1
|
Wu M, Qiu B, Xu Y, Mao Y, Qubi Y, Zhao X, Qin G, Du X. The expression and significance of nasal mucosal glandular hyperplasia and eosinophil infiltration in chronic rhinosinusitis. Acta Otolaryngol 2025:1-6. [PMID: 40237611 DOI: 10.1080/00016489.2025.2489644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND The pathophysiological mechanisms underlying nasal mucosal glandular changes in chronic rhinosinusitis (CRS) remains poorly understood. OBJECTIVES This study aimed to examine nasal mucosal glandular density and eosinophil (Eos) infiltration in CRS patients and their role in disease pathogenesis. MATERIALS AND METHODS HE staining was used to assess glandular density and Eos infiltration in nasal mucosal lesion tissues from 86 CRS patients during FESS (16 CRS without nasal polyps (CRSsNP), 55 non-eosinophilic CRS with nasal polyps (nECRSwNP), and 15 eosinophilic CRSwNP (ECRSwNP)). Immunohistochemical analysis was conducted to evaluate eosinophil cationic protein (ECP), lysozyme, and immunoglobulin A (IgA) expression within these tissues. The Kruskal-Wallis test was used to reveal the statistical difference in therapeutic efficacy among the groups. RESULTS The CRSsNP group showed nasal mucosal glandular density of '+++/++' with minimal Eos infiltration, and 94% achieved control. The nECRSwNP group exhibited atypical glandular hyperplasia and Eos infiltration, with 22% achieving complete control, 51% partial control, and 27% no control. The ECRSwNP group had significant Eos infiltration '++/+++' and reduced glands, with 93% showing uncontrolled conditions. CONCLUSIONS AND SIGNIFICANCE The findings suggest that extensive Eos infiltration and ECP secretion contribute to glandular and epithelial damage, reducing lysozyme and IgA production. These changes may promote chronic inflammation and increase the likelihood of nasal polyp recurrence.
Collapse
Affiliation(s)
- Minman Wu
- Otolaryngological Department of First Affiliated Hospital, First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Bowen Qiu
- Otolaryngological Department of First Affiliated Hospital, First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Ying Xu
- Pathology Department of First Affiliated Hospital, First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yuaner Mao
- Otolaryngological Department of First Affiliated Hospital, First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yizuo Qubi
- Otolaryngological Department of First Affiliated Hospital, First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xiyu Zhao
- Pathology Department of First Affiliated Hospital, First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Guanggui Qin
- Pathology Department of First Affiliated Hospital, First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xiaoxuan Du
- Otolaryngological Department of First Affiliated Hospital, First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
2
|
Yang Y, Li S, Xu H. BPIFA1 alleviates allergic rhinitis by regulating the NF-κB signaling pathway and Treg/Th17 balance. Int J Rheum Dis 2024; 27:e15372. [PMID: 39450979 DOI: 10.1111/1756-185x.15372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/20/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
AIM Allergic rhinitis (AR) is an allergic condition characterized by inflammation of the nasal mucosa. Bacterial permeability-increasing family member A1 (BPIFA1) exhibits anti-inflammatory properties; however, its impact on AR remains unclear. Aim of this study is to investigate the expression and function of BPIFA1 in AR and its influence on inflammation and immune regulation in a mouse model of AR induced by ovalbumin (OVA). METHODS The expression of BPIFA1 was analyzed using quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). Morphological assessments of nasal mucosal tissues were conducted. Levels of inflammatory mediators in nasal lavage fluid (NALF) and serum were quantified using enzyme-linked immunosorbent assay (ELISA) kits. Protein expressions of BPIFA1, phosphorylated and total p65 (p-p65/p65), and IκBα were evaluated through Western blot analysis. The total cell counts, including epithelial cells, eosinophils, and lymphocytes in NALF, were determined using a hemocytometer. A mouse model of AR was established by OVA management. RESULTS BPIFA1 expression was found to be reduced in the nasal mucosa tissues of patients with AR, suggesting a potential role in the disease's progression. We successfully developed a mouse model of AR, where BPIFA1 was similarly downregulated, indicating its possible involvement in modulating the NF-κB signaling pathway. Overexpression of BPIFA1 in this model attenuated inflammation and allergic responses by inhibiting the NF-κB pathway. Additionally, overexpression of BPIFA1 promoted the differentiation of regulatory T cells (Treg) and inhibited the differentiation of T helper 17 cells (Th17) in the NALF of AR mice, further demonstrating its regulatory impact on immune responses. The study confirmed that BPIFA1 upregulation reduced the levels of inflammatory cytokines TNF-α and IL-6, decreased infiltration of inflammatory cells, and modulated antigen-specific immunoglobulin levels and histamine in serum. CONCLUSION BPIFA1 mitigated both inflammatory and allergic responses in AR mice induced by OVA through the modulation of the NF-κB signaling pathway and the balance between regulatory T cells (Treg) and T helper 17 cells (Th17). These findings suggest that BPIFA1 could serve as a novel biomarker and therapeutic target for AR, offering potential for the development of targeted treatments to improve patient outcomes.
Collapse
Affiliation(s)
- Ying Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xian City, 710000, China
| | - Shidong Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xian City, 710000, China
| | - Hongyan Xu
- Department of Stomatology, Shaanxi Provincial People's Hospital, Xian City, China
| |
Collapse
|
3
|
Iannuzo N, Welfley H, Li NC, Johnson MDL, Rojas-Quintero J, Polverino F, Guerra S, Li X, Cusanovich DA, Langlais PR, Ledford JG. CC16 drives VLA-2-dependent SPLUNC1 expression. Front Immunol 2023; 14:1277582. [PMID: 38053993 PMCID: PMC10694244 DOI: 10.3389/fimmu.2023.1277582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
Rationale CC16 (Club Cell Secretory Protein) is a protein produced by club cells and other non-ciliated epithelial cells within the lungs. CC16 has been shown to protect against the development of obstructive lung diseases and attenuate pulmonary pathogen burden. Despite recent advances in understanding CC16 effects in circulation, the biological mechanisms of CC16 in pulmonary epithelial responses have not been elucidated. Objectives We sought to determine if CC16 deficiency impairs epithelial-driven host responses and identify novel receptors expressed within the pulmonary epithelium through which CC16 imparts activity. Methods We utilized mass spectrometry and quantitative proteomics to investigate how CC16 deficiency impacts apically secreted pulmonary epithelial proteins. Mouse tracheal epithelial cells (MTECS), human nasal epithelial cells (HNECs) and mice were studied in naïve conditions and after Mp challenge. Measurements and main results We identified 8 antimicrobial proteins significantly decreased by CC16-/- MTECS, 6 of which were validated by mRNA expression in Severe Asthma Research Program (SARP) cohorts. Short Palate Lung and Nasal Epithelial Clone 1 (SPLUNC1) was the most differentially expressed protein (66-fold) and was the focus of this study. Using a combination of MTECs and HNECs, we found that CC16 enhances pulmonary epithelial-driven SPLUNC1 expression via signaling through the receptor complex Very Late Antigen-2 (VLA-2) and that rCC16 given to mice enhances pulmonary SPLUNC1 production and decreases Mycoplasma pneumoniae (Mp) burden. Likewise, rSPLUNC1 results in decreased Mp burden in mice lacking CC16 mice. The VLA-2 integrin binding site within rCC16 is necessary for induction of SPLUNC1 and the reduction in Mp burden. Conclusion Our findings demonstrate a novel role for CC16 in epithelial-driven host defense by up-regulating antimicrobials and define a novel epithelial receptor for CC16, VLA-2, through which signaling is necessary for enhanced SPLUNC1 production.
Collapse
Affiliation(s)
- Natalie Iannuzo
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Holly Welfley
- Asthma and Airway Disease Research Center, Tucson, AZ, United States
| | | | | | | | | | - Stefano Guerra
- Asthma and Airway Disease Research Center, Tucson, AZ, United States
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona, Tucson, AZ, United States
| | - Xingnan Li
- Department of Medicine, Division of Genetics, Genomics, and Precision Medicine, University of Arizona, Tucson, AZ, United States
| | - Darren A. Cusanovich
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
- Asthma and Airway Disease Research Center, Tucson, AZ, United States
| | - Paul R. Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ, United States
| | - Julie G. Ledford
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
- Asthma and Airway Disease Research Center, Tucson, AZ, United States
| |
Collapse
|
4
|
Yao Y, Borkar NA, Zheng M, Wang S, Pabelick CM, Vogel ER, Prakash YS. Interactions between calcium regulatory pathways and mechanosensitive channels in airways. Expert Rev Respir Med 2023; 17:903-917. [PMID: 37905552 PMCID: PMC10872943 DOI: 10.1080/17476348.2023.2276732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Asthma is a chronic lung disease influenced by environmental and inflammatory triggers and involving complex signaling pathways across resident airway cells such as epithelium, airway smooth muscle, fibroblasts, and immune cells. While our understanding of asthma pathophysiology is continually progressing, there is a growing realization that cellular microdomains play critical roles in mediating signaling relevant to asthma in the context of contractility and remodeling. Mechanosensitive pathways are increasingly recognized as important to microdomain signaling, with Piezo and transient receptor protein (TRP) channels at the plasma membrane considered important for converting mechanical stimuli into cellular behavior. Given their ion channel properties, particularly Ca2+ conduction, a question becomes whether and how mechanosensitive channels contribute to Ca2+ microdomains in airway cells relevant to asthma. AREAS COVERED Mechanosensitive TRP and Piezo channels regulate key Ca2+ regulatory proteins such as store operated calcium entry (SOCE) involving STIM and Orai channels, and sarcoendoplasmic (SR) mechanisms such as IP3 receptor channels (IP3Rs), and SR Ca2+ ATPase (SERCA) that are important in asthma pathophysiology including airway hyperreactivity and remodeling. EXPERT OPINION Physical and/or functional interactions between Ca2+ regulatory proteins and mechanosensitive channels such as TRP and Piezo can toward understanding asthma pathophysiology and identifying novel therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Niyati A Borkar
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Mengning Zheng
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Respiratory and Critical Care Medicine, Guizhou Province People’s Hospital, Guiyang, Guizhou, China
| | - Shengyu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth R Vogel
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - YS Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Clifton C, Niemeyer BF, Novak R, Can UI, Hainline K, Benam KH. BPIFA1 is a secreted biomarker of differentiating human airway epithelium. Front Cell Infect Microbiol 2022; 12:1035566. [PMID: 36519134 PMCID: PMC9744250 DOI: 10.3389/fcimb.2022.1035566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
In vitro culture and differentiation of human-derived airway basal cells under air-liquid interface (ALI) into a pseudostratified mucociliated mucosal barrier has proven to be a powerful preclinical tool to study pathophysiology of respiratory epithelium. As such, identifying differentiation stage-specific biomarkers can help investigators better characterize, standardize, and validate populations of regenerating epithelial cells prior to experimentation. Here, we applied longitudinal transcriptomic analysis and observed that the pattern and the magnitude of OMG, KRT14, STC1, BPIFA1, PLA2G7, TXNIP, S100A7 expression create a unique biosignature that robustly indicates the stage of epithelial cell differentiation. We then validated our findings by quantitative hemi-nested real-time PCR from in vitro cultures sourced from multiple donors. In addition, we demonstrated that at protein-level secretion of BPIFA1 accurately reflects the gene expression profile, with very low quantities present at the time of ALI induction but escalating levels were detectable as the epithelial cells terminally differentiated. Moreover, we observed that increase in BPIFA1 secretion closely correlates with emergence of secretory cells and an anti-inflammatory phenotype as airway epithelial cells undergo mucociliary differentiation under air-liquid interface in vitro.
Collapse
Affiliation(s)
- Clarissa Clifton
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian F. Niemeyer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Richard Novak
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Uryan Isik Can
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kelly Hainline
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Kambez H. Benam
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Kambez H. Benam,
| |
Collapse
|
6
|
SPLUNC1 regulates LPS-induced progression of nasopharyngeal carcinoma and proliferation of myeloid-derived suppressor cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:214. [PMID: 36175598 DOI: 10.1007/s12032-022-01816-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/29/2022] [Indexed: 10/14/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the aggressive malignant tumors with high mortality, and the proliferation of myeloid-derived suppressor cells (MDSCs) could promote the metastasis of NPC through inhibiting the function of T cells. Meanwhile, SPLUNC1 was known to inhibit the malignant behavior of NPC cells, while the detailed function of SPLUNC1 in LPS-modified immune microenvironment of NPC remains unclear. To assess the impact of SPLUNC1 in immune microenvironment during the progression of NPC, NPC cells were exposed to LPS and then co-cultured with MDSCs for 48 h. RT-qPCR and western blot were performed to evaluate the mRNA and protein level of SPLUNC1, CXCL-2 and CXCR-2, respectively. The level of IL-1β, IL-6, TNF-α, PD-L1, Arg-1 and iNOS were tested by ELISA. Meanwhile, the expression of CD33+ was tested by flow cytometry. The expression of CXCL-2 and CXCR-2 in NPC cells was higher, compared to that in NP69 cells. In contrast, SPLUNC1 level in NPC cells was much lower than that in NP69 cells. SPLUNC1 level was negatively correlated with CXCL-2 and CXCR-2. Overexpression of SPLUNC1 reversed LPS-induced inflammatory responses and proliferation in NPC cells. In addition, SPLUNC1 upregulation could reverse LPS-induced proliferation of MDSCs in tumor microenvironment. Meanwhile, SPLUNC1 overexpression could regulate CXCL-2/CXCR-2 axis through decreasing CXCL-2 and CXCR-2 protein and mRNA expression. SPLUNC1 regulates LPS-induced progression of nasopharyngeal carcinoma and proliferation of MDSCs. Thus, our study might provide a theoretical basis for discovering new strategies against NPC.
Collapse
|
7
|
Wrennall JA, Ahmad S, Worthington EN, Wu T, Goriounova AS, Voeller AS, Stewart IE, Ghosh A, Krajewski K, Tilley SL, Hickey AJ, Sassano MF, Tarran R. A SPLUNC1 Peptidomimetic Inhibits Orai1 and Reduces Inflammation in a Murine Allergic Asthma Model. Am J Respir Cell Mol Biol 2022; 66:271-282. [PMID: 34807800 PMCID: PMC8937239 DOI: 10.1165/rcmb.2020-0452oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Orai1 is a plasma membrane Ca2+ channel that mediates store-operated Ca2+ entry (SOCE) and regulates inflammation. Short palate lung and nasal epithelial clone 1 (SPLUNC1) is an asthma gene modifier that inhibits Orai1 and SOCE via its C-terminal α6 region. SPLUNC1 levels are diminished in asthma patient airways. Thus, we hypothesized that inhaled α6 peptidomimetics could inhibit Orai1 and reduce airway inflammation in a murine asthma model. To evaluate α6-Orai1 interactions, we used fluorescent assays to measure Ca2+ signaling, Förster resonance energy transfer, fluorescent recovery after photobleaching, immunostaining, total internal reflection microscopy, and Western blotting. To test whether α6 peptidomimetics inhibited SOCE and decreased inflammation in vivo, wild-type and SPLUNC1-/- mice were exposed to house dust mite (HDM) extract with or without α6 peptide. We also performed nebulization, jet milling, and scanning electron microscopy to evaluate α6 for inhalation. SPLUNC1-/- mice had an exaggerated response to HDM. In BAL-derived immune cells, Orai1 levels increased after HDM exposure in SPLUNC1-/- but not wild-type mice. Inhaled α6 reduced Orai1 levels in mice regardless of genotype. In HDM-exposed mice, α6 dose-dependently reduced eosinophilia and neutrophilia. In vitro, α6 inhibited SOCE in multiple immune cell types, and α6 could be nebulized or jet milled without loss of function. These data suggest that α6 peptidomimetics may be a novel, effective antiinflammatory therapy for patients with asthma.
Collapse
Affiliation(s)
| | | | | | - Tongde Wu
- Department of Cell Biology and Physiology
| | | | | | - Ian E. Stewart
- Center for Engineered Systems, Research Triangle Institute International, Research Triangle Park, North Carolina
| | | | | | - Steven L. Tilley
- Division of Pulmonology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - Anthony J. Hickey
- Center for Engineered Systems, Research Triangle Institute International, Research Triangle Park, North Carolina
| | | | | |
Collapse
|
8
|
Jaiswal AK, Yadav J, Makhija S, Sandey M, Suryawanshi A, Mitra AK, Mishra A. Short palate, lung, and nasal epithelial clone 1 (SPLUNC1) level determines steroid-resistant airway inflammation in aging. Am J Physiol Lung Cell Mol Physiol 2022; 322:L102-L115. [PMID: 34851736 PMCID: PMC8759962 DOI: 10.1152/ajplung.00315.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 01/25/2023] Open
Abstract
Asthma and its heterogeneity change with age. Increased airspace neutrophil numbers contribute to severe steroid-resistant asthma exacerbation in the elderly, which correlates with the changes seen in adults with asthma. However, whether that resembles the same disease mechanism and pathophysiology in aged and adults is poorly understood. Here, we sought to address the underlying molecular mechanism of steroid-resistant airway inflammation development and response to corticosteroid (Dex) therapy in aged mice. To study the changes in inflammatory mechanism, we used a clinically relevant treatment model of house-dust mite (HDM)-induced allergic asthma and investigated lung adaptive immune response in adult (20-22 wk old) and aged (80-82 wk old) mice. Our result indicates an age-dependent increase in airway hyperresponsiveness (AHR), mixed granulomatous airway inflammation comprising eosinophils and neutrophils, and Th1/Th17 immune response with progressive decrease in frequencies and numbers of HDM-bearing dendritic cells (DC) accumulation in the draining lymph node (DLn) of aged mice as compared with adult mice. RNA-Seq experiments of the aged lung revealed short palate, lung, and nasal epithelial clone 1 (SPLUNC1) as one of the steroid-responsive genes, which progressively declined with age and further by HDM-induced inflammation. Moreover, we found increased glycolytic reprogramming, maturation/activation of DCs, the proliferation of OT-II cells, and Th2 cytokine secretion with recombinant SPLUNC1 (rSPLUNC1) treatment. Our results indicate a novel immunomodulatory role of SPLUNC1 regulating metabolic adaptation/maturation of DC. An age-dependent decline in the SPLUNC1 level may be involved in developing steroid-resistant airway inflammation and asthma heterogeneity.
Collapse
Affiliation(s)
- Anil Kumar Jaiswal
- Laboratory of Lung Inflammation, College of Veterinary Medicine, Auburn University, Auburn, Alabama
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Jyoti Yadav
- Laboratory of Lung Inflammation, College of Veterinary Medicine, Auburn University, Auburn, Alabama
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Sangeet Makhija
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Amit Kumar Mitra
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
- Center for Pharmacogenomics and Single-Cell Omics, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Amarjit Mishra
- Laboratory of Lung Inflammation, College of Veterinary Medicine, Auburn University, Auburn, Alabama
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| |
Collapse
|
9
|
Affiliation(s)
- Ross Vlahos
- RMIT University, School of Health and Biomedical Sciences, Bundoora, Victoria, Australia;
| |
Collapse
|
10
|
Chen D, Wu W, Yi L, Feng Y, Chang C, Chen S, Gao J, Chen G, Zhen G. A Potential circRNA-miRNA-mRNA Regulatory Network in Asthmatic Airway Epithelial Cells Identified by Integrated Analysis of Microarray Datasets. Front Mol Biosci 2021; 8:703307. [PMID: 34336929 PMCID: PMC8322703 DOI: 10.3389/fmolb.2021.703307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Asthma is one of the most prevalent chronic respiratory diseases worldwide. Bronchial epithelial cells play a critical role in the pathogenesis of asthma. Circular RNAs (circRNAs) act as microRNA (miRNA) sponges to regulate downstream gene expression. However, the role of epithelial circRNAs in asthma remains to be investigated. This study aims to explore the potential circRNA-miRNA-messenger RNA (mRNA) regulatory network in asthma by integrated analysis of publicly available microarray datasets. Methods: Five mRNA microarray datasets derived from bronchial brushing samples from asthma patients and control subjects were downloaded from the Gene Expression Omnibus (GEO) database. The robust rank aggregation (RRA) method was used to identify robust differentially expressed genes (DEGs) in bronchial epithelial cells between asthma patients and controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to annotate the functions of the DEGs. Protein-protein interaction (PPI) analysis was performed to identify hub genes. Three miRNA databases (Targetscan, miRDB, and miRWalk) were used to predict the miRNAs which potentially target the hub genes. A miRNA microarray dataset derived from bronchial brushings was used to validate the miRNA-mRNA relationships. Finally, a circRNA-miRNA-mRNA network was constructed via the ENCORI database. Results: A total of 127 robust DEGs in bronchial epithelial cells between steroid-naïve asthma patients (n = 272) and healthy controls (n = 165) were identified from five mRNA microarray datasets. Enrichment analyses showed that DEGs were mainly enriched in several biological processes related to asthma, including humoral immune response, salivary secretion, and IL-17 signaling pathway. Nineteen hub genes were identified and were used to construct a potential epithelial circRNA-miRNA-mRNA network. The top 10 competing endogenous RNAs were hsa_circ_0001585, hsa_circ_0078031, hsa_circ_0000552, hsa-miR-30a-3p, hsa-miR-30d-3p, KIT, CD69, ADRA2A, BPIFA1, and GGH. Conclusion: Our study reveals a potential role for epithelial circRNA-miRNA-mRNA network in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Dian Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Wenliang Wu
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Lingling Yi
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Yuchen Feng
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Chenli Chang
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Shengchong Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Jiali Gao
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Gongqi Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Guohua Zhen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| |
Collapse
|
11
|
Khanal S, Webster M, Niu N, Zielonka J, Nunez M, Chupp G, Slade MD, Cohn L, Sauler M, Gomez JL, Tarran R, Sharma L, Dela Cruz CS, Egan M, Laguna T, Britto CJ. SPLUNC1: a novel marker of cystic fibrosis exacerbations. Eur Respir J 2021; 58:13993003.00507-2020. [PMID: 33958427 DOI: 10.1183/13993003.00507-2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/29/2021] [Indexed: 11/05/2022]
Abstract
Acute pulmonary Exacerbations (AE) are episodes of clinical worsening in cystic fibrosis (CF), often precipitated by infection. Timely detection is critical to minimise morbidity and lung function declines associated with acute inflammation during AE. Based on our previous observations that airway protein Short Palate Lung Nasal epithelium Clone 1 (SPLUNC1) is regulated by inflammatory signals, we investigated the use of SPLUNC1 fluctuations to diagnose and predict AE in CF.We enrolled CF participants from two independent cohorts to measure AE markers of inflammation in sputum and recorded clinical outcomes for a 1-year follow-up period.SPLUNC1 levels were high in healthy controls (n=9, 10.7 μg mL-1), and significantly decreased in CF participants without AE (n=30, 5.7 μg mL-1, p=0.016). SPLUNC1 levels were 71.9% lower during AE (n=14, 1.6 μg mL-1, p=0.0034) regardless of age, sex, CF-causing mutation, or microbiology findings. Cytokines Il-1β and TNFα were also increased in AE, whereas lung function did not consistently decrease. Stable CF participants with lower SPLUNC1 levels were much more likely to have an AE at 60 days (HR: 11.49, Standard Error: 0.83, p=0.0033). Low-SPLUNC1 stable participants remained at higher AE risk even one year after sputum collection (HR: 3.21, Standard Error: 0.47, p=0.0125). SPLUNC1 was downregulated by inflammatory cytokines and proteases increased in sputum during AE.In acute CF care, low SPLUNC1 levels could support a decision to increase airway clearance or to initiate pharmacological interventions. In asymptomatic, stable patients, low SPLUNC1 levels could inform changes in clinical management to improve long-term disease control and clinical outcomes in CF.
Collapse
Affiliation(s)
- Sara Khanal
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Megan Webster
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Naiqian Niu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jana Zielonka
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Myra Nunez
- Division of Pediatric Respiratory Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Geoffrey Chupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Martin D Slade
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lauren Cohn
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maor Sauler
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jose L Gomez
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marie Egan
- Division of Pediatric Pulmonology, Allergy, Immunology, and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Theresa Laguna
- Division of Pediatric Respiratory Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clemente J Britto
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
12
|
黄 嫣, 王 明, 王 成, 张 罗. [Antimicrobial peptides and proteins in chronic rhinosinusitis]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2021; 35:185-188. [PMID: 33541007 PMCID: PMC10127885 DOI: 10.13201/j.issn.2096-7993.2021.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Indexed: 11/12/2022]
Abstract
The pathogenesis of chronic rhinosinusitis(CRS) is closely related to the interactions between the environmental stimuli and the innate defense system. A vast of defensive molecules, such as antimicrobial peptides and proteins(AMPs) could be secreted by the airway epithelial cells and submucosal glands. As an essential component of innate immune system, AMPs are associated with multiple airway disease, such as CRS, chronic obstructive pulmonary disease, bronchiectasis, allergic asthma and so on. AMPs are expressed vastly in nasal mucosa and could exert fundamental antibacterial and inflamatory regulative functions. However, the pathophysiological mechanism of AMPs in CRS is still unclear. What's more, the heterogeneity among studies is relatively high. Thus, the paper was aimed to review the potential function and inflammatory regulation of AMPs in CRS. More rigorous studies with larger samples are needed in the future, to shed light on its possible pathogeneisis mechanisms.
Collapse
Affiliation(s)
- 嫣然 黄
- 首都医科大学附属北京同仁医院耳鼻咽喉头颈外科(北京,100730)
- 鼻病研究北京市重点实验室北京市耳鼻咽喉科研究所
| | - 明 王
- 首都医科大学附属北京同仁医院耳鼻咽喉头颈外科(北京,100730)
- 鼻病研究北京市重点实验室北京市耳鼻咽喉科研究所
| | - 成硕 王
- 首都医科大学附属北京同仁医院耳鼻咽喉头颈外科(北京,100730)
| | - 罗 张
- 首都医科大学附属北京同仁医院耳鼻咽喉头颈外科(北京,100730)
- 鼻病研究北京市重点实验室北京市耳鼻咽喉科研究所
- 首都医科大学附属北京同仁医院过敏科
| |
Collapse
|
13
|
Zhang R, Trower J, Wu T. Degradation of bacterial permeability family member A1 (BPIFA1) by house dust mite (HDM) cysteine protease Der p 1 abrogates immune modulator function. Int J Biol Macromol 2020; 164:4022-4031. [PMID: 32890564 PMCID: PMC7467078 DOI: 10.1016/j.ijbiomac.2020.08.214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023]
Abstract
Bacterial permeability family member A1 (BPIFA1) is one of the most abundant proteins present in normal airway surface liquid (ASL). It is known to be diminished in asthmatic patients' sputum, which causes airway hyperresponsiveness (AHR). What is currently unclear is how environmental factors, such as allergens' impact on BPIFA1's abundance and functions in the context of allergic asthma. House dust mite (HDM) is a predominant domestic source of aeroallergens. The group of proteases found in HDM is thought to cleave multiple cellular protective mechanisms, and therefore foster the development of allergic asthma. Here, we show that BPIFA1 is cleaved by HDM proteases in a time-, dose-, and temperature-dependent manner. We have also shown the main component in HDM that is responsible for BPIFA1's degradation is Der p1. Fragmented BPIFA1 failed to bind E. coli lipopolysaccharide (LPS), and hence elevated TNFα and IL-6 secretion in human whole blood. BPIFA1 degradation is also observed in vivo in bronchoalveolar fluid (BALF) of mice which are intranasally instilled with HDM. These data suggest that proteases associated with environmental allergens such as HDM cleave BPIFA1 and therefore impair its immune modulator function.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, PR China
| | - Jessika Trower
- Department of Pharmaceutical Sciences, 302 East Lawson Street, North Carolina Central University, Durham, NC 27707, USA
| | - Tongde Wu
- Department of Pharmaceutical Sciences, 302 East Lawson Street, North Carolina Central University, Durham, NC 27707, USA; Biomanufacturing Research Institute & Technology Enterprise (BRITE), 302 East Lawson Street, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
14
|
Saferali A, Tang AC, Strug LJ, Quon BS, Zlosnik J, Sandford AJ, Turvey SE. Immunomodulatory function of the cystic fibrosis modifier gene BPIFA1. PLoS One 2020; 15:e0227067. [PMID: 31931521 PMCID: PMC6957340 DOI: 10.1371/journal.pone.0227067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is characterized by a progressive decline in lung function due to airway obstruction, infection, and inflammation. CF patients are particularly susceptible to respiratory infection by a variety of pathogens, and the inflammatory response in CF is dysregulated and prolonged. BPI fold containing family A, member 1 (BPIFA1) and BPIFB1 are proteins expressed in the upper airways that may have innate immune activity. We previously identified polymorphisms in the BPIFA1/BPIFB1 region associated with CF lung disease severity. METHODS We evaluated whether the BPIFA1/BPIFB1 associations with lung disease severity replicated in individuals with CF participating in the International CF Gene Modifier Consortium (n = 6,365). Furthermore, we investigated mechanisms by which the BPIFA1 and BPIFB1 proteins may modify lung disease in CF. RESULTS The association of the G allele of rs1078761 with reduced lung function was replicated in an independent cohort of CF patients (p = 0.001, n = 2,921) and in a meta-analysis of the full consortium (p = 2.39x10-5, n = 6,365). Furthermore, we found that rs1078761G which is associated with reduced lung function was also associated with reduced BPIFA1, but not BPIFB1, protein levels in saliva from CF patients. Functional assays indicated that BPIFA1 and BPIFB1 do not have an anti-bacterial role against P. aeruginosa but may have an immunomodulatory function in CF airway epithelial cells. Gene expression profiling using RNAseq identified Rho GTPase signaling pathways to be altered in CF airway epithelial cells in response to treatment with recombinant BPIFA1 and BPIFB1 proteins. CONCLUSIONS BPIFA1 and BPIFB1 have immunomodulatory activity and genetic variation associated with low levels of these proteins may increase CF lung disease severity.
Collapse
Affiliation(s)
- Aabida Saferali
- Centre for Heart Lung Innovation, University of British Columbia and St Paul’s Hospital, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia and BC Children’s Hospital, Vancouver, British Columbia, Canada
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anthony C. Tang
- Department of Pediatrics, University of British Columbia and BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Lisa J. Strug
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Bradley S. Quon
- Centre for Heart Lung Innovation, University of British Columbia and St Paul’s Hospital, Vancouver, British Columbia, Canada
| | - James Zlosnik
- Department of Pediatrics, University of British Columbia and BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Andrew J. Sandford
- Centre for Heart Lung Innovation, University of British Columbia and St Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Stuart E. Turvey
- Department of Pediatrics, University of British Columbia and BC Children’s Hospital, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
15
|
Schaefer N, Li X, Seibold MA, Jarjour NN, Denlinger LC, Castro M, Coverstone AM, Teague WG, Boomer J, Bleecker ER, Meyers DA, Moore WC, Hawkins GA, Fahy J, Phillips BR, Mauger DT, Dakhama A, Gellatly S, Pavelka N, Berman R, Di YP, Wenzel SE, Chu HW. The effect of BPIFA1/SPLUNC1 genetic variation on its expression and function in asthmatic airway epithelium. JCI Insight 2019; 4:127237. [PMID: 30996135 DOI: 10.1172/jci.insight.127237] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/14/2019] [Indexed: 11/17/2022] Open
Abstract
Bacterial permeability family member A1 (BPIFA1), also known as short palate, lung, and nasal epithelium clone 1 (SPLUNC1), is a protein involved in the antiinflammatory response. The goal of this study was to determine whether BPIFA1 expression in asthmatic airways is regulated by genetic variations, altering epithelial responses to type 2 cytokines (e.g., IL-13). Nasal epithelial cells from patients with mild to severe asthma were collected from the National Heart, Lung, and Blood Institute Severe Asthma Research Program centers, genotyped for rs750064, and measured for BPIFA1. To determine the function of rs750064, cells were cultured at air-liquid interface and treated with IL-13 with or without recombinant human BPIFA1 (rhBPIFA1). Noncultured nasal cells with the rs750064 CC genotype had significantly less BPIFA1 mRNA expression than the CT and TT genotypes. Cultured CC versus CT and TT cells without stimulation maintained less BPIFA1 expression. With IL-13 treatment, CC genotype cells secreted more eotaxin-3 than CT and TT genotype cells. Also, rhBPIFA1 reduced IL-13-mediated eotaxin-3. BPIFA1 mRNA levels negatively correlated with serum IgE and fractional exhaled nitric oxide. Baseline FEV1% levels were lower in the asthma patients with the CC genotype (n = 1,016). Our data suggest that less BPIFA1 in asthma patients with the CC allele may predispose them to greater eosinophilic inflammation, which could be attenuated by rhBPIFA1 protein therapy.
Collapse
Affiliation(s)
| | - Xingnan Li
- University of Arizona, Tucson, Arizona, USA
| | | | | | | | - Mario Castro
- Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | - Jonathan Boomer
- Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | - Wendy C Moore
- Wake Forest University, Winston-Salem, North Carolina, USA
| | | | - John Fahy
- UCSF, San Francisco, California, USA
| | | | - David T Mauger
- Pennsylvania State University, Centre County, Pennsylvania, USA
| | | | | | | | | | - Y Peter Di
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
16
|
Antibacterial Properties and Efficacy of a Novel SPLUNC1-Derived Antimicrobial Peptide, α4-Short, in a Murine Model of Respiratory Infection. mBio 2019; 10:mBio.00226-19. [PMID: 30967458 PMCID: PMC6456746 DOI: 10.1128/mbio.00226-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The rise of superbugs underscores the urgent need for novel antimicrobial agents. Antimicrobial peptides (AMPs) have the ability to kill superbugs regardless of resistance to traditional antibiotics. However, AMPs often display a lack of efficacy in vivo. Sequence optimization and engineering are promising but may result in increased host toxicity. We report here the optimization of a novel AMP (α4-short) derived from the multifunctional respiratory protein SPLUNC1. The AMP α4-short demonstrated broad-spectrum activity against superbugs as well as in vivo efficacy in the P. aeruginosa pneumonia model. Further exploration for clinical development is warranted. Multidrug resistance (MDR) by bacterial pathogens constitutes a global health crisis, and resistance to treatment displayed by biofilm-associated infections (e.g., cystic fibrosis, surgical sites, and medical implants) only exacerbates a problem that is already difficult to overcome. Antimicrobial peptides (AMPs) are a promising class of therapeutics that may be useful in the battle against antibiotic resistance, although certain limitations have hindered their clinical development. The goal of this study was to examine the therapeutic potential of novel AMPs derived from the multifunctional respiratory host defense protein SPLUNC1. Using standard growth inhibition and antibiofilm assays, we demonstrated that a novel structurally optimized AMP, α4-short, was highly effective against the most common group of MDR bacteria while showing broad-spectrum bactericidal and antibiofilm activities. With negligible hemolysis and toxicity to white blood cells, the new peptide also demonstrated in vivo efficacy when delivered directly into the airway in a murine model of Pseudomonas aeruginosa-induced respiratory infection. The data warrant further exploration of SPLUNC1-derived AMPs with optimized structures to assess the potential application to difficult-to-cure biofilm-associated infections.
Collapse
|
17
|
Yu Z, Deslouches B, Walton WG, Redinbo MR, Di YP. Enhanced biofilm prevention activity of a SPLUNC1-derived antimicrobial peptide against Staphylococcus aureus. PLoS One 2018; 13:e0203621. [PMID: 30216370 PMCID: PMC6138395 DOI: 10.1371/journal.pone.0203621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/23/2018] [Indexed: 11/18/2022] Open
Abstract
SPLUNC1 is a multifunctional protein of the airway with antimicrobial properties. We previously reported that it displayed antibiofilm activities against P. aeruginosa. The goal of this study was to determine whether (1) the antibiofilm property is broad (including S. aureus, another prevalent organism in cystic fibrosis); (2) the α4 region is responsible for such activity; and (3), if so, this motif could be structurally optimized as an antimicrobial peptide with enhanced activities. We used S. aureus biofilm-prevention assays to determine bacterial biomass in the presence of SPLUNC1 and SPLUNC1Δα4 recombinant proteins, or SPLUNC1-derived peptides (α4 and α4M1), using the well-established crystal-violet biofilm detection assay. The SPLUNC1Δα4 showed markedly reduced biofilm prevention compared to the parent protein. Surprisingly, the 30-residue long α4 motif alone demonstrated minimal biofilm prevention activities. However, structural optimization of the α4 motif resulted in a modified peptide (α4M1) with significantly enhanced antibiofilm properties against methicillin–sensitive (MSSA) and–resistant (MRSA) S. aureus, including six different clinical strains of MRSA and the well-known USA300. Hemolytic activity was undetectable at up to 100μM for the peptides. The data warrant further investigation of α4-derived AMPs to explore the potential application of antimicrobial peptides to combat bacterial biofilm-related infections.
Collapse
Affiliation(s)
- Zhongjie Yu
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Berthony Deslouches
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - William G. Walton
- Departments of Chemistry, Biochemistry, and Microbiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Matthew R. Redinbo
- Departments of Chemistry, Biochemistry, and Microbiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Y. Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
18
|
Erickson NA, Dietert K, Enders J, Glauben R, Nouailles G, Gruber AD, Mundhenk L. Soluble mucus component CLCA1 modulates expression of leukotactic cytokines and BPIFA1 in murine alveolar macrophages but not in bone marrow-derived macrophages. Histochem Cell Biol 2018; 149:619-633. [PMID: 29610986 PMCID: PMC5999134 DOI: 10.1007/s00418-018-1664-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 11/18/2022]
Abstract
The secreted airway mucus cell protein chloride channel regulator, calcium-activated 1, CLCA1, plays a role in inflammatory respiratory diseases via as yet unidentified pathways. For example, deficiency of CLCA1 in a mouse model of acute pneumonia resulted in reduced cytokine expression with less leukocyte recruitment and the human CLCA1 was shown to be capable of activating macrophages in vitro. Translation of experimental data between human and mouse models has proven problematic due to several CLCA species-specific differences. We therefore characterized activation of macrophages by CLCA1 in detail in solely murine ex vivo and in vitro models. Only alveolar but not bone marrow-derived macrophages freshly isolated from C57BL6/J mice increased their expression levels of several pro-inflammatory and leukotactic cytokines upon CLCA1 stimulation. Among the most strongly regulated genes, we identified the host-protective and immunomodulatory airway mucus component BPIFA1, previously unknown to be expressed by airway macrophages. Furthermore, evidence from an in vivo Staphylococcus aureus pneumonia mouse model suggests that CLCA1 may also modify BPIFA1 expression in airway epithelial cells. Our data underscore and specify the role of mouse CLCA1 in inflammatory airway disease to activate airway macrophages. In addition to its ability to upregulate cytokine expression which explains previous observations in the Clca1-deficient S. aureus pneumonia mouse model, modulation of BPIFA1 expression expands the role of CLCA1 in airway disease to involvement in more complex downstream pathways, possibly including liquid homeostasis, airway protection, and antimicrobial defense.
Collapse
Affiliation(s)
- Nancy A Erickson
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Kristina Dietert
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Jana Enders
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Rainer Glauben
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Lars Mundhenk
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany.
| |
Collapse
|
19
|
Mulay A, Hood DW, Williams D, Russell C, Brown SDM, Bingle L, Cheeseman M, Bingle CD. Loss of the homeostatic protein BPIFA1, leads to exacerbation of otitis media severity in the Junbo mouse model. Sci Rep 2018; 8:3128. [PMID: 29449589 PMCID: PMC5814562 DOI: 10.1038/s41598-018-21166-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/30/2018] [Indexed: 02/02/2023] Open
Abstract
Otitis Media (OM) is characterized by epithelial abnormalities and defects in innate immunity in the middle ear (ME). Although, BPIFA1, a member of the BPI fold containing family of putative innate defence proteins is abundantly expressed by the ME epithelium and SNPs in Bpifa1 have been associated with OM susceptibility, its role in the ME is not well characterized. We investigated the role of BPIFA1 in protection of the ME and the development of OM using murine models. Loss of Bpifa1 did not lead to OM development. However, deletion of Bpifa1 in Evi1Jbo/+ mice, a model of chronic OM, caused significant exacerbation of OM severity, thickening of the ME mucosa and increased collagen deposition, without a significant increase in pro-inflammatory gene expression. Our data suggests that BPIFA1 is involved in maintaining homeostasis within the ME under steady state conditions and its loss in the presence of inflammation, exacerbates epithelial remodelling leading to more severe OM.
Collapse
Affiliation(s)
- Apoorva Mulay
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Derek W Hood
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
| | - Debbie Williams
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
| | - Catherine Russell
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Steve D M Brown
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
| | - Lynne Bingle
- Oral and Maxillofacial Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Michael Cheeseman
- Roslin Institute, University of Edinburgh, Edinburgh, UK.,Division of Pathology, University of Edinburgh, Edinburgh, UK
| | - Colin D Bingle
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK. .,Florey Institute for Host Pathogen Interactions, University of Sheffield, Sheffield, UK.
| |
Collapse
|
20
|
An innate defense peptide BPIFA1/SPLUNC1 restricts influenza A virus infection. Mucosal Immunol 2018; 11:71-81. [PMID: 28513596 DOI: 10.1038/mi.2017.45] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/17/2017] [Indexed: 02/04/2023]
Abstract
The airway epithelium secretes proteins that function in innate defense against infection. Bactericidal/permeability-increasing fold-containing family member A1 (BPIFA1) is secreted into airways and has a protective role during bacterial infections, but it is not known whether it also has an antiviral role. To determine a role in host defense against influenza A virus (IAV) infection and to find the underlying defense mechanism, we developed transgenic mouse models that are deficient in BPIFA1 and used these, in combination with in vitro three-dimensional mouse tracheal epithelial cell (mTEC) cultures, to investigate its antiviral properties. We show that BPIFA1 has a significant role in mucosal defense against IAV infection. BPIFA1 secretion was highly modulated after IAV infection. Mice deficient in BPIFA1 lost more weight after infection, supported a higher viral load and virus reached the peripheral lung earlier, indicative of a defect in the control of infection. Further analysis using mTEC cultures showed that BPIFA1-deficient cells bound more virus particles, displayed increased nuclear import of IAV ribonucleoprotein complexes, and supported higher levels of viral replication. Our results identify a critical role of BPIFA1 in the initial phase of infection by inhibiting the binding and entry of IAV into airway epithelial cells.
Collapse
|
21
|
Fang F, Pan J, Li Y, Li Y, Feng X, Wang J. Identification of potential transcriptomic markers in developing asthma: An integrative analysis of gene expression profiles. Mol Immunol 2017; 92:38-44. [PMID: 29031950 DOI: 10.1016/j.molimm.2017.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 09/24/2017] [Accepted: 09/30/2017] [Indexed: 12/14/2022]
Abstract
The goal of this study was to identify potential transcriptomic markers in developing asthma by an integrative analysis of multiple public microarray data sets. Using the R software and bioconductor packages, we performed a statistical analysis to identify differentially expressed (DE) genes in asthma, and further performed functional interpretation (enrichment analysis and co-expression network construction) and classification quality evaluation of the DE genes identified. 3 microarray datasets (192 cases and 91 controls in total) were collected for this analysis. 62 DE genes were identified in asthma, among which 43 genes were up-regulated and 19 genes were down-regulated. The up-regulated gene with the highest Log2 Fold Change (LFC) was CLCA1 (LFC=2.81). The down-regulated gene with the highest absolute LFC was BPIFA1 (LFC=-1.45). Enrichment analysis revealed that those DE genes strongly associated with proteolysis, retina homeostasis, humoral immune response, and salivary secretion. A support vector machine classifier (asthma versus healthy control) was also trained based on DE genes. In conclusion, the consistently DE genes identified in this study are suggested as candidate transcriptomic markers for asthma diagnosis, and provide novel insights into the pathogenesis of asthma.
Collapse
Affiliation(s)
- Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou 215025, China.
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou 215025, China
| | - Yanhong Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou 215025, China
| | - Yiping Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou 215025, China
| | - Xing Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou 215025, China
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou 215025, China.
| |
Collapse
|
22
|
Gahring LC, Myers EJ, Dunn DM, Weiss RB, Rogers SW. Lung epithelial response to cigarette smoke and modulation by the nicotinic alpha 7 receptor. PLoS One 2017; 12:e0187773. [PMID: 29117258 PMCID: PMC5678682 DOI: 10.1371/journal.pone.0187773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/25/2017] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoking (CS) is a principal contributor to a spectrum of devastating lung diseases whose occurrence and severity may vary between individuals and not appear for decades after prolonged use. One explanation for the variability and delay in disease onset is that nicotine, the addictive component of CS, acts through the ionotropic nicotinic acetylcholine receptor (nAChR) alpha7 (α7) to modulate anti-inflammatory protection. In this study we measured the impact α7 signaling has on the mouse distal lung response to side-stream CS exposure for mice of the control genotype (α7G) and those in which the α7-receptor signaling mechanisms are restricted by point mutation (α7E260A:G). Flow cytometry results show that after CS there is an increase in a subset of CD11c (CD11chi) alveolar macrophages (AMs) and histology reveals an increase in these cells within the alveolar space in both genotypes although the α7E260A:G AMs tend to accumulate into large aggregates rather than more widely distributed solitary cells common to the α7G lung after CS. Changes to lung morphology with CS in both genotypes included increased tissue cavitation due to alveolar expansion and bronchial epithelium dysplasia in part associated with altered club cell morphology. RNA-Seq analysis revealed changes in epithelium gene expression after CS are largely independent of the α7-genotype. However, the α7E260A:G genotype did reveal some unique variations to transcript expression of gene sets associated with immune responsiveness and macrophage recruitment, hypoxia, genes encoding mitochondrial respiration complex I and extracellular fibrillary matrix proteins (including alterations to fibrotic deposits in the α7G proximal airway bronchioles after CS). These results suggest α7 has a central role in modulating the response to chronic CS that could include altering susceptibility to associated lung diseases including fibrosis and cancer.
Collapse
Affiliation(s)
- Lorise C. Gahring
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Administration Medical Center, Salt Lake City, Utah, United States of America
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Elizabeth J. Myers
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Diane M. Dunn
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Robert B. Weiss
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Scott W. Rogers
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Administration Medical Center, Salt Lake City, Utah, United States of America
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
23
|
Wu T, Huang J, Moore PJ, Little MS, Walton WG, Fellner RC, Alexis NE, Peter Di Y, Redinbo MR, Tilley SL, Tarran R. Identification of BPIFA1/SPLUNC1 as an epithelium-derived smooth muscle relaxing factor. Nat Commun 2017; 8:14118. [PMID: 28165446 PMCID: PMC5303822 DOI: 10.1038/ncomms14118] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 11/30/2016] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic airway disease characterized by inflammation, mucus hypersecretion and abnormal airway smooth muscle (ASM) contraction. Bacterial permeability family member A1, BPIFA1, is a secreted innate defence protein. Here we show that BPIFA1 levels are reduced in sputum samples from asthmatic patients and that BPIFA1 is secreted basolaterally from healthy, but not asthmatic human bronchial epithelial cultures (HBECs), where it suppresses ASM contractility by binding to and inhibiting the Ca2+ influx channel Orai1. We have localized this effect to a specific, C-terminal α-helical region of BPIFA1. Furthermore, tracheas from Bpifa1-/- mice are hypercontractile, and this phenotype is reversed by the addition of recombinant BPIFA1. Our data suggest that BPIFA1 deficiency in asthmatic airways promotes Orai1 hyperactivity, increased ASM contraction and airway hyperresponsiveness. Strategies that target Orai1 or the BPIFA1 deficiency in asthma may lead to novel therapies to treat this disease.
Collapse
Affiliation(s)
- Tongde Wu
- Cystic Fibrosis Center/Marsico Lung Institute, Marsico Hall, 125 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Julianne Huang
- Cystic Fibrosis Center/Marsico Lung Institute, Marsico Hall, 125 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA.,Department of Chemistry, Genome Science Building, 250 Bell Tower Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Patrick J Moore
- Cystic Fibrosis Center/Marsico Lung Institute, Marsico Hall, 125 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Michael S Little
- Department of Chemistry, Genome Science Building, 250 Bell Tower Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - William G Walton
- Department of Chemistry, Genome Science Building, 250 Bell Tower Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Robert C Fellner
- Cystic Fibrosis Center/Marsico Lung Institute, Marsico Hall, 125 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma, and Lung Biology, US EPA Human Studies Facility, 104 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Y Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, 331 Bridgeside Point Building, Pittsburgh, Pennsylvania 15260, USA
| | - Matthew R Redinbo
- Department of Chemistry, Genome Science Building, 250 Bell Tower Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Stephen L Tilley
- Cystic Fibrosis Center/Marsico Lung Institute, Marsico Hall, 125 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA.,Center for Environmental Medicine, Asthma, and Lung Biology, US EPA Human Studies Facility, 104 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Robert Tarran
- Cystic Fibrosis Center/Marsico Lung Institute, Marsico Hall, 125 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA.,Department of Cell Biology &Physiology, 5200 Medical Biomolecular Research Building, 111 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| |
Collapse
|
24
|
Abstract
Chronic rhinosinusitis (CRS) is a troublesome, chronic inflammatory disease that affects over 10% of the adult population, causing decreased quality of life, lost productivity, and lost time at work and leading to more than a million surgical interventions annually worldwide. The nose, paranasal sinuses, and associated lymphoid tissues play important roles in homeostasis and immunity, and CRS significantly impairs these normal functions. Pathogenic mechanisms of CRS have recently become the focus of intense investigations worldwide, and significant progress has been made. The two main forms of CRS that have been long recognized, with and without nasal polyps, are each now known to be heterogeneous, based on underlying mechanism, geographical location, and race. Loss of the immune barrier, including increased permeability of mucosal epithelium and reduced production of important antimicrobial substances and responses, is a common feature of many forms of CRS. One form of CRS with polyps found worldwide is driven by the cytokines IL-5 and IL-13 coming from Th2 cells, type 2 innate lymphoid cells, and probably mast cells. Type 2 cytokines activate inflammatory cells that are implicated in the pathogenic mechanism, including mast cells, basophils, and eosinophils. New classes of biological drugs that block the production or action of these cytokines are making important inroads toward new treatment paradigms in polypoid CRS.
Collapse
Affiliation(s)
- Robert P Schleimer
- Department of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611;
| |
Collapse
|
25
|
Wåhlén K, Fornander L, Olausson P, Ydreborg K, Flodin U, Graff P, Lindahl M, Ghafouri B. Protein profiles of nasal lavage fluid from individuals with work-related upper airway symptoms associated with moldy and damp buildings. INDOOR AIR 2016; 26:743-754. [PMID: 26451694 DOI: 10.1111/ina.12257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 10/03/2015] [Indexed: 06/05/2023]
Abstract
Upper airway irritation is common among individuals working in moldy and damp buildings. The aim of this study was to investigate effects on the protein composition of the nasal lining fluid. The prevalence of symptoms in relation to work environment was examined in 37 individuals working in two damp buildings. Microbial growth was confirmed in one of the buildings. Nasal lavage fluid was collected from 29 of the exposed subjects and 13 controls, not working in a damp building. Protein profiles were investigated with a proteomic approach and evaluated by multivariate statistical models. Subjects from both workplaces reported upper airway and ocular symptoms. Based on protein profiles, symptomatic subjects in the two workplaces were discriminated from each other and separated from healthy controls. The groups differed in proteins involved in inflammation and host defense. Measurements of innate immunity proteins showed a significant increase in protein S100-A8 and decrease in SPLUNC1 in subjects from one workplace, while alpha-1-antitrypsin was elevated in subjects from the other workplace, compared with healthy controls. The results show that protein profiles in nasal lavage fluid can be used to monitor airway mucosal effects in personnel working in damp buildings and indicate that the profile may be separated when the dampness is associated with the presence of molds.
Collapse
Affiliation(s)
- K Wåhlén
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Pain and Rehabilitation Center, Anaesthetics, Operations and Speciality Surgery Center, Region Östergötland, Linkoping, Sweden
| | - L Fornander
- Occupational and Environmental Medicine, Div of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - P Olausson
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Pain and Rehabilitation Center, Anaesthetics, Operations and Speciality Surgery Center, Region Östergötland, Linkoping, Sweden
| | - K Ydreborg
- Clinic of Otorhinolaryngology, County Hospital Ryhov, Jönköping, Sweden
| | - U Flodin
- Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Occupational and Environmental Medicine Center, Heart and Medicine Center, Region Östergötland, Linkoping, Sweden
| | - P Graff
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - M Lindahl
- Occupational and Environmental Medicine, Div of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - B Ghafouri
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Pain and Rehabilitation Center, Anaesthetics, Operations and Speciality Surgery Center, Region Östergötland, Linkoping, Sweden.
- Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Occupational and Environmental Medicine Center, Heart and Medicine Center, Region Östergötland, Linkoping, Sweden.
| |
Collapse
|
26
|
Differential short palate, lung, and nasal epithelial clone 1 suppression in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyps: implications for pathogenesis and treatment. Curr Opin Allergy Clin Immunol 2016; 16:31-8. [PMID: 26658012 DOI: 10.1097/aci.0000000000000228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Short palate, lung, and nasal epithelial clone 1 (SPLUNC1) is an epithelium-secreted protein that is involved in innate immunity. A protective role for SPLUNC1 in lower respiratory inflammation and chronic rhinosinusitis (CRS) has recently been recognized. RECENT FINDINGS An impaired epithelial immune barrier has been proposed to play a critical role in the pathogenesis of CRS. Recent research has demonstrated that SPLUNC1 is profoundly reduced in polyp tissues of CRS with nasal polyps (CRSwNP) compared with control tissues. Studies investigating the differential expression of SPLUNC1 in eosinophilic and noneosinophilic CRSwNP have been published. Nasal SPLUNC1 expression was inhibited by Th2 cytokines (IL-4 and IL-13) but was stimulated by toll-like receptor (TLR) agonists and glucocorticoids. Decreased SPLUNC1 expression in the sinus mucosa is associated with positive Pseudomonas aeruginosa bacterial colonization and poor surgical outcomes in CRS patients. SUMMARY These studies identify the role of SPLUNC1 in sinonasal innate immunity and the pathogenesis of CRS. Defective expression of SPLUNC1 in CRSwNP patients may lead to insufficient maintenance of the epithelial barrier function and enhanced bacterial colonization. The use of SPLUNC1 as a therapeutic target for CRSwNP remains to be determined.
Collapse
|
27
|
Walton WG, Ahmad S, Little MR, Kim CS, Tyrrell J, Lin Q, Di YP, Tarran R, Redinbo MR. Structural Features Essential to the Antimicrobial Functions of Human SPLUNC1. Biochemistry 2016; 55:2979-91. [PMID: 27145151 PMCID: PMC4887393 DOI: 10.1021/acs.biochem.6b00271] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SPLUNC1 is an abundantly secreted innate immune protein in the mammalian respiratory tract that exerts bacteriostatic and antibiofilm effects, binds to lipopolysaccharide (LPS), and acts as a fluid-spreading surfactant. Here, we unravel the structural elements essential for the surfactant and antimicrobial functions of human SPLUNC1 (short palate lung nasal epithelial clone 1). A unique α-helix (α4) that extends from the body of SPLUNC1 is required for the bacteriostatic, surfactant, and LPS binding activities of this protein. Indeed, we find that mutation of just four leucine residues within this helical motif to alanine is sufficient to significantly inhibit the fluid spreading abilities of SPLUNC1, as well as its bacteriostatic actions against Gram-negative pathogens Burkholderia cenocepacia and Pseudomonas aeruginosa. Conformational flexibility in the body of SPLUNC1 is also involved in the bacteriostatic, surfactant, and LPS binding functions of the protein as revealed by disulfide mutants introduced into SPLUNC1. In addition, SPLUNC1 exerts antibiofilm effects against Gram-negative bacteria, although α4 is not involved in this activity. Interestingly, though, the introduction of surface electrostatic mutations away from α4 based on the unique dolphin SPLUNC1 sequence, and confirmed by crystal structure, is shown to impart antibiofilm activity against Staphylococcus aureus, the first SPLUNC1-dependent effect against a Gram-positive bacterium reported to date. Together, these data pinpoint SPLUNC1 structural motifs required for the antimicrobial and surfactant actions of this protective human protein.
Collapse
Affiliation(s)
- William G. Walton
- Departments of Chemistry, Biochemistry and Microbiology, 4350 Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Saira Ahmad
- Marsico Lung Institute, Cystic Fibrosis/Pulmonary Research and Treatment Center, 7102 Marsico Hall, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | - Michael R. Little
- Departments of Chemistry, Biochemistry and Microbiology, 4350 Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Christine S.K. Kim
- Marsico Lung Institute, Cystic Fibrosis/Pulmonary Research and Treatment Center, 7102 Marsico Hall, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | - Jean Tyrrell
- Marsico Lung Institute, Cystic Fibrosis/Pulmonary Research and Treatment Center, 7102 Marsico Hall, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | - Qiao Lin
- Department of Environmental and Occupational Health, 331 Bridgeside Point Building, University of Pittsburgh, Pittsburgh, PA 15260
| | - Y. Peter Di
- Department of Environmental and Occupational Health, 331 Bridgeside Point Building, University of Pittsburgh, Pittsburgh, PA 15260
| | - Robert Tarran
- Marsico Lung Institute, Cystic Fibrosis/Pulmonary Research and Treatment Center, 7102 Marsico Hall, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | - Matthew R. Redinbo
- Departments of Chemistry, Biochemistry and Microbiology, 4350 Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|
28
|
Britto CJ, Cohn L. Bactericidal/Permeability-increasing protein fold-containing family member A1 in airway host protection and respiratory disease. Am J Respir Cell Mol Biol 2015; 52:525-34. [PMID: 25265466 DOI: 10.1165/rcmb.2014-0297rt] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bactericidal/permeability-increasing protein fold-containing family member A1 (BPIFA1), formerly known as SPLUNC1, is one of the most abundant proteins in respiratory secretions and has been identified with increasing frequency in studies of pulmonary disease. Its expression is largely restricted to the respiratory tract, being highly concentrated in the upper airways and proximal trachea. BPIFA1 is highly responsive to airborne pathogens, allergens, and irritants. BPIFA1 actively participates in host protection through antimicrobial, surfactant, airway surface liquid regulation, and immunomodulatory properties. Its expression is modulated in multiple lung diseases, including cystic fibrosis, chronic obstructive pulmonary disease, respiratory malignancies, and idiopathic pulmonary fibrosis. However, the role of BPIFA1 in pulmonary pathogenesis remains to be elucidated. This review highlights the versatile properties of BPIFA1 in antimicrobial protection and its roles as a sensor of environmental exposure and regulator of immune cell function. A greater understanding of the contribution of BPIFA1 to disease pathogenesis and activity may clarify if BPIFA1 is a biomarker and potential drug target in pulmonary disease.
Collapse
Affiliation(s)
- Clemente J Britto
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
29
|
Leeming GH, Kipar A, Hughes DJ, Bingle L, Bennett E, Moyo NA, Tripp RA, Bigley AL, Bingle CD, Sample JT, Stewart JP. Gammaherpesvirus infection modulates the temporal and spatial expression of SCGB1A1 (CCSP) and BPIFA1 (SPLUNC1) in the respiratory tract. J Transl Med 2015; 95:610-24. [PMID: 25531566 PMCID: PMC4450743 DOI: 10.1038/labinvest.2014.162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/23/2014] [Accepted: 11/11/2014] [Indexed: 11/09/2022] Open
Abstract
Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an established model of γ-herpesvirus infection. We have previously developed an alternative system using a natural host, the wood mouse (Apodemus sylvaticus), and shown that the MHV-68 M3 chemokine-binding protein contributes significantly to MHV-68 pathogenesis. Here we demonstrate in A. sylvaticus using high-density micro-arrays that M3 influences the expression of genes involved in the host response including Scgb1a1 and Bpifa1 that encode potential innate defense proteins secreted into the respiratory tract. Further analysis of MHV-68-infected animals showed that the levels of both protein and RNA for SCGB1A1 and BPIFA1 were decreased at day 7 post infection (p.i.) but increased at day 14 p.i. as compared with M3-deficient and mock-infected animals. The modulation of expression was most pronounced in bronchioles but was also present in the bronchi and trachea. Double staining using RNA in situ hybridization and immunohistology demonstrated that much of the BPIFA1 expression occurs in club cells along with SCGB1A1 and that BPIFA1 is stored within granules in these cells. The increase in SCGB1A1 and BPIFA1 expression at day 14 p.i. was associated with the differentiation of club cells into mucus-secreting cells. Our data highlight the role of club cells and the potential of SCGB1A1 and BPIFA1 as innate defense mediators during respiratory virus infection.
Collapse
Affiliation(s)
- Gail H Leeming
- Department of Infection Biology, University of Liverpool, Liverpool, UK,Department of Veterinary Pathology, School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Anja Kipar
- Department of Infection Biology, University of Liverpool, Liverpool, UK,Department of Veterinary Pathology, School of Veterinary Science, University of Liverpool, Liverpool, UK,Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - David J Hughes
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Lynne Bingle
- Academic Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Elaine Bennett
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Nathifa A Moyo
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Alison L Bigley
- Investigative and Translational Pathology, AstraZeneca, R&D Innovative Medicines, Global Safety Assessment, Macclesfield, UK
| | - Colin D Bingle
- Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, Sheffield, UK
| | - Jeffery T Sample
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - James P Stewart
- Department of Infection Biology, University of Liverpool, Liverpool, UK,Department of Infection Biology, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool L3 5RF, UK. E-mail:
| |
Collapse
|
30
|
Bartlett JA, Meyerholz DK, Wohlford-Lenane CL, Naumann PW, Salzman NH, McCray PB. Increased susceptibility to otitis media in a Splunc1-deficient mouse model. Dis Model Mech 2015; 8:501-8. [PMID: 25765466 PMCID: PMC4415896 DOI: 10.1242/dmm.019646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/07/2015] [Indexed: 12/15/2022] Open
Abstract
Otitis media (inflammation of the middle ear) is one of the most common diseases of early childhood. Susceptibility to otitis is influenced by a number of factors, including the actions of innate immune molecules secreted by the epithelia lining the nasopharynx, middle ear and Eustachian tube. The SPLUNC1 (short palate, lung, nasal epithelial clone 1) protein is a highly abundant secretory product of the mammalian nasal, oral and respiratory mucosa that is thought to play a multifunctional role in host defense. In this study we investigated Splunc1 expression in the ear of the mouse, and examined whether this protein contributes to overall host defense in the middle ear and/or Eustachian tube. We found that Splunc1 is highly expressed in both the surface epithelium and in submucosal glands in these regions in wild-type mice. In mice lacking Splunc1, we noted histologically an increased frequency of otitis media, characterized by the accumulation of leukocytes (neutrophils with scattered macrophages), proteinaceous fluid and mucus in the middle ear lumens. Furthermore, many of these mice had extensive remodeling of the middle ear wall, suggesting a chronic course of disease. From these observations, we conclude that loss of Splunc1 predisposes mice to the development of otitis media. The Splunc1−/− mouse model should help investigators to better understand both the biological role of Splunc1 as well as host defense mechanisms in the middle ear. Summary: We document expression of the innate immune factor Splunc1 in the murine middle ear and Eustachian tube, and describe spontaneous development of otitis media in mice lacking functional Splunc1.
Collapse
Affiliation(s)
- Jennifer A Bartlett
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - David K Meyerholz
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | - Paul W Naumann
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nita H Salzman
- Department of Pediatrics, Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Paul B McCray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
31
|
Ning F, Wang C, Berry KZ, Kandasamy P, Liu H, Murphy RC, Voelker DR, Nho CW, Pan CH, Dai S, Niu L, Chu HW, Zhang G. Structural characterization of the pulmonary innate immune protein SPLUNC1 and identification of lipid ligands. FASEB J 2014; 28:5349-60. [PMID: 25223608 DOI: 10.1096/fj.14-259291] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The short palate, lung and nasal epithelial clone 1 (SPLUNC1) protein is a member of the palate, lung, and nasal epithelium clone (PLUNC) family, also known as bactericidal/permeability-increasing (BPI) fold-containing protein, family A, member 1 (BPIFA1). SPLUNC1 is an abundant protein in human airways, but its function remains poorly understood. The lipid ligands of SPLUNC1 as well as other PLUNC family members are largely unknown, although some reports provide evidence that lipopolysaccharide (LPS) could be a lipid ligand. Unlike previous hypotheses, we found significant structural differences between SPLUNC1 and BPI. Recombinant SPLUNC1 produced in HEK 293 cells harbored several molecular species of sphingomyelin and phosphatidylcholine as its ligands. Significantly, in vitro lipid-binding studies failed to demonstrate interactions between SPLUNC1 and LPS, lipoteichoic acid, or polymyxin B. Instead, one of the major and most important pulmonary surfactant phospholipids, dipalmitoylphosphatidylcholine (DPPC), bound to SPLUNC1 with high affinity and specificity. We found that SPLUNC1 could be the first protein receptor for DPPC. These discoveries provide insight into the specific determinants governing the interaction between SPLUNC1 and lipids and also shed light on novel functions that SPLUNC1 and other PLUNC family members perform in host defense.
Collapse
Affiliation(s)
- Fangkun Ning
- School of Life Sciences, University of Science and Technology of China, Hefei, China; Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA
| | - Chao Wang
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA
| | - Karin Zemski Berry
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado, USA
| | | | - Haolin Liu
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado, USA
| | - Dennis R Voelker
- Department of Medicine, National Jewish Health, Denver, Colorado, USA; and
| | - Chu Won Nho
- Functional Food Center, Korea Institute of Science and Technology, GangNeung, Korea
| | - Choel-Ho Pan
- Functional Food Center, Korea Institute of Science and Technology, GangNeung, Korea
| | - Shaodong Dai
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA
| | - Liwen Niu
- School of Life Sciences, University of Science and Technology of China, Hefei, China;
| | - Hong-Wei Chu
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA; Department of Medicine, National Jewish Health, Denver, Colorado, USA; and
| | - Gongyi Zhang
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA
| |
Collapse
|
32
|
Wei Y, Xia W, Ye X, Fan Y, Shi J, Wen W, Yang P, Li H. The antimicrobial protein short palate, lung, and nasal epithelium clone 1 (SPLUNC1) is differentially modulated in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2014; 133:420-8. [DOI: 10.1016/j.jaci.2013.09.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 09/09/2013] [Accepted: 09/12/2013] [Indexed: 01/18/2023]
|
33
|
Jiang D, Wenzel SE, Wu Q, Bowler RP, Schnell C, Chu HW. Human neutrophil elastase degrades SPLUNC1 and impairs airway epithelial defense against bacteria. PLoS One 2013; 8:e64689. [PMID: 23741370 PMCID: PMC3669426 DOI: 10.1371/journal.pone.0064689] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/17/2013] [Indexed: 12/13/2022] Open
Abstract
Background Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are a significant cause of mortality of COPD patients, and pose a huge burden on healthcare. One of the major causes of AECOPD is airway bacterial (e.g. nontypeable Haemophilus influenzae [NTHi]) infection. However, the mechanisms underlying bacterial infections during AECOPD remain poorly understood. As neutrophilic inflammation including increased release of human neutrophil elastase (HNE) is a salient feature of AECOPD, we hypothesized that HNE impairs airway epithelial defense against NTHi by degrading airway epithelial host defense proteins such as short palate, lung, and nasal epithelium clone 1 (SPLUNC1). Methodology/Main Results Recombinant human SPLUNC1 protein was incubated with HNE to confirm SPLUNC1 degradation by HNE. To determine if HNE-mediated impairment of host defense against NTHi was SPLUNC1-dependent, SPLUNC1 protein was added to HNE-treated primary normal human airway epithelial cells. The in vivo function of SPLUNC1 in NTHi defense was investigated by infecting SPLUNC1 knockout and wild-type mice intranasally with NTHi. We found that: (1) HNE directly increased NTHi load in human airway epithelial cells; (2) HNE degraded human SPLUNC1 protein; (3) Recombinant SPLUNC1 protein reduced NTHi levels in HNE-treated human airway epithelial cells; (4) NTHi levels in lungs of SPLUNC1 knockout mice were increased compared to wild-type mice; and (5) SPLUNC1 was reduced in lungs of COPD patients. Conclusions Our findings suggest that SPLUNC1 degradation by neutrophil elastase may increase airway susceptibility to bacterial infections. SPLUNC1 therapy likely attenuates bacterial infections during AECOPD.
Collapse
Affiliation(s)
- Di Jiang
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Sally E. Wenzel
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Qun Wu
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Russell P. Bowler
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Christina Schnell
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|