1
|
Cheng X, Yang Q, Liu J, Ye J, Xiao H, Zhang G, Pan Y, Li X, Hao R, Li Y. Constitutional 763.3 Kb chromosome 1q43 duplication encompassing only CHRM3 gene identified by next generation sequencing (NGS) in a child with intellectual disability. Mol Cytogenet 2019; 12:16. [PMID: 31019551 PMCID: PMC6472087 DOI: 10.1186/s13039-019-0427-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/26/2019] [Indexed: 01/08/2023] Open
Abstract
Background Deletion or duplication on the distal portion of the long arm of chromosome 1 result in complex and highly variable clinical phenotype including. intellectual disability and autism. Case presentation We report on a patient with intellectual disability and a 763.3 Kb duplication on 1q43 that includes only CHRM3, which was detected by next generation sequencing (NGS). The patient presented with intellectual disability, developmental delay, autistic behavior, limited or no speech, social withdrawal, self-injurious, feeding difficulties, strabismus, short stature, hand anomalie, and no seizures, anxiety, or mood swings, and clinodactyly. Conclusions We propose that CHRM3 is the critical gene responsible for the common characteristics in the cases with 1q43 duplication and deletion.
Collapse
Affiliation(s)
- Xiaofei Cheng
- 1Department of Obstetrics and Gynecology, the First Hospital of Huhhot City, Inner Mongolia, China
| | - Qifang Yang
- 1Department of Obstetrics and Gynecology, the First Hospital of Huhhot City, Inner Mongolia, China
| | - Jun Liu
- 2Department of Radiology, the First Hospital of Huhhot City, Inner Mongolia, China
| | - Juan Ye
- 1Department of Obstetrics and Gynecology, the First Hospital of Huhhot City, Inner Mongolia, China
| | - Huiying Xiao
- 1Department of Obstetrics and Gynecology, the First Hospital of Huhhot City, Inner Mongolia, China
| | - Gaimei Zhang
- 1Department of Obstetrics and Gynecology, the First Hospital of Huhhot City, Inner Mongolia, China
| | - Yuanyuan Pan
- 1Department of Obstetrics and Gynecology, the First Hospital of Huhhot City, Inner Mongolia, China
| | - Xia Li
- 1Department of Obstetrics and Gynecology, the First Hospital of Huhhot City, Inner Mongolia, China
| | - Ruifeng Hao
- 1Department of Obstetrics and Gynecology, the First Hospital of Huhhot City, Inner Mongolia, China
| | - Yinfeng Li
- 1Department of Obstetrics and Gynecology, the First Hospital of Huhhot City, Inner Mongolia, China
| |
Collapse
|
2
|
Deng AY, Huot-Marchard JÉ, deBlois D, Thorin E, Chauvet C, Menard A. Functional Dosage of Muscarinic Cholinergic Receptor 3 Signalling, Not the Gene Dose, Determines Its Hypertension Pathogenesis. Can J Cardiol 2018; 35:661-670. [PMID: 30955929 DOI: 10.1016/j.cjca.2018.12.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Multiple quantitative trait loci for blood pressure (BP) have been localized throughout human and rodent genomes. Few of them have been functionally identified especially in humans, and little is known about their pathogenic directionality when identified. We focused on Chrm3 encoding the muscarinic cholinergic receptor 3 (M3R) as the causal gene for C17QTL1 in the Dahl salt-sensitive rat model. METHODS AND RESULTS Congenic knock-ins, gene-specific knockout, and ex vivo and in vivo function studies were applied in the Dahl salt-sensitive rat model of polygenic hypertension. A Chrm3 missense T1667C mutation in the last intracellular domain functionally correlated with a rise in BP increased the M3R signalling and resensitization, and adrenal epinephrogenesis. Gene targeting that abolished the M3R function without affecting any of noncoding Chrm3 variants caused a decrease in BP, indicating that the M3R-mediated signalling promotes hypertension. In contrast, removing 8 amino acids from the M3R first extracellular loop had no effect on BP. CONCLUSIONS The M3R-specialized signalling constitutes a new pathway of hypertension pathogenesis within the context of a polygenic and quantitative trait. Increased epinephrine in the circulation and secreted from the adrenal glands are suggestive of a molecular mechanism partially mediating M3R to promote hypertension. The structure-function relationships for various M3R domains in their effects on BP pave the way for identifying missense mutations that impact functions on BP as potential diagnostic targets.
Collapse
Affiliation(s)
- Alan Y Deng
- Department of Medicine, Research Centre, Centre hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada.
| | | | - Denis deBlois
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Eric Thorin
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Cristina Chauvet
- Department of Medicine, Research Centre, Centre hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Annie Menard
- Department of Medicine, Research Centre, Centre hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
3
|
Shin YH, Jin M, Hwang SM, Choi SK, Namkoong E, Kim M, Park MY, Choi SY, Lee JH, Park K. Epigenetic modulation of the muscarinic type 3 receptor in salivary epithelial cells. J Transl Med 2015; 95:237-45. [PMID: 25485536 DOI: 10.1038/labinvest.2014.150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 11/09/2022] Open
Abstract
Muscarinic receptors, particularly the type 3 subtype (M3R), have an important role in exocrine secretion. M3R normally function in HSG cells originated from human submandibular gland ducts, but not in A253 and SGT cells, derived from human submandibular carcinoma and salivary gland adenocarcinoma. However, the underlying mechanism of this suppression has remained elusive. In this study, we examined whether M3R function is suppressed by epigenetic modulation of the receptor. To this end, we investigated the mRNA transcript and protein levels of the M3R using reverse transcriptase-PCR, western blot, and confocal microscopy analyses. Global DNA methylation assays, methylation-specific PCR, and bisulfite sequencing were also performed to understand the epigenetic status of the M3R CpG island. We found that A253 cells expressed all subtypes of muscarinic receptors, except M3R, on the mRNA level. However, treatment of cells with 5-aza-2'-deoxycytidine (5-Aza-CdR), a DNA-demethylating agent, increased the expression levels of both M3R mRNA transcript and protein in proportion to the incubation period. 5-Aza-CdR completely restored the carbachol-induced calcium response, which was not observed in untreated A253 cells. In untreated A253 cells, all CG pairs from the 1st to 14th were methylated and 5-Aza-CdR treatment demethylated one of the methylated CG pairs. We also examined the methylation pattern of M3R CpG island in human cancer tissue. Interestingly, the result was very similar to those of A253 cells. All CG pairs in M3R CpG island were also methylated. Another salivary gland tumor cell line, SGT, also showed the similar methylation pattern, heavy methylation in M3R CpG island. It is concluded that CpG island in M3R is hypermethylated in cancer cell lines and human cancer. Our results further suggest that 5-Aza-CdR could potentially be used to restore the function of M3R, suppressed in some cancer cell types.
Collapse
Affiliation(s)
- Yong-Hwan Shin
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Meihong Jin
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Sung-Min Hwang
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Seul-Ki Choi
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Eun Namkoong
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Minkyoung Kim
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Moon-Yong Park
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Se-Young Choi
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Jong-Ho Lee
- Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Kyungpyo Park
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| |
Collapse
|
4
|
Wang R, Cleary RA, Wang T, Li J, Tang DD. The association of cortactin with profilin-1 is critical for smooth muscle contraction. J Biol Chem 2014; 289:14157-69. [PMID: 24700464 DOI: 10.1074/jbc.m114.548099] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Profilin-1 (Pfn-1) is an actin-regulatory protein that has a role in modulating smooth muscle contraction. However, the mechanisms that regulate Pfn-1 in smooth muscle are not fully understood. Here, stimulation with acetylcholine induced an increase in the association of the adapter protein cortactin with Pfn-1 in smooth muscle cells/tissues. Furthermore, disruption of the protein/protein interaction by a cell-permeable peptide (CTTN-I peptide) attenuated actin polymerization and smooth muscle contraction without affecting myosin light chain phosphorylation at Ser-19. Knockdown of cortactin by lentivirus-mediated RNAi also diminished actin polymerization and smooth muscle force development. However, cortactin knockdown did not affect myosin activation. In addition, cortactin phosphorylation has been implicated in nonmuscle cell migration. In this study, acetylcholine stimulation induced cortactin phosphorylation at Tyr-421 in smooth muscle cells. Phenylalanine substitution at this position impaired cortactin/Pfn-1 interaction in response to contractile activation. c-Abl is a tyrosine kinase that is necessary for actin dynamics and contraction in smooth muscle. Here, c-Abl silencing inhibited the agonist-induced cortactin phosphorylation and the association of cortactin with Pfn-1. Finally, treatment with CTTN-I peptide reduced airway resistance and smooth muscle hyperreactivity in a murine model of asthma. These results suggest that the interaction of cortactin with Pfn-1 plays a pivotal role in regulating actin dynamics, smooth muscle contraction, and airway hyperresponsiveness in asthma. The association of cortactin with Pfn-1 is regulated by c-Abl-mediated cortactin phosphorylation.
Collapse
Affiliation(s)
- Ruping Wang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Rachel A Cleary
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Tao Wang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Jia Li
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Dale D Tang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| |
Collapse
|
5
|
Deletion 1q43 encompassing only CHRM3 in a patient with autistic disorder. Eur J Med Genet 2012; 56:118-22. [PMID: 23253743 DOI: 10.1016/j.ejmg.2012.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/26/2012] [Indexed: 11/20/2022]
Abstract
Deletions on the distal portion of the long arm of chromosome 1 result in complex and highly variable clinical phenotypes which include intellectual disability, autism, seizures, microcephaly/craniofacial dysmorphology, corpus callosal agenesis/hypogenesis, cardiac and genital anomalies, hand and foot abnormalities and short stature. Genotype-phenotype correlation reported a minimum region of 2 Mb at 1q43-q44. We report on a 3 ½ year old male patient diagnosed with autistic disorder who has social withdrawal, eating problems, repetitive stereotypic behaviors including self-injurious head banging and hair pulling, and no seizures, anxiety, or mood swings. Array comparative genomic hybridization (aCGH) showed an interstitial deletion of 473 kb at 1q43 region (239,412,391-239,885,394; NCBI build37/hg19) harboring only CHRM3 (Acetylcholine Receptor, Muscarinic, 3; OMIM: 118494). Recently, another case with a de novo interstitial deletion of 911 kb at 1q43 encompassing three genes including CHRM3 was reported. The M3 muscarinic receptor influences a multitude of central and peripheral nervous system processes via its interaction with acetylcholine and may be an important modulator of behavior, learning and memory. We propose CHRM3 as a candidate gene responsible for our patient's specific phenotype as well as the overlapping phenotypic features of other patients with 1q43 or 1q43-q44 deletions.
Collapse
|
6
|
Muscarinic receptors and their antagonists in COPD: anti-inflammatory and antiremodeling effects. Mediators Inflamm 2012; 2012:409580. [PMID: 23226927 PMCID: PMC3512336 DOI: 10.1155/2012/409580] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/12/2012] [Indexed: 01/15/2023] Open
Abstract
Muscarinic receptors are expressed by most cell types and mediate cellular signaling of their natural ligand acetylcholine. Thereby, they control numerous central and peripheral physiological organ responses to neuronal activity. In the human lung, muscarinic receptors are predominantly expressed by smooth muscle cells, epithelial cells, and fibroblasts. Antimuscarinic agents are used for the treatment of chronic obstructive pulmonary disease and to a lesser extent for asthma. They are primarily used as bronchodilators, but it is now accepted that they are also associated with anti-inflammatory, antiproliferative, and antiremodeling effects. Remodeling of the small airways is a major pathology in COPD and impairs lung function through changes of the extracellular matrix. Glycosaminoglycans, particularly hyaluronic acid, and matrix metalloproteases are among extracellular matrix molecules that have been associated with tissue inflammation and remodeling in lung diseases, including chronic obstructive pulmonary disease and asthma. Since muscarinic receptors have been shown to influence the homeostasis of glycosaminoglycans and matrix metalloproteases, these molecules may be proved valuable endpoint targets in clinical studies for the pharmacological exploitation of the anti-inflammatory and antiremodeling effects of muscarinic inhibitors in the treatment of chronic obstructive pulmonary disease and asthma.
Collapse
|
7
|
Huh JW, Kim YH, Lee SR, Kim H, Kim DS, Kim HS, Kang HS, Chang KT. Gain of new exons and promoters by lineage-specific transposable elements-integration and conservation event on CHRM3 gene. Mol Cells 2009; 28:111-7. [PMID: 19669628 DOI: 10.1007/s10059-009-0106-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/09/2009] [Accepted: 06/23/2009] [Indexed: 10/20/2022] Open
Abstract
The CHRM3 gene is a member of the muscarinic acetylcholine receptor family that plays important roles in the regulation of fundamental physiological functions. The evolutionary mechanism of exon-acquisition and alternative splicing of the CHRM3 gene in relation to transposable elements (TEs) were analyzed using experimental approaches and in silico analysis. Five different transcript variants (T1, T2, T3, T3-1, and T4) derived from three distinct promoter regions (T1: L1HS, T2, T4: original, T3, T3-1: THE1C) were identified. A placenta (T1) and testis (T3 and T3-1)-dominated expression pattern appeared to be controlled by different TEs (L1HS and THE1C) that were integrated into the common ancestor genome during primate evolution. Remarkably, the T1 transcript was formed by the integration event of the human specific L1HS element. Among the 12 different brain regions, the brain stem, olfactory region, and cerebellum showed decreased expression patterns. Evolutionary analysis of splicing sites and alternative splicing suggested that the exon-acquisition event was determined by a selection and conservation mechanism. Furthermore, continuous integration events of transposable elements could produce lineage specific alternative transcripts by providing novel promoters and splicing sites. Taken together, exon-acquisition and alternative splicing events of CHRM3 genes were shown to have occurred through the continuous integration of transposable elements following conservation.
Collapse
Affiliation(s)
- Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, 363-883, Korea
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Fonseca BPF, Olsen PC, Coelho LP, Ferreira TPT, Souza HS, Martins MA, Viola JPB. NFAT1 transcription factor regulates pulmonary allergic inflammation and airway responsiveness. Am J Respir Cell Mol Biol 2009; 40:66-75. [PMID: 18664642 DOI: 10.1165/rcmb.2007-0102oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Allergic asthma is a chronic inflammatory disease of the lung whose incidence and morbidity continues to rise in developed nations. Despite being a hallmark of asthma, the molecular mechanisms that determine airway hyperresponsiveness (AHR) are not completely established. Transcription factors of the NFAT family are involved in the regulation of several asthma-related genes. It has been shown that the absence of NFAT1 leads to an increased pleural eosinophilic allergic response accompanied by an increased production of Th2 cytokines, suggesting a role for NFAT1 in the regulation of allergic diseases. Herein, we analyze NFAT1-/- mice to address the role of NFAT1 in a model of allergic airway inflammation and its influence in AHR. NFAT1-/- mice submitted to airway inflammation display a significant exacerbation of several features of the allergic disease, including lung inflammation, eosinophilia, and serum IgE levels, which were concomitant with elevated Th2 cytokine production. However, in spite of the increased allergic phenotype, NFAT1-/- mice failed to express AHR after methacholine aerosol. Refractoriness of NFAT1-/- mice to methacholine was confirmed in naïve mice, suggesting that this refractoriness occurs in an intrinsic way, independent of the lung inflammation. In addition, NFAT1-/- mice exhibit increased AHR in response to serotonin inhalation, suggesting a specific role for NFAT1 in the methacholine pathway of bronchoconstriction. Taken together, these data add support to the interpretation that NFAT1 acts as a counterregulatory mechanism to suppress allergic inflammation. Moreover, our findings suggest a novel role for NFAT1 protein in airway responsiveness mediated by the cholinergic pathway.
Collapse
Affiliation(s)
- Bruna P F Fonseca
- Division of Cellular Biology, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
9
|
Woszczek G, Chen LY, Nagineni S, Alsaaty S, Harry A, Logun C, Pawliczak R, Shelhamer JH. IFN-gamma induces cysteinyl leukotriene receptor 2 expression and enhances the responsiveness of human endothelial cells to cysteinyl leukotrienes. THE JOURNAL OF IMMUNOLOGY 2007; 178:5262-70. [PMID: 17404310 DOI: 10.4049/jimmunol.178.8.5262] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cysteinyl leukotrienes (cysLTs) are important mediators of cell trafficking and innate immune responses, involved in the pathogenesis of inflammatory processes, i.e., atherosclerosis, pulmonary fibrosis, and bronchial asthma. The aim of this study was to examine the regulation of cysLT signaling by IFN-gamma in human primary endothelial cells. IFN-gamma increased cysLT receptor 2 (CysLTR2) mRNA expression and CysLTR2-specific calcium signaling in endothelial cells. IFN-gamma signaled through Jak/STAT1, as both AG490, a Jak2 inhibitor, and expression of a STAT1 dominant-negative construct, significantly inhibited CysLTR2 mRNA expression in response to IFN-gamma. To determine mechanisms of IFN-gamma-induced CysLTR2 expression, the human CysLTR2 gene structure was characterized. The CysLTR2 gene has a TATA-less promoter, with multiple transcription start sites. It consists of six variably spliced exons. Eight different CysLTR2 transcripts were identified in endothelial and monocytic cells. Gene reporter assay showed potent basal promoter activity of a putative CysLTR2 promoter region. However, there were no significant changes in gene reporter and mRNA t(1/2) assays in response to IFN-gamma, suggesting transcriptional control of CysLTR2 mRNA up-regulation by IFN-gamma response motifs localized outside of the cloned CysLTR2 promoter region. Stimulation of endothelial cells by cysLTs induced mRNA and protein expression of early growth response genes 1, 2, and 3 and cycloxygenase-2. This response was mediated by CysLTR2 coupled to G(q/11), activation of phospholipase C, and inositol-1,4,5-triphosphate, and was enhanced further 2- to 5-fold by IFN-gamma stimulation. Thus, IFN-gamma induces CysLTR2 expression and enhances cysLT-induced inflammatory responses.
Collapse
Affiliation(s)
- Grzegorz Woszczek
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Guo Y, Traurig M, Ma L, Kobes S, Harper I, Infante AM, Bogardus C, Baier LJ, Prochazka M. CHRM3 gene variation is associated with decreased acute insulin secretion and increased risk for early-onset type 2 diabetes in Pima Indians. Diabetes 2006; 55:3625-9. [PMID: 17130513 DOI: 10.2337/db06-0379] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The muscarinic acetylcholine receptor subtype M3 (CHRM3) gene is expressed in islet beta-cells and has a role in stimulating insulin secretion; therefore, CHRM3 was analyzed as a candidate gene for type 2 diabetes in Pima Indians. Ten variants were genotyped in a family-based sample (n = 1,037), and 1 variant (rs3738435) located in the 5' untranslated region of an alternative transcript was found to be modestly associated with both early-onset type 2 diabetes and the acute insulin response in a small subset of these subjects. To better assess whether this variant has a role in acute insulin secretion, which could affect risk for early-onset type 2 diabetes, rs3738435 was genotyped in a larger group of normal glucose-tolerant Pima Indians who had measures of acute insulin secretion (n = 282) and a larger case-control group of Pima Indians selected for early-onset type 2 diabetes (n = 348 case subjects with age of onset <25 years; n = 392 nondiabetic control subjects aged >45 years). Genotyping in these larger sets of subjects confirmed that the C allele of rs3738435 was associated with a reduced acute insulin response (adjusted P = 0.00006) and was also modestly associated with increased risk of early-onset type 2 diabetes (adjusted P = 0.02).
Collapse
Affiliation(s)
- Yan Guo
- Diabetes Molecular Genetics Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445 N. 5th St., Suite 210, Phoenix, AZ 85004, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Durcan N, Costello RW, McLean WG, Blusztajn J, Madziar B, Fenech AG, Hall IP, Gleich GJ, McGarvey L, Walsh MT. Eosinophil-Mediated Cholinergic Nerve Remodeling. Am J Respir Cell Mol Biol 2006; 34:775-86. [PMID: 16456188 DOI: 10.1165/rcmb.2005-0196oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Eosinophils are observed to localize to cholinergic nerves in a variety of inflammatory conditions such as asthma, rhinitis, eosinophilic gastroenteritis, and inflammatory bowel disease, where they are also responsible for the induction of cell signaling. We hypothesized that a consequence of eosinophil localization to cholinergic nerves would involve a neural remodeling process. Eosinophil co-culture with cholinergic IMR32 cells led to increased expression of the M2 muscarinic receptor, with this induction being mediated via an adhesion-dependent release of eosinophil proteins, including major basic protein and nerve growth factor. Studies on the promoter sequence of the M2 receptor indicated that this induction was initiated at a transcription start site 145 kb upstream of the gene-coding region. This promoter site contains binding sites for a variety of transcription factors including SP1, AP1, and AP2. Eosinophils also induced the expression of several cholinergic genes involved in the synthesis, storage, and metabolism of acetylcholine, including the enzymes choline acetyltransferase, vesicular acetylcholine transferase, and acetylcholinesterase. The observed eosinophil-induced changes in enzyme content were associated with a reduction in intracellular neural acetylcholine but an increase in choline content, suggesting increased acetylcholine turnover and a reduction in acetylcholinesterase activity, in turn suggesting reduced catabolism of acetylcholine. Together these data suggest that eosinophil localization to cholinergic nerves induces neural remodeling, promoting a cholinergic phenotype.
Collapse
Affiliation(s)
- Niamh Durcan
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Camoretti-Mercado B, Fernandes DJ, Dewundara S, Churchill J, Ma L, Kogut PC, McConville JF, Parmacek MS, Solway J. Inhibition of transforming growth factor beta-enhanced serum response factor-dependent transcription by SMAD7. J Biol Chem 2006; 281:20383-92. [PMID: 16690609 DOI: 10.1074/jbc.m602748200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Transforming growth factor (TGF)-beta is present in large amounts in the airways of patients with asthma and with other diseases of the lung. We show here that TGFbeta treatment increased transcriptional activation of SM22alpha, a smooth muscle-specific promoter, in airway smooth muscle cells, and we demonstrate that this effect stems in part from TGFbeta-induced enhancement of serum response factor (SRF) DNA binding and transcription promoting activity. Overexpression of Smad7 inhibited TGFbeta-induced stimulation of SRF-dependent promoter function, and chromatin immunoprecipitation as well as co-immunoprecipitation assays established that endogenous or recombinant SRF interacts with Smad7 within the nucleus. The SRF binding domain of Smad7 mapped to the C-terminal half of the Smad7 molecule. TGFbeta treatment weakened Smad7 association with SRF, and conversely the Smad7-SRF interaction was increased by inhibition of the TGFbeta pathway through overexpression of a dominant negative mutant of TGFbeta receptor I or of Smad3 phosphorylation-deficient mutant. Our findings thus reveal that SRF-Smad7 interactions in part mediate TGFbeta regulation of gene transcription in airway smooth muscle. This offers potential targets for interventions in treating lung inflammation and asthma.
Collapse
|
13
|
Halayko AJ, Stelmack GL. The association of caveolae, actin, and the dystrophin-glycoprotein complex: a role in smooth muscle phenotype and function? Can J Physiol Pharmacol 2006; 83:877-91. [PMID: 16333360 DOI: 10.1139/y05-107] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Smooth muscle cells exhibit phenotypic and mechanical plasticity. During maturation, signalling pathways controlling actin dynamics modulate contractile apparatus-associated gene transcription and contractile apparatus remodelling resulting from length change. Differentiated myocytes accumulate abundant caveolae that evolve from the structural association of lipid rafts with caveolin-1, a protein with domains that confer unique functional properties. Caveolae and caveolin-1 modulate and participate in receptor-mediated signalling, and thus contribute to functional diversity of phenotypically similar myocytes. In mature smooth muscle, caveolae are partitioned into discrete linear domains aligned with structural proteins that tether actin to the extracellular matrix. Caveolin-1 binds with beta-dystroglycan, a subunit of the dystrophin glycoprotein complex (DGC), and with filamin, an actin binding protein that organizes cortical actin, to which integrins and focal adhesion complexes are anchored. The DGC is linked to the actin cytoskeleton by a dystrophin subunit and is a receptor for extracellular laminin. Thus, caveolae and caveolin-associated signalling proteins and receptors are linked via structural proteins to a dynamic filamentous actin network. Despite development of transgenic models to investigate caveolins and membrane-associated actin-linking proteins in skeletal and cardiac muscle function, only superficial understanding of this association in smooth muscle phenotype and function has emerged.
Collapse
Affiliation(s)
- Andrew J Halayko
- Department of Physiology, University of Manitoba, Winnipeg, Canada.
| | | |
Collapse
|
14
|
Racké K, Juergens UR, Matthiesen S. Control by cholinergic mechanisms. Eur J Pharmacol 2006; 533:57-68. [PMID: 16458288 DOI: 10.1016/j.ejphar.2005.12.050] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2005] [Indexed: 01/11/2023]
Abstract
In the respiratory tract acetylcholine is neurotransmitter in ganglia and postganglionic parasympathetic nerves, but in addition is paracrine mediator released from various non-neuronal cells. Almost every cell type present in the respiratory tract expresses nicotinic and muscarinic receptors and therefore appears to be a target for acetylcholine. The present review describes the mechanisms of synthesis and release of acetylcholine from neuronal and non-neuronal cells and the differential control mechanisms. The different cholinoceptors, multiple nicotinic and muscarinic receptors and their signalling are outlined and their involvement in the modulation of the function of various target cells, smooth muscles, nerves, surface epithelial, secretory cells, fibroblasts and inflammatory cells is discussed in detail.
Collapse
Affiliation(s)
- Kurt Racké
- Institute of Pharmacology and Toxicology, University of Bonn, Reuterstrasse 2b, D-53113 Bonn, Germany.
| | | | | |
Collapse
|
15
|
Racké K, Matthiesen S. The airway cholinergic system: physiology and pharmacology. Pulm Pharmacol Ther 2004; 17:181-98. [PMID: 15219263 DOI: 10.1016/j.pupt.2004.03.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 01/23/2004] [Accepted: 03/16/2004] [Indexed: 11/22/2022]
Abstract
The present review summarizes the current knowledge of the cholinergic systems in the airways with special emphasis on the role of acetylcholine both as neurotransmitter in ganglia and postganglionic parasympathetic nerves and as non-neuronal paracrine mediator. The different cholinoceptors, various nicotinic and muscarinic receptors, as well as their signalling mechanisms are presented. The complex ganglionic and prejunctional mechanisms controlling the release of acetylcholine are explained, and it is discussed whether changes in transmitter release could be involved in airway dysfunctions. The effects of acetylcholine on different target cells, smooth muscles, nerves, surface epithelial and secretory cells as well as mast cells are described in detail, including the receptor subtypes involved in signal transmission.
Collapse
Affiliation(s)
- K Racké
- Institute of Pharmacology and Toxicology, University of Bonn, Reuterstrasse 2b, D-53113 Bonn, Germany.
| | | |
Collapse
|
16
|
Krejci A, Bruce AW, Dolezal V, Tucek S, Buckley NJ. Multiple promoters drive tissue-specific expression of the human M2 muscarinic acetylcholine receptor gene. J Neurochem 2004; 91:88-98. [PMID: 15379890 DOI: 10.1111/j.1471-4159.2004.02694.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Despite the wealth of information on the functional and pharmacological properties of the M2 muscarinic receptor, we know relatively little of structure and regulation of the M2 receptor gene. Here, we describe the organisation of the human M2 gene and its promoters. Four exons are present in the 5' untranslated region of the human M2 mRNA distributed over 146 kb on chromosome 7 which produce eight different splice variants in the IMR-32 neuroblastoma cell line. The unexpectedly large size of this gene indicates that transcription initiates much further upstream of the coding region than earlier studies had indicated. We present evidence that there are three distinct human M2 promoters. Analysis of endogenous transcripts revealed that promoter 2 is preferentially used in neuroblastoma cells, whereas promoter 1 in cardiac cells. All promoters are highly conserved across human, mouse, rat and pig. They contain multiple start sites and none possess a TATA-box. In addition, we describe another M2 promoter that is specific for rat. We show that GATA-4 transcription factor binds to two sites within the regulatory regions of the M2 gene using reporter gene assays, electromobility shift assays and mutational analysis.
Collapse
|
17
|
Halayko AJ, Kartha S, Stelmack GL, McConville J, Tam J, Camoretti-Mercado B, Forsythe SM, Hershenson MB, Solway J. Phophatidylinositol-3 Kinase/Mammalian Target of Rapamycin/p70S6KRegulates Contractile Protein Accumulation in Airway Myocyte Differentiation. Am J Respir Cell Mol Biol 2004; 31:266-75. [PMID: 15105162 DOI: 10.1165/rcmb.2003-0272oc] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Increased airway smooth muscle in airway remodeling results from myocyte proliferation and hypertrophy. Skeletal and vascular smooth muscle hypertrophy is induced by phosphatidylinositide-3 kinase (PI(3) kinase) via mammalian target of rapamycin (mTOR) and p70S6 kinase (p70S6K). We tested the hypothesis that this pathway regulates contractile protein accumulation in cultured canine airway myocytes acquiring an elongated contractile phenotype in serum-free culture. In vitro assays revealed a sustained activation of PI(3) kinase and p70S6K during serum deprivation up to 12 d, with concomitant accumulation of SM22 and smooth muscle myosin heavy chain (smMHC) proteins. Immunocytochemistry revealed that activation of PI3K/mTOR/p70S6K occurred almost exclusively in myocytes that acquire the contractile phenotype. Inhibition of PI(3) kinase or mTOR with LY294002 or rapamycin blocked p70S6K activation, prevented formation of large elongated contractile phenotype myocytes, and blocked accumulation of SM22 and smMHC. Inhibition of MEK had no effect. Steady-state mRNA abundance for SM22 and smMHC was unaffected by blocking p70S6K activation. These studies provide primary evidence that PI(3) kinase and mTOR activate p70S6K in airway myocytes leading to the accumulation of contractile apparatus proteins, differentiation, and growth of large, elongated contractile phenotype airway smooth muscle cells.
Collapse
|
18
|
Fenech AG, Billington CK, Swan C, Richards S, Hunter T, Ebejer MJ, Felice AE, Ellul-Micallef R, Hall IP. Novel Polymorphisms Influencing Transcription of the Human CHRM2 Gene in Airway Smooth Muscle. Am J Respir Cell Mol Biol 2004; 30:678-86. [PMID: 14512373 DOI: 10.1165/rcmb.2003-0011oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Muscarinic receptors are a functionally important family of G-protein-coupled receptors. Using a combination of rapid amplification of 5' cDNA ends and reporter gene assays, we characterized the 5' untranslated region of the CHRM2 gene as expressed in human airway smooth muscle (HASM) cells. A splice site is present 46 bp upstream from the ATG start codon. Five exons with alternative splicing patterns are present upstream of this splice site, separated by introns ranging from 87 bp to > 145 kb. There is evidence for the gene being under the control of a TATA-less promoter with Sp1, GATA, and activator protein-2 binding sites. Multiple transcription start sites (TSSs) were identified. We identified a novel 0.5-kb hypervariable region located 648 bp upstream of the most 5' TSS, a multiallelic (CA) tandem repeat 96 bp downstream of the most 5' TSS, and a common C-->A SNP located 136 bp upstream of the most 5' TSS. Functional studies in primary HASM cells and the BEAS-2B cell line demonstrated highest promoter activity to be upstream of the most 3' TSS, with potential repressor elements operating in a cell type-dependent manner, located upstream of the most 5' TSS. We present functional data to show that the CA repeat may influence the transcription of the gene in HASM and BEAS-2B cells.
Collapse
Affiliation(s)
- Anthony G Fenech
- Department of Clinical Pharmacology and Therapeutics, University of Malta, Msida, Malta
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cardoso CC, Pereira RTS, Koyama CA, Porto CS, Abdalla FMF. Effects of estrogen on muscarinic acetylcholine receptors in the rat hippocampus. Neuroendocrinology 2004; 80:379-86. [PMID: 15741743 DOI: 10.1159/000084202] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 12/02/2004] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to investigate whether different estrogen manipulations have effects on the expression of muscarinic acetylcholine receptors (mAChRs) in the adult female rat hippocampus. Hippocampus was obtained from rats in proestrus (control), ovariectomized for 2, 10 and 15 days, ovariectomized for 15 days and treated with 17beta-estradiol for 7 days, and treated with 17beta-estradiol immediately after ovariectomy for 21 days. Rats' estrogen status was monitored by measuring estradiol plasma levels and uterus relative weight. [3H]quinuclidinyl benzilate ([3H]QNB) binding studies indicated that ovariectomy time-dependently increases the number of mAChRs in hippocampus when compared to those obtained from control rats. Estradiol treatments for 21 days avoid the effect of ovariectomy. However, the estradiol treatments for 7 days after 15 days of ovariectomy slightly change the number of mAChRs. In conclusion, these results showed that ovariectomy time-dependently increases mAChRs number in the rat hippocampus. In addition, these data suggest that treatment with estradiol initiated within a specific period of time after the loss of ovarian function may be effective at preventing specific effects of hormone deprivation on hippocampus.
Collapse
Affiliation(s)
- Camila C Cardoso
- Laboratory of Pharmacology, Instituto Butantan, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
20
|
Halayko AJ, Amrani Y. Mechanisms of inflammation-mediated airway smooth muscle plasticity and airways remodeling in asthma. Respir Physiol Neurobiol 2003; 137:209-22. [PMID: 14516727 DOI: 10.1016/s1569-9048(03)00148-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recent evidence points to progressive structural change in the airway wall, driven by chronic local inflammation, as a fundamental component for development of irreversible airway hyperresponsiveness. Acute and chronic inflammation is orchestrated by cytokines from recruited inflammatory cells, airway myofibroblasts and myocytes. Airway myocytes exhibit functional plasticity in their capacity for contraction, proliferation, and synthesis of matrix protein and cytokines. This confers a principal role in driving different components of the airway remodeling process, and mediating constrictor hyperresponsiveness. Functional plasticity of airway smooth muscle (ASM) is regulated by an array of environmental cues, including cytokines, which mediate their effects through receptors and a number of intracellular signaling pathways. Despite numerous studies of the cellular effects of cytokines on cultured airway myocytes, few have identified how intracellular signaling pathways modulate or induce these cellular responses. This review summarizes current understanding of these concepts and presents a model for the effects of inflammatory mediators on functional plasticity of ASM in asthma.
Collapse
Affiliation(s)
- Andrew J Halayko
- Departments of Physiology, Internal Medicine, and Pediatrics and Child Health, University of Manitoba, Manitoba, Canada.
| | | |
Collapse
|
21
|
Chen H, Tliba O, Van Besien CR, Panettieri RA, Amrani Y. TNF-[alpha] modulates murine tracheal rings responsiveness to G-protein-coupled receptor agonists and KCl. J Appl Physiol (1985) 2003; 95:864-72; discussion 863. [PMID: 12730147 DOI: 10.1152/japplphysiol.00140.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the mechanisms that underlie airway hyperresponsiveness in asthma are complex and involve a variety of factors, evidence now suggests that intrinsic abnormalities in airway smooth muscle (ASM) may play an important role. We previously reported that TNF-alpha, a cytokine involved in asthma, augments G-protein-coupled receptor (GPCR) agonist-evoked calcium responses in cultured ASM cells. Here we have extended our previous studies by investigating whether TNF-alpha also modulates the contractile and relaxant responses to GPCR activation using cultured murine tracheal rings. We found that in tracheal rings treated with 50 ng/ml TNF-alpha, carbachol-induced isometric force was significantly increased by 30% compared with those treated with diluent alone (P < 0.05). TNF-alpha also augmented KCl-induced force generation by 70% compared with rings treated with diluent alone (P < 0.01). The enhancing effect of TNF-alpha on carbachol-induced isometric force generation was completely abrogated in the tracheal rings obtained from TNF-alpha receptor (TNFR)1-deficient mice and in control rings treated with a TNF-alpha mutant that solely activates TNFR2. TNF-alpha also attenuated relaxation responsiveness to isoproterenol but not to PGE2 or forskolin. TNF-alpha modulatory effects on GPCR-induced ASM responsiveness were completely abrogated by pertussis toxin, an inhibitor of Gialpha proteins. Taken together, these data suggest that TNF-alpha may participate in the development of airway hyperresponsiveness in asthma via the modulation of ASM responsiveness to both contractile and beta-adrenoceptor GPCR agonists.
Collapse
Affiliation(s)
- Hang Chen
- Deparment of Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 1904, USA
| | | | | | | | | |
Collapse
|
22
|
Billington CK, Penn RB. Signaling and regulation of G protein-coupled receptors in airway smooth muscle. Respir Res 2003. [DOI: 10.1186/1465-9921-4-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
23
|
Donfack J, Kogut P, Forsythe S, Solway J, Ober C. Sequence variation in the promoter region of the cholinergic receptor muscarinic 3 gene and asthma and atopy. J Allergy Clin Immunol 2003; 111:527-32. [PMID: 12642833 DOI: 10.1067/mai.2003.71] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Muscarinic acetylcholine receptors are members of the superfamily of G protein-coupled, 7 transmembrane- spanning proteins. They are important in the development of airway hyperresponsiveness. In the lung the M3 receptor, encoded by the cholinergic receptor muscarinic 3 gene, is present in airway smooth muscle and mediates smooth muscle contraction. OBJECTIVE We considered the cholinergic receptor muscarinic 3 gene as a possible candidate gene for bronchial asthma and initiated studies to identify polymorphisms in the promoter region. METHOD We identified 4 single-nucleotide polymorphisms (-708A/G, -627G/C, -513C/A, and -492C/T) and 2 short tandem repeat polymorphisms, a tetranucleotide (CTTT)12-20 and a dinucleotide (GT)6-19 repeat. RESULTS None of the identified single nucleotide polymorphisms were significantly more frequent in asthmatic patients (n = 76) compared with in healthy control subjects (n = 81). Furthermore, there was no evidence for nonrandom transmission of short tandem repeat polymorphism haplotypes to individuals with asthma or bronchial hyperresponsiveness (P >.50) in a large Hutterite pedigree. However, there was significant nonrandom transmission of haplotypes to individuals with skin test reactivity to cockroach allergens (global transmission disequilibrium test: chi2 = 38.55, P =.013). CONCLUSIONS These results suggest a possible role for this gene in atopic disorders.
Collapse
Affiliation(s)
- Joseph Donfack
- Department of Human Genetics, The University of Chicago, Chicago, Ill 60637, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Airway smooth muscle (ASM), an important tissue involved in the regulation of bronchomotor tone, exists in the trachea and in the bronchial tree up to the terminal bronchioles. The physiological relevance of ASM in healthy airways remains unclear. Evidence, however, suggests that ASM undergoes marked phenotypic modulation in lung development and in disease states such as asthma, chronic bronchitis and emphysema. The shortening of ASM regulates airway luminal diameter and modulates airway resistance, which can be augmented by cytokines as well as extracellular matrix alterations. ASM may also serve immunomodulatory functions, which are mediated by the secretion of pro-inflammatory mediators such as cytokines and chemokines. In addition, ASM mass increases in chronic airway diseases and may represent either a pathologic or an injury-repair response due to chronic inflammation. This review will present evidence that ASM, a "passive" contractile tissue, may become an "active participant" in modulating inflammation in chronic lung diseases. Cell facts 1. Found in the trachea and along the bronchial tree. 2. Critically important in regulating bronchomotor tone of the airways. 3. Differentiation state is associated with the expression of various "contractile proteins." 4. Displays phenotypic modulation of mechanical, synthetic and proliferative responses. 5. Secretes cytokines, chemokines and extracellular matrix proteins. 6. May serve as a potential new target for the treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Yassine Amrani
- Department of Medicine, University of Pennsylvania Medical Center, Pulmonary, Allergy and Critical Care Division, 848 BRB II/III 421 Curie Boulevard, Philadelphia PA 19104, USA.
| | | |
Collapse
|
25
|
Gosens R, Nelemans SA, Grootte Bromhaar MM, McKay S, Zaagsma J, Meurs H. Muscarinic M3-receptors mediate cholinergic synergism of mitogenesis in airway smooth muscle. Am J Respir Cell Mol Biol 2003; 28:257-62. [PMID: 12540494 DOI: 10.1165/rcmb.2002-0128oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Muscarinic receptor agonists have been considered to act synergistically in combination with growth facors on airway smooth muscle growth. Characterization of the proliferative responses and of the receptor subtype(s) involved has not yet been studied. Therefore, we investigated mitogenesis induced by stimulation of muscarinic receptors, alone and in combination with stimulation by platelet-derived growth factor (PDGF). For this purpose, [(3)H]thymidine-incorporation was measured at different culture stages in bovine tracheal smooth muscle cells. Functional muscarinic M(3)-receptors, as measured by formation of inositol phosphates, were present in unpassaged cells, but were lacking in passage 2 cells. Methacholine (10 microM) by itself was not able to induce a proliferative response in both cell culture stages. However, methacholine interacted synergistically with PDGF in a dose-dependent fashion (0.1-10 microM), but only in cells having functional muscarinic M(3)-receptors. This synergism could be suppressed significantly by the selective M(3)-receptor antagonists DAU 5884 (0.1 microM) and 4-DAMP (10 nM), but not at all by the M(2)-subtype selective antagonist gallamine (10 microM). These results show that methacholine potentiates mitogenesis induced by PDGF solely through stimulation of muscarinic M(3)-receptors in bovine tracheal smooth muscle cells.
Collapse
Affiliation(s)
- Reinoud Gosens
- Department of Molecular Pharmacology, University Centre for Pharmacy, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
26
|
Billington CK, Penn RB. m3 muscarinic acetylcholine receptor regulation in the airway. Am J Respir Cell Mol Biol 2002; 26:269-72. [PMID: 11867333 DOI: 10.1165/ajrcmb.26.3.f232] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Charlotte K Billington
- Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|