1
|
Qadi M, Lopez-Causapé C, Izquierdo-Rabassa S, Mateu Borrás M, Goldberg JB, Oliver A, Albertí S. Surfactant Protein A Recognizes Outer Membrane Protein OprH onPseudomonas aeruginosaIsolates From Individuals With Chronic Infection. J Infect Dis 2016; 214:1449-1455. [DOI: 10.1093/infdis/jiw387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/11/2016] [Indexed: 12/21/2022] Open
|
2
|
Goh BC, Wu H, Rynkiewicz MJ, Schulten K, Seaton BA, McCormack FX. Elucidation of Lipid Binding Sites on Lung Surfactant Protein A Using X-ray Crystallography, Mutagenesis, and Molecular Dynamics Simulations. Biochemistry 2016; 55:3692-701. [PMID: 27324153 PMCID: PMC5663190 DOI: 10.1021/acs.biochem.6b00048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Surfactant protein A (SP-A) is a collagenous C-type lectin (collectin) that is critical for pulmonary defense against inhaled microorganisms. Bifunctional avidity of SP-A for pathogen-associated molecular patterns (PAMPs) such as lipid A and for dipalmitoylphosphatidylcholine (DPPC), the major component of surfactant membranes lining the air-liquid interface of the lung, ensures that the protein is poised for first-line interactions with inhaled pathogens. To improve our understanding of the motifs that are required for interactions with microbes and surfactant structures, we explored the role of the tyrosine-rich binding surface on the carbohydrate recognition domain of SP-A in the interaction with DPPC and lipid A using crystallography, site-directed mutagenesis, and molecular dynamics simulations. Critical binding features for DPPC binding include a three-walled tyrosine cage that binds the choline headgroup through cation-π interactions and a positively charged cluster that binds the phosphoryl group. This basic cluster is also critical for binding of lipid A, a bacterial PAMP and target for SP-A. Molecular dynamics simulations further predict that SP-A binds lipid A more tightly than DPPC. These results suggest that the differential binding properties of SP-A favor transfer of the protein from surfactant DPPC to pathogen membranes containing appropriate lipid PAMPs to effect key host defense functions.
Collapse
Affiliation(s)
- Boon Chong Goh
- Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Huixing Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The University of Cincinnati, Cincinnati, OH 45267
| | - Michael J. Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Klaus Schulten
- Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801,To whom correspondence should be addressed: Dr. Francis X. McCormack, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, MSB 6165, 231 Albert Sabin Way, University of Cincinnati, OH 45267-0564; Telephone: 513-484-5697, Fax: 513-558-4858, , and Dr. Klaus Schulten, Beckman Institute, University of Illinois, 405 N. Mathews, Urbana IL 61801; Telephone: 217-244-1604, Fax: 217-244-6078,
| | - Barbara A. Seaton
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Francis X. McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The University of Cincinnati, Cincinnati, OH 45267,To whom correspondence should be addressed: Dr. Francis X. McCormack, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, MSB 6165, 231 Albert Sabin Way, University of Cincinnati, OH 45267-0564; Telephone: 513-484-5697, Fax: 513-558-4858, , and Dr. Klaus Schulten, Beckman Institute, University of Illinois, 405 N. Mathews, Urbana IL 61801; Telephone: 217-244-1604, Fax: 217-244-6078,
| |
Collapse
|
3
|
Goh BC, Rynkiewicz MJ, Cafarella TR, White MR, Hartshorn KL, Allen K, Crouch EC, Calin O, Seeberger PH, Schulten K, Seaton BA. Molecular mechanisms of inhibition of influenza by surfactant protein D revealed by large-scale molecular dynamics simulation. Biochemistry 2013; 52:8527-38. [PMID: 24224757 DOI: 10.1021/bi4010683] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Surfactant protein D (SP-D), a mammalian C-type lectin, is the primary innate inhibitor of influenza A virus (IAV) in the lung. Interactions of SP-D with highly branched viral N-linked glycans on hemagglutinin (HA), an abundant IAV envelope protein and critical virulence factor, promote viral aggregation and neutralization through as yet unknown molecular mechanisms. Two truncated human SP-D forms, wild-type (WT) and double mutant D325A+R343V, representing neck and carbohydrate recognition domains are compared in this study. Whereas both WT and D325A+R343V bind to isolated glycosylated HA, WT does not inhibit IAV in neutralization assays; in contrast, D325A+R343V neutralization compares well with that of full-length native SP-D. To elucidate the mechanism for these biochemical observations, we have determined crystal structures of D325A+R343V in the presence and absence of a viral nonamannoside (Man9). On the basis of the D325A+R343V-Man9 structure and other crystallographic data, models of complexes between HA and WT or D325A+R343V were produced and subjected to molecular dynamics. Simulations reveal that whereas WT and D325A+R343V both block the sialic acid receptor site of HA, the D325A+R343V complex is more stable, with stronger binding caused by additional hydrogen bonds and hydrophobic interactions with HA residues. Furthermore, the blocking mechanism of HA differs for WT and D325A+R343V because of alternate glycan binding modes. The combined results suggest a mechanism through which the mode of SP-D-HA interaction could significantly influence viral aggregation and neutralization. These studies provide the first atomic-level molecular view of an innate host defense lectin inhibiting its viral glycoprotein target.
Collapse
Affiliation(s)
- Boon Chong Goh
- Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Mikerov AN, Hu S, Durrani F, Gan X, Wang G, Umstead TM, Phelps DS, Floros J. Impact of sex and ozone exposure on the course of pneumonia in wild type and SP-A (-/-) mice. Microb Pathog 2012; 52:239-49. [PMID: 22285567 DOI: 10.1016/j.micpath.2012.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 01/06/2012] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
Female mice exhibited higher survival rate than males after pneumonia, with a reversal of this pattern following ozone exposure. Surfactant protein A (SP-A) plays an important role in innate immunity and SP-A (-/-) mice were more susceptible to pneumonia than wild type mice. Here, we investigated underlying mechanisms of the differential susceptibility of mice to pneumonia. Wild type and SP-A (-/-) C57BL/6J male and female mice were exposed to ozone or filtered air (FA) and then infected intratracheally with Klebsiella pneumoniae. Blood, spleen, and lung were analyzed for bacterial counts, lung and spleen weights, and sex hormone and cortisol levels were measured in plasma within two days post-infection. We found: 1) in the absence of ozone-induced oxidative stress, males had higher level of bacterial dissemination compared to females; ozone exposure decreased pulmonary clearance in both sexes and ozone-exposed females were more affected than males; 2) ozone exposure increased lung weight, but decreased spleen weight in both sexes, and in both cases ozone-exposed females were affected the most; 3) plasma cortisol levels in infected mice changed: ozone-exposed>FA-exposed, females>males, and infected>non-infected; 4) no major sex hormone differences were observed in the studied conditions; 5) differences between wild type and SP-A (-/-) mice were observed in some of the studied conditions. We concluded that reduced pulmonary clearance, compromised spleen response to infection, and increased cortisol levels in ozone-exposed females, and the higher level of lung bacterial dissemination in FA-exposed males, contribute to the previously observed survival outcomes.
Collapse
Affiliation(s)
- Anatoly N Mikerov
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey H085, PA 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kerrigan AM, Brown GD. C-type lectins and phagocytosis. Immunobiology 2009; 214:562-75. [PMID: 19261355 PMCID: PMC2702671 DOI: 10.1016/j.imbio.2008.11.003] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 01/22/2023]
Abstract
To recognise and respond to pathogens, germ-line encoded pattern recognition receptors (PRRs) bind to conserved microbial structures and activate host defence systems, including microbial uptake by phagocytosis. Phagocytosis is a complex process that is instrumental in the control of extracellular pathogens, and this activity is mediated by several PRRs, including a number of C-type lectins. While some of these receptors have clearly been shown to mediate or regulate the uptake of pathogens, others are more contentious and are less well understood in terms of their phagocytic potential. Furthermore, very little is known about the underlying phagocytic mechanisms. Here, we review the phagocytic roles of the mannose receptor, Dectin-1, dendritic cell-specific ICAM grabbing non-integrin (DC-SIGN), DCL-1, mannose binding lectin and surfactant proteins A and D.
Collapse
Affiliation(s)
- Ann M Kerrigan
- Institute of Infectious Disease and Molecular Medicine, CLS, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | | |
Collapse
|
6
|
Mikerov AN, Haque R, Gan X, Guo X, Phelps DS, Floros J. Ablation of SP-A has a negative impact on the susceptibility of mice to Klebsiella pneumoniae infection after ozone exposure: sex differences. Respir Res 2008; 9:77. [PMID: 19055785 PMCID: PMC2655296 DOI: 10.1186/1465-9921-9-77] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 12/04/2008] [Indexed: 11/12/2022] Open
Abstract
Background Surfactant protein A (SP-A) enhances phagocytosis of bacteria, including Klebsiella pneumoniae, by alveolar macrophages. Ozone, a major air pollutant, can cause oxidation of surfactant and may influence lung immune function. Immune function may also be affected by sex-specific mechanisms. We hypothesized that ablation of SP-A has a negative impact on the susceptibility of mice to Klebsiella pneumoniae infection after ozone exposure, and that sex differences in the effect of ozone do exist. Methods Male and female SP-A (-/-) mice on the C57BL/6J background were exposed to ozone or to filtered air (FA) used as a control and then infected intratracheally with K. pneumoniae bacteria. Survival rate was monitored during a 14-day period. In addition, protein oxidation levels and in vivo phagocytosis were checked 1 h after inoculation of PBS used as a sham control and after inoculation of K. pneumoniae bacteria in PBS, respectively. Results We found: 1) ozone exposure followed by K. pneumoniae infection decreases survival and alveolar macrophage phagocytic function of SP-A (-/-) mice compared to filtered air exposure (p < 0.05), and females are more affected than males; 2) SP-A (-/-) mice (exposed either to ozone or FA) are more susceptible to infection with K. pneumoniae than wild type (WT) mice regarding their survival rate and macrophage phagocytic function; the phagocytic function of FA SP-A(-/-) is similar to that of ozone exposed WT. 3) ozone exposure appears to increase infiltration of PMNs, total protein, and SP-A oxidation in WT mice; infiltration of PMNs and total protein oxidation appears to be more pronounced in female mice in response to ozone; 4) ozone exposure increases SP-A oxidation in WT females significantly more than in males. Conclusion Absence (i.e. ablation of SP-A in SP-A (-/-) mice) or reduction of functional activity of SP-A (i.e. oxidation of SP-A in WT mice) increases the susceptibility of mice to experimental pneumonia after ozone exposure, and in both cases females are more affected by ozone exposure than males.
Collapse
Affiliation(s)
- Anatoly N Mikerov
- The Penn State Center for Host defense, Inflammation, and Lung Disease Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Mikerov AN, Umstead TM, Gan X, Huang W, Guo X, Wang G, Phelps DS, Floros J. Impact of ozone exposure on the phagocytic activity of human surfactant protein A (SP-A) and SP-A variants. Am J Physiol Lung Cell Mol Physiol 2007; 294:L121-30. [PMID: 17981957 DOI: 10.1152/ajplung.00288.2007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein A (SP-A) enhances phagocytosis of Pseudomonas aeruginosa. SP-A1 and SP-A2 encode human (h) SP-A; SP-A2 products enhance phagocytosis more than SP-A1. Oxidation can affect SP-A function. We hypothesized that in vivo and in vitro ozone-induced oxidation of SP-A (as assessed by its carbonylation level) negatively affects its function in phagocytosis (as assessed by bacteria cell association). To test this, we used P. aeruginosa, rat alveolar macrophages (AMs), hSP-As with varying levels of in vivo (natural) oxidation, and ozone-exposed SP-A2 (1A, 1A0) and SP-A1 (6A2, 6A4) variants. SP-A oxidation levels (carbonylation) were measured; AMs were incubated with bacteria in the presence of SP-A, and the phagocytic index was calculated. We found: 1) the phagocytic activity of hSP-A is reduced with increasing levels of in vivo SP-A carbonylation; 2) in vitro ozone exposure of hSP-A decreases its function in a dose-dependent manner as well as its ability to enhance phagocytosis of either gram-negative or gram-positive bacteria; 3) the activity of both SP-A1 and SP-A2 decreases in response to in vitro ozone exposure of proteins with SP-A2 being affected more than SP-A1. We conclude that both in vivo and in vitro oxidative modifications of SP-A by carbonylation reduce its ability to enhance phagocytosis of bacteria and that the activity of SP-A2 is affected more by in vitro ozone-induced oxidation. We speculate that functional differences between SP-A1 and SP-A2 exist in vivo and that the redox status of the lung microenvironment differentially affects function of SP-A1 and SP-A2.
Collapse
Affiliation(s)
- Anatoly N Mikerov
- Dept. of Cellular and Molecular Physiology, The Pennsylvania State Univ. College of Medicine, 500 University Dr. Hershey, PA 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Sorensen GL, Husby S, Holmskov U. Surfactant protein A and surfactant protein D variation in pulmonary disease. Immunobiology 2007; 212:381-416. [PMID: 17544823 DOI: 10.1016/j.imbio.2007.01.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 01/02/2007] [Indexed: 12/17/2022]
Abstract
Surfactant proteins A (SP-A) and D (SP-D) have been implicated in pulmonary innate immunity. The proteins are host defense lectins, belonging to the collectin family which also includes mannan-binding lectin (MBL). SP-A and SP-D are pattern-recognition molecules with the lectin domains binding preferentially to sugars on a broad spectrum of pathogen surfaces and thereby facilitating immune functions including viral neutralization, clearance of bacteria, fungi and apoptotic and necrotic cells, modulation of allergic reactions, and resolution of inflammation. SP-A and SP-D can interact with receptor molecules present on immune cells leading to enhanced microbial clearance and modulation of inflammation. SP-A and SP-D also modulate the functions of cells of the adaptive immune system including dendritic cells and T cells. Studies on SP-A and SP-D polymorphisms and protein levels in bronchoalveolar lavage and blood have indicated associations with a multitude of pulmonary inflammatory diseases. In addition, accumulating evidence in mouse models of infection and inflammation indicates that recombinant forms of the surfactant proteins are biologically active in vivo and may have therapeutic potential in controlling pulmonary inflammatory disease. The presence of the surfactant collectins, especially SP-D, in non-pulmonary tissues, such as the gastrointestinal tract and genital organs, suggest additional actions located to other mucosal surfaces. The aim of this review is to summarize studies on genetic polymorphisms, structural variants, and serum levels of human SP-A and SP-D and their associations with human pulmonary disease.
Collapse
|
9
|
Mikerov AN, Wang G, Umstead TM, Zacharatos M, Thomas NJ, Phelps DS, Floros J. Surfactant protein A2 (SP-A2) variants expressed in CHO cells stimulate phagocytosis of Pseudomonas aeruginosa more than do SP-A1 variants. Infect Immun 2007; 75:1403-12. [PMID: 17220308 PMCID: PMC1828577 DOI: 10.1128/iai.01341-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Surfactant protein A (SP-A) enhances phagocytosis of Pseudomonas aeruginosa. Two functional genes, SP-A1 and SP-A2, encode human SP-A. As we showed before, baculovirus-mediated insect cell-expressed SP-A2 enhances the association of P. aeruginosa with rat alveolar macrophages (rAMs) more than does SP-A1. However, true phagocytosis (internalization) was not shown, and insect cell derived proteins lack or are defective in certain mammalian posttranslational modifications that may be important for SP-A1 and SP-A2 activity and specificity. Here we used SP-A1 (6A(2), 6A(4)) and SP-A2 (1A(0), 1A(1)) allele variants expressed by CHO (Chinese hamster ovary) mammalian cells to study their effect on association and/or internalization of P. aeruginosa by rAMs and/or human AMs (hAMs) and to study if phagocytosis can be modulated differentially and/or more effectively by CHO cell-expressed SP-A variants than by insect-cell expressed SP-A variants. For cell association and internalization assessments, light microscopy and fluorescence-activated cell sorter analyses were used, respectively. We found the following for the first time. (i) SP-A2 variants enhanced phagocytosis (cell association and/or internalization) of P. aeruginosa more than SP-A1 variants did, and the cell association correlated with internalization. (ii) Differences in the activities of SP-A variants were observed in the following order: 1A(1)>1A(0)>6A(2)>6A(4). (iii) rAMs, although more active than hAMs, are an appropriate model, as SP-A2 variants exhibited activity higher than that seen for SP-A1 variants with either rAMs or hAMs. (iv) CHO cell-expressed SP-A was considerably more active than insect cell-expressed variants. We conclude that SP-A2 variants stimulate phagocytosis of P. aeruginosa more effectively than SP-A1 variants and that posttranslational modifications positively influence the phagocytic activity of SP-A.
Collapse
Affiliation(s)
- Anatoly N Mikerov
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Faure K, Leberre R, Guery B. Pseudomonas aeruginosa et surfactant rôle de SP-A et SP-D. Med Mal Infect 2006; 36:63-71. [PMID: 16406431 DOI: 10.1016/j.medmal.2005.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2005] [Accepted: 08/21/2005] [Indexed: 11/30/2022]
Abstract
Surfactant-associated proteins A and D (SP-A and SP-D) are two pulmonary collectins that bind to bacterial, fungal and viral pathogens and have multiples classes of receptors on pneumocyte and macrophage membrane. They are chemoattractant for phagocytes, enhance uptake and killing of bacteria by macrophages and neutrophils. These molecules also act as activation ligand on macrophages and neutrophils to enhance phagocytosis, resulting in an increased bacterial clearance. Depending on activation of cells by stimuli, SP-A and SP-D modulate production of antimicrobial free radicals by phagocytes and secretion of cytokines. In vivo, SP-A deficient mice infected with Pseudomonas aeruginosa (P. aeruginosa) have decreased bacterial clearance and exacerbated inflammatory response in the lungs. Serious alterations in macrophages and increased production of reactive oxygen species were found in non-infected SP-D deficient mice. Patients with cystic fibrosis are frequently colonized by P. aeruginosa. Decreased levels of SP-A and SP-D have been measured in bronchoalveolar lavage fluid of these patients, as well as patients with acute pneumonia but no chronic lung disease. P. aeruginosa secretes various proteases, among them, elastase and protease IV have been found to degrade SP-A and SP-D and abrogate their immune function. However, further investigations are necessary to examine whether these deficiencies facilitate P. aeruginosa infections or stand as consequences.
Collapse
Affiliation(s)
- K Faure
- Laboratoire de recherche en pathologie infectieuse, EA 2689, faculté de médecine de Lille, 59045 Lille, France.
| | | | | |
Collapse
|
11
|
Gorrini M, Lupi A, Iadarola P, Santos CD, Rognoni P, Dalzoppo D, Carrabino N, Pozzi E, Baritussio A, Luisetti M. SP-A binds alpha1-antitrypsin in vitro and reduces the association rate constant for neutrophil elastase. Respir Res 2005; 6:146. [PMID: 16351724 PMCID: PMC1343571 DOI: 10.1186/1465-9921-6-146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 12/13/2005] [Indexed: 11/10/2022] Open
Abstract
Background α1-antitrypsin and surfactant protein-A (SP-A) are major lung defense proteins. With the hypothesis that SP-A could bind α1-antitrypsin, we designed a series of in vitro experiments aimed at investigating the nature and consequences of such an interaction. Methods and results At an α1-antitrypsin:SP-A molar ratio of 1:1, the interaction resulted in a calcium-dependent decrease of 84.6% in the association rate constant of α1-antitrypsin for neutrophil elastase. The findings were similar when SP-A was coupled with the Z variant of α1-antitrypsin. The carbohydrate recognition domain of SP-A appeared to be a major determinant of the interaction, by recognizing α1-antitrypsin carbohydrate chains. However, binding of SP-A carbohydrate chains to the α1-antitrypsin amino acid backbone and interaction between carbohydrates of both proteins are also possible. Gel filtration chromatography and turnover per inactivation experiments indicated that one part of SP-A binds several molar parts of α1-antitrypsin. Conclusion We conclude that the binding of SP-A to α1-antitrypsin results in a decrease of the inhibition of neutrophil elastase. This interaction could have potential implications in the physiologic regulation of α1-antitrypsin activity, in the pathogenesis of pulmonary emphysema, and in the defense against infectious agents.
Collapse
Affiliation(s)
- Marina Gorrini
- Laboratorio di Biochimica e Genetica, Clinica di Malattie dell'Apparato Respiratorio, IRCCS Policlinico San Matteo, Università di Pavia, Pavia, Italy
- Clinica di Malattie dell'Apparato Respiratorio, IRCCS Policlinico San Matteo, Università di Pavia, Pavia, Italy
| | - Anna Lupi
- Dipartimento di Biochimica "A. Castellani", Università di Pavia, Pavia, Italy
| | - Paolo Iadarola
- Dipartimento di Biochimica "A. Castellani", Università di Pavia, Pavia, Italy
| | - Conceição Dos Santos
- Laboratorio Sperimentale di Ricerca Trapiantologia, Clinica Pediatrica, IRCCS Policlinico San Matteo, Università di Pavia, Pavia, Italy
| | - Paola Rognoni
- Dipartimento di Biochimica "A. Castellani", Università di Pavia, Pavia, Italy
| | - Daniele Dalzoppo
- Istituto di Chimica Farmaceutica, Università di Padova, Padova, Italy
| | - Natalia Carrabino
- Clinica di Malattie dell'Apparato Respiratorio, IRCCS Policlinico San Matteo, Università di Pavia, Pavia, Italy
| | - Ernesto Pozzi
- Clinica di Malattie dell'Apparato Respiratorio, IRCCS Policlinico San Matteo, Università di Pavia, Pavia, Italy
| | - Aldo Baritussio
- Dipartimento di Scienze Mediche e Chirurgiche, Clinica Medica I, Università di Padova, Padova, Italy
| | - Maurizio Luisetti
- Laboratorio di Biochimica e Genetica, Clinica di Malattie dell'Apparato Respiratorio, IRCCS Policlinico San Matteo, Università di Pavia, Pavia, Italy
- Clinica di Malattie dell'Apparato Respiratorio, IRCCS Policlinico San Matteo, Università di Pavia, Pavia, Italy
| |
Collapse
|
12
|
Abstract
AIM Deficiency in collectins is discussed as a risk factor for pulmonary and systemic infections in children and adults. The objective of this study was to determine serum concentrations of surfactant protein D (SP-D) and mannose-binding lectin (MBL) in preterm and term infants at birth. METHODS 47 preterm infants below 32 wk gestational age (GA) and 19 healthy, term newborn infants at birth have been included in the study, and SP-D as well as MBL concentrations have been determined in umbilical cord blood samples using sandwich ELISA technique. In addition, SP-D concentrations were assessed in tracheal aspirates (TA) of 24 mechanically ventilated preterms and in infants without pulmonary complications before elective surgery. RESULTS MBL serum concentrations were significantly lower in preterms <32 wk GA (756.7 ng/ml; 14.6-11 184 ng/ml) compared to term newborns (3168.9 ng/ml; 282.3-7679.5 ng/ml; p=0.005; median and range, respectively). Serum SP-D concentrations were significantly decreased in preterms between 28 and 32 wk GA (1.4 ng/ml; 0-4.6 ng/ml; n=26) compared to term infants (2.2 ng/ml; 1.2-3.3 ng/ml; p=0.05) and were found to positively correlate with history of antenatal corticosteroids and chorioamnionitis. SP-D concentrations in TA were increased in preterm infants between 28 and 32 wk GA with respiratory distress syndrome (RDS) (25.0 ng/ml; 0.9-44.7 ng/ml; n=12) compared to control subjects (6.6 ng/ml; 0.5-30.4 ng/ml; n=12) in contrast to extremely immature infants <28 wk GA suffering from RDS (4.4 ng/ml; 0.8-78.4 ng/ml; n=12). CONCLUSION In preterm infants, significant changes occur in collectin umbilical cord blood concentrations and pulmonary SP-D levels. Functional aspects of these findings need to be addressed further.
Collapse
Affiliation(s)
- Anne Hilgendorff
- Department of Paediatrics and Neonatology, Immunology and Transfusion Medicine, and Medical Microbiology, Giessen Research Centre in Infectious Diseases (GRID), Justus-Liebig-University Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Kannan TR, Provenzano D, Wright JR, Baseman JB. Identification and characterization of human surfactant protein A binding protein of Mycoplasma pneumoniae. Infect Immun 2005; 73:2828-34. [PMID: 15845487 PMCID: PMC1087375 DOI: 10.1128/iai.73.5.2828-2834.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 12/15/2004] [Accepted: 01/05/2005] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma pneumoniae infections represent a major primary cause of human respiratory diseases, exacerbate other respiratory disorders, and are associated with extrapulmonary pathologies. Cytadherence is a critical step in mycoplasma colonization, aided by a network of mycoplasma adhesins and cytadherence accessory proteins which mediate binding to host cell receptors. Furthermore, the respiratory mucosa is enriched with extracellular matrix components, including surfactant proteins, fibronectin, and mucin, which provide additional in vivo targets for mycoplasma parasitism. In this study we describe interactions between M. pneumoniae and human surfactant protein-A (hSP-A). Initially, we found that viable M. pneumoniae cells bound to immobilized hSP-A in a dose- and calcium (Ca(2+))-dependent manner. Mild trypsin treatment of intact mycoplasmas reduced binding markedly (80 to 90%) implicating a surface-associated mycoplasma protein(s). Using hSP-A-coupled Sepharose affinity chromatography and polyacrylamide gel electrophoresis, we identified a 65-kDa hSP-A binding protein of M. pneumoniae. The presence of Ca(2+) enhanced binding of the 65-kDa protein to hSP-A, which was reduced by the divalent cation-chelating agent, EDTA. The 65-kDa hSP-A binding protein of M. pneumoniae was identified by sequence analysis as a novel protein (MPN372) possessing a putative S1-like subunit of pertussis toxin at the amino terminus (amino acids 1 to 226), with the remaining amino acids (227 to 591) exhibiting no homology with other subunits of pertussis toxin, other known toxins, or any reported proteins. Recombinant MPN372 (MPN372) bound to hSP-A in a dose-dependent manner, which was markedly reduced by preincubation with mouse recombinant MPN372 antisera. Also, adherence of viable M. pneumoniae cells to hSP-A was inhibited by recombinant MPN372 antisera, demonstrating that MPN372, a previously designated hypothetical protein, is surface exposed and mediates mycoplasma attachment to hSP-A.
Collapse
Affiliation(s)
- T R Kannan
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA
| | | | | | | |
Collapse
|
14
|
Mikerov AN, Umstead TM, Huang W, Liu W, Phelps DS, Floros J. SP-A1 and SP-A2 variants differentially enhance association ofPseudomonas aeruginosawith rat alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 2005; 288:L150-8. [PMID: 15377498 DOI: 10.1152/ajplung.00135.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic airway inflammation caused by Pseudomonas aeruginosa is an important feature of cystic fibrosis (CF). Surfactant protein A (SP-A) enhances phagocytosis of P. aeruginosa. Two genes, SP-A1 and SP-A2, encode human SP-A. We hypothesized that genetically determined differences in the activity of SP-A1 and SP-A2 gene products exist. To test this, we studied association of a nonmucoid P. aeruginosa strain (ATCC 39018) with rat alveolar macrophages in the presence or absence of insect cell-expressed human SP-A variants. We used two trios, each consisting of SP-A1, SP-A2, and their coexpressed SP-A1/SP-A2 variants. We tested the 6A2and 6A4alleles (for SP-A1), the 1A0and 1A alleles (for SP-A2), and their respective coexpressed SP-A1/SP-A2 gene products. After incubation of alveolar macrophages with P. aeruginosa in the presence of the SP-A variants at 37°C for 1 h, the cell association of bacteria was assessed by light microscopy analysis. We found 1) depending on SP-A concentration and variant, SP-A2 variants significantly increased the cell association more than the SP-A1 variants (the phagocytic index for SP-A1 was ∼52–95% of the SP-A2 activity); 2) coexpressed variants at certain concentrations were more active than single gene products; and 3) the phagocytic index for SP-A variants was ∼18–41% of the human SP-A from bronchoalveolar lavage. We conclude that human SP-A variants in vitro enhance association of P. aeruginosa with rat alveolar macrophages differentially and in a concentration-dependent manner, with SP-A2 variants having a higher activity compared with SP-A1 variants.
Collapse
Affiliation(s)
- Anatoly N Mikerov
- Dept. of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Surfactant protein-A enhances the phagocytosis and killing of many pathogens, although studying this effect in an assortment of models and different experimental protocols has sometimes yielded conflicting results. In this report, using the human THP-1 cell line as the primary phagocytic cell, we systematically examined several models where microspheres, Staphylococcus aureus and Escherichia coli were used for targets. We found that SP-A derived from human lavage appeared to enhance phagocytosis by two different mechanisms; by SP-A binding of the target to enhance its recognition and subsequent phagocytosis and by a direct SP-A stimulatory effect on the phagocyte itself. Both SP-A mechanisms occurred with different targets in the same experimental system and the SP-A effects were qualitatively (but not quantitatively) comparable in several human cell lines (THP-1, U937, Mono-Mac-6). We also found that the SP-A effects were abrogated when SP-A was combined with surfactant lipids, but the lipids did not affect the basal level of phagocytosis or phagocytosis by mechanisms not involving SP-A. Moreover, the stimulatory effect of SP-A was pH-dependent and appeared to be independent of several other phagocytic mechanisms, including those mediated by Fc receptors and mannose receptor.
Collapse
Affiliation(s)
- Jianqiang Ding
- Department of Cellular Physiology, Pennsylvania State College of Medicine, P.O. Box 850, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
16
|
Oberley RE, Ault KA, Neff TL, Khubchandani KR, Crouch EC, Snyder JM. Surfactant proteins A and D enhance the phagocytosis of Chlamydia into THP-1 cells. Am J Physiol Lung Cell Mol Physiol 2004; 287:L296-306. [PMID: 15075250 DOI: 10.1152/ajplung.00440.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chlamydiae are intracellular bacterial pathogens that infect mucosal surfaces, i.e., the epithelium of the lung, genital tract, and conjunctiva of the eye, as well as alveolar macrophages. In the present study, we show that pulmonary surfactant protein A (SP-A) and surfactant protein D (SP-D), lung collectins involved in innate host defense, enhance the phagocytosis of Chlamydia pneumoniae and Chlamydia trachomatis by THP-1 cells, a human monocyte/macrophage cell line. We also show that SP-A is able to aggregate both C. trachomatis and C. pneumoniae but that SP-D only aggregates C. pneumoniae. In addition, we found that after phagocytosis in the presence of SP-A, the number of viable C. trachomatis pathogens in the THP-1 cells 48 h later was increased approximately 3.5-fold. These findings suggest that SP-A and SP-D interact with chlamydial pathogens and enhance their phagocytosis into macrophages. In addition, the chlamydial pathogens internalized in the presence of collectins are able to grow and replicate in the THP-1 cells after phagocytosis.
Collapse
Affiliation(s)
- Rebecca E Oberley
- Department of Anatomy and Cell Biology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
17
|
Oberley RE, Snyder JM. Recombinant human SP-A1 and SP-A2 proteins have different carbohydrate-binding characteristics. Am J Physiol Lung Cell Mol Physiol 2003; 284:L871-81. [PMID: 12505869 DOI: 10.1152/ajplung.00241.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein (SP)-A is a member of the collectin family of proteins and plays a role in innate host defense of the lung. SP-A binds to the carbohydrates of lung pathogens via its calcium-dependant carbohydrate-binding domain. Native human alveolar SP-A consists of two distinct gene products: SP-A1 and SP-A2; however, only SP-A2 is expressed in the submucosal glands of the conducting airways. The function of the isolated SP-A2 protein is unknown. We hypothesized that SP-A1 and SP-A2 might have different carbohydrate-binding properties. In this study, we characterized the carbohydrate-binding specificities of native human alveolar SP-A and recombinant human SP-A1 and SP-A2 in the presence of either 1 or 5 mM Ca(2+). We found that all of the SP-A proteins bind carbohydrates but with different affinities. All of the SP-A proteins bind to fucose with the greatest affinity. SP-A2 binds with a higher affinity to a wider variety of sugars than SP-A1 at either 1 or 5 mM Ca(2+). These findings are suggestive that SP-A2 may interact with a greater variety of pathogens than native SP-A.
Collapse
Affiliation(s)
- Rebecca E Oberley
- Department of Anatomy and Cell Biology, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
18
|
Bufler P, Schmidt B, Schikor D, Bauernfeind A, Crouch EC, Griese M. Surfactant protein A and D differently regulate the immune response to nonmucoid Pseudomonas aeruginosa and its lipopolysaccharide. Am J Respir Cell Mol Biol 2003; 28:249-56. [PMID: 12540493 DOI: 10.1165/rcmb.4896] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We investigated the role of the surfactant proteins (SPs) A and D in the pulmonary immune defense of nonmucoid strains of Pseudomonas aeruginosa, the most etiologic agents of nosocomial Pseudomonas pneumonia. We first examined the interactions of recombinant human SP-D dodecamers and purified natural or recombinant human SP-A with two smooth, and two rough, clinical isolates of nonmucoid P. aeruginosa. SP-D bound to all four isolates, but agglutinated only one rough and one smooth strain. SP-D functioned as an opsonin to enhance the uptake of all four strains by the human monocytic cell line Mono Mac 6 (MM6). SP-D also enhanced tumor necrosis factor-alpha secretion by MM6 cells in response to purified lipopolysaccharide (LPS) isolated from the rough, but not the smooth, strains. Although SP-A bound to all four strains, it did not cause bacterial aggregation or enhance uptake. It showed small but statistically significant inhibitory effects on the cytokine response of MM6 cells to one strain of smooth organisms, but did not significantly alter the response to purified LPS. This study in combination with previously published data strongly suggests that SP-D may play important roles in the local innate pulmonary defense against nonmucoid P. aeruginosa of diverse LPS phenotypes, and preferentially augments the cellular response to rough P. aeruginosa endotoxin.
Collapse
Affiliation(s)
- Philip Bufler
- Dr. von Haunersches Kinderspital, University of Munich, Munich, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Korfhagen TR. Surfactant protein A (SP-A)-mediated bacterial clearance: SP-A and cystic fibrosis. Am J Respir Cell Mol Biol 2001; 25:668-72. [PMID: 11726390 DOI: 10.1165/ajrcmb.25.6.f221] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- T R Korfhagen
- Division of Pulmonary Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229-3039, USA.
| |
Collapse
|