1
|
Pompilio A, Lupetti V, Puca V, Di Bonaventura G. Repurposing High-Throughput Screening Reveals Unconventional Drugs with Antimicrobial and Antibiofilm Potential Against Methicillin-Resistant Staphylococcus aureus from a Cystic Fibrosis Patient. Antibiotics (Basel) 2025; 14:402. [PMID: 40298549 PMCID: PMC12024424 DOI: 10.3390/antibiotics14040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Antibiotic therapy faces challenges from rising acquired and biofilm-related antibiotic resistance rates. High resistance levels to commonly used antibiotics have been observed in methicillin-resistant Staphylococcus aureus (MRSA) strains among cystic fibrosis (CF) patients, indicating an urgent need for new antibacterial agents. This study aimed to identify potential novel therapeutics with antibacterial and antibiofilm activities against an MRSA CF strain by screening, for the first time, the Drug Repurposing Compound Library (MedChem Express). Methods/Results: Among the 3386 compounds, a high-throughput screening-based spectrophotometric approach identified 2439 (72%), 654 (19.3%), and 426 (12.6%) drugs active against planktonic cells, biofilm formation, and preformed biofilm, respectively, although to different extents. The most active hits were 193 (5.7%), against planktonic cells, causing a 100% growth inhibition; 5 (0.14%), with excellent activity against biofilm formation (i.e., reduction ≥ 90%); and 4, showing high activity (i.e., 60% ≤ biofilm reduction < 90%) against preformed biofilms. The potential hits belonged to several primary research areas, with "cancer" being the most prevalent. After performing a literature review to identify other, already published biological properties that could be relevant to the CF lung environment (i.e., activity against other CF pathogens, and anti-inflammatory and anti-virulence potential), the most interesting hits were the following: 5-(N,N-Hexamethylene)-amiloride (diuretic), Toremifene (anticancer), Zafirlukast (antiasthmatic), Fenretide (anticancer), and Montelukast (antiasthmatic) against planktonic S. aureus cells; Hemin against biofilm formation; and Heparin, Clemastine (antihistaminic), and Bromfenac (nonsteroidal anti-inflammatory) against established biofilms. Conclusions: These findings warrant further in vitro and in vivo studies to confirm the potential of repurposing these compounds for managing lung infections caused by S. aureus in CF patients.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral and Biomedical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (V.L.)
- Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Veronica Lupetti
- Department of Medical, Oral and Biomedical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (V.L.)
| | - Valentina Puca
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biomedical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (V.L.)
- Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
2
|
Winge MCG, Nasrallah M, Jackrazi LV, Guo KQ, Fuhriman JM, Szafran R, Ramanathan M, Gurevich I, Nguyen NT, Siprashvili Z, Inayathullah M, Rajadas J, Porter DF, Khavari PA, Butte AJ, Marinkovich MP. Repurposing an epithelial sodium channel inhibitor as a therapy for murine and human skin inflammation. Sci Transl Med 2024; 16:eade5915. [PMID: 39661704 DOI: 10.1126/scitranslmed.ade5915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/12/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
Inflammatory skin disease is characterized by a pathologic interplay between skin cells and immunocytes and can result in disfiguring cutaneous lesions and systemic inflammation. Immunosuppression is commonly used to target the inflammatory component; however, these drugs are often expensive and associated with side effects. To identify previously unidentified targets, we carried out a nonbiased informatics screen to identify drug compounds with an inverse transcriptional signature to keratinocyte inflammatory signals. Using psoriasis, a prototypic inflammatory skin disease, as a model, we used pharmacologic, transcriptomic, and proteomic characterization to find that benzamil, the benzyl derivative of the US Food and Drug Administration-approved diuretic amiloride, effectively reversed keratinocyte-driven inflammatory signaling. Through three independent mouse models of skin inflammation (Rac1G12V transgenic mice, topical imiquimod, and human skin xenografts from patients with psoriasis), we found that benzamil disrupted pathogenic interactions between the small GTPase Rac1 and its adaptor NCK1. This reduced STAT3 and NF-κB signaling and downstream cytokine production in keratinocytes. Genetic knockdown of sodium channels or pharmacological inhibition by benzamil prevented excess Rac1-NCK1 binding and limited proinflammatory signaling pathway activation in patient-derived keratinocytes without systemic immunosuppression. Both systemic and topical applications of benzamil were efficacious, suggesting that it may be a potential therapeutic avenue for treating skin inflammation.
Collapse
Affiliation(s)
- Mårten C G Winge
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mazen Nasrallah
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leandra V Jackrazi
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Konnie Q Guo
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jessica M Fuhriman
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca Szafran
- Unit of Dermatology, ME GHR, Karolinska University Hospital, SE-17176 Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Muthukumar Ramanathan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Irina Gurevich
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ngon T Nguyen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mohammed Inayathullah
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Jayakumar Rajadas
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Douglas F Porter
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Dermatology Service, Veterans Affairs Medical Center, Palo Alto, CA 94304, USA
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - M Peter Marinkovich
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Dermatology Service, Veterans Affairs Medical Center, Palo Alto, CA 94304, USA
| |
Collapse
|
3
|
Spasov A, Ozerov A, Kosolapov V, Gurova N, Kucheryavenko A, Naumenko L, Babkov D, Sirotenko V, Taran A, Borisov A, Sokolova E, Klochkov V, Merezhkina D, Miroshnikov M, Ovsyankina N, Smirnov A, Velikorodnaya Y. Guanidine Derivatives of Quinazoline-2,4(1H,3H)-Dione as NHE-1 Inhibitors and Anti-Inflammatory Agents. Life (Basel) 2022; 12:life12101647. [PMID: 36295082 PMCID: PMC9605072 DOI: 10.3390/life12101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022] Open
Abstract
Quinazolines are a rich source of bioactive compounds. Previously, we showed NHE-1 inhibitory, anti-inflammatory, antiplatelet, intraocular pressure lowering, and antiglycating activity for a series of quinazoline-2,4(1H,3H)-diones and quinazoline-4(3H)-one guanidine derivatives. In the present work, novel N1,N3-bis-substituted quinazoline-2,4(1H,3H)-dione derivatives bearing two guanidine moieties were synthesized and pharmacologically profiled. The most potent NHE-1 inhibitor 3a also possesses antiplatelet and intraocular-pressure-reducing activity. Compound 4a inhibits NO synthesis and IL-6 secretion in murine macrophages without immunotoxicity and alleviates neutrophil infiltration, edema, and tissue lesions in a model of LPS-induced acute lung injury. Hence, we considered quinazoline derivative 4a as a potential agent for suppression of cytokine-mediated inflammatory response and acute lung injury.
Collapse
Affiliation(s)
- Alexander Spasov
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 400087 Volgograd, Russia
| | - Alexander Ozerov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 400087 Volgograd, Russia
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, 400001 Volgograd, Russia
| | - Vadim Kosolapov
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 400087 Volgograd, Russia
| | - Natalia Gurova
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
| | - Aida Kucheryavenko
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
| | - Ludmila Naumenko
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
| | - Denis Babkov
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 400087 Volgograd, Russia
- Correspondence: ; Tel.: +7-9889608025
| | - Viktor Sirotenko
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
| | - Alena Taran
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
| | - Alexander Borisov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 400087 Volgograd, Russia
| | - Elena Sokolova
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
| | - Vladlen Klochkov
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 400087 Volgograd, Russia
| | - Darya Merezhkina
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, 400001 Volgograd, Russia
| | - Mikhail Miroshnikov
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
| | - Nadezhda Ovsyankina
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
| | - Alexey Smirnov
- Department of Pathological Anatomy, Volgograd State Medical University, 400131 Volgograd, Russia
| | - Yulia Velikorodnaya
- Department of Pathological Anatomy, Volgograd State Medical University, 400131 Volgograd, Russia
| |
Collapse
|
4
|
Ali AE, Elsherbiny DM, Azab SS, El-Demerdash E. The diuretic amiloride attenuates doxorubicin-induced chemobrain in rats: Behavioral and mechanistic study. Neurotoxicology 2022; 88:1-13. [PMID: 34656704 DOI: 10.1016/j.neuro.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/26/2022]
Abstract
Cognitive impairment or "chemobrain" is a troublesome adverse effect which had been increasingly reported by cancer patients after doxorubicin (DOX) chemotherapy. Notably, Hypertension, a very common comorbidity in cancer patients, could pose a greater risk for negative cognitive outcomes. Amiloride (AML) is an antihypertensive, potassium-sparing diuretic that has been proven to be neuroprotective in different experimental models; this can be attributed to its ability to inhibit different ion transporters such as Na+/H+ exchanger (NHE), which upon excessive activation can result in intracellular cationic overload, followed by oxidative damage and cellular death. Accordingly, this study was designed to investigate the potential neuroprotective effect of AML against DOX-induced chemobrain and to elucidate possible underlying mechanisms. Briefly, Histopathological examination and neurobehavioral testing (Morris water maze, Y maze and passive avoidance test) showed that AML co-treatment (10 mg/kg/day) markedly attenuated DOX (2 mg/kg/week)-induced neurodegeneration and memory impairment after 4 weeks of treatments. We found that DOX administration up-regulated NHE expression and increased lactic acid content in the hippocampus which were markedly opposed by AML. Moreover, AML mitigated DOX-induced neuroinflammation and decreased hippocampal tumor necrosis factor-α level, nuclear factor kappa-B, and cyclooxygenase-2 expression. Additionally, AML counteracted DOX-induced hippocampal oxidative stress as indicated by normalized malondialdehyde and glutathione levels. Furthermore, AML halted DOX-induced hippocampal apoptosis as evidenced by decreased caspase-3 activity and lower cytochrome c immunoexpression. Our results in addition to the previously reported antitumor effects of AML and its ability to mitigate cancer resistance to DOX therapy could point toward possible new repositioning scenarios of the diuretic AML especially regarding hypertensive cancer patients.
Collapse
Affiliation(s)
- Alaa Emam Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Doaa Mokhtar Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
5
|
Alfarouk KO, Alhoufie STS, Hifny A, Schwartz L, Alqahtani AS, Ahmed SBM, Alqahtani AM, Alqahtani SS, Muddathir AK, Ali H, Bashir AHH, Ibrahim ME, Greco MR, Cardone RA, Harguindey S, Reshkin SJ. Of mitochondrion and COVID-19. J Enzyme Inhib Med Chem 2021; 36:1258-1267. [PMID: 34107824 PMCID: PMC8205080 DOI: 10.1080/14756366.2021.1937144] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/20/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023] Open
Abstract
COVID-19, a pandemic disease caused by a viral infection, is associated with a high mortality rate. Most of the signs and symptoms, e.g. cytokine storm, electrolytes imbalances, thromboembolism, etc., are related to mitochondrial dysfunction. Therefore, targeting mitochondrion will represent a more rational treatment of COVID-19. The current work outlines how COVID-19's signs and symptoms are related to the mitochondrion. Proper understanding of the underlying causes might enhance the opportunity to treat COVID-19.
Collapse
Affiliation(s)
- Khalid Omer Alfarouk
- Research Center, Zamzam University College, Khartoum, Sudan
- Department of Evolutionary Pharmacology and Tumor Metabolism, Hala Alfarouk Cancer Center, Khartoum, Sudan
- Al-Ghad International College for Applied Medical Sciences, Al-Madinah Al-Munwarah, Saudi Arabia
| | - Sari T. S. Alhoufie
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munwarah, Saudi Arabia
| | | | | | - Ali S. Alqahtani
- College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | | | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Saad S. Alqahtani
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | | | - Heyam Ali
- Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Adil H. H. Bashir
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Rosa A. Cardone
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
6
|
Yurinskaya MM, Garbuz DG, Afanasiev VN, Evgen’ev MB, Vinokurov MG. Effects of the Hydrogen Sulfide Donor GYY4137 and HSP70 Protein on the Activation of SH-SY5Y Cells by Lipopolysaccharide. Mol Biol 2021. [DOI: 10.1134/s002689332006014x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Liu W, Jiang HL, Cai LL, Yan M, Dong SJ, Mao B. Tanreqing Injection Attenuates Lipopolysaccharide-Induced Airway Inflammation through MAPK/NF-κB Signaling Pathways in Rats Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:5292346. [PMID: 27366191 PMCID: PMC4913016 DOI: 10.1155/2016/5292346] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 04/21/2016] [Accepted: 05/12/2016] [Indexed: 02/05/2023]
Abstract
Background. Tanreqing injection (TRQ) is a commonly used herbal patent medicine for treating inflammatory airway diseases in view of its outstanding anti-inflammatory properties. In this study, we explored the signaling pathways involved in contributions of TRQ to LPS-induced airway inflammation in rats. Methods/Design. Adult male Sprague Dawley (SD) rats randomly divided into different groups received intratracheal instillation of LPS and/or intraperitoneal injection of TRQ. Bronchoalveolar Lavage Fluid (BALF) and lung samples were collected at 24 h, 48 h, and 96 h after TRQ administration. Protein and mRNA levels of tumor necrosis factor- (TNF-) α, Interleukin- (IL-) 1β, IL-6, and IL-8 in BALF and lung homogenate were observed by ELISA and real-time PCR, respectively. Lung sections were stained for p38 MAPK and NF-κB detection by immunohistochemistry. Phospho-p38 MAPK, phosphor-extracellular signal-regulated kinases ERK1/2, phospho-SAPK/JNK, phospho-NF-κB p65, phospho-IKKα/β, and phospho-IκB-α were measured by western blot analysis. Results. The results showed that TRQ significantly counteracted LPS-stimulated release of TNF-α, IL-1β, IL-6, and IL-8, attenuated cells influx in BALF, mitigated mucus hypersecretion, suppressed phosphorylation of NF-κB p65, IκB-α, ΙKKα/β, ERK1/2, JNK, and p38 MAPK, and inhibited p38 MAPK and NF-κB p65 expression in rat lungs. Conclusions. Results of the current research indicate that TRQ possesses potent exhibitory effects in LPS-induced airway inflammation by, at least partially, suppressing the MAPKs and NF-κB signaling pathways, in a general dose-dependent manner.
Collapse
Affiliation(s)
- Wei Liu
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong-li Jiang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin-li Cai
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Yan
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shou-jin Dong
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bing Mao
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Magalhães D, Cabral JM, Soares-da-Silva P, Magro F. Role of epithelial ion transports in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2016; 310:G460-76. [PMID: 26744474 DOI: 10.1152/ajpgi.00369.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/02/2016] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder with a complex pathogenesis. Diarrhea is a highly prevalent and often debilitating symptom of IBD patients that results, at least in part, from an intestinal hydroelectrolytic imbalance. Evidence suggests that reduced electrolyte absorption is more relevant than increased secretion to this disequilibrium. This systematic review analyses and integrates the current evidence on the roles of epithelial Na(+)-K(+)-ATPase (NKA), Na(+)/H(+) exchangers (NHEs), epithelial Na(+) channels (ENaC), and K(+) channels (KC) in IBD-associated diarrhea. NKA is the key driving force of the transepithelial ionic transport and its activity is decreased in IBD. In addition, the downregulation of apical NHE and ENaC and the upregulation of apical large-conductance KC all contribute to the IBD-associated diarrhea by lowering sodium absorption and/or increasing potassium secretion.
Collapse
Affiliation(s)
- Diogo Magalhães
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Porto, Portugal; and MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - José Miguel Cabral
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Porto, Portugal; and MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Patrício Soares-da-Silva
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Porto, Portugal; and MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Fernando Magro
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Porto, Portugal; and MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Toledo JO, Moraes CF, Souza VC, Tonet-Furioso AC, Afonso LCC, Córdova C, Nóbrega OT. Tailored antihypertensive drug therapy prescribed to older women attenuates circulating levels of interleukin-6 and tumor necrosis factor-α. Clin Interv Aging 2015; 10:209-15. [PMID: 25624753 PMCID: PMC4296909 DOI: 10.2147/cia.s74790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective To test the hypothesis that antihypertensive drug therapy produces anti-inflammatory effects in clinical practice, this study investigated circulating levels of selected proinflammatory mediators (interleukin-6 [IL-6], tumor necrosis factor-alpha [TNF-α], and interferon-γ [INF-γ]) in response to multivariate drug directions for blood pressure (BP) control. Methods Prospective study involving 110 hypertensive, community-dwelling older women with different metabolic disorders. A short-term BP-lowering drug therapy was conducted according to current Brazilian guidelines on hypertension, and basal cytokine levels were measured before and after intervention. Results Interventions were found to represent current hypertension-management practices in Brazil and corresponded to a significant reduction in systolic and diastolic BP levels in a whole-group analysis, as well as when users and nonusers of the most common therapeutic classes were considered separately. Considering all patients, mean IL-6 and TNF-α levels showed a significant decrease in circulating concentrations (P<0.01) at the endpoint compared with baseline, whereas the mean INF-γ level was not significantly different from baseline values. In separate analyses, only users of antagonists of the renin–angiotensin system and users of diuretics exhibited the same significant treatment-induced reduction in serum IL-6 and TNF-α observed in the whole group. Conclusion Our data demonstrates that a clinically guided antihypertensive treatment is effective in reversing the low-grade proinflammatory state of serum cytokines found in postmenopausal women and support extracardiac benefits from diuretics and renin–angiotensin system antagonists.
Collapse
Affiliation(s)
- Juliana O Toledo
- Graduate Program in Health Sciences, University of Brasília, Brasília, Brazil
| | - Clayton F Moraes
- Graduate Program in Medical Sciences, University of Brasília, Brasília, Brazil ; Graduate Program in Gerontology, Catholic University of Brasília, Brasília, Brazil
| | - Vinícius C Souza
- Graduate Program in Medical Sciences, University of Brasília, Brasília, Brazil
| | | | - Luís C C Afonso
- Research Center in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Cláudio Córdova
- Graduate Program in Gerontology, Catholic University of Brasília, Brasília, Brazil
| | - Otávio T Nóbrega
- Graduate Program in Health Sciences, University of Brasília, Brasília, Brazil ; Graduate Program in Medical Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
10
|
Yang X, Chen J, Bai H, Tao K, Zhou Q, Hou H, Hu D. Inhibition of Na+/H+ exchanger 1 by cariporide reduces burn-induced intestinal barrier breakdown. Burns 2013; 39:1557-64. [DOI: 10.1016/j.burns.2013.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 04/07/2013] [Accepted: 04/10/2013] [Indexed: 12/29/2022]
|
11
|
Özbilüm N, Arslan S, Berkan Ö, Yanartaş M, Aydemir EI. The Role ofNF-κB1APromoter Polymorphisms on Coronary Artery Disease Risk. Basic Clin Pharmacol Toxicol 2013; 113:187-92. [DOI: 10.1111/bcpt.12085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/23/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Nil Özbilüm
- Department of Molecular Biology and Genetics; Faculty of Science; Cumhuriyet University; Sivas; Turkey
| | - Serdal Arslan
- Department of Molecular Biology and Genetics; Faculty of Science; Cumhuriyet University; Sivas; Turkey
| | - Öcal Berkan
- Department of Cardiovascular Surgery; Cumhuriyet University of School of Medicine; Sivas; Turkey
| | - Mehmed Yanartaş
- Department of Cardiovascular Surgery; Kartal Kosuyolu Training and Research Hospital; Istanbul; Turkey
| | - Eylem Itir Aydemir
- Department of Statistic; Faculty of Science; Cumhuriyet University; Sivas; Turkey
| |
Collapse
|
12
|
Benzalkonium chloride breaks down conjunctival immunological tolerance in a murine model. Mucosal Immunol 2013; 6:24-34. [PMID: 22692451 DOI: 10.1038/mi.2012.44] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The impact of topical eye drops with benzalkonium chloride (BAK) as a preservative could involve more than the reported toxic effects on the ocular surface epithelium and ultimately affect the immune balance of the conjunctiva. We found that BAK not only impairs tolerance induction in a murine model, but leads to mild systemic immunization. Contrasting with antigen only-treated mice, there was no induction of interleukin 10-producing antigen-specific CD4(+) cells in BAK-treated animals. Moreover, the tolerogenic capacity of migrating dendritic cells (DCs) was reduced, apparently involving differential conditioning by soluble epithelial factors. Accordingly, epithelial cells exposed in vitro to BAK were less suppressive and failed to induce tolerogenic DCs in culture. As this effect of BAK was dependent on epithelial nuclear factor κB pathway activation, our findings may provide new therapeutic targets. Thus, tolerance breakdown by BAK should be considered an important factor in the management of glaucoma and immune-mediated ocular surface disorders.
Collapse
|
13
|
Reddy KVR, Sukanya D, Patgaonkar MS, Selvaakumar C. Effect of Rabbit Epididymal Antimicrobial Peptide, REHbβP, on LPS-Induced Proinflammatory Cytokine Responses in Human Vaginal Cells In Vitro. INTERNATIONAL JOURNAL OF PEPTIDES 2012; 2012:782019. [PMID: 22505946 PMCID: PMC3312295 DOI: 10.1155/2012/782019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/31/2011] [Accepted: 11/18/2011] [Indexed: 11/21/2022]
Abstract
Antimicrobial peptides (AMP's) protect epithelial surfaces including epididymis against pathogens and play a key role in orchestrating various defensive responses. Recently, we have identified one such AMP, rabbit epididymal hemoglobin-β subuit (REHbβP) from the epididymal fluid of rabbit, Oryctologus cuniculus. The demonstration of a protective role of REHbβP in epididymal epithelial cells (EPEC's) led us to investigate: (1) the identification of LPS interactive domain in REHbβP, and (2) whether the REHbβP of rabbit origin mediates vaginal cellular immune responses of another species (human). HeLa-S3, human vaginal epithelial cells (hVECs) were exposed to LPS or the LPS-stimulated cells treated with REHbβP or neutral peptide, nREHbβP. Effect of LPS and cytokines (IL-6 and IL-1α) and chemokines (IL-8, MCP-1) levels was determined in the culture supernatants. In response to the LPS, hVECs synthesized these mediators and the levels were significantly higher than controls. This enhancing effect was ameliorated when the LPS-induced hVECs were treated with REHbβP. Similar results were obtained on NF-κB protein and hBD-1 mRNA expression. Confocal microscopy studies revealed that REHbβP attenuated the LPS-induced internalization of E. coli by macrophages. The chemotaxis studies performed using Boyden chamber Transwell assay, which showed elevated migration of U937 cells when the supernatants of LPS-induced hVECs were used, and the effect was inhibited by REHbβP. REHbβP was found to be localized on the acrosome of rabbit spermatozoa, suggesting its role in sperm protection beside sperm function. In conclusion, REHbβP may have the potential to develop as a therapeutic agent for reproductive tract infections (RTI's).
Collapse
Affiliation(s)
- K. V. R. Reddy
- Division of Molecular Immunology, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - D. Sukanya
- Division of Molecular Immunology, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - M. S. Patgaonkar
- Division of Molecular Immunology, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - C. Selvaakumar
- Department of Biotechnology and Bioinformatics, Padmashree Dr. D.Y. Patil University, CBD Belapur, Navi Mumbai 400 614, India
| |
Collapse
|
14
|
Qureshi AA, Tan X, Reis JC, Badr MZ, Papasian CJ, Morrison DC, Qureshi N. Suppression of nitric oxide induction and pro-inflammatory cytokines by novel proteasome inhibitors in various experimental models. Lipids Health Dis 2011; 10:177. [PMID: 21992595 PMCID: PMC3206449 DOI: 10.1186/1476-511x-10-177] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/12/2011] [Indexed: 01/11/2023] Open
Abstract
Background Inflammation has been implicated in a variety of diseases associated with ageing, including cancer, cardiovascular, and neurologic diseases. We have recently established that the proteasome is a pivotal regulator of inflammation, which modulates the induction of inflammatory mediators such as TNF-α, IL-1, IL-6, and nitric oxide (NO) in response to a variety of stimuli. The present study was undertaken to identify non-toxic proteasome inhibitors with the expectation that these compounds could potentially suppress the production of inflammatory mediators in ageing humans, thereby decreasing the risk of developing ageing related diseases. We evaluated the capacity of various proteasome inhibitors to suppress TNF-α, NO and gene suppression of TNF-α, and iNOS mRNA, by LPS-stimulated macrophages from several sources. Further, we evaluated the mechanisms by which these agents suppress secretion of TNF-α, and NO production. Over the course of these studies, we measured the effects of various proteasome inhibitors on the RAW 264.7 cells, and peritoneal macrophages from four different strains of mice (C57BL/6, BALB/c, proteasome double subunits knockout LMP7/MECL-1-/-, and peroxisome proliferator-activated receptor-α,-/- (PPAR-α,-/-) knockout mice. We also directly measured the effect of these proteasome inhibitors on proteolytic activity of 20S rabbit muscle proteasomes. Results There was significant reduction of chymotrypsin-like activity of the 20S rabbit muscle proteasomes with dexamethasone (31%), mevinolin (19%), δ-tocotrienol (28%), riboflavin (34%), and quercetin (45%; P < 0.05). Moreover, quercetin, riboflavin, and δ-tocotrienol also inhibited chymotrypsin-like, trypsin-like and post-glutamase activities in RAW 264.7 whole cells. These compounds also inhibited LPS-stimulated NO production and TNF-α, secretion, blocked the degradation of P-IκB protein, and decreased activation of NF-κB, in RAW 264.7 cells. All proteasome inhibitors tested also significantly inhibited NO production (30% to 60% reduction) by LPS-induced thioglycolate-elicited peritoneal macrophages derived from all four strains of mice. All five compounds also suppressed LPS-induced TNF-α, secretion by macrophages from C57BL/6 and BALB/c mice. TNF-α, secretion, however, was not suppressed by any of the three proteasome inhibitors tested (δ-tocotrienol, riboflavin, and quercetin) with LPS-induced macrophages from LMP7/MECL-1-/- and PPAR-α,-/- knockout mice. Results of gene expression studies for TNF-α, and iNOS were generally consistent with results obtained for TNF-α, protein and NO production observed with four strains of mice. Conclusions Results of the current study demonstrate that δ-tocotrienol, riboflavin, and quercetin inhibit NO production by LPS-stimulated macrophages of all four strains of mice, and TNF-α, secretion only by LPS-stimulated macrophages of C57BL/6 and BALB/c mice. The mechanism for this inhibition appears to be decreased proteolytic degradation of P-IκB protein by the inhibited proteasome, resulting in decreased translocation of activated NF-κB to the nucleus, and depressed transcription of gene expression of TNF-α, and iNOS. Further, these naturally-occurring proteasome inhibitors tested appear to be relatively potent inhibitors of multiple proteasome subunits in inflammatory proteasomes. Consequently, these agents could potentially suppress the production of inflammatory mediators in ageing humans, thereby decreasing the risk of developing a variety of ageing related diseases.
Collapse
Affiliation(s)
- Asaf A Qureshi
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Qureshi AA, Reis JC, Qureshi N, Papasian CJ, Morrison DC, Schaefer DM. δ-Tocotrienol and quercetin reduce serum levels of nitric oxide and lipid parameters in female chickens. Lipids Health Dis 2011; 10:39. [PMID: 21356098 PMCID: PMC3053241 DOI: 10.1186/1476-511x-10-39] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 02/28/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chronic, low-grade inflammation provides a link between normal ageing and the pathogenesis of age-related diseases. A series of in vitro tests confirmed the strong anti-inflammatory activities of known inhibitors of NF-κB activation (δ-tocotrienol, quercetin, riboflavin, (-) Corey lactone, amiloride, and dexamethasone). δ-Tocotrienol also suppresses β-hydroxy-β-methylglutaryl coenzyme A (HMG-CoA) reductase activity (the rate-limiting step in de novo cholesterol synthesis), and concomitantly lowers serum total and LDL cholesterol levels. We evaluated these compounds in an avian model anticipating that a dietary additive combining δ-tocotrienol with quercetin, riboflavin, (-) Corey lactone, amiloride, or dexamethasone would yield greater reductions in serum levels of total cholesterol, LDL-cholesterol and inflammatory markers (tumor necrosis factor-α [TNF-α], and nitric oxide [NO]), than that attained with the individual compounds. RESULTS The present results showed that supplementation of control diets with all compounds tested except riboflavin, (-) Corey lactone, and dexamethasone produced small but significant reductions in body weight gains as compared to control. (-) Corey lactone and riboflavin did not significantly impact body weight gains. Dexamethasone significantly and markedly reduced weight gain (>75%) compared to control. The serum levels of TNF-α and NO were decreased 61% - 84% (P < 0.001), and 14% - 67%, respectively, in chickens fed diets supplemented with δ-tocotrienol, quercetin, riboflavin, (-) Corey lactone, amiloride, or dexamethasone as compared to controls. Significant decreases in the levels of serum total and LDL-cholesterol were attained with δ-tocotrienol, quercetin, riboflavin and (-) Corey lactone (13% - 57%; P < 0.05), whereas, these levels were 2-fold higher in dexamethasone treated chickens as compared to controls. Parallel responses on hepatic lipid infiltration were confirmed by histological analyses. Treatments combining δ-tocotrienol with the other compounds yielded values that were lower than individual values attained with either δ-tocotrienol or the second compound. Exceptions were the significantly lower total and LDL cholesterol and triglyceride values attained with the δ-tocotrienol/(-) Corey lactone treatment and the significantly lower triglyceride value attained with the δ-tocotrienol/riboflavin treatment. δ-Tocotrienol attenuated the lipid-elevating impact of dexamethasone and potentiated the triglyceride lowering impact of riboflavin. Microarray analyses of liver samples identified 62 genes whose expressions were either up-regulated or down-regulated by all compounds suggesting common impact on serum TNF-α and NO levels. The microarray analyses further identified 41 genes whose expression was differentially impacted by the compounds shown to lower serum lipid levels and dexamethasone, associated with markedly elevated serum lipids. CONCLUSIONS This is the first report describing the anti-inflammatory effects of δ-tocotrienol, quercetin, riboflavin, (-) Corey lactone, amiloride, and dexamethasone on serum TNF-δ and NO levels. Serum TNF-δ levels were decreased by >60% by each of the experimental compounds. Additionally, all the treatments except with dexamethasone, resulted in lower serum total cholesterol, LDL-cholesterol and triglyceride levels. The impact of above mentioned compounds on the factors evaluated herein was increased when combined with δ-tocotrienol.
Collapse
Affiliation(s)
- Asaf A Qureshi
- Department of Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Julia C Reis
- Department of Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
- Department of Pharmacology/Toxicology, School of Pharmacy, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Nilofer Qureshi
- Department of Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
- Department of Pharmacology/Toxicology, School of Pharmacy, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Christopher J Papasian
- Department of Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - David C Morrison
- Department of Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Daniel M Schaefer
- Department of Animal Sciences, University of Wisconsin, Madison, WI. 53706, USA
| |
Collapse
|
16
|
Association of the NFKBIA gene polymorphisms with susceptibility to autoimmune and inflammatory diseases: a meta-analysis. Inflamm Res 2010; 60:11-8. [DOI: 10.1007/s00011-010-0216-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 04/19/2010] [Accepted: 05/05/2010] [Indexed: 12/12/2022] Open
|
17
|
Haddad JJ. Thymulin and zinc (Zn2+)-mediated inhibition of endotoxin-induced production of proinflammatory cytokines and NF-kappaB nuclear translocation and activation in the alveolar epithelium: unraveling the molecular immunomodulatory, anti-inflammatory effect of thymulin/Zn2+ in vitro. Mol Immunol 2009; 47:205-14. [PMID: 19850345 DOI: 10.1016/j.molimm.2009.09.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/23/2009] [Accepted: 09/25/2009] [Indexed: 12/14/2022]
Abstract
The immunomodulatory potential of thymulin and zinc (Zn(2+)) in the perinatal alveolar epithelium is not well characterized. In an in vitro model of fetal alveolar type II epithelial cells (FATEII), we have investigated the exhibition of an anti-inflammatory activity of this peptide hormone. Thymulin selectively ameliorated, in a dose-dependent manner, the endotoxin (ET/LPS [lipopolysaccharide])-induced release of IL-1beta, but not IL-6 or TNF-alpha. Furthermore, Zn(2+), an anti-inflammatory antioxidant, which is required for the biological activity of thymulin, independently reduced the secretion of IL-1beta, TNF-alpha and, to a lesser extent, at a supraphysiologic dose (1 mM), IL-6. The underlying cellular and molecular pathways associated with the anti-inflammatory effect of thymulin and Zn(2+) in the alveolar epithelium are not well established. Further in this study, the role of cyclic AMP (cAMP) in the anti-inflammatory effect of thymulin was investigated, in addition to unraveling the possible involvement of the NF-kappaB pathway. Interestingly, thymulin upregulated, in a dose- and time-dependent manner, the release of the nucleotide cAMP. To understand whether the inhibitory effect of thymulin on cytokine release is cAMP-dependent, Forskolin, a labdane diterpene known to elevate intracellular cAMP, was shown to reduce the secretion of IL-1beta and TNF-alpha, but not IL-6, an effect mimicked by dibutyryl-cAMP (dbcAMP), an analog of cAMP. Alveolar epithelial cells treated with thymulin markedly showed a downregulation of the nuclear translocation of RelA (p65), the major transactivating member of the NF-kappaB family, in addition to NF-kappaB(1) (p50) and c-Rel (p75), an effect mildly substantiated with Zn(2+). Furthermore, thymulin/Zn(2+) reduced, in a dose-dependent manner, the DNA-binding activity of NF-kappaB (RelA/p65). These results indicate that the anti-inflammatory effect of thymulin, which is mediated by cAMP, is NF-kappaB-dependent and involves the downregulation of the release of proinflammatory cytokines, particularly IL-1beta, an effect synergistically amplified, at least in part, by Zn(2+). The molecular regulation of thymulin via a NF-kappaB-dependent pathway is critical to understanding the anti-inflammatory alleviating role of this nonapeptide in regulating proinflammatory signals.
Collapse
Affiliation(s)
- John J Haddad
- Cellular and Molecular Signaling Research Group, Department of Clinical Laboratory Science, Faculty of Health Sciences, American University of Science and Technology, Aschrafieh, Beirut, Lebanon.
| |
Collapse
|
18
|
Lee CH, Wu SL, Chen JC, Li CC, Lo HY, Cheng WY, Lin JG, Chang YH, Hsiang CY, Ho TY. Eriobotrya japonica leaf and its triterpenes inhibited lipopolysaccharide-induced cytokines and inducible enzyme production via the nuclear factor-kappaB signaling pathway in lung epithelial cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2009; 36:1185-98. [PMID: 19051345 DOI: 10.1142/s0192415x0800651x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pulmonary inflammation is a characteristic of many lung diseases. Increased levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and proinflammatory cytokines, such as interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) and IL-8, have been correlated with lung inflammation. In this study, we used lipopolysaccharide (LPS) to induce iNOS, COX-2, and cytokines (TNF-alpha, IL-1beta, and IL-8) productions in human lung epithelial cells (A-549). Leaf of Eriobotrya japonica (Pi-Pa-Ye, PPY), a traditional Chinese medicine for the treatment of pulmonary inflammatory diseases, was capable of suppressing LPS-induced cytokine productions in a dose-dependent manner. Moreover, the suppression of PPY on the cytokine productions resulted from the inhibition of inhibitory kappaB-alpha phosphorylation and nuclear factor-kappaB (NF-kappaB) activation. Analysis of the anti-inflammatory effects of ursolic acid and oleanolic acid, the triterpene compounds present in PPY, showed that ursolic acid significantly inhibited LPS-induced IL-8 production, NF-kappaB activation, and iNOS mRNA expression, whereas oleanolic acid did not have these effects. In conclusion, our findings suggested the potential mechanisms of PPY and its active component, ursolic acid, in the treatment of pulmonary inflammation.
Collapse
Affiliation(s)
- Chang-Hsien Lee
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung 40402, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Arias RL, Sung MLA, Vasylyev D, Zhang MY, Albinson K, Kubek K, Kagan N, Beyer C, Lin Q, Dwyer JM, Zaleska MM, Bowlby MR, Dunlop J, Monaghan M. Amiloride is neuroprotective in an MPTP model of Parkinson's disease. Neurobiol Dis 2008; 31:334-41. [DOI: 10.1016/j.nbd.2008.05.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 05/16/2008] [Indexed: 10/22/2022] Open
|
20
|
Liu C, Wu Q, Li Q, Liu D, Su H, Shen N, Tai M, Lv Y. Mesenteric lymphatic ducts ligation decreases the degree of gut-induced lung injury in a portal vein occlusion and reperfusion canine model. J Surg Res 2008; 154:45-50. [PMID: 19201426 DOI: 10.1016/j.jss.2008.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/02/2008] [Accepted: 06/05/2008] [Indexed: 01/22/2023]
Abstract
BACKGROUND Whether the mesenteric lymphatic system could serve as a route of transport by which gut-derived inflammatory mediators contribute to the induction of remote organ injuries is uncertain. We therefore made a gut-induced lung injury canine model by portal vein occlusion and reperfusion (PV O/R) and studied the role of mesenteric lymphatic ducts ligation (ML) to gut-induced lung injury with this model. MATERIAL AND METHODS Eighteen mongrel dogs were divided into control, PV O/R, and PV O/R + ML groups. Cytokines and endotoxin levels in the portal vein and lymph from thoracic duct in different groups were tested. The permeability, myeloperoxidase activity, and histopathological investigation of intestine and lung were evaluated. RESULTS Cytokines and endotoxin levels in the portal vein were significantly increased in experimental groups compared with control group (P < 0.05), and that in the lymph from thoracic duct were significantly increased in PV O/R group compared with control and PV O/R + ML group (P < 0.05). Lung permeability and MPO activity in PV O/R group were significantly higher than those in control and PV O/R + ML group (P < 0.05); intestinal permeability in experimental groups were significantly higher with respect to control group. The lung injury score in PV O/R group was significantly higher than those in control and PV O/R + ML group (P < 0.05) and the intestinal injury scores in experimental groups were significantly higher than control group (P < 0.05). CONCLUSIONS The gut-induced lung injury canine model made by PV O/R is successful, and mesenteric lymphatic ducts ligation decreases the degree of gut-induced lung injury in this model.
Collapse
Affiliation(s)
- Chang Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiao Tong University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Haddad JJ. On the mechanisms and putative pathways involving neuroimmune interactions. Biochem Biophys Res Commun 2008; 370:531-5. [PMID: 18413144 DOI: 10.1016/j.bbrc.2008.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 04/04/2008] [Indexed: 01/28/2023]
Abstract
Bidirectional interdependence between the immune system and the CNS involves the intervention of common cofactors. Cytokines are endogenous to the brain, endocrine and immune systems. These shared ligands are used as a chemical language for communication. Such interaction suggests an immunoregulatory role for the brain, and a sensory function for the immune system. Interplay between the immune, nervous and endocrine systems is associated with effects of stress on immunity. Cytokines are thus capable of modulating responses in the CNS, while neuropeptides can exert their effects over cellular groups in the immune system. One way is controlled by the HPA axis, a coordinator of neuroimmune interactions that is essential to unravel in order to elucidate vital communications in a manner that this crosstalk remains a cornerstone in perpetuating a stance of homeostasis.
Collapse
Affiliation(s)
- John J Haddad
- Cellular and Molecular Signaling Research Group, Department of Biology, Faculty of Arts and Sciences, Lebanese International University, Beirut, Lebanon.
| |
Collapse
|
22
|
Dixon DL, Barr HA, Bersten AD, Doyle IR. Intracellular storage of surfactant and proinflammatory cytokines in co-cultured alveolar epithelium and macrophages in response to increasing CO2 and cyclic cell stretch. Exp Lung Res 2008; 34:37-47. [PMID: 18205076 DOI: 10.1080/01902140701807928] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cell stretch stimulates both surfactant and cytokine production. The authors proposed that stretch, through these effects, modifies the pathogenesis of lipopolysaccharide-induced acute lung injury (ALI), and that this is CO(2) dependent. Rat alveolar type II cells and macrophages were co-cultured with lipopolysaccharide in 5%, 10%, or 20% CO(2) +/- stretch (30%, 60 cycles/min) for 6 hours. Intracellular TNF-alpha and IL-6 increased whereas secreted cytokine and surfactant decreased with increasing CO(2). Stretch independently increased intracellular TNF-alpha and decreased IL-6 secretion. Elevated CO(2) may therefore diminish secretion of proinflammatory cytokines by alveolar cells, contributing to an explanation for protective hypercapnia in ALI.
Collapse
Affiliation(s)
- Dani-Louise Dixon
- Department of Critical Care Medicine, Flinders University, Adelaide, SA 5006, Australia.
| | | | | | | |
Collapse
|
23
|
Pedersen HR, Ring-Larsen H, Olsen NV, Larsen FS. Hyperammonemia acts synergistically with lipopolysaccharide in inducing changes in cerebral hemodynamics in rats anaesthetised with pentobarbital. J Hepatol 2007; 47:245-52. [PMID: 17532089 DOI: 10.1016/j.jhep.2007.03.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 03/12/2007] [Accepted: 03/27/2007] [Indexed: 01/16/2023]
Abstract
BACKGROUND/AIMS The aim was to determine the effect of ammonia (NH(3)) and lipopolysaccharide (LPS) alone or in combination, on cerebral blood flow (CBF) and intracranial pressure (ICP) in the rat. Since amiloride-sensitive-ion-pathways in the blood-brain barrier (BBB) modulate CBF, we also aimed to test if Na(+)/H(+)-inhibitors could prevent this possible synergism between NH(3) and LPS. METHODS In experiment A, four groups of rats received ammonium acetate (140 micromol/kg/min) or saline, each of them associated with either vehicle or LPS (2 mg/kg). In experiments B and C, rats received similar treatments after having received amiloride (30 mg/kg) or 5-(N-methyl-N-isobutyl)-amiloride (MIA, 5 mg/kg). Plasma tumor-necrosis-factor-alpha (TNF-alpha), ICP (via a cisterna magna catheter) and CBF (by laser-Doppler flowmetry) were measured. RESULTS An increase in ICP and CBF within 60 min was observed only in rats that received NH(3) together with LPS as compared to any other group (P<0.01), which could be prevented by amiloride (P<0.05), but not by MIA. Both amiloride and MIA decreased the plasma TNF-alpha concentration. CONCLUSIONS In rats anaesthetised with pentobarbital NH(3) infusion aggravates a LPS induced rise in ICP and induces an increase in CBF less clearly seen with LPS alone. This effect is prevented by the non-specific Na(+)/H(+) inhibitor amiloride, but not by MIA, a specific inhibitor of Na(+)/H(+) exchanger. Thus, the synergistic effect of NH(3) and LPS seems mediated by other amiloride-sensitive-ion-pathways in the BBB than the Na(+)/H(+) exchanger.
Collapse
Affiliation(s)
- Hans R Pedersen
- Department of Hepatology, Rigshospitalet, Section A-2121, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
24
|
Bleau C, Savard R, Lamontagne L. Murine immunomodulation of IL-10 and IL-12 induced by new isolates from avian type 2 Lactobacillus acidophilus. Can J Microbiol 2007; 53:944-56. [PMID: 17898851 DOI: 10.1139/w07-056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several bacterial and immunogenic factors are involved in the host response to probiotic strains of Lactobacillus . Here, we report the isolation of new intestinal lactobacilli from chicken, with different immunomodulating properties on lymphoid cells from SJL and C57BL/6 mice. Analysis of biochemical markers in the Lactobacillus acidophilus CBA4P, CBA3P, and TPA3P isolates reveal that these bacterial isolates belong to the type 2 prototype, although they differ from each other. The effect of conditioned media (CM) from SJL- and C57BL/6-derived peritoneal macrophages incubated with the 3 sonicated bacterial isolates from chicken, as well as with Lactobacillus rhamnosus 9595, Escherichia coli lipopolysaccharide, or Staphylococcus aureus peptidoglycan were compared. Our results show that the CM of macrophages from C57BL/6 and SJL mice treated with the CBA4P isolate stimulated syngeneic splenic lymphocytes at a level similar to the one induced with CM from peptidoglycan-stimulated macrophages. In contrast, the CM from TPA3P- and CBA3P-treated macrophages promoted low or no stimulation of lymphoid cells. Incubation of splenic cells with CM from macrophages treated with L. rhamnosus or TPA3P led to a relative decrease in the percentages of splenic CD4+ T cells, whereas the relative percentages of B cells increased. The CBA4P and CBA3P isolates induced higher levels of gamma interferon when compared with the TPA3P isolate. The effects of the lactobacilli isolates differed according to the mouse strain used but correlated with the production of macrophagic tumor necrosis factor alpha and interleukins 6, 10, and 12 and with the modulation of the p38 mitogen-activated protein kinase (MAPK). Taken together, these results indicate that the immunomodulating properties of the new L. acidophilus isolates depend on their capacity to induce production of interleukins 10 and 12 by macrophages, which is under genetic control and depends on the p38 MAPK pathway.
Collapse
Affiliation(s)
- Christian Bleau
- Département des Sciences Biologiques, Université du Québec à Montréal, C.P. 8888 Succ. Centre-Ville, Montréal, QC HC3 3P8, Canada
| | | | | |
Collapse
|
25
|
Lee CH, Chen JC, Hsiang CY, Wu SL, Wu HC, Ho TY. Berberine suppresses inflammatory agents-induced interleukin-1beta and tumor necrosis factor-alpha productions via the inhibition of IkappaB degradation in human lung cells. Pharmacol Res 2007; 56:193-201. [PMID: 17681786 DOI: 10.1016/j.phrs.2007.06.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 06/06/2007] [Accepted: 06/14/2007] [Indexed: 02/08/2023]
Abstract
Pulmonary inflammation is a characteristic of many lung diseases. Increased levels of pro-inflammatory cytokines, such as interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), have been correlated with lung inflammation. In this study, we demonstrated that various inflammatory agents, including lipopolysaccharide, 12-o-tetradecanoylphorbol-13-acetate, hydrogen peroxide, okadaic acid and ceramide, were able to induce IL-1beta and TNF-alpha productions in human lung epithelial cells (A-549), fibroblasts (HFL1), and lymphoma cells (U-937). Berberine, the protoberberine alkaloid widely distributed in the plant kingdom, was capable of suppressing inflammatory agents-induced cytokine production in lung cells. Inhibition of cytokine production by berberine was dose-dependent and cell type-independent. Moreover, the suppression of berberine on the cytokine production resulted from the inhibition of inhibitory kappaB-alpha phosphorylation and degradation. In conclusion, our findings suggested the potential role of berberine in the treatment of pulmonary inflammation.
Collapse
Affiliation(s)
- Chang-Hsien Lee
- Molecular Biology Laboratory, Graduate Institute of Chinese Medical Science, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | | | | | | | | | | |
Collapse
|
26
|
Zhai R, Zhou W, Gong MN, Thompson BT, Su L, Yu C, Kraft P, Christiani DC. Inhibitor kappaB-alpha haplotype GTC is associated with susceptibility to acute respiratory distress syndrome in Caucasians. Crit Care Med 2007; 35:893-8. [PMID: 17235259 DOI: 10.1097/01.ccm.0000256845.92640.38] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The nuclear factor (NF)-kappaB regulates inflammatory responses and plays important roles in the pathogenesis of acute respiratory distress syndrome (ARDS). Inhibitor kappaB-alpha (NFKBIA) inhibits NF-kappaB and controls its activities. The objective was to determine whether polymorphisms in NFKBIA gene would be associated with ARDS development. DESIGN Prospective cohort of adults with clinical risk factors for ARDS. SETTING Hospital system. PATIENTS Patients were 1,210 critically ill Caucasian patients meeting study criteria for a defined risk factor for ARDS who were enrolled and prospectively followed for 60 days; 382 had ARDS, and 828 were controls. INTERVENTIONS Genetic polymorphisms in the NFKBIA promoter (-881A/G, -826C/T, -297C/T) were determined using TaqMan techniques. MEASUREMENTS AND MAIN RESULTS The three polymorphisms were in Hardy-Weinberg equilibrium. No individual genotype was significantly associated with ARDS development. In contrast, haplotypes of NFKBIA were globally associated with ARDS development (p = .02, degree of freedom = 2). The frequency of haplotype GTC (-881G/-826T/-297C) was significantly higher among ARDS patients (7.4%) than that among controls (5.2%) (p = .03). Crude analysis showed that the haplotype GTC was significantly associated with higher risks of ARDS in the whole cohort compared with the common haplotype ACC (-881A/-826C/-297C) (odds ratio [OR], 1.47; 95% confidence interval [CI], 1.03-2.09; p = .03), especially among male subjects (OR, 1.90; 95% CI, 1.20-2.97; p < .01). After adjustment for covariates, the haplotype GTC remained significantly associated with increased risk of ARDS in the whole cohort (OR, 1.66; 95% CI, 1.09-2.53; p = .02), particularly among male patients (OR, 1.98; 95% CI, 1.16-3.40; p = .02) and among subjects with direct pulmonary injury (OR, 1.75; 95% CI, 1.04-2.95; p = .04). CONCLUSIONS The haplotype GTC of NFKBIA gene is associated with higher risk of ARDS in Caucasians, particularly in male patients and in patients with direct lung injury.
Collapse
Affiliation(s)
- Rihong Zhai
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kamachi F, Ban HS, Hirasawa N, Ohuchi K. Inhibition of lipopolysaccharide-induced prostaglandin E2 production and inflammation by the Na+/H+ exchanger inhibitors. J Pharmacol Exp Ther 2007; 321:345-52. [PMID: 17237260 DOI: 10.1124/jpet.106.116251] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We analyzed the effects of the Na+/H+ exchanger (NHE) inhibitor 3,5-diamino-6-chloro-N-(diaminomethylidene)pyrazine-2-carboxamide hydrochloride (amiloride) and its analogs 5-(N,N-dimethyl)-amiloride (DMA) and 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) on the lipopolysaccharide (LPS)-induced production of prostaglandin (PG) E2 in vitro and in vivo. In the mouse macrophage-like cell line RAW 264, these inhibitors suppressed the LPS (1 microg/ml)-induced production of PGE2 at 8 h in a concentration-dependent manner. They also reduced the LPS-induced release of arachidonic acid from membrane phospholipids at 4 h and the LPS-induced increase in the level of cyclooxygenase (COX)-2 protein at 6 h, but not the level of COX-2 mRNA at 3 h. The LPS-induced phosphorylation of mitogen-activated protein kinases and degradation of inhibitor of kappaB-alpha were not inhibited by these drugs. In an air pouch-type LPS-induced inflammation model in mice 30 mg/kg amiloride and 10 mg/kg EIPA as well as the COX inhibitor indomethacin (10 mg/kg), significantly reduced the level of PGE2 in the pouch fluid at 8 h and the vascular permeability from 4 to 8 h. The accumulation of pouch fluid and leukocytes in the pouch fluid at 8 h was significantly inhibited by amiloride and EIPA but not by indomethacin. These findings suggested that the NHE inhibitors suppress the production of PGE2 through inhibiting the release of arachidonic acid and the increase in COX-2 protein levels and thus induce anti-inflammatory activity.
Collapse
Affiliation(s)
- Fumitaka Kamachi
- Laboratory of Pathological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Sendai, Miyagi 980-8578, Japan
| | | | | | | |
Collapse
|
28
|
De Vito P. The sodium/hydrogen exchanger: a possible mediator of immunity. Cell Immunol 2006; 240:69-85. [PMID: 16930575 DOI: 10.1016/j.cellimm.2006.07.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 06/30/2006] [Accepted: 07/05/2006] [Indexed: 10/24/2022]
Abstract
Immune cells such as macrophages and neutrophils provide the first line of defence of the immune system using phagocytosis, cytokine and chemokine synthesis and release, as well as Reactive Oxygen Species (ROS) generation. Many of these functions are positively coupled with cytoplasmic pH (pHi) and/or phagosomal pH (pHp) modification; an increase in pHi represents an important signal for cytokine and chemokine release, whereas a decrease in pHp can induce an efficient antigen presentation. However, the relationship between pHi and ROS generation is not well understood. In immune cells two main transport systems have been shown to regulate pHi: the Na+/H+ Exchanger (NHE) and the plasmalemmal V-type H+ ATPase. NHE is a family of proteins which exchange Na+ for H+ according to their concentration gradients in an electroneutral manner. The exchanger also plays a key role in several other cellular functions including proliferation, differentiation, apoptosis, migration, and cytoskeletal organization. Since not much is known on the relationship between NHE and immunity, this review outlines the contribution of NHE to different aspects of innate and adaptive immune responses such as phagosomal acidification, NADPH oxidase activation and ROS generation, cytokine and chemokine release as well as T cell apoptosis. The possibility that several pro-inflammatory diseases may be modulated by NHE activity is evaluated.
Collapse
Affiliation(s)
- Paolo De Vito
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy.
| |
Collapse
|
29
|
Chanda ML, Mogil JS. Sex differences in the effects of amiloride on formalin test nociception in mice. Am J Physiol Regul Integr Comp Physiol 2006; 291:R335-42. [PMID: 16601256 DOI: 10.1152/ajpregu.00902.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amiloride is a nonspecific blocker of acid-sensing ion channels (ASICs) that have been recently implicated in the mediation of mechanical and chemical/inflammatory nociception. Preliminary data using a transgenic model are suggestive of sex differences in the role of ASICs. We report here that systemic administration of amiloride (10-70 mg/kg ip) produces a robust, dose-dependent blockade of late/tonic phase nociceptive behavior on the mouse formalin test (5%; 20 microl) in female but not male mice, completely abolishing the known sex difference in formalin test response. Adult gonadectomy produced a "switching" of sex differences in amiloride efficacy, with castrated males displaying an amiloride blockade and ovariectomized females rendered less sensitive to amiloride. Gonadectomized mice could be switched back to their intact status using chronic estrogen benzoate or testosterone propionate replacement via osmotic minipump (6 microg/day or 250 microg/day, respectively). It is unclear whether this striking sex difference is due to sex-specific involvement of ASICs in pain processing, but the present data represent one of the first demonstrations of pain-related sex differences with no obvious opioid involvement.
Collapse
Affiliation(s)
- Mona Lisa Chanda
- Department of Psychology nd Centre for Research on Pain, McGill University 1205 Dr. Penfield Ave., Montreal, QC H3A 1B1, Canada
| | | |
Collapse
|
30
|
Coimbra R, Melbostad H, Loomis W, Porcides RD, Wolf P, Tobar M, Hoyt DB. LPS-Induced Acute Lung Injury is Attenuated by Phosphodiesterase Inhibition: Effects on Proinflammatory Mediators, Metalloproteinases, NF-??B, and ICAM-1 Expression. ACTA ACUST UNITED AC 2006; 60:115-25. [PMID: 16456445 DOI: 10.1097/01.ta.0000200075.12489.74] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Acute endotoxemia is characterized by an enhanced inflammatory response. Pentoxifylline (PTX), a phosphodiesterase inhibitor, has been shown to decrease TNF-alpha levels and to down-regulate neutrophil activation, likely because of increases in intracellular cyclic AMP. Its effects on lipopolysaccharide (LPS) induced lung injury, more specifically on tissue neutrophil infiltration and degranulation, adhesion molecule expression, and transcriptional factor activation, have not been fully investigated. We postulated that PTX treatment in acute endotoxemia downregulates the inflammatory response and may decrease lung injury. METHODS Male Sprague-Dawley rats were randomized into three groups: Sham (saline i.v.), LPS (5 mg/kg i.v.), and PTX + LPS (25 mg/kg and 5 mg/kg i.v., respectively; concomitant injection). After 4 hours, bronchoalveolar lavage fluid (BAL), plasma, and lungs were sampled. BAL IL-8 (ELISA), BAL MMP-2, plasma MMP-9, and BAL MMP-9 (Zymography) were measured. Lung histology (H&E), in addition to lung MPO, ICAM-1, and NF-kappaB expression evaluated by immunohistochemistry were analyzed. Lung NF-kappaB DNA binding was evaluated by electrophoretic mobility shift assay. RESULTS PTX treatment decreased BAL IL-8 levels, BAL MMP-2, and plasma MMP-9 activity. Lung neutrophil infiltration (MPO), ICAM-1 expression and NF-kappaB activation were decreased by PTX. In addition, PTX treatment caused a marked attenuation of LPS-induced lung injury. CONCLUSIONS Phosphodiesterase inhibition by PTX attenuates LPS-induced end-organ injury. In addition, proinflammatory cytokine production is also downregulated, likely because of the marked attenuation of NF-kappaB DNA binding and activation.
Collapse
Affiliation(s)
- Raul Coimbra
- Division of Trauma and Surgical Critical Care, Department of Surgery, University of California San Diego School of Medicine, 200 W. Arbor Drive, San Diego, CA 92103-8896, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Vaporidi K, Tsatsanis C, Georgopoulos D, Tsichlis PN. Effects of hypoxia and hypercapnia on surfactant protein expression proliferation and apoptosis in A549 alveolar epithelial cells. Life Sci 2005; 78:284-93. [PMID: 16125734 DOI: 10.1016/j.lfs.2005.04.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Accepted: 04/21/2005] [Indexed: 11/27/2022]
Abstract
UNLABELLED During lung injury alveolar epithelial cells are directly exposed to changes in PO(2) and PCO(2). Integrity of alveolar epithelial type II cells (AECII) is critical in lung injury but the effect of hypoxia and hypercapnia on AECII function, viability and proliferation has not been clearly investigated. Aim of the present work was to determine the direct effect of hypoxia and hypercapnia on surfactant protein expression, proliferation and apoptosis of lung epithelial cells in vitro. A549 alveolar epithelia cells were subjected to hypoxia (1%O(2)-5% CO(2)) or hypercapnia (21% O(2-) 15% CO(2)) and expression of surfactant protein C was measured and compared to normal conditions (21% O(2)- 5% CO(2)). Cell cycle progression and apoptosis were measured by flow cytometric analysis. RESULTS A549 alveolar epithelial cells produce surfactant proteins, including surfactant protein C, when cultured under normal conditions, which is reduced under hypoxic conditions. Specifically, pro-SpC expression is moderately decreased after 8 h of culture in hypoxia, and is completely attenuated after 48 h. Hypercapnia decreases pro-SpC expression only after 48 h of exposure. Stimulation with TNF-alpha partly reverses pSPC decrease observed under hypoxic and hypercapnic conditions. Hypoxic culture of A549 cells results in progressive arrest of cells in the G1 phase of the cell cycle and increased apoptosis first observed 4 h following exposure and peaking at 24 h. In contrast hypercapnia has no significant effect on alveolar epithelial cell proliferation or apoptosis. CONCLUSIONS Taken together we can conclude that hypoxia rapidly and severely affects AECII function and viability while hypercapnia has an inhibitory effect on pro-SpC production only after prolonged exposure.
Collapse
Affiliation(s)
- Katerina Vaporidi
- Molecular Oncology Research Institute, TUFTS-NEMC, Boston, MA01222, USA.
| | | | | | | |
Collapse
|
32
|
Amiloride and the regulation of NF-kappaB: an unsung crosstalk and missing link between fluid dynamics and oxidative stress-related inflammation--controversy or pseudo-controversy? Biochem Biophys Res Commun 2005; 327:373-81. [PMID: 15629126 DOI: 10.1016/j.bbrc.2004.11.166] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Indexed: 11/17/2022]
Abstract
Understanding the biophysics of fluid dynamics within the context of transcriptional regulation, mediated by nuclear factor (NF)-kappaB, is crucial to developing a consensus on the molecular basis of fluid mechanics and imbalance. Amiloride, an antikaliuretic-diuretic agent, has recently entered the realm of NF-kappaB as a key player in regulating the molecular association of fluid dynamics with inflammation and oxidative stress. With the identification of flanking regions encoding the amiloride-sensitive channels that are NF-kappaB-responsive, a new theme emerges which underlies the significance of this association. What is the role of NF-kappaB in regulating fluid mechanics-is it a physiologic or immunologic function? Conversely, amiloride is purported as a major regulator of this transcriptional pathway. It is the mainstream of this survey, therefore, to outline current advances on the biophysics and nature of the interaction existing between amiloride, amiloride-sensitive channels, and NF-kappaB, while searching for potential molecular mechanisms.
Collapse
|
33
|
Haddad JJ. Hypoxia and the regulation of mitogen-activated protein kinases: gene transcription and the assessment of potential pharmacologic therapeutic interventions. Int Immunopharmacol 2005; 4:1249-85. [PMID: 15313426 DOI: 10.1016/j.intimp.2004.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2004] [Revised: 06/09/2004] [Accepted: 06/15/2004] [Indexed: 12/20/2022]
Abstract
Oxygen is an environmental/developmental signal that regulates cellular energetics, growth, and differentiation processes. Despite its central role in nearly all higher life processes, the molecular mechanisms for sensing oxygen levels and the pathways involved in transducing this information are still being elucidated. Altering gene expression is the most fundamental and effective way for a cell to respond to extracellular signals and/or changes in its microenvironment. During development, the expression of specific sets of genes is regulated spatially (by position/morphogenetic gradients) and temporally, presumably via the sensing of molecular oxygen available within the microenvironment. Regulation of signaling responses is governed by transcription factors that bind to control regions (consensus sequences) of target genes and alter their expression in response to specific signals. Complex signal transduction during hypoxia (deficiency of oxygen in inspired gases or in arterial blood and/or in tissues) involves the coupling of ligand-receptor interactions to many intracellular events. These events basically include phosphorylations by tyrosine kinases and/or serine/threonine kinases, such as those of mitogen-activated protein kinases (MAPKs), a superfamily of kinases responsive to stress nonhomeostatic conditions. Protein phosphorylations imposed during hypoxia change enzyme activities and protein conformations, and the eventual outcome is rather complex, comprising of an alteration in cellular activity and changes in the programming of genes expressed within the responding cells. These molecular changes serve as signals that are crucial for cell survival under contingent conditions imposed during hypoxia. This review correlates current concepts of hypoxic sensing pathways with hypoxia-related phosphorylation mechanisms mediated by MAPKs via the genetic and pharmacologic regulation/manipulation of specific transcription factors and related cofactors.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, University of California, San Francisco, CA, USA.
| |
Collapse
|
34
|
Haddad JJ, Harb HL. L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)? Mol Immunol 2004; 42:987-1014. [PMID: 15829290 DOI: 10.1016/j.molimm.2004.09.029] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 09/29/2004] [Indexed: 12/17/2022]
Abstract
Of the antioxidant/prooxidant mechanisms mediating the regulation of inflammatory mediators, particularly cytokines, oxidative stress-related pathways remain a cornerstone. It is conspicuous that there is a strong association between free radical accumulation (ROS/RNS; oxidative stress) and the evolution of inflammation and inflammatory-related responses. The scenario that upholds a consensus on the aforementioned is still evolving to unravel, from an immunologic perspective, the molecular mechanisms associated with ROS/RNS-dependent inflammation. Cytokines are keynote players when it comes to defining an intimate relationship among reduction-oxidation (redox) signals, oxidative stress and inflammation. How close we are to identifying the molecular basis of this intricate association should be weighed against the involvement of specific signaling molecules and, potentially, transcription factors. L-gamma-Glutamyl-L-cysteinyl-glycine, or glutathione (GSH), an antioxidant thiol, has shaped, and still is refining, the face of oxidative signaling in terms of regulating the milieu of inflammatory mediators, ostensibly via the modulation (expression/repression) of oxygen- and redox-responsive transcription factors, hence termed redox(y)-sensitive cofactors. When it comes to the arena of oxygen sensing, oxidative stress and inflammation, nuclear factor-kappaB (NF-kappaB) and hypoxia-inducible factor-1alpha (HIF-1alpha) are key players that determine antioxidant/prooxidant responses with oxidative challenge. It is the theme therein to underlie current understanding of the molecular association hanging between oxidative stress and the evolution of inflammation, walked through an elaborate discussion on the role of transcription factors and cofactors. Would that classify glutathione and other redox signaling cofactors as potential anti-inflammatory molecules emphatically remains of particular interest, especially in the light of identifying upstream and downstream molecular pathways for conceiving therapeutic, alleviating strategy for oxidant-mediated, inflammatory-related disease conditions.
Collapse
Affiliation(s)
- John J Haddad
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| | | |
Collapse
|
35
|
Haddad JJ. Redox and oxidant-mediated regulation of apoptosis signaling pathways: immuno-pharmaco-redox conception of oxidative siege versus cell death commitment. Int Immunopharmacol 2004; 4:475-93. [PMID: 15099526 DOI: 10.1016/j.intimp.2004.02.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 11/10/2003] [Accepted: 02/04/2004] [Indexed: 11/21/2022]
Abstract
The mechanisms controlling apoptosis remain largely obscure. Because apoptosis is an integral part of the developmental program and is frequently the end-result of a temporal course of cellular events, it is referred to as programmed cell death. While there is considerable variation in the signals and requisite cellular metabolic events necessary to induce apoptosis in diverse cell types, the morphological features associated with apoptosis are highly conserved. Free radicals, particularly reactive oxygen species (ROS), have been proposed as common mediators for apoptosis. Many agents that induce apoptosis are either oxidants or stimulators of cellular oxidative metabolism. Conversely, many inhibitors of apoptosis have antioxidant activities or enhance cellular antioxidant defenses. Mammalian cells, therefore, exist in a state of oxidative siege in which survival requires an optimum balance of oxidants and antioxidants. The respiratory tract is subjected to a variety of environmental stresses, including oxidizing agents, particulates and airborne microorganisms that, together, may injure structural and functional lung components and thereby jeopardize the primary lung function of gas exchange. To cope with this challenge, the lung has developed elaborate defense mechanisms that include inflammatory-immune pathways as well as efficient antioxidant defense systems. In the absence of adequate antioxidant defenses, the damage produced is detected by the cell leading to the activation of genes responsible for the regulation of apoptosis, conceivably through stress-responsive transcription factors. Oxidative stress, in addition, may cause a shift in cellular redox state, which thereby modifies the nature of the stimulatory signal and which results in cell death as opposed to proliferation. ROS/redox modifications, therefore, may disrupt signal transduction pathways, can be perceived as abnormal and, under some conditions, may trigger apoptosis.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| |
Collapse
|
36
|
Yang WL, Godwin AK, Xu XX. Tumor necrosis factor-alpha-induced matrix proteolytic enzyme production and basement membrane remodeling by human ovarian surface epithelial cells: molecular basis linking ovulation and cancer risk. Cancer Res 2004; 64:1534-40. [PMID: 14973065 DOI: 10.1158/0008-5472.can-03-2928] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The majority of cancer is of surface/cyst epithelial origin. The ovarian surface epithelial cells are organized by a sheet of basement membrane composed mainly of collagen IV and laminin, and it is believed that the basement membrane greatly influences the physiological properties of ovarian surface epithelial cells. Previous studies in our laboratories indicated that loss of the basement membrane, an obligated step in ovulation, is also a critical step during the morphological transformation and tumor initiation of the ovarian surface epithelium. It is speculated that the loss of basement membrane in ovarian surface epithelial transformation may have similar biological mechanism to the loss of surface epithelial basement membrane in ovulation. However, the mechanisms involved in the ovarian surface epithelial basement membrane removal during ovulation are still not completely understood. In the current study, cultured human ovarian surface epithelial (HOSE) cells were examined for their abilities to produce matrix hydrolyzing enzymes and degrade basement membrane in response to a number of potential local mediators in ovulation. Among the candidate-stimulating factors tested, tumor necrosis factor (TNF)-alpha and IL-1beta (to a lesser extent) were found to drastically increase urokinase type plasminogen activator (uPA) and matrix metalloproteinase (MMP)-9 activities secreted from HOSE cells. MMP-2, the other major HOSE cell-secreted gelatinase, is constitutively produced but not regulated. As demonstrated by immunofluorescence staining and Western blot analysis, TNF-alpha treatment caused the degradation and structural reorganization of collagen IV and laminin secreted and deposited by HOSE cells in culture. Amiloride, an uPA inhibitor, not only inhibited the activity of uPA but was also able to suppress TNF-alpha-stimulated MMP-9 activity and prevented the TNF-alpha-stimulated remodeling of the basement membrane extracellular matrix, suggesting the contribution of uPA-mediated proteolytic cascade in this process. This study implicates the potential roles of TNF-alpha, uPA, and MMP-9 in ovarian surface epithelial basement membrane degradation and remodeling, which are processes during ovulation and may contribute to epithelial transformation. The findings may underscore the importance of TNF-alpha, uPA, and MMP-9 in ovarian surface epithelial basement membrane remodeling and may provide a molecular mechanism linking ovulation and ovarian cancer risk.
Collapse
Affiliation(s)
- Wan-Lin Yang
- Ovarian Cancer and Tumor Biology Programs, Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
37
|
Abdallah A, Sato H, Grutters JC, Veeraraghavan S, Lympany PA, Ruven HJT, van den Bosch JMM, Wells AU, du Bois RM, Welsh KI. Inhibitor kappa B-alpha (IkappaB-alpha) promoter polymorphisms in UK and Dutch sarcoidosis. Genes Immun 2003; 4:450-4. [PMID: 12944982 DOI: 10.1038/sj.gene.6364001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aetiology of sarcoidosis is uncertain; current thinking implicates exposure of genetically susceptible hosts to environmental factors. The nuclear factor kappa B (NF-kappaB) family of transcription factors are critical regulators of immediate transcriptional responses in inflammatory situations and immune responses. Inhibitor kappa B-alpha (IkappaB-alpha) inhibits NF-kappaB and plays a major role in controlling its activity. We investigated IkappaB-alpha promoter polymorphisms using sequence-specific primer-polymerase chain reaction, at positions -881 (A/G), -826 (C/T), and -297 (C/T) in Caucasian sarcoidosis patients (UK and Dutch [NL]), each with their own controls. Disease severity at presentation was assigned using chest radiography and pulmonary function indices. In the combined populations, the -297T allele carriage was more prevalent in patients than in controls (P=0.008). Three common haplotypes were found, of which haplotype 2 (GTT) was significantly associated with sarcoidosis in comparison with control subjects (P=0.01). Subgroup analysis revealed that the -826T allelic carriage was most prevalent in stage II disease, and more prevalent in stage III than in stage IV (P=0.01). The -826T allelic carriage did not show any association with lung function. These results indicate that the NF-kappaB activation pathway might be associated with the inflammation of sarcoidosis.
Collapse
Affiliation(s)
- A Abdallah
- Clinical Genomics Group, Royal Brompton Hospital, Imperial College, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Haddad JJ, Saadé NE, Safieh-Garabedian B. Interleukin-10 and the regulation of mitogen-activated protein kinases: are these signalling modules targets for the anti-inflammatory action of this cytokine? Cell Signal 2003; 15:255-67. [PMID: 12531424 DOI: 10.1016/s0898-6568(02)00075-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The many specific, yet overlapping and redundant activities of individual cytokines have been the basis for current concepts of therapeutical intervention. Cytokines are powerful two-edged weapons that can trigger a cascade of reactions and may show activities that often go beyond the single highly specific property that it is hoped they possess. Nevertheless, it can be stated that our new, though burgeoning, understanding of the biological mechanisms governing cytokine actions is an important contribution to medical knowledge. The crucial role of the anti-inflammatory cytokine, interleukin (IL)-10, in regulating potential molecular pathway mediating injury and cell death has attracted paramount attention in recent years. In this respect, the mitogen-activated protein kinase (MAPK) components have emerged as potential signalling cascades that regulate a plethora of cell functions, including inflammation and cell death. The biochemistry and molecular biology of cytokine actions, particularly IL-10, explain some well known and sometimes also some of the more obscure clinical aspects of the evolution of diseases.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, Molecular Neuroscience Research Division, Department of Anesthesia and Perioperative Care, University of California at San Francisco, School of Medicine, 94143-0542, USA.
| | | | | |
Collapse
|
39
|
Haddad JJ. Science review: redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: role for hypoxia-inducible factor-1alpha. Crit Care 2003; 7:47-54. [PMID: 12617740 PMCID: PMC154109 DOI: 10.1186/cc1840] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A progressive rise of oxidative stress due to altered reduction-oxidation (redox) homeostasis appears to be one of the hallmarks of the processes that regulate gene transcription in physiology and pathophysiology. Reactive oxygen species and reactive nitrogen species serve as signaling messengers for the evolution and perpetuation of the inflammatory process that is often associated with the condition of oxidative stress, which involves genetic regulation. Changes in the pattern of gene expression through reactive oxygen species/reactive nitrogen species-sensitive regulatory transcription factors are crucial components of the machinery that determines cellular responses to oxidative/redox conditions. The present review describes the basic components of the intracellular oxidative/redox control machinery and its crucial regulation of oxygen-sensitive and redox-sensitive transcription factors within the context of lung injury. Particularly, the review discusses mechanical ventilation and NF-kappaB-mediated lung injury, ischemia-reperfusion and transplantation, compromised host defense and inflammatory stimuli, and hypoxemia and the crucial role of hypoxia-inducible factor in mediating lung injury. Changes in the pattern of gene expression through regulatory transcription factors are therefore crucial components of the machinery that determines cellular responses to oxidative/redox stress.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, Department of Anesthesia and Perioperative Care, University of California at San Francisco, School of Medicine, San Francisco, California, USA.
| |
Collapse
|
40
|
Tabary O, Muselet C, Escotte S, Antonicelli F, Hubert D, Dusser D, Jacquot J. Interleukin-10 inhibits elevated chemokine interleukin-8 and regulated on activation normal T cell expressed and secreted production in cystic fibrosis bronchial epithelial cells by targeting the I(k)B kinase alpha/beta complex. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:293-302. [PMID: 12507912 PMCID: PMC1851118 DOI: 10.1016/s0002-9440(10)63820-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Accumulating evidence suggests that in cystic fibrosis (CF) patients, airway fluids are characterized by decreased antibacterial activity, elevated NaCl concentration, and high levels of chemokines, resulting in exaggerated activation of the transcriptional nuclear factor (NF)-kappaB in airway epithelial cells. The present study was undertaken to evaluate the effects of anti-inflammatory cytokine interleukin-10 (IL-10) on NaCl-induced chemokine IL-8 and regulated on activation normal T cell expressed and secreted (RANTES) expression through the NF-kappaB signaling in primary deltaF508 CF and non-CF (control) human bronchial epithelial cells. Exposure of CF and non-CF bronchial epithelial cells to hypertonic (170 mmol/L NaCl) milieu compared to isotonic (115 mmol/L NaCl) and hypotonic (85 mmol/L NaCl) milieu caused a significant, NaCl-dependent increase in IL-8 and RANTES gene expression and protein production. Compared to non-CF cells, CF bronchial epithelial cells were characterized by a higher susceptibility to produce elevated IL-8 and RANTES production in an hypertonic NaCl milieu in response to IL-1beta activation. Treatment with IL-10 suppressed IL-8 and RANTES gene expression in both non-CF and CF bronchial epithelial cells was associated with a reduced expression of I(k)B (IKK) alpha/beta kinases, particularly for IKKalpha which is greater expressed in CF bronchial epithelial cells, and resulting in reduced NF-kappaB activation. These findings suggest that IL-10 might have anti-inflammatory benefits in airways of CF patients.
Collapse
|
41
|
Haddad JJ, Saadé NE, Safieh-Garabedian B. Cytokines and neuro-immune-endocrine interactions: a role for the hypothalamic-pituitary-adrenal revolving axis. J Neuroimmunol 2002; 133:1-19. [PMID: 12446003 DOI: 10.1016/s0165-5728(02)00357-0] [Citation(s) in RCA: 284] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytokines, peptide hormones and neurotransmitters, as well as their receptors/ligands, are endogenous to the brain, endocrine and immune systems. These shared ligands and receptors are used as a common chemical language for communication within and between the immune and neuroendocrine systems. Such communication suggests an immunoregulatory role for the brain and a sensory function for the immune system. Interplay between the immune, nervous and endocrine systems is most commonly associated with the pronounced effects of stress on immunity. The hypothalamic-pituitary-adrenal (HPA) axis is the key player in stress responses; it is well established that both external and internal stressors activate the HPA axis. Cytokines are chemical messengers that stimulate the HPA axis when the body is under stress or experiencing an infection. This review discusses current knowledge of cytokine signaling pathways in neuro-immune-endocrine interactions as viewed through the triplet HPA axis. In addition, we elaborate on HPA/cytokine interactions in oxidative stress within the context of nuclear factor-kappaB transcriptional regulation and the role of oxidative markers and related gaseous transmitters.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, Department of Anesthesia and Perioperative Care, University of California at San Francisco, School of Medicine, Medical Sciences, San Francisco, CA 94143-0542, USA.
| | | | | |
Collapse
|
42
|
Haddad JJ. Oxygen-sensing mechanisms and the regulation of redox-responsive transcription factors in development and pathophysiology. Respir Res 2002; 3:26. [PMID: 12537605 PMCID: PMC150511 DOI: 10.1186/rr190] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2002] [Revised: 05/20/2002] [Accepted: 07/15/2002] [Indexed: 01/24/2023] Open
Abstract
How do organisms sense the amount of oxygen in the environment and respond appropriately when the level of oxygen decreases? Oxygen sensing and the molecular stratagems underlying the process have been the focus of an endless number of investigations trying to find an answer to the question: "What is the identity of the oxygen sensor?" Dynamic changes in pO2 constitute a potential signaling mechanism for the regulation of the expression and activation of reduction-oxidation (redox)-sensitive and oxygen-responsive transcription factors, apoptosis-signaling molecules and inflammatory cytokines. The transition from placental to lung-based respiration causes a relatively hyperoxic shift or oxidative stress, which the perinatal, developing lung experiences during birth. This variation in DeltapO2, in particular, differentially regulates the compartmentalization and functioning of the transcription factors hypoxia-inducible factor-1alpha (HIF-1alpha) and nuclear factor-kappaB (NF-kappaB). In addition, oxygen-evoked regulation of HIF-1alpha and NF-kappaB is closely coupled with the intracellular redox state, such that modulating redox equilibrium affects their responsiveness at the molecular level (expression/transactivation). The differential regulation of HIF-1alpha and NF-kappaB in vitro is paralleled by oxygen-sensitive and redox-dependent pathways governing the regulation of these factors during the transition from placental to lung-based respiration ex utero. The birth transition period in vivo and ex utero also regulates apoptosis signaling pathways in a redox-dependent manner, consistent with NF-kappaB being transcriptionally regulated in order to play an anti-apoptotic function. An association is established between oxidative stress conditions and the augmentation of an inflammatory state in pathophysiology, regulated by the oxygen- and redox-sensitive pleiotropic cytokines.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, Molecular Neuroscience Research Division, Department of Anesthesia and Perioperative Care, University of California at San Francisco, School of Medicine, 94143-0542, USA.
| |
Collapse
|
43
|
Haddad JJ. Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal 2002; 14:879-97. [PMID: 12220615 DOI: 10.1016/s0898-6568(02)00053-0] [Citation(s) in RCA: 290] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A progressive rise of oxidative stress due to the altered reduction-oxidation (redox) homeostasis appears to be one of the hallmarks of the processes that regulate gene transcription in physiology and pathophysiology. Reactive oxygen (ROS) and nitrogen (RNS) species serve as signaling messengers for the evolution and perpetuation of the inflammatory process that is often associated with the condition of oxidative stress, which involves genetic regulation. Changes in the pattern of gene expression through ROS/RNS-sensitive regulatory transcription factors are crucial components of the machinery that determines cellular responses to oxidative/redox conditions. Transcription factors that are directly influenced by reactive species and pro-inflammatory signals include nuclear factor-kappaB (NF-kappaB) and hypoxia-inducible factor-1alpha (HIF-1alpha). Here, I describe the basic components of the intracellular oxidative/redox control machinery and its crucial regulation of oxygen- and redox-sensitive transcription factors such as NF-kappaB and HIF-1alpha.
Collapse
Affiliation(s)
- John J Haddad
- Molecular Neuroscience Research Division, Department of Anesthesia and Perioperative Care, University of California at San Francisco, School of Medicine, San Francisco, CA 94143-0542, USA.
| |
Collapse
|
44
|
Abstract
Cytokines represent a multi-diverse family of polypeptide regulators; they are of relatively low molecular weight, pharmacologically active proteins that are secreted by one cell for the purpose of altering either its own functions (autocrine effect) or those of adjacent cells (paracrine effect). Cytokines are small, non-enzymatic glycoproteins whose actions are both diverse and overlapping (specificity/redundancy) and may affect diverse and overlapping target cell populations. In many instances, individual cytokines have multiple biological activities. Different cytokines can also have the same activity, which provides for functional redundancy within the inflammatory and immune systems. As biological cofactors that are released by specific cells, cytokines have specific effects on cell-cell interaction, communication, and behavior of other cells. As a result, it is infrequent that loss or neutralization of one cytokine will markedly interfere with either of these systems. The biological effect of one cytokine is often modified or augmented by another. Because an inter-digitating, redundant network of cytokines is involved in the production of most biological effects, both under physiologic and pathologic conditions, it usually requires more than a single defect in the network to alter drastically the outcome of the process. This fact therefore may have crucial significance in the development of therapeutic strategies for bio-pharmacologic intervention in cytokine-mediated inflammatory processes and infections.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Labs, Molecular Neuroscience Research Division, School of Medicine, University of California-San Francisco, Medical Sciences Building S-261, 513 Parnassus Avenue, San Francisco, CA 94143-0542, USA.
| |
Collapse
|
45
|
Haddad JJ. Pharmaco-redox regulation of cytokine-related pathways: from receptor signaling to pharmacogenomics. Free Radic Biol Med 2002; 33:907-26. [PMID: 12361802 DOI: 10.1016/s0891-5849(02)00985-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokines represent a multi-diverse family of polypeptide regulators; they are relatively low molecular weight (< 30 kDa), pharmacologically active proteins that are secreted by one cell for the purpose of altering either its own functions (autocrine effect) or those of adjacent cells (paracrine effect). Cytokines are small, nonenzymatic glycoproteins whose actions are both diverse and overlapping (specificity/redundancy) and may affect diverse and overlapping target cell populations. In many instances, individual cytokines have multiple biological activities. Different cytokines can also have the same activity, which provides for functional redundancy (network) within the inflammatory and immune systems. As biological cofactors that are released by specific cells, cytokines have specific effects on cell-cell interaction, communication, and behavior of other cells. As a result, it is infrequent that loss or neutralization of one cytokine will markedly interfere with either of these systems. The biological effect of one cytokine is often modified or augmented by another. Because an interdigitating, redundant network of cytokines is involved in the production of most biological effects, both under physiologic and pathologic conditions, it usually requires more than a single defect in the network to alter drastically the outcome of the process. This fact, therefore, may have crucial significance in the development of therapeutic strategies for biopharmacologic intervention in cytokine-mediated inflammatory processes and infections.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Labs, Molecular Neuroscience Research Division, Dept of Anesthesia and Perioperative Care, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0542, USA.
| |
Collapse
|
46
|
Haddad JJ, Fahlman CS. Redox- and oxidant-mediated regulation of interleukin-10: an anti-inflammatory, antioxidant cytokine? Biochem Biophys Res Commun 2002; 297:163-76. [PMID: 12237098 DOI: 10.1016/s0006-291x(02)02094-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reduction-oxidation (redox) state constitutes such a potential signaling mechanism for the regulation of an inflammatory signal associated with oxidative stress. Interleukin (IL)-10 has recently emerged as an anti-inflammatory cytokine with antioxidant properties. Interestingly, redox- and oxidant-mediated pathways positively and/or negatively regulate the expression, distribution, and functional properties of IL-10, thus, allowing the evolution of what is known as an anti-inflammatory redox-oxidant revolving axis. This axis is directly involved in regulating phosphorylation mechanisms, which eventually control gene expression and the biosynthesis of oxidative stress-related cofactors, such as reactive species and inflammatory cytokines. The association between IL-10, an anti-inflammatory antioxidant, with redox- and oxidant-related pathways governing the regulation of inflammatory and closely dependent processes is thereafter discussed.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, Molecular Neuroscience Research Division, Department of Anesthesia and Perioperative Care, University of California at San Francisco, School of Medicine, 94143-0542, USA.
| | | |
Collapse
|
47
|
Németh ZH, Deitch EA, Szabó C, Haskó G. Hyperosmotic stress induces nuclear factor-kappaB activation and interleukin-8 production in human intestinal epithelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:987-96. [PMID: 12213727 PMCID: PMC1867255 DOI: 10.1016/s0002-9440(10)64259-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inflammatory bowel disease of the colon is associated with a high osmolarity of colonic contents. We hypothesized that this hyperosmolarity may contribute to colonic inflammation by stimulating the proinflammatory activity of intestinal epithelial cells (IECs). The human IEC lines HT-29 and Caco-2 were used to study the effect of hyperosmolarity on the IEC inflammatory response. Exposure of IECs to hyperosmolarity triggered expression of the proinflammatory chemokine interleukin (IL)-8 both at the secreted protein and mRNA levels. In addition, hyperosmotic stimulation induced the release of another chemokine, GRO-alpha. These effects were because of activation of the transcription factor, nuclear factor (NF)-kappaB, because hyperosmolarity stimulated both NF-kappaB DNA binding and NF-kappaB-dependent transcriptional activity. Hyperosmolarity activated both p38 and p42/44 mitogen-activated protein kinases, which effect contributed to hyperosmolarity-stimulated IL-8 production, because p38 and p42/44 inhibition prevented the hyperosmolarity-induced increase in IL-8 production. In addition, the proinflammatory effects of hyperosmolarity were, in a large part, mediated by activation of Na(+)/H(+) exchangers, because selective blockade of Na(+)/H(+) exchangers prevented the hyperosmolarity-induced IEC inflammatory response. In summary, hyperosmolarity stimulates IEC IL-8 production, which effect may contribute to the maintenance of inflammation in inflammatory bowel disease.
Collapse
Affiliation(s)
- Zoltán H Németh
- Department of Surgery, University of Medicine and Dentistry-New Jersey Medical School, Newark 07103, USA
| | | | | | | |
Collapse
|
48
|
Németh ZH, Deitch EA, Lu Q, Szabó C, Haskó G. NHE blockade inhibits chemokine production and NF-kappaB activation in immunostimulated endothelial cells. Am J Physiol Cell Physiol 2002; 283:C396-403. [PMID: 12107048 DOI: 10.1152/ajpcell.00491.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Na(+)/H(+) exchanger (NHE) activation has been documented to contribute to endothelial cell injury caused by inflammatory states. However, the role of NHEs in regulation of the endothelial cell inflammatory response has not been investigated. The present study tested the hypothesis that NHEs contribute to endothelial cell inflammation induced by endotoxin or interleukin (IL)-1beta. NHE inhibition using amiloride, 5-(N-ethyl-N-isopropyl)-amiloride, and 5-(N-methyl-N-isobutyl)amiloride as well as the non-amiloride NHE inhibitors cimetidine, clonidine, and harmaline suppressed endotoxin-induced IL-8 and monocyte chemoattractant protein (MCP)-1 production by human umbilical endothelial vein cells (HUVECs). The suppressive effect of amiloride on endotoxin-induced IL-8 production was associated with a decreased accumulation of IL-8 mRNA. NHE inhibitors suppressed both inhibitory (I)kappaB degradation and nuclear factor (NF)-kappaB DNA binding, suggesting that a decrease in activation of the IkappaB-NF-kappaB system contributed to the suppression of HUVEC inflammatory response by NHE blockade. NHE inhibition decreased also the IL-1beta-induced HUVEC inflammatory response, because amiloride suppressed IL-1beta-induced E-selectin expression on HUVECs. These results demonstrate that maximal activation of the HUVEC inflammatory response requires a functional NHE.
Collapse
Affiliation(s)
- Zoltán H Németh
- Department of Surgery, University of Medicine and Dentistry-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | |
Collapse
|
49
|
Németh ZH, Deitch EA, Szabó C, Mabley JG, Pacher P, Fekete Z, Hauser CJ, Haskó G. Na+/H+ exchanger blockade inhibits enterocyte inflammatory response and protects against colitis. Am J Physiol Gastrointest Liver Physiol 2002; 283:G122-G132. [PMID: 12065299 DOI: 10.1152/ajpgi.00015.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Na+/H+ exchangers (NHEs) are integral transmembrane proteins found in all mammalian cells. There is substantial evidence indicating that NHEs regulate inflammatory processes. Because intestinal epithelial cells express a variety of NHEs, we tested the possibility that NHEs are also involved in regulation of the epithelial cell inflammatory response. In addition, since the epithelial inflammatory response is an important contributor to mucosal inflammation in inflammatory bowel disease (IBD), we examined the role of NHEs in the modulation of disease activity in a mouse model of IBD. In human gut epithelial cells, NHE inhibition using a variety of agents, including amiloride, 5-(N-methyl-N-isobutyl)amiloride, 5-(N-ethyl-N-isopropyl)- amiloride, harmaline, clonidine, and cimetidine, suppressed interleukin-8 (IL-8) production. The inhibitory effect of NHE inhibition on IL-8 was associated with a decrease in IL-8 mRNA accumulation. NHE inhibition suppressed both activation of the p42/p44 mitogen-activated protein kinase and nuclear factor-kappaB. Finally, NHE inhibition ameliorated the course of IBD in dextran sulfate-treated mice. Our data demonstrate that inhibition of NHEs may be an approach worthy of pursuing for the treatment of IBD.
Collapse
Affiliation(s)
- Zoltán H Németh
- Department of Surgery, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Haddad JJ, Fahlman CS. Nuclear factor-kappa B-independent regulation of lipopolysaccharide-mediated interleukin-6 biosynthesis. Biochem Biophys Res Commun 2002; 291:1045-51. [PMID: 11866471 DOI: 10.1006/bbrc.2002.6556] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The possible involvement of nuclear factor (NF)-kappa B in mediating the regulation of interleukin (IL)-6 biosynthesis in response to E. coli-derived lipopolysaccharide-endotoxin (LPS) was investigated in vitro. In alveolar epithelial cells, irreversible inhibition of the proteasome complex by carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG-132; 1-50 muM) did not affect LPS-mediated IL-6 secretion. Whereas the selective inhibition of the NF-kappa B pathway by the action of caffeic acid phenyl ethyl ester (CAPE; 1-100 microM) attenuated LPS-dependent IL-6 production at 100 muM, sulfasalazine (SSA; 0.1--10 mM), a potent and irreversible inhibitor of NF-kappa B, did not inhibit LPS-dependent IL-6 secretion. Incorporation of a selectively permeant inhibitor of NF-kappa B, SN-50 (1-20 microM), a peptide which contains the nuclear localization sequence (NLS) for the p50 NF-kappa B subunit and the amino-terminal sequence of Kaposi fibroblast growth factor to promote cell permeability, did not reduce LPS-mediated release of IL-6. These data indicate a NF-kappa B-independent pathway mediating LPS-dependent regulation of IL-6 biosynthesis in the airway epithelium.
Collapse
Affiliation(s)
- John J Haddad
- Oxygen Signaling Group, Center for Research into Human Development, Tayside Institute of Child Health, Faculty of Medicine, Ninewells Hospital & Medical School, University of Dundee, Scotland, UK [corrected].
| | | |
Collapse
|