1
|
Gadwala S, Ghosh C. The Role of the Glucocorticoid Receptor and Its Phosphorylation in Neurological Disorders. Int J Mol Sci 2025; 26:4213. [PMID: 40362450 PMCID: PMC12071575 DOI: 10.3390/ijms26094213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Hormone-dependent phosphorylation of steroid receptors is a mechanism for modulating glucocorticoid receptor (GR) transcriptional responses. Evidence indicates that GR phosphorylation can influence receptor transcriptional activation in a gene-specific manner, which could have positive or negative impacts, where the relative level of phosphorylation is an important determinant of overall GR function. This review provides insights into the regulatory mechanism of GR phosphorylation in the brain, cellular and molecular specificity affecting neurovascular function, and the impact of GR phosphorylation in neurological disorders. Furthermore, the role of various endogenous and exogenous factors and sex-dependent associations with GR functional changes due to phosphorylation and other interlinking mechanisms are considered. Finally, we highlight the potential therapeutic approaches which have been evaluated, while challenging GR phosphorylation and the overall influence on the activity of GR in brain disorders.
Collapse
Affiliation(s)
- Saranya Gadwala
- Neurovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Chaitali Ghosh
- Neurovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Department of Biomedical Engineering and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
2
|
Ford ML, Reza MI, Ruwanpathirana A, Sathish V, Britt RD. Integrative Roles of Pro-Inflammatory Cytokines on Airway Smooth Muscle Structure and Function in Asthma. Immunol Rev 2025; 330:e70007. [PMID: 39991781 PMCID: PMC11848829 DOI: 10.1111/imr.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025]
Abstract
Asthma has become more appreciated for its heterogeneity with studies identifying type 2 and non-type 2 phenotypes/endotypes that ultimately lead to airflow obstruction, airway hyperresponsiveness, and remodeling. The pro-inflammatory environment in asthma influences airway smooth muscle (ASM) structure and function. ASM has a vast repertoire of inflammatory receptors that, upon activation, contribute to prominent features in asthma, notably immune cell recruitment and activation, hypercontractility, proliferation, migration, and extracellular matrix protein deposition. These pro-inflammatory responses in ASM can be mediated by both type 2 (e.g., IL-4, IL-13, and TSLP) and non-type 2 (e.g., TNFα, IFNγ, IL-17A, and TGFβ) cytokines, highlighting roles for ASM in type 2 and non-type 2 asthma phenotypes/endotypes. In recent years, there has been considerable advances in understanding how pro-inflammatory cytokines promote ASM dysfunction and impair responsiveness to asthma therapy, corticosteroids and long-acting β2-adrenergic receptor agonists (LABAs). Transcriptomic analyses on human ASM cells and tissues have expanded our knowledge in this area but have also raised new questions regarding ASM and its role in asthma. In this review, we discuss how pro-inflammatory cytokines, corticosteroids, and LABAs affect ASM structure and function, with particular focus on changes in gene expression and transcriptional programs in type 2 and non-type 2 asthma.
Collapse
Affiliation(s)
- Maria L. Ford
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Biomedical Sciences Graduate Program, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Mohammad Irshad Reza
- Department of Pharmaceutical SciencesNorth Dakota State UniversityFargoNorth DakotaUSA
| | - Anushka Ruwanpathirana
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Biomedical Sciences Graduate Program, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Venkatachalem Sathish
- Department of Pharmaceutical SciencesNorth Dakota State UniversityFargoNorth DakotaUSA
| | - Rodney D. Britt
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
3
|
Chudakova DA, Trubetskoy D, Baida G, Bhalla P, Readhead B, Budunova I. REDD1 (regulated in development and DNA damage 1) modulates the glucocorticoid receptor function in keratinocytes. Exp Dermatol 2023; 32:1725-1733. [PMID: 37483165 DOI: 10.1111/exd.14887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/27/2023] [Accepted: 07/02/2023] [Indexed: 07/25/2023]
Abstract
Glucocorticoids (GCs) are widely used for the treatment of inflammatory skin diseases despite significant adverse effects including skin atrophy. Effects of GCs are mediated by the glucocorticoid receptor (GR), a well-known transcription factor. Previously, we discovered that one of the GR target genes, REDD1, is causatively involved in skin atrophy. Here, we investigated its role in GR function using HaCaT REDD1 knockout (KO) keratinocytes. We found large differences in transcriptome of REDD1 KO and control Cas9 cells in response to glucocorticoid fluocinolone acetonide (FA): both the scope and amplitude of response were significantly decreased in REDD1 KO. The status of REDD1 did not affect GR stability/degradation during self-desensitization, and major steps in GR activation-its nuclear import and phosphorylation at activating Ser211. However, the amount of GR phosphorylated at Ser226 that may play negative role in GR signalling, was increased in the nuclei of REDD1 KO cells. GR nuclear import and transcriptional activity also depend on the composition of GR chaperone complex: exchange of chaperone FKBP51 (FK506-binding protein 5) for FKBP52 (FK506-binding protein 4) being a necessary step in GR activation. We found the increased expression and abnormal nuclear translocation of FKBP51 in both untreated and FA-treated REDD1 KO cells. Overall, our results suggest the existence of a feed-forward loop in GR signalling mediated by its target gene REDD1, which has translational potential for the development of safer GR-targeted therapies.
Collapse
Affiliation(s)
- D A Chudakova
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
- Federal Centre for Brain and Neurotechnologies of the Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - D Trubetskoy
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | - G Baida
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | - P Bhalla
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
- SBDRC, Northwestern University, Chicago, Illinois, USA
| | - B Readhead
- ASU-Banner Neurodegenerative Disease Research Centre, Arizona State University, Tempe, Arizona, USA
| | - I Budunova
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
- ASU-Banner Neurodegenerative Disease Research Centre, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
4
|
Matsumura Y. Inadequate therapeutic responses to glucocorticoid treatment in bronchial asthma. J Int Med Res 2023; 51:3000605231175746. [PMID: 37296513 DOI: 10.1177/03000605231175746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023] Open
Abstract
Bronchial asthma (BA) is a heterogeneous disease. Some patients benefit greatly from glucocorticoid (GC) treatment, whereas others are non-responders. This could be attributable to differences in pathobiology. Thus, predicting the responses to GC treatment in patients with BA is necessary to increase the success rates of GC therapy and avoid adverse effects. The sustained inflammation in BA decreases glucocorticoid receptor (GR, NR3C1) function. Meanwhile, GRβ overexpression might contribute to GC resistance. Important factors in decreased GR function include p38 mitogen-activated protein kinase-dependent GR phosphorylated at Ser226, reduced expression of histone deacetylase 2 following activation of the phosphatidylinositol 3-kinase-δ signaling pathway, and increased nuclear factor-kappa B activity. MicroRNAs, which are involved in GC sensitivity, are considered biomarkers of the response to inhaled GCs. Some studies revealed that inflammatory phenotypes and disease-related modifiable factors, including infections, the airway microbiome, mental stress, smoking, and obesity, regulate individual sensitivity to GCs. Therefore, future investigations are warranted to improve treatment outcomes.
Collapse
Affiliation(s)
- Yasuhiro Matsumura
- Department of Internal Medicine, Sasaki Foundation Kyoundo Hospital, Tokyo, Japan
| |
Collapse
|
5
|
Ford ML, Ruwanpathirana A, Lewis BW, Britt RD. Aging-Related Mechanisms Contribute to Corticosteroid Insensitivity in Elderly Asthma. Int J Mol Sci 2023; 24:6347. [PMID: 37047327 PMCID: PMC10093993 DOI: 10.3390/ijms24076347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Asthma in elderly populations is an increasing health problem that is accompanied by diminished lung function and frequent exacerbations. As potent anti-inflammatory drugs, corticosteroids are commonly used to reduce lung inflammation, improve lung function, and manage disease symptoms in asthma. Although effective for most individuals, older patients are more insensitive to corticosteroids, making it difficult to manage asthma in this population. With the number of individuals older than 65 continuing to increase, it is important to understand the distinct mechanisms that promote corticosteroid insensitivity in the aging lung. In this review, we discuss corticosteroid insensitivity in asthma with an emphasis on mechanisms that contribute to persistent inflammation and diminished lung function in older individuals.
Collapse
Affiliation(s)
- Maria L. Ford
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA; (M.L.F.); (A.R.)
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anushka Ruwanpathirana
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA; (M.L.F.); (A.R.)
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Brandon W. Lewis
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA; (M.L.F.); (A.R.)
| | - Rodney D. Britt
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA; (M.L.F.); (A.R.)
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
6
|
He LX, Yang L, Liu T, Li YN, Huang TX, Zhang LL, Luo J, Liu CT. Group 3 innate lymphoid cells secret neutrophil chemoattractants and are insensitive to glucocorticoid via aberrant GR phosphorylation. Respir Res 2023; 24:90. [PMID: 36949482 PMCID: PMC10033286 DOI: 10.1186/s12931-023-02395-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Patients with neutrophil-mediated asthma have poor response to glucocorticoids. The roles and mechanisms of group 3 innate lymphoid cells (ILC3s) in inducing neutrophilic airway inflammation and glucocorticoid resistance in asthma have not been fully clarified. METHODS ILC3s in peripheral blood were measured by flow cytometry in patients with eosinophilic asthma (EA) and non-eosinophilic asthma (NEA). ILC3s were sorted and cultured in vitro for RNA sequencing. Cytokines production and signaling pathways in ILC3s after IL-1β stimulation and dexamethasone treatment were determined by real-time PCR, flow cytometry, ELISA and western blot. RESULTS The percentage and numbers of ILC3s in peripheral blood was higher in patients with NEA compared with EA, and negatively correlated with blood eosinophils. IL-1β stimulation significantly enhanced CXCL8 and CXCL1 production in ILC3s via activation of p65 NF-κB and p38/JNK MAPK signaling pathways. The expression of neutrophil chemoattractants from ILC3s was insensitive to dexamethasone treatment. Dexamethasone significantly increased phosphorylation of glucocorticoid receptor (GR) at Ser226 but only with a weak induction at Ser211 residues in ILC3s. Compared to human bronchial epithelial cell line (16HBE cells), the ratio of p-GR S226 to p-GR S211 (p-GR S226/S211) was significantly higher in ILC3s at baseline and after dexamethasone treatment. In addition, IL-1β could induce Ser226 phosphorylation and had a crosstalk effect to dexamethasone via NF-κB pathway. CONCLUSIONS ILC3s were elevated in patients with NEA, and associated with neutrophil inflammation by release of neutrophil chemoattractants and were glucocorticoid (GC) resistant. This paper provides a novel cellular and molecular mechanisms of neutrophil inflammation and GC-resistance in asthma. Trial registration The study has been prospectively registered in the World Health Organization International Clinical Trials Registry Platform (ChiCTR1900027125).
Collapse
Affiliation(s)
- Li Xiu He
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Ling Yang
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yi Na Li
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Xuan Huang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lan Lan Zhang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Luo
- Respiratory Medicine Unit and National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| | - Chun Tao Liu
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Wang J, Zhang X, Zhang L, Liu Y, Wang G, Zhang HP, Wang L, Kang DY, Oliver BG, Wan HJ, McDonald VM, Chen-Yu Hsu A, Liu D, Li WM, Birring SS, Wang G. Age-Related Clinical Characteristics, Inflammatory Features, Phenotypes, and Treatment Response in Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:210-219.e3. [PMID: 36191867 DOI: 10.1016/j.jaip.2022.09.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 07/31/2022] [Accepted: 09/17/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Emerging evidence suggests that aging affects asthma outcomes, but the mechanism remains largely unexplored. OBJECTIVE To explore age-related clinical characteristics, inflammatory features, phenotypes, and treatment response in asthma. METHODS This was a prospective cohort study of asthmatic patients with a 12-month follow-up in a real-world setting. Clinical inflammatory and phenotypic characteristics, future risk for exacerbations, and treatment response were assessed across different age groups (young was defined as age 18 to 39 years; middle-aged, 40 to 64 years; and elderly, 65 years or older). RESULTS Compared with young (n = 106) and middle-aged (n = 179) asthmatic patients, elderly patients (n = 55) had worse airway obstruction, more comorbidities including chronic obstructive pulmonary disease and diabetes, less atopy, and lower levels of IgE and FeNO, and were more likely to have late-onset and fixed airflow obstruction asthma and a reduced risk for having type 2 profile asthma. Levels of IFN-gamma, IL-17A, and IL-8 in induced sputum were significantly increased in elderly asthmatic patients (all P < .05). Path analysis indicated that age directly and significantly led to future exacerbations in asthma, partially mediated by an upregulation of airway IFN-gamma. Moreover, elderly patients with asthma had a reduced treatment response (improvement in FEV1 of 12% or greater, or 200 mL, and a reduction in Borg scores of 1 or greater) (adjusted odds ratio = 0.11; 95% CI, 0.02-0.52; and adjusted odds ratio = 0.12; 95% CI, 0.03-0.49, respectively). CONCLUSIONS This study confirms that asthma in the elderly population represents a specific phenotype and indicates that aging can influence asthma in terms of clinical characteristics, inflammatory features, exacerbations, and treatment response.
Collapse
Affiliation(s)
- Ji Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zhang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China; Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine and Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China; Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine and Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Liu
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China; Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine and Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China; Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine and Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Hong Ping Zhang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine and Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Wang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine and Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - De Ying Kang
- Department of Evidence-Based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, Chengdu, China
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Hua Jing Wan
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Vanessa M McDonald
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia; Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Min Li
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Respiratory Microbiome Laboratory, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Surinder S Birring
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Glucocorticoid Insensitivity in Asthma: The Unique Role for Airway Smooth Muscle Cells. Int J Mol Sci 2022; 23:ijms23168966. [PMID: 36012240 PMCID: PMC9408965 DOI: 10.3390/ijms23168966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Although most patients with asthma symptoms are well controlled by inhaled glucocorticoids (GCs), a subgroup of patients suffering from severe asthma respond poorly to GC therapy. Such GC insensitivity (GCI) represents a profound challenge in managing patients with asthma. Even though GCI in patients with severe asthma has been investigated by several groups using immune cells (peripheral blood mononuclear cells and alveolar macrophages), uncertainty exists regarding the underlying molecular mechanisms in non-immune cells, such as airway smooth cells (ASM) cells. In asthma, ASM cells are among the targets of GC therapy and have emerged as key contributors not only to bronchoconstriction but also to airway inflammation and remodeling, as implied by experimental and clinical evidence. We here summarize the current understanding of the actions/signaling of GCs in asthma, and specifically, GC receptor (GR) “site-specific phosphorylation” and its role in regulating GC actions. We also review some common pitfalls associated with studies investigating GCI and the inflammatory mediators linked to asthma severity. Finally, we discuss and contrast potential molecular mechanisms underlying the impairment of GC actions in immune cells versus non-immune cells such as ASM cells.
Collapse
|
9
|
Jackson D, Walum J, Banerjee P, Lewis BW, Prakash YS, Sathish V, Xu Z, Britt RD. Th1 cytokines synergize to change gene expression and promote corticosteroid insensitivity in pediatric airway smooth muscle. Respir Res 2022; 23:126. [PMID: 35578269 PMCID: PMC9109364 DOI: 10.1186/s12931-022-02046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Corticosteroids remain a key therapy for treating children with asthma. Patients with severe asthma are insensitive, resistant, or refractory to corticosteroids and have poorly controlled symptoms that involve airway inflammation, airflow obstruction, and frequent exacerbations. While the pathways that mediate corticosteroid insensitivity in asthma remain poorly defined, recent studies suggest that enhanced Th1 pathways, mediated by TNFα and IFNγ, may play a role. We previously reported that the combined effects of TNFα and IFNγ promote corticosteroid insensitivity in developing human airway smooth muscle (ASM).
Methods
To further understand the effects of TNFα and IFNγ on corticosteroid sensitivity in the context of neonatal and pediatric asthma, we performed RNA sequencing (RNA-seq) on human pediatric ASM treated with fluticasone propionate (FP), TNFα, and/or IFNγ.
Results
We found that TNFα had a greater effect on gene expression (~ 1000 differentially expressed genes) than IFNγ (~ 500 differentially expressed genes). Pathway and transcription factor analyses revealed enrichment of several pro-inflammatory responses and signaling pathways. Interestingly, treatment with TNFα and IFNγ augmented gene expression with more than 4000 differentially expressed genes. Effects of TNFα and IFNγ enhanced several pro-inflammatory genes and pathways related to ASM and its contributions to asthma pathogenesis, which persisted in the presence of corticosteroids. Co-expression analysis revealed several gene networks related to TNFα- and IFNγ-mediated signaling, pro-inflammatory mediator production, and smooth muscle contractility. Many of the co-expression network hubs were associated with genes that are insensitive to corticosteroids.
Conclusions
Together, these novel studies show the combined effects of TNFα and IFNγ on pediatric ASM and implicate Th1-associated cytokines in promoting ASM inflammation and hypercontractility in severe asthma.
Collapse
|
10
|
Liu Q, Hua L, Bao C, Kong L, Hu J, Liu C, Li Z, Xu S, Liu X. Inhibition of Spleen Tyrosine Kinase Restores Glucocorticoid Sensitivity to Improve Steroid-Resistant Asthma. Front Pharmacol 2022; 13:885053. [PMID: 35600871 PMCID: PMC9117698 DOI: 10.3389/fphar.2022.885053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Regulation or restoration of therapeutic sensitivity to glucocorticoids is important in patients with steroid-resistant asthma. Spleen tyrosine kinase (Syk) is activated at high levels in asthma patients and mouse models, and small-molecule Syk inhibitors such as R406 show potent anti-inflammatory effects in the treatment of immune inflammatory diseases. Several downstream signaling molecules of Syk are involved in the glucocorticoid response, so we hypothesized that R406 could restore sensitivity to dexamethasone in severe steroid-resistant asthma. Objective: To discover the role of the Syk inhibitor R406 in glucocorticoid resistance in severe asthma. Methods: Steroid-resistant asthma models were induced by exposure of C57BL/6 mice to house dust mite (HDM) and β-glucan and by TNF-α administration to the bronchial epithelial cell line BEAS-2B. We evaluated the role of the Syk inhibitor R406 in dexamethasone (Dex)-insensitive airway inflammation. Pathological alterations and cytokines in the lung tissues and inflammatory cells in BALF were assessed. We examined the effects of Dex or R406 alone and in combination on the phosphorylation of MAPKs, glucocorticoid receptor (GR) and Syk, as well as the transactivation and transrepression induced by Dex in mouse lung tissues and BEAS-2B cells. Results: Exposure to HDM and β-glucan induced steroid-resistant airway inflammation. The Syk inhibitor R406 plus Dex significantly reduced airway inflammation compared with Dex alone. Additionally, TNF-α-induced IL-8 production in BEAS-2B cells was not completely inhibited by Dex, while R406 markedly promoted the anti-inflammatory effect of Dex. Compared with Dex alone, R406 enhanced Dex-mediated inhibition of the phosphorylation of MAPKs and GR-Ser226 induced by allergens or TNF-α in vivo and in vitro. Moreover, R406 also restored the impaired expression and nuclear translocation of GRα induced by TNF-α. Then, the activation of NF-κB and decreased HDAC2 activity in the asthmatic model were further regulated by R406, as well as the expression of GILZ. Conclusions: The Syk inhibitor R406 improves sensitivity to dexamethasone by modulating GR. This study provides a reference for the development of drugs to treat severe steroid-resistant asthma.
Collapse
Affiliation(s)
- Qian Liu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijuan Hua
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Bao
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luxia Kong
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Respiratory and Critical Care Medicine, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Jiannan Hu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Liu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziling Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyun Xu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Qian YT, Liu XY, Sun HD, Xu JY, Sun JM, Liu W, Chen T, Liu JW, Tan Y, Sun W, Ma DL. Urinary Proteomics Analysis of Active Vitiligo Patients: Biomarkers for Steroid Treatment Efficacy Prediction and Monitoring. Front Mol Biosci 2022; 9:761562. [PMID: 35252347 PMCID: PMC8891126 DOI: 10.3389/fmolb.2022.761562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022] Open
Abstract
Vitiligo is a common acquired skin disorder caused by immune-mediated destruction of epidermal melanocytes. Systemic glucocorticoids (GCs) have been used to prevent the progression of active vitiligo, with 8.2–56.2% of patients insensitive to this therapy. Currently, there is a lack of biomarkers that can accurately predict and evaluate treatment responses. The goal of this study was to identify candidate urinary protein biomarkers to predict the efficacy of GCs treatment in active vitiligo patients and monitor the disease. Fifty-eight non-segmental vitiligo patients were enrolled, and 116 urine samples were collected before and after GCs treatment. Patients were classified into a treatment-effective group (n = 42) and a treatment-resistant group (n = 16). Each group was divided equally into age- and sex-matched experimental and validation groups, and proteomic analyses were performed. Differentially expressed proteins were identified, and Ingenuity Pathway Analysis was conducted for the functional annotation of these proteins. Receiver operating characteristic curves were used to evaluate the diagnostic value. A total of 245 and 341 differentially expressed proteins between the treatment-resistant and treatment-effective groups were found before and after GCs treatment, respectively. Bioinformatic analysis revealed that the urinary proteome reflected the efficacy of GCs in active vitiligo patients. Eighty and fifty-four candidate biomarkers for treatment response prediction and treatment response evaluation were validated, respectively. By ELISA analysis, retinol binding protein-1 and torsin 1A interacting protein 1 were validated to have the potential to predict the efficacy of GCs with AUC value of 1 and 0.875, respectively. Retinol binding protein-1, torsin 1A interacting protein 1 and protein disulfide-isomerase A4 were validated to have the potential to reflect positive treatment effect to GCs treatment in active vitiligo with AUC value of 0.861, 1 and 0.868, respectively. This report is the first to identify urine biomarkers for GCs treatment efficacy prediction in vitiligo patients. These findings might contribute to the application of GCs in treating active vitiligo patients.
Collapse
Affiliation(s)
- Yue-Tong Qian
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Xiao-Yan Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Hai-Dan Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ji-Yu Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jia-Meng Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Liu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Tian Chen
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Jia-Wei Liu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Yan Tan
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Wei Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- *Correspondence: Wei Sun, ; Dong-Lai Ma,
| | - Dong-Lai Ma
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
- *Correspondence: Wei Sun, ; Dong-Lai Ma,
| |
Collapse
|
12
|
Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants (Basel) 2021; 10:antiox10091335. [PMID: 34572965 PMCID: PMC8471691 DOI: 10.3390/antiox10091335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Corticosteroid insensitivity is a key characteristic of patients with severe asthma and COPD. These individuals experience greater pulmonary oxidative stress and inflammation, which contribute to diminished lung function and frequent exacerbations despite the often and prolonged use of systemic, high dose corticosteroids. Reactive oxygen and nitrogen species (RONS) promote corticosteroid insensitivity by disrupting glucocorticoid receptor (GR) signaling, leading to the sustained activation of pro-inflammatory pathways in immune and airway structural cells. Studies in asthma and COPD models suggest that corticosteroids need a balanced redox environment to be effective and to reduce airway inflammation. In this review, we discuss how oxidative stress contributes to corticosteroid insensitivity and the importance of optimizing endogenous antioxidant responses to enhance corticosteroid sensitivity. Future studies should aim to identify how antioxidant-based therapies can complement corticosteroids to reduce the need for prolonged high dose regimens in patients with severe asthma and COPD.
Collapse
|
13
|
Neumann J, Boknik P, Kirchhefer U, Gergs U. The role of PP5 and PP2C in cardiac health and disease. Cell Signal 2021; 85:110035. [PMID: 33964402 DOI: 10.1016/j.cellsig.2021.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Protein phosphatases are important, for example, as functional antagonists of β-adrenergic stimulation of the mammalian heart. While β-adrenergic stimulations increase the phosphorylation state of regulatory proteins and therefore force of contraction in the heart, these phosphorylations are reversed and thus force is reduced by the activity of protein phosphatases. In this context the role of PP5 and PP2C is starting to unravel. They do not belong to the same family of phosphatases with regard to sequence homology, many similarities with regard to location, activation by lipids and putative substrates have been worked out over the years. We also suggest which pathways for regulation of PP5 and/or PP2C described in other tissues and not yet in the heart might be useful to look for in cardiac tissue. Both phosphatases might play a role in signal transduction of sarcolemmal receptors in the heart. Expression of PP5 and PP2C can be increased by extracellular stimuli in the heart. Because PP5 is overexpressed in failing animal and human hearts, and because overexpression of PP5 or PP2C leads to cardiac hypertrophy and KO of PP5 leads to cardiac hypotrophy, one might argue for a role of PP5 and PP2C in heart failure. Because PP5 and PP2C can reduce, at least in vitro, the phosphorylation state of proteins thought to be relevant for cardiac arrhythmias, a role of these phosphatases for cardiac arrhythmias is also probable. Thus, PP5 and PP2C might be druggable targets to treat important cardiac diseases like heart failure, cardiac hypertrophy and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| |
Collapse
|
14
|
Patt M, Gysi J, Faresse N, Cidlowski JA, Odermatt A. Protein phosphatase 1 alpha enhances glucocorticoid receptor activity by a mechanism involving phosphorylation of serine-211. Mol Cell Endocrinol 2020; 518:110873. [PMID: 32585168 PMCID: PMC7606615 DOI: 10.1016/j.mce.2020.110873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/17/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Abstract
By acting as a ligand-dependent transcription factor the glucocorticoid receptor (GR) mediates the actions of glucocorticoids and regulates many physiological processes. An impaired regulation of glucocorticoid action has been associated with numerous disorders. Thus, the elucidation of underlying signaling pathways is essential to understand mechanisms of disrupted glucocorticoid function and contribution to diseases. This study found increased GR transcriptional activity upon overexpression of protein phosphatase 1 alpha (PP1α) in HEK-293 cells and decreased expression levels of GR-responsive genes following PP1α knockdown in the endogenous A549 cell model. Mechanistic investigations revealed reduced phosphorylation of GR-Ser211 following PP1α silencing and provided a first indication for an involvement of glycogen synthase kinase 3 (GSK-3). Thus, the present study identified PP1α as a novel post-translational activator of GR signaling, suggesting that disruption of PP1α function could lead to impaired glucocorticoid action and thereby contribute to diseases.
Collapse
Affiliation(s)
- Melanie Patt
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Joël Gysi
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | | | - John A Cidlowski
- Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA.
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
15
|
Colaço HG, Barros A, Neves-Costa A, Seixas E, Pedroso D, Velho T, Willmann KL, Faisca P, Grabmann G, Yi HS, Shong M, Benes V, Weis S, Köcher T, Moita LF. Tetracycline Antibiotics Induce Host-Dependent Disease Tolerance to Infection. Immunity 2020; 54:53-67.e7. [PMID: 33058782 PMCID: PMC7840524 DOI: 10.1016/j.immuni.2020.09.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/16/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
Several classes of antibiotics have long been known to have beneficial effects that cannot be explained strictly on the basis of their capacity to control the infectious agent. Here, we report that tetracycline antibiotics, which target the mitoribosome, protected against sepsis without affecting the pathogen load. Mechanistically, we found that mitochondrial inhibition of protein synthesis perturbed the electron transport chain (ETC) decreasing tissue damage in the lung and increasing fatty acid oxidation and glucocorticoid sensitivity in the liver. Using a liver-specific partial and acute deletion of Crif1, a critical mitoribosomal component for protein synthesis, we found that mice were protected against sepsis, an observation that was phenocopied by the transient inhibition of complex I of the ETC by phenformin. Together, we demonstrate that mitoribosome-targeting antibiotics are beneficial beyond their antibacterial activity and that mitochondrial protein synthesis inhibition leading to ETC perturbation is a mechanism for the induction of disease tolerance. Doxycycline protects from sepsis beyond its direct antibacterial activity Doxycycline protection from infection is microbiome-independent Inhibition of mitochondrial protein synthesis induces disease tolerance Mild and transient perturbations of the mitochondrial ETC induce disease tolerance
Collapse
Affiliation(s)
- Henrique G Colaço
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - André Barros
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Ana Neves-Costa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Elsa Seixas
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Dora Pedroso
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Tiago Velho
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Katharina L Willmann
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Pedro Faisca
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Vladimir Benes
- EMBL Genomics Core Facilities, D-69117 Heidelberg, Germany
| | - Sebastian Weis
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany; Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Thomas Köcher
- Vienna BioCenter Core Facilities GmbH, 1030 Vienna, Austria
| | - Luís F Moita
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
16
|
Insights into glucocorticoid responses derived from omics studies. Pharmacol Ther 2020; 218:107674. [PMID: 32910934 DOI: 10.1016/j.pharmthera.2020.107674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/20/2020] [Indexed: 12/26/2022]
Abstract
Glucocorticoid drugs are commonly used in the treatment of several conditions, including autoimmune diseases, asthma and cancer. Despite their widespread use and knowledge of biological pathways via which they act, much remains to be learned about the cell type-specific mechanisms of glucocorticoid action and the reasons why patients respond differently to them. In recent years, human and in vitro studies have addressed these questions with genomics, transcriptomics and other omics approaches. Here, we summarize key insights derived from omics studies of glucocorticoid response, and we identify existing knowledge gaps related to mechanisms of glucocorticoid action that future studies can address.
Collapse
|
17
|
Amrani Y, Panettieri RA, Ramos-Ramirez P, Schaafsma D, Kaczmarek K, Tliba O. Important lessons learned from studies on the pharmacology of glucocorticoids in human airway smooth muscle cells: Too much of a good thing may be a problem. Pharmacol Ther 2020; 213:107589. [PMID: 32473159 PMCID: PMC7434707 DOI: 10.1016/j.pharmthera.2020.107589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GCs) are the treatment of choice for chronic inflammatory diseases such as asthma. Despite proven effective anti-inflammatory and immunosuppressive effects, long-term and/or systemic use of GCs can potentially induce adverse effects. Strikingly, some recent experimental evidence suggests that GCs may even exacerbate some disease outcomes. In asthma, airway smooth muscle (ASM) cells are among the targets of GC therapy and have emerged as key contributors not only to bronchoconstriction, but also to airway inflammation and remodeling, as implied by experimental and clinical evidence. We here will review the beneficial effects of GCs on ASM cells, emphasizing the differential nature of GC effects on pro-inflammatory genes and on other features associated with asthma pathogenesis. We will also summarize evidence describing how GCs can potentially promote pro-inflammatory and remodeling features in asthma with a specific focus on ASM cells. Finally, some of the possible solutions to overcome these unanticipated effects of GCs will be discussed.
Collapse
Affiliation(s)
- Yassine Amrani
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Leicester Biomedical Research Center Respiratory, Leicester, UK
| | - Reynold A Panettieri
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Patricia Ramos-Ramirez
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | | | - Klaudia Kaczmarek
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | - Omar Tliba
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA.
| |
Collapse
|
18
|
Airway smooth muscle cells are insensitive to the anti-proliferative effects of corticosteroids: The novel role of insulin growth factor binding Protein-1 in asthma. Immunobiology 2019; 224:490-496. [PMID: 31133345 DOI: 10.1016/j.imbio.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
Airway remodeling in asthma manifests, in part, as enhanced airway smooth muscle (ASM) mass, due to myocyte proliferation. While the anti-proliferative effects of glucocorticoid (GC) were investigated in normal ASM cells (NASMC), little is known about such effects in ASM cells derived from asthma subjects (AASMC). We posit that GC differentially modulates mitogen-induced proliferation of AASMC and NASMC. Cells were cultured, starved, then treated with Epidermal growth factor (EGF) (10 ng/ml) and Platelet-derived growth factor (PDGF) (10 ng/ml) for 24 h and/or fluticasone propionate (FP) (100 nM) added 2 h before. Cell counts and flow cytometry analyses showed that FP failed to decrease the cell number of and DNA synthesis in AASMC irrespective of mitogens used. We also examine the ability of Insulin Growth Factor Binding Protein-1 (IGFBP-1), a steroid-inducible gene that deters cell growth in other cell types, to inhibit proliferation of AASMC where FP failed. We found that FP increased IGFBP1 mRNA and protein levels. Interestingly, the addition of IGFBP1 (1 μg/ml) to FP completely inhibited the proliferation of AASMC irrespective to the mitogens used. Further investigation of different signaling molecules involved in ASM growth and GC receptor functions (Protein kinase B (PKB/AKT), Mitogen-activated protein kinases (MAPKs), Focal Adhesion Kinase (FAK)) showed that IGFBP-1 selectively decreased mitogen-induced p38 phosphorylation in AASMC. Collectively, our results show the insensitivity of AASMC to the anti-proliferative effects of GC, and demonstrate the ability of IGFBP1 to modulate AASMC growth representing, hence, a promising strategy to control ASM growth in subjects with GC insensitive asthma.
Collapse
|
19
|
Zhang L, Zhang X, Zheng J, Liu Y, Wang J, Wang G, Zhang HP, Kang DY, Peng ZG, Ji YL, Wang L, Gibson PG, Wang G. Depressive symptom-associated IL-1β and TNF-α release correlates with impaired bronchodilator response and neutrophilic airway inflammation in asthma. Clin Exp Allergy 2019; 49:770-780. [PMID: 30675924 DOI: 10.1111/cea.13346] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/16/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Depressive symptoms worsen asthma outcomes; however, the mechanism remains largely unexplored. OBJECTIVE This study aimed to determine whether depressive symptom-associated immune inflammation correlates with impaired bronchodilator response (BDR) and airway inflammatory phenotypes. METHODS Eligible adults with asthma (n = 198) underwent clinical assessment, sputum induction and blood sampling. Depressive symptoms were defined by scores on the depression subscale of the Hospital Anxiety and Depression Scale (HADS-D). Pre- and post-bronchodilator spirometry was performed for BDR. Airway inflammatory phenotypes were defined by sputum cell counts. CRP, IL-1β, IL-5, IL-6, IL-8, TNF-α, IFN-γ, CCL17 and CCL22 in serum and sputum were detected. RESULTS Compared with the non-depressive group (n = 174), the depressive group (n = 24) exhibited impaired BDR (P = 0.032) and increased sputum neutrophils (P = 0.023), which correlated with the HADS-D scores (P = 0.027 and P = 0.029). Levels of IL-1β, TNF-α and IFN-γ in the serum and those of IL-1β and IFN-γ in the sputum were elevated in the depressive group compared to those in the non-depressive group (all P < 0.05). Multiple regression models indicated that TNF-α in the sputum and IL-1β, IL-6 and IFN-γ in both the serum and sputum were inversely associated with BDR; TNF-α in the sputum and IL-1β in both the serum and sputum were positively correlated with sputum neutrophils. Mediation analyses revealed that IL-1β and TNF-α in the sputum and IL-1β in both the serum and sputum mediate the correlations of the HADS-D scores with BDR and sputum neutrophils, respectively. CONCLUSIONS AND CLINICAL RELEVANCE Asthma patients with depressive symptoms present worse asthma control, which is most likely explained by impaired BDR and neutrophilic airway inflammation. IL-1β and TNF-α, which are two key pro-inflammatory cytokines that mediate the correlation of depressive symptoms with impaired BDR and neutrophilic airway inflammation, may serve as targeted biomarkers in the neuropsychological phenotype of asthma; however, this result needs to be further validated.
Collapse
Affiliation(s)
- Li Zhang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Zhang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zheng
- Department of Integrated Traditional Chinese and Western Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Ying Liu
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ji Wang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Wang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Ping Zhang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - De Ying Kang
- Department of Evidence-based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zu Gui Peng
- Department of Psychiatry, The Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Lin Ji
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Wang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peter Gerard Gibson
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Hunter Medical Research Institute, Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, New South Wales, Australia
| | - Gang Wang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Formoterol counteracts the inhibitory effect of cigarette smoke on glucocorticoid-induced leucine zipper (GILZ) transactivation in human bronchial smooth muscle cells. Eur J Pharmacol 2019; 850:8-14. [PMID: 30753866 DOI: 10.1016/j.ejphar.2019.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 11/21/2022]
Abstract
Cigarette smokers with asthma and chronic obstructive pulmonary disease (COPD) are less responsive to glucocorticoids (GCs). The anti-inflammatory action of GCs depends also on their ability to transactivate genes such as GC-induced leucine zipper (GILZ). We investigated the effects of aqueous cigarette smoke extract (CSE) on GILZ transactivation evoked by 17-beclomethasone monopropionate (BMP) or fluticasone propionate (FP) in the presence or absence of the long acting β2-adrenoceptor agonist (LABA) bronchodilator formoterol or salmeterol in human primary cultures of human bronchial smooth muscle cells (HBSMC). We monitored GC receptor Ser211 phosphorylation by western blot analysis and GC receptor nuclear translocation by immunostaining followed high-content imaging analysis. BMP, as well as FP, induced GILZ expression in a concentration-dependent manner (EC50 of 0.87 and 0.16 nM respectively). Pre-incubation with CSE inhibited GC-evoked GILZ transactivation (>50%), GC receptor Ser211 phosphorylation and nuclear translocation. Both formoterol and salmeterol counteracted the effect of CSE on GC-induced GILZ expression but not on nuclear translocation or phosphorylation. The effect of formoterol was mimicked by the cAMP-elevating agent forskolin and blocked by ICI 118,551, a selective β2-adrenoceptor antagonist. Pre-incubation with TNF-α also reduced GC-evoked GILZ transactivation but was not counteracted by formoterol undercovering a different responsiveness to LABAs of TNF-α in comparison to CSE. In sum, CSE inhibits GC-evoked transactivation of GILZ and such effect is counteracted by LABAs, through β2-adrenoceptors and a cAMP-dependent mechanism. This study sheds light on a mechanism underlying complementary interactions between LABAs and inhaled GCs that could be relevant in smokers with asthma and COPD.
Collapse
|
21
|
D'Arcy BM, Swingle MR, Papke CM, Abney KA, Bouska ES, Prakash A, Honkanen RE. The Antitumor Drug LB-100 Is a Catalytic Inhibitor of Protein Phosphatase 2A (PPP2CA) and 5 (PPP5C) Coordinating with the Active-Site Catalytic Metals in PPP5C. Mol Cancer Ther 2019; 18:556-566. [PMID: 30679389 DOI: 10.1158/1535-7163.mct-17-1143] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/20/2018] [Accepted: 01/11/2019] [Indexed: 12/28/2022]
Abstract
LB-100 is an experimental cancer therapeutic with cytotoxic activity against cancer cells in culture and antitumor activity in animals. The first phase I trial (NCT01837667) evaluating LB-100 recently concluded that safety and efficacy parameters are favorable for further clinical testing. Although LB-100 is widely reported as a specific inhibitor of serine/threonine phosphatase 2A (PP2AC/PPP2CA:PPP2CB), we could find no experimental evidence in the published literature demonstrating the specific engagement of LB-100 with PP2A in vitro, in cultured cells, or in animals. Rather, the premise for LB-100 targeting PP2AC is derived from studies that measure phosphate released from a phosphopeptide (K-R-pT-I-R-R) or inferred from the ability of LB-100 to mimic activity previously reported to result from the inhibition of PP2AC by other means. PP2AC and PPP5C share a common catalytic mechanism. Here, we demonstrate that the phosphopeptide used to ascribe LB-100 specificity for PP2A is also a substrate for PPP5C. Inhibition assays using purified enzymes demonstrate that LB-100 is a catalytic inhibitor of both PP2AC and PPP5C. The structure of PPP5C cocrystallized with LB-100 was solved to a resolution of 1.65Å, revealing that the 7-oxabicyclo[2.2.1]heptane-2,3-dicarbonyl moiety coordinates with the metal ions and key residues that are conserved in both PP2AC and PPP5C. Cell-based studies revealed some known actions of LB-100 are mimicked by the genetic disruption of PPP5C These data demonstrate that LB-100 is a catalytic inhibitor of both PP2AC and PPP5C and suggest that the observed antitumor activity might be due to an additive effect achieved by suppressing both PP2A and PPP5C.
Collapse
Affiliation(s)
- Brandon M D'Arcy
- USA Mitchell Cancer Institute, Mobile, Alabama.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Mark R Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Cinta M Papke
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Kevin A Abney
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Erin S Bouska
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Aishwarya Prakash
- USA Mitchell Cancer Institute, Mobile, Alabama. .,Department of Pharmacology, University of South Alabama, Mobile, Alabama
| | - Richard E Honkanen
- USA Mitchell Cancer Institute, Mobile, Alabama. .,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
22
|
Britt RD, Thompson MA, Sasse S, Pabelick CM, Gerber AN, Prakash YS. Th1 cytokines TNF-α and IFN-γ promote corticosteroid resistance in developing human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2018; 316:L71-L81. [PMID: 30335498 DOI: 10.1152/ajplung.00547.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Corticosteroids (CSs) are commonly used to manage wheezing and asthma in pediatric populations. Although corticosteroids are effective in alleviating airway diseases, some children with more moderate-severe asthma phenotypes show CS resistance and exhibit significant airflow obstruction, persistent inflammation, and more frequent exacerbations. Previous studies have demonstrated that Th1 cytokines, such as TNF-α and IFN-γ, promote CS resistance in adult human airway smooth muscle (ASM). In the present study, using a human fetal ASM cell model, we tested the hypothesis that TNF-α/IFN-γ induces CS resistance. In contrast to TNF-α or IFN-γ alone, the combination of TNF-α/IFN-γ blunted the ability of fluticasone propionate (FP) to reduce expression of the chemokines CCL5 and CXCL10 despite expression of key anti-inflammatory glucocorticoid receptor target genes being largely unaffected by TNF-α/IFN-γ. Expression of the NF-κB subunit p65 and phosphorylation of Stat1 were elevated in cells treated with TNF-α/IFN-γ, an effect that remained in the presence of FP. siRNA knockdown studies demonstrated the effects of TNF-α/IFN-γ on increased p65 are mediated by Stat1, a transcription factor activated by IFN-γ. Expression of TNFAIP3, a negative regulator of NF-κB activity, was not altered by TNF-α/IFN-γ. However, the effects of TNF-α/IFN-γ were partially reduced by overexpression of TNFAIP3 but did not influence p65 expression. Together, these data suggest that IFN-γ augments the effects of TNF-α on chemokines by enhancing expression of key inflammatory pathways in the presence of CS. Interactions between TNF-α- and IFN-γ-mediated pathways may promote inflammation in asthmatic children resistant to CSs.
Collapse
Affiliation(s)
- Rodney D Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,Department of Pediatrics, The Ohio State University , Columbus, Ohio
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Sarah Sasse
- Department of Medicine, National Jewish Health , Denver, Colorado
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health , Denver, Colorado
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
23
|
From feedback loop transitions to biomarkers in the psycho-immune-neuroendocrine network: Detecting the critical transition from health to major depression. Neurosci Biobehav Rev 2018. [DOI: 10.1016/j.neubiorev.2018.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Hamilton CL, Abney KA, Vasauskas AA, Alexeyev M, Li N, Honkanen RE, Scammell JG, Cioffi DL. Serine/threonine phosphatase 5 (PP5C/PPP5C) regulates the ISOC channel through a PP5C-FKBP51 axis. Pulm Circ 2017; 8:2045893217753156. [PMID: 29283027 PMCID: PMC6018905 DOI: 10.1177/2045893217753156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pulmonary endothelial cells express a store-operated calcium entry current (Isoc), which contributes to inter-endothelial cell gap formation. Isoc is regulated by a heterocomplex of proteins that includes the immunophilin FKBP51. FKBP51 inhibits Isoc by mechanisms that are not fully understood. In pulmonary artery endothelial cells (PAECs) we have shown that FKBP51 increases microtubule polymerization, an event that is critical for Isoc inhibition by FKBP51. In neurons, FKBP51 promotes microtubule stability through facilitation of tau dephosphorylation. However, FKBP51 does not possess phosphatase activity. Protein phosphatase 5 (PP5C/PPP5C) can dephosphorylate tau, and similar to FKBP51, PP5C possesses tetratricopeptide repeats (TPR) that mediate interaction with heat shock protein-90 (HSP90) chaperone/scaffolding complexes. We therefore tested whether PP5C contributes to FKBP51-mediated inhibition of Isoc. Both siRNA-mediated suppression of PP5C expression in PAECs and genetic disruption of PP5C in HEK293 cells attenuate FKBP51-mediated inhibition of Isoc. Reintroduction of catalytically competent, but not catalytically inactive PP5C, restored FKBP51-mediated inhibition of Isoc. PAEC cell fractionation studies identified both PP5C and the ISOC heterocomplex in the same membrane fractions. Further, PP5C co-precipitates with TRPC4, an essential subunit of ISOC channel. Finally, to determine if PP5C is required for FKBP51-mediated inhibition of calcium entry-induced inter-endothelial cell gap formation, we measured gap area by wide-field microscopy and performed biotin gap quantification assay and electric cell-substrate impedance sensing (ECIS®). Collectively, the data presented indicate that suppression of PP5C expression negates the protective effect of FKBP51. These observations identify PP5C as a novel member of the ISOC heterocomplex that is required for FKBP51-mediated inhibition of Isoc.
Collapse
Affiliation(s)
| | | | | | | | - Ni Li
- University of South Alabama
| | | | | | | |
Collapse
|
25
|
Abstract
The hypothalamic-pituitary-adrenal axis is a dynamic system regulating glucocorticoid hormone synthesis in the adrenal glands. Many key factors within the adrenal steroidogenic pathway have been identified and studied, but little is known about how these factors function collectively as a dynamic network of interacting components. To investigate this, we developed a mathematical model of the adrenal steroidogenic regulatory network that accounts for key regulatory processes occurring at different timescales. We used our model to predict the time evolution of steroidogenesis in response to physiological adrenocorticotropic hormone (ACTH) perturbations, ranging from basal pulses to larger stress-like stimulations (e.g., inflammatory stress). Testing these predictions experimentally in the rat, our results show that the steroidogenic regulatory network architecture is sufficient to respond to both small and large ACTH perturbations, but coupling this regulatory network with the immune pathway is necessary to explain the dissociated dynamics between ACTH and glucocorticoids observed under conditions of inflammatory stress.
Collapse
|
26
|
Patel BS, Rahman MM, Rumzhum NN, Oliver BG, Verrills NM, Ammit AJ. Theophylline Represses IL-8 Secretion from Airway Smooth Muscle Cells Independently of Phosphodiesterase Inhibition. Novel Role as a Protein Phosphatase 2A Activator. Am J Respir Cell Mol Biol 2017; 54:792-801. [PMID: 26574643 DOI: 10.1165/rcmb.2015-0308oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Theophylline is an old drug experiencing a renaissance owing to its beneficial antiinflammatory effects in chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Multiple modes of antiinflammatory action have been reported, including inhibition of the enzymes that degrade cAMP-phosphodiesterase (PDE). Using primary cultures of airway smooth muscle (ASM) cells, we recently revealed that PDE4 inhibitors can potentiate the antiinflammatory action of β2-agonists by augmenting cAMP-dependent expression of the phosphatase that deactivates mitogen-activated protein kinase (MAPK)-MAPK phosphatase (MKP)-1. Therefore, the aim of this study was to address whether theophylline repressed cytokine production in a similar, PDE-dependent, MKP-1-mediated manner. Notably, theophylline did not potentiate cAMP release from ASM cells treated with the long-acting β2-agonist formoterol. Moreover, theophylline (0.1-10 μM) did not increase formoterol-induced MKP-1 messenger RNA expression nor protein up-regulation, consistent with the lack of cAMP generation. However, theophylline (at 10 μM) was antiinflammatory and repressed secretion of the neutrophil chemoattractant cytokine IL-8, which is produced in response to TNF-α. Because theophylline's effects were independent of PDE4 inhibition or antiinflammatory MKP-1, we then wished to elucidate the novel mechanisms responsible. We investigated the impact of theophylline on protein phosphatase (PP) 2A, a master controller of multiple inflammatory signaling pathways, and show that theophylline increases TNF-α-induced PP2A activity in ASM cells. Confirmatory results were obtained in A549 lung epithelial cells. PP2A activators have beneficial effects in ex vivo and in vivo models of respiratory disease. Thus, our study is the first to link theophylline with PP2A activation as a novel mechanism to control respiratory inflammation.
Collapse
Affiliation(s)
| | | | - Nowshin N Rumzhum
- 1 Faculty of Pharmacy, University of Sydney, New South Wales, Australia
| | - Brian G Oliver
- 2 Woolcock Institute of Medical Research, University of Sydney, New South Wales, Australia.,3 School of Life Sciences, University of Technology, Sydney, New South Wales, Australia; and
| | - Nicole M Verrills
- 4 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, New South Wales
| | - Alaina J Ammit
- 1 Faculty of Pharmacy, University of Sydney, New South Wales, Australia
| |
Collapse
|
27
|
Chachi L, Abbasian M, Gavrila A, Alzahrani A, Tliba O, Bradding P, Wardlaw AJ, Brightling C, Amrani Y. Protein phosphatase 5 mediates corticosteroid insensitivity in airway smooth muscle in patients with severe asthma. Allergy 2017; 72:126-136. [PMID: 27501780 DOI: 10.1111/all.13003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND The mechanisms driving glucocorticoid (GC) insensitivity in patients with severe asthma are still unknown. Recent evidence suggests the existence of GC-insensitive pathways in airway smooth muscle (ASM) caused by a defect in GC receptor (GRα) function. We examined whether other mechanisms could potentially explain the reduced sensitivity of ASM cells to GC in severe asthmatics. METHODS Airway smooth muscle cells from healthy and severe asthmatic subjects were treated with TNF-α and responses to corticosteroids in both cohorts were compared by ELISA, immunoblot, immunohistochemistry and real-time PCR. Immunohistochemistry and flow cytometry assays were used to assess the expression of the protein phosphatase PP5 in endobronchial biopsies and ASM cells. RESULTS The production of CCL11 and CCL5 by TNF-α was insensitive to both fluticasone and dexamethasone in ASM cells from severe asthmatic compared to that in healthy subjects. Fluticasone-induced GRα nuclear translocation, phosphorylation at serine 211 and expression of GC-induced leucine zipper (GILZ) were significantly reduced in ASM cells from severe asthmatics compared to responses in healthy subjects. Levels of PP5 were increased in ASM cells from severe asthmatics and PP5 knockdown using siRNA restored fluticasone repressive action on chemokine production and its ability to induce GRα nuclear translocation and GRE-dependent GILZ expression. In vivo PP5 expression was also increased in the ASM bundles in endobronchial biopsies in severe asthmatics. CONCLUSIONS PP5-dependent impairment of GRα function represents a novel mechanism driving GC insensitivity in ASM in severe asthma.
Collapse
Affiliation(s)
- L. Chachi
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - M. Abbasian
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - A. Gavrila
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - A. Alzahrani
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - O. Tliba
- Department of Pharmaceutical Sciences; Jefferson School of Pharmacy; Thomas Jefferson University; Philadelphia PA USA
| | - P. Bradding
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - A. J. Wardlaw
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - C. Brightling
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - Y. Amrani
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| |
Collapse
|
28
|
Pazdrak K, Straub C, Maroto R, Stafford S, White WI, Calhoun WJ, Kurosky A. Cytokine-Induced Glucocorticoid Resistance from Eosinophil Activation: Protein Phosphatase 5 Modulation of Glucocorticoid Receptor Phosphorylation and Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 197:3782-3791. [PMID: 27742828 DOI: 10.4049/jimmunol.1601029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/21/2016] [Indexed: 01/01/2023]
Abstract
The mechanisms contributing to persistent eosinophil activation and poor eosinopenic response to glucocorticoids in severe asthma are poorly defined. We examined the effect of cytokines typically overexpressed in the asthmatic airways on glucocorticoid signaling in in vitro activated eosinophils. An annexin V assay used to measure eosinophil apoptosis showed that cytokine combinations of IL-2 plus IL-4 as well as TNF-α plus IFN-γ, or IL-3, GM-CSF, and IL-5 alone significantly diminished the proapoptotic response to dexamethasone. We found that IL-2 plus IL-4 resulted in impaired phosphorylation and function of the nuclear glucocorticoid receptor (GCR). Proteomic analysis of steroid sensitive and resistant eosinophils identified several differentially expressed proteins, namely protein phosphatase 5 (PP5), formyl peptide receptor 2, and annexin 1. Furthermore, increased phosphatase activity of PP5 correlated with impaired phosphorylation of the GCR. Importantly, suppression of PP5 expression with small interfering RNA restored proper phosphorylation and the proapoptotic function of the GCR. We also examined the effect of lipoxin A4 on PP5 activation by IL-2 plus IL-4. Similar to PP5 small interfering RNA inhibition, pretreatment of eosinophils with lipoxin A4 restored GCR phosphorylation and the proaptoptotic function of GCs. Taken together, our results showed 1) a critical role for PP5 in cytokine-induced resistance to GC-mediated eosinophil death, 2) supported the dependence of GCR phosphorylation on PP5 activity, and 3) revealed that PP5 is a target of the lipoxin A4-induced pathway countering cytokine-induced resistance to GCs in eosinophils.
Collapse
Affiliation(s)
- Konrad Pazdrak
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555.,National Heart, Lung, and Blood Institute Proteomics Center Program in Airway Inflammation, The University of Texas Medical Branch, Galveston, TX 77555
| | - Christof Straub
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Rosario Maroto
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555.,National Heart, Lung, and Blood Institute Proteomics Center Program in Airway Inflammation, The University of Texas Medical Branch, Galveston, TX 77555
| | - Susan Stafford
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555.,National Heart, Lung, and Blood Institute Proteomics Center Program in Airway Inflammation, The University of Texas Medical Branch, Galveston, TX 77555
| | | | - William J Calhoun
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555.,National Heart, Lung, and Blood Institute Proteomics Center Program in Airway Inflammation, The University of Texas Medical Branch, Galveston, TX 77555
| | - Alexander Kurosky
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555; .,National Heart, Lung, and Blood Institute Proteomics Center Program in Airway Inflammation, The University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
29
|
Chachi L, Gavrila A, Tliba O, Amrani Y. Abnormal corticosteroid signalling in airway smooth muscle: mechanisms and perspectives for the treatment of severe asthma. Clin Exp Allergy 2016; 45:1637-46. [PMID: 26017278 DOI: 10.1111/cea.12577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Growing in vivo evidence supports the concept that airway smooth muscle produces various immunomodulatory factors that could contribute to asthma pathogenesis via the regulation of airway inflammation, airway narrowing and remodelling. Targeting ASM using bronchial thermoplasty has provided undeniable clinical benefits for patients with uncontrolled severe asthma who are refractory to glucocorticoid therapy. The present review will explain why the failure of glucocorticoids to adequately manage patients with severe asthma could derive from their inability to affect the immunomodulatory potential of ASM. We will support the view that ASM sensitivity to glucocorticoid therapy can be blunted in severe asthma and will describe some of the factors and mechanisms that could be responsible for glucocorticoid insensitivity.
Collapse
Affiliation(s)
- L Chachi
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - A Gavrila
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - O Tliba
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, PA, USA
| | - Y Amrani
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| |
Collapse
|
30
|
The Interactome of the Glucocorticoid Receptor and Its Influence on the Actions of Glucocorticoids in Combatting Inflammatory and Infectious Diseases. Microbiol Mol Biol Rev 2016; 80:495-522. [PMID: 27169854 DOI: 10.1128/mmbr.00064-15] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) have been widely used for decades as a first-line treatment for inflammatory and autoimmune diseases. However, their use is often hampered by the onset of adverse effects or resistance. GCs mediate their effects via binding to glucocorticoid receptor (GR), a transcription factor belonging to the family of nuclear receptors. An important aspect of GR's actions, including its anti-inflammatory capacity, involves its interactions with various proteins, such as transcription factors, cofactors, and modifying enzymes, which codetermine receptor functionality. In this review, we provide a state-of-the-art overview of the protein-protein interactions (PPIs) of GR that positively or negatively affect its anti-inflammatory properties, along with mechanistic insights, if known. Emphasis is placed on the interactions that affect its anti-inflammatory effects in the presence of inflammatory and microbial diseases.
Collapse
|
31
|
Gavrila A, Chachi L, Tliba O, Brightling C, Amrani Y. Effect of the plant derivative Compound A on the production of corticosteroid-resistant chemokines in airway smooth muscle cells. Am J Respir Cell Mol Biol 2016; 53:728-37. [PMID: 25897650 DOI: 10.1165/rcmb.2014-0477oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Preclinical models of human conditions including asthma showed the therapeutic potential of Compound A (CpdA), a dissociated glucocorticoid (GC) receptor (GRα) ligand. Whether CpdA inhibits GC resistance, a central feature of severe asthma, has not been addressed. We investigated whether CpdA modulates cytokine-induced GC resistance in human airway smooth muscle (ASM) cells. Healthy and asthmatic ASM cells were treated with TNF-α/IFN-γ for 24 hours in the presence or absence of CpdA. ELISA and quantitative PCR assays were used to assess the effect of CpdA on chemokine expression. Activation of GRα by CpdA was assessed by quantitative PCR, immunostaining, and receptor antagonism using RU486. An effect of CpdA on the transcription factor interferon regulatory factor 1 (IRF-1) was investigated using immunoblot, immunostaining, and small interfering RNA (siRNA) knockdown. CpdA inhibited production of fluticasone-resistant chemokines CCL5, CX3CL1, and CXCL10 at protein and mRNA levels in both asthmatic and healthy cells. CpdA failed to induce expression of GC-induced Leucine Zipper while transiently inducing mitogen-activated protein kinase phosphatase 1 (MKP-1) at both mRNA and protein levels. CpdA inhibitory action was not associated with GRα nuclear translocation, nor was it prevented by RU486 antagonism. Activation of IRF-1 by TNF-α/IFN-γ was inhibited by CpdA. IRF-1 siRNA knockdown reduced cytokine-induced CCL5 and CX3CL1 production. siRNA MKP-1 prevented the inhibitory effect of CpdA on cytokine-induced CXCL10 production. For the first time, we show that CpdA inhibits the production of GC-resistant chemokines via GRα-independent mechanisms involving the inhibition of IRF-1 and up-regulation of MKP-1. Thus, targeting CpdA-sensitive pathways in ASM cells represents an alternative therapeutic approach to treat GC resistance in asthma.
Collapse
Affiliation(s)
- Adelina Gavrila
- 1 Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; and
| | - Latifa Chachi
- 1 Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; and
| | - Omar Tliba
- 2 Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, Pennsylvania
| | - Christopher Brightling
- 1 Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; and
| | - Yassine Amrani
- 1 Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; and
| |
Collapse
|
32
|
Pearson H, Britt RD, Pabelick CM, Prakash Y, Amrani Y, Pandya HC. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone. Pediatr Res 2015; 78:650-6. [PMID: 26331770 PMCID: PMC4725051 DOI: 10.1038/pr.2015.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 06/11/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. METHODS Cultured fetal human ASM cells stimulated with TNF-α (0-20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. RESULTS CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. CONCLUSION Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases.
Collapse
MESH Headings
- Antibodies/pharmacology
- Cells, Cultured
- Chemokine CCL5/genetics
- Chemokine CCL5/metabolism
- Chemokine CXCL10/genetics
- Chemokine CXCL10/metabolism
- Chemotaxis, Leukocyte/drug effects
- Cytokines/immunology
- Cytokines/metabolism
- Dose-Response Relationship, Drug
- Fluticasone/pharmacology
- Gestational Age
- Glucocorticoids/pharmacology
- Humans
- Interleukin-8/genetics
- Interleukin-8/metabolism
- Lung/drug effects
- Lung/embryology
- Lung/immunology
- Lung/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation
- Receptors, Glucocorticoid/agonists
- Receptors, Glucocorticoid/metabolism
- Receptors, Tumor Necrosis Factor, Type I/drug effects
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/drug effects
- Receptors, Tumor Necrosis Factor, Type II/immunology
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Serine
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Helen Pearson
- Department of Infection, Immunity and inflammation, University of Leicester, Leicester, UK
| | - Rodney D. Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Christine M. Pabelick
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Y.S. Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Yassine Amrani
- Department of Infection, Immunity and inflammation, University of Leicester, Leicester, UK
- Institute of Lung Health, Glenfield Hospital Leicester, Leicester, UK
| | - Hitesh C. Pandya
- Department of Infection, Immunity and inflammation, University of Leicester, Leicester, UK
- Institute of Lung Health, Glenfield Hospital Leicester, Leicester, UK
| |
Collapse
|
33
|
Peripheral blood IRF1 expression as a marker for glucocorticoid sensitivity. Pharmacogenet Genomics 2015; 25:126-33. [PMID: 25564375 DOI: 10.1097/fpc.0000000000000116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Despite of the common usage of glucocorticoids (GCs), a significant portion of asthma patients exhibit GC insensitivity. This could be mediated by diverse mechanisms, including genomics. Recent work has suggested that measuring changes in gene expression may provide more predictive information about GC insensitivity than baseline gene expression alone, and that expression changes in peripheral blood may be reflective of those in the airway. METHODS We performed in silico discovery using gene expression omnibus (GEO) data that evaluated GC effect on gene expression in multiple tissue types. Subsequently, candidate genes whose expression levels are affected by GC were examined in cell lines and in primary cells derived from human airway and blood. RESULTS Through gene expression omnibus analysis, we identified interferon regulator factor 1 (IRF1), whose expression is affected by GC treatment in airway smooth muscle cells, normal human bronchial epithelial (NHBE) cells, and lymphoblastoid cell lines (LCLs). Significant IRF1 downregulation post GC exposure was confirmed in two cultured airway epithelial cell lines and primary NHBE cells (P<0.05). We observed large interindividual variation in GC-induced IRF1 expression changes among primary NHBE cells tested. Significant downregulation of IRF1 was also observed in six randomly selected LCLs (P<0.05), with variable degrees of downregulation among different samples. In peripheral blood mononuclear cells obtained from healthy volunteers, variable downregulation of IRF1 by GC was also shown. NFKB1, a gene whose expression is known to be downregulated by GC and the degree of downregulation of which is reflective of GC response, was used as a control in our study. IRF1 shows more consistent downregulation across tissue types when compared with NFKB1. CONCLUSION Our results suggest that GC-induced IRF1 gene expression changes in peripheral blood could be used as a marker to reflect GC response in the airway.
Collapse
|
34
|
Pan XY, Wang Y, Su J, Huang GX, Cao DM, Qu S, Lu J. The mechanism and significance of synergistic induction of the expression of plasminogen activator inhibitor-1 by glucocorticoid and transforming growth factor beta in human ovarian cancer cells. Mol Cell Endocrinol 2015; 407:37-45. [PMID: 25770462 DOI: 10.1016/j.mce.2015.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 11/17/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) plays a key role in tissue remodeling and tumor development by suppression of plasminogen activator function. Glucocorticoids (GCs) and transforming growth factor beta (TGF-β) signal pathways cross-talk to regulate gene expression, but the mechanism is poorly understood. Here we investigated the mechanism and significance of co-regulation of PAI-1 by TGF-β and dexamethasone (DEX), a synthetic glucocorticoid in ovarian cancer cells. We found that TGF-β and DEX showed rapidly synergistic induction of PAI-1 expression, which contributed to the early pro-adhesion effects. The synergistic induction effect was accomplished by several signal pathways, including GC receptor (GR) pathway and TGF-β-activated p38MAPK, ERK and Smad3 pathways. TGF-β-activated p38MAPK and ERK pathways cross-talked with GR pathway to augment the expression of PAI-1 through enhancing DEX-induced GR phosphorylation at Ser211 in ovarian cancer cells. These findings reveal possible novel mechanisms by which TGF-β pathways cooperatively cross-talk with GR pathway to regulate gene expression.
Collapse
Affiliation(s)
- Xiao-yu Pan
- Department of Endocrinology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China
| | - Yan Wang
- Department of Pathophysiology, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Jie Su
- Department of Pathophysiology, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Gao-xiang Huang
- Department of Pathophysiology, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Dong-mei Cao
- Department of Pathophysiology, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Shen Qu
- Department of Endocrinology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China
| | - Jian Lu
- Department of Pathophysiology, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| |
Collapse
|
35
|
Khorasani N, Baker J, Johnson M, Chung KF, Bhavsar PK. Reversal of corticosteroid insensitivity by p38 MAPK inhibition in peripheral blood mononuclear cells from COPD. Int J Chron Obstruct Pulmon Dis 2015; 10:283-91. [PMID: 25678784 PMCID: PMC4322842 DOI: 10.2147/copd.s72403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Corticosteroids (CS) have limited efficacy in the treatment of chronic obstructive pulmonary disease (COPD). p38 mitogen-activated protein kinase (MAPK) activation is increased in lung macrophages of COPD. We investigated whether p38 MAPK inhibition can modulate CS insensitivity of peripheral blood mononuclear cells (PBMCs) from patients with COPD. METHODS PBMCs from patients with COPD (n=8) or healthy smokers (n=8) were exposed to lipopolysaccharide (LPS) with a selective p38 MAPK inhibitor (GW856553; 10(-10)-10(-6) M), with dexamethasone (10(-10)-10(-6) M), or with both. Phosphorylated glucocorticoid receptor (GR) was measured by Western blot. RESULTS Baseline (P<0.01) and LPS-induced (P<0.05) CXCL8 release was greater in PBMCs from COPD compared to healthy smokers. Inhibition of LPS-induced CXCL8 release by dexamethasone (10(-6) M) was reduced, and baseline and LPS-induced p38 MAPK activation increased in PBMCs of COPD. GW856553 (10(-9) and 10(-10) M) synergistically increased the inhibitory effect of dexamethasone (10(-8) and 10(-6) M) on LPS-induced CXCL8 release in COPD. Similar results were obtained for IL-6 release. GW856553 inhibited dexamethasone- and LPS-activated phosphorylation of serine 211 on GR. CS insensitivity in COPD PBMCs is reversed by inhibition of p38 MAPK activity, partly by preventing phosphorylation of GR at serine 211. CONCLUSION p38 MAPK inhibition may be beneficial in COPD by restoring CS sensitivity.
Collapse
Affiliation(s)
- Nadia Khorasani
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust Hospital, London, UK
| | - Josephine Baker
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust Hospital, London, UK
| | | | - Kian Fan Chung
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust Hospital, London, UK
| | - Pankaj K Bhavsar
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust Hospital, London, UK
| |
Collapse
|
36
|
Rider CF, Shah S, Miller-Larsson A, Giembycz MA, Newton R. Cytokine-induced loss of glucocorticoid function: effect of kinase inhibitors, long-acting β(2)-adrenoceptor [corrected] agonist and glucocorticoid receptor ligands. PLoS One 2015; 10:e0116773. [PMID: 25625944 PMCID: PMC4308083 DOI: 10.1371/journal.pone.0116773] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/13/2014] [Indexed: 11/19/2022] Open
Abstract
Acting on the glucocorticoid receptor (NR3C1), glucocorticoids are widely used to treat inflammatory diseases. However, glucocorticoid resistance often leads to suboptimal asthma control. Since glucocorticoid-induced gene expression contributes to glucocorticoid activity, the aim of this study was to use a 2 × glucocorticoid response element (GRE) reporter and glucocorticoid-induced gene expression to investigate approaches to combat cytokine-induced glucocorticoid resistance. Pre-treatment with tumor necrosis factor-α (TNF) or interleukin-1β inhibited dexamethasone-induced mRNA expression of the putative anti-inflammatory genes RGS2 and TSC22D3, or just TSC22D3, in primary human airway epithelial and smooth muscle cells, respectively. Dexamethasone-induced DUSP1 mRNA was unaffected. In human bronchial epithelial BEAS-2B cells, dexamethasone-induced TSC22D3 and CDKN1C expression (at 6 h) was reduced by TNF pre-treatment, whereas DUSP1 and RGS2 mRNAs were unaffected. TNF pre-treatment also reduced dexamethasone-dependent 2×GRE reporter activation. This was partially reversed by PS-1145 and c-jun N-terminal kinase (JNK) inhibitor VIII, inhibitors of IKK2 and JNK, respectively. However, neither inhibitor affected TNF-dependent loss of dexamethasone-induced CDKN1C or TSC22D3 mRNA. Similarly, inhibitors of the extracellular signal-regulated kinase, p38, phosphoinositide 3-kinase or protein kinase C pathways failed to attenuate TNF-dependent repression of the 2×GRE reporter. Fluticasone furoate, fluticasone propionate and budesonide were full agonists relative to dexamethasone, while GSK9027, RU24858, des-ciclesonide and GW870086X were partial agonists on the 2×GRE reporter. TNF reduced reporter activity in proportion with agonist efficacy. Full and partial agonists showed various degrees of agonism on RGS2 and TSC22D3 expression, but were equally effective at inducing CDKN1C and DUSP1, and did not affect the repression of CDKN1C or TSC22D3 expression by TNF. Finally, formoterol-enhanced 2×GRE reporter activity was also proportional to agonist efficacy and functionally reversed repression by TNF. As similar effects were apparent on glucocorticoid-induced gene expression, the most effective strategy to overcome glucocorticoid resistance in this model was addition of formoterol to high efficacy NR3C1 agonists.
Collapse
Affiliation(s)
- Christopher F. Rider
- Airways Inflammation Research Group, Snyder Institute of Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Suharsh Shah
- Airways Inflammation Research Group, Snyder Institute of Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Mark A. Giembycz
- Airways Inflammation Research Group, Snyder Institute of Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Airways Inflammation Research Group, Snyder Institute of Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
37
|
Keenan CR, Radojicic D, Li M, Radwan A, Stewart AG. Heterogeneity in mechanisms influencing glucocorticoid sensitivity: the need for a systems biology approach to treatment of glucocorticoid-resistant inflammation. Pharmacol Ther 2015; 150:81-93. [PMID: 25596317 DOI: 10.1016/j.pharmthera.2015.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 12/14/2022]
Abstract
Glucocorticoids (GCs) have impressive anti-inflammatory and immunosuppressive effects and show a diversity of actions across a variety of cell phenotypes. Implicit in efforts to optimize GCs as anti-inflammatory agents for any or all indications is the notion that the relevant mechanism(s) of action of GCs are fully elucidated. However, recent advances in understanding GC signalling mechanisms have revealed remarkable complexity and contextual dependence, calling into question whether the mechanisms of action are sufficiently well-described to embark on optimization. In the current review, we address evidence for differences in the mechanism of action in different cell types and contexts, and discuss contrasts in mechanisms of glucocorticoid insensitivity, with a focus on asthma and Chronic Obstructive Pulmonary Disease (COPD). Given this complexity, we consider the potential breadth of impact and selectivity of strategies directed to reversing the glucocorticoid insensitivity.
Collapse
Affiliation(s)
- Christine R Keenan
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Danica Radojicic
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Meina Li
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Asmaa Radwan
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alastair G Stewart
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
38
|
Boardman C, Chachi L, Gavrila A, Keenan CR, Perry MM, Xia YC, Meurs H, Sharma P. Mechanisms of glucocorticoid action and insensitivity in airways disease. Pulm Pharmacol Ther 2014; 29:129-43. [PMID: 25218650 DOI: 10.1016/j.pupt.2014.08.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/18/2014] [Accepted: 08/25/2014] [Indexed: 01/04/2023]
Abstract
Glucocorticoids are the mainstay for the treatment of chronic inflammatory diseases including asthma and chronic obstructive pulmonary disease (COPD). However, it has been recognized that glucocorticoids do not work well in certain patient populations suggesting reduced sensitivity. The ultimate biologic responses to glucocorticoids are determined by not only the concentration of glucocorticoids but also the differences between individuals in glucocorticoid sensitivity, which is influenced by multiple factors. Studies are emerging to understand these mechanisms in detail, which would help in increasing glucocorticoid sensitivity in patients with chronic airways disease. This review aims to highlight both classical and emerging concepts of the anti-inflammatory mechanisms of glucocorticoids and also review some novel strategies to overcome steroid insensitivity in airways disease.
Collapse
Affiliation(s)
- C Boardman
- Airway Disease, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - L Chachi
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - A Gavrila
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - C R Keenan
- Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| | - M M Perry
- Airway Disease, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Y C Xia
- Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| | - H Meurs
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - P Sharma
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, 4C46 HRIC, 3280 Hospital Dr NW, Calgary, AB, Canada T2N 4N1.
| |
Collapse
|
39
|
Functional proteomics for the characterization of impaired cellular responses to glucocorticoids in asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 795:255-70. [PMID: 24162914 DOI: 10.1007/978-1-4614-8603-9_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In chronic airway inflammatory disorders, such as asthma, glucocorticoid (GC) insensitivity is a challenging clinical problem associated with life-threatening disease progression and the potential development of serious side effects. The mechanism of steroid resistance in asthma remains unclear and may be multifactorial. Excluding noncompliance with GC treatment, abnormal steroid pharmacokinetics, and rare genetic defects in the glucocorticoid receptor (GR), the majority of GC insensitivity in asthma can be attributed to secondary defects related to GR function. Airway inflammatory cells obtained from patients with GC-resistant asthma show a number of abnormalities in cell immune responses to GC, which suggests that there is a causative defect in GR signaling in GC-resistant cells that could be further elucidated by a functional and molecular proteomics approach. Since T cells, eosinophils, and monocytes play a major role in the pathogenesis of airway inflammation, most of the work published to date has focused on these cell types as the primary therapeutic targets in GC-insensitive asthma. We herein review several distinct techniques for the assessment of (1) the cellular response to GCs including the effect of GCs on cell viability, adhesion, and mediator release; (2) the functionality of GC receptors, including phosphorylation of the GR, nuclear translocation, and binding activities; and (3) the characterization of proteins differentially expressed in steroid-resistant cells by comparative 2DE-gel electrophoresis-based techniques and mass spectrometry. These comprehensive approaches are expected to reveal novel candidates for biomarkers of steroid insensitivity, which may lead to the development of effective therapeutic interventions for patients with chronic steroid-resistant asthma.
Collapse
|
40
|
Keenan CR, Mok JS, Harris T, Xia Y, Salem S, Stewart AG. Bronchial epithelial cells are rendered insensitive to glucocorticoid transactivation by transforming growth factor-β1. Respir Res 2014; 15:55. [PMID: 24886104 PMCID: PMC4021546 DOI: 10.1186/1465-9921-15-55] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/25/2014] [Indexed: 12/16/2022] Open
Abstract
Background We have previously shown that transforming growth factor-beta (TGF-beta) impairs glucocorticoid (GC) function in pulmonary epithelial cell-lines. However, the signalling cascade leading to this impairment is unknown. In the present study, we provide the first evidence that TGF-beta impairs GC action in differentiated primary air-liquid interface (ALI) human bronchial epithelial cells (HBECs). Using the BEAS-2B bronchial epithelial cell line, we also present a systematic examination of the known pathways activated by TGF-beta, in order to ascertain the molecular mechanism through which TGF-beta impairs epithelial GC action. Methods GC transactivation was measured using a Glucocorticoid Response Element (GRE)–Secreted embryonic alkaline phosphatase (SEAP) reporter and measuring GC-inducible gene expression by qRT-PCR. GC transrepression was measured by examining GC regulation of pro-inflammatory mediators. TGF-beta signalling pathways were investigated using siRNA and small molecule kinase inhibitors. GRα level, phosphorylation and sub-cellular localisation were determined by western blotting, immunocytochemistry and localisation of GRα–Yellow Fluorescent Protein (YFP). Data are presented as the mean ± SEM for n independent experiments in cell lines, or for experiments on primary HBEC cells from n individual donors. All data were statistically analysed using GraphPad Prism 5.0 (Graphpad, San Diego, CA). In most cases, two-way analyses of variance (ANOVA) with Bonferroni post-hoc tests were used to analyse the data. In all cases, P <0.05 was considered to be statistically significant. Results TGF-beta impaired Glucocorticoid Response Element (GRE) activation and the GC induction of several anti-inflammatory genes, but did not broadly impair the regulation of pro-inflammatory gene expression in A549 and BEAS-2B cell lines. TGF-beta-impairment of GC transactivation was also observed in differentiated primary HBECs. The TGF-beta receptor (ALK5) inhibitor SB431541 fully prevented the GC transactivation impairment in the BEAS-2B cell line. However, neither inhibitors of the known downstream non-canonical signalling pathways, nor knocking down Smad4 by siRNA prevented the TGF-beta impairment of GC activity. Conclusions Our results indicate that TGF-beta profoundly impairs GC transactivation in bronchial epithelial cells through activating ALK5, but not through known non-canonical pathways, nor through Smad4-dependent signalling, suggesting that TGF-beta may impair GC action through a novel non-canonical signalling mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | - Alastair G Stewart
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Grattan St,, Parkville, VIC Australia.
| |
Collapse
|
41
|
Bouazza B, Debba-Pavard M, Amrani Y, Isaacs L, O'Connell D, Ahamed S, Formella D, Tliba O. Basal p38 mitogen-activated protein kinase regulates unliganded glucocorticoid receptor function in airway smooth muscle cells. Am J Respir Cell Mol Biol 2014; 50:301-15. [PMID: 24024586 DOI: 10.1165/rcmb.2012-0522oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Like many steroid receptors, the glucocorticoid (GC) receptor (GR) is a phosphoprotein. Although there are multiple phosphorylation sites critical for GR transcriptional activity (i.e., serine [S]203, S211, and S226), their respective role in driving GR functions is highly cell specific. We have recently identified protein phosphatase 5 as an essential Ser/Thr phosphatase responsible for impairing GR function via S211 dephosphorylation in airway smooth muscle (ASM) cells. Because p38 mitogen-activated protein kinase (MAPK) directly phosphorylates GR in different cell types in a stimulus- and cell-dependent manner, we investigated the role of p38 MAPK on GR phosphorylation and function in ASM cells. Cells were transfected with 100 nM p38 MAPK small interfering RNA or 2 μg MAPK kinase 3 expression vector (a specific kinase that directly activates p38 MAPK) in the presence or absence of fluticasone (100 nM) and/or p38 MAPK pharmacological inhibitor SB203580. We found that p38 MAPK blockade positively regulates GR nuclear translocation and GR-dependent induction of the steroid-target gene GC-induced leucine zipper in a hormone-independent manner. We also found that p38 MAPK-dependent regulation of GR functions was associated with a differential action on GR phosphorylation at S203 and S211 residues. This study demonstrated that the inactive state of GR in resting conditions is not only ensured by the absence of the GC ligand but also by p38 MAPK-dependent phosphorylation of unliganded GR at specific residues, which appears to be important in determining the overall GC responsiveness of ASM cells.
Collapse
Affiliation(s)
- Belaid Bouazza
- 1 Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, Pennsylvania; and
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Fransson L, Rosengren V, Saha TK, Grankvist N, Islam T, Honkanen RE, Sjöholm Å, Ortsäter H. Mitogen-activated protein kinases and protein phosphatase 5 mediate glucocorticoid-induced cytotoxicity in pancreatic islets and β-cells. Mol Cell Endocrinol 2014; 383:126-36. [PMID: 24361515 DOI: 10.1016/j.mce.2013.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 11/21/2022]
Abstract
Glucocorticoid excess is associated with glucose intolerance and diabetes. In addition to inducing insulin resistance, glucocorticoids impair β-cell function and cause β-cell apoptosis. In this study we show that dexamethasone activates mitogen-activated protein kinases (MAPKs) signaling in MIN6 β-cells, as evident by enhanced phosphorylation of p38 MAPK and c-Jun N-terminal kinase (JNK). In contrast, the integrated stress response pathway was inhibited by dexamethasone. A p38 MAPK inhibitor attenuated dexamethasone-induced apoptosis in β-cells and isolated islets and decreased glucocorticoid receptor phosphorylation at S220. In contrast, a JNK inhibitor augmented DNA fragmentation and dexamethasone-induced formation of cleaved caspase 3. We also show that inhibition of protein phosphatase 5 (PP5) augments apoptosis in dexamethasone-exposed islets and β-cells, with a concomitant activation of p38 MAPK. In conclusion, our data provide evidence that in islets and β-cells, p38 MAPK and JNK phosphorylation work in concert with PP5 to regulate the cytotoxic effects exerted by glucocorticoids.
Collapse
Affiliation(s)
- Liselotte Fransson
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Victoria Rosengren
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Titu Kumar Saha
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Nina Grankvist
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Tohidul Islam
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Richard E Honkanen
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Department of Internal Medicine, Södertälje Hospital, SE 152 86 Södertälje, Sweden
| | - Åke Sjöholm
- Department of Internal Medicine, Södertälje Hospital, SE 152 86 Södertälje, Sweden; Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, Mobile, AL, USA
| | - Henrik Ortsäter
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Research Unit, Södertälje Hospital, SE-152 86 Södertälje, Sweden.
| |
Collapse
|
43
|
Dominance of the strongest: inflammatory cytokines versus glucocorticoids. Cytokine Growth Factor Rev 2013; 25:21-33. [PMID: 24412262 DOI: 10.1016/j.cytogfr.2013.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/15/2013] [Indexed: 02/08/2023]
Abstract
Pro-inflammatory cytokines are involved in the pathogenesis of many inflammatory diseases, and the excessive expression of many of them is normally counteracted by glucocorticoids (GCs), which are steroids that bind to the glucocorticoid receptor (GR). Hence, GCs are potent inhibitors of inflammation, and they are widely used to treat inflammatory diseases, such as asthma, rheumatoid arthritis and inflammatory bowel disease. However, despite the success of GC therapy, many patients show some degree of GC unresponsiveness, called GC resistance (GCR). This is a serious problem because it limits the full therapeutic exploitation of the anti-inflammatory power of GCs. Patients with reduced GC responses often have higher cytokine levels, and there is a complex interplay between GCs and cytokines: GCs downregulate pro-inflammatory cytokines while cytokines limit GC action. Treatment of inflammatory diseases with GCs is successful when GCs dominate. But when cytokines overrule the anti-inflammatory actions of GCs, patients become GC insensitive. New insights into the molecular mechanisms of GR-mediated actions and GCR are needed for the design of more effective GC-based therapies.
Collapse
|
44
|
Grankvist N, Honkanen RE, Sjöholm Å, Ortsäter H. Genetic disruption of protein phosphatase 5 in mice prevents high-fat diet feeding-induced weight gain. FEBS Lett 2013; 587:3869-74. [PMID: 24220247 DOI: 10.1016/j.febslet.2013.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/30/2013] [Accepted: 10/15/2013] [Indexed: 12/31/2022]
Abstract
The role of serine/threonine protein phosphatase 5 (PP5) in the development of obesity and insulin resistance associated with high-fat diet-feeding (HFD) was examined using PP5-deficient mice (Ppp5c(-/-)). Despite similar caloric intake, Ppp5c(-/-) mice on HFD gained markedly less weight and did not accumulate visceral fat compared to wild-type littermates (Ppp5c(+/+)). On a control diet, Ppp5c(-/-) mice had markedly improved glucose control compared to Ppp5c(+/+) mice, an effect diminished by HFD. However, even after 10 weeks of HFD glucose control in Ppp5c(-/-) mice was similar to that observed in Ppp5c(+/+) mice on the control diet. Thus, PP5 deficiency confers protection against HFD-induced weight gain in mice.
Collapse
Affiliation(s)
- N Grankvist
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
45
|
Chachi L, Shikotra A, Duffy SM, Tliba O, Brightling C, Bradding P, Amrani Y. Functional KCa3.1 channels regulate steroid insensitivity in bronchial smooth muscle cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:2624-2636. [PMID: 23904164 DOI: 10.4049/jimmunol.1300104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Identifying the factors responsible for relative glucocorticosteroid (GC) resistance present in patients with severe asthma and finding tools to reverse it are of paramount importance. In asthma we see in vivo evidence of GC-resistant pathways in airway smooth muscle (ASM) bundles that can be modeled in vitro by exposing cultured ASM cells to TNF-α/IFN-γ. This action drives GC insensitivity via protein phosphatase 5-dependent impairment of GC receptor phosphorylation. In this study, we investigated whether KCa3.1 ion channels modulate the activity of GC-resistant pathways using our ASM model of GC insensitivity. Immunohistochemical staining of endobronchial biopsies revealed that KCa3.1 channels are localized to the plasma membrane and nucleus of ASM in both healthy controls and asthmatic patients, irrespective of disease severity. Western blot assays and immunofluorescence staining confirmed the nuclear localization of KCa3.1 channels in ASM cells. The functional importance of KCa3.1 channels in the regulation of GC-resistant chemokines induced by TNF-α/IFN-γ was assessed using complementary inhibitory strategies, including KCa3.1 blockers (TRAM-34 and ICA-17043) or KCa3.1-specific small hairpin RNA delivered by adenoviruses. KCa3.1 channel blockade led to a significant reduction of fluticasone-resistant CX3CL1, CCL5, and CCL11 gene and protein expression. KCa3.1 channel blockade also restored fluticasone-induced GC receptor-α phosphorylation at Ser(211) and transactivation properties via the suppression of cytokine-induced protein phosphatase 5 expression. The effect of KCa3.1 blockade was evident in ASM cells from both healthy controls and asthmatic subjects. In summary, KCa3.1 channels contribute to the regulation of GC-resistant inflammatory pathways in ASM cells: blocking KCa3.1 channels may enhance corticosteroid activity in severe asthma.
Collapse
Affiliation(s)
- Latifa Chachi
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester, LE1 7RH, U.K
| | - Aarti Shikotra
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester, LE1 7RH, U.K
| | - S Mark Duffy
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester, LE1 7RH, U.K
| | - Omar Tliba
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, PA, USA
| | - Christopher Brightling
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester, LE1 7RH, U.K
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester, LE1 7RH, U.K
| | - Yassine Amrani
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester, LE1 7RH, U.K
| |
Collapse
|
46
|
Webster Marketon JI, Corry J. Respiratory syncytial virus (RSV) suppression of glucocorticoid receptor phosphorylation does not account for repression of transactivation. FEBS Open Bio 2013; 3:305-9. [PMID: 23951552 PMCID: PMC3741917 DOI: 10.1016/j.fob.2013.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/28/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022] Open
Abstract
Respiratory syncytial virus (RSV)-induced bronchiolitis in infants, although inflammatory in nature, is not responsive to glucocorticoids. We have recently shown that RSV-infected lung epithelial cells have impaired glucocorticoid receptor (GR)-mediated transactivation. In this study, we show that the N-terminal region of GR is required for RSV repression of GR transactivation and that RSV infection of lung epithelial cells reduces ligand-dependent GR phosphorylation at serine 211 and serine 226. However, we also show that these changes in GR phosphorylation do not account for the RSV repression of GR transactivation suggesting other regions of the GR N-terminus must also be involved.
Collapse
Affiliation(s)
- Jeanette I Webster Marketon
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, United States ; Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, United States
| | | |
Collapse
|
47
|
Hu A, Josephson MB, Diener BL, Nino G, Xu S, Paranjape C, Orange JS, Grunstein MM. Pro-asthmatic cytokines regulate unliganded and ligand-dependent glucocorticoid receptor signaling in airway smooth muscle. PLoS One 2013; 8:e60452. [PMID: 23593222 PMCID: PMC3617099 DOI: 10.1371/journal.pone.0060452] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/26/2013] [Indexed: 01/13/2023] Open
Abstract
To elucidate the regulation of glucocorticoid receptor (GR) signaling under pro-asthmatic conditions, cultured human airway smooth muscle (HASM) cells were treated with proinflammatory cytokines or GR ligands alone and in combination, and then examined for induced changes in ligand-dependent and -independent GR activation and downstream signaling events. Ligand stimulation with either cortisone or dexamethsone (DEX) acutely elicited GR translocation to the nucleus and, comparably, ligand-independent stimulation either with the Th2 cytokine, IL-13, or the pleiotropic cytokine combination, IL-1β/TNFα, also acutely evoked GR translocation. The latter response was potentiated by combined exposure of cells to GR ligand and cytokine. Similarly, treatment with either DEX or IL-13 alone induced GR phosphorylation at its serine-211 residue (GRSer211), denoting its activated state, and combined treatment with DEX+IL-13 elicited heightened and sustained GRSer211 phosphorylation. Interestingly, the above ligand-independent GR responses to IL-13 alone were not associated with downstream GR binding to its consensus DNA sequence or GR transactivation, whereas both DEX-induced GR:DNA binding and transcriptional activity were significantly heightened in the presence of IL-13, coupled to increased recruitment of the transcriptional co-factor, MED14. The stimulated GR signaling responses to DEX were prevented in IL-13-exposed cells wherein GRSer211 phosphorylation was suppressed either by transfection with specific serine phosphorylation-deficient mutant GRs or treatment with inhibitors of the MAPKs, ERK1/2 and JNK. Collectively, these novel data highlight a heretofore-unidentified homeostatic mechanism in HASM cells that involves pro-asthmatic cytokine-driven, MAPK-mediated, non-ligand-dependent GR activation that confers heightened glucocorticoid ligand-stimulated GR signaling. These findings raise the consideration that perturbations in this homeostatic cytokine-driven GR signaling mechanism may be responsible, at least in part, for the insensirtivity to glucocorticoid therapy that is commonly seen in individuals with severe asthma.
Collapse
Affiliation(s)
- Aihua Hu
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania Perlman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Maureen B. Josephson
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania Perlman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Barry L. Diener
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania Perlman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Gustavo Nino
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania Perlman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Integrative Systems Biology and Division of Pulmonary & Sleep Medicine, Children's National Medical Center, Center for Genetic Medicine Research, George Washington University, Washington, D.C., United States of America
| | - Shuyun Xu
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania Perlman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Chinmay Paranjape
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania Perlman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jordan S. Orange
- Section of Immunology, Allergy and Rheumatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael M. Grunstein
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania Perlman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
48
|
Ammit AJ. Glucocorticoid insensitivity as a source of drug targets for respiratory disease. Curr Opin Pharmacol 2013; 13:370-6. [PMID: 23434363 DOI: 10.1016/j.coph.2013.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 01/24/2013] [Accepted: 02/04/2013] [Indexed: 11/25/2022]
Abstract
Glucocorticoids (corticosteroids) are effective and clinically useful medicines for repressing inflammation in lung disease; however, the number of respiratory conditions that have been recognized to be refractory or insensitive to glucocorticoids is on the rise--either due to an inherent difference in the glucocorticoid sensitivity as part of the disease process or due to exogenous stressors such as cigarette smoke and other oxidative insults. Independent of causality, the aim of future therapeutic advances to conquer this frontier will no doubt be based on our growing knowledge of molecular mechanisms underlying glucocorticoid insensitivity in respiratory diseases. The current article aims to highlight the key molecular mechanisms responsible for glucocorticoid insensitivity in asthma and COPD. This new knowledge will ultimately allow us to enhance lung health by restoring glucocorticoid responsiveness in respiratory disease. In this way, our increased understanding of corticosteroid insensitivity can be exploited as a source of drug targets for respiratory disease in the future.
Collapse
Affiliation(s)
- Alaina J Ammit
- Faculty of Pharmacy, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
49
|
Matsumura Y. Clinical and pathobiological heterogeneity of asthma—Mechanisms of severe and glucocorticoid-resistant asthma. Health (London) 2013. [DOI: 10.4236/health.2013.52a046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|