1
|
Feng Q, Lv Z, Ba CX, Zhang YQ. Predictive value of triglyceride-glucose index for the occurrence of acute respiratory failure in asthmatic patients of MIMIC-IV database. Sci Rep 2024; 14:28631. [PMID: 39562796 PMCID: PMC11577067 DOI: 10.1038/s41598-024-74294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/25/2024] [Indexed: 11/21/2024] Open
Abstract
This study aims to investigate the association between the triglyceride-glucose (TyG) index and the occurrence of acute respiratory failure in asthma patients. This retrospective observational cohort study utilized data from the Medical Information Mart for Intensive Care IV (MIMIC-IV 2.2) database. The primary outcome was the development of acute respiratory failure in asthma patients. Initially, the Boruta algorithm and SHapley Additive exPansions were applied to preliminarily determine the feature importance of the TyG index, and a risk prediction model was constructed to evaluate its predictive ability. Secondly, Logistic regression proportional hazards models were employed to assess the association between the TyG index and acute respiratory failure in asthma patients. Finally, subgroup analyses were conducted for sensitivity analyses to explore the robustness of the results. A total of 751 asthma patients were included in the study. When considering the TyG index as a continuous variable, logistic regression analysis revealed that in the unadjusted Model 1, the odds ratio (OR) was 2.381 (95% CI: 1.857-3.052; P < 0.001), in Model II, the OR was 2.456 (95% CI: 1.809-3.335; P < 0.001), and in the multivariable-adjusted model, the OR was 1.444 (95% CI: 1.029-2.028; P = 0.034). A consistent association was observed between the TyG index and the risk of acute respiratory failure in asthma patients. No significant interaction was found between the TyG index and various subgroups (P > 0.05). Furthermore, machine learning results indicated that an elevated TyG index was a significant feature predictive of respiratory failure in asthma patients. The baseline risk model achieved an AUC of 0.743 (95% CI: 0.679-0.808; P < 0.05), whereas the combination of the baseline risk model with the TyG index yielded an AUC of 0.757 (95% CI: 0.694-0.821; P < 0.05). The TyG index can serve as a predictive indicator for acute respiratory failure in asthma patients, albeit confirmation of these findings requires larger-scale prospective studies.
Collapse
Affiliation(s)
- Qi Feng
- Hebei North University, Zhangjiakou, 075031, Hebei, China
- Three Departments of Respiration, Hebei Children's Hospital, Shijiazhuang, 050031, Hebei, China
| | - ZiWen Lv
- Hebei North University, Zhangjiakou, 075031, Hebei, China
| | - Chun Xiao Ba
- Hebei Medical University, Shijiazhuang, 050031, Hebei, China
- Three Departments of Respiration, Hebei Children's Hospital, Shijiazhuang, 050031, Hebei, China
| | - Ying Qian Zhang
- Three Departments of Respiration, Hebei Children's Hospital, Shijiazhuang, 050031, Hebei, China.
| |
Collapse
|
2
|
Pabary R, Jaffe A, Bush A. Macrolides and Cystic Fibrosis. PROGRESS IN INFLAMMATION RESEARCH 2024:59-92. [DOI: 10.1007/978-3-031-42859-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Banecki KMRM, Dora KA. Endothelin-1 in Health and Disease. Int J Mol Sci 2023; 24:11295. [PMID: 37511055 PMCID: PMC10379484 DOI: 10.3390/ijms241411295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Discovered almost 40 years ago, the potent vasoconstrictor peptide endothelin-1 (ET-1) has a wide range of roles both physiologically and pathologically. In recent years, there has been a focus on the contribution of ET-1 to disease. This has led to the development of various ET receptor antagonists, some of which are approved for the treatment of pulmonary arterial hypertension, while clinical trials for other diseases have been numerous yet, for the most part, unsuccessful. However, given the vast physiological impact of ET-1, it is both surprising and disappointing that therapeutics targeting the ET-1 pathway remain limited. Strategies aimed at the pathways influencing the synthesis and release of ET-1 could provide new therapeutic avenues, yet research using cultured cells in vitro has had little follow up in intact ex vivo and in vivo preparations. This article summarises what is currently known about the synthesis, storage and release of ET-1 as well as the role of ET-1 in several diseases including cardiovascular diseases, COVID-19 and chronic pain. Unravelling the ET-1 pathway and identifying therapeutic targets has the potential to treat many diseases whether through disease prevention, slowing disease progression or reversing pathology.
Collapse
Affiliation(s)
| | - Kim A Dora
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
4
|
Gal Y, Mazor O, Falach R, Sapoznikov A, Kronman C, Sabo T. Treatments for Pulmonary Ricin Intoxication: Current Aspects and Future Prospects. Toxins (Basel) 2017; 9:E311. [PMID: 28972558 PMCID: PMC5666358 DOI: 10.3390/toxins9100311] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor beans), is one of the most lethal toxins known, particularly if inhaled. Ricin is considered a potential biological threat agent due to its high availability and ease of production. The clinical manifestation of pulmonary ricin intoxication in animal models is closely related to acute respiratory distress syndrome (ARDS), which involves pulmonary proinflammatory cytokine upregulation, massive neutrophil infiltration and severe edema. Currently, the only post-exposure measure that is effective against pulmonary ricinosis at clinically relevant time-points following intoxication in pre-clinical studies is passive immunization with anti-ricin neutralizing antibodies. The efficacy of this antitoxin treatment depends on antibody affinity and the time of treatment initiation within a limited therapeutic time window. Small-molecule compounds that interfere directly with the toxin or inhibit its intracellular trafficking may also be beneficial against ricinosis. Another approach relies on the co-administration of antitoxin antibodies with immunomodulatory drugs, thereby neutralizing the toxin while attenuating lung injury. Immunomodulators and other pharmacological-based treatment options should be tailored according to the particular pathogenesis pathways of pulmonary ricinosis. This review focuses on the current treatment options for pulmonary ricin intoxication using anti-ricin antibodies, disease-modifying countermeasures, anti-ricin small molecules and their various combinations.
Collapse
Affiliation(s)
- Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ohad Mazor
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| |
Collapse
|
5
|
Katalan S, Falach R, Rosner A, Goldvaser M, Brosh-Nissimov T, Dvir A, Mizrachi A, Goren O, Cohen B, Gal Y, Sapoznikov A, Ehrlich S, Sabo T, Kronman C. A novel swine model of ricin-induced acute respiratory distress syndrome. Dis Model Mech 2017; 10:173-183. [PMID: 28067630 PMCID: PMC5312011 DOI: 10.1242/dmm.027847] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
Pulmonary exposure to the plant toxin ricin leads to respiratory insufficiency and death. To date, in-depth study of acute respiratory distress syndrome (ARDS) following pulmonary exposure to toxins is hampered by the lack of an appropriate animal model. To this end, we established the pig as a large animal model for the comprehensive study of the multifarious clinical manifestations of pulmonary ricinosis. Here, we report for the first time, the monitoring of barometric whole body plethysmography for pulmonary function tests in non-anesthetized ricin-treated pigs. Up to 30 h post-exposure, as a result of progressing hypoxemia and to prevent carbon dioxide retention, animals exhibited a compensatory response of elevation in minute volume, attributed mainly to a large elevation in respiratory rate with minimal response in tidal volume. This response was followed by decompensation, manifested by a decrease in minute volume and severe hypoxemia, refractory to oxygen treatment. Radiological evaluation revealed evidence of early diffuse bilateral pulmonary infiltrates while hemodynamic parameters remained unchanged, excluding cardiac failure as an explanation for respiratory insufficiency. Ricin-intoxicated pigs suffered from increased lung permeability accompanied by cytokine storming. Histological studies revealed lung tissue insults that accumulated over time and led to diffuse alveolar damage. Charting the decline in PaO2/FiO2 ratio in a mechanically ventilated pig confirmed that ricin-induced respiratory damage complies with the accepted diagnostic criteria for ARDS. The establishment of this animal model of pulmonary ricinosis should help in the pursuit of efficient medical countermeasures specifically tailored to deal with the respiratory deficiencies stemming from ricin-induced ARDS.
Collapse
Affiliation(s)
- Shahaf Katalan
- Department of Pharmacology, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Amir Rosner
- Veterinary Center for Preclinical Research, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Michael Goldvaser
- Department of Organic Chemistry, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Tal Brosh-Nissimov
- Infectious Disease Unit, Sheba Medical Center, 5262160 Tel-Hashomer, Israel
| | - Ayana Dvir
- General Intensive Care Unit, Asaf Harofeh Medical Center, 70300 Zerifin, Israel
| | - Avi Mizrachi
- General Intensive Care Unit, Kaplan Medical Center, 7661041 Rehovot, Israel
| | - Orr Goren
- Anesthesia, Pain and Intensive Care Division, Tel-Aviv Medical Center, Tel-Aviv University, 6093000 Tel-Aviv, Israel
| | - Barak Cohen
- Anesthesia, Pain and Intensive Care Division, Tel-Aviv Medical Center, Tel-Aviv University, 6093000 Tel-Aviv, Israel
| | - Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Sharon Ehrlich
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| |
Collapse
|
6
|
Integrity of airway epithelium in pediatric burn autopsies: Association with age and extent of burn injury. Burns 2015; 41:1435-41. [PMID: 26093952 DOI: 10.1016/j.burns.2015.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 01/24/2023]
Abstract
UNLABELLED This study examines the structural integrity of the airway epithelium in autopsy tissues from pediatric burn subjects. METHODS A semi-quantitative score for the degree of airway epithelial integrity was made for seventy- two pediatric burn autopsies. Multivariate ordinal logistic regression was performed to identify relationships between epithelial integrity and conditions related to tissue fixation, time of death after injury, age, total body surface area burn (TBSA), extent of 3rd degree burn, presence of inhalation injury, ventilator days and pneumonia. RESULTS No significant difference in epithelial integrity scores was identified between burn only cases and those with inhalation injury. Significant correlations with bronchiolar epithelial integrity scores were identified for age, p=0.02, and percent 3rd degree burn, p=0.02. There was no significant relationship between epithelial integrity and time between death and autopsy, p>0.44. CONCLUSIONS Airway epithelial loss seen in autopsy tissue is not simply an artifact of tissue fixation. The degree of compromise correlates most strongly with age and degree of burn. Further studies are needed to identify physiological or critical care factors following burn injury that contribute to compromise in the structural and functional properties of the airway epithelium.
Collapse
|
7
|
Gras D, Chanez P, Vachier I, Petit A, Bourdin A. Bronchial epithelium as a target for innovative treatments in asthma. Pharmacol Ther 2013; 140:290-305. [PMID: 23880290 DOI: 10.1016/j.pharmthera.2013.07.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 01/03/2023]
Abstract
Increasing evidence of a critical role played by the bronchial epithelium in airway homeostasis is opening new therapeutic avenues. Its unique situation at the interface with the environment suggests that the subtle regulation orchestrated by the epithelium between tolerance and specific immune response might be impaired in asthma. Airway mucus is acting as a physical and a biological fluid between the environment and the epithelium, synergistically moved by the cilia. In asthma, excessive mucus production is a hallmark of airway remodeling. Since many years we tried to therapeutically target mucus hypersecretion, but actually this option is still not achieved. The present review discusses the dynamic processes regulating airway mucus production. Airway inflammation is central in current asthma management. Understanding of how the airway epithelium influences the TH2 paradigm in response to deleterious agents is improving. The multiple receptors expressed by the airway epithelium are the transducers of the biological signals induced by various invasive agents to develop the most adapted response. Airway remodeling is observed in severe chronic airway diseases and may result from ongoing disturbance of signal transduction and epithelial renewal. Chronic airway diseases such as asthma will require assessment of these epithelial abnormalities to identify phenotypic characteristics associated with predicting a clinical benefit for epithelial-directed therapies.
Collapse
Affiliation(s)
- Delphine Gras
- UMR INSERM U1067 CNRS 7333, Aix-Marseille University, Marseille, France
| | | | | | | | | |
Collapse
|
8
|
Pawsey J, Lansley A, Lethem M. Endothelin increases the ciliary beat frequency of ovine airway epithelium via its interaction with endothelin a receptors. Pulm Pharmacol Ther 2011; 24:602-9. [DOI: 10.1016/j.pupt.2011.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 04/26/2011] [Accepted: 05/25/2011] [Indexed: 11/27/2022]
|
9
|
Neuberger T, Burton B, Clark H, Van Goor F. Use of primary cultures of human bronchial epithelial cells isolated from cystic fibrosis patients for the pre-clinical testing of CFTR modulators. Methods Mol Biol 2011; 741:39-54. [PMID: 21594777 DOI: 10.1007/978-1-61779-117-8_4] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The use of human bronchial epithelial (HBE) cell cultures derived from the bronchi of CF patients offers the opportunity to study the effects of CFTR correctors and potentiators on CFTR function and epithelial cell biology in the native pathological environment. Cultured HBE cells derived from CF patients exhibit many of the morphological and functional characteristics believed to be associated with CF airway disease in vivo, including abnormal ion and fluid transport leading to dehydration of the airway surface and the loss of cilia beating. In addition, they can be generated in sufficient quantities to support routine lab testing of compound potency and efficacy and retain reproducible levels of CFTR function over time. Here we describe the development and validation of the CF HBE pharmacology model and its use to characterize, optimize, and select clinical candidates. It is expected that the pre-clinical testing of CFTR potentiators and correctors using epithelial cell cultures derived from CF patients will help to increase their likelihood of clinical efficacy.
Collapse
|
10
|
Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci U S A 2009; 106:18825-30. [PMID: 19846789 DOI: 10.1073/pnas.0904709106] [Citation(s) in RCA: 959] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cystic fibrosis (CF) is a fatal genetic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), a protein kinase A (PKA)-activated epithelial anion channel involved in salt and fluid transport in multiple organs, including the lung. Most CF mutations either reduce the number of CFTR channels at the cell surface (e.g., synthesis or processing mutations) or impair channel function (e.g., gating or conductance mutations) or both. There are currently no approved therapies that target CFTR. Here we describe the in vitro pharmacology of VX-770, an orally bioavailable CFTR potentiator in clinical development for the treatment of CF. In recombinant cells VX-770 increased CFTR channel open probability (P(o)) in both the F508del processing mutation and the G551D gating mutation. VX-770 also increased Cl(-) secretion in cultured human CF bronchial epithelia (HBE) carrying the G551D gating mutation on one allele and the F508del processing mutation on the other allele by approximately 10-fold, to approximately 50% of that observed in HBE isolated from individuals without CF. Furthermore, VX-770 reduced excessive Na(+) and fluid absorption to prevent dehydration of the apical surface and increased cilia beating in these epithelial cultures. These results support the hypothesis that pharmacological agents that restore or increase CFTR function can rescue epithelial cell function in human CF airway.
Collapse
|
11
|
Comellas AP, Briva A. Role of endothelin-1 in acute lung injury. Transl Res 2009; 153:263-71. [PMID: 19446279 PMCID: PMC3046772 DOI: 10.1016/j.trsl.2009.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 02/19/2009] [Accepted: 02/20/2009] [Indexed: 01/11/2023]
Abstract
The alveolar-capillary membrane serves as a barrier that prevents the accumulation of fluid in the alveolar space and restricts the diffusion of large solutes while facilitating an efficient gas exchange. When this barrier becomes dysfunctional, patients develop acute lung injury (ALI), which is characterized by pulmonary edema and increased lung inflammation that leads to a life-threatening impairment of gas exchange. In addition to the increase of inflammatory cytokines, plasma levels of endothelin-1 (ET-1), which is a primarily endothelium-derived vasoconstrictor, are increased in patients with ALI. As patients recover, ET-1 levels decrease, which suggests that ET-1 may not only be a marker of endothelial dysfunction but may have a role in the pathogenesis of ALI. While pulmonary edema accumulates, alveolar fluid clearance (AFC) is of critical importance, as failure to return to normal clearance is associated with poor prognosis in patients with pulmonary edema. AFC involves active transport mechanisms where sodium (Na(+)) is actively transported from the alveolar airspaces, across the alveolar epithelium, and into the pulmonary circulation, which creates an osmotic gradient that is responsible for the clearance of lung edema. In this article, we review the relevance of ET-1 in the development of ALI, not only as a vasoconstrictor molecule but also by inhibiting AFC via the activation of endothelial ET-B receptors and generation. Furthermore, this review highlights the therapeutic role of drugs such as beta-adrenergic agonists and, in particular, of endothelin receptor antagonists in patients with ALI.
Collapse
Affiliation(s)
- Alejandro P Comellas
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
12
|
Berger MM, Rozendal CS, Schieber C, Dehler M, Zügel S, Bardenheuer HJ, Bärtsch P, Mairbäurl H. The effect of endothelin-1 on alveolar fluid clearance and pulmonary edema formation in the rat. Anesth Analg 2009; 108:225-31. [PMID: 19095854 DOI: 10.1213/ane.0b013e31818881a8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Endothelin-1 (ET-1) is thought to play a pivotal role in pulmonary edema formation. The underlying mechanisms remain uncertain but may include alterations in capillary pressure and vascular permeability. There are no studies investigating whether ET-1 also affects alveolar fluid clearance which is the primary mechanism for the resolution of pulmonary edema. Therefore, we performed this study to clarify effects of ET-1 on alveolar reabsorption and fluid balance in the rat lung. METHODS Alveolar fluid clearance was measured in fluid instilled rat lungs using a 5% albumin solution with or without ET-1 (10(-7) M) and/or amiloride (100 microM). Net alveolar fluid balance, time course of edema formation, pulmonary capillary pressure, and alveolar permeability to albumin were measured in the isolated, ventilated, constant pressure perfused rat lung with or without ET-1 (0.8 nM) added to the perfusate. RESULTS In the fluid-instilled lung, ET-1 reduced alveolar fluid clearance by about 65%, an effect that was related to a decrease in amiloride-sensitive transepithelial Na(+) transport (P < 0.001). The ET-1-induced inhibition was completely prevented by the endothelin B receptor antagonist BQ788 (P = 0.006), whereas the endothelin A receptor antagonist BQ123 had no effect (P = 0.663). In the isolated, ventilated, perfused rat lung ET-1 caused a net accumulation of alveolar fluid by about 20% (P = 0.011 vs control), whereas lungs of control rats cleared about 20% of the instilled fluid. ET-1 increased pulmonary capillary pressure (+9.4 cm H(2)O), decreased perfusate flow (-81%), accelerated lung weight gain and reduced lung survival time (P < 0.001). Permeability to albumin was not significantly affected by ET-1 (P = 0.24). CONCLUSION ET-1 inhibits alveolar fluid clearance of anesthetized rats by inhibition of amiloride-sensitive epithelial Na(+) channels. The inhibitory effect of ET-1 results from activation of the endothelin B receptor. These findings suggest a mechanism by which ET-1, in addition to increasing capillary pressure, contributes to pulmonary edema formation.
Collapse
Affiliation(s)
- Marc Moritz Berger
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kassuya CAL, Rogerio AP, Calixto JB. The role of ET(A) and ET(B) receptor antagonists in acute and allergic inflammation in mice. Peptides 2008; 29:1329-37. [PMID: 18632188 DOI: 10.1016/j.peptides.2008.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/07/2008] [Accepted: 03/10/2008] [Indexed: 01/21/2023]
Abstract
In this study, we investigated the effects of the selective ET(A) (BQ-123) and ET(B) (BQ-788) receptor antagonists for endothelin-1 (ET-1) against several flogistic agent-induced paw edema formation and ovalbumin-induced allergic lung inflammation in mice. The intraplantar injection of BQ-123, but not BQ-788, significantly inhibited carrageenan-, PAF-, ET-1- and bradykinin-induced paw edema formation. The obtained inhibitions (1h after the inflammatory stimulus) were 79+/-5%, 55+/-4%, 55+/-6% and 74+/-4%, respectively. In carrageenan-induced paw edema, the mean ID(50) value for BQ-123 was 0.77 (0.27-2.23)nmol/paw. The neutrophil influx induced by carrageenan or PAF was reduced by BQ-123, with inhibitions of 55+/-2% and 72+/-4%, respectively. BQ-123 also inhibited the indirect macrophage influx induced by carrageenan (55+/-6%). However, BQ-788 failed to block the cell influx caused by either of these flogistic agents. When assessed in the bronchoalveolar lavage fluid in a murine model of asthma, both BQ-123 and BQ-788 significantly inhibited ovalbumin-induced eosinophil recruitment (78+/-6% and 71+/-8%), respectively. Neither neutrophil nor mononuclear cell counts were significantly affected by these drugs. Our findings indicate that ET(A), but not ET(B), selective ET-1 antagonists are capable of preventing the acute inflammatory responses induced by carrageenan, PAF, BK and ET-1. However, both ET(A) and ET(B) receptor antagonists were found to be effective in inhibiting the allergic response in a murine model of asthma.
Collapse
Affiliation(s)
- Cândida A L Kassuya
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | | |
Collapse
|
14
|
Peng H, Chen P, Cai Y, Chen Y, Wu QH, Li Y, Zhou R, Fang X. Endothelin-1 increases expression of cyclooxygenase-2 and production of interlukin-8 in hunan pulmonary epithelial cells. Peptides 2008; 29:419-24. [PMID: 18191873 DOI: 10.1016/j.peptides.2007.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Revised: 11/19/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
Abstract
Inducible cyclooxygenase (COX-2) and inflammatory cytokines play important roles in inflammatory processes of chronic obstructive pulmonary disease (COPD). Endothelin-1 (ET-1) might be also involved in the pathophysilogical processes in COPD. In the present study, we determined whether ET-1 could regulate the expression of COX-2 and alter the production of interleukin-8 (IL-8) in human pulmonary epithelial cells (A549). Induced sputum samples were collected from 13 stable COPD patients and 14 healthy subjects. The COX-2 protein, ET-1, PGE(2) and IL-8 in these sputum samples were analyzed. A549 cells were incubated with ET-1 in the presence or absence of celecoxib, a selective COX-2 inhibitor. The expression of COX-2 protein in the cell and the amounts of PGE(2) and IL-8 in the medium were measured. The levels of COX-2 protein, ET-1, PGE(2) and IL-8 were significantly increased in induced sputum from COPD patients when compared to healthy subjects. ET-1 increased the expression of COX-2 protein, as well as the production of PGE(2) in A549 cells. Increased production of PGE(2) was inhibited by celecoxib. ET-1 also increased the production of IL-8. Interestingly, ET-1-induced production of IL-8 was also inhibited by celecoxib. These findings indicate that ET-1 plays important roles in regulating COX-2 expression and production of IL-8 in A549 cells. ET-1 mediated production of IL-8 is likely through a COX-2-dependent mechanism.
Collapse
Affiliation(s)
- Hong Peng
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Faisy C, Pinto F, Danel C, Naline E, Risse PA, Leroy I, Israel-Biet D, Fagon JY, Candenas ML, Advenier C. beta2-Adrenoceptor agonist modulates endothelin-1 receptors in human isolated bronchi. Am J Respir Cell Mol Biol 2005; 34:410-6. [PMID: 16340002 DOI: 10.1165/rcmb.2005-0091oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Chronic exposure of human isolated bronchi to beta(2)-adrenergic agonists, especially fenoterol, potentiates smooth muscle contraction in response to endothelin-1 (ET-1), a peptide implicated in chronic inflammatory airway diseases. Our objective was to determine whether ET-1 receptors ETA and ETB are involved in fenoterol enhancement. Twenty-two human bronchi were sensitized to ET-1 by prolonged incubation with 0.1 microM fenoterol (15 h, 21 degrees C). Removing the epithelium after fenoterol incubation limited the maximal contraction (0.10+/-0.36 g without epithelium versus 1.18+/-0.22 with, n=8, P=0.04). After 15 h incubation, 14 and 8 paired rings were fixed, respectively, for immunolabeling of bronchial ETA and ETB receptors, and to determine the mRNA expression levels using real-time quantitative reverse transcription polymerase chain reaction. ETA and ETB receptor mRNA expressions were 1.27- +/- 0.14-fold (not significant) and 2.24- +/- 0.28-fold (P<0.01) higher, respectively, in fenoterol-treated bronchi than in paired controls. Fenoterol incubation significantly increased epithelial ETA and ETB receptor labeling intensity scores (P=0.001 and P=0.002, respectively, versus controls), and enhanced the diffuse localization of ETA receptors on the epithelial cells (P=0.002 versus controls), but did not change the ETB-receptor immunolabeling intensity on airway smooth muscle. We conclude that fenoterol-induced sensitization of human isolated bronchi involves epithelial ETA and ETB receptors, which suggests perturbation of the epithelial regulation of airway smooth muscle contraction in response to ET-1.
Collapse
Affiliation(s)
- Christophe Faisy
- UPRES EA220, UFR Biomédicale des Saints-Pères, 45 rue des Saints-Pères, 75006 Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ohsawa M, Ohuchi N, Taniguchi Y, Kizawa Y, Koike K, Iwamoto K, Hayashi K, Murakami H. Inhibition of angiotensin II- and endothelin-1-stimulated proliferation by selective MEK inhibitor in cultured rabbit gingival fibroblasts+. Fundam Clin Pharmacol 2005; 19:677-85. [PMID: 16313280 DOI: 10.1111/j.1472-8206.2005.00372.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated the implication of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in the proliferation stimulated by angiotensin II (Ang II) and endothelin-1 (ET-1) in cultured rabbit gingival fibroblasts (CRGF). Ang II stimulated activation of ERK1/2 and the activation was inhibited by CV-11974, an AT1 antagonist, and saralasin, an AT1/AT2 antagonist, but not by PD123,319, an AT2 antagonist in the CRGF. Ang II-stimulated proliferation was inhibited by PD98059 or U0126, selective MEK inhibitors. Furthermore, ET-1 stimulated proliferation via G-protein-coupled ETA receptors, which were identified by Western blot analysis of membrane protein from the CRGF. ET-1 also stimulated activation of ERK1/2 and the activation was inhibited by BQ-123, an ETA inhibitor, and TAK044, an ETA/ETB inhibitor, but not by BQ-788, an ETB inhibitor. ET-1-stimulated proliferation was inhibited by PD98059 or U0126. These findings suggest that ERK1/2 play a role in the signaling process leading to proliferation stimulated by Ang II and ET-1 via G-protein-coupled receptors, AT1 and ETA in CRGF.
Collapse
Affiliation(s)
- Masami Ohsawa
- Division of Health and Sport Sciences, Nihon University College of Industrial Technology, Mimomi Campus, Shinsakae, Narashino, Chiba 274-8576, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bernard K, Bogliolo S, Ehrenfeld J. Vasotocin and vasopressin stimulation of the chloride secretion in the human bronchial epithelial cell line, 16HBE14o-. Br J Pharmacol 2005; 144:1037-50. [PMID: 15685210 PMCID: PMC1576086 DOI: 10.1038/sj.bjp.0706103] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Effects of neuropeptides of the vasopressin family on Cl(-) secretion have not yet been reported in lung. Using the 16HBE14o- bronchial epithelial cell line, we investigated their action on Cl(-) secretion. 2. In symmetrical Cl(-) solutions, basolateral application of arginine vasotocin (AVT), oxytocin or isotocin induced a transient I(sc) stimulation (I(peak)), whereas arginine vasopressin (AVP) did not. The effects of different Cl(-) channel blockers and of a protein kinase C (PKC) inhibitor suggest that CFTR is involved in I(peak). The calcium-activated K(+) channel (SK4) and the Cl(-)/HCO(-)(3) exchanger favor the driving force for AVT-mediated Cl(-) secretion. The antagonists of V1a (SR49059)- and V1b (SSR149415)-receptors blocked I(peak), while SR121463B, a V2 receptor antagonist, did not. These results point to the stimulation of a V1-like receptor mediating I(peak) and presenting an efficacy order, AVT>oxytocin>isotocin>>AVP. 3. When a serosal to mucosal Cl(-) gradient was applied, AVT and AVP both stimulated I(sc) according to a biphasic profile, I(peak) being followed by a plateau phase (I(plateau)). The pharmacology of I(plateau) suggests that CFTR channels are involved and that Na(+)/K(+)/2Cl(-) is the only transporter associated with I(plateau). dDAVP, a V2 receptor agonist-induced I(plateau) with the same potency as AVP, suggesting the involvement of V2 receptors in the AVP-induced I(plateau). V2 receptors are present on both opposite membranes, while V1-like receptors are mainly expressed on the basolateral membranes. RT-PCR experiments show the expression of V1a, V1b, V2 and vasopressin-activated calcium-mobilizing (VACM) receptors mRNAs.
Collapse
Affiliation(s)
- Karen Bernard
- Laboratoire de Physiologie des Membranes Cellulaires, Université de Nice-Sophia Antipolis, FRE 2721/CNRS (Batiment Jean Maetz), 06230 Villefranche-sur-Mer, France
| | - Stéphanie Bogliolo
- Laboratoire de Physiologie des Membranes Cellulaires, Université de Nice-Sophia Antipolis, FRE 2721/CNRS (Batiment Jean Maetz), 06230 Villefranche-sur-Mer, France
| | - Jordi Ehrenfeld
- Laboratoire de Physiologie des Membranes Cellulaires, Université de Nice-Sophia Antipolis, FRE 2721/CNRS (Batiment Jean Maetz), 06230 Villefranche-sur-Mer, France
- Author for correspondence:
| |
Collapse
|
18
|
Solini A, Santini E, Ferrannini E. Enhanced angiotensin II-mediated effects in fibroblasts of patients with familial hypercholesterolemia. J Hypertens 2005; 23:367-74. [PMID: 15662225 DOI: 10.1097/00004872-200502000-00019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Familial hypercholesterolemia (FH) is characterized by a high incidence of coronary heart disease. Evidence suggests an important role for angiotensin II (AngII) in the fibrotic response to tissue injury, and in promoting myocardial hypertrophy via paracrine mechanisms mediated by fibroblasts. We sought to determine whether AngII promotes proliferative and pro-atherogenic responses in FH patients. METHODS We used primary fibroblasts -- from five patients with heterozygous FH and five control subjects (C) -- to study AngII-induced cell growth, intracellular calcium fluxes, and expression/release of matrix components and pro-inflammatory peptides [transforming growth factor-beta1 (TGFbeta1) and endothelin-1 (ET-1)] and metalloproteinases involved in plaque remodeling and vulnerability. RESULTS AngII stimulated cell replication (5.1 +/- 0.03 versus 3.2 +/- 0.04 cells/50 cells per well, P < 0.001), and induced a larger increase in intracellular calcium content in FH cells than in C cells, in a dose-dependent fashion (mean difference = 76 nmol/l, P < 0.001). Similarly, TGFbeta1 and ET-1 expression and release were potentiated (after 24-h incubation with 1 micromol/l AngII: TGFbeta1 was 190 +/- 12 in C and 376 +/- 9 pg/ml per 10(6) cells in FH, and ET-1 was 93 +/- 5 in C and 192 +/- 7 pmol/ml per 10(6) cells in FH; P < 0.001 for both). AngII-induced release of the metalloproteinases MMP-1 and MMP-2 was also increased in FH versus C cells (0.52 +/- 0.04 versus 0.36 +/- 0.05 and 24 +/- 4 versus 13 +/- 3 ng/mg protein with 1 micromol/l AngII). These enhanced responses were likely due to an increased angiotensin receptor 1 (AT1) expression in cells from FH patients induced by AngII, and were prevented by pretreating cells with the selective AT1 antagonist irbesartan. CONCLUSIONS These findings show that some AngII-mediated pathways are enhanced in FH subjects irrespective of the presence of low-density lipoprotein (LDL), thus contributing to the development and progression of atherosclerosis in these patients.
Collapse
Affiliation(s)
- Anna Solini
- Metabolism Section, Department of Internal Medicine University of Pisa, School of Medicine, Pisa, Italy.
| | | | | |
Collapse
|