the crosstalk between gut and lung has been largely recognized resulting in the concept of "gut-lung axis" as a central player in modulating the development of several diseases. Both organs are involved in the common mucosal immune system (including bronchus-associated and gut-associated lymphoid tissues) and their homeostasis is crucial for human health. In this framework, it has been found that the role of GI dysbiosis is affecting the homeostasis of the gut-liver axis. Of note, a gut microbiome imbalance has been linked to COVID-19 severity in adult subjects, but it remains to be clarified. Based on the increased risk of inflammatory diseases in children with COVID-19, the potential correlation between gut microbiota dysfunction and COVID-19 needs to be studied in this population. We aimed to summarize the most recent evidence on this striking aspect of COVID-19 in childhood.
Collapse
Affiliation(s)
- Maria Sole Valentino
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Claudia Esposito
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Simone Colosimo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Angela Maria Caprio
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Simona Puzone
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Stefano Guarino
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Emanuele Miraglia del Giudice
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Anna Di Sessa
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| |
Collapse
|