1
|
Li P, Li T, Luo J, Yu P, Jiang T, Zhou X, Yu L, Chen A, Wan Y, Shi L. IL-13 May Could Enhance the Proliferation and Affect the Differentiation of Nasal Epithelium Basal Cells Through the mTOR/p70S6K1 Pathway in Chronic Rhinosinusitis With Nasal Polyps. Mediators Inflamm 2025; 2025:8108993. [PMID: 40438321 PMCID: PMC12119155 DOI: 10.1155/mi/8108993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/07/2025] [Indexed: 06/01/2025] Open
Abstract
Background: One of the hallmarks of Chronic rhinosinusitis with nasal polyps (CRSwNP) is the overexpression of IL-13, which may influence the proliferation and differentiation of nasal epithelial basal cells. However, the pathway is not clear enough, and the mTOR/p70S6K1 pathway is related to cell growth. This study was trying to explore if IL-13 could impact nasal epithelial basal cells through the mTOR/p70S6K1 pathway. Methods: PCR, western blot (WB), and immunohistochemistry (IHC) were used to compare the difference between IL-13 and the mTOR/p70S6K1 pathway-related molecules expression level between the healthy control (HC) and CRSwNP groups. WB, 5-ethynyl-2'-deoxyuridine staining, and Immunofluorescent (IF) were performed on human nasal epithelial progenitor cells (HNEPCs) to detect the proliferation ability under the effect of IL-13. In addition, qRT-PCR, WB, and IF were used to detect the differentiation ability with the stimulation of IL-13 in the air-liquid interface (ALI) system. Results: The expression of IL-13, mTOR/p70S6K1-related molecules, and proliferation-related molecules Ki67, CDK2, and cyclin E1 were upregulated in CRSwNP compared to HC. In HNEPCs, IL-13 could stimulate nasal epithelial cells proliferating through the mTOR/p70S6K1 pathway, and this phenomenon could be inhibited when mTOR (with rapamycin) and S6K1 (with PF-4708671) were blocked. In the ALI system, the effect of IL-13 added in the proliferation phase could persist in the proliferation and differentiation stage, affecting the nasal epithelial progenitor/stem cells' irregular differentiation. Conclusion: IL-13 may affect the proliferation and differentiation of nasal epithelial progenitor/stem cells through the mTOR/p70S6K1 pathway, which may affect the development of nasal polyps.
Collapse
Affiliation(s)
- Ping Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Allergy, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Rhino-Inflammatory Disease, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Tao Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Allergy, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Rhino-Inflammatory Disease, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Jinfeng Luo
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Allergy, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Peng Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Rhino-Inflammatory Disease, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Tao Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Allergy, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Xiangmin Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Allergy, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Rhino-Inflammatory Disease, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Liang Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Nasal-Skull Base Oncology, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Aiping Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Sturctral Rhinology Department, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Yuzhu Wan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Allergy, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Rhino-Inflammatory Disease, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Li Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Allergy, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
- Department of Otolaryngology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
2
|
Sahnoon L, Bajbouj K, Mahboub B, Hamoudi R, Hamid Q. Targeting IL-13 and IL-4 in Asthma: Therapeutic Implications on Airway Remodeling in Severe Asthma. Clin Rev Allergy Immunol 2025; 68:44. [PMID: 40257546 PMCID: PMC12011922 DOI: 10.1007/s12016-025-09045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 04/22/2025]
Abstract
Asthma is a chronic respiratory disorder affecting individuals across all age groups. It is characterized by airway inflammation and remodeling and leads to progressive airflow restriction. While corticosteroids remain a mainstay therapy, their efficacy is limited in severe asthma due to genetic and epigenetic alterations, as well as elevated pro-inflammatory cytokines interleukin-4 (IL-4), interleukin-13 (IL-13), and interleukin-5 (IL-5), which drive structural airway changes including subepithelial fibrosis, smooth muscle hypertrophy, and goblet cell hyperplasia. This underscores the critical need for biologically targeted therapies. This review systematically examines the roles of IL-4 and IL-13, key drivers of type-2 inflammation, in airway remodeling and their potential as therapeutic targets. IL-4 orchestrates eosinophil recruitment, immunoglobulin class switching, and Th2 differentiation, whereas IL-13 directly modulates structural cells, including fibroblasts and epithelial cells, to promote mucus hypersecretion and extracellular matrix (ECM) deposition. Despite shared signaling pathways, IL-13 emerges as the dominant cytokine in remodeling processes including mucus hypersecretion, fibrosis and smooth muscle hypertrophy. While IL-4 primarily amplifies inflammatory cascades by driving IgE switching, promoting Th2 cell polarization that sustain cytokine release, and inducing chemokines to recruit eosinophils. In steroid-resistant severe asthma, biologics targeting IL-4/IL-13 show promise in reducing exacerbations and eosinophilic inflammation. However, their capacity to reverse established remodeling remains inconsistent, as clinical trials prioritize inflammatory biomarkers over long-term structural outcomes. This synthesis highlights critical gaps in understanding the durability of IL-4/IL-13 inhibition on airway structure and advocates for therapies combining biologics with remodeling-specific strategies. Through the integration of mechanistic insights and clinical evidence, this review emphasizes the need for long-term studies utilizing advanced imaging, histopathological techniques, and patient-reported outcomes to evaluate how IL-4/IL-13-targeted therapies alter airway remodeling and symptom burden, thereby informing more effective treatment approaches for severe, steroid-resistant asthma.
Collapse
Affiliation(s)
- Lina Sahnoon
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Bassam Mahboub
- Rashid Hospital, Dubai Health, 4545, Dubai, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Division of Surgery and Interventional Science, University College London, London, UK.
- Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah, United Arab Emirates.
| | - Qutayba Hamid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Meakins-Christie Laboratories, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
3
|
Brightling CE, Marone G, Aegerter H, Chanez P, Heffler E, Pavord ID, Rabe KF, Uller L, Dorscheid D. The epithelial era of asthma research: knowledge gaps and future direction for patient care. Eur Respir Rev 2024; 33:240221. [PMID: 39694589 PMCID: PMC11653196 DOI: 10.1183/16000617.0221-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 12/20/2024] Open
Abstract
The Epithelial Science Expert Group convened on 18-19 October 2023, in Naples, Italy, to discuss the current understanding of the fundamental role of the airway epithelium in asthma and other respiratory diseases and to explore the future direction of patient care. This review summarises the key concepts and research questions that were raised. As an introduction to the epithelial era of research, the evolution of asthma management throughout the ages was discussed and the role of the epithelium as an immune-functioning organ was elucidated. The role of the bronchial epithelial cells in lower airway diseases beyond severe asthma was considered, as well as the role of the epithelium in upper airway diseases such as chronic rhinosinusitis. The biology and application of biomarkers in patient care was also discussed. The Epithelial Science Expert Group also explored future research needs by identifying the current knowledge and research gaps in asthma management and ranking them by priority. It was identified that there is a need to define and support early assessment of asthma to characterise patients at high risk of severe asthma. Furthermore, a better understanding of asthma progression is required. The development of new treatments and diagnostic tests as well as the identification of new biomarkers will also be required to address the current unmet needs. Finally, an increased understanding of epithelial dysfunction will determine if we can alter disease progression and achieve clinical remission.
Collapse
Affiliation(s)
- Christopher E Brightling
- Institute for Lung Health, National Institute for Health and Care Research Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- Joint first authors
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, School of Medicine, University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council of Italy, Naples, Italy
- Joint first authors
| | - Helena Aegerter
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Pascal Chanez
- Department of Respiratory Diseases, Aix-Marseille University, Marseille, France
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Ian D Pavord
- Respiratory Medicine, National Institute for Health and Care Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Klaus F Rabe
- LungenClinic Grosshansdorf, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
- Chirstian-Alrechts University Kiel, Member of the German Center for Lung Research (DZL), Kiel, Germany
| | - Lena Uller
- Unit of Respiratory Immunopharmacology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Del Dorscheid
- Center for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Hu X, Xie S, Yi X, Ouyang Y, Zhao W, Yang Z, Zhang Z, Wang L, Huang X, Peng M, Yu F. Bidirectional Mendelian Randomization of Causal Relationship between Inflammatory Cytokines and Different Pathological Types of Lung Cancer. J Cancer 2024; 15:4969-4984. [PMID: 39132165 PMCID: PMC11310887 DOI: 10.7150/jca.98301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/07/2024] [Indexed: 08/13/2024] Open
Abstract
Prior research has proposed a potential association between lung cancer and inflammatory cytokines, yet the specific causal relationship remains unclear, especially across various lung cancer pathologies. This study utilized bidirectional Mendelian randomization (MR) to explore these causal connections, unveiling novel insights. Our research revealed distinctive inflammatory cytokine profiles for each subtype of lung cancer and identified potential biomarkers that could refine diagnostic and therapeutic approaches. We applied two-sample Mendelian randomization, leveraging genetic variance data from three extensive genome-wide association studies (GWAS) focusing on different lung cancer types (lung adenocarcinoma: 1590 cases and 314,193 controls of healthy individuals of European descent; lung squamous cell carcinoma: 1510 cases and 314,193 controls of European ancestry; small cell lung cancer: 717 cases and 314,193 controls of European ancestry). A separate GWAS summary on inflammatory cytokines from 8,293 healthy participants was also included. The inverse variance weighting method was utilized to examine causal relationships, with robustness confirmed through multiple sensitivity analyses, including MR-Egger, weighted median, and MR-PRESSO. Our analysis revealed that elevated levels of IL_1RA were associated with an increased risk of lung adenocarcinoma (OR: 1.29, 95% CI: 1.02-1.64, p = 0.031), while higher MCP_1_MCAF levels correlated with a decreased risk of lung squamous cell carcinoma (OR: 0.77, 95% CI: 0.61-0.98, p = 0.031). Furthermore, IL_10, IL_13, and TRAIL levels were positively associated with lung squamous cell carcinoma risk (IL_10: OR: 1.27, 95% CI: 1.06-1.53, p = 0.012; IL_13: OR: 1.15, 95% CI: 1.06-1.53, p = 0.036; TRAIL: OR: 1.15, 95% CI: 1.06-1.53, p = 0.043). No association was found between inflammatory cytokine levels and small cell lung cancer development, whereas SDF_1A and B-NGF were linked to an increased risk of this cancer type (SDF_1A: OR: 1.13, 95% CI: 1.05-1.21, p = 0.001; B-NGF: OR: 1.13, 95% CI: 1.01-1.27, p = 0.029). No significant relationship was observed between the 41 circulating inflammatory cytokines and lung adenocarcinoma or squamous cell carcinoma development. Our findings indicate distinct associations between specific inflammatory cytokines and different types of lung cancer. Elevated IL_1RA levels are a risk marker for lung adenocarcinoma, whereas higher MCP_1_MCAF levels appear protective against lung squamous cell carcinoma. Conversely, elevated levels of IL_10, IL_13, and TRAIL are linked with an increased risk of lung squamous cell carcinoma. The relationships of SDF_1A and B-NGF with small-cell lung cancer highlight the complexity of inflammatory markers in cancer development. This study provides a nuanced understanding of the role of inflammatory cytokines in lung cancer, underscoring their potential in refining diagnosis and treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Muyun Peng
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Fenglei Yu
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410000, China
| |
Collapse
|
5
|
Kudrna K, Staab EB, Eilers E, Thomes P, Maurya S, Brody SL, Wyatt TA, Bailey KL, Dickinson JD. mTOR signaling regulates aberrant epithelial cell proliferative and migratory behaviors characteristic of airway mucous metaplasia in asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579905. [PMID: 38405874 PMCID: PMC10888751 DOI: 10.1101/2024.02.12.579905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In asthma, the airway epithelium is hyperplastic, hypertrophied, and lined with numerous large MUC5AC-containing goblet cells (GC). Furthermore, the normal epithelial architecture is disorganized with numerous, what we here describe as, ectopic goblet cells (eGC) deep within the thickened epithelial layer disconnected from the lumenal surface. mTOR is a highly conserved pathway that regulates cell size and proliferation. We hypothesized that the balance between mTOR and autophagy signaling regulates key features of the asthma epithelial layer. Airway histological sections from subjects with asthma had increased frequency of eGC and increased levels of mTOR phosphorylation target-Ribosomal S6. Using human airway epithelial cells (hAECs) with IL-13 stimulation and timed withdrawal to stimulate resolution, we found that multiple key downstream phosphorylation targets downstream from the mTOR complex were increased during early IL-13-mediated mucous metaplasia, and then significantly declined during resolution. The IL-13-mediated changes in mTOR signaling were paralleled by morphologic changes with airway epithelial hypertrophy, hyperplasia, and frequency of eGC. We then examined the relationship between mTOR and autophagy using mice deficient in autophagy protein Atg16L1. Despite having increased cytoplasmic mucins, mouse AECs from Atg16L1 deficient mice had no significant difference in mTOR downstream signaling. mTOR inhibition with rapamycin led to a loss of IL-13-mediated epithelial hypertrophy, hyperplasia, ectopic GC distribution, and reduction in cytoplasmic MUC5AC levels. mTOR inhibition was also associated with a reduction in aberrant IL-13-mediated hAEC proliferation and migration. Our findings demonstrate that mTOR signaling is associated with mucous metaplasia and is crucial to the disorganized airway epithelial structure and function characteristic of muco-obstructive airway diseases such as asthma. Graphical Abstract Key Concepts The airway epithelium in asthma is disorganized and characterized by cellular proliferation, aberrant migration, and goblet cell mucous metaplasia.mTOR signaling is a dynamic process during IL-13-mediated mucous metaplasia, increasing with IL-13 stimulation and declining during resolution.mTOR signaling is strongly increased in the asthmatic airway epithelium.mTOR signaling is associated with the development of key features of the metaplastic airway epithelium including cell proliferation and ectopic distribution of goblet cells and aberrant cellular migration.Inhibition of mTOR leads to decreased epithelial hypertrophy, reduced ectopic goblet cells, and cellular migration.
Collapse
|
6
|
Hu C, Ji H, Gong Y, Yang X, Jia Y, Liu Y, Ji G, Wang X, Wang M. Wet-adhesive γ-PGA/ε-PLL hydrogel loaded with EGF for tracheal epithelial injury repair. J Mater Chem B 2023; 11:8666-8678. [PMID: 37622289 DOI: 10.1039/d3tb01550e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Following the global COVID-19 pandemic, the incidence of tracheal epithelial injury is increasing. However, the repair of tracheal epithelial injury remains a challenge due to the slow renewal rate of tracheal epithelial cells (TECs). In traditional nebulized inhalation treatments, drugs are enriched in the lungs or absorbed into the blood, reducing drug concentration at the tracheal injury site. In this study, we prepared an epidermal growth factor (EGF)-loaded gamma-polyglutamic acid (γ-PGA)/epsilon-poly-L-lysine (ε-PLL) (PP) hydrogel (EGF@PP) to promote the repair of tracheal epithelial injury. Epidermal growth factor promotes the proliferation of TECs and enhances vascularization, thereby accelerating injury repair. The PP hydrogel exhibits outstanding wet adhesion, slow drug release, and antibacterial and anti-inflammatory properties, making it suitable for application in the airways and creating an environment conducive to epithelial repair. Here, we established a rabbit model of tracheal injury using a laser to destroy the tracheal epithelium and delivered EGF@PP powder to the injury site under fiberoptic bronchoscopy guidance. Our findings revealed that this was an effective therapeutic strategy for accelerating the repair of tracheal epithelial injury.
Collapse
Affiliation(s)
- Chuang Hu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Haoran Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Yan Gong
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Xuhui Yang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Yunxuan Jia
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Yuanhao Liu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| |
Collapse
|
7
|
Ji T, Li H. T-helper cells and their cytokines in pathogenesis and treatment of asthma. Front Immunol 2023; 14:1149203. [PMID: 37377958 PMCID: PMC10291091 DOI: 10.3389/fimmu.2023.1149203] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Prosperous advances in understanding the cellular and molecular mechanisms of chronic inflammation and airway remodeling in asthma have been made over the past several decades. Asthma is a chronic inflammatory disease of the airways characterized by reversible airway obstruction that is self-resolving or remits with treatment. Around half of asthma patients are "Type-2-high" asthma with overexpression of type 2 inflammatory pathways and elevated type 2 cytokines. When stimulated by allergens, airway epithelial cells secrete IL-25, IL-33, and TSLP to derive a Th2 immune response. First ILC2 followed by Th2 cells produces a series of cytokines such as IL-4, IL-5, and IL-13. TFH cells control IgE synthesis by secreting IL-4 to allergen-specific B cells. IL-5 promotes eosinophil inflammation, while IL-13 and IL-4 are involved in goblet cell metaplasia and bronchial hyperresponsiveness. Currently, "Type-2 low" asthma is defined as asthma with low levels of T2 biomarkers due to the lack of reliable biomarkers, which is associated with other Th cells. Th1 and Th17 are capable of producing cytokines that recruit neutrophils, such as IFN-γ and IL-17, to participate in the development of "Type-2-low" asthma. Precision medicine targeting Th cells and related cytokines is essential in the management of asthma aiming at the more appropriate patient selection and better treatment response. In this review, we sort out the pathogenesis of Th cells in asthma and summarize the therapeutic approaches involved as well as potential research directions.
Collapse
Affiliation(s)
| | - Hequan Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Gauvreau GM, Bergeron C, Boulet LP, Cockcroft DW, Côté A, Davis BE, Leigh R, Myers I, O'Byrne PM, Sehmi R. Sounding the alarmins-The role of alarmin cytokines in asthma. Allergy 2023; 78:402-417. [PMID: 36463491 PMCID: PMC10108333 DOI: 10.1111/all.15609] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 12/07/2022]
Abstract
The alarmin cytokines thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, and IL-25 are epithelial cell-derived mediators that contribute to the pathobiology and pathophysiology of asthma. Released from airway epithelial cells exposed to environmental triggers, the alarmins drive airway inflammation through the release of predominantly T2 cytokines from multiple effector cells. The upstream positioning of the alarmins is an attractive pharmacological target to block multiple T2 pathways important in asthma. Blocking the function of TSLP inhibits allergen-induced responses including bronchoconstriction, airway hyperresponsiveness, and inflammation, and subsequent clinical trials of an anti-TSLP monoclonal antibody, tezepelumab, in asthma patients demonstrated improvements in lung function, airway responsiveness, inflammation, and importantly, a reduction in the rate of exacerbations. Notably, these improvements were observed in patients with T2-high and with T2-low asthma. Clinical trials blocking IL-33 and its receptor ST2 have also shown improvements in lung function and exacerbation rates; however, the impact of blocking the IL-33/ST2 axis in T2-high versus T2-low asthma is unclear. To date, there is no evidence that IL-25 blockade is beneficial in asthma. Despite the considerable overlap in the cellular functions of IL-25, IL-33, and TSLP, they appear to have distinct roles in the immunopathology of asthma.
Collapse
Affiliation(s)
- Gail M Gauvreau
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Celine Bergeron
- Centre for Lung Health, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Donald W Cockcroft
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andréanne Côté
- Centre for Lung Health, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Beth E Davis
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard Leigh
- Department of Medicine, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Irvin Myers
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul M O'Byrne
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Roma Sehmi
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Lohova E, Pilmane M. Expression of MUC-2, MUC-6, NAPE-PLD, IL-6 and IL-13 in Healthy and Metaplastic Bronchial Epithelium. Diseases 2022; 11:diseases11010005. [PMID: 36648870 PMCID: PMC9844475 DOI: 10.3390/diseases11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Background: The normal tissue structure of the respiratory system is necessary to provide adequate protection of the airways and lungs. Prolonged exposure to trigger factors can result in adaptive mechanism activation and lead to the development of chronic pulmonary diseases or even dysplastic changes. Materials and methods: Respiratory system material with a pseudostratified ciliated epithelium was obtained from 12 patients (aged 16 to 95), and material with a stratified squamosa epithelium was obtained from six patients (aged 23 to 93). Routine staining was performed, and an immunohistochemistry was conducted for MUC-2, MUC-6, NAPE-PLD, IL-6 and IL-13. Results: Inflammatory processes were not detected in any of the specimens. A number of correlations were identified, with the most important being a strong positive correlation for IL-13 between the alveolar epithelium and alveolar macrophages and a strong positive correlation for IL-6 between the alveolar epithelium and alveolar macrophages in the stratified squamous epithelium group. We also detected a statistically significant difference in IL-6 in alveolar macrophages. Conclusions: There were no signs of dysplastic changes in either group. Increased secretion of IL-13 in the stratified squamous epithelium group shows its involvement in metaplastic changes in the bronchial epithelium. The secretion of atypical factors by hyaline cartilage demonstrates its plasticity and adaptability.
Collapse
|
10
|
Matysiak J, Packi K, Klimczak S, Bukowska P, Matuszewska E, Klupczyńska-Gabryszak A, Bręborowicz A, Matysiak J. Cytokine profile in childhood asthma. JOURNAL OF MEDICAL SCIENCE 2022. [DOI: 10.20883/medical.e725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Childhood asthma is a chronic airway disease, which pathogenesis is markedly heterogeneous–with multiple phenotypes defining visible characteristics and endotypes defining molecular mechanisms. Cytokines and chemokines released during inflammatory responses are key immune mediators. The cytokine response can largely determine the susceptibility to childhood asthma and its severity. The purpose of this study was to characterize the immune profile of childhood asthma. The study involved 26 children (3–18 years old), who were divided into 2 groups: study–with childhood asthma; control–without asthma. The innovative Bio-Plex method was used to determine the serum concentration of 37 inflammatory proteins in one experiment. The results were analyzed using univariate statistical tests. In the study group, the level of the 10 tested markers increased, while the level of the remaining 9 decreased compared to the control; a statistically significant reduction in concentration was obtained only for the MMP-1(p<0.05). According to the ROC curve, MMP-1 can be considered an effective discriminator of childhood asthma (p<0.05; AUC=0.752). Cytokines/chemokines may be useful in the diagnosis of childhood asthma and may also become a prognostic target in determining the phenotype/endotype of this condition. This study should be a prelude to and an incentive for more complex proteomic analyzes.
Collapse
|
11
|
Rodríguez-Viso P, Domene A, Vélez D, Devesa V, Monedero V, Zúñiga M. Mercury toxic effects on the intestinal mucosa assayed on a bicameral in vitro model: Possible role of inflammatory response and oxidative stress. Food Chem Toxicol 2022; 166:113224. [PMID: 35700822 DOI: 10.1016/j.fct.2022.113224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Exposure to mercury (Hg) mostly occurs through diet, where it is mainly found as inorganic Hg [Hg(II)] or methylmercury (MeHg). In vivo studies have linked its exposure with neurological and renal diseases, however, its toxic effects upon the gastrointestinal tract are largely unknown. In order to evaluate the effect of Hg on intestinal mucosa, a bicameral system was employed with co-cultures of Caco-2 and HT29-MTX intestinal epithelial cells and THP-1 macrophages. Cells were exposed to Hg(II) and MeHg (0.1, 0.5, 1 mg/L) during 11 days. The results evidenced a greater pro-inflammatory response in cells exposed to Hg with increments of IL-8 (15-126%) and IL-1β release (39-63%), mainly induced by macrophages which switched to a M1 phenotype. A pro-oxidant response was also observed in both cell types with an increase in ROS/RNS levels (44-140%) and stress proteins expression. Intestinal cells treated with Hg displayed structural abnormalities, hypersecretion of mucus and defective tight junctions. An increased paracellular permeability (123-170%) at the highest concentrations of Hg(II) and MeHg and decreased capacity to restore injuries in the cell monolayer were also observed. All these toxic effects were governed by various inflammatory signalling pathways (p38 MAPK, JNK and NF-κB).
Collapse
Affiliation(s)
- Pilar Rodríguez-Viso
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Adrián Domene
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
12
|
Salmin VV, Morgun AV, Olovyannikova RY, Kutyakov VA, Lychkovskaya EV, Brusina EB, Salmina AB. Atmospheric Reactive Oxygen Species and Some Aspects of the Antiviral Protection at the Respiratory Epithelium. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2022; 16:79-90. [PMID: 35601461 PMCID: PMC9113385 DOI: 10.1134/s1990750822020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Affiliation(s)
- V. V. Salmin
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, ul. Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
| | - A. V. Morgun
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, ul. Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
| | - R. Ya. Olovyannikova
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, ul. Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
| | - V. A. Kutyakov
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, ul. Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
| | - E. V. Lychkovskaya
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, ul. Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
| | - E. B. Brusina
- Kemerovo State Medical University, ul. Voroshilova 22A, 650056 Kemerovo, Russia
| | - A. B. Salmina
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, ul. Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
- Research Center of Neurology, Volokolamskoe shosse 80, 125367 Moscow, Russia
| |
Collapse
|
13
|
Qian L, Mehrabi Nasab E, Athari SM, Athari SS. Mitochondria signaling pathways in allergic asthma. J Investig Med 2022; 70:863-882. [PMID: 35168999 PMCID: PMC9016245 DOI: 10.1136/jim-2021-002098] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 12/23/2022]
Abstract
Mitochondria, as the powerhouse organelle of cells, are greatly involved in regulating cell signaling pathways, including those related to the innate and acquired immune systems, cellular differentiation, growth, death, apoptosis, and autophagy as well as hypoxic stress responses in various diseases. Asthma is a chronic complicated airway disease characterized by airway hyperresponsiveness, eosinophilic inflammation, mucus hypersecretion, and remodeling of airway. The asthma mortality and morbidity rates have increased worldwide, so understanding the molecular mechanisms underlying asthma progression is necessary for new anti-asthma drug development. The lung is an oxygen-rich organ, and mitochondria, by sensing and processing O2, contribute to the generation of ROS and activation of pro-inflammatory signaling pathways. Asthma pathophysiology has been tightly associated with mitochondrial dysfunction leading to reduced ATP synthase activity, increased oxidative stress, apoptosis induction, and abnormal calcium homeostasis. Defects of the mitochondrial play an essential role in the pro-remodeling mechanisms of lung fibrosis and airway cells' apoptosis. Identification of mitochondrial therapeutic targets can help repair mitochondrial biogenesis and dysfunction and reverse related pathological changes and lung structural remodeling in asthma. Therefore, we here overviewed the relationship between mitochondrial signaling pathways and asthma pathogenic mechanisms.
Collapse
Affiliation(s)
- Ling Qian
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai, China
| | - Entezar Mehrabi Nasab
- Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
| | | | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran (the Islamic Republic of)
| |
Collapse
|
14
|
Ray JL, Shaw PK, Postma B, Beamer CA, Holian A. Nanoparticle-Induced Airway Eosinophilia Is Independent of ILC2 Signaling but Associated With Sex Differences in Macrophage Phenotype Development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:110-120. [PMID: 34819391 PMCID: PMC8702462 DOI: 10.4049/jimmunol.2100769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
The majority of lung diseases occur with a sex bias in terms of prevalence and/or severity. Previous studies demonstrated that, compared with males, female mice develop greater eosinophilic inflammation in the airways after multiwalled carbon nanotube (MWCNT) exposure. However, the mechanism by which this sex bias occurs is unknown. Two immune cells that could account for the sex bias are type II innate lymphoid cells (ILC2s) and alveolar macrophages (AMs). In order to determine which immune cell type was responsible for MWCNT-induced airway eosinophil recruitment and subsequent sex differences in inflammation and disease, male and female C57BL/6 mice were exposed to MWCNTs (2 mg/kg) via oropharyngeal aspiration, and the respiratory immune response was assessed 7 d later. Greater eosinophilia and eotaxin 2 levels were observed in MWCNT-treated females and corresponded with greater changes in airway hyperresponsiveness than those in MWCNT-treated males. In MWCNT-treated females, there was a significant increase in the frequency of ILC2s within the lungs compared with control animals. However, depletion of ILC2s via α-CD90.2 administration did not decrease eosinophil recruitment 24 h and 7 d after MWCNT exposure. AMs isolated from control and MWCNT-treated animals demonstrated that M2a macrophage phenotype gene expression, ex vivo cytokine production, and activation of (p)STAT6 were upregulated to a significantly greater degree in MWCNT-treated females than in males. Our findings suggest that sex differences in AM phenotype development, not ILC2 signaling, are responsible for the observed female bias in eosinophilic inflammation after MWCNT inhalation.
Collapse
Affiliation(s)
- Jessica L. Ray
- Center for Environmental Health Sciences, University of Montana, Missoula, MT
| | - Pam K. Shaw
- Center for Environmental Health Sciences, University of Montana, Missoula, MT
| | - Britten Postma
- Center for Environmental Health Sciences, University of Montana, Missoula, MT
| | - Celine A. Beamer
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT
| |
Collapse
|
15
|
HB-EGF-induced IL-8 secretion from airway epithelium leads to lung fibroblast proliferation and migration. BMC Pulm Med 2021; 21:347. [PMID: 34742261 PMCID: PMC8572483 DOI: 10.1186/s12890-021-01726-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have reported that heparin-binding epidermal growth factor (HB-EGF) is increased in patients with chronic obstructive pulmonary disease (COPD) and associated with collagen deposition, but the mechanisms remain unclear. In the present study, we aimed to investigated the inflammatory cytokines secreted by bronchial epithelial cells following exposure to HB-EGF that promoted proliferation and migration of human lung fibroblast. METHODS HB-EGF-induced inflammatory cytokines were assayed in two airway epithelial cells (primary human bronchial epithelial cells [HBECs] and BEAS-2B cells). Moreover, the culture supernatants derived from HB-EGF-treated HBECs and BEAS-2B cells were added to human primary lung fibroblasts. The effect of culture supernatants on proliferation and migration of fibroblasts was assessed. RESULTS IL-8 expression was significantly increased in bronchial epithelial cells treated with HB-EGF, which was at least partially dependent on NF-kB pathways activation. HB-EGF-induced IL-8 was found to further promote lung fibroblasts proliferation and migration, and the effects were attenuated after neutralizing IL-8. CONCLUSIONS These findings suggest that HB-EGF may be involved in the pathology of airway fibrosis by induction of IL-8 from airway epithelium, subsequently causing lung fibroblasts proliferation and migration. Thus, inhibition of HBEGF and/or IL-8 production could prevent the development of airway fibrosis by modulating fibroblast activation.
Collapse
|
16
|
Salmin VV, Morgun AV, Olovyannikova RY, Kutyakov VA, Lychkovskaya EV, Brusina EB, Salmina AB. [Atmospheric reactive oxygen species and some aspects of the antiviral protection of the respiratory epithelium]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:383-393. [PMID: 34730551 DOI: 10.18097/pbmc20216705383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review focuses on molecular and biochemical mechanisms of nonspecific protection of respiratory epithelium. The authors provide a comprehensive analysis of up-to-date data on the activity of the lactoperoxidase system expressed on the surface of the respiratory epithelium which provides the generation of hypothiocyanate and hypoiodite in the presence of locally produced or inhaled hydrogen peroxide. Molecular mechanisms of production of active compounds with antiviral and antibacterial effects, expression profiles of enzymes, transporters and ion channels involved in the generation of hypothiocyanite and hypoiodate in the mucous membrane of the respiratory system in physiological and pathological conditions (inflammation) are discussed. In the context of antibacterial and antiviral defense special attention is paid to recent data confirming the effects of atmospheric air composition on the efficiency of hypothiocyanite and hypoiodate synthesis in the respiratory epithelium. The causes and outcomes of lactoperoxidase system impairment due to the action of atmospheric factors are discussed in the context of controlling the sensitivity of the epithelium to the action of bacterial agents and viruses. Restoration of the lactoperoxidase system activity can be achieved by application of pharmacological agents aimed to compensate for the lack of halides in tissues, and by the control of chemical composition of the inhaled air.
Collapse
Affiliation(s)
- V V Salmin
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - A V Morgun
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - R Ya Olovyannikova
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - V A Kutyakov
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - E V Lychkovskaya
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - E B Brusina
- Kemerovo State Medical University, Kemerovo, Russia
| | - A B Salmina
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia; Research Center of Neurology, Moscow, Russia
| |
Collapse
|
17
|
Arvind V, Huang AH. Reparative and Maladaptive Inflammation in Tendon Healing. Front Bioeng Biotechnol 2021; 9:719047. [PMID: 34350166 PMCID: PMC8327090 DOI: 10.3389/fbioe.2021.719047] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022] Open
Abstract
Tendon injuries are common and debilitating, with non-regenerative healing often resulting in chronic disease. While there has been considerable progress in identifying the cellular and molecular regulators of tendon healing, the role of inflammation in tendon healing is less well understood. While inflammation underlies chronic tendinopathy, it also aids debris clearance and signals tissue repair. Here, we highlight recent findings in this area, focusing on the cells and cytokines involved in reparative inflammation. We also discuss findings from other model systems when research in tendon is minimal, and explore recent studies in the treatment of human tendinopathy to glean further insights into the immunobiology of tendon healing.
Collapse
Affiliation(s)
- Varun Arvind
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alice H. Huang
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| |
Collapse
|
18
|
O'Sullivan MJ, Jang JH, Panariti A, Bedrat A, Ijpma G, Lemos B, Park JA, Lauzon AM, Martin JG. Airway Epithelial Cells Drive Airway Smooth Muscle Cell Phenotype Switching to the Proliferative and Pro-inflammatory Phenotype. Front Physiol 2021; 12:687654. [PMID: 34295265 PMCID: PMC8290262 DOI: 10.3389/fphys.2021.687654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
The increased mass of airway smooth muscle (ASM) in the airways of asthmatic patients may contribute to the pathology of this disease by increasing the capacity for airway narrowing. Evidence for the airway epithelium as a participant in ASM remodeling is accruing. To investigate mechanisms by which airway epithelial cells induce ASM cell (ASMC) proliferation, we have employed a co-culture model to explore markers of ASMC proliferative phenotype. Co-culture with epithelial cells led to incorporation of bromodeoxyuridine into ASMCs, indicating augmented proliferation and an associated increase in mRNA of the pro-proliferative co-transcription factor Elk1. Although the mitogen heparin-binding epidermal growth factor (HB-EGF) was augmented in the co-culture supernatant, the ASMC epidermal growth factor receptor (EGFR), an effector of HB-EGF induced proliferation, did not mediate epithelial-induced proliferation. The co-culture increased the expression of ASMC mRNA for the pro-inflammatory cytokines IL-6 and IL-8 as well as the pro-proliferative microRNA miR-210. The transcriptional repressor Max-binding protein (Mnt), a putative target of miR-210, was transcriptionally repressed in co-cultured ASMCs. Together, these data indicate that the airway epithelium-induced proliferative phenotype of ASMCs is not driven by EGFR signaling, but rather may be dependent on miR210 targeting of tumor suppressor Mnt.
Collapse
Affiliation(s)
- M J O'Sullivan
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, QC, Canada.,T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - J H Jang
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, QC, Canada
| | - A Panariti
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, QC, Canada
| | - A Bedrat
- T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - G Ijpma
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, QC, Canada
| | - B Lemos
- T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - J A Park
- T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - A M Lauzon
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, QC, Canada
| | - J G Martin
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
19
|
Wenxiu J, Mingyue Y, Fei H, Yuxin L, Mengyao W, Chenyang L, Jia S, Hong Z, Shih DQ, Targan SR, Xiaolan Z. Effect and Mechanism of TL1A Expression on Epithelial-Mesenchymal Transition during Chronic Colitis-Related Intestinal Fibrosis. Mediators Inflamm 2021; 2021:5927064. [PMID: 34257516 PMCID: PMC8253633 DOI: 10.1155/2021/5927064] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 03/30/2021] [Accepted: 05/28/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND AIMS Recent evidences reveal that epithelial to mesenchymal transition (EMT) exacerbates the process of intestinal fibrosis. Tumor necrosis factor-like ligand 1A (TL1A) is a member of the tumor necrosis family (TNF), which can take part in the development of colonic inflammation and fibrosis by regulating immune response or inflammatory factors. The purpose of this study was to elucidate the possible contribution of TL1A in onset and progression of intestinal inflammation and fibrosis through EMT. METHODS Colonic specimens were obtained from patients with inflammatory bowel disease (IBD) and control individuals. The expression levels of TL1A and EMT-related markers in intestinal tissues were evaluated. Furthermore, the human colorectal adenocarcinoma cell line, HT-29, was stimulated with TL1A, anti-TL1A antibody, or BMP-7 to assess EMT process. In addition, transgenic mice expressing high levels of TL1A in lymphoid cells were used to further investigate the mechanism of TL1A in intestinal fibrosis. RESULTS High levels of TL1A expression were detected in the intestinal specimens of patients with ulcerative colitis and Crohn's disease and were negatively associated with the expression of an epithelial marker (E-cadherin), while it was positively associated with the expression of interstitial markers (FSP1 and α-SMA). Transgenic mice with high expression of TL1A were more sensitive to dextran sodium sulfate and exhibited severe intestinal inflammation and fibrosis. Additionally, the TGF-β1/Smad3 pathway may be involved in TL1A-induced EMT, and the expression of IL-13 and EMT-related transcriptional molecules (e.g., ZEB1 and Snail1) was increased in the intestinal specimens of the transgenic mice. Furthermore, TL1A-induced EMT can be influenced by anti-TL1A antibody or BMP-7 in vitro. CONCLUSIONS TL1A participates in the formation and process of EMT in intestinal fibrosis. This new knowledge enables us to better understand the pathogenesis of intestinal fibrosis and identify new therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Jia Wenxiu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Yang Mingyue
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Han Fei
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Luo Yuxin
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Wu Mengyao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Li Chenyang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Song Jia
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Zhang Hong
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - David Q. Shih
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephan R. Targan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zhang Xiaolan
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| |
Collapse
|
20
|
Dustin CM, Habibovic A, Hristova M, Schiffers C, Morris CR, Lin MCJ, Bauer RA, Heppner DE, Daphtary N, Aliyeva M, van der Vliet A. Oxidation-Dependent Activation of Src Kinase Mediates Epithelial IL-33 Production and Signaling during Acute Airway Allergen Challenge. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2989-2999. [PMID: 34088769 PMCID: PMC8642476 DOI: 10.4049/jimmunol.2000995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/06/2021] [Indexed: 11/19/2022]
Abstract
The respiratory epithelium forms the first line of defense against inhaled pathogens and acts as an important source of innate cytokine responses to environmental insults. One critical mediator of these responses is the IL-1 family cytokine IL-33, which is rapidly secreted upon acute epithelial injury as an alarmin and induces type 2 immune responses. Our recent work highlighted the importance of the NADPH oxidase dual oxidase 1 (DUOX1) in acute airway epithelial IL-33 secretion by various airborne allergens associated with H2O2 production and reduction-oxidation-dependent activation of Src kinases and epidermal growth factor receptor (EGFR) signaling. In this study, we show that IL-33 secretion in response to acute airway challenge with house dust mite (HDM) allergen critically depends on the activation of Src by a DUOX1-dependent oxidative mechanism. Intriguingly, HDM-induced epithelial IL-33 secretion was dramatically attenuated by small interfering RNA- or Ab-based approaches to block IL-33 signaling through its receptor IL1RL1 (ST2), indicating that HDM-induced IL-33 secretion includes a positive feed-forward mechanism involving ST2-dependent IL-33 signaling. Moreover, activation of type 2 cytokine responses by direct airway IL-33 administration was associated with ST2-dependent activation of DUOX1-mediated H2O2 production and reduction-oxidation-based activation of Src and EGFR and was attenuated in Duox1 -/- and Src +/- mice, indicating that IL-33-induced epithelial signaling and subsequent airway responses involve DUOX1/Src-dependent pathways. Collectively, our findings suggest an intricate relationship between DUOX1, Src, and IL-33 signaling in the activation of innate type 2 immune responses to allergens, involving DUOX1-dependent epithelial Src/EGFR activation in initial IL-33 secretion and in subsequent IL-33 signaling through ST2 activation.
Collapse
Affiliation(s)
- Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Caspar Schiffers
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Carolyn R Morris
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Miao-Chong Joy Lin
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Robert A Bauer
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - David E Heppner
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY; and
| | - Nirav Daphtary
- Department of Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Minara Aliyeva
- Department of Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT;
| |
Collapse
|
21
|
Is There An Explanation for How An Irritant Causes A Nonallergic Asthmatic Disorder Such as Reactive Airways Dysfunction Syndrome (RADS)? J Occup Environ Med 2021; 62:e139-e141. [PMID: 31934909 DOI: 10.1097/jom.0000000000001814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Salomon JJ, Albrecht T, Graeber SY, Scheuermann H, Butz S, Schatterny J, Mairbäurl H, Baumann I, Mall MA. Chronic rhinosinusitis with nasal polyps is associated with impaired TMEM16A-mediated epithelial chloride secretion. J Allergy Clin Immunol 2021; 147:2191-2201.e2. [PMID: 33609628 DOI: 10.1016/j.jaci.2021.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/16/2021] [Accepted: 02/12/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is one of the most common chronic disorders with limited therapeutic options. However, the pathogenesis of CRSwNP remains poorly understood. OBJECTIVE We sought to determine the role of abnormalities in nasal epithelial ion transport in primary epithelial cultures and patients with CRSwNP. METHODS We studied epithelial ion transport and transcript levels of the Cl- channels cystic fibrosis transmembrane conductance regulator and transmembrane protein 16A (TMEM16A) in human primary nasal epithelial cultures of patients with CRSwNP and healthy controls. Furthermore, we determined expression levels of proinflammatory cytokines that have been implicated in the regulation of epithelial ion channels (IL-1β, INF-γ, TNF-α, IL-13) and studied effects of the key TH2 signaling molecule IL-13 in CRSwNP and control nasal epithelial cultures. Finally, we measured in vivo nasal potential difference to compare epithelial ion transport in patients with CRSwNP and controls. RESULTS Bioelectric studies demonstrated that Ca2+-activated Cl- secretion was reduced in CRSwNP versus control nasal epithelial cultures. Transcript levels of IL-13 and the Ca2+-activated Cl- channel TMEM16A were increased in CRSwNP cultures. Stimulation with IL-13 increased TMEM16A expression further and restored Ca2+-activated Cl- secretion in CRSwNP cultures. Nasal potential difference measurements demonstrated reduced Ca2+-activated Cl- transport in patients with CRSwNP versus controls. CONCLUSIONS This study demonstrates that TMEM16A-mediated Ca2+-activated Cl- secretion is reduced in primary nasal epithelial cultures and nasal epithelia of patients with CRSwNP. Our data suggest that the Ca2+-activated Cl- channel TMEM16A may be implicated in the pathogenesis and serve as a novel therapeutic target in patients with CRSwNP.
Collapse
Affiliation(s)
- Johanna J Salomon
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Tobias Albrecht
- Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
| | - Simon Y Graeber
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany; Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany; German Centre for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Heike Scheuermann
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Simone Butz
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Jolanthe Schatterny
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Heimo Mairbäurl
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Ingo Baumann
- Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany; Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany; German Centre for Lung Research (DZL), associated partner site, Berlin, Germany.
| |
Collapse
|
23
|
Dekoster K, Decaesteker T, Berghen N, Van den Broucke S, Jonckheere AC, Wouters J, Krouglov A, Lories R, De Langhe E, Hoet P, Verbeken E, Vanoirbeek J, Vande Velde G. Longitudinal micro-computed tomography-derived biomarkers quantify non-resolving lung fibrosis in a silicosis mouse model. Sci Rep 2020; 10:16181. [PMID: 32999350 PMCID: PMC7527558 DOI: 10.1038/s41598-020-73056-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
In spite of many compounds identified as antifibrotic in preclinical studies, pulmonary fibrosis remains a life-threatening condition for which highly effective treatment is still lacking. Towards improving the success-rate of bench-to-bedside translation, we investigated in vivo µCT-derived biomarkers to repeatedly quantify experimental silica-induced pulmonary fibrosis and assessed clinically relevant readouts up to several months after silicosis induction. Mice were oropharyngeally instilled with crystalline silica or saline and longitudinally monitored with respiratory-gated-high-resolution µCT to evaluate disease onset and progress using scan-derived biomarkers. At weeks 1, 5, 9 and 15, we assessed lung function, inflammation and fibrosis in subsets of mice in a cross-sectional manner. Silica-instillation increased the non-aerated lung volume, corresponding to onset and progression of inflammatory and fibrotic processes not resolving with time. Moreover, total lung volume progressively increased with silicosis. The volume of healthy, aerated lung first dropped then increased, corresponding to an acute inflammatory response followed by recovery into lower elevated aerated lung volume. Imaging results were confirmed by a significantly decreased Tiffeneau index, increased neutrophilic inflammation, increased IL-13, MCP-1, MIP-2 and TNF-α concentration in bronchoalveolar lavage fluid, increased collagen content and fibrotic nodules. µCT-derived biomarkers enable longitudinal evaluation of early onset inflammation and non-resolving pulmonary fibrosis as well as lung volumes in a sensitive and non-invasive manner. This approach and model of non-resolving lung fibrosis provides quantitative assessment of disease progression and stabilization over weeks and months, essential towards evaluation of fibrotic disease burden and antifibrotic therapy evaluation in preclinical studies.
Collapse
Affiliation(s)
- Kaat Dekoster
- Department of Imaging and Pathology, Biomedical MRI/MoSAIC, KU Leuven, Leuven, Belgium
| | - Tatjana Decaesteker
- Department of Chronic Diseases, Metabolism and Ageing, Lab of Respiratory Diseases, KU Leuven, Leuven, Belgium
| | - Nathalie Berghen
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Sofie Van den Broucke
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Anne-Charlotte Jonckheere
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Jens Wouters
- Department of Imaging and Pathology, Biomedical MRI/MoSAIC, KU Leuven, Leuven, Belgium
| | - Anton Krouglov
- Department of Imaging and Pathology, Biomedical MRI/MoSAIC, KU Leuven, Leuven, Belgium
| | - Rik Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Ellen De Langhe
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Peter Hoet
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Erik Verbeken
- Department of Imaging and Pathology, Translational Cell and Tissue Research Unit, KU Leuven, Leuven, Belgium
| | - Jeroen Vanoirbeek
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI/MoSAIC, KU Leuven, Leuven, Belgium.
| |
Collapse
|
24
|
Tufvesson E, Stenberg H, Ankerst J, Bjermer L. Type 2 Inflammatory Biomarker Response After Exercise Challenge Testing. J Asthma Allergy 2020; 13:269-274. [PMID: 32904520 PMCID: PMC7455603 DOI: 10.2147/jaa.s258561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/23/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Exercise-induced bronchoconstriction is due to osmotic stimulus of the airway epithelium and leads to a cascade of biomarker release from several inflammatory cells. Several type 2 (T2) mediators have been linked to exercise-induced bronchoconstriction, but the T2 response per se has not been described during exercise. The aim of this study was therefore to investigate T2 biomarkers in plasma and urine from subjects with asthma and healthy controls before and after an exercise challenge. Methods Twenty-two subjects with mild asthma and 18 healthy controls performed an exercise challenge test on a treadmill, and fractional exhaled NO (FeNO) was measured at baseline. Blood and urine samples were collected repeatedly during 60 min after the test and Interleukin-13 (IL-13), thymus and activation-related chemokine (TARC), periostin and leukotrienes were measured. Results Asthmatics and controls showed similar levels of IL-13, TARC, periostin and Cys-LT in plasma at baseline, and there were no differences in baseline levels between subjects with a negative and positive exercise challenge. After exercise, there was an overall increase in interleukin-13 (IL-13) in plasma in all subjects (p<0.001), with a peak at 10 min after the exercise challenge in both the asthmatic and control group. An increase in TARC in plasma was also seen (p<0.001), but only in the control subjects. In contrast, Cys-LT in plasma showed an overall decrease in all subjects (p<0.001), while periostin in plasma did not change. In conjunction with plasma, the level of IL-13 was increased in urine 30 min after the exercise challenge (p=0.002) and decreased again at 60 min (p=0.004). Similarly, leukotriene E4 (LTE4) was increased in urine samples, with a peak at 60 min and most pronounced in asthmatic subjects (p<0.001) but was seen also in controls (p=0.008). Discussion In conclusion, circulating levels of IL-13 are increased after exercise to the same extent in asthmatics and healthy control subjects, which indicates a physiological rather than a pathophysiological response. Also, the levels of TARC and leukotrienes were affected after exercise.
Collapse
Affiliation(s)
- Ellen Tufvesson
- Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Henning Stenberg
- Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jaro Ankerst
- Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Leif Bjermer
- Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
25
|
Consequences of Vitamin A Deficiency: Immunoglobulin Dysregulation, Squamous Cell Metaplasia, Infectious Disease, and Death. Int J Mol Sci 2020; 21:ijms21155570. [PMID: 32759702 PMCID: PMC7432039 DOI: 10.3390/ijms21155570] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Vitamin A is an important regulator of immune protection, but it is often overlooked in studies of infectious disease. Vitamin A binds an array of nuclear receptors (e.g., retinoic acid receptor, peroxisome proliferator-activated receptor, retinoid X receptor) and influences the barrier and immune cells responsible for pathogen control. Children and adults in developed and developing countries are often vitamin A-deficient or insufficient, characteristics associated with poor health outcomes. To gain a better understanding of the protective mechanisms influenced by vitamin A, we examined immune factors and epithelial barriers in vitamin A deficient (VAD) mice, vitamin D deficient (VDD) mice, double deficient (VAD+VDD) mice, and mice on a vitamin-replete diet (controls). Some mice received insults, including intraperitoneal injections with complete and incomplete Freund’s adjuvant (emulsified with PBS alone or with DNA + Fus-1 peptide) or intranasal inoculations with Sendai virus (SeV). Both before and after insults, the VAD and VAD+VDD mice exhibited abnormal serum immunoglobulin isotypes (e.g., elevated IgG2b levels, particularly in males) and cytokine/chemokine patterns (e.g., elevated eotaxin). Even without insult, when the VAD and VAD+VDD mice reached 3–6 months of age, they frequently exhibited opportunistic ascending bacterial urinary tract infections. There were high frequencies of nephropathy (squamous cell hyperplasia of the renal urothelium, renal scarring, and ascending pyelonephritis) and death in the VAD and VAD+VDD mice. When younger VAD mice were infected with SeV, the predominant lesion was squamous cell metaplasia of respiratory epithelium in lungs and bronchioles. Results highlight a critical role for vitamin A in the maintenance of healthy immune responses, epithelial cell integrity, and pathogen control.
Collapse
|
26
|
Abstract
Cell entry of influenza A virus (IAV) was reported to be promoted by epidermal growth factor receptor (EGFR). On the other hand, binding of heparin-binding EGF-like growth factor (HB-EGF) to EGFR leads to internalisation and degradation of the receptors. This study aimed to testify whether or not HB-EGF-induced downregulation of EGFR could attenuate IAV cell entry and subsequently diminish the infection. Immunoblotting and plaque assay revealed that HB-EGF-induced degradation of EGFR led to reduction of viral matrix 1 protein level and suppressed virion production. In addition, immunoblotting and imaging flow cytometric analysis demonstrated that IAV-induced phosphorylation of STAT1 and its localisation to nucleus in the early stage of infection were inhibited by HB-EGF treatment. This suggested the potential of HB-EGF in modulating uncontrolled and exaggerated inflammatory response caused by IAV infection. Together these findings attest the potential of HB-EGF mediated endocytosis and degradation of EGFR as a novel anti-IAV strategy.
Collapse
Affiliation(s)
- K M Lai
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - B H Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Health and Well-being Cluster, Global Asia, in the 21st Century Platform, Monash University Malaysia, Bandar Sunway, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - W L Lee
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
- Health and Well-being Cluster, Global Asia, in the 21st Century Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
27
|
Yin Y, Shelke GV, Lässer C, Brismar H, Lötvall J. Extracellular vesicles from mast cells induce mesenchymal transition in airway epithelial cells. Respir Res 2020; 21:101. [PMID: 32357878 PMCID: PMC7193353 DOI: 10.1186/s12931-020-01346-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Background In the airways, mast cells are present in close vicinity to epithelial cells, and they can interact with each other via multiple factors, including extracellular vesicles (EVs). Mast cell-derived EVs have a large repertoire of cargos, including proteins and RNA, as well as surface DNA. In this study, we hypothesized that these EVs can induce epithelial to mesenchymal transition (EMT) in airway epithelial cells. Methods In this in-vitro study we systematically determined the effects of mast cell-derived EVs on epithelial A549 cells. We determined the changes that are induced by EVs on A549 cells at both the RNA and protein levels. Moreover, we also analyzed the rapid changes in phosphorylation events in EV-recipient A549 cells using a phosphorylated protein microarray. Some of the phosphorylation-associated events associated with EMT were validated using immunoblotting. Results Morphological and transcript analysis of epithelial A549 cells indicated that an EMT-like phenotype was induced by the EVs. Transcript analysis indicated the upregulation of genes involved in EMT, including TWIST1, MMP9, TGFB1, and BMP-7. This was accompanied by downregulation of proteins such as E-cadherin and upregulation of Slug-Snail and matrix metalloproteinases. Additionally, our phosphorylated-protein microarray analysis revealed proteins associated with the EMT cascade that were upregulated after EV treatment. We also found that transforming growth factor beta-1, a well-known EMT inducer, is associated with EVs and mediates the EMT cascade induced in the A549 cells. Conclusion Mast cell-derived EVs mediate the induction of EMT in epithelial cells, and our evidence suggests that this is triggered through the induction of protein phosphorylation cascades.
Collapse
Affiliation(s)
- Yanan Yin
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University, School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Ganesh Vilas Shelke
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,The Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden. .,Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Dept. of Applied Physics, Royal Institute of Technology, PO Box 1031, 17121, Solna, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Davies ER, Perotin JM, Kelly JFC, Djukanovic R, Davies DE, Haitchi HM. Involvement of the epidermal growth factor receptor in IL-13-mediated corticosteroid-resistant airway inflammation. Clin Exp Allergy 2020; 50:672-686. [PMID: 32096290 PMCID: PMC7317751 DOI: 10.1111/cea.13591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Effective treatment for severe asthma is a significant unmet need. While eosinophilic inflammation caused by type 2 cytokines is responsive to corticosteroid and biologic therapies, many severe asthmatics exhibit corticosteroid-unresponsive mixed granulocytic inflammation. OBJECTIVE Here, we tested the hypothesis that the pro-allergic cytokine, IL-13, can drive both corticosteroid-sensitive and corticosteroid-resistant responses. RESULTS By integration of in vivo and in vitro models of IL-13-driven inflammation, we identify a role for the epidermal growth factor receptor (EGFR/ERBB1) as a mediator of corticosteroid-unresponsive inflammation and bronchial hyperresponsiveness driven by IL-13. Topological data analysis using human epithelial transcriptomic data from the U-BIOPRED cohort identified severe asthma groups with features consistent with the presence of IL-13 and EGFR/ERBB activation, with involvement of distinct EGFR ligands. Our data suggest that IL-13 may play a dual role in severe asthma: on the one hand driving pathologic corticosteroid-refractory mixed granulocytic inflammation, but on the other hand underpinning beneficial epithelial repair responses, which may confound responses in clinical trials. CONCLUSION AND CLINICAL RELEVANCE Detailed dissection of those molecular pathways that are downstream of IL-13 and utilize the ERBB receptor and ligand family to drive corticosteroid-refractory inflammation should enhance the development of new treatments that target this sub-phenotype(s) of severe asthma, where there is an unmet need.
Collapse
Affiliation(s)
- Elizabeth R Davies
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jeanne-Marie Perotin
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Joanne F C Kelly
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ratko Djukanovic
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Donna E Davies
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Hans Michael Haitchi
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | | |
Collapse
|
29
|
Yang SJ, Allahverdian S, Saunders ADR, Liu E, Dorscheid DR. IL-13 signaling through IL-13 receptor α2 mediates airway epithelial wound repair. FASEB J 2018; 33:3746-3757. [PMID: 30481486 DOI: 10.1096/fj.201801285r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Asthma is an airway inflammatory disease characterized by epithelial barrier dysfunction and airway remodeling. Interleukin-13 (IL-13) is a pleiotropic cytokine shown to contribute to features of airway remodeling. We have previously demonstrated that IL-13 is an important mediator of normal airway epithelial repair and health. The role of IL-13 signaling via its receptor subunits (IL-13Rα1/IL-4Rα and IL-13Rα2) in airway epithelial repair and restoration of intact barrier function is not well understood and was investigated in this study using in vitro models. The blocking of IL-13 signaling via IL-13Rα2 significantly reduced airway epithelial repair by 24 h post-mechanical wounding in 1HAEo- cells. Expression and release of repair-mediating growth factor, heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF), and subsequent activation of EGF receptor (EGFR) were also significantly reduced in response to wounding when IL-13Rα2 was blocked. Our data support that IL-13 signals via IL-13Rα2 to mediate normal airway epithelial repair via HB-EGF-dependent activation of EGFR. In human donor lung tissues, we observed that airway epithelium of asthmatics expressed significantly decreased levels of IL-13Rα2 and increased levels of IL-13Rα1 compared with nonasthmatics. Dysregulated expression of IL-13 receptor subunits in the airways of asthmatics may thus contribute to the epithelial barrier dysfunction observed in asthma.-Yang, S. J., Allahverdian, S., Saunders, A. D. R., Liu, E., Dorscheid, D. R. IL-13 signaling through IL-13 receptor α2 mediates airway epithelial wound repair.
Collapse
Affiliation(s)
- S Jasemine Yang
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sima Allahverdian
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care, University of British Columbia, Vancouver, British Columbia, Canada
| | - Angela D R Saunders
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emily Liu
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care, University of British Columbia, Vancouver, British Columbia, Canada
| | - Delbert R Dorscheid
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Schagen J, Sly PD, Fantino E. Characterizing well-differentiated culture of primary human nasal epithelial cells for use in wound healing assays. J Transl Med 2018; 98:1478-1486. [PMID: 30089850 DOI: 10.1038/s41374-018-0100-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/18/2022] Open
Abstract
The nasal epithelium is the initial contact between the external environment and the respiratory tract and how it responds to noxious stimuli and repairs epithelial damage is important. Growing airway epithelial cells in culture at air-liquid interface allows for a physiologically relevant model of the human upper airways. The aim of the present study was to characterize human primary nasal epithelial cells grown at the air-liquid interface and establish a model for use in wound healing assays. This study determined the time required for full differentiation of nasal epithelial cells in an air-liquid interface culture to be at least 7 weeks using the standardized B-ALI media. Also, a model was established that studied the response to wounding and the effect of EGFR inhibition on this process. Nasal epithelial cultures from healthy subjects were differentiated at air-liquid interface and manually wounded. Wounds were monitored over time to complete closure using a time lapse imaging microscope with cultures identified to have a rate of wound healing above 2.5%/h independent of initial wound size. EGFR inhibition caused the rate of wound healing to drop a significant 4.6%/h with there being no closure of the wound after 48 h. The robust model established in this study will be essential for studying factors influencing wound healing, including host disease status and environmental exposures in the future.
Collapse
Affiliation(s)
- Johanna Schagen
- Children's Lung, Environment and Asthma Research Team, Centre for Children's Health Research, The University of Queensland, Brisbane, Australia
| | - Peter D Sly
- Children's Lung, Environment and Asthma Research Team, Centre for Children's Health Research, The University of Queensland, Brisbane, Australia.
| | - Emmanuelle Fantino
- Children's Lung, Environment and Asthma Research Team, Centre for Children's Health Research, The University of Queensland, Brisbane, Australia
| |
Collapse
|
31
|
Dao DT, Anez-Bustillos L, Adam RM, Puder M, Bielenberg DR. Heparin-Binding Epidermal Growth Factor-Like Growth Factor as a Critical Mediator of Tissue Repair and Regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2446-2456. [PMID: 30142332 PMCID: PMC6207098 DOI: 10.1016/j.ajpath.2018.07.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/21/2018] [Accepted: 07/13/2018] [Indexed: 11/20/2022]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the EGF family. It contains an EGF-like domain as well as a heparin-binding domain that allows for interactions with heparin and cell-surface heparan sulfate. Soluble mature HB-EGF, a ligand of human epidermal growth factor receptors 1 and 4, is cleaved from the membrane-associated pro-HB-EGF by matrix metalloproteinase or a disintegrin and metalloproteinase in a process called ectodomain shedding. Signaling through human epidermal growth factor receptors 1 and 4 results in a variety of effects, including cellular proliferation, migration, adhesion, and differentiation. HB-EGF levels increase in response to different forms of injuries as well as stimuli, such as lysophosphatidic acid, retinoic acid, and 17β-estradiol. Because it is widely expressed in many organs, HB-EGF plays a critical role in tissue repair and regeneration throughout the body. It promotes cutaneous wound healing, hepatocyte proliferation after partial hepatectomy, intestinal anastomosis strength, alveolar regeneration after pneumonectomy, neurogenesis after ischemic injury, bladder wall thickening in response to urinary tract obstruction, and protection against ischemia/reperfusion injury to many cell types. Additionally, innovative strategies to deliver HB-EGF to sites of organ injury or to increase the endogenous levels of shed HB-EGF have been attempted with promising results. Harnessing the reparatory properties of HB-EGF in the clinical setting, therefore, may produce therapies that augment the treatment of various organ injuries.
Collapse
Affiliation(s)
- Duy T Dao
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lorenzo Anez-Bustillos
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rosalyn M Adam
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Urological Diseases Research Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark Puder
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Diane R Bielenberg
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
32
|
Liu J, Li YY, Andiappan AK, Yan Y, Tan KS, Ong HH, Thong KT, Ong YK, Yu FG, Low HB, Zhang YL, Shi L, Wang DY. Role of IL-13Rα2 in modulating IL-13-induced MUC5AC and ciliary changes in healthy and CRSwNP mucosa. Allergy 2018; 73:1673-1685. [PMID: 29405354 DOI: 10.1111/all.13424] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND The IL-13 receptor α2 (IL-13Rα2) is a receptor for IL-13 which has conflicting roles in mediating IL-13 responses in the lower airway, with little known about its impact on upper airway diseases. We sought to investigate the expression of IL-13 receptors, IL-13Rα1 and IL-13Rα2, in chronically inflamed nasal epithelium, and explore IL-13-induced signaling pathways in an in vitro model of human nasal epithelial cells (hNECs). METHODS The protein and mRNA expression levels of IL-13 and its receptors in nasal biopsies of patients with nasal polyps (NP) and healthy controls were evaluated. We investigated goblet cell stimulation with mucus hypersecretion induced by IL-13 (10 ng/mL, 72 hours) treatment in hNECs using a pseudostratified epithelium in air-liquid interface (ALI) culture. RESULTS There were significant increases in IL-13, IL-13Rα1, and IL-13Rα2 mRNA and protein levels in NP epithelium with healthy controls as baseline. MUC5AC mRNA positively correlated with IL-13Rα2 (r = .5886, P = .002) but not with IL-13Rα1 in primary hNECs. IL-13 treatment resulted in a significant increase in mRNA and protein levels of IL-13Rα2 only in hNECs. IL-13 treatment induced an activation of extracellular signal-regulated kinases (ERK)1/2 and an upregulation of C-JUN, where the IL-13-induced effects on hNECs could be attenuated by ERK1/2 inhibitor (50 μmol/L) or dexamethasone (10-4 -10-7 mol/L) treatment. CONCLUSIONS IL-13Rα2 has a potential role in IL-13-induced MUC5AC and ciliary changes through ERK1/2 signal pathway in the nasal epithelium. IL-13Rα2 may contribute to airway inflammation and aberrant remodeling which are the main pathological features of CRSwNP.
Collapse
Affiliation(s)
- J. Liu
- Department of Otolaryngology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
| | - Y. Y. Li
- Department of Biomedical Engineering; National University of Singapore; Singapore Singapore
| | - A. K. Andiappan
- Singapore Immunology Network (SIgN); Agency for Science, Technology and Research (A*STAR); Singapore Singapore
| | - Y. Yan
- Department of Otolaryngology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
| | - K. S. Tan
- Department of Otolaryngology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
| | - H. H. Ong
- Department of Otolaryngology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
| | - K. T. Thong
- Department of Otolaryngology-Head and Neck Surgery; National University Health System (NUHS); Singapore Singapore
| | - Y. K. Ong
- Department of Otolaryngology-Head and Neck Surgery; National University Health System (NUHS); Singapore Singapore
| | - F. G. Yu
- Department of Otolaryngology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
| | - H. B. Low
- Department of Microbiology and Immunology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
| | - Y. L. Zhang
- Department of Microbiology and Immunology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
| | - L. Shi
- Department of Otolaryngology; The Second Hospital of Shandong University; Jinan China
| | - D. Y. Wang
- Department of Otolaryngology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
| |
Collapse
|
33
|
Anti-inflammatory effects of the phosphodiesterase type 4 inhibitor CHF6001 on bronchoalveolar lavage lymphocytes from asthma patients. Cytokine 2018; 113:68-73. [PMID: 29934047 DOI: 10.1016/j.cyto.2018.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/09/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Lymphocytes play a key role in asthma pathophysiology, secreting various cytokines involved in chronic inflammation. CHF6001 is a highly potent and selective phosphodiesterase type 4 (PDE4) inhibitor designed for inhaled administration and has been shown to reduce the late asthmatic response. However, the effect of PDE4 inhibition on the different cytokines produced by lung lymphocytes from asthma patients has not been examined. METHODS This study investigated the anti-inflammatory effects of CHF6001 and the corticosteroid, 17-BMP, on T-cell receptor (TCR) stimulated Th1, Th2 and Th17 cytokine release from bronchoalveolar lavage (BAL) cells from mild (n = 12) and moderate asthma (n = 12) patients. RESULTS CHF6001 inhibited IFNγ, IL-2 and IL-17, but not IL-13, secretion from both mild and moderate asthma patient BAL cells; there was a greater effect on IFNγ and IL-2 than IL-17. The corticosteroid inhibited all four cytokines from both patient groups, but was less effective in cells from more severe patients. CHF6001 had a greater inhibitory effect on IFNγ and IL-2 than 17-BMP. CONCLUSION The PDE4 inhibitor CHF6001 had a greater effect on Th1 cytokines from TCR-stimulated BAL cells than corticosteroid. This pharmacological effect suggests the therapeutic potential for PDE4 inhibitors to be used in the subset of more severe asthma patients with increased airway levels of IFNγ.
Collapse
|
34
|
Chand HS, Harris JF, Tesfaigzi Y. IL-13 in LPS-Induced Inflammation Causes Bcl-2 Expression to Sustain Hyperplastic Mucous cells. Sci Rep 2018; 8:436. [PMID: 29323189 PMCID: PMC5765145 DOI: 10.1038/s41598-017-18884-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 12/19/2017] [Indexed: 12/23/2022] Open
Abstract
Exposure to lipopolysaccharides (LPS) causes extensive neutrophilic inflammation in the airways followed by mucous cell hyperplasia (MCH) that is sustained by the anti-apoptotic protein, Bcl-2. To identify inflammatory factor(s) that are responsible for Bcl-2 expression, we established an organ culture system consisting of airway epithelial tissue from the rat nasal midseptum. The highest Muc5AC and Bcl-2 expression was observed when organ cultures were treated with brochoalveolar lavage (BAL) fluid harvested from rats 10 h post LPS instillation. Further, because BAL harvested from rats depleted of polymorphonuclear cells compared to controls showed increased Bcl-2 expression, analyses of cytokine levels in lavages identified IL-13 as an inducer of Bcl-2 expression. Ectopic IL-13 treatment of differentiated airway epithelial cells increased Bcl-2 and MUC5AC expression in the basal and apical regions of the cells, respectively. When Bcl-2 was blocked using shRNA or a small molecule inhibitor, ABT-263, mucous cell numbers were reduced due to increased apoptosis that disrupted the interaction of Bcl-2 with the pro-apoptotic protein, Bik. Furthermore, intranasal instillation of ABT-263 reduced the LPS-induced MCH in bik +/+ but not bik -/- mice, suggesting that Bik mediated apoptosis in hyperplastic mucous cells. Therefore, blocking Bcl-2 function could be useful in reducing IL-13 induced mucous hypersecretion.
Collapse
Affiliation(s)
- Hitendra S Chand
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Jennifer F Harris
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Yohannes Tesfaigzi
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA.
| |
Collapse
|
35
|
Reid AT, Veerati PC, Gosens R, Bartlett NW, Wark PA, Grainge CL, Stick SM, Kicic A, Moheimani F, Hansbro PM, Knight DA. Persistent induction of goblet cell differentiation in the airways: Therapeutic approaches. Pharmacol Ther 2017; 185:155-169. [PMID: 29287707 DOI: 10.1016/j.pharmthera.2017.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dysregulated induction of goblet cell differentiation results in excessive production and retention of mucus and is a common feature of several chronic airways diseases. To date, therapeutic strategies to reduce mucus accumulation have focused primarily on altering the properties of the mucus itself, or have aimed to limit the production of mucus-stimulating cytokines. Here we review the current knowledge of key molecular pathways that are dysregulated during persistent goblet cell differentiation and highlights both pre-existing and novel therapeutic strategies to combat this pathology.
Collapse
Affiliation(s)
- Andrew T Reid
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.
| | - Punnam Chander Veerati
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathan W Bartlett
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Peter A Wark
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Chris L Grainge
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Stephen M Stick
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Anthony Kicic
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia; Occupation and Environment, School of Public Health, Curtin University, Bentley 6102, Western Australia, Australia
| | - Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
36
|
Pascoe CD, Obeidat M, Arsenault BA, Nie Y, Warner S, Stefanowicz D, Wadsworth SJ, Hirota JA, Jasemine Yang S, Dorscheid DR, Carlsten C, Hackett TL, Seow CY, Paré PD. Gene expression analysis in asthma using a targeted multiplex array. BMC Pulm Med 2017; 17:189. [PMID: 29228930 PMCID: PMC5725935 DOI: 10.1186/s12890-017-0545-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/30/2017] [Indexed: 02/08/2023] Open
Abstract
Background Gene expression changes in the structural cells of the airways are thought to play a role in the development of asthma and airway hyperresponsiveness. This includes changes to smooth muscle contractile machinery and epithelial barrier integrity genes. We used a targeted gene expression arrays to identify changes in the expression and co-expression of genes important in asthma pathology. Methods RNA was isolated from the airways of donor lungs from 12 patients with asthma (8 fatal) and 12 non-asthmatics controls and analyzed using a multiplexed, hypothesis-directed platform to detect differences in gene expression. Genes were grouped according to their role in airway dysfunction: airway smooth muscle contraction, cytoskeleton structure and regulation, epithelial barrier function, innate and adaptive immunity, fibrosis and remodeling, and epigenetics. Results Differential gene expression and gene co-expression analyses were used to identify disease associated changes in the airways of asthmatics. There was significantly decreased abundance of integrin beta 6 and Ras-Related C3 Botulinum Toxin Substrate 1 (RAC1) in the airways of asthmatics, genes which are known to play an important role in barrier function. Significantly elevated levels of Collagen Type 1 Alpha 1 (COL1A1) and COL3A1 which have been shown to modulate cell proliferation and inflammation, were found in asthmatic airways. Additionally, we identified patterns of differentially co-expressed genes related to pathways involved in virus recognition and regulation of interferon production. 7 of 8 pairs of differentially co-expressed genes were found to contain CCCTC-binding factor (CTCF) motifs in their upstream promoters. Conclusions Changes in the abundance of genes involved in cell-cell and cell-matrix interactions could play an important role in regulating inflammation and remodeling in asthma. Additionally, our results suggest that alterations to the binding site of the transcriptional regulator CTCF could drive changes in gene expression in asthmatic airways. Several asthma susceptibility loci are known to contain CTCF motifs and so understanding the role of this transcription factor may expand our understanding of asthma pathophysiology and therapeutic options. Electronic supplementary material The online version of this article (10.1186/s12890-017-0545-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher D Pascoe
- UBC Institute for Heart Lung Health, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada. .,University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada. .,Children's Hospital Research Institute of Manitoba, 513-715 McDermot Avenue, Winnipeg, MB, R3E 3P4, Canada.
| | - Ma'en Obeidat
- UBC Institute for Heart Lung Health, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada.,University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada
| | - Bryna A Arsenault
- UBC Institute for Heart Lung Health, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada.,University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada
| | - Yunlong Nie
- UBC Institute for Heart Lung Health, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada.,University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada
| | - Stephanie Warner
- UBC Institute for Heart Lung Health, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada.,University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada
| | - Dorota Stefanowicz
- UBC Institute for Heart Lung Health, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada.,University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada
| | - Samuel J Wadsworth
- UBC Institute for Heart Lung Health, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada.,University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada
| | - Jeremy A Hirota
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - S Jasemine Yang
- UBC Institute for Heart Lung Health, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada.,University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada
| | - Delbert R Dorscheid
- UBC Institute for Heart Lung Health, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada.,University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada
| | - Chris Carlsten
- UBC Institute for Heart Lung Health, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada.,UBC Department of Medicine, Division of Respirology, University of British Columbia, Vancouver, BC, Canada.,UBC Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, Gordon & Leslie Diamond Health Care Centre, Vancouver General Hospital, 2775 Laurel Street, 7th floor, Vancouver, BC, Canada.,University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada.,UBC School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Tillie L Hackett
- UBC Institute for Heart Lung Health, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada.,University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada.,UBC Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Chun Y Seow
- UBC Institute for Heart Lung Health, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada.,University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada.,UBC Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Peter D Paré
- UBC Institute for Heart Lung Health, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada.,UBC Department of Medicine, Division of Respirology, University of British Columbia, Vancouver, BC, Canada.,University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, Canada
| |
Collapse
|
37
|
Newman JP, Wang GY, Arima K, Guan SP, Waters MR, Cavenee WK, Pan E, Aliwarga E, Chong ST, Kok CYL, Endaya BB, Habib AA, Horibe T, Ng WH, Ho IAW, Hui KM, Kordula T, Lam PYP. Interleukin-13 receptor alpha 2 cooperates with EGFRvIII signaling to promote glioblastoma multiforme. Nat Commun 2017; 8:1913. [PMID: 29203859 PMCID: PMC5715073 DOI: 10.1038/s41467-017-01392-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/14/2017] [Indexed: 01/09/2023] Open
Abstract
The interleukin-13 receptor alpha2 (IL-13Rα2) is a cancer-associated receptor overexpressed in human glioblastoma multiforme (GBM). This receptor is undetectable in normal brain which makes it a highly suitable target for diagnostic and therapeutic purposes. However, the pathological role of this receptor in GBM remains to be established. Here we report that IL-13Rα2 alone induces invasiveness of human GBM cells without affecting their proliferation. In contrast, in the presence of the mutant EGFR (EGFRvIII), IL-13Rα2 promotes GBM cell proliferation in vitro and in vivo. Mechanistically, the cytoplasmic domain of IL-13Rα2 specifically binds to EGFRvIII, and this binding upregulates the tyrosine kinase activity of EGFRvIII and activates the RAS/RAF/MEK/ERK and STAT3 pathways. Our findings support the "To Go or To Grow" hypothesis whereby IL-13Rα2 serves as a molecular switch from invasion to proliferation, and suggest that targeting both receptors with STAT3 signaling inhibitor might be a therapeutic approach for the treatment of GBM.
Collapse
Affiliation(s)
- Jennifer P Newman
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, 169610, Singapore
| | - Grace Y Wang
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, 169610, Singapore.,Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Kazuhiko Arima
- Department of Biomolecular Sciences, Saga Medical School, Saga, 840-8502, Japan
| | - Shou P Guan
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, 169610, Singapore
| | - Michael R Waters
- School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | | | - Edward Pan
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Edita Aliwarga
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, 169610, Singapore
| | - Siao T Chong
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, 169610, Singapore
| | - Catherine Y L Kok
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, 169610, Singapore
| | - Berwini B Endaya
- School of Medical Science, Griffith Health Institute, Griffith University, Southport, 4222, Queensland, Australia
| | - Amyn A Habib
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center and the North Texas VA Medical Center, Dallas, 75390, USA
| | - Tomohisa Horibe
- Department of Pharmacoepidemiology, Kyoto University School of Public Health, Kyoto, 606-8501, Japan
| | - Wai H Ng
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Ivy A W Ho
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, 169610, Singapore.,National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Kam M Hui
- Bek Chai Heah Laboratory of Cancer Genomics, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore.,Cancer and Stem Cells Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Dr, Singapore, 117596, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Proteos, 61 Biopolis Dr, Singapore, 138673, Singapore
| | - Tomasz Kordula
- School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Paula Y P Lam
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, 169610, Singapore. .,Cancer and Stem Cells Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore, 117593, Singapore.
| |
Collapse
|
38
|
Asosingh K, Aronica MA. Eosinophils: Ancient Cells with New Roles in Chronic Lung Inflammation. Am J Respir Crit Care Med 2017; 195:1281-1282. [DOI: 10.1164/rccm.201612-2435ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Kewal Asosingh
- Department of Pathobiologyand
- Respiratory InstituteCleveland ClinicCleveland Ohio
| | - Mark A. Aronica
- Department of Pathobiologyand
- Respiratory InstituteCleveland ClinicCleveland Ohio
| |
Collapse
|
39
|
Paraquat poisoning induced pulmonary epithelial mesenchymal transition through Notch1 pathway. Sci Rep 2017; 7:924. [PMID: 28424456 PMCID: PMC5430447 DOI: 10.1038/s41598-017-01069-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Progressive pulmonary fibrosis is the most characteristic feature of subacute PQ poisoning. Epithelial-to-mesenchymal transition (EMT) is reported to be involved in the pulmonary fibrosis after PQ exposure. Recent evidence suggested Notch signaling is required for EMT. In this study, we investigated whether Notch1 and TGF-β1/Smad3 signaling was involved in EMT caused by PQ. It is demonstrated that A549 cells underwent EMT after treated with PQ at dose of 300 μmol/L for 6 days, charactered by increasing expression of mesenchymal marker α-SMA and decreasing expression of epithelial marker E-cadherin. We found that there was an apparent increased expression of Notch1 and jagged-1 in PQ induced EMT process. EMT could be enhanced by Jagged-1 ligand of Notch1, and be blocked by DAPT, a γ-secretase inhibitor. Our data also showed that the expression of TGF-β1/Smad3 increased after Notch1 is elevated in EMT caused by PQ. Jagged-1 significantly induced SMA expression, and this induction was completely inhibited by SB431542 in A549 cells. In conclusion, we demonstrated that Notch1 pathway was important in EMT induced by PQ, and TGF-β1/Smad3 signaling partly plays a role as the downstream of Notch1.
Collapse
|
40
|
Muallem G, Wagage S, Sun Y, DeLong JH, Valenzuela A, Christian DA, Harms Pritchard G, Fang Q, Buza EL, Jain D, Elloso MM, López CB, Hunter CA. IL-27 Limits Type 2 Immunopathology Following Parainfluenza Virus Infection. PLoS Pathog 2017; 13:e1006173. [PMID: 28129374 PMCID: PMC5305264 DOI: 10.1371/journal.ppat.1006173] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 02/13/2017] [Accepted: 01/08/2017] [Indexed: 11/25/2022] Open
Abstract
Respiratory paramyxoviruses are important causes of morbidity and mortality, particularly of infants and the elderly. In humans, a T helper (Th)2-biased immune response to these infections is associated with increased disease severity; however, little is known about the endogenous regulators of these responses that may be manipulated to ameliorate pathology. IL-27, a cytokine that regulates Th2 responses, is produced in the lungs during parainfluenza infection, but its role in disease pathogenesis is unknown. To determine whether IL-27 limits the development of pathogenic Th2 responses during paramyxovirus infection, IL-27-deficient or control mice were infected with the murine parainfluenza virus Sendai virus (SeV). Infected IL-27-deficient mice experienced increased weight loss, more severe lung lesions, and decreased survival compared to controls. IL-27 deficiency led to increased pulmonary eosinophils, alternatively activated macrophages (AAMs), and the emergence of Th2 responses. In control mice, IL-27 induced a population of IFN-γ+/IL-10+ CD4+ T cells that was replaced by IFN-γ+/IL-17+ and IFN-γ+/IL-13+ CD4+ T cells in IL-27-deficient mice. CD4+ T cell depletion in IL-27-deficient mice attenuated weight loss and decreased AAMs. Elimination of STAT6 signaling in IL-27-deficient mice reduced Th2 responses and decreased disease severity. These data indicate that endogenous IL-27 limits pathology during parainfluenza virus infection by regulating the quality of CD4+ T cell responses and therefore may have therapeutic potential in paramyxovirus infections.
Collapse
Affiliation(s)
- Gaia Muallem
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Nephrology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sagie Wagage
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yan Sun
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jonathan H. DeLong
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alex Valenzuela
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David A. Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gretchen Harms Pritchard
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Qun Fang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth L. Buza
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Deepika Jain
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - M. Merle Elloso
- Janssen Research & Development, LLC, Immunology Discovery Research, Spring House, Pennsylvania, United States of America
| | - Carolina B. López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
41
|
Habibovic A, Hristova M, Heppner DE, Danyal K, Ather JL, Janssen-Heininger YM, Irvin CG, Poynter ME, Lundblad LK, Dixon AE, Geiszt M, van der Vliet A. DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma. JCI Insight 2016; 1:e88811. [PMID: 27812543 DOI: 10.1172/jci.insight.88811] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation with mucous metaplasia and airway remodeling are hallmarks of allergic asthma, and these outcomes have been associated with enhanced expression and activation of EGFR signaling. Here, we demonstrate enhanced expression of EGFR ligands such as amphiregulin as well as constitutive EGFR activation in cultured nasal epithelial cells from asthmatic subjects compared with nonasthmatic controls and in lung tissues of mice during house dust mite-induced (HDM-induced) allergic inflammation. EGFR activation was associated with cysteine oxidation within EGFR and the nonreceptor tyrosine kinase Src, and both amphiregulin production and oxidative EGFR activation were diminished by pharmacologic or genetic inhibition of the epithelial NADPH oxidase dual oxidase 1 (DUOX1). DUOX1 deficiency also attenuated several EGFR-dependent features of HDM-induced allergic airway inflammation, including neutrophilic inflammation, type 2 cytokine production (IL-33, IL-13), mucous metaplasia, subepithelial fibrosis, and central airway resistance. Moreover, targeted inhibition of airway DUOX1 in mice with previously established HDM-induced allergic inflammation, by intratracheal administration of DUOX1-targeted siRNA or pharmacological NADPH oxidase inhibitors, reversed most of these outcomes. Our findings indicate an important function for DUOX1 in allergic inflammation related to persistent EGFR activation and suggest that DUOX1 targeting may represent an attractive strategy in asthma management.
Collapse
Affiliation(s)
| | | | | | | | - Jennifer L Ather
- Department of Medicine, Vermont Lung Center, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont, USA
| | | | - Charles G Irvin
- Department of Medicine, Vermont Lung Center, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Matthew E Poynter
- Department of Medicine, Vermont Lung Center, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Lennart K Lundblad
- Department of Medicine, Vermont Lung Center, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Anne E Dixon
- Department of Medicine, Vermont Lung Center, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Miklos Geiszt
- Department of Physiology and "Lendület" Peroxidase Enzyme Research Group, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
42
|
Dalessandri T, Crawford G, Hayes M, Castro Seoane R, Strid J. IL-13 from intraepithelial lymphocytes regulates tissue homeostasis and protects against carcinogenesis in the skin. Nat Commun 2016; 7:12080. [PMID: 27357235 PMCID: PMC4931319 DOI: 10.1038/ncomms12080] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/26/2016] [Indexed: 12/20/2022] Open
Abstract
The skin is under constant renewal and exposure to environmental challenges. How homeostasis is maintained alongside protective mechanisms against damage is unclear. Among the basal epithelial cells (ECs) is a population of resident intraepithelial lymphocytes (IELs) that provide host-protective immune surveillance. Here we show that IELs cross-communicate with ECs via the production of IL-13. Skin ECs are activated by IEL-derived IL-13, enabling a canonical EC stress response. In the absence of IL-13, or canonical IEL, the skin has decreased ability to repair its barrier and increased susceptibility to cutaneous carcinogenesis. IL-13 controls the rate of EC movement through the epidermis, which might explain the importance of IL-13 for epidermal integrity and its suppressive effect on skin carcinogenesis. These findings show that IL-13 acts as a molecular bridge between IELs and ECs, and reveal a critical host-defensive role for type-2 immunity in regulating EC tissue homeostasis and carcinogenesis.
Collapse
Affiliation(s)
- Tim Dalessandri
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Greg Crawford
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Mark Hayes
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Rocio Castro Seoane
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Jessica Strid
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|
43
|
May RD, Fung M. Strategies targeting the IL-4/IL-13 axes in disease. Cytokine 2016; 75:89-116. [PMID: 26255210 DOI: 10.1016/j.cyto.2015.05.018] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023]
Abstract
IL-4 and IL-13 are pleiotropic Th2 cytokines produced by a wide variety of different cell types and responsible for a broad range of biology and functions. Physiologically, Th2 cytokines are known to mediate host defense against parasites but they can also trigger disease if their activities are dysregulated. In this review we discuss the rationale for targeting the IL-4/IL-13 axes in asthma, atopic dermatitis, allergic rhinitis, COPD, cancer, inflammatory bowel disease, autoimmune disease and fibrotic disease as well as evaluating the associated clinical data derived from blocking IL-4, IL-13 or IL-4 and IL-13 together.
Collapse
|
44
|
Xu W, Ghosh S, Comhair SAA, Asosingh K, Janocha AJ, Mavrakis DA, Bennett CD, Gruca LL, Graham BB, Queisser KA, Kao CC, Wedes SH, Petrich JM, Tuder RM, Kalhan SC, Erzurum SC. Increased mitochondrial arginine metabolism supports bioenergetics in asthma. J Clin Invest 2016; 126:2465-81. [PMID: 27214549 DOI: 10.1172/jci82925] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 04/05/2016] [Indexed: 12/16/2022] Open
Abstract
High levels of arginine metabolizing enzymes, including inducible nitric oxide synthase (iNOS) and arginase (ARG), are typical in asthmatic airway epithelium; however, little is known about the metabolic effects of enhanced arginine flux in asthma. Here, we demonstrated that increased metabolism sustains arginine availability in asthmatic airway epithelium with consequences for bioenergetics and inflammation. Expression of iNOS, ARG2, arginine synthetic enzymes, and mitochondrial respiratory complexes III and IV was elevated in asthmatic lung samples compared with healthy controls. ARG2 overexpression in a human bronchial epithelial cell line accelerated oxidative bioenergetic pathways and suppressed hypoxia-inducible factors (HIFs) and phosphorylation of the signal transducer for atopic Th2 inflammation STAT6 (pSTAT6), both of which are implicated in asthma etiology. Arg2-deficient mice had lower mitochondrial membrane potential and greater HIF-2α than WT animals. In an allergen-induced asthma model, mice lacking Arg2 had greater Th2 inflammation than WT mice, as indicated by higher levels of pSTAT6, IL-13, IL-17, eotaxin, and eosinophils and more mucus metaplasia. Bone marrow transplants from Arg2-deficient mice did not affect airway inflammation in recipient mice, supporting resident lung cells as the drivers of elevated Th2 inflammation. These data demonstrate that arginine flux preserves cellular respiration and suppresses pathological signaling events that promote inflammation in asthma.
Collapse
|
45
|
Ingram JL, Slade D, Church TD, Francisco D, Heck K, Sigmon RW, Ghio M, Murillo A, Firszt R, Lugogo NL, Que L, Sunday ME, Kraft M. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13-Suppressed Elastin in Airway Fibroblasts in Asthma. Am J Respir Cell Mol Biol 2016; 54:41-50. [PMID: 26074138 DOI: 10.1165/rcmb.2014-0290oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert's resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13-induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13-induced suppression of ELN expression in airway fibroblasts.
Collapse
Affiliation(s)
| | | | | | | | - Karissa Heck
- 3 Pathology, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | | | | - Mary E Sunday
- Departments of 1 Medicine.,3 Pathology, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
46
|
Abstract
Airway hyperresponsiveness (AHR) is a defining characteristic of asthma that refers to the capacity of the airways to undergo exaggerated narrowing in response to stimuli that do not result in comparable degrees of airway narrowing in healthy subjects. Airway smooth muscle (ASM) contraction mediates airway narrowing, but it remains uncertain as to whether the smooth muscle is intrinsically altered in asthmatic subjects or is responding abnormally as a result of the milieu in which it sits. ASM in the trachea or major bronchi does not differ in its contractile characteristics in asthmatics, but the more pertinent peripheral airways await complete exploration. The mass of ASM is increased in many but not all asthmatics and therefore cannot be a unifying hypothesis for AHR, although when increased in mass it may contribute to AHR. The inability of a deep breath to reverse or prevent bronchial narrowing in asthma may reflect an intrinsic difference in the mechanisms that lead to softening of contracted ASM when subjected to stretch. Cytokines such as interleukin-13 and tumor necrosis factor-α promote a more contractile ASM phenotype. The composition and increased stiffness of the matrix in which ASM is embedded promotes a more proliferative and pro-inflammatory ASM phenotype, but the expected dedifferentiation and loss of contractility have not been shown. Airway epithelium may drive ASM proliferation and/or molecular remodeling in ways that may lead to AHR. In conclusion, AHR is likely multifactorial in origin, reflecting the plasticity of ASM properties in the inflammatory environment of the asthmatic airway.
Collapse
Affiliation(s)
- Anne-Marie Lauzon
- Meakins-Christie Laboratories, McGill University Health Center Research Institute, Montreal, QC, Canada; Department of Medicine, McGill University, Montreal, QC, Canada
| | - James G Martin
- Meakins-Christie Laboratories, McGill University Health Center Research Institute, Montreal, QC, Canada; Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
47
|
Strid J, McLean WI, Irvine AD. Too Much, Too Little or Just Enough: A Goldilocks Effect for IL-13 and Skin Barrier Regulation? J Invest Dermatol 2016; 136:561-564. [DOI: 10.1016/j.jid.2015.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Chung HL, Lee EJ, Park HJ, Lee KH. Increased epidermal growth factor in nasopharyngeal aspirates from infants with recurrent wheeze. Pediatr Pulmonol 2015; 50:841-7. [PMID: 25044265 DOI: 10.1002/ppul.23083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 05/27/2014] [Indexed: 11/08/2022]
Abstract
Airway remodeling is known to be a consequence of repeated injury and thought to be involved in early stage of asthma. We aimed to investigate the mediators associated with airway remodeling in recurrent early wheezers. Thirty-three infants, aged 2 years or less, admitted with exacerbation of wheezing were enrolled. All of them had experienced three or more episodes of wheezing before admission. They were categorized into two groups: those who had been hospitalized two or more times for severe wheezing (N = 19) and those who had only once or never been hospitalized (N = 14). Epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)-β1 levels in nasopharyngeal aspirates (NPA) collected on admission were measured. The difference between two patients groups divided based on their hospitalization history was assessed. We also examined these mediators in older asthmatic children (N = 15) admitted with exacerbation and their relationship with lung function parameters measured after stabilization. NPA EGF levels were significantly increased in recurrent early wheezers compared to controls. EGF, VEGF, and TGF-β1 levels were significantly higher in those with a previous history of multiple hospitalizations than in those without. In older asthmatic children, EGF levels were related with age and duration of asthma, but showed an inverse correlation with forced expiratory volume in 1 sec and forced expiratory flow between 25% and 75% of vital capacity. Our study shows that there might be significant damage during exacerbation in wheezy infants as levels of the mediators, EGF, VEGF, and TGF-β1 were higher in those who had been frequently hospitalized. It seems to suggest that those infants with severe recurrent wheezing might have chronic airway obstruction.
Collapse
Affiliation(s)
- Hai Lee Chung
- Department of Pediatrics, School of Medicine, Catholic University of Taegu, Taegu, Korea
| | - Eun Joo Lee
- Department of Pediatrics, School of Medicine, Catholic University of Taegu, Taegu, Korea
| | - Hye Jin Park
- Department of Pediatrics, School of Medicine, Catholic University of Taegu, Taegu, Korea
| | - Kye Hyang Lee
- Department of Pediatrics, School of Medicine, Catholic University of Taegu, Taegu, Korea
| |
Collapse
|
49
|
Allergens and the airway epithelium response: gateway to allergic sensitization. J Allergy Clin Immunol 2015; 134:499-507. [PMID: 25171864 DOI: 10.1016/j.jaci.2014.06.036] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/28/2014] [Accepted: 06/20/2014] [Indexed: 01/15/2023]
Abstract
Allergic sensitization to inhaled antigens is common but poorly understood. Although lung epithelial cells were initially merely regarded as a passive barrier impeding allergen penetrance, we now realize that they recognize allergens through expression of pattern recognition receptors and mount an innate immune response driven by activation of nuclear factor κB. On allergen recognition, epithelial cells release cytokines, such as IL-1, IL-25, IL-33, thymic stromal lymphopoietin, and GM-CSF, and endogenous danger signals, such as high-mobility group box 1, uric acid, and ATP, that activate the dendritic cell network and other innate immune cells, such as basophils and type 2 innate lymphoid cells. Different allergens stimulate different aspects of this general scheme, and common environmental risk factors for sensitization, such as cigarette smoke and diesel particle exposure, do so as well. All of this is influenced by genetic polymorphisms affecting epithelial pattern recognition, barrier function, and cytokine production. Therefore, epithelial cells are crucial in determining the outcome of allergen inhalation.
Collapse
|
50
|
Itoigawa Y, Harada N, Harada S, Katsura Y, Makino F, Ito J, Nurwidya F, Kato M, Takahashi F, Atsuta R, Takahashi K. TWEAK enhances TGF-β-induced epithelial-mesenchymal transition in human bronchial epithelial cells. Respir Res 2015; 16:48. [PMID: 25890309 PMCID: PMC4397832 DOI: 10.1186/s12931-015-0207-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 03/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic airway inflammatory disorders, such as asthma, are characterized by airway inflammation and remodeling. Chronic inflammation and damage to the airway epithelium cause airway remodeling, which is associated with improper epithelial repair, and is characterized by elevated expression of transforming growth factor-β (TGF-β). Epithelial-mesenchymal transition (EMT) is an important mechanism during embryonic development and tissue remodeling whereby epithelial cells gain the capacity to increase motility by down-regulation of epithelial markers and up-regulation of mesenchymal markers. TGF-β is a central inducer of EMT, and TGF-β-induced EMT is enhanced by pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-1β. We investigated whether the pro-inflammatory cytokine TWEAK (TNF-like weak inducer of apoptosis) enhanced TGF-β1-induced EMT in the human bronchial epithelial cell line BEAS-2B. METHODS Quantitative RT-PCR and western blotting were used to define alterations in epithelial and mesenchymal marker expression in BEAS-2B cells. The cells were assessed for 48 h after stimulation with TGF-β1 alone or in combination with TWEAK. RESULTS TGF-β1 induced spindle-like morphology and loss of cell contact, and reduced the expression of epithelial marker E-cadherin and increased the expression of mesenchymal markers N-cadherin and vimentin. Our data, for the first time, show that TWEAK reduced the expression of E-cadherin, and that co-treatment with TGF-β1 and TWEAK enhanced the TGF-β1-induced features of EMT. Moreover, hyaluronan synthase 2 expression was up-regulated by a combination with TGF-β1 and TWEAK, but not TNF-α. We also demonstrated that the Smad, p38 MAPK, and NF-κB signaling pathways, and the transcriptional repressor ZEB2 might mediate N-cadherin up-regulation by TGF-β1 in combination with TWEAK. CONCLUSIONS These findings suggest that the pro-inflammatory cytokine TWEAK and TGF-β1 have synergistic effects in EMT and may contribute to chronic airway changes and remodeling.
Collapse
Affiliation(s)
- Yukinari Itoigawa
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| | - Norihiro Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
- Atopy (Allergy) Research Center, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| | - Sonoko Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| | - Yoko Katsura
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
- Atopy (Allergy) Research Center, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| | - Fumihiko Makino
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| | - Jun Ito
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| | - Fariz Nurwidya
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| | - Motoyasu Kato
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| | - Ryo Atsuta
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|