1
|
Chu KA, Lai CY, Chen YH, Kuo FH, Chen IY, Jiang YC, Liu YL, Ko TL, Fu YS. An animal model of severe acute respiratory distress syndrome for translational research. Lab Anim Res 2025; 41:4. [PMID: 39856771 PMCID: PMC11758736 DOI: 10.1186/s42826-025-00235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine. Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of transplanted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency. RESULTS In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats' left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within seven days after the injury, we found that arterial blood oxygen saturation (SpO2) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2) amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A histological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7. CONCLUSIONS This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
Collapse
Affiliation(s)
- Kuo-An Chu
- Division of Chest Medicine, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- School of Medicine, College of Medicine, National Sun Yat-Sen University, No. 70, Lienhai Rd., Kaohsiung, Taiwan, ROC
- School of Nursing, Fooyin University, Kaohsiung, Taiwan, ROC
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan, ROC
| | - Chia-Yu Lai
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yu-Hui Chen
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Fu-Hsien Kuo
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - I-Yuan Chen
- Division of Chest Medicine, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | - You-Cheng Jiang
- Division of Chest Medicine, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | - Ya-Ling Liu
- Division of Chest Medicine, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | - Tsui-Ling Ko
- School of Medicine, College of Medicine, National Sun Yat-Sen University, No. 70, Lienhai Rd., Kaohsiung, Taiwan, ROC.
| | - Yu-Show Fu
- Department of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nung Street, Taipei, Taiwan, ROC.
| |
Collapse
|
2
|
Banerji R, Grifno GN, Shi L, Smolen D, LeBourdais R, Muhvich J, Eberman C, Hiller BE, Lee J, Regan K, Zheng S, Zhang S, Jiang J, Raslan AA, Breda JC, Pihl R, Traber K, Mazzilli S, Ligresti G, Mizgerd JP, Suki B, Nia HT. Crystal ribcage: a platform for probing real-time lung function at cellular resolution. Nat Methods 2023; 20:1790-1801. [PMID: 37710017 PMCID: PMC10860663 DOI: 10.1038/s41592-023-02004-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
Understanding the dynamic pathogenesis and treatment response in pulmonary diseases requires probing the lung at cellular resolution in real time. Despite advances in intravital imaging, optical imaging of the lung during active respiration and circulation has remained challenging. Here, we introduce the crystal ribcage: a transparent ribcage that allows multiscale optical imaging of the functioning lung from whole-organ to single-cell level. It enables the modulation of lung biophysics and immunity through intravascular, intrapulmonary, intraparenchymal and optogenetic interventions, and it preserves the three-dimensional architecture, air-liquid interface, cellular diversity and respiratory-circulatory functions of the lung. Utilizing these capabilities on murine models of pulmonary pathologies we probed remodeling of respiratory-circulatory functions at the single-alveolus and capillary levels during disease progression. The crystal ribcage and its broad applications presented here will facilitate further studies of nearly any pulmonary disease as well as lead to the identification of new targets for treatment strategies.
Collapse
Affiliation(s)
- Rohin Banerji
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Gabrielle N Grifno
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Linzheng Shi
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Dylan Smolen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Rob LeBourdais
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Johnathan Muhvich
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cate Eberman
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Bradley E Hiller
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jisu Lee
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kathryn Regan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Siyi Zheng
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sue Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - John Jiang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Ahmed A Raslan
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Julia C Breda
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Riley Pihl
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Katrina Traber
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sarah Mazzilli
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Giovanni Ligresti
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Hadi T Nia
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
Nguyen N, Xu S, Lam TYW, Liao W, Wong WSF, Ge R. ISM1 suppresses LPS-induced acute lung injury and post-injury lung fibrosis in mice. Mol Med 2022; 28:72. [PMID: 35752760 PMCID: PMC9233842 DOI: 10.1186/s10020-022-00500-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/14/2022] [Indexed: 11/15/2022] Open
Abstract
Background Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are clinical syndromes characterized by acute lung inflammation, pulmonary edema and hypoxemia, with up to 50% mortality rate without effective pharmacological therapy. Following the acute inflammation, repair and remodeling occurs which in some cases resulting in lung fibrosis. The pathophysiology of ALI/ARDS remains incompletely understood. Lipopolysaccharide (LPS)-induced ALI in mice have been widely used as a model to study human ALI/ARDS. Isthmin 1 (ISM1) is a secreted protein highly abundant in mouse lung. We have previously reported that upon intratracheal LPS instillation, ISM1 expression in the lung is further upregulated. Recently, we also reported that ISM1 is an anti-inflammatory protein in the lung with Ism1-/- mice presenting spontaneous chronic low-grade lung inflammation and obvious emphysema at young adult stage. However, what role ISM1 plays in ALI/ARDS and lung fibrosis remain unclear. Methods Using Ism1-/- mice and intratracheal LPS-induced ALI, and local delivery of recombinant ISM1 (rISM1), we investigated the role ISM1 plays in ALI and post-ALI lung fibrosis using flow cytometry, Western blot, antibody array, immunohistochemistry (IHC), immunofluorescent and other histological staining. Results We reveal that ISM1 deficiency in mice led to an intensified acute lung inflammation upon intratracheal LPS challenge, with a heightened leukocyte infiltration including neutrophils and monocyte-derived alveolar macrophages, as well as upregulation of multiple pro-inflammatory cytokines/chemokines including tumor necrosis factor α (TNF-α). Although innate immune cells largely subsided to the baseline by day 7 post-LPS challenge in both wild-type and Ism1−/− mice, Ism1−/− lung showed increased post-ALI fibrosis from day 9 post-LPS treatment with increased myofibroblasts, excessive collagen accumulation and TGF-β upregulation. The heightened lung fibrosis remained on day 28 post-LPS. Moreover, intranasal delivered recombinant ISM1 (rISM1) effectively suppressed LPS-induced acute lung inflammation and ALI, and rISM1 suppressed LPS-induced NF-κB activation in cultured mouse alveolar macrophages. Conclusion Together with our previous report, this work further established ISM1 as an endogenous anti-inflammation protein in the lung, restraining excessive host inflammatory response to LPS-triggered ALI and suppressing post-ALI lung fibrosis likely through suppressing NF-κB activation and pro-inflammatory cytokine/chemokine production. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00500-w.
Collapse
Affiliation(s)
- Ngan Nguyen
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Simin Xu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Terence Yin Weng Lam
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Republic of Singapore.,Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore, 138602, Republic of Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Republic of Singapore.,Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore, 138602, Republic of Singapore.,Drug Discovery and Optimization Platform, National University Health System, Singapore, 117600, Republic of Singapore
| | - Ruowen Ge
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore.
| |
Collapse
|
4
|
Gao Y, Zhang H, Luo L, Lin J, Li D, Zheng S, Huang H, Yan S, Yang J, Hao Y, Li H, Gao Smith F, Jin S. Resolvin D1 Improves the Resolution of Inflammation via Activating NF-κB p50/p50-Mediated Cyclooxygenase-2 Expression in Acute Respiratory Distress Syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2043-2054. [PMID: 28794232 PMCID: PMC5583748 DOI: 10.4049/jimmunol.1700315] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe illness characterized by uncontrolled inflammation. The resolution of inflammation is a tightly regulated event controlled by endogenous mediators, such as resolvin D1 (RvD1). Cyclooxygenase-2 (COX-2) has been reported to promote inflammation, along with PGE2, in the initiation of inflammation, as well as in prompting resolution, with PGD2 acting in the later phase of inflammation. Our previous work demonstrated that RvD1 enhanced COX-2 and PGD2 expression to resolve inflammation. In this study, we investigated mechanisms underlying the effect of RvD1 in modulating proresolving COX-2 expression. In a self-limited ARDS model, an LPS challenge induced the biphasic activation of COX-2, and RvD1 promoted COX-2 expression during the resolution phase. However, it was significantly blocked by treatment of a NF-κB inhibitor. In pulmonary fibroblasts, NF-κB p50/p50 was shown to be responsible for the proresolving activity of COX-2. Additionally, RvD1 potently promoted p50 homodimer nuclear translocation and robustly triggered DNA-binding activity, upregulating COX-2 expression via lipoxin A4 receptor/formyl peptide receptor 2. Finally, the absence of p50 in knockout mice prevented RvD1 from promoting COX-2 and PGD2 expression and resulted in excessive pulmonary inflammation. In conclusion, RvD1 expedites the resolution of inflammation through activation of lipoxin A4 receptor/formyl peptide receptor 2 receptor and NF-κB p50/p50-COX-2 signaling pathways, indicating that RvD1 might have therapeutic potential in the management of ARDS.
Collapse
Affiliation(s)
- Ye Gao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Huawei Zhang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Lingchun Luo
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Jing Lin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Dan Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Sisi Zheng
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Hua Huang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Songfan Yan
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Jingxiang Yang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Yu Hao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Hui Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Fang Gao Smith
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
- Institute of Inflammation and Ageing, College of Medical and Dental Science, University of Birmingham, Birmingham B15 2WB, United Kingdom
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| |
Collapse
|
5
|
Zhang H, Kang L, Yao H, He Y, Wang X, Xu W, Song Z, Yin Y, Zhang X. Streptococcus pneumoniae Endopeptidase O (PepO) Elicits a Strong Innate Immune Response in Mice via TLR2 and TLR4 Signaling Pathways. Front Cell Infect Microbiol 2016; 6:23. [PMID: 26973817 PMCID: PMC4770053 DOI: 10.3389/fcimb.2016.00023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/12/2016] [Indexed: 11/13/2022] Open
Abstract
Interaction between virulence factors of Streptococcus pneumoniae and innate immune receptors elicits host responses through specific signaling pathways during infection. Insights into the signaling events may provide a better knowledge of the starting events for host-pathogen interaction. Here we demonstrated a significant induction of innate immune response elicited by recombinant S. pneumoniae endopeptidase O (rPepO), a newer pneumococcal virulence protein, both in vivo and in vitro. Intratracheal instillation of rPepO protein resulted in significant increase of cytokines production and neutrophils infiltration in mouse lungs. TLR2 or TLR4 deficient mice subjected to rPepO treatment showed decreased cytokines production, reduced neutrophils infiltration and intensified tissue injury as compared with WT mice. Upon stimulation, cytokines TNF-α, IL-6, CXCL1, and CXCL10 were produced by peritoneal exudate macrophages (PEMs) in a TLR2 and TLR4 dependent manner. rPepO-induced cytokines production was markedly decreased in TLR2 or TLR4 deficient PEMs. Further study revealed that cytokines induction relied on the rapid phosphorylation of p38, Akt and p65, not the activation of ERK or JNK. While in TLR2 or TLR4 deficient PEMs the activation of p65 was undetectable. Taken together, these results indicate for the first time that the newer pneumococcal virulence protein PepO activates host innate immune response partially through TLR2 and TLR4 signaling pathways.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University Chongqing, China
| | - Lihua Kang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University Chongqing, China
| | - Hua Yao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University Chongqing, China
| | - Yujuan He
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University Chongqing, China
| | - Xiaofang Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University Chongqing, China
| | - Wenchun Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University Chongqing, China
| | - Zhixin Song
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University Chongqing, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University Chongqing, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University Chongqing, China
| |
Collapse
|
6
|
Guha D, Mancini A, Sparks J, Ayyavoo V. HIV-1 Infection Dysregulates Cell Cycle Regulatory Protein p21 in CD4+ T Cells Through miR-20a and miR-106b Regulation. J Cell Biochem 2016; 117:1902-12. [PMID: 26755399 DOI: 10.1002/jcb.25489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022]
Abstract
Both CD4+ T lymphocytes and macrophages are the major targets of human immunodeficiency virus type 1 (HIV-1); however, they respond differently to HIV-1 infection. We hypothesized that HIV-1 infection alters gene expression in CD4+ T cells and monocyte-derived macrophages (MDMs) in a cell specific manner and microRNAs (miRNAs) in part play a role in cell-specific gene expression. Results indicate that 183 and 31 genes were differentially regulated in HIV-1 infected CD4+ T cells and MDMs, respectively, compared to their mock-infected counterparts. Among the differentially expressed genes, cell cycle regulatory gene, p21 (CDKN1A) was upregulated in virus infected CD4+ T cells both at the mRNA and protein level in CD4+ T cells, whereas no consistent change was observed in MDMs. Productively infected CD4+ T cells express higher amount of p21 compared to bystander cells. In determining the mechanism(s) of cell type specific regulation of p21, we found that the miRNAs miR-106b and miR-20a that target p21 were specifically downregulated in HIV-1 infected CD4+ T cells. Overexpression of these two miRNAs reduced p21 expression significantly in HIV-1 infected CD4+ T cells. These findings provide a potential mechanism, by which, HIV-1 could exploit host cellular machineries to regulate selective gene expression in target cells. J. Cell. Biochem. 117: 1902-1912, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Debjani Guha
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Allison Mancini
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jessica Sparks
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Hyatt LD, Wasserman GA, Rah YJ, Matsuura KY, Coleman FT, Hilliard KL, Pepper-Cunningham ZA, Ieong M, Stumpo DJ, Blackshear PJ, Quinton LJ, Mizgerd JP, Jones MR. Myeloid ZFP36L1 does not regulate inflammation or host defense in mouse models of acute bacterial infection. PLoS One 2014; 9:e109072. [PMID: 25299049 PMCID: PMC4192124 DOI: 10.1371/journal.pone.0109072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/08/2014] [Indexed: 12/21/2022] Open
Abstract
Zinc finger protein 36, C3H type-like 1 (ZFP36L1) is one of several Zinc Finger Protein 36 (Zfp36) family members, which bind AU rich elements within 3' untranslated regions (UTRs) to negatively regulate the post-transcriptional expression of targeted mRNAs. The prototypical member of the family, Tristetraprolin (TTP or ZFP36), has been well-studied in the context of inflammation and plays an important role in repressing pro-inflammatory transcripts such as TNF-α. Much less is known about the other family members, and none have been studied in the context of infection. Using macrophage cell lines and primary alveolar macrophages we demonstrated that, like ZFP36, ZFP36L1 is prominently induced by infection. To test our hypothesis that macrophage production of ZFP36L1 is necessary for regulation of the inflammatory response of the lung during pneumonia, we generated mice with a myeloid-specific deficiency of ZFP36L1. Surprisingly, we found that myeloid deficiency of ZFP36L1 did not result in alteration of lung cytokine production after infection, altered clearance of bacteria, or increased inflammatory lung injury. Although alveolar macrophages are critical components of the innate defense against respiratory pathogens, we concluded that myeloid ZFP36L1 is not essential for appropriate responses to bacteria in the lungs. Based on studies conducted with myeloid-deficient ZFP36 mice, our data indicate that, of the Zfp36 family, ZFP36 is the predominant negative regulator of cytokine expression in macrophages. In conclusion, these results imply that myeloid ZFP36 may fully compensate for loss of ZFP36L1 or that Zfp36l1-dependent mRNA expression does not play an integral role in the host defense against bacterial pneumonia.
Collapse
Affiliation(s)
- Lynnae D. Hyatt
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Gregory A. Wasserman
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yoon J. Rah
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Kori Y. Matsuura
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Fadie T. Coleman
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Kristie L. Hilliard
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | | | - Michael Ieong
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Deborah J. Stumpo
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Perry J. Blackshear
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Lee J. Quinton
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Joseph P. Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthew R. Jones
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
8
|
Su P, Liu X, Han Y, Zheng Z, Liu G, Li J, Li Q. Identification and characterization of a novel IκB-ε-like gene from lamprey (Lampetra japonica) with a role in immune response. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1146-1154. [PMID: 23916539 DOI: 10.1016/j.fsi.2013.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/02/2013] [Accepted: 07/14/2013] [Indexed: 06/02/2023]
Abstract
Nuclear factor of kappa B (NF-κB) is a stimuli-activated transcription factor, regulates the expression of a diverse array of genes. Inhibitor of kappa B-epsilon (IκB-ε) is an inhibitor of NF-κB, which retains NF-κB in an inactive state in the cytoplasm. Lampreys (Lampetra japonica) belong to the lowest class of vertebrates with little information about its IκBs. We have identified a cDNA sequence IκB-ε-like in the lamprey and the deduced amino acid sequence of IκB-ε-like. It contains a conserved DSGxxS motif and six consecutive ankyrin repeats, which are necessary for signal-induced degradation of the molecule. Phylogenetic analysis indicated it had high sequence homology with IκB-εs from other vertebrates. FACS analysis showed that IκB-ε-like located in cytoplasm of leukocytes. The degradation of IκB-ε-like could be observed in leukocytes of L. japonica stimulated with lipopolysaccharide. These results indicate that IκB-ε proteins are conserved across vertebrates and the NF-κB-like signaling pathway may exist in the oldest agnatha.
Collapse
Affiliation(s)
- Peng Su
- College of Life Science, Liaoning Normal University, Dalian 116029, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Yamamoto K, Ferrari JD, Cao Y, Ramirez MI, Jones MR, Quinton LJ, Mizgerd JP. Type I alveolar epithelial cells mount innate immune responses during pneumococcal pneumonia. THE JOURNAL OF IMMUNOLOGY 2012; 189:2450-9. [PMID: 22844121 DOI: 10.4049/jimmunol.1200634] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pneumonia results from bacteria in the alveoli. The alveolar epithelium consists of type II cells, which secrete surfactant and associated proteins, and type I cells, which constitute 95% of the surface area and meet anatomic and structural needs. Other than constitutively expressed surfactant proteins, it is unknown whether alveolar epithelial cells have distinct roles in innate immunity. Because innate immunity gene induction depends on NF-κB RelA (also known as p65) during pneumonia, we generated a murine model of RelA mutated throughout the alveolar epithelium. In response to LPS, only 2 of 84 cytokine transcripts (CCL20 and CXCL5) were blunted in lungs of mutants, suggesting that a very limited subset of immune mediators is selectively elaborated by the alveolar epithelium. Lung CCL20 induction required epithelial RelA regardless of stimulus, whereas lung CXCL5 expression depended on RelA after instillation of LPS but not pneumococcus. RelA knockdown in vitro suggested that CXCL5 induction required RelA in type II cells but not type I cells. Sorted cell populations from mouse lungs revealed that CXCL5 was induced during pneumonia in type I cells, which did not require RelA. TLR2 and STING were also induced in type I cells, with RelA essential for TLR2 but not STING. To our knowledge, these data are the first direct demonstration that type I cells, which constitute the majority of the alveolar surface, mount innate immune responses during bacterial infection. These are also, to our knowledge, the first evidence for entirely RelA-independent pathways of innate immunity gene induction in any cell during pneumonia.
Collapse
Affiliation(s)
- Kazuko Yamamoto
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Effect of PAR-2 Deficiency in Mice on KC Expression after Intratracheal LPS Administration. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:415195. [PMID: 22175012 PMCID: PMC3235808 DOI: 10.1155/2011/415195] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/17/2011] [Indexed: 12/31/2022]
Abstract
Protease activated receptors (PAR) have been shown to play a role in inflammation. PAR-2 is expressed by numerous cells in the lung and has either proinflammatory, anti-inflammatory, or no effect depending on the model. Here, we examined the role of PAR-2 in a model of LPS-induced lung inflammation. We found that PAR-2-deficient mice had significantly less KC expression in bronchial lavage fluid compared with wild-type mice but there was no difference in MIP-2 or TNF-α expression. We also found that isolated alveolar and resident peritoneal macrophages lacking PAR-2 showed a similar deficit in KC after LPS stimulation without differences in MIP-2 or TNF-α. Infiltration of neutrophils and macrophages into the lung following LPS administration was not affected by an absence of PAR-2. Our results support the notion that PAR-2 plays a role in LPS activation of TLR4 signaling in macrophages.
Collapse
|
11
|
Xu S, Zhi H, Hou X, Cohen RA, Jiang B. IκBβ attenuates angiotensin II-induced cardiovascular inflammation and fibrosis in mice. Hypertension 2011; 58:310-6. [PMID: 21646597 DOI: 10.1161/hypertensionaha.111.172031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of cardiovascular fibrosis is associated with chronic inflammation, where activation of nuclear factor κB (NF-κB) signaling may play a critical role. NF-κB activation is tightly regulated by the cellular inhibitor of κB (IκB) family of proteins, such as IκBα and IκBβ. IκBα and IκBβ display different regulation kinetics in response to inflammatory stimulation. The present study tested the hypothesis that IκBα and IκBβ may have different roles in modulating cardiovascular inflammation and fibrosis, using a model of angiotensin II infusion-induced hypertension in wild-type mice and IκBβ knock-in mice, in which the IκBα gene is replaced by IκBβ cDNA (AKBI). In WT mice, subcutaneous angiotensin II infusion for 7 days induced increased perivascular and interstitial collagen deposition and fibrotic lesions, associated with myocardial interstitial hemosiderin accumulation and extensive macrophage infiltration. These effects of angiotensin II were dramatically limited in AKBI mice. Replacement of IκBα with IκBβ significantly attenuated angiotensin II infusion-induced expression of interleukin 1β, interleukin 6, monocyte chemotactic protein 1, collagen I and III, fibronectin, and tissue inhibitor of metalloproteinase 1 in the hearts. Furthermore, using cultured vascular smooth muscle cells, we demonstrated that interleukin 1β-induced NF-κB activation and monocyte chemotactic protein 1, vascular cell adhesion molecule 1, and tissue inhibitor of metalloproteinase 1 expressions were suppressed in the AKBI cells because of the replacement of IκBα with IκBβ. These results indicate that NF-κB has an essential role in mediating the cardiovascular inflammatory response to angiotensin II and suggest that targeting the balance of IκBα and IκBβ expression might be a novel therapeutic modality in preventing fibrosis in hypertensive cardiovascular disease.
Collapse
Affiliation(s)
- Shanqin Xu
- 77 Ave Louis Pasteur, NRB 431, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
12
|
Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 2011; 44:725-38. [PMID: 21531958 PMCID: PMC7328339 DOI: 10.1165/rcmb.2009-0210st] [Citation(s) in RCA: 1415] [Impact Index Per Article: 101.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is well defined in humans, but there is no agreement as to the main features of acute lung injury in animal models. A Committee was organized to determine the main features that characterize ALI in animal models and to identify the most relevant methods to assess these features. We used a Delphi approach in which a series of questionnaires were distributed to a panel of experts in experimental lung injury. The Committee concluded that the main features of experimental ALI include histological evidence of tissue injury, alteration of the alveolar capillary barrier, presence of an inflammatory response, and evidence of physiological dysfunction; they recommended that, to determine if ALI has occurred, at least three of these four main features of ALI should be present. The Committee also identified key "very relevant" and "somewhat relevant" measurements for each of the main features of ALI and recommended the use of least one "very relevant" measurement and preferably one or two additional separate measurements to determine if a main feature of ALI is present. Finally, the Committee emphasized that not all of the measurements listed can or should be performed in every study, and that measurements not included in the list are by no means "irrelevant." Our list of features and measurements of ALI is intended as a guide for investigators, and ultimately investigators should choose the particular measurements that best suit the experimental questions being addressed as well as take into consideration any unique aspects of the experimental design.
Collapse
|
13
|
Pittet LA, Quinton LJ, Yamamoto K, Robson BE, Ferrari JD, Algül H, Schmid RM, Mizgerd JP. Earliest innate immune responses require macrophage RelA during pneumococcal pneumonia. Am J Respir Cell Mol Biol 2011; 45:573-81. [PMID: 21216972 DOI: 10.1165/rcmb.2010-0210oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
NF-κB regulates cytokine expression to initiate and control the innate immune response to lung infections. The NF-κB protein RelA is critical for pulmonary host defense during Streptococcus pneumoniae pneumonia, but the cell-specific roles of this transcription factor remain to be determined. We hypothesized that RelA in alveolar macrophages contributes to cytokine expression and host defense during pneumococcal pneumonia. To test this hypothesis, we compared mice lacking RelA exclusively in myeloid cells (RelA(Δ/Δ)) with littermate controls (RelA(F/F)). Alveolar macrophages from RelA(Δ/Δ) mice expressed no full-length RelA, demonstrating effective targeting. Alveolar macrophages from RelA(Δ/Δ) mice exhibited reduced, albeit detectable, proinflammatory cytokine responses to S. pneumoniae, compared with alveolar macrophages from RelA(F/F) mice. Concentrations of these cytokines in lung homogenates were diminished early after infection, indicating a significant contribution of macrophage RelA to the initial expression of cytokines in the lungs. However, the cytokine content in infected lungs was equivalent by 15 hours. Neutrophil recruitment during S. pneumoniae pneumonia reflected a delayed onset in RelA(Δ/Δ) mice, followed by similar rates of accumulation. Bacterial clearance was eventually effective in both genotypes, but began later in RelA(Δ/Δ) mice. Thus, during pneumococcal pneumonia, only the earliest induction of the cytokines measured depended on transcription by RelA in myeloid cells, and this transcriptional activity contributed to effective immunity.
Collapse
Affiliation(s)
- Lynnelle A Pittet
- Pulmonary Center, Boston University School of Medicine, 72 E. Concord St., Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Quinton LJ, Mizgerd JP. NF-κB and STAT3 signaling hubs for lung innate immunity. Cell Tissue Res 2010; 343:153-65. [PMID: 20872151 DOI: 10.1007/s00441-010-1044-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 08/17/2010] [Indexed: 01/05/2023]
Abstract
Innate immune responses to lung pathogens involve the coordinated expression of myriad affector and effector molecules of innate immunity, which must be induced and appropriately regulated in response to diverse stimuli generated by microbes or the infected host. Many intercellular and intracellular signaling pathways are involved, but we propose NF-κB and STAT3 transcription factors to be especially important signaling hubs for integrating these pathways to orchestrate effective host defense without excessive inflammatory injury.
Collapse
Affiliation(s)
- Lee J Quinton
- The Pulmonary Center, Boston University School of Medicine, 72 E. Concord Street, Boston, MA 02118, USA
| | | |
Collapse
|
15
|
Tan ZH, Yu LH, Wei HL, Liu GT. Scutellarin protects against lipopolysaccharide-induced acute lung injury via inhibition of NF-kappaB activation in mice. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2010; 12:175-84. [PMID: 20390762 DOI: 10.1080/10286020903347906] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This paper investigates the effect of natural scutellarin on acute lung injury (ALI) induced by Escherichia coli endotoxin lipopolysaccharide (LPS) in mice and its mechanism of action. Mouse ALI was induced by the injection of LPS (15 mg/kg) via the tail vein, and mice were intraperitoneally injected with 50 and 25 mg/kg of scutellarin before the LPS injection. The lung index, serum NO2(-)/NO3(-), and tumor necrosis factor-alpha (TNF-alpha) levels were determined using kits. The lung lesions were examined by light microscope. The mRNA levels of TNF-alpha, inducible nitric oxide synthase (iNOS), and FasL in pulmonary tissues were detected by RT-PCR. c-Fos, c-Jun, IkappaB, and iNOS proteins were detected by the western blotting method. Pretreatment with 25 and 50 mg/kg of scutellarin significantly reduced lung injury induced by LPS, which expressed in the decrease in lung morphological lesions, serum NO2(-)/NO3(-), TNF-alpha levels, lactate dehydrogenase release, and total protein in the lavage fluid of bronchoalveolar of the lung. The mRNA level of TNF-alpha, iNOS, the protein content of c-Fos, iNOS, and the activation of NF-kappaB in pulmonary tissues were all inhibited, while the lung glutathione level increased. In conclusion, scutellarin has protective action against LPS-induced lung damage in mice, and its underlying mechanism might be the inhibition of IkappaB alpha degradation and the expression of TNF-alpha mRNA.
Collapse
Affiliation(s)
- Zheng-Huai Tan
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | |
Collapse
|
16
|
Abstract
The acute-phase response is characterized by increased circulating levels of acute-phase proteins (APPs) generated by the liver. During bacterial pneumonia, APPs correlate with the severity of disease, serve as biomarkers, and are functionally significant. The kinetics and regulatory mechanisms of APP induction in the liver during lung infection have yet to be defined. Here we show that APP mRNA transcription is induced in the livers of mice whose lungs are infected with either Escherichia coli or Streptococcus pneumoniae, and that in both cases this induction occurs in tandem with activation in the liver of the transcription factors signal transducer and activator of transcription 3 (STAT3) and NF-kappaB RelA. Interleukin-6 (IL-6) deficiency inhibited the activation of STAT3 and the induction of select APPs in the livers of pneumonic mice. Furthermore, liver RelA activation and APP induction were reduced for mice lacking all signaling receptors for tumor necrosis factor alpha and IL-1. In a murine hepatocyte cell line, knockdown of either STAT3 or RelA by small interfering RNA inhibited cytokine induction of the APP serum amyloid A-1, demonstrating that both transcription factors were independently essential for the expression of this gene. These data suggest that during pneumonia caused by gram-negative or gram-positive bacteria, the expression of APPs in the liver depends on STAT3 activation by IL-6 and on RelA activation by early-response cytokines. These signaling axes may be critical for integrating systemic responses to local infection, balancing antibacterial host defenses and inflammatory injury during acute bacterial pneumonia.
Collapse
|
17
|
Huang Y, Nikolic D, Pendland S, Doyle BJ, Locklear TD, Mahady GB. Effects of cranberry extracts and ursolic acid derivatives on P-fimbriated Escherichia coli, COX-2 activity, pro-inflammatory cytokine release and the NF-kappabeta transcriptional response in vitro. PHARMACEUTICAL BIOLOGY 2009; 47:18-25. [PMID: 20376297 PMCID: PMC2849675 DOI: 10.1080/13880200802397996] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cranberry, the fresh or dried ripe fruit of Vaccinium macrocarpon Ait. (Ericaceae), is currently used as adjunct therapy for the prevention and symptomatic treatment of urinary tract infections. Data from clinical trials suggest that extracts of cranberry or cranberry juice reduce the bacterial load of E. coli and also suppress the inflammatory symptoms induced by E. coli infections. A methanol extract prepared from 10 kg of dehydrated cranberries did not directly inhibit the growth of E coli strains ATCC 700336 or ATCC 25922 in concentrations up to 256 mug/mL in vitro. However, the methanol extract (CR-ME) inhibited the activity of cyclooxygenase-2, with an IC(50) of 12.8 mug/mL. Moreover, CR-ME also inhibited the NF-kappabeta transcriptional activation in human T lymphocytes with an IC(50) of 19.4 mug/mL, and significantly (p < 0.01) inhibited the release of interleukin (IL)-1beta, IL-6, IL-8 and tumor necrosis factor-alpha from E. coli lipopolysaccharide (LPS)-stimulated human peripheral blood mononuclear cells in vitro, at a concentration of 50 mug/mL. The extract had no effect on inducible nitric oxide synthase activity in the murine macrophage cell line RAW 264.7. The compounds responsible for this activity were identified using a novel LC-MS based assay as ursolic acid and ursolic acid derivatives. Taken together, these data suggest CR-ME and its constituent chemical compounds target specific pathways involved in E. coli-induced inflammation.
Collapse
Affiliation(s)
- Yue Huang
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago
| | - Dejan Nikolic
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago
| | - Susan Pendland
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago
| | - Brian J. Doyle
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago
| | - Tracie D. Locklear
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago
| | - Gail B. Mahady
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago
| |
Collapse
|
18
|
Yamada W, Tasaka S, Koh H, Shimizu M, Ogawa Y, Hasegawa N, Miyasho T, Yamaguchi K, Ishizaka A. Role of toll-like receptor 4 in acute neutrophilic lung inflammation induced by intratracheal bacterial products in mice. J Inflamm Res 2008; 1:1-10. [PMID: 22096342 PMCID: PMC3218721 DOI: 10.2147/jir.s3771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Toll-like receptors (TLRs) represent a conserved family of innate immune recognition receptors. Among TLRs, TLR4 is important for the recognition of Gram-negative bacteria, whereas TLR2 recognizes cell wall constituents of Gram-positive microorganisms, such as peptidoglycan (PGN). Methods To evaluate the role of TLR4 in the pathogenesis of acute lung injury induced by Escherichia coli endotoxin (lipopolysaccharide; LPS) or PGN, we compared inflammatory cell accumulation in bronchoalveolar lavage (BAL) fluid and lung pathology between C3H/HeJ (TLR4 mutant) and wild-type C3H/HeN mice. The levels of proinflammatory cytokines and chemokines in plasma and BAL fluid and nuclear factor-κB (NF-κB) translocation in the lung were also evaluated. Results In C3H/HeJ mice, LPS-induced neutrophil emigration was significantly decreased compared with C3H/HeN mice, whereas PGN-induced neutrophil emigration did not differ. Differential cell count in BAL fluid revealed comparable neutrophil recruitment in the alveolar space. In TLR4 mutant mice, LPS-induced upregulation of tumor necrosis factor-alpha (TNF-α), KC, and CXCL10 in plasma and BAL fluid was attenuate, which was not different after PGN. NF-κB translocation in the lung was significantly decreased in C3H/HeJ compared with C3H/HeN mice, whereas PGN-induced NF-κB translocation was not different. Conclusion These results suggest that TLR4 mediates inflammatory cascade induced by Gram-negative bacteria that is locally administered.
Collapse
Affiliation(s)
- Wakako Yamada
- Division of Pulmonary Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cheong R, Hoffmann A, Levchenko A. Understanding NF-kappaB signaling via mathematical modeling. Mol Syst Biol 2008; 4:192. [PMID: 18463616 PMCID: PMC2424295 DOI: 10.1038/msb.2008.30] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 04/01/2008] [Indexed: 12/12/2022] Open
Abstract
Mammalian inflammatory signaling, for which NF-kappaB is a principal transcription factor, is an exquisite example of how cellular signaling pathways can be regulated to produce different yet specific responses to different inflammatory insults. Mathematical models, tightly linked to experiment, have been instrumental in unraveling the forms of regulation in NF-kappaB signaling and their underlying molecular mechanisms. Our initial model of the IkappaB-NF-kappaB signaling module highlighted the role of negative feedback in the control of NF-kappaB temporal dynamics and gene expression. Subsequent studies sparked by this work have helped to characterize additional feedback loops, the input-output behavior of the module, crosstalk between multiple NF-kappaB-activating pathways, and NF-kappaB oscillations. We anticipate that computational techniques will enable further progress in the NF-kappaB field, and the signal transduction field in general, and we discuss potential upcoming developments.
Collapse
Affiliation(s)
- Raymond Cheong
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Andre Levchenko
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
20
|
Quinton LJ, Jones MR, Simms BT, Kogan MS, Robson BE, Skerrett SJ, Mizgerd JP. Functions and regulation of NF-kappaB RelA during pneumococcal pneumonia. THE JOURNAL OF IMMUNOLOGY 2007; 178:1896-903. [PMID: 17237440 PMCID: PMC2674289 DOI: 10.4049/jimmunol.178.3.1896] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Eradication of bacteria in the lower respiratory tract depends on the coordinated expression of proinflammatory cytokines and consequent neutrophilic inflammation. To determine the roles of the NF-kappaB subunit RelA in facilitating these events, we infected RelA-deficient mice (generated on a TNFR1-deficient background) with Streptococcus pneumoniae. RelA deficiency decreased cytokine expression, alveolar neutrophil emigration, and lung bacterial killing. S. pneumoniae killing was also diminished in the lungs of mice expressing a dominant-negative form of IkappaBalpha in airway epithelial cells, implicating this cell type as an important locus of NF-kappaB activation during pneumonia. To study mechanisms of epithelial RelA activation, we stimulated a murine alveolar epithelial cell line (MLE-15) with bronchoalveolar lavage fluid (BALF) harvested from mice infected with S. pneumoniae. Pneumonic BALF, but not S. pneumoniae, induced degradation of IkappaBalpha and IkappaBbeta and rapid nuclear accumulation of RelA. Moreover, BALF-induced RelA activity was completely abolished following combined but not individual neutralization of TNF and IL-1 signaling, suggesting either cytokine is sufficient and necessary for alveolar epithelial RelA activation during pneumonia. Our results demonstrate that RelA is essential for the host defense response to pneumococcus in the lungs and that RelA in airway epithelial cells is primarily activated by TNF and IL-1.
Collapse
Affiliation(s)
- Lee J. Quinton
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA 02115
| | - Matthew R. Jones
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA 02115
| | - Benjamin T. Simms
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA 02115
| | - Mariya S. Kogan
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA 02115
| | - Bryanne E. Robson
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA 02115
| | - Shawn J. Skerrett
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104
| | - Joseph P. Mizgerd
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA 02115
- Address correspondence and reprint requests to Dr. Joseph P. Mizgerd, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115. E-mail address:
| |
Collapse
|
21
|
Liang J, Jiang D, Griffith J, Yu S, Fan J, Zhao X, Bucala R, Noble PW. CD44 is a negative regulator of acute pulmonary inflammation and lipopolysaccharide-TLR signaling in mouse macrophages. THE JOURNAL OF IMMUNOLOGY 2007; 178:2469-75. [PMID: 17277154 DOI: 10.4049/jimmunol.178.4.2469] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD44 is a transmembrane adhesion molecule and hemopoietic CD44 has an essential role in hyaluronan clearance and resolution of noninfectious lung injury. In this study, we examined the role of CD44 in acute pulmonary inflammation and in the regulation of LPS-TLR signaling. Following intratracheally LPS treatment, CD44(-/-) mice demonstrated an exaggerated inflammatory response characterized by increased inflammatory cell recruitment, elevated chemokine expression in bronchoalveolar lavage fluid, and a marked increase in NF-kappaB DNA-binding activity in lung tissue in vivo and in macrophages in vitro. Furthermore, CD44(-/-) mice were more susceptible to LPS-induced shock. Reconstitution of hemopoietic CD44 reversed the inflammatory phenotype. We further found that the induction of the negative regulators of TLR signaling IL-1R-associated kinase-M, Toll-interacting protein, and A20 by intratracheal LPS in vivo and in macrophages in vitro was significantly reduced in CD44(-/-) mice. Collectively, these data suggest CD44 plays a previously unrecognized role in preventing exaggerated inflammatory responses to LPS by promoting the expression of negative regulators of TLR-4 signaling.
Collapse
Affiliation(s)
- Jiurong Liang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Prince AS, Mizgerd JP, Wiener-Kronish J, Bhattacharya J. Cell signaling underlying the pathophysiology of pneumonia. Am J Physiol Lung Cell Mol Physiol 2006; 291:L297-300. [PMID: 16648241 DOI: 10.1152/ajplung.00138.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The symposium addressed the burgeoning interest in fundamental mechanisms underlying the onset of pneumonia. Bacteria exploit the lung's innate immune mechanism, resulting in pathophysiological cell signaling. As a consequence inflammation develops, leading to pneumonia. New mechanisms have been identified by which bacteria or bacterial products in the airway induce cross-compartmental signaling that leads to inflammatory consequences. The speakers addressed activation of the transcription factor, NF-kappaB occurring as a consequence of bacterial interactions with specific receptors, such as the Toll-like receptors and the TNF receptor 1 (Prince), or as a consequence of cytokine induction (Mizgerd). Also considered were mechanisms of bacterial virulence in the clinical setting (Wiener-Kronish) and the role of alveolar-capillary signaling mechanisms in the initiation of lung inflammation.
Collapse
Affiliation(s)
- Alice S Prince
- Department of Pediatrics and Pharmacology, Columbia University, New York, New York, USA
| | | | | | | |
Collapse
|
23
|
Jones MR, Simms BT, Lupa MM, Kogan MS, Mizgerd JP. Lung NF-kappaB activation and neutrophil recruitment require IL-1 and TNF receptor signaling during pneumococcal pneumonia. THE JOURNAL OF IMMUNOLOGY 2006; 175:7530-5. [PMID: 16301661 PMCID: PMC2723739 DOI: 10.4049/jimmunol.175.11.7530] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pulmonary inflammation is an essential component of the host defense against Streptococcus pneumoniae infection of the lungs. The early response cytokines, TNF-alpha and IL-1, are rapidly induced upon microbial exposure. Mice deficient in all TNF- and IL-1-dependent signaling receptors were used to determine the roles of these cytokines during pneumococcal pneumonia. The deficiency of signaling receptors for TNF and IL-1 decreased bacterial clearance. Neutrophil recruitment to alveolar air spaces was impaired by receptor deficiency, as was pulmonary expression of the neutrophil chemokines KC and MIP-2. Because NF-kappaB mediates the expression of both chemokines, we assessed NF-kappaB activation in the lungs. During pneumococcal pneumonia, NF-kappaB proteins translocate to the nucleus and activate gene expression; these functions were largely abrogated by the deficiency of receptors for TNF-alpha and IL-1. Thus, the combined deficiency of TNF and IL-1 signaling reduces innate immune responses to S. pneumoniae in the lungs, probably due to essential roles for these receptors in activating NF-kappaB.
Collapse
Affiliation(s)
| | | | | | | | - Joseph P. Mizgerd
- Address correspondence and reprint requests to Dr. Joseph Mizgerd, Physiology Program, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115. E-mail address:
| |
Collapse
|
24
|
Tang PS, Tsang ME, Lodyga M, Bai XH, Miller A, Han B, Liu M. Lipopolysaccharide accelerates caspase-independent but cathepsin B-dependent death of human lung epithelial cells. J Cell Physiol 2006; 209:457-67. [PMID: 16894574 DOI: 10.1002/jcp.20751] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Caspase-independent cell death has drawn increasing attention. In the present study, we found that lipopolysaccharide (LPS) accelerated spontaneous death of human lung epithelial A549 cells in a serum- and cell density-dependent manner: while serum starvation has been demonstrated to induce apoptosis in the same cell line, LPS-induced cell death was only observed in the presence of serum; in addition, the cell death was not observed when the cells were seeded at 10- or 100-fold lower density. The apoptotic features were demonstrated by TUNEL assay, DNA laddering and Annexin V staining. However, treatment of cells with two commonly used pan-caspase inhibitors, zVAD.fmk or BOC-D.fmk, failed to block cell death. In contrast, two cathepsin B inhibitors, Ca074-Me or N-1845, reduced cell death significantly. A time-dependent activation of cathepsin B, but not caspase 3, was observed in both control and LPS-treated cells. Although LPS did not further activate cathepsin B or its release, it increased expression and translocation of apoptosis inducing factor from mitochondria to the nucleus, and increased release of cytochrome c from mitochondria. LPS-induced cell death was significantly attenuated by either N-acetyl-L-cysteine or pyrrolidine-dithiocarbamate, both free radical scavengers. Disruption of lipid raft formation with filipin or methyl-beta-cyclodextrin also reduced apoptosis significantly, suggesting that lipid raft-dependent signaling is essential. These data imply that confluent cells undergo spontaneous cell death mediated by cathepsin B; LPS may accelerate this caspase-independent cell death through release of mitochondrial contents and reactive oxygen species.
Collapse
Affiliation(s)
- Peter S Tang
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Jones MR, Quinton LJ, Simms BT, Lupa MM, Kogan MS, Mizgerd JP. Roles of interleukin-6 in activation of STAT proteins and recruitment of neutrophils during Escherichia coli pneumonia. J Infect Dis 2005; 193:360-9. [PMID: 16388483 PMCID: PMC2674298 DOI: 10.1086/499312] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 09/01/2005] [Indexed: 01/30/2023] Open
Abstract
Interleukin (IL)-6 concentrations are positively associated with the severity of pneumonia, and this cytokine is essential to surviving experimental pneumococcal pneumonia. The role that IL-6 plays during pneumonia and its impact during gram-negative bacterial pneumonia remain to be determined. During Escherichia coli pneumonia, IL-6-deficient mice had increased bacterial burdens in their lungs, indicating compromised host defenses. Decreased neutrophil counts in alveolar air spaces, despite normal blood neutrophil counts and survival of emigrated neutrophils, suggested that defective neutrophil recruitment was responsible for exacerbating the infection. Neutrophil recruitment requires nuclear factor (NF)- kappa B, but IL-6 was neither sufficient nor essential to induce NF- kappa B-mediated gene expression in the lungs. In contrast, IL-6 induced the phosphorylation of signal transducer and activator of transcription (STAT) 1 and STAT3 in the lungs, and STAT1 and STAT3 phosphorylation during E. coli pneumonia was decreased by IL-6 deficiency. Thus, IL-6 plays essential roles in activating STAT transcription factors, enhancing neutrophil recruitment, and decreasing bacterial burdens during E. coli pneumonia.
Collapse
Affiliation(s)
- Matthew R Jones
- Physiology Program, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
26
|
Ramphal R, Balloy V, Huerre M, Si-Tahar M, Chignard M. TLRs 2 and 4 are not involved in hypersusceptibility to acute Pseudomonas aeruginosa lung infections. THE JOURNAL OF IMMUNOLOGY 2005; 175:3927-34. [PMID: 16148139 DOI: 10.4049/jimmunol.175.6.3927] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
TLRs are implicated in defense against microorganisms. Animal models have demonstrated that the susceptibility to a number of Gram-negative pathogens is linked to TLR4, and thus LPS of many Gram-negative bacteria have been implicated as virulence factors. To assess the role of this pathogen-associated molecular pattern as it is exposed on intact Pseudomonas aeruginosa, the susceptibility of mice lacking TLR4 or both TLR2 and TLR4 was examined in a model of acute Pseudomonas pneumonia. These mutant mice were not hypersusceptible to the Pseudomonas challenge and mounted an effective innate response that cleared the organism despite low levels of TNF-alpha and KC in the airways. Bacterial and neutrophil counts in the lung were similar in control and TLR-deficient mice at 6 and 24 h after infection. MyD88(-/-) mice were, however, hypersusceptible, with 100% of mice dying within 48 h with a lower dose of P. aeruginosa. Of note there were normal levels of IL-6 and G-CSF in the airways of TLR mutant mice that were absent from the MyD88(-/-) mice. Thus, the susceptibility of mice to P. aeruginosa acute lung infection does not go through TLR2 or TLR4, implying that Pseudomonas LPS is not the most important virulence factor in acute pneumonia caused by this organism. Furthermore, G-CSF treatment of infected MyD88(-/-) mice results in improved clearance and survival. Thus, the resistance to infection in TLR2/TLR4(-/-) mice may be linked to G-CSF and possibly IL-6 production.
Collapse
Affiliation(s)
- Reuben Ramphal
- Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
27
|
Wissel H, Schulz C, Koehne P, Richter E, Maass M, Rüdiger M. Chlamydophila pneumoniae induces expression of toll-like receptor 4 and release of TNF-alpha and MIP-2 via an NF-kappaB pathway in rat type II pneumocytes. Respir Res 2005; 6:51. [PMID: 15935092 PMCID: PMC1180473 DOI: 10.1186/1465-9921-6-51] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 06/03/2005] [Indexed: 11/13/2022] Open
Abstract
Background The role of alveolar type II cells in the regulation of innate and adaptive immunity is unclear. Toll-like receptors (TLRs) have been implicated in host defense. The purpose of the present study was to investigate whether Chlamydophila pneumoniae (I) alters the expression of TLR2 and/orTLR4 in type II cells in a (II) Rho-GTPase- and (III) NF-κB-dependent pathway, subsequently (IV) leading to the production of (IV) pro-inflammatory TNF-α and MIP-2. Methods Isolated rat type II pneumocytes were incubated with C. pneumoniae after pre-treatment with calcium chelator BAPTA-AM, inhibitors of NF-κB (parthenolide, SN50) or with a specific inhibitor of the Rho-GTPase (mevastatin). TLR2 and TLR4 mRNA expressions were analyzed by PCR. Activation of TLR4, Rac1, RhoA protein and NF-κB was determined by Western blotting and confocal laser scan microscopy (CLSM) and TNF-α and MIP-2 release by ELISA. Results Type II cells constitutively expressed TLR4 and TLR2 mRNA. A prominent induction of TLR4 but not TLR2 mRNA was detected after 2 hours of incubation with C. pneumoniae. The TLR4 protein expression reached a peak at 30 min, began to decrease within 1–2 hours and peaked again at 3 hours. Incubation of cells with heat-inactivated bacteria (56°C for 30 min) significantly reduced the TLR4 expression. Treated bacteria with polymyxin B (2 μg/ml) did not alter TLR4 expression. C. pneumoniae-induced NF-κB activity was blocked by TLR4 blocking antibodies. TLR4 mRNA and protein expression were inhibited in the presence of BAPTA-AM, SN50 or parthenolide. TNF-α and MIP-2 release was increased in type II cells in response to C. pneumoniae, whereas BAPTA-AM, SN50 or parthenolide decreased the C. pneumoniae-induced TNF-α and MIP-2 release. Mevastatin inhibited C. pneumoniae-mediated Rac1, RhoA and TLR4 expression. Conclusion The TLR4 protein expression in rat type II cells is likely to be mediated by a heat-sensitive C. pneumoniae protein that induces a fast Ca2+-mediated NF-κB activity, necessary for maintenance of TLR4 expression and TNF-α and MIP-2 release through possibly Rac and Rho protein-dependent mechanism. These results indicate that type II pneumocytes play an important role in the innate pulmonary immune system and in inflammatory response mechanism of the alveolus.
Collapse
Affiliation(s)
- Heide Wissel
- Clinic for Neonatology, Campus Charité Mitte, Schumannstr. 20–21, D-10098 Berlin, Germany
| | - Christian Schulz
- Clinic for Neonatology, Campus Charité Mitte, Schumannstr. 20–21, D-10098 Berlin, Germany
| | - Petra Koehne
- Clinic for Neonatology, Campus Charité Virchow-Klinikum, Berlin, Germany
| | - Ekkehard Richter
- Department of Cell Biology, Institute of Biology, Humboldt-University Berlin, Germany
| | - Matthias Maass
- SALK Microbiology, Salzburger Landeskliniken, Muellner-Hauptstr. 56, A-5020 Salzburg, Austria
| | - Mario Rüdiger
- Clinic for Neonatology, Campus Charité Mitte, Schumannstr. 20–21, D-10098 Berlin, Germany
- Clinic for Neonatology, Medical University Innsbruck, Austria
| |
Collapse
|
28
|
Mizgerd JP, Lupa MM, Spieker MS. NF-kappaB p50 facilitates neutrophil accumulation during LPS-induced pulmonary inflammation. BMC Immunol 2004; 5:10. [PMID: 15189567 PMCID: PMC449706 DOI: 10.1186/1471-2172-5-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 06/09/2004] [Indexed: 11/15/2022] Open
Abstract
Background Transcription factors have distinct functions in regulating immune responses. During Escherichia coli pneumonia, deficiency of NF-κB p50 increases gene expression and neutrophil recruitment, suggesting that p50 normally limits these innate immune responses. p50-deficient mice were used to determine how p50 regulates responses to a simpler, non-viable bacterial stimulus in the lungs, E. coli lipopolysaccharide (LPS). Results In contrast to previous results with living E. coli, neutrophil accumulation elicited by E. coli LPS in the lungs was decreased by p50 deficiency, to approximately 30% of wild type levels. Heat-killed E. coli induced neutrophil accumulation which was not decreased by p50 deficiency, demonstrating that bacterial growth and metabolism were not responsible for the different responses to bacteria and LPS. p50 deficiency increased the LPS-induced expression of κB-regulated genes essential to neutrophil recruitment, including KC, MIP-2, ICAM-1, and TNF-α suggesting that p50 normally limited this gene expression and that decreased neutrophil recruitment did not result from insufficient expression of these genes. Neutrophils were responsive to the chemokine KC in the peripheral blood of p50-deficient mice with or without LPS-induced pulmonary inflammation. Interleukin-6 (IL-6), previously demonstrated to decrease LPS-induced neutrophil recruitment in the lungs, was increased by p50 deficiency, but LPS-induced neutrophil recruitment was decreased by p50 deficiency even in IL-6 deficient mice. Conclusion p50 makes essential contributions to neutrophil accumulation elicited by LPS in the lungs. This p50-dependent pathway for neutrophil accumulation can be overcome by bacterial products other than LPS and does not require IL-6.
Collapse
Affiliation(s)
- Joseph P Mizgerd
- Physiology Program, Harvard School of Public Health, Boston, MA, 02115 USA
| | - Michal M Lupa
- Physiology Program, Harvard School of Public Health, Boston, MA, 02115 USA
| | - Matt S Spieker
- Physiology Program, Harvard School of Public Health, Boston, MA, 02115 USA
| |
Collapse
|
29
|
Skerrett SJ, Liggitt HD, Hajjar AM, Ernst RK, Miller SI, Wilson CB. Respiratory epithelial cells regulate lung inflammation in response to inhaled endotoxin. Am J Physiol Lung Cell Mol Physiol 2004; 287:L143-52. [PMID: 15047567 DOI: 10.1152/ajplung.00030.2004] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To determine the role of respiratory epithelial cells in the inflammatory response to inhaled endotoxin, we selectively inhibited NF-kappa B activation in the respiratory epithelium using a mutant I kappa B-alpha construct that functioned as a dominant negative inhibitor of NF-kappa B translocation (dnI kappa B-alpha). We developed two lines of transgenic mice in which expression of dnI kappa B-alpha was targeted to the distal airway epithelium using the human surfactant apoprotein C promoter. Transgene expression was localized to the epithelium of the terminal bronchioles and alveoli. After inhalation of LPS, nuclear translocation of NF-kappa B was evident in bronchiolar epithelium of nontransgenic but not of transgenic mice. This defect was associated with impaired neutrophilic lung inflammation 4 h after LPS challenge and diminished levels of TNF-alpha, IL-1 beta, macrophage inflammatory protein-2, and KC in lung homogenates. Expression of TNF-alpha within bronchiolar epithelial cells and of VCAM-1 within peribronchiolar endothelial cells was reduced in transgenic animals. Thus targeted inhibition of NF-kappa B activation in distal airway epithelial cells impaired the inflammatory response to inhaled LPS. These data provide causal evidence that distal airway epithelial cells and the signals they transduce play a physiological role in lung inflammation in vivo.
Collapse
Affiliation(s)
- Shawn J Skerrett
- Department of Medicine, University of Washington School of Medicine, Seattle, 98104, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Mizgerd JP, Lupa MM, Kogan MS, Warren HB, Kobzik L, Topulos GP. Nuclear factor-kappaB p50 limits inflammation and prevents lung injury during Escherichia coli pneumonia. Am J Respir Crit Care Med 2003; 168:810-7. [PMID: 12857723 DOI: 10.1164/rccm.200303-412oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inflammatory responses to infection must be precisely regulated to facilitate microbial killing while limiting host tissue damage. Many inflammatory genes are regulated by kappaB sites, and the p50 subunit of nuclear factor-kappaB suppresses the expression of kappaB-associated genes in vitro. We hypothesized that p50 is essential to prevent excessive inflammation and injury during infection. During pulmonary infection with Escherichia coli, the gene-targeted deficiency of p50 did not affect bacterial clearance from mouse lungs, but it resulted in increased expression of proinflammatory cytokines 6 to 24 hours after infection. This dysregulation exacerbated inflammation (neutrophil recruitment), respiratory distress (pulmonary edema and blood gas exchange impairment), and decompartmentalization (transit of protein and bacteria from the air spaces to the blood). We interpret these studies to indicate that endogenous p50 protects the host by curbing inflammatory responses to prevent injury, essential to survive pneumonia.
Collapse
Affiliation(s)
- Joseph P Mizgerd
- Physiology Program, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Poynter ME, Irvin CG, Janssen-Heininger YMW. A prominent role for airway epithelial NF-kappa B activation in lipopolysaccharide-induced airway inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6257-65. [PMID: 12794158 DOI: 10.4049/jimmunol.170.12.6257] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To reveal the causal role of airway epithelial NF-kappaB activation in evoking airway inflammation, a transgenic mouse was created expressing a mutant version of the inhibitory protein I-kappaBalpha. This I-kappaBalpha superrepressor (I-kappaBalpha(SR)) acts to repress NF-kappaB activation exclusively in airway epithelial cells, under the transcriptional control of the rat CC10 promoter (CC10-I-kappaBalpha(SR)). Compared with transgene-negative littermates, intranasal instillation of LPS did not induce nuclear translocation of NF-kappaB in airway epithelium of CC10-I-kappaBalpha(SR) transgenic mice. Consequently, the influx of neutrophils into the airways and secretion of the NF-kappaB-regulated neutrophilic chemokine, macrophage-inflammatory protein-2, and the inflammatory cytokine, TNF-alpha, were markedly reduced in CC10-I-kappaBalpha(SR) mice relative to the transgene-negative mice exposed to LPS. Despite an inability to activate NF-kappaB in airway epithelium, resident alveolar macrophages from transgene-positive mice were capable of activating NF-kappaB in a manner indistinguishable from transgene-negative mice. These findings demonstrate that airway epithelial cells play a prominent role in orchestrating the airway inflammatory response to LPS and suggest that NF-kappaB signaling in these cells is important for modulating innate immune responses to microbial products.
Collapse
Affiliation(s)
- Matthew E Poynter
- Vermont Lung Center and Department of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|