1
|
Bai D, Nowak M, Lu D, Wang Q, Fitzgerald M, Zhang H, MacDonald R, Xu Z, Luo L. The outcast of medicine: metals in medicine--from traditional mineral medicine to metallodrugs. Front Pharmacol 2025; 16:1542560. [PMID: 40260378 PMCID: PMC12010122 DOI: 10.3389/fphar.2025.1542560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/07/2025] [Indexed: 04/23/2025] Open
Abstract
Metals have long held a significant role in the human body and have been utilized as mineral medicines for thousands of years. The modern advancement of metals in pharmacology, particularly as metallodrugs, has become crucial in disease treatment. As the machanism of metallodurgsare increasingly uncovered, some metallodrugs are already approved by FDA and widely used in treating antitumor, antidiabetes, and antibacterial. Therefore, a thorough understanding of metallodrug development is essential for advancing future study. This review offers an in-depth examination of the evolution of mineral medicines and the applications of metallodrugs within contemporary medicine. We specifically aim to summarize the historical trajectory of metals and mineral medicines in Traditional Chinese Mineral Medicine by analyzing key historical texts and representative mineral medicines. Additionally, we discuss recent advancements in understanding metallodrugs' mechanisms, such as protein interactions, enzyme inhibition, DNA interactions, reactive oxygen species (ROS) generation, and cellular structure targeting. Furthermore, we address the challenges in metallodrug development and propose potential solutions. Lastly, we outline future directions for metallodrugs to enhance their efficacy and effectiveness. The progression of metallodrugs has broadened their applications and contributed significantly to patient health, creating good healthcare solutions for the global population.
Collapse
Affiliation(s)
- Donghan Bai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Michal Nowak
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Dajun Lu
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Qiaochu Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | | | - Hui Zhang
- Institute of Traditional Chinese Medicine, European University of Chinese Medicine, Horsens, Denmark
| | - Remy MacDonald
- Department of Statistics, George Mason University, Virginia, VA, United States
| | - Ziwen Xu
- Department of Nursing, The University of Melbourne, Parkville, VIC, Australia
| | - Lu Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Jiménez-Holguín J, Lozano D, Saiz-Pardo M, de Pablo D, Ortega L, Enciso S, Fernández-Tomé B, Díaz-Güemes I, Sánchez-Margallo FM, Portolés MT, Arcos D. Osteogenic-angiogenic coupled response of cobalt-containing mesoporous bioactive glasses in vivo. Acta Biomater 2024; 176:445-457. [PMID: 38190928 DOI: 10.1016/j.actbio.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
The incorporation of cobalt ions into the composition of bioactive glasses has emerged as a strategy of interest for bone regeneration purposes. In the present work, we have designed a set of bioactive mesoporous glasses SiO2-CaO-P2O5-CoO (Co-MBGs) with different amounts of cobalt. The physicochemical changes introduced by the Co2+ ion, the in vitro effects of Co-MBGs on preosteoblasts and endothelial cells and their in vivo behaviour using them as bone grafts in a sheep model were studied. The results show that Co2+ ions neither destroy mesoporous ordering nor inhibit in vitro bioactive behaviour, exerting a dual role as network former and modifier for CoO concentrations above 3 % mol. On the other hand, the activity of Co-MBGs on MC3T3-E1 preosteoblasts and HUVEC vascular endothelial cells is dependent on the concentration of CoO present in the glass. For low Co-MBGs concentrations (1mg/ml) cell viability is not affected, while the expression of osteogenic (ALP, RUNX2 and OC) and angiogenic (VEGF) genes is stimulated. For Co-MBGs concentration of 5 mg/ml, cell viability decreases as a function of the CoO content. In vivo studies show that the incorporation of Co2+ ions to the MBGs improves the bone regeneration activity of these materials, despite the deleterious effect that this ion has on bone-forming cells for any of the Co-MBG compositions studied. This contradictory effect is explained by the marked increase in angiogenesis that takes place inside the bone defect, leading to an angiogenesis-osteogenesis coupling that compensates for the partial decrease in osteoblast cells. STATEMENT OF SIGNIFICANCE: The development of new bone grafts implies to address the need for osteogenesis-angiogenesis coupling that allows bone regeneration with viable tissue in the long term. In this sense the incorporation of cobalt ions into the composition of bioactive glasses has emerged as a strategy of great interest in this field. Due to the potential cytotoxic effect of cobalt ions, there is an important controversy regarding the suitability of their incorporation in bone grafts. In this work, we address this controversy after the implantation of cobalt-doped mesoporous bioactive glasses in a sheep model. The incorporation of cobalt ions in bioactive glasses improves the bone regeneration ability of these bone grafts, due to enhancement of the angiogenesis-osteogenesis coupling.
Collapse
Affiliation(s)
- J Jiménez-Holguín
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid 28040, Spain
| | - D Lozano
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid 28040, Spain
| | - M Saiz-Pardo
- Servicio de Anatomía Patológica, Hospital Clínico San Carlos, Facultad de Medicina Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - D de Pablo
- Servicio de Anatomía Patológica, Hospital Clínico San Carlos, Facultad de Medicina Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - L Ortega
- Servicio de Anatomía Patológica, Hospital Clínico San Carlos, Facultad de Medicina Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - S Enciso
- Centro de Cirugía de Mínima Invasión Jesús Usón, NANBIOSIS, Cáceres, Spain
| | - B Fernández-Tomé
- Centro de Cirugía de Mínima Invasión Jesús Usón, NANBIOSIS, Cáceres, Spain
| | - I Díaz-Güemes
- Centro de Cirugía de Mínima Invasión Jesús Usón, NANBIOSIS, Cáceres, Spain
| | | | - M T Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid 28040, Spain.
| | - D Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid 28040, Spain.
| |
Collapse
|
3
|
Hoseinzadeh A, Ghoddusi Johari H, Anbardar MH, Tayebi L, Vafa E, Abbasi M, Vaez A, Golchin A, Amani AM, Jangjou A. Effective treatment of intractable diseases using nanoparticles to interfere with vascular supply and angiogenic process. Eur J Med Res 2022; 27:232. [PMID: 36333816 PMCID: PMC9636835 DOI: 10.1186/s40001-022-00833-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis is a vital biological process involving blood vessels forming from pre-existing vascular systems. This process contributes to various physiological activities, including embryonic development, hair growth, ovulation, menstruation, and the repair and regeneration of damaged tissue. On the other hand, it is essential in treating a wide range of pathological diseases, such as cardiovascular and ischemic diseases, rheumatoid arthritis, malignancies, ophthalmic and retinal diseases, and other chronic conditions. These diseases and disorders are frequently treated by regulating angiogenesis by utilizing a variety of pro-angiogenic or anti-angiogenic agents or molecules by stimulating or suppressing this complicated process, respectively. Nevertheless, many traditional angiogenic therapy techniques suffer from a lack of ability to achieve the intended therapeutic impact because of various constraints. These disadvantages include limited bioavailability, drug resistance, fast elimination, increased price, nonspecificity, and adverse effects. As a result, it is an excellent time for developing various pro- and anti-angiogenic substances that might circumvent the abovementioned restrictions, followed by their efficient use in treating disorders associated with angiogenesis. In recent years, significant progress has been made in different fields of medicine and biology, including therapeutic angiogenesis. Around the world, a multitude of research groups investigated several inorganic or organic nanoparticles (NPs) that had the potential to effectively modify the angiogenesis processes by either enhancing or suppressing the process. Many studies into the processes behind NP-mediated angiogenesis are well described. In this article, we also cover the application of NPs to encourage tissue vascularization as well as their angiogenic and anti-angiogenic effects in the treatment of several disorders, including bone regeneration, peripheral vascular disease, diabetic retinopathy, ischemic stroke, rheumatoid arthritis, post-ischemic cardiovascular injury, age-related macular degeneration, diabetic retinopathy, gene delivery-based angiogenic therapy, protein delivery-based angiogenic therapy, stem cell angiogenic therapy, and diabetic retinopathy, cancer that may benefit from the behavior of the nanostructures in the vascular system throughout the body. In addition, the accompanying difficulties and potential future applications of NPs in treating angiogenesis-related diseases and antiangiogenic therapies are discussed.
Collapse
Affiliation(s)
- Ahmad Hoseinzadeh
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Ghoddusi Johari
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Golchin
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Jampasri S, Reabroi S, Tungmunnithum D, Parichatikanond W, Pinthong D. Plumbagin Suppresses Breast Cancer Progression by Downregulating HIF-1α Expression via a PI3K/Akt/mTOR Independent Pathway under Hypoxic Condition. Molecules 2022; 27:molecules27175716. [PMID: 36080483 PMCID: PMC9457614 DOI: 10.3390/molecules27175716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a major transcriptional regulator that plays a crucial role in the hypoxic response of rapidly growing tumors. Overexpression of HIF-1α has been associated with breast cancer metastasis and poor clinical prognosis. Plumbagin, the main phytochemical from Plumbago indica, exerts anticancer effects via multiple mechanisms. However, its precise mechanisms on breast cancer cells under hypoxic conditions has never been investigated. This study aims to examine the anticancer effect of plumbagin on MCF-7 cell viability, transcriptional activity, and protein expression of HIF-1α under normoxia and hypoxia-mimicking conditions, as well as reveal the underlying signaling pathways. The results demonstrate that plumbagin decreased MCF-7 cell viability under normoxic conditions, and a greater extent of reduction was observed upon exposure to hypoxic conditions induced by cobalt chloride (CoCl2). Mechanistically, MCF-7 cells upregulated the expression of HIF-1α protein, mRNA, and the VEGF target gene under CoCl2-induced hypoxia, which were abolished by plumbagin treatment. In addition, inhibition of HIF-1α and its downstream targets did not affect the signaling transduction of the PI3K/Akt/mTOR pathway under hypoxic state. This study provides mechanistic insight into the anticancer activity of plumbagin in breast cancer cells under hypoxic conditions by abolishing HIF-1α at transcription and post-translational modifications.
Collapse
Affiliation(s)
- Supawan Jampasri
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Somrudee Reabroi
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Center of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Darawan Pinthong
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence:
| |
Collapse
|
5
|
Akbarian M, Bertassoni LE, Tayebi L. Biological aspects in controlling angiogenesis: current progress. Cell Mol Life Sci 2022; 79:349. [PMID: 35672585 PMCID: PMC10171722 DOI: 10.1007/s00018-022-04348-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022]
Abstract
All living beings continue their life by receiving energy and by excreting waste products. In animals, the arteries are the pathways of these transfers to the cells. Angiogenesis, the formation of the arteries by the development of pre-existed parental blood vessels, is a phenomenon that occurs naturally during puberty due to certain physiological processes such as menstruation, wound healing, or the adaptation of athletes' bodies during exercise. Nonetheless, the same life-giving process also occurs frequently in some patients and, conversely, occurs slowly in some physiological problems, such as cancer and diabetes, so inhibiting angiogenesis has been considered to be one of the important strategies to fight these diseases. Accordingly, in tissue engineering and regenerative medicine, the highly controlled process of angiogenesis is very important in tissue repairing. Excessive angiogenesis can promote tumor progression and lack of enough angiogensis can hinder tissue repair. Thereby, both excessive and deficient angiogenesis can be problematic, this review article introduces and describes the types of factors involved in controlling angiogenesis. Considering all of the existing strategies, we will try to lay out the latest knowledge that deals with stimulating/inhibiting the angiogenesis. At the end of the article, owing to the early-reviewed mechanical aspects that overshadow angiogenesis, the strategies of angiogenesis in tissue engineering will be discussed.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA.
| |
Collapse
|
6
|
Castilla R, Ruffa FV, Bancalari I, Fernández Vivanco M, Lallopizzo C, Torasso N, Farcy N, Gutierrez C, Bonazzolaa P. Cobalt chloride postconditioning as myoprotective therapy in cardiac ischemia-reperfusion. Pflugers Arch 2022; 474:743-752. [PMID: 35585327 DOI: 10.1007/s00424-022-02703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/11/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Since damage induced by ischemia-reperfusion (I/R) involves alterations in Ca2+ homeostasis and is reduced by ischemic postconditioning (IP) and that CoCl2 can trigger changes resembling the response to a hypoxic event in normoxia and its blockade on Ca2+ current in heart muscle, our aim was to evaluate CoCl2 as an IP therapeutic tool. Mechanic and energetic parameters of isolated and arterially perfused male Wistar rat heart ventricles were simultaneously analyzed in a model of I/R in which 0.23 mmol/L CoCl2 was introduced upon reperfusion and kept or withdrawn after 20 min or introduced after 20 min of reperfusion. The presence of CoCl2 did not affect diastolic pressure but increased post-ischemic contractile recovery, which peaked at 20 min and decreased at the end of reperfusion. This decrease was prevented when CoCl2 was removed at 20 min of reperfusion. Total heat release increased throughout reperfusion, while economy increased between 15 and 25 min. No effect was observed when CoCl2 was introduced at 20 min of reperfusion. In addition, both the area under the contracture curve evoked by 10 mmol/L caffeine-36 mmol/L Na+ and the contracture tension relaxation rate were higher with CoCl2.Furthermore, CoCl2 decreased the number of arrhythmias during reperfusion and the ventricular damaged area. The presence of CoCl2 in reperfusion induces cardioprotection consistent with the improvement in cellular calcium handling. The use of CoCl2 constitutes a potential cardioprotective tool of clinical relevance.
Collapse
Affiliation(s)
- Rocío Castilla
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina.
| | - Facundo Vigón Ruffa
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| | - Ignacio Bancalari
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| | - Mercedes Fernández Vivanco
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| | - Carla Lallopizzo
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| | - Nicolás Torasso
- Facultad de Ciencias Exactas Y Naturales, Instituto de Física de Buenos Aires (IFIBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicole Farcy
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| | - Christopher Gutierrez
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| | - Patricia Bonazzolaa
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| |
Collapse
|
7
|
Akiyama M, Mizokami T, Miyamoto S, Ikeda Y. Kaempferol increases intracellular ATP content in C 2C 12 myotubes under hypoxic conditions by suppressing the HIF-1α stabilization and/or by enhancing the mitochondrial complex IV activity. J Nutr Biochem 2022; 103:108949. [PMID: 35122998 DOI: 10.1016/j.jnutbio.2022.108949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Kaempferol (KMP) has numerous important biological functions, and we recently showed that it remarkably increased intracellular adenosine triphosphate (ATP) content in C2C12 myotubes under hypoxic conditions. Since intracellular ATP is generated by aerobic energy metabolism or anaerobic glycolysis, hypoxia inducible factor-1α (HIF-1α) has been shown to be associated with metabolic remodeling and causes metabolic shift from aerobic energy metabolism to anaerobic glycolysis in response to hypoxic conditions. Here, we investigate the effects of KMP under hypoxic conditions on the stabilization of HIF-1α in C2C12 myotubes and its underlying molecular mechanisms. Constitutive HIF-1α protein expression was observed in C2C12 myotubes, and its expression under hypoxic conditions was remarkably suppressed by KMP by reducing its stability; thus, resulting in an increase in ATP content. Furthermore, KMP strikingly increased the ubiquitination of HIF-1α and promoted its degradation via the ubiquitin proteasome system. Inhibition of HIF-1α by KMP resulted in the abrogation of the expression of glycolytic enzymes such as lactate dehydrogenase A and pyruvate dehydrogenase kinase isozyme 1. In addition, the metabolome profiling showed that KMP promoted oxidative energy production, while the mitochondrial complex activity assay indicated that KMP increased the activity of mitochondrial complex IV. Finally, we showed that KMP inhibited HIF-1α expression and increased intracellular ATP content in the soleus muscle of rats. Taken together, these results suggest that KMP increases intracellular ATP content under hypoxic conditions by suppressing the HIF-1α stabilization and/or by enhancing the mitochondrial complex IV activity in muscle.
Collapse
Key Words
- 2-OG, 2-oxoglutaric acid
- 3-PG, 3-phosphoglyceric acid
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- AcCoA, acetyl CoA
- C(2)C(12) myotube
- CE-TOFMS, capillary electrophoresis time-of-flight mass spectrometry
- CHX, cycloheximide
- DFO, deferoxamine mesylate
- DMEM, Dulbecco's modified Eagle medium
- DMSO, dimethylsulfoxide
- EGCG, epigallocatechin gallate
- F1,6P, fructose-1,6-bisphosphate
- F6P, fructose-6-phosphate
- FAD, flavin adenine dinucleotide
- FBS, fetal bovine serum
- G6P, glucose-6-phosphate
- GAP, glyceraldehyde-3-phosphate
- HIF, hypoxia inducible factor
- HIF-1α, hypoxia
- HRE, hypoxia response element
- HS, horse serum
- HSP, heat shock protein
- KMP, kaempferol
- LDHA, lactate dehydrogenase A
- Lac, lactacystin
- NAD, nicotinamide adenine dinucleotide
- PBS, phosphate-buffered saline
- PDH, pyruvate dehydrogenase
- PDK1, pyruvate dehydrogenase kinase isozyme 1
- PEP, phosphoenolpyruvic acid
- PHD, prolyl hydroxylase
- RACK, receptor for activated C kinase
- RT-qPCR, reverse transcription-quantitative polymerase chain reaction
- TCA, tricarboxylic acid
- Ub, ubiquitin
- VHL, von Hippel–Lindau
- kaempferol
- metabolome profiling
- mitochondria
Collapse
Affiliation(s)
- Minoru Akiyama
- Saga Nutraceuticals Research Institute, Otsuka Pharmaceutical Co. Ltd., 5006-5 Yoshinogari-cho Kanzaki-gun, Saga, 842-0195, Japan
| | - Tsubasa Mizokami
- Saga Nutraceuticals Research Institute, Otsuka Pharmaceutical Co. Ltd., 5006-5 Yoshinogari-cho Kanzaki-gun, Saga, 842-0195, Japan
| | - Shingo Miyamoto
- Saga Nutraceuticals Research Institute, Otsuka Pharmaceutical Co. Ltd., 5006-5 Yoshinogari-cho Kanzaki-gun, Saga, 842-0195, Japan
| | - Yasutaka Ikeda
- Saga Nutraceuticals Research Institute, Otsuka Pharmaceutical Co. Ltd., 5006-5 Yoshinogari-cho Kanzaki-gun, Saga, 842-0195, Japan.
| |
Collapse
|
8
|
Kang GJ, Xie A, Liu H, Dudley SC. MIR448 antagomir reduces arrhythmic risk after myocardial infarction by upregulating the cardiac sodium channel. JCI Insight 2020; 5:140759. [PMID: 33108349 PMCID: PMC7714400 DOI: 10.1172/jci.insight.140759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiac ischemia is associated with arrhythmias; however, effective therapies are currently limited. The cardiac voltage-gated sodium channel α subunit (SCN5A), encoding the Nav1.5 current, plays a key role in the cardiac electrical conduction and arrhythmic risk. Here, we show that hypoxia reduces Nav1.5 through effects on a miR, miR-448. miR-448 expression is increased in ischemic cardiomyopathy. miR-448 has a conserved binding site in 3′-UTR of SCN5A. miR-448 binding to this site suppressed SCN5A expression and sodium currents. Hypoxia-induced HIF-1α and NF-κB were major transcriptional regulators for MIR448. Moreover, hypoxia relieved MIR448 transcriptional suppression by RE1 silencing transcription factor. Therefore, miR-448 inhibition reduced arrhythmic risk after myocardial infarction. Here, we show that ischemia drove miR-448 expression, reduced Nav1.5 current, and increased arrhythmic risk. Arrhythmic risk was improved by preventing Nav1.5 downregulation, suggesting a new approach to antiarrhythmic therapy. Ischemic induction of miR-448 negatively regulates the cardiac sodium channel Nav1.5, and inhibiting miR-448 raises Nav1.5 and reduces arrhythmic risk after myocardial infarction in mice.
Collapse
|
9
|
McBeth C, Paterson A, Sharp D. Pad-printed Prussian blue doped carbon ink for real-time peroxide sensing in cell culture. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
The Role of Sumoylation in the Response to Hypoxia: An Overview. Cells 2020; 9:cells9112359. [PMID: 33114748 PMCID: PMC7693722 DOI: 10.3390/cells9112359] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Sumoylation is the covalent attachment of the small ubiquitin-related modifier (SUMO) to a vast variety of proteins in order to modulate their function. Sumoylation has emerged as an important modification with a regulatory role in the cellular response to different types of stress including osmotic, hypoxic and oxidative stress. Hypoxia can occur under physiological or pathological conditions, such as ischemia and cancer, as a result of an oxygen imbalance caused by low supply and/or increased consumption. The hypoxia inducible factors (HIFs), and the proteins that regulate their fate, are critical molecular mediators of the response to hypoxia and modulate procedures such as glucose and lipid metabolism, angiogenesis, erythropoiesis and, in the case of cancer, tumor progression and metastasis. Here, we provide an overview of the sumoylation-dependent mechanisms that are activated under hypoxia and the way they influence key players of the hypoxic response pathway. As hypoxia is a hallmark of many diseases, understanding the interrelated connections between the SUMO and the hypoxic signaling pathways can open the way for future molecular therapeutic interventions.
Collapse
|
11
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Wani SA, Khan LA, Basir SF. Cobalt-Induced Hypercontraction is Mediated by Generationof Reactive Oxygen Species and Influx of Calcium in Isolated RatAorta. Biol Trace Elem Res 2020; 196:110-118. [PMID: 31520195 DOI: 10.1007/s12011-019-01890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
Abstract
To investigate the mechanism of cobalt-mediated phenylephrine (PE)-induced contraction in endothelium-intact isolated Wistar rat aortic rings. Effect of dose-dependent concentrations of cobalt on PE-induced contraction was investigated in isolated Wistar rat aortic rings using an organ bath system. Aortic rings were pre-incubated with verapamil (1 μM and 20 μM), gadolinium, apocynin, indomethacin or N-G-nitro-L-arginine methyl ester (L-NAME) separately before incubation with cobalt. Endothelium-intact aortic rings were incubated with 800 nM, 1 μM, 10 μM, 50 μM cobalt; we observed 20%, 22%, 32% and 27% increased contractions respectively, while no effect was seen in tension recording on cobalt exposure. Incubation of endothelium-intact aortic rings with 100 μM apocynin and 100 μM L-NAME suggested the role of NADPH oxidase in generation of reactive oxygen species (ROS) and decrease in bioavailability of nitric oxide (NO) from eNOS on exposure to cobalt. Aortic rings pre-incubated with 1 μM and 20 μM verapamil suggested role of both L-type and T-type calcium channels in influx of extracellular calcium in smooth muscle cells. We observed no role of store-operated calcium channels (SOCC) in calcium influx due to cobalt exposure and cyclooxygenase in generation of prostanoids in isolated aortic rings. Cobalt caused rise of PE-induced contractions as a result of the endothelial generation of ROS, by decreasing bioavailability of NO. Generation of ROS may be responsible for causing the influx of extracellular calcium through L-type and T-type Ca2+ channels in smooth muscle cells.
Collapse
Affiliation(s)
| | - Luqman Ahmad Khan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
13
|
Paneerselvam C, Ganapasam S. β-Escin alleviates cobalt chloride-induced hypoxia-mediated apoptotic resistance and invasion via ROS-dependent HIF-1α/TGF-β/MMPs in A549 cells. Toxicol Res (Camb) 2020; 9:191-201. [PMID: 32670550 PMCID: PMC7329168 DOI: 10.1093/toxres/tfaa019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/17/2020] [Accepted: 03/20/2020] [Indexed: 11/12/2022] Open
Abstract
Hypoxia is contributed in various pathophysiological conditions including obesity, cardiovascular diseases, and cancer. In cancer, hypoxia is a salient phenomenon and has been correlated with tumor progression, metastasis, and provoke resistance to therapies in cancer patients, which exert with stabilization of main effector, hypoxia inducible factor-1 alpha (HIF-1α). Therefore, therapeutic targeting of hypoxic responses in cancer is the potential approach to improve the better treatment efficacy. In the present study, we evaluated the effect of β-Escin (β-Es) on hypoxia-induced resistance to apoptosis and metastasis in human non-small-cell lung cancer cells. The MTT assay revealed that β-Es treatment decreased the A549 cells viability under cobalt chloride-induced hypoxia. Apoptotic proteins were analyzed by western blot that showed cancer cells treated with β-Es induced cell death in hypoxia condition as proteins compared with normoxia. Moreover, we observed that cobalt chloride induced hypoxia through the generation of intracellular reactive oxygen species and stabilized the transcriptional factor HIF-1α, which leads to cancer metastasis. This notion was supported by the migration, invasion, and adhesion assays. Furthermore, hypoxia increased the expression of transforming growth factor-β, and the activation of matrix metalloproteinases were suppressed by the treatment of β-Es as well as pretreatment with N-acetylcysteine (NAC). Therefore, we demonstrate that a concurrent activation of HIF-1α, transforming growth factor-β, and matrix metalloproteinases participate in hypoxia-induced metastasis and that β-Es prevent A549 cells metastasis by inhibition of reactive oxygen species.
Collapse
Affiliation(s)
- Chermakani Paneerselvam
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamil Nadu, India
| | - Sudhandiran Ganapasam
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamil Nadu, India
| |
Collapse
|
14
|
Abstract
Over the past few decades, biomedical scientists and surgeons have given substantial attention to bioactive glasses as promising, long-lasting biomaterials that can make chemical connections with the neighboring hard and soft tissues. Several studies have examined the cellular and molecular responses to bioactive glasses to determine if they are suitable biomaterials for tissue engineering and regenerative medicine. In this regard, different ions and additives have been used recently to induce specific characteristics for selective cellular and molecular responses. This Review briefly describes foreign-body response mechanisms and the role of adsorbed proteins as the key players in starting interactions between cells and biomaterials. It then explains the physicochemical properties of the most common bioactive glasses, which have a significant impact on their cellular and molecular responses. It is expected that, with the development of novel strategies, the physiochemical properties of bioactive glasses can be engineered to precisely control proteins' adsorption and cellular functions after implantation.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran 14155-4777, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 144961-4535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 144961-4535 Tehran, Iran
| |
Collapse
|
15
|
Carranza ADV, Saragusti A, Chiabrando GA, Carrari F, Asis R. Effects of chlorogenic acid on thermal stress tolerance in C. elegans via HIF-1, HSF-1 and autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 66:153132. [PMID: 31790899 DOI: 10.1016/j.phymed.2019.153132] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Chlorogenic acid (CGA) is a polyphenol widely distributed in plants and plant-derived food with antioxidant and protective activities against cell stress. Caenorhabditis elegans is a model organism particularly useful for understanding the molecular and biochemical mechanisms associated with aging and stress in mammals. In C. elegans, CGA was shown to improve resistance to thermal, while the underlying mechanisms that lead to this effect require further understanding. PURPOSE The present study was conducted to investigate the underlying molecular mechanisms behind CGA response conferring thermotolerance to C. elegans. METHODS AND RESULTS Signaling pathways that could be involved in the CGA-induced thermotolerance were evaluated in C. elegans strains with loss-of-function mutation. CGA-induced thermotolerance required hypoxia-inducible factor HIF-1 but no insulin pathway. CGA exposition (1.4 µM CGA for 18 h) before thermal stress treatment increased HIF-1 levels and activity. HIF-1 activation could be partly attributed to an increase in radical oxygen species and a decrease in superoxide dismutase activity. In addition, CGA exposition before thermal stress also increased autophagy just as hormetic heat condition (HHC), worms incubated at 36 °C for 1 h. RNAi experiments evidenced that autophagy was increased by CGA via HIF-1, heat-shock transcription factor HSF-1 and heat-shock protein HSP-16 and HSP-70. In contrast, autophagy induced by HHC only required HSF-1 and HSP-70. Moreover, suppression of autophagy induction showed the significance of this process for adapting C. elegans to cope with thermal stress. CONCLUSION This study demonstrates that CGA-induced thermotolerance in C. elegans is mediated by HIF-1 and downstream, by HSF-1, HSPs and autophagy resembling HHC.
Collapse
Affiliation(s)
- Andrea Del Valle Carranza
- CIBICI, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Alejandra Saragusti
- CIBICI, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Gustavo Alberto Chiabrando
- CIBICI, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Fernando Carrari
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), Buenos Aires, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Argentina
| | - Ramón Asis
- CIBICI, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina.
| |
Collapse
|
16
|
Ivanova IG, Park CV, Yemm AI, Kenneth NS. PERK/eIF2α signaling inhibits HIF-induced gene expression during the unfolded protein response via YB1-dependent regulation of HIF1α translation. Nucleic Acids Res 2019. [PMID: 29529249 PMCID: PMC5934640 DOI: 10.1093/nar/gky127] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
HIF1α (hypoxia inducible factor 1α) is the central regulator of the cellular response to low oxygen and its activity is deregulated in multiple human pathologies. Consequently, given the importance of HIF signaling in disease, there is considerable interest in developing strategies to modulate HIF1α activity and down-stream signaling events. In the present study we find that under hypoxic conditions, activation of the PERK branch of the unfolded protein response (UPR) can suppress the levels and activity of HIF1α by preventing efficient HIF1α translation. Activation of PERK inhibits de novo HIF1α protein synthesis by preventing the RNA-binding protein, YB-1, from interacting with the HIF1α mRNA 5′UTR. Our data indicate that activation of the UPR can sensitise tumor cells to hypoxic stress, indicating that chemical activation of the UPR could be a strategy to target hypoxic malignant cancer cells.
Collapse
Affiliation(s)
- Iglika G Ivanova
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Catherine V Park
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Adrian I Yemm
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Niall S Kenneth
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
17
|
Kim J, Kang D, Lee SK, Kim TY. Deuterium Oxide Labeling for Global Omics Relative Quantification: Application to Lipidomics. Anal Chem 2019; 91:8853-8863. [PMID: 31246424 DOI: 10.1021/acs.analchem.9b00086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel quantitative mass spectrometric method based on partial metabolic deuterium oxide (D2O) labeling, named "Deuterium Oxide Labeling for Global Omics Relative Quantification (DOLGOReQ)", was developed for relative quantification of lipids on a global scale. To assess the precision and robustness of DOLGOReQ, labeled and unlabeled lipids from HeLa cells were mixed in various ratios based on their cell numbers. Using in-house software developed for automated high-throughput data analysis of DOLGOReQ, the number of detectable mass isotopomers and the degree of deuterium labeling were exploited to filter out low quality quantification results. Quantification of an equimolar mixture of HeLa cell lipids exhibited high reproducibility and accuracy across multiple biological and technical replicates. Two orders of magnitude of effective dynamic range for reasonable relative quantification could be established with HeLa cells mixed from 10:1 to 1:10 ratios between labeled and unlabeled samples. The quantification precision of DOLGOReQ was also illustrated with lipids commonly detected in both positive and negative ion modes. Finally, quantification performance of DOLGOReQ was demonstrated in a biological sample by measuring the relative change in the lipidome of HeLa cells under normal and hypoxia conditions.
Collapse
Affiliation(s)
- Jonghyun Kim
- School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Dukjin Kang
- Center for Bioanalysis, Division of Chemical and Medical Metrology , Korea Research Institute of Standards and Science , Daejeon 34113 , Republic of Korea
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology , College of Medicine, Konyang University , Daejeon 35365 , Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| |
Collapse
|
18
|
Smith CJ, Perfetti TA. In vitro cobalt-stimulated hypoxia-inducible factor-1 overexpression does not correlate with cancer risk from cobalt exposure in humans. TOXICOLOGY RESEARCH AND APPLICATION 2019. [DOI: 10.1177/2397847319850167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Carr J Smith
- Albemarle Corporation, Mobile, AL, USA
- Department of Nurse Anesthesia, Florida State University, Tallahassee, FL, USA
| | | |
Collapse
|
19
|
Raja FNS, Worthington T, Isaacs MA, Forto Chungong L, Burke B, Addison O, Martin RA. The Antimicrobial Efficacy of Hypoxia Mimicking Cobalt Oxide Doped Phosphate-Based Glasses against Clinically Relevant Gram Positive, Gram Negative Bacteria and a Fungal Strain. ACS Biomater Sci Eng 2019; 5:283-293. [PMID: 33405859 DOI: 10.1021/acsbiomaterials.8b01045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioactive phosphate glasses are of considerable interest for a range of soft and hard tissue engineering applications. The glasses are degradable and can release biologically important ions in a controlled manner. The glasses can also potentially be used as an antimicrobial delivery system. In the given study, novel cobalt-doped phosphate-based glasses, (P2O5)50(Na2O)20(CaO)30-x(CoO)x where 0 ≤ x (mol %) ≤ 10, were manufactured and characterized. As the cobalt oxide concentration increased, the rate of dissolution was observed to decrease. The antimicrobial potential of the glasses was studied using direct and indirect contact methods against both Escherichia coli (NCTC 10538) Staphylococcus aureus (ATCC 6538) and Candida albicans (ATCC 76615). The results showed strong, time dependent, and strain specific antimicrobial activity of the glasses against microorganisms when in direct contact. Antimicrobial activity (R) ≥ 2 was observed within 2 h against Escherichia coli, whereas a similar effect was achieved in 6 h against Staphylococcus aureus and Candida albicans. However, when in indirect contact, the dissolution products from the bioactive glasses failed to show an antimicrobial effect. Following direct exposure to the glasses for 7 days, osteoblast-like SAOS-2 cells showed a 5-fold increase in VEGF mRNA while THP-1 monocytic cells showed a 4-fold increase in VEGF mRNA expression when exposed to 10% CoO-doped glass compared with the cobalt free control glass. Endothelial cells stimulated with conditioned medium taken from cell cultures of THP-1 monocytes exposed to 10% CoO doped glass showed clear tubelike structure (blood vessel) formation after 4 h.
Collapse
Affiliation(s)
- Farah N S Raja
- School of Life & Health Science and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham, B4 7ET, United Kingdom
| | - T Worthington
- School of Life & Health Science and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham, B4 7ET, United Kingdom
| | - Mark A Isaacs
- Department of Chemistry, University College London, 20 Gordon Street, Kings Cross, London, WC1H 0AJ, United Kingdom
| | - Louis Forto Chungong
- School of Engineering & Applied Science and Aston Institute of Materials Research. Aston University, Aston Triangle, Birmingham, B4 7ET, United Kingdom
| | - Bernard Burke
- School of Life Sciences, Coventry University, Coventry, CV1 2DS, United Kingdom.,Biomaterials Unit, University of Birmingham School of Dentistry, Birmingham, B5 7EG, United Kingdom
| | - Owen Addison
- Biomaterials Unit, University of Birmingham School of Dentistry, Birmingham, B5 7EG, United Kingdom.,University of Alberta, School of Dentistry, Edmonton, Alberta Canada, T6G 1C9
| | - Richard A Martin
- School of Engineering & Applied Science and Aston Institute of Materials Research. Aston University, Aston Triangle, Birmingham, B4 7ET, United Kingdom
| |
Collapse
|
20
|
Muñoz‐Sánchez J, Chánez‐Cárdenas ME. The use of cobalt chloride as a chemical hypoxia model. J Appl Toxicol 2018; 39:556-570. [DOI: 10.1002/jat.3749] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/13/2018] [Accepted: 10/07/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Jorge Muñoz‐Sánchez
- Laboratorio de Patología Vascular CerebralInstituto Nacional de Neurología y Neurología (INNN) Insurgentes Sur 3877, la Fama 14269 Tlalpan Ciudad de México Mexico
| | - María E. Chánez‐Cárdenas
- Laboratorio de Patología Vascular CerebralInstituto Nacional de Neurología y Neurología (INNN) Insurgentes Sur 3877, la Fama 14269 Tlalpan Ciudad de México Mexico
| |
Collapse
|
21
|
Comparative Assessment of Tungsten Toxicity in the Absence or Presence of Other Metals. TOXICS 2018; 6:toxics6040066. [PMID: 30423906 PMCID: PMC6315525 DOI: 10.3390/toxics6040066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 02/03/2023]
Abstract
Tungsten is a refractory metal that is used in a wide range of applications. It was initially perceived that tungsten was immobile in the environment, supporting tungsten as an alternative for lead and uranium in munition and military applications. Recent studies report movement and detection of tungsten in soil and potable water sources, increasing the risk of human exposure. In addition, experimental research studies observed adverse health effects associated with exposure to tungsten alloys, raising concerns on tungsten toxicity with questions surrounding the safety of exposure to tungsten alone or in mixtures with other metals. Tungsten is commonly used as an alloy with nickel and cobalt in many applications to adjust hardness and thermal and electrical conductivity. This review addresses the current state of knowledge in regard to the mechanisms of toxicity of tungsten in the absence or presence of other metals with a specific focus on mixtures containing nickel and cobalt, the most common components of tungsten alloy.
Collapse
|
22
|
Littmann E, Autefage H, Solanki A, Kallepitis C, Jones J, Alini M, Peroglio M, Stevens M. Cobalt-containing bioactive glasses reduce human mesenchymal stem cell chondrogenic differentiation despite HIF-1α stabilisation. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 2018; 38:877-886. [PMID: 29456294 PMCID: PMC5738970 DOI: 10.1016/j.jeurceramsoc.2017.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/01/2017] [Indexed: 05/19/2023]
Abstract
Bioactive glasses (BGs) are excellent delivery systems for the sustained release of therapeutic ions and have been extensively studied in the context of bone tissue engineering. More recently, due to their osteogenic properties and expanding application to soft tissue repair, BGs have been proposed as promising materials for use at the osteochondral interface. Since hypoxia plays a critical role during cartilage formation, we sought to investigate the influence of BGs releasing the hypoxia-mimicking agent cobalt (CoBGs) on human mesenchymal stem cell (hMSC) chondrogenesis, as a novel approach that may guide future osteochondral scaffold design. The CoBG dissolution products significantly increased the level of hypoxia-inducible factor-1 alpha in hMSCs in a cobalt dose-dependent manner. Continued exposure to the cobalt-containing BG extracts significantly reduced hMSC proliferation and metabolic activity, as well as chondrogenic differentiation. Overall, this study demonstrates that prolonged exposure to cobalt warrants careful consideration for cartilage repair applications.
Collapse
Affiliation(s)
- E. Littmann
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - H. Autefage
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Corresponding authors at: Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom.Department of MaterialsImperial College LondonLondonSW7 2AZUnited Kingdom
| | - A.K. Solanki
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - C. Kallepitis
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - J.R. Jones
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - M. Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - M. Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - M.M. Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Corresponding authors at: Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom.Department of MaterialsImperial College LondonLondonSW7 2AZUnited Kingdom
| |
Collapse
|
23
|
Cruz-Topete D, He B, Xu X, Cidlowski JA. Krüppel-like Factor 13 Is a Major Mediator of Glucocorticoid Receptor Signaling in Cardiomyocytes and Protects These Cells from DNA Damage and Death. J Biol Chem 2016; 291:19374-86. [PMID: 27451392 DOI: 10.1074/jbc.m116.725903] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoid receptor (GR) signaling has recently been shown to play a direct role in the regulation of cardiomyocyte function. In this study, we investigated the potential role of KLF13 as a downstream effector of GR action utilizing both in vivo and in vitro approaches. Our data show that KLF13 mRNA and protein levels are significantly diminished in the hearts of mice lacking GR in cardiomyocytes. Glucocorticoid administration up-regulated Klf13 mRNA in the mouse heart, in isolated primary cardiomyocytes, and in immortal cardiomyocyte cell lines. Glucocorticoid Klf13 gene expression was abolished by treatment with a GR antagonist (RU486) or by knockdown of GR in cardiomyocytes. Moreover, glucocorticoid induction of Klf13 mRNA was resistant to de novo protein synthesis inhibition, demonstrating that Klf13 is a direct glucocorticoid receptor gene target. A glucocorticoid responsive element (GRE) was identified in the Klf13 gene and its function was verified by chromatin immunoprecipitation in HL-1 cells and mouse hearts. Functional studies showed that GR regulation of Klf13 is critical to protect cardiomyocytes from DNA damage and cell death induced by cobalt(II) chloride hexahydrate (CoCl2·6H2O) and the antineoplastic drug doxorubicin. These results established a novel role for GR and KLF13 signaling in adult cardiomyocytes with potential clinical implications for the prevention of cardiotoxicity induced heart failure.
Collapse
Affiliation(s)
| | - Bo He
- Integrative Bioinformatics, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Xiaojiang Xu
- Integrative Bioinformatics, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
24
|
Hoppe A, Brandl A, Bleiziffer O, Arkudas A, Horch RE, Jokic B, Janackovic D, Boccaccini AR. In vitro cell response to Co-containing 1393 bioactive glass. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:157-63. [DOI: 10.1016/j.msec.2015.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/21/2015] [Accepted: 07/09/2015] [Indexed: 02/07/2023]
|
25
|
Fujita K, Fukuda M, Endoh S, Maru J, Kato H, Nakamura A, Shinohara N, Uchino K, Honda K. Size effects of single-walled carbon nanotubes on in vivo and in vitro pulmonary toxicity. Inhal Toxicol 2015; 27:207-23. [PMID: 25865113 PMCID: PMC4487552 DOI: 10.3109/08958378.2015.1026620] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To elucidate the effect of size on the pulmonary toxicity of single-wall carbon nanotubes (SWCNTs), we prepared two types of dispersed SWCNTs, namely relatively thin bundles with short linear shapes (CNT-1) and thick bundles with long linear shapes (CNT-2), and conducted rat intratracheal instillation tests and in vitro cell-based assays using NR8383 rat alveolar macrophages. Total protein levels, MIP-1α expression, cell counts in BALF, and histopathological examinations revealed that CNT-1 caused pulmonary inflammation and slower recovery and that CNT-2 elicited acute lung inflammation shortly after their instillation. Comprehensive gene expression analysis confirmed that CNT-1-induced genes were strongly associated with inflammatory responses, cell proliferation, and immune system processes at 7 or 30 d post-instillation. Numerous genes were significantly upregulated or downregulated by CNT-2 at 1 d post-instillation. In vitro assays demonstrated that CNT-1 and CNT-2 SWCNTs were phagocytized by NR8383 cells. CNT-2 treatment induced cell growth inhibition, reactive oxygen species production, MIP-1α expression, and several genes involved in response to stimulus, whereas CNT-1 treatment did not exert a significant impact in these regards. These results suggest that SWCNTs formed as relatively thin bundles with short linear shapes elicited delayed pulmonary inflammation with slower recovery. In contrast, SWCNTs with a relatively thick bundle and long linear shapes sensitively induced cellular responses in alveolar macrophages and elicited acute lung inflammation shortly after inhalation. We conclude that the pulmonary toxicity of SWCNTs is closely associated with the size of the bundles. These physical parameters are useful for risk assessment and management of SWCNTs.
Collapse
Affiliation(s)
- Katsuhide Fujita
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba, Ibaraki , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Anu Priya B, Senthilguru K, Agarwal T, Gautham Hari Narayana SN, Giri S, Pramanik K, Pal K, Banerjee I. Nickel doped nanohydroxyapatite: vascular endothelial growth factor inducing biomaterial for bone tissue engineering. RSC Adv 2015. [DOI: 10.1039/c5ra09560c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Biomaterial induced activation of vascular endothelial growth factor (VEGF) pathway for angiogenesis is now gaining recognition as an effective option for tissue engineering.
Collapse
Affiliation(s)
- B. Anu Priya
- Department of Biotechnology & Medical Engineering
- National Institute of Technology
- Rourkela-769008
- India
| | - K. Senthilguru
- Department of Biotechnology & Medical Engineering
- National Institute of Technology
- Rourkela-769008
- India
| | - T. Agarwal
- Department of Biotechnology & Medical Engineering
- National Institute of Technology
- Rourkela-769008
- India
| | | | - S. Giri
- Department of Chemistry
- National Institute of Technology
- Rourkela-769008
- India
| | - K. Pramanik
- Department of Biotechnology & Medical Engineering
- National Institute of Technology
- Rourkela-769008
- India
| | - K. Pal
- Department of Biotechnology & Medical Engineering
- National Institute of Technology
- Rourkela-769008
- India
| | - I. Banerjee
- Department of Biotechnology & Medical Engineering
- National Institute of Technology
- Rourkela-769008
- India
| |
Collapse
|
27
|
MicroRNA-302 induces proliferation and inhibits oxidant-induced cell death in human adipose tissue-derived mesenchymal stem cells. Cell Death Dis 2014; 5:e1385. [PMID: 25144720 PMCID: PMC4454318 DOI: 10.1038/cddis.2014.344] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 07/07/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are a heterogeneous population of cells that proliferate in vitro as plastic-adherent cells, have a fibroblast-like morphology, form colonies in vitro and can differentiate into bone, cartilage and fat cells. The abundance, ease and repeatable access to subcutaneous adipose tissue and the simple isolation procedures provide clear advantages for the use of human adipose tissue-derived mesenchymal stem cells (hASDCs) in clinical applications. We screened microRNAs (miRNAs) that affected the proliferation and survival of hADSCs. Transfection of miR-302d mimic increased cell proliferation and protected cells from oxidant-induced cell death in hADSCs, which was supported by flow-cytometric analysis. miR-302d did not affect the expression of Bcl-2 family members or anti-oxidant molecules. The Nrf2-Keap1 system, which is one of the major mechanisms for the cellular defense against oxidative stress, was not altered by transfection of miR-302d mimic. To identify the target of the miR-302d actions on proliferation and survival of hADSCs, a microarray analysis was performed using miR-302d-overexpressing hADSCs. Real-time PCR analysis showed that transfection of miR-302d mimic inhibited the CDKN1A and CCL5 expression. Downregulation of CDKN1A with a specific siRNA mimicked the effect of miR-302d on hADSCs proliferation, but did not affect miR-302d-induced cell survival. Downregulation of CCL5 protected oxidant-induced cell death as miR-302d, inhibited oxidant-induced reactive oxygen species (ROS) generation and the addition of recombinant CCL5 inhibited the protective action of miR-302d on oxidant-induced cell death. This study indicates that miR-302 controls proliferation and cell survival of hADSCs through different targets and that this miRNA can be used to enhance the therapeutic efficacy of hADSCs transplantation in vivo.
Collapse
|
28
|
Inflammatory stress increases hepatic CD36 translational efficiency via activation of the mTOR signalling pathway. PLoS One 2014; 9:e103071. [PMID: 25048611 PMCID: PMC4105654 DOI: 10.1371/journal.pone.0103071] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/27/2014] [Indexed: 01/09/2023] Open
Abstract
Inflammatory stress is an independent risk factor for the development of non-alcoholic fatty liver disease (NAFLD). Although CD36 is known to facilitate long-chain fatty acid uptake and contributes to NAFLD progression, the mechanisms that link inflammatory stress to hepatic CD36 expression and steatosis remain unclear. As the mammalian target of rapamycin (mTOR) signalling pathway is involved in CD36 translational activation, this study was undertaken to investigate whether inflammatory stress enhances hepatic CD36 expression via mTOR signalling pathway and the underlying mechanisms. To induce inflammatory stress, we used tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) stimulation of the human hepatoblastoma HepG2 cells in vitro and casein injection in C57BL/6J mice in vivo. The data showed that inflammatory stress increased hepatic CD36 protein levels but had no effect on mRNA expression. A protein degradation assay revealed that CD36 protein stability was not different between HepG2 cells treated with or without TNF-α or IL-6. A polysomal analysis indicated that CD36 translational efficiency was significantly increased by inflammatory stress. Additionally, inflammatory stress enhanced the phosphorylation of mTOR and its downstream translational regulators including p70S6K, 4E-BP1 and eIF4E. Rapamycin, an mTOR-specific inhibitor, reduced the phosphorylation of mTOR signalling pathway and decreased the CD36 translational efficiency and protein level even under inflammatory stress resulting in the alleviation of inflammatory stress-induced hepatic lipid accumulation. This study demonstrates that the activation of the mTOR signalling pathway increases hepatic CD36 translational efficiency, resulting in increased CD36 protein expression under inflammatory stress.
Collapse
|
29
|
Fu S, Tar MT, Melman A, Davies KP. Opiorphin is a master regulator of the hypoxic response in corporal smooth muscle cells. FASEB J 2014; 28:3633-44. [PMID: 24803544 DOI: 10.1096/fj.13-248708] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Men with sickle cell disease (SCD) risk developing priapism. Recognizing that SCD is a disease of hypoxia, we investigated the effect of hypoxia on gene expression in corporal smooth muscle (CSM) cells. Rat CSM cells in vitro were treated with CoCl2 or low oxygen tension to mimic hypoxia. Hypoxic conditions increased expression of genes previously associated with priapism in animal models. Variable coding sequence a1 (Vcsa1; the rat opiorphin homologue, sialorphin), hypoxia-inducible factor 1a (Hif-1a), and A2B adenosine receptor (a2br) were increased by 10-, 4-, and 6-fold, respectively, by treatment with CoCl2, whereas low oxygen tension caused increases in expression of 3-, 4-, and 1.5-fold, respectively. Sialorphin-treated CSM cells increased expression of Hif-1a and a2br by 4-fold, and vcsa1-siRNA treatment reduced expression by ∼50%. Using a Hif-1a inhibitor, we demonstrated up-regulation of a2br by sialorphin is dependent on Hif-1a, and knockdown of vcsa1 expression with vcsa1-siRNA demonstrated that hypoxic-up-regulation of Hif-1a is dependent on vcsa1. In CSM from a SCD mouse, there was 15-fold up-regulation of opiorphin at a life stage prior to priapism. We conclude that in CSM, opiorphins are master regulators of the hypoxic response. Opiorphin up-regulation in response to SCD-associated hypoxia activates CSM "relaxant" pathways; excessive activation of these pathways results in priapism.
Collapse
Affiliation(s)
| | | | | | - Kelvin Paul Davies
- Department of Urology and Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
30
|
Hoppe A, Jokic B, Janackovic D, Fey T, Greil P, Romeis S, Schmidt J, Peukert W, Lao J, Jallot E, Boccaccini AR. Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. ACS APPLIED MATERIALS & INTERFACES 2014; 6:2865-77. [PMID: 24476347 DOI: 10.1021/am405354y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Loading biomaterials with angiogenic therapeutics has emerged as a promising approach for developing superior biomaterials for engineering bone constructs. In this context, cobalt-releasing materials are of interest as Co is a known angiogenic agent. In this study, we report on cobalt-releasing three-dimensional (3D) scaffolds based on a silicate bioactive glass. Novel melt-derived "1393" glass (53 wt % SiO2, 6 wt % Na2O, 12 wt % K2O, 5 wt % MgO, 20 wt % CaO, and 4 wt % P2O5) with CoO substituted for CaO was fabricated and was used to produce a 3D porous scaffold by the foam replica technique. Glass structural and thermal properties as well as scaffold macrostructure, compressive strength, acellular bioactivity, and Co release in simulated body fluid (SBF) were investigated. In particular, detailed insights into the physicochemical reactions occurring at the scaffold-fluid interface were derived from advanced micro-particle-induced X-ray emission/Rutherford backscattering spectrometry analysis. CoO is shown to act in a concentration-dependent manner as both a network former and a network modifier. At a concentration of 5 wt % CoO, the glass transition point (Tg) of the glass was reduced because of the replacement of stronger Si-O bonds with Co-O bonds in the glass network. Compressive strengths of >2 MPa were measured for Co-containing 1393-derived scaffolds, which are comparable to values of human spongy bone. SBF studies showed that all glass scaffolds form a calcium phosphate (CaP) layer, and for 1393-1Co and 1393-5Co, CaP layers with incorporated traces of Co were observed. The highest Co concentrations of ∼12 ppm were released in SBF after reaction for 21 days, which are known to be within therapeutic ranges reported for Co(2+) ions.
Collapse
Affiliation(s)
- Alexander Hoppe
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg , Cauerstrasse 6, 91058 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Befani C, Mylonis I, Gkotinakou IM, Georgoulias P, Hu CJ, Simos G, Liakos P. Cobalt stimulates HIF-1-dependent but inhibits HIF-2-dependent gene expression in liver cancer cells. Int J Biochem Cell Biol 2013; 45:2359-68. [PMID: 23958427 DOI: 10.1016/j.biocel.2013.07.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/01/2013] [Accepted: 07/29/2013] [Indexed: 01/08/2023]
Abstract
Hypoxia-inducible factors (HIFs) are transcriptional regulators that mediate the cellular response to low oxygen. Although HIF-1 is usually considered as the principal mediator of hypoxic adaptation, several tissues and different cell types express both HIF-1 and HIF-2 isoforms under hypoxia or when treated with hypoxia mimetic chemicals such as cobalt. However, the similarities or differences between HIF-1 and HIF-2, in terms of their tissue- and inducer-specific activation and function, are not adequately characterized. To address this issue, we investigated the effects of true hypoxia and hypoxia mimetics on HIF-1 and HIF-2 induction and specific gene transcriptional activity in two hepatic cancer cell lines, Huh7 and HepG2. Both hypoxia and cobalt caused rapid induction of both HIF-1α and HIF-2α proteins. Hypoxia induced erythropoietin (EPO) expression and secretion in a HIF-2-dependent way. Surprisingly, however, EPO expression was not induced when cells were treated with cobalt. In agreement, both HIF-1- and HIF-2-dependent promoters (of PGK and SOD2 genes, respectively) were activated by hypoxia while cobalt only activated the HIF-1-dependent PGK promoter. Unlike cobalt, other hypoxia mimetics such as DFO and DMOG activated both types of promoters. Furthermore, cobalt impaired the hypoxic stimulation of HIF-2, but not HIF-1, activity and cobalt-induced HIF-2α interacted poorly with USF-2, a HIF-2-specific co-activator. These data show that, despite similar induction of HIF-1α and HIF-2α protein expression, HIF-1 and HIF-2 specific gene activating functions respond differently to different stimuli and suggest the operation of oxygen-independent and gene- or tissue-specific regulatory mechanisms involving additional transcription factors or co-activators.
Collapse
Affiliation(s)
- Christina Befani
- Laboratory of Biochemistry, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41110, Greece
| | | | | | | | | | | | | |
Collapse
|
32
|
Fujita K, Fukuda M, Endoh S, Kato H, Maru J, Nakamura A, Uchino K, Shinohara N, Obara S, Nagano R, Horie M, Kinugasa S, Hashimoto H, Kishimoto A. Physical properties of single-wall carbon nanotubes in cell culture and their dispersal due to alveolar epithelial cell response. Toxicol Mech Methods 2013; 23:598-609. [PMID: 23742690 DOI: 10.3109/15376516.2013.811568] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Concern over the influence of carbon nanotubes (CNTs) on human health has arisen due to advances; however, little is known about the potential toxicity of CNTs. In this study, impurity-free single-wall carbon nanotubes (SWCNTs), with different physical properties in cell culture medium, were prepared by a novel dispersion procedure. SWCNTs with small bundles (short linear shape) and SWCNTs with large bundles (long linear shape) did not cause a significant inhibition of cell proliferation, induction of apoptosis or arrest of cell cycle progression in A549 alveolar epithelial cells. Expression of many genes involved in the inflammatory response, apoptosis, response to oxidative stress and degradation of the extracellular matrix were not markedly upregulated or downregulated. However, SWCNTs with relatively large bundles significantly increased the level of intracellular reactive oxygen species (ROS) in a dose-dependent manner, and the levels of these ROS were higher than those of SWCNTs with relatively small bundles or commercial SWCNTs with residual metals. Transmission electron microscopy (TEM) revealed that impurity-free SWCNTs were observed in the cytoplasm and vacuoles of cells after 24 h. These results suggested that the physical properties, especially the size and length of the bundles of the SWCNTs dispersed in cell culture medium, contributed to a change in intracellular ROS generation, even for the same bulk SWCNTs. Additionally, the residual metals associated with the manufacturing of SWCNTs may not be a definitive parameter for intracellular ROS generation in A549 cells.
Collapse
Affiliation(s)
- Katsuhide Fujita
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba, Ibaraki 305-8569 , Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chen J, Crawford R, Chen C, Xiao Y. The key regulatory roles of the PI3K/Akt signaling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:516-28. [PMID: 23651329 DOI: 10.1089/ten.teb.2012.0672] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various cell types and have been widely used in tissue engineering application. In tissue engineering, a scaffold, MSCs and growth factors are used as essential components and their interactions have been regarded to be important for regeneration of tissues. A critical problem for MSCs in tissue engineering is their low survival ability and functionality. Most MSCs are going to be apoptotic after transplantation. Therefore, increasing MSC survival ability and functionalities is the key for potential applications of MSCs. Several approaches have been studied to increase MSC tissue forming capacity including application of growth factors, overexpression of stem cell regulatory genes, and improvement of biomaterials for scaffolds. The effects of these approaches on MSCs have been associated with activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. The pathway plays central regulatory roles in MSC survival, proliferation, migration, angiogenesis, cytokine production, and differentiation. In this review, we summarize and discuss the literatures related to the roles of the PI3K/Akt pathway in the functionalities of MSCs and the involvement of the pathway in biomaterials-increased MSC functionalities. Biomaterials have been modified in their properties and surface structure and loaded with growth factors to increase MSC functionalities. Several studies demonstrated that the biomaterials-increased MSC functionalities are mediated by the activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Jiezhong Chen
- 1 Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane, Australia
| | | | | | | |
Collapse
|
34
|
Tsapournioti S, Mylonis I, Hatziefthimiou A, Ioannou MG, Stamatiou R, Koukoulis GK, Simos G, Molyvdas PA, Paraskeva E. TNFα induces expression of HIF-1α mRNA and protein but inhibits hypoxic stimulation of HIF-1 transcriptional activity in airway smooth muscle cells. J Cell Physiol 2013; 228:1745-53. [PMID: 23359428 DOI: 10.1002/jcp.24331] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 01/16/2013] [Indexed: 12/28/2022]
Abstract
Airway smooth muscle cells (ASMCs) participate in tissue remodeling characteristic of airway inflammatory diseases like asthma. Inflammation and hypoxia pathways are often interconnected and the regulatory subunit of the hypoxia inducible factor, HIF-1α, has been recently shown to be induced by cytokines. Here we investigate the effect of individual or combined treatment of ASMCs with the inflammatory mediator TNFα and/or hypoxia on the expression of HIF-1α, HIF-1 targets and inflammation markers. TNFα enhances HIF-1α protein and mRNA levels, under both normoxia and hypoxia. TNFα-mediated induction of HIF-1α gene transcription is repressed by inhibition of the NF-κB pathway. Despite the up-regulation of HIF-1α protein, the transcription of HIF-1 target genes remains low in the presence of TNFα at normoxia and is even reduced at hypoxia. We show that the reduction in HIF-1 transcriptional activity by TNFα is due to inhibition of the interaction of HIF-1α with ARNT and subsequent blocking of its binding to HREs. Comparison between hypoxia and TNFα for their effects on the expression of inflammatory markers shows significant differences: hypoxia up-regulates the expression of IL-6, but not RANTES or ICAM, and reduces the induction of VCAM by TNFα. Finally, ex vivo treatment of rabbit trachea strips with TNFα increases HIF-1α protein levels, but reduces the expression of HIF-1 targets under hypoxia. Overall, TNFα induces HIF-1α mRNA synthesis via an NF-κB dependent pathway but inhibits binding of HIF-1α to ARNT and DNA, while hypoxia and TNFα have distinct effects on ASMC inflammatory gene expression.
Collapse
|
35
|
Lyberopoulou A, Mylonis I, Papachristos G, Sagris D, Kalousi A, Befani C, Liakos P, Simos G, Georgatsou E. MgcRacGAP, a cytoskeleton regulator, inhibits HIF-1 transcriptional activity by blocking its dimerization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1378-87. [PMID: 23458834 DOI: 10.1016/j.bbamcr.2013.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 02/19/2013] [Accepted: 02/21/2013] [Indexed: 01/22/2023]
Abstract
Hypoxia inducible factor-1 (HIF-1), a dimeric transcription factor of the bHLH-PAS family, is comprised of HIF-1α, which is inducible by hypoxia and ARNT or HIF-1β, which is constitutively expressed. HIF-1 is involved in cellular homeostasis under hypoxia, in development and in several diseases affected by oxygen availability, particularly cancer. Since its expression is positively correlated with poor outcome prognosis for cancer patients, HIF-1 is a target for pharmaceutical therapy. We have previously shown that male germ cell Rac GTPase activating protein (MgcRacGAP), a regulator of Rho proteins which are principally involved in cytoskeletal organization, binds to HIF-1α and inhibits its transcriptional activity. In this work, we have explored the mechanism of the MgcRacGAP-mediated HIF-1 inactivation. We show that the Myo domain of MgcRacGAP, which is both necessary and sufficient for HIF-1 repression, binds to the PAS-B domain of HIF-1α. Furthermore MgcRacGAP competes with ARNT for binding to the HIF-1α PAS-B domain, as shown by in vitro binding pull down assays. In mammalian cells, ARNT overexpression can overcome the MgcRacGAP-mediated inhibition and MgcRacGAP binding to HIF-1α in vivo inhibits its dimerization with ARNT. We additionally present results indicating that MgcRacGAP binding to HIF-1α is specific, since it does not affect the transcriptional activity of HIF-2, a close evolutionary relative of HIF-1 also involved in hypoxia regulation and cancer. Our results reveal a new mechanism for HIF-1 transcriptional activity regulation, suggest a novel hypoxia-cytoskeleton link and provide new tools for selective HIF-1 inhibition.
Collapse
|
36
|
Zhou H, Chen X, Zhang WM, Zhu LP, Cheng L. HIF-1α inhibition reduces nasal inflammation in a murine allergic rhinitis model. PLoS One 2012; 7:e48618. [PMID: 23133644 PMCID: PMC3486851 DOI: 10.1371/journal.pone.0048618] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 09/27/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Hypoxia-inducible factor 1α (HIF-1α) is an important regulator of immune and inflammatory responses. We hypothesized that nasal allergic inflammation is attenuated by HIF-1α inhibition and strengthened by HIF-1α stabilization. OBJECTIVE To elucidate the role of HIF-1α in a murine model of allergic rhinitis (AR). METHODS Mice were pretreated with the HIF-1α inhibitor 2-methoxyestradiol (2ME2) or the HIF-1α inducer cobalt chloride (CoCl(2)) in an established AR murine model using ovalbumin (OVA)-sensitized BALB/c mice. HIF-1α and vascular endothelial growth factor (VEGF) expression in nasal mucosa was measured and multiple parameters of allergic responses were evaluated. RESULTS HIF-1α and VEGF levels were locally up-regulated in nasal mucosa during AR. Inflammatory responses to OVA challenge, including nasal symptoms, inflammatory cell infiltration, eosinophil recruitment, up-regulation of T-helper type 2 cytokines in nasal lavage fluid, and serum OVA-specific IgE levels were present in the OVA-challenged mice. 2ME2 effectively inhibited HIF-1α and VEGF expression and attenuated the inflammatory responses. Stabilization of HIF-1α by CoCl(2) facilitated nasal allergic inflammation. HIF-1α protein levels in nasal airways correlated with the severity of AR in mice. CONCLUSIONS HIF-1α is intimately involved in the pathogenesis of nasal allergies, and the inhibition of HIF-1α may be useful as a novel therapeutic approach for AR.
Collapse
Affiliation(s)
- Han Zhou
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xi Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wei-Ming Zhang
- Department of Pathology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lu-Ping Zhu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lei Cheng
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Darekar S, Georgiou K, Yurchenko M, Yenamandra SP, Chachami G, Simos G, Klein G, Kashuba E. Epstein-Barr virus immortalization of human B-cells leads to stabilization of hypoxia-induced factor 1 alpha, congruent with the Warburg effect. PLoS One 2012; 7:e42072. [PMID: 22848707 PMCID: PMC3407085 DOI: 10.1371/journal.pone.0042072] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 07/02/2012] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) encodes six nuclear transformation-associated proteins that induce extensive changes in cellular gene expression and signaling and induce B-cell transformation. The role of HIF1A in EBV-induced B-cell immortalization has not been previously studied. METHODS AND FINDINGS Using Western blotting and Q-PCR, we found that HIF1A protein is stabilized in EBV-transformed lymphoblastoid cells. Western blotting, GST pulldown assays, and immunoprecipitation showed that EBV-encoded nuclear antigens EBNA-5 and EBNA-3 bind to prolylhydroxylases 1 and 2, respectively, thus inhibiting HIF1A hydroxylation and degradation. Immunostaining and Q-PCR showed that the stabilized HIF1A translocates to the nucleus, forms a heterodimer with ARNT, and transactivates several genes involved in aerobic glycolysis. Using biochemical assays and Q-PCR, we also found that lymphoblastoid cells produce high levels of lactate, lactate dehydrogenase and pyruvate. CONCLUSIONS Our data suggest that activation of the aerobic glycolytic pathway, corresponding to the Warburg effect, occurs in EBV-transformed lymphoblastoid cells, in contrast to mitogen-activated B-cells.
Collapse
Affiliation(s)
- Suhas Darekar
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Konstantinos Georgiou
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Mariya Yurchenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, Kyiv, Ukraine
| | - Surya Pavan Yenamandra
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Georgia Chachami
- School of Medicine, University of Thessaly, Larissa, Greece
- Institute of Biomedical Research and Technology (BIOMED), Larissa, Greece
| | - George Simos
- School of Medicine, University of Thessaly, Larissa, Greece
- Institute of Biomedical Research and Technology (BIOMED), Larissa, Greece
| | - George Klein
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, Kyiv, Ukraine
- * E-mail:
| |
Collapse
|
38
|
Fokas E, McKenna WG, Muschel RJ. The impact of tumor microenvironment on cancer treatment and its modulation by direct and indirect antivascular strategies. Cancer Metastasis Rev 2012; 31:823-42. [DOI: 10.1007/s10555-012-9394-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Stamatiou R, Paraskeva E, Gourgoulianis K, Molyvdas PA, Hatziefthimiou A. Cytokines and growth factors promote airway smooth muscle cell proliferation. ISRN INFLAMMATION 2012; 2012:731472. [PMID: 24049651 PMCID: PMC3767366 DOI: 10.5402/2012/731472] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/29/2012] [Indexed: 11/23/2022]
Abstract
Chronic airway diseases, such as asthma or chronic obstructive pulmonary disease, are characterized by the presence in the airways of inflammation factors, growth factors and cytokines, which promote airway wall remodelling. The aim of this study was to investigate the effect of cytokines and growth factors on airway smooth muscle cell (ASMC) proliferation, phenotype and responsiveness. Incubation of serum starved human bronchial ASMCs with TNF- α , TGF, bFGF, and PDGF, but not IL-1 β , increased methyl-[(3)H]thymidine incorporation and cell number, mediated by the PI3K and MAPK signalling pathways. Regarding rabbit tracheal ASMC proliferation, TNF- α , IL-1 β , TGF, and PDGF increased methyl-[(3)H]thymidine incorporation in a PI3K- and MAPK-dependent manner. bFGF increased both methyl-[(3)H]thymidine incorporation and cell number. Moreover, incubation with TGF, bFGF and PDGF appears to drive human ASMCs towards a synthetic phenotype, as shown by the reduction of the percentage of cells expressing SM- α actin. In addition, the responsiveness of epithelium-denuded rabbit tracheal strips to carbachol was not significantly altered after 3-day treatment with bFGF. In conclusion, all the tested cytokines and growth factors increased ASMC proliferation to a different degree, depending on the specific cell type, with bronchial ASMCs being more prone to proliferation than tracheal ASMCs.
Collapse
Affiliation(s)
- R Stamatiou
- Department of Physiology, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | | | | | | | | |
Collapse
|
40
|
Fang Li Q, Xu H, Sun Y, Hu R, Jiang H. Induction of inducible nitric oxide synthase by isoflurane post-conditioning via hypoxia inducible factor-1α during tolerance against ischemic neuronal injury. Brain Res 2012; 1451:1-9. [PMID: 22445062 DOI: 10.1016/j.brainres.2012.02.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 01/29/2012] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
Abstract
Recent studies have shown that isoflurane protects against ischemic injury via inducible nitric oxide synthase (iNOS). Hypoxia inducible factor (HIF)-1α is a transcriptional factor that activates after cerebral ischemia. However, whether iNOS gene containing the sequence of the hypoxia response element (HRE) is a HIF-1α target during tolerance against ischemic neuronal injury induced by isoflurane post-conditioning remains unknown. In this study, we report that HIF-1α and iNOS gene expression were augmented after cerebral ischemia in rats. Furthermore, isoflurane post-conditioning resulted in greater accumulation of HIF-1α and iNOS gene expression, following by HIF-1α transcriptional activity enhancement and co-localization of HIF-1α and iNOS. Accordingly, in the primary cortical neuron cultures, silencing of HIF-1α attenuated the accumulation of iNOS and the protective effects of isoflurane post-conditioning. Our results suggest the involvement of HIF-1α in the regulation of iNOS during tolerance against cerebral ischemia induced by isoflurane post-conditioning, which provide a mechanistic basis of novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Qi Fang Li
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
41
|
Hypoxia-inducible factor-1 drives annexin A2 system-mediated perivascular fibrin clearance in oxygen-induced retinopathy in mice. Blood 2011; 118:2918-29. [PMID: 21788340 DOI: 10.1182/blood-2011-03-341214] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Oxygen-induced retinopathy (OIR) is a well-characterized model for retinopathy of prematurity, a disorder that results from rapid microvascular proliferation after exposure of the retina to high oxygen levels. Here, we report that the proliferative phase of OIR requires transcriptional induction of the annexin A2 (A2) gene through the direct action of the hypoxia-inducible factor-1 complex. We show, in addition, that A2 stabilizes its binding partner, p11, and promotes OIR-related angiogenesis by enabling clearance of perivascular fibrin. Adenoviral-mediated restoration of A2 expression restores neovascularization in the oxygen-primed Anxa2(-/-) retina and reinstates plasmin generation and directed migration in cultured Anxa2(-/-) endothelial cells. Systemic depletion of fibrin repairs the neovascular response to high oxygen treatment in the Anxa2(-/-) retina, whereas inhibition of plasminogen activation dampens angiogenesis under the same conditions. These findings show that the A2 system enables retinal neoangiogenesis in OIR by enhancing perivascular activation of plasmin and remodeling of fibrin. These data suggest new potential approaches to retinal angiogenic disorders on the basis of modulation of perivascular fibrinolysis.
Collapse
|
42
|
Pro-apoptotic activity of inhibitory PAS domain protein (IPAS), a negative regulator of HIF-1, through binding to pro-survival Bcl-2 family proteins. Cell Death Differ 2011; 18:1711-25. [PMID: 21546903 DOI: 10.1038/cdd.2011.47] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inhibitory PAS (Per/Arnt/Sim) domain protein (IPAS) is a dominant negative transcription factor that represses hypoxia-inducible factor 1 (HIF-1) activity. In this study, we show that IPAS also functions as a pro-apoptotic protein through binding to pro-survival Bcl-2 family members. In a previous paper, we reported that NF-κB-dependent IPAS induction by cobalt chloride repressed the hypoxic response in PC12 cells. We found that prolonged incubation under the same conditions caused apoptosis in PC12 cells. Repression of IPAS induction protected cells from apoptosis. Furthermore, knockdown of IPAS recovered cell viability. EGFP-IPAS protein was localized in both the nucleus and the cytoplasm, with a large fraction associated with mitochondria. Mitochondrial IPAS induced mitochondria depolarization and caspase-3 activation. Immunoprecipitation assays revealed that IPAS is associated with Bcl-x(L), Bcl-w and Mcl-1. The association of IPAS with Bcl-x(L) was also observed in living cells by the FLIM-based FRET analysis, indicating direct binding between the two proteins. IPAS contributed to dysfunction of Bcl-x(L) by inhibiting the interaction of Bcl-x(L) with Bax. These results demonstrate that IPAS functions as a dual function protein involved in transcription repression and apoptosis.
Collapse
|
43
|
Belaidi E, Beguin PC, Levy P, Ribuot C, Godin-Ribuot D. Delayed myocardial preconditioning induced by cobalt chloride in the rat: HIF-1α and iNOS involvement. Fundam Clin Pharmacol 2011; 26:454-62. [DOI: 10.1111/j.1472-8206.2011.00940.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Guan F, Schaffer L, Handa K, Hakomori SI. Functional role of gangliotetraosylceramide in epithelial‐to‐mesenchymal transition process induced by hypoxia and by TGF‐β. FASEB J 2010. [DOI: 10.1096/fj.10.162107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Feng Guan
- Division of Biomembrane ResearchPacific Northwest Research Institute Seattle Washington USA
- Departments of Pathobiology and Global HealthUniversity of Washington Seattle Washington USA
| | - Lana Schaffer
- Division of Biomembrane ResearchPacific Northwest Research Institute Seattle Washington USA
- DNA Array Core FacilityThe Scripps Research Institute La Jolla California USA
| | - Kazuko Handa
- Division of Biomembrane ResearchPacific Northwest Research Institute Seattle Washington USA
- Departments of Pathobiology and Global HealthUniversity of Washington Seattle Washington USA
| | - Sen-itiroh Hakomori
- Division of Biomembrane ResearchPacific Northwest Research Institute Seattle Washington USA
- Departments of Pathobiology and Global HealthUniversity of Washington Seattle Washington USA
| |
Collapse
|
45
|
Torii S, Kurihara A, Li XY, Yasumoto KI, Sogawa K. Inhibitory effect of extracellular histidine on cobalt-induced HIF-1α expression. ACTA ACUST UNITED AC 2010; 149:171-6. [DOI: 10.1093/jb/mvq129] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Guan F, Schaffer L, Handa K, Hakomori SI. Functional role of gangliotetraosylceramide in epithelial-to-mesenchymal transition process induced by hypoxia and by TGF-{beta}. FASEB J 2010; 24:4889-903. [PMID: 20720159 DOI: 10.1096/fj.10-162107] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) is a basic cellular process that plays a key role in normal embryonic development and in cancer progression/metastasis. Our previous study indicated that EMT processes of mouse and human epithelial cells induced by TGF-β display clear reduction of gangliotetraosylceramide (Gg4) and ganglioside GM2, suggesting a close association of glycosphingolipids (GSLs) with EMT. In the present study, using normal murine mammary gland (NMuMG) cells, we found that levels of Gg4 and of mRNA for the UDP-Gal:β1-3galactosyltransferase-4 (β3GalT4) gene, responsible for reduction of Gg4, were reduced in EMT induced by hypoxia (∼1% O(2)) or CoCl(2) (hypoxia mimic), similarly to that for TGF-β-induced EMT. An increase in the Gg4 level by its exogenous addition or by transfection of the β3GalT4 gene inhibited the hypoxia-induced or TGF-β-induced EMT process, including changes in epithelial cell morphology, enhanced motility, and associated changes in epithelial vs. mesenchymal molecules. We also found that Gg4 is closely associated with E-cadherin and β-catenin. These results suggest that the β3GalT4 gene, responsible for Gg4 expression, is down-regulated in EMT; and Gg4 has a regulatory function in the EMT process in NMuMG cells, possibly through interaction with epithelial molecules important to maintain epithelial cell membrane organization.
Collapse
Affiliation(s)
- Feng Guan
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | | | | | | |
Collapse
|
47
|
Galbán S, Gorospe M. Factors interacting with HIF-1alpha mRNA: novel therapeutic targets. Curr Pharm Des 2010; 15:3853-60. [PMID: 19671045 DOI: 10.2174/138161209789649376] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 06/30/2009] [Indexed: 12/15/2022]
Abstract
The heterodimeric transcription factor HIF-1 (hypoxia-inducible factor-1) induces angiogenesis, a process that is aberrantly elevated in cancer. The HIF-1beta subunit is constitutively expressed, but the levels of the HIF-1alpha subunit are robustly regulated, increasing under hypoxic conditions and decreasing in normoxia. These changes result from rapid alterations in the rates of HIF-1alpha production and degradation. While the regulation of HIF-1alpha degradation is understood in significant detail, much less is known about the regulation of HIF-1alpha biosynthesis. Here, we review recent evidence that HIF-1alpha production is effectively controlled by post-transcriptional mechanisms. We focus on the RNA-binding proteins (RBPs) and the non-coding RNAs that interact with the HIF-1alpha mRNA and influence its half-life and translation rate. HIF-1alpha mRNA-binding factors are emerging as promising pharmacological targets to control HIF-1alpha production selectively and efficiently.
Collapse
Affiliation(s)
- Stefanie Galbán
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
48
|
Azevedo MM, Jell G, O'Donnell MD, Law RV, Hill RG, Stevens MM. Synthesis and characterization of hypoxia-mimicking bioactive glasses for skeletal regeneration. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm01111h] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Molitoris KH, Kazi AA, Koos RD. Inhibition of oxygen-induced hypoxia-inducible factor-1alpha degradation unmasks estradiol induction of vascular endothelial growth factor expression in ECC-1 cancer cells in vitro. Endocrinology 2009; 150:5405-14. [PMID: 19819950 PMCID: PMC2795708 DOI: 10.1210/en.2009-0884] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estradiol (E(2)) rapidly and strongly induces vascular endothelial growth factor (VEGF) transcription in uterine endometrial epithelial cells in vivo. We have shown that this is mediated by both the estrogen receptor-alpha and hypoxia-inducible factor (HIF)-1alpha. By contrast, E(2) induces little or no VEGF expression in cultured breast or endometrial cancer cells, which lack HIF-1alpha due to the abnormally high concentration of oxygen ( approximately 20%) to which they are exposed. To test the hypothesis that restoring HIF-1alpha in cultured cells would restore the ability of E(2) to induce VEGF expression, we treated human endometrial cancer cells (ECC-1) with cobalt chloride (CoCl(2);100 microm), which prevents oxygen-induced HIF-1alpha degradation. HIF-1alpha was absent in untreated ECC-1 cells but detectable by 4 h after treatment with CoCl(2) alone, as was a significant increase in VEGF mRNA. E(2) plus CoCl(2) induced detectable HIF-1alpha expression at 2 h and an even higher level than that induced by CoCl(2) alone at 4 h; this HIF-1alpha was localized in the nuclei. This was accompanied by increasing VEGF expression, with the increase at 4 h severalfold higher than that induced by CoCl(2) alone and was concurrent with recruitment of both HIF-1alpha and estrogen receptor-alpha to the VEGF promoter. These results confirm that HIF-1alpha plays an essential role in E(2)-induced expression of VEGF. Through the induction of increased microvascular permeability and the consequent exudation of plasma growth factors, VEGF in turn may play an essential role in cancer cell proliferation in vivo.
Collapse
Affiliation(s)
- Kristin Happ Molitoris
- Department of Physiology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, Maryland 21201-1559, USA
| | | | | |
Collapse
|
50
|
Abstract
Phosphatidylinositol 3-kinase (PI3K) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling pathway play an important role in multiple cellular functions such as cell metabolism, proliferation, cell-cycle progression, and survival. PI3K is activated by growth factors and angiogenesis inducers such as vascular endothelial growth factor (VEGF) and angiopoietins. The amplification and mutations of PI3K and the loss of the tumor suppressor PTEN are common in various kinds of human solid tumors. The genetic alterations of upstream and downstream of PI3K signaling molecules such as receptor tyrosine kinases and AKT, respectively, are also frequently altered in human cancer. PI3K signaling regulates tumor growth and angiogenesis by activating AKT and other targets, and by inducing HIF-1 and VEGF expression. Angiogenesis is required for tumor growth and metastasis. In this review, we highlight the recent studies on the roles and mechanisms of PI3K and PTEN in regulating tumorigenesis and angiogenesis, and the roles of the downstream targets of PI3K for transmitting the signals. We also discuss the crosstalk of these signaling molecules and cellular events during tumor growth, metastasis, and tumor angiogenesis. Finally, we summarize the potential applications of PI3K, AKT, and mTOR inhibitors and their outcome in clinical trials for cancer treatment.
Collapse
|