1
|
Aripova N, Duryee MJ, Zhou W, England BR, Hunter CD, Klingemann LE, Aripova N, Nelson AJ, Katafiasz D, Bailey KL, Poole JA, Thiele GM, Mikuls TR. Citrullinated and malondialdehyde-acetaldehyde-modified fibrinogen activates macrophages and promotes profibrotic responses in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2025; 328:L134-L147. [PMID: 39560968 PMCID: PMC11905797 DOI: 10.1152/ajplung.00153.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
The objective of this study was to assess fibrinogen (FIB) comodified with citrulline (CIT) and/or malondialdehyde-acetaldehyde (MAA) initiates macrophage-fibroblast interactions, leading to extracellular matrix (ECM) deposition that characterizes rheumatoid arthritis-associated interstitial lung disease (RA-ILD). Macrophages (Mϕ) were stimulated with native-FIB, FIB-CIT, FIB-MAA, or FIB-MAA-CIT. Supernatants (SNs) [Mϕ-SN (U-937-derived) or MϕP-SN (PBMC-derived)] or direct antigens were coincubated with human lung fibroblasts (HLFs). Gene expression was examined using RT-PCR. ECM deposition was quantified using immunohistochemistry and Western blot; cell signaling mechanisms were delineated. Platelet-derived growth factor (PDGF)-BB and TGF-β were measured in macrophage supernatants, and inhibition studies were performed using Su16f and SB431542, respectively. HLF gene expression of CD36, COL6A3, MMP-9, MMP-10, and MMP-12 was increased following stimulations with Mϕ-SN generated from modified FIB but not from direct antigens. HLF stimulated with MϕP-SNFIB-MAA-CIT derived from patients with RA-ILD resulted in 4- to 30-fold increases in COL6A3 and MMP12 expression; upregulation was greater in HLFs stimulated with MϕP-SN derived from RA-ILD versus controls. HLF exposure to Mϕ-SNFIB-MAA-CIT increased types I/VI collagen deposition versus all other Mϕ-SN groups and was greater than FIB-MAA-CIT stimulation. PDGF-BB and TGF-β signaling had the highest concentrations identified in Mϕ-SNFIB-MAA-CIT and MϕP-SNFIB-MAA-CIT, particularly from RA-ILD-derived cells. PDGF-BB and TGF-β inhibitors, alone and in combination, significantly reduced HLF-mediated ECM deposition from Mϕ-SN stimulations. These results show that comodified fibrinogen activates macrophages to produce PDGF-BB and TGF-β that promotes an aggressive HLF phenotype characterized by increased ECM deposition. These results suggest that targeting CIT and/or MAA modifications or downstream cellular signals could represent novel approaches to RA-ILD treatment.NEW & NOTEWORTHY This report demonstrates that fibrinogen simultaneously harboring two common posttranslational modifications activates macrophages to secrete platelet-derived growth factor (PDGF)-BB and transforming growth factor (TGF)-β. Resulting cross talk between activated macrophages and human lung fibroblasts leads to marked increases in extracellular matrix deposition. These protein modifications are abundant and colocalize in lung tissues from patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD), and the results suggest that agents targeting citrullination and/or malondialdehyde-acetaldehyde (MAA) adduct formation could represent novel therapeutic strategies.
Collapse
Affiliation(s)
- Nozima Aripova
- Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Michael J Duryee
- Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Veteran Affairs Nebraska-Western Iowa Health Care System, Research Services 151, Omaha, Nebraska, United States
| | - Wenxian Zhou
- Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Bryant R England
- Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Veteran Affairs Nebraska-Western Iowa Health Care System, Research Services 151, Omaha, Nebraska, United States
| | - Carlos D Hunter
- Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Veteran Affairs Nebraska-Western Iowa Health Care System, Research Services 151, Omaha, Nebraska, United States
| | - Lauren E Klingemann
- Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Nigina Aripova
- Department of Biology, Washington University in Saint Louis, Saint Louis, Missouri, United States
| | - Amy J Nelson
- Division of Allergy & Immunology, Department of Internal Medicine, Omaha, Nebraska, United States
| | - Dawn Katafiasz
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Omaha, Nebraska, United States
| | - Kristina L Bailey
- Veteran Affairs Nebraska-Western Iowa Health Care System, Research Services 151, Omaha, Nebraska, United States
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Omaha, Nebraska, United States
| | - Jill A Poole
- Division of Allergy & Immunology, Department of Internal Medicine, Omaha, Nebraska, United States
| | - Geoffrey M Thiele
- Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Veteran Affairs Nebraska-Western Iowa Health Care System, Research Services 151, Omaha, Nebraska, United States
| | - Ted R Mikuls
- Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Veteran Affairs Nebraska-Western Iowa Health Care System, Research Services 151, Omaha, Nebraska, United States
| |
Collapse
|
2
|
Han DH, Shin MK, Sung JS, Kim M. miR-335-3p attenuates transforming growth factor beta 1-induced fibrosis by suppressing Thrombospondin 1. PLoS One 2024; 19:e0311594. [PMID: 39374214 PMCID: PMC11457990 DOI: 10.1371/journal.pone.0311594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Pulmonary fibrosis is characterized by excessive extracellular matrix (ECM) accumulation caused by detrimental stimuli. The progressive impairment in lung functions is chronic and highly fatal, presenting itself as a global health challenge. Because of the lack of efficacious treatments, the underlying mechanism should be investigated. The progression of fibrosis involves transforming growth factor-beta 1 (TGF-β1), which accelerates ECM production via epithelial-mesenchymal transition and cell invasion. As microRNAs (miRNAs) serve as regulators of disease development and progression, this study aimed to investigate the interaction of miRNAs and target genes that could contribute to pulmonary fibrosis when exposed to TGF-β1. Differentially expressed mRNA and miRNA were identified in respiratory epithelial cells via transcriptome analysis by using the constructed TGF-β1-induced fibrosis model. Our results revealed a significant increase in the expression of thrombospondin 1 (THBS1), which participates in TGF-β1 activation, where THBS1 was identified as a core gene in protein interactions analyzed through bioinformatics. The expression of miR-335-3p, which targets 3'-UTR of THBS1, substantially decreased upon TGF-β1 treatment. The TGF-β1 downstream signal was suppressed by inhibiting the interaction between TGF-β1 and THBS1, consequently alleviating fibrosis. When the miR-335-3p mimic was transfected in TGF-β1-treated respiratory epithelial cells, THBS1 and fibrosis markers were downregulated, while the introduction of miR-335-3p inhibitor exhibited a reverse phenomenon. Our findings demonstrated that TGF-β1 exposure to respiratory epithelial cells led to a decrease in miR-335-3p expression, resulting in the upregulation of THBS1 and ultimately exacerbating fibrosis. This study provides insights into TGF-β1-induced pulmonary fibrosis, suggesting new therapeutic targets and mechanisms.
Collapse
Affiliation(s)
- Dong-Hee Han
- Department of Life Science, Biomedi Campus, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, Korea
| | - Min Kyoung Shin
- Department of Life Science, Biomedi Campus, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, Korea
| | - Jung-Suk Sung
- Department of Life Science, Biomedi Campus, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, Korea
| | - Min Kim
- Department of Life Science, Biomedi Campus, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, Korea
| |
Collapse
|
3
|
Zhao L, Zhu Y, Tao H, Chen X, Yin F, Zhang Y, Qin J, Huang Y, Cai B, Lin Y, Wu J, Zhang Y, Liang L, Shen A, Yu XY. Ailanthone ameliorates pulmonary fibrosis by suppressing JUN-dependent MEOX1 activation. Acta Pharm Sin B 2024; 14:3543-3560. [PMID: 39220862 PMCID: PMC11365432 DOI: 10.1016/j.apsb.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 09/04/2024] Open
Abstract
Pulmonary fibrosis poses a significant health threat with very limited therapeutic options available. In this study, we reported the enhanced expression of mesenchymal homobox 1 (MEOX1) in pulmonary fibrosis patients, especially in their fibroblasts and endothelial cells, and confirmed MEOX1 as a central orchestrator in the activation of profibrotic genes. By high-throughput screening, we identified Ailanthone (AIL) from a natural compound library as the first small molecule capable of directly targeting and suppressing MEOX1. AIL demonstrated the ability to inhibit both the activation of fibroblasts and endothelial-to-mesenchymal transition of endothelial cells when challenged by transforming growth factor-β1 (TGF-β1). In an animal model of bleomycin-induced pulmonary fibrosis, AIL effectively mitigated the fibrotic process and restored respiratory functions. Mechanistically, AIL acted as a suppressor of MEOX1 by disrupting the interaction between the transcription factor JUN and the promoter of MEOX1, thereby inhibiting MEOX1 expression and activity. In summary, our findings pinpointed MEOX1 as a cell-specific and clinically translatable target in fibrosis. Moreover, we demonstrated the potent anti-fibrotic effect of AIL in pulmonary fibrosis, specifically through the suppression of JUN-dependent MEOX1 activation.
Collapse
Affiliation(s)
| | | | | | - Xiying Chen
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Feng Yin
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yingyi Zhang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianfeng Qin
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yongyin Huang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Bikun Cai
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yonghao Lin
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiaxiang Wu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yu Zhang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Lu Liang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ao Shen
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xi-Yong Yu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
4
|
Cui Y, Yang Z, Lv Z, Lei J. Disruption of extracellular redox balance drives persistent lung fibrosis and impairs fibrosis resolution. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166842. [PMID: 37558008 DOI: 10.1016/j.bbadis.2023.166842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Lung fibrosis is a devastating outcome of various diffuse parenchymal lung diseases. Despite rigorous research efforts, the mechanisms that propagate its progressive and nonresolving nature remain enigmatic. Oxidative stress has been implicated in the pathogenesis of lung fibrosis. However, the role of extracellular redox state in disease progression and resolution remains largely unexplored. Here, we show that compartmentalized control over extracellular reactive oxygen species (ROS) by aerosolized delivery of recombinant extracellular superoxide dismutase (ECSOD) suppresses an established bleomycin-induced fibrotic process in mice. Further analysis of publicly available microarray, RNA-seq and single-cell RNAseq datasets reveals a significant decrease in ECSOD expression in fibrotic lung tissues that can be spontaneously restored during fibrosis resolution. Therefore, we investigate the effect of siRNA-mediated ECSOD depletion during the established fibrotic phase on the self-limiting nature of the bleomycin mouse model. Our results demonstrate that in vivo knockdown of ECSOD in mouse fibrotic lungs impairs fibrosis resolution. Mechanistically, we demonstrate that transforming growth factor (TGF)-β1 downregulates endogenous ECSOD expression, leading to the accumulation of extracellular superoxide via Smad-mediated signaling and the activation of additional stores of latent TGF-β1. In addition, depletion of endogenous ECSOD during the fibrotic phase in the bleomycin model induces an apoptosis-resistant phenotype in lung fibroblasts through unrestricted Akt signaling. Taken together, our data strongly support the critical role of extracellular redox state in fibrosis persistence and resolution. Based on these findings, we propose that compartment-specific control over extracellular ROS may be a potential therapeutic strategy for managing fibrotic lung disorders.
Collapse
Affiliation(s)
- Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, People's Republic of China.
| | - Zeran Yang
- Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Jianfeng Lei
- Medical Imaging Laboratory, Research Core Facilities, Capital Medical University, Beijing 100069, People's Republic of China
| |
Collapse
|
5
|
Soós AÁ, Kelemen A, Orosz A, Szvicsek Z, Tölgyes T, Dede K, Bursics A, Wiener Z. High CD142 Level Marks Tumor-Promoting Fibroblasts with Targeting Potential in Colorectal Cancer. Int J Mol Sci 2023; 24:11585. [PMID: 37511344 PMCID: PMC10381019 DOI: 10.3390/ijms241411585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Colorectal cancer (CRC) has a high incidence and is one of the leading causes of cancer-related death. The accumulation of cancer-associated fibroblasts (CAF) induces an aggressive, stem-like phenotype in tumor cells, and it indicates a poor prognosis. However, cellular heterogeneity among CAFs and the targeting of both stromal and CRC cells are not yet well resolved. Here, we identified CD142high fibroblasts with a higher stimulating effect on CRC cell proliferation via secreting more hepatocyte growth factor (HGF) compared to CD142low CAFs. We also found that combinations of inhibitors that had either a promising effect in other cancer types or are more active in CRC compared to normal colonic epithelium acted synergistically in CRC cells. Importantly, heat shock protein 90 (HSP90) inhibitor selected against CD142high fibroblasts, and both CRC cells and CAFs were sensitive to a BCL-xL inhibitor. However, targeting mitogen-activated protein kinase kinase (MEK) was ineffective in fibroblasts, and an epigenetic inhibitor selected for a tumor cell population with markers of aggressive behavior. Thus, we suggest BCL-xL and HSP90 inhibitors to eliminate cancer cells and decrease the tumor-promoting CD142high CAF population. This may be the basis of a strategy to target both CRC cells and stromal fibroblasts, resulting in the inhibition of tumor relapse.
Collapse
Affiliation(s)
- András Áron Soós
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1089 Budapest, Hungary; (A.Á.S.); (A.K.); (A.O.); (Z.S.)
| | - Andrea Kelemen
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1089 Budapest, Hungary; (A.Á.S.); (A.K.); (A.O.); (Z.S.)
| | - Adrián Orosz
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1089 Budapest, Hungary; (A.Á.S.); (A.K.); (A.O.); (Z.S.)
| | - Zsuzsanna Szvicsek
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1089 Budapest, Hungary; (A.Á.S.); (A.K.); (A.O.); (Z.S.)
| | - Tamás Tölgyes
- Uzsoki Teaching Hospital, H-1145 Budapest, Hungary; (T.T.); (K.D.); (A.B.)
| | - Kristóf Dede
- Uzsoki Teaching Hospital, H-1145 Budapest, Hungary; (T.T.); (K.D.); (A.B.)
| | - Attila Bursics
- Uzsoki Teaching Hospital, H-1145 Budapest, Hungary; (T.T.); (K.D.); (A.B.)
| | - Zoltán Wiener
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1089 Budapest, Hungary; (A.Á.S.); (A.K.); (A.O.); (Z.S.)
| |
Collapse
|
6
|
Pi Z, Qiu X, Liu J, Shi Y, Zeng Z, Xiao R. Activating Protein-1 (AP-1): A Promising Target for the Treatment of Fibrotic Diseases. Curr Med Chem 2023; 31:CMC-EPUB-129375. [PMID: 36757030 DOI: 10.2174/0929867330666230209100059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 02/10/2023]
Abstract
The fibrosis of tissues and organs occurs via an aberrant tissue remodeling process characterized by an excessive deposition of extracellular matrix, which can lead to organ dysfunction, organ failure, and death. Because the pathogenesis of fibrosis remains unclear and elusive, there is currently no medication to reverse it; hence, this process deserves further study. Activating protein-1 (AP-1)-comprising Jun (c-Jun, JunB, JunD), Fos (c-fos, FosB, Fra1, and Fra2), and activating transcription factor-is a versatile dimeric transcription factor. Numerous studies have demonstrated that AP-1 plays a crucial role in advancing tissue and organ fibrosis via induction of the expression of fibrotic molecules and activating fibroblasts. This review focuses on the role of AP-1 in a range of fibrotic disorders as well as on the antifibrotic effects of AP-1 inhibitors. It also discusses the potential of AP-1 as a new therapeutic target in conditions involving tissue and organ fibrosis.
Collapse
Affiliation(s)
- Zixin Pi
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Department of Medical Genetics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiangning Qiu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jiani Liu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yaqian Shi
- Second Xiangya Hospital of Central South University Department of Dermatology Changsha China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
7
|
Chrysanthopoulou A, Antoniadou C, Natsi AM, Gavriilidis E, Papadopoulos V, Xingi E, Didaskalou S, Mikroulis D, Tsironidou V, Kambas K, Koffa M, Skendros P, Ritis K. Down-regulation of KLF2 in lung fibroblasts is linked with COVID-19 immunofibrosis and restored by combined inhibition of NETs, JAK-1/2 and IL-6 signaling. Clin Immunol 2023; 247:109240. [PMID: 36693535 PMCID: PMC9862710 DOI: 10.1016/j.clim.2023.109240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Kruppel-like factor 2 (KLF2) has been linked with fibrosis and neutrophil-associated thromboinflammation; however, its role in COVID-19 remains elusive. We investigated the effect of disease microenvironment on the fibrotic potential of human lung fibroblasts (LFs) and its association with KLF2 expression. LFs stimulated with plasma from severe COVID-19 patients down-regulated KLF2 expression at mRNA/protein and functional level acquiring a pre-fibrotic phenotype, as indicated by increased CCN2/collagen levels. Pre-incubation with the COMBI-treatment-agents (DNase I and JAKs/IL-6 inhibitors baricitinib/tocilizumab) restored KLF2 levels of LFs to normal abolishing their fibrotic activity. LFs stimulated with plasma from COMBI-treated patients at day-7 expressed lower CCN2 and higher KLF2 levels, compared to plasma prior-to-treatment, an effect not observed in standard-of-care treatment. In line with this, COMBI-treated patients had better outcome than standard-of-care group. These data link fibroblast KLF2 with NETosis and JAK/IL-6 signaling, suggesting the potential of combined therapeutic strategies in immunofibrotic diseases, such as COVID-19.
Collapse
Affiliation(s)
- Akrivi Chrysanthopoulou
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Antoniadou
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Anastasia-Maria Natsi
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Efstratios Gavriilidis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasileios Papadopoulos
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Evangelia Xingi
- Light Microscopy Unit, Hellenic Pasteur Institute, Athens, Greece
| | - Stylianos Didaskalou
- Laboratory of Cell Biology, Proteomics and Cell Cycle, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios Mikroulis
- Department of Cardiovascular Surgery, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Victoria Tsironidou
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Kambas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Koffa
- Laboratory of Cell Biology, Proteomics and Cell Cycle, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Panagiotis Skendros
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece; First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Konstantinos Ritis
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece; First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
8
|
Tie Y, Tang F, Peng D, Zhang Y, Shi H. TGF-beta signal transduction: biology, function and therapy for diseases. MOLECULAR BIOMEDICINE 2022; 3:45. [PMID: 36534225 PMCID: PMC9761655 DOI: 10.1186/s43556-022-00109-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The transforming growth factor beta (TGF-β) is a crucial cytokine that get increasing concern in recent years to treat human diseases. This signal controls multiple cellular responses during embryonic development and tissue homeostasis through canonical and/or noncanonical signaling pathways. Dysregulated TGF-β signal plays an essential role in contributing to fibrosis via promoting the extracellular matrix deposition, and tumor progression via inducing the epithelial-to-mesenchymal transition, immunosuppression, and neovascularization at the advanced stage of cancer. Besides, the dysregulation of TGF-beta signal also involves in other human diseases including anemia, inflammatory disease, wound healing and cardiovascular disease et al. Therefore, this signal is proposed to be a promising therapeutic target in these diseases. Recently, multiple strategies targeting TGF-β signals including neutralizing antibodies, ligand traps, small-molecule receptor kinase inhibitors targeting ligand-receptor signaling pathways, antisense oligonucleotides to disrupt the production of TGF-β at the transcriptional level, and vaccine are under evaluation of safety and efficacy for the forementioned diseases in clinical trials. Here, in this review, we firstly summarized the biology and function of TGF-β in physiological and pathological conditions, elaborated TGF-β associated signal transduction. And then, we analyzed the current advances in preclinical studies and clinical strategies targeting TGF-β signal transduction to treat diseases.
Collapse
Affiliation(s)
- Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Fan Tang
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China ,grid.13291.380000 0001 0807 1581Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Dandan Peng
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Ye Zhang
- grid.506261.60000 0001 0706 7839Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Huashan Shi
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| |
Collapse
|
9
|
Khezri MR, Varzandeh R, Ghasemnejad-Berenji M. The probable role and therapeutic potential of the PI3K/AKT signaling pathway in SARS-CoV-2 induced coagulopathy. Cell Mol Biol Lett 2022; 27:6. [PMID: 35016612 PMCID: PMC8751460 DOI: 10.1186/s11658-022-00308-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/05/2022] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is associated with a high mortality rate. The majority of deaths in this disease are caused by ARDS (acute respiratory distress syndrome) followed by cytokine storm and coagulation complications. Although alterations in the level of the number of coagulation factors have been detected in samples from COVID-19 patients, the direct molecular mechanism which has been involved in this pathologic process has not been explored yet. The PI3K/AKT signaling pathway is an intracellular pathway which plays a central role in cell survival. Also, in recent years the association between this pathway and coagulopathies has been well clarified. Therefore, based on the evidence on over-activity of the PI3K/AKT signaling pathway in SARS-CoV-2 infection, in the current review, the probable role of this cellular pathway as a therapeutic target for the prevention of coagulation complications in patients with COVID-19 is discussed.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Sero Road, 5715799313, Urmia, Iran.
| | - Reza Varzandeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Sero Road, 5715799313, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Sero Road, 5715799313, Urmia, Iran. .,Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
10
|
Tsoyi K, Liang X, De Rossi G, Ryter SW, Xiong K, Chu SG, Liu X, Ith B, Celada LJ, Romero F, Robertson MJ, Esposito AJ, Poli S, El-Chemaly S, Perrella MA, Shi Y, Whiteford J, Rosas IO. CD148 Deficiency in Fibroblasts Promotes the Development of Pulmonary Fibrosis. Am J Respir Crit Care Med 2021; 204:312-325. [PMID: 33784491 DOI: 10.1164/rccm.202008-3100oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: CD148/PTRJ (receptor-like protein tyrosine phosphatase η) exerts antifibrotic effects in experimental pulmonary fibrosis via interactions with its ligand syndecan-2; however, the role of CD148 in human pulmonary fibrosis remains incompletely characterized.Objectives: We investigated the role of CD148 in the profibrotic phenotype of fibroblasts in idiopathic pulmonary fibrosis (IPF).Methods: Conditional CD148 fibroblast-specific knockout mice were generated and exposed to bleomycin and then assessed for pulmonary fibrosis. Lung fibroblasts (mouse lung and human IPF lung), and precision-cut lung slices from human patients with IPF were isolated and subjected to experimental treatments. A CD148-activating 18-aa mimetic peptide (SDC2-pep) derived from syndecan-2 was evaluated for its therapeutic potential.Measurements and Main Results: CD148 expression was downregulated in IPF lungs and fibroblasts. In human IPF lung fibroblasts, silencing of CD148 increased extracellular matrix production and resistance to apoptosis, whereas overexpression of CD148 reversed the profibrotic phenotype. CD148 fibroblast-specific knockout mice displayed increased pulmonary fibrosis after bleomycin challenge compared with control mice. CD148-deficient fibroblasts exhibited hyperactivated PI3K/Akt/mTOR signaling, reduced autophagy, and increased p62 accumulation, which induced NF-κB activation and profibrotic gene expression. SDC2-pep reduced pulmonary fibrosis in vivo and inhibited IPF-derived fibroblast activation. In precision-cut lung slices from patients with IPF and control patients, SDC2-pep attenuated profibrotic gene expression in IPF and normal lungs stimulated with profibrotic stimuli.Conclusions: Lung fibroblast CD148 activation reduces p62 accumulation, which exerts antifibrotic effects by inhibiting NF-κB-mediated profibrotic gene expression. Targeting the CD148 phosphatase with activating ligands such as SDC2-pep may represent a potential therapeutic strategy in IPF.
Collapse
Affiliation(s)
- Konstantin Tsoyi
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Xiaoliang Liang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Giulia De Rossi
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Kevin Xiong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Sarah G Chu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Bonna Ith
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Lindsay J Celada
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Freddy Romero
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Matthew J Robertson
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Anthony J Esposito
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Sergio Poli
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - YuanYuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - James Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ivan O Rosas
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
11
|
Ye Z, Hu Y. TGF‑β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review). Int J Mol Med 2021; 48:132. [PMID: 34013369 PMCID: PMC8136122 DOI: 10.3892/ijmm.2021.4965] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/29/2021] [Indexed: 01/09/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a worldwide disease characterized by the chronic and irreversible decline of lung function. Currently, there is no drug to successfully treat the disease except for lung transplantation. Numerous studies have been devoted to the study of the fibrotic process of IPF and findings showed that transforming growth factor‑β1 (TGF‑β1) plays a central role in the development of IPF. TGF‑β1 promotes the fibrotic process of IPF through various signaling pathways, including the Smad, MAPK, and ERK signaling pathways. There are intersections between these signaling pathways, which provide new targets for researchers to study new drugs. In addition, TGF‑β1 can affect the fibrosis process of IPF by affecting oxidative stress, epigenetics and other aspects. Most of the processes involved in TGF‑β1 promote IPF, but TGF‑β1 can also inhibit it. This review discusses the role of TGF‑β1 in IPF.
Collapse
Affiliation(s)
- Zhimin Ye
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan 410006, P.R. China
| | - Yongbin Hu
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan 410006, P.R. China
| |
Collapse
|
12
|
MiR-200a inversely correlates with Hedgehog and TGF-β canonical/non-canonical trajectories to orchestrate the anti-fibrotic effect of Tadalafil in a bleomycin-induced pulmonary fibrosis model. Inflammopharmacology 2020; 29:167-182. [PMID: 32914382 DOI: 10.1007/s10787-020-00748-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
Few reports have documented the ability of phosphodiesterase-5 inhibitors (PDE-5-Is) to ameliorate idiopathic pulmonary fibrosis (IPF) mainly by their anti-inflammatory/antioxidant capacities, without unveiling the possible molecular mechanisms involved. Because of the recent role of miR-200 family and Sonic Hedgehog (SHH) trajectory in IPF, we have studied their impact on the anti-fibrotic potential of tadalafil against bleomycin-induced pulmonary fibrosis. Animals were allocated into normal-control, bleomycin-fibrotic control, and bleomycin post-treated with tadalafil or dexamethasone, as the reference drug. On the molecular level, tadalafil has reverted the bleomycin effect on all the assessed parameters. Tadalafil upregulated the gene expression of miR-200a, but decreased the smoothened (SMO) and the transcription factors glioma-associated oncogene homolog (Gli-1, Gli-2), members of SHH pathway. Additionally, tadalafil ebbed transforming growth factor (TGF)-β, its canonical (SMAD-3/alpha smooth muscle actin [α-SMA] and Snail), and non-canonical (p-Akt/p-Forkhead box O3 (FOXO3) a) pathways. Besides, a strong negative correlation between miR-200a and the analyzed pathways was proved. The effect of tadalafil was further confirmed by the improved lung structure and the reduced Ashcroft score/collagen deposition. The results were comparable to that of dexamethasone. In conclusion, our study has highlighted the involvement of miR-200a in the anti-fibrotic effect of tadalafil with the inhibition of SHH hub and the pro-fibrotic pathways (TGF-β/ SMAD-3/α-SMA, Snail and p-AKT/p-FOXO3a). Potential anti-fibrotic effect of tadalafil. Modulation of miR200a/SHH/canonical and non-canonical TGF-β trajectories. → : stimulatory effect; ┴: inhibitory effect.
Collapse
|
13
|
Mu M, Gao P, Yang Q, He J, Wu F, Han X, Guo S, Qian Z, Song C. Alveolar Epithelial Cells Promote IGF-1 Production by Alveolar Macrophages Through TGF-β to Suppress Endogenous Inflammatory Signals. Front Immunol 2020; 11:1585. [PMID: 32793225 PMCID: PMC7385185 DOI: 10.3389/fimmu.2020.01585] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
To maintain alveolar gas exchange, the alveolar surface has to limit unnecessary inflammatory responses. This involves crosstalk between alveolar epithelial cells (AECs) and alveolar macrophages (AMs) in response to damaging factors. We recently showed that insulin-like growth factor (IGF)-1 regulates the phagocytosis of AECs. AMs secrete IGF-1 into the bronchoalveolar lavage fluid (BALF) in response to inflammatory stimuli. However, whether AECs regulate the production of IGF-1 by AMs in response to inflammatory signals remains unclear, as well as the role of IGF-1 in controlling the alveolar balance in the crosstalk between AMs and AECs under inflammatory conditions. In this study, we demonstrated that IGF-1 was upregulated in BALF and lung tissues of acute lung injury (ALI) mice, and that the increased IGF-1 was mainly derived from AMs. In vitro experiments showed that the production and secretion of IGF-1 by AMs as well as the expression of TGF-β were increased in LPS-stimulated AEC-conditioned medium (AEC-CM). Pharmacological blocking of TGF-β in AECs and addition of TGF-β neutralizing antibody to AEC-CM suggested that this AEC-derived cytokine mediates the increased production and secretion of IGF-1 from AMs. Blocking TGF-β synthesis or treatment with TGF-β neutralizing antibody attenuated the increase of IGF-1 in BALF in ALI mice. TGF-β induced the production of IGF-1 by AMs through the PI3K/Akt signaling pathway. IGF-1 prevented LPS-induced p38 MAPK activation and the expression of the inflammatory factors MCP-1, TNF-α, and IL-1β in AECs. However, IGF-1 upregulated PPARγ to increase the phagocytosis of apoptotic cells by AECs. Intratracheal instillation of IGF-1 decreased the number of polymorphonuclear neutrophils in BALF of ALI model mice, reduced alveolar congestion and edema, and suppressed inflammatory cell infiltration in lung tissues. These results elucidated a mechanism by which AECs used TGF-β to regulate IGF-1 production from AMs to attenuate endogenous inflammatory signals during alveolar inflammation.
Collapse
Affiliation(s)
- Mimi Mu
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Peiyu Gao
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Qian Yang
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Jing He
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Fengjiao Wu
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Xue Han
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Shujun Guo
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Zhongqing Qian
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Chuanwang Song
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| |
Collapse
|
14
|
Unruh D, Horbinski C. Beyond thrombosis: the impact of tissue factor signaling in cancer. J Hematol Oncol 2020; 13:93. [PMID: 32665005 PMCID: PMC7362520 DOI: 10.1186/s13045-020-00932-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Tissue factor (TF) is the primary initiator of the coagulation cascade, though its effects extend well beyond hemostasis. When TF binds to Factor VII, the resulting TF:FVIIa complex can proteolytically cleave transmembrane G protein-coupled protease-activated receptors (PARs). In addition to activating PARs, TF:FVIIa complex can also activate receptor tyrosine kinases (RTKs) and integrins. These signaling pathways are utilized by tumors to increase cell proliferation, angiogenesis, metastasis, and cancer stem-like cell maintenance. Herein, we review in detail the regulation of TF expression, mechanisms of TF signaling, their pathological consequences, and how it is being targeted in experimental cancer therapeutics.
Collapse
Affiliation(s)
- Dusten Unruh
- Department of Neurological Surgery, Northwestern University, 303 East Superior St, Chicago, IL, 60611, USA.
| | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University, 303 East Superior St, Chicago, IL, 60611, USA.,Department of Pathology, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
15
|
Budding Uninhibited by Benzimidazole-1 Insufficiency Prevents Acute Renal Failure in Severe Sepsis by Maintaining Anticoagulant Functions of Vascular Endothelial Cells. Shock 2020; 51:364-371. [PMID: 29608549 DOI: 10.1097/shk.0000000000001147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Severe sepsis is critical to health and can result in acute renal failure (ARF). Tissue factor (TF) and thrombomodulin (TM) play key roles in vascular endothelial functions by helping maintain microcirculation in the kidney. Budding uninhibited by benzimidazole-1 (Bub1) plays a role in Akt and JNK signaling, which control TF and TM, respectively. We hypothesized that Bub1 could control vascular endothelial function in sepsis. The aim of this study was to determine the role of Bub1 in septic ARF. We used Mouse cecum ligation and puncture (CLP) using low Bub1 expressing (Bub1) and wild-type (Bub1) mice in vivo and lipopolysaccharide (LPS) stimulation of human aortic endothelial cell (HAEC) in vitro. Bub1 mice had a higher survival rate after CLP than Bub1. Bub1 mice had more severe ARF after CLP than Bub1 with blood biochemical and pathological analyses. TF expression in Bub1 mice and control HAEC (control) significantly increased in the septic model compared with Bub1 and Bub1 silenced HAEC (siBub1). TM expression in the control significantly decreased after LPS stimulation compared with siBub1. Akt and JNK phosphorylation of siBub1 were attenuated after LPS stimulation. Associations of Bub1 with Akt or JNK after LPS stimulation of HAEC were detected using immunoprecipitation, suggesting that Bub1 is involved in the phosphorylation of Akt and JNK after LPS stimulation. Bub1 insufficiency attenuates TF expression and reduces TM suppression by blocking Akt and JNK phosphorylation, respectively, thus leading to the prevention of ARF and death caused by sepsis.
Collapse
|
16
|
Shaker H, Bundred NJ, Landberg G, Pritchard SA, Albadry H, Nicholson SL, Harries LJ, Heah JYE, Castle J, Kirwan CC. Breast cancer stromal clotting activation (Tissue Factor and thrombin): A pre-invasive phenomena that is prognostic in invasion. Cancer Med 2020; 9:1768-1778. [PMID: 31962001 PMCID: PMC7050075 DOI: 10.1002/cam4.2748] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/25/2022] Open
Abstract
Background Tumor stroma, of which fibroblasts are the most abundant cell, resembles a non‐healing wound, where a procoagulant environment creates a permissive milieu for cancer growth. We aimed to determine if tumor expression of coagulation factors (procoagulant phenotype), and systemic hypercoagulability, occur at the preinvasive (ductal carcinoma in situ; DCIS) stage and correlate with breast cancer subtype, disease‐free survival (DFS), and overall survival (OS). Methods In a prospective cohort of early breast cancer (DCIS, n = 76; invasive, n = 248) tumor, normal breast and plasma were examined. Fibroblast and epithelial expression of Tissue Factor (TF), thrombin, PAR1, PAR2, and plasma thrombin‐antithrombin (TAT) and D‐dimer were correlated with clinicopathological data, and 5‐year survival. Results Fibroblast expression of TF, thrombin, and PAR1 was increased in DCIS and invasive cancer compared to normal breast fibroblasts (P ≤ .003, all). Fibroblast TF, thrombin, PAR1, and PAR2 was increased in cancers with high Ki67, high grade, ER‐ (vs ER+), and HER2+ (vs HER2‐) (all P < .05). On univariate analysis, fibroblast TF expression was inversely associated with DFS (P = .04) and OS (P = .02). D‐dimer was higher in node positive (507 (CI: 411‐625) ng/mL, n = 68) vs negative patients (428 (CI: 387‐472) ng/mL, n = 171, P = .004) and inversely associated with OS (P = .047). On multivariate analysis, plasma TAT was associated with reduced OS (HR 3.26, CI 1.16‐3.1, P = .02), with a high plasma TAT (≥3.2 ng/mL) associated with > 3‐fold mortality risk compared to low TAT. Conclusion This demonstrates procoagulant phenotypic changes occur in fibroblasts at the preinvasive stage. Fibroblast procoagulant phenotype is associated with aggressive breast cancer subtypes and reduced survival. Coagulation may be a therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Hudhaifah Shaker
- Faculty of Biology, Medicine and Health, Division of Cancer Sciences, School of Medical Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Nigel J Bundred
- Faculty of Biology, Medicine and Health, Division of Cancer Sciences, School of Medical Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Göran Landberg
- Department of Pathology, Institute for Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Susan A Pritchard
- Department of Histopathology, Manchester University NHS Foundation Trust, Wythenshawe, Manchester, UK
| | - Harith Albadry
- Department of Histopathology, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Sarah L Nicholson
- Department of Histopathology, East Lancashire Hospitals NHS Trust, Blackburn, UK
| | - Lauren J Harries
- Department of Histopathology, Manchester University NHS Foundation Trust, Wythenshawe, Manchester, UK
| | - Jing Y E Heah
- The Nightingale Centre and Prevent Breast Cancer Research Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - John Castle
- Faculty of Biology, Medicine and Health, Division of Cancer Sciences, School of Medical Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Cliona C Kirwan
- Faculty of Biology, Medicine and Health, Division of Cancer Sciences, School of Medical Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester, UK.,The Nightingale Centre and Prevent Breast Cancer Research Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
17
|
van der Velden JL, Alcorn JF, Chapman DG, Lundblad LKA, Irvin CG, Davis RJ, Butnor K, Janssen-Heininger YMW. Airway epithelial specific deletion of Jun-N-terminal kinase 1 attenuates pulmonary fibrosis in two independent mouse models. PLoS One 2020; 15:e0226904. [PMID: 31935227 PMCID: PMC6959564 DOI: 10.1371/journal.pone.0226904] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/07/2019] [Indexed: 01/06/2023] Open
Abstract
The stress-induced kinase, c-Jun-N-terminal kinase 1 (JNK1) has previously been implicated in the pathogenesis of lung fibrosis. However, the exact cell type(s) wherein JNK1 exerts its pro-fibrotic role(s) remained enigmatic. Herein we demonstrate prominent activation of JNK in bronchial epithelia using the mouse models of bleomycin- or AdTGFβ1-induced fibrosis. Furthermore, in lung tissues of patients with idiopathic pulmonary fibrosis (IPF), active JNK was observed in various regions including type I and type II pneumocytes and fibroblasts. No JNK activity was observed in adjacent normal tissue or in normal control tissue. To address the role of epithelial JNK1, we ablated Jnk1 form bronchiolar and alveolar type II epithelial cells using CCSP-directed Cre recombinase-mediated ablation of LoxP-flanked Jnk1 alleles. Our results demonstrate that ablation of Jnk1 from airway epithelia resulted in a strong protection from bleomycin- or adenovirus expressing active transforming growth factor beta-1 (AdTGFβ1)-induced fibrosis. Ablation of the Jnk1 allele at a time when collagen increases were already present showed a reversal of existing increases in collagen content. Epithelial Jnk1 ablation resulted in attenuation of mesenchymal genes and proteins in lung tissue and preserved expression of epithelial genes. Collectively, these data suggest that epithelial JNK1 contributes to the pathogenesis of pulmonary fibrosis. Given the presence of active JNK in lungs from patients with IPF, targeting JNK1 in airway epithelia may represent a potential treatment strategy to combat this devastating disease.
Collapse
Affiliation(s)
- Jos L. van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - John F. Alcorn
- Children’s Hospital of Pittsburgh University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - David G. Chapman
- Departments of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Lennart K. A. Lundblad
- Departments of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Charles G. Irvin
- Departments of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Roger J. Davis
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kelly Butnor
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Yvonne M. W. Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
18
|
Chen L, Qin L, Liu X, Meng X. CTRP3 Alleviates Ox-LDL-Induced Inflammatory Response and Endothelial Dysfunction in Mouse Aortic Endothelial Cells by Activating the PI3K/Akt/eNOS Pathway. Inflammation 2020; 42:1350-1359. [PMID: 30887395 DOI: 10.1007/s10753-019-00996-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
C1q/tumor necrosis factor-related protein-3 (CTRP3) is a novel, certified, adipokine that beneficially regulates metabolism and inflammation in the cardiovascular system. Atherosclerotic plaque rupturing and secondary thrombosis cause vascular disorders, such as myocardial infarction and unstable angina. However, the underlying role of CTRP3 in atherosclerosis remains unclear. In this study, we aimed to elucidate whether and how CTRP3 ameliorates inflammation and endothelial dysfunction caused by oxidized low-density lipoprotein (ox-LDL). We first confirmed that CTRP3 expression was inhibited in ApoE-/- mice, compared to normal mice. Then, pcDNA-CTRP3 and siCTRP3 were transfected into mouse aortic endothelial cells after ox-LDL stimulation, and we observed that enhanced CTRP3 remarkably downregulated CRP, TNF-α, IL-6, CD40, and CD40L. We also observed that overexpression of CTRP3 elevated cell activity and decreased lactated hydrogenase release, accompanied by a marked reduction in cell apoptosis induced by ox-LDL. Meanwhile, overexpressed CTRP3 caused a decrease in Ang II, ICAM-1, and VCAM-1 expression, and it restored the balance between ET-1 and NO. Mechanism analysis confirmed that incremental CTRP3 upregulated p-PI3K, p-Akt, and p-eNOS expression, indicating that CTRP3 facilitated activation of the PI3K/Akt/eNOS pathway. On the contrary, siCTRP3 exerted the opposite effect to this activation. Blocking these pathways using LY294002 or L-NAME attenuated the protective role of CTRP3. Overall, these results suggest that CTRP3 can efficiently inhibit the inflammatory response and endothelial dysfunction induced by ox-LDL in mouse aortic endothelial cells, perhaps by activating the PI3K/Akt/eNOS pathway, indicating a promising strategy against atherosclerosis.
Collapse
Affiliation(s)
- Lei Chen
- Department of Critical Care Medicine, Gansu Provincial Hospital of TCM, No. 418, Guazhou Road, Qilihe District, Lanzhou City, 730050, Gansu, People's Republic of China.
| | - Lijun Qin
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, People's Republic of China
| | - Xin Liu
- Department of Rheumatic Osteopathology, Gansu Provincial Hospital of TCM, Lanzhou, 730050, Gansu, People's Republic of China
| | - Xiangyun Meng
- Central Laboratory, Gansu Provincial Hospital of TCM, Lanzhou, 730050, Gansu, People's Republic of China
| |
Collapse
|
19
|
Wang CQ, Lin CY, Huang YL, Wang SW, Wang Y, Huang BF, Lai YW, Weng SL, Fong YC, Tang CH, Lv Z. Sphingosine-1-phosphate promotes PDGF-dependent endothelial progenitor cell angiogenesis in human chondrosarcoma cells. Aging (Albany NY) 2019; 11:11040-11053. [PMID: 31809267 PMCID: PMC6932882 DOI: 10.18632/aging.102508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
The malignant bone tumors that are categorized as chondrosarcomas display a high potential for metastasis in late-stage disease. Higher-grade chondrosarcomas contain higher levels of expression of platelet-derived growth factor (PDGF) and its receptor. The phosphorylation of sphingosine by sphingosine kinase enzymes SphK1 and SphK2 generates sphingosine-1-phosphate (S1P), which inhibits human chondrosarcoma cell migration, while SphK1 overexpression suppresses lung metastasis of chondrosarcoma. We sought to determine whether S1P mediates levels of PDGF-A expression and angiogenesis in chondrosarcoma. Surprisingly, our investigations found that treatment of chondrosarcoma cells with S1P and transfecting them with SphK1 cDNA increased PDGF-A expression and induced angiogenesis of endothelial progenitor cells (EPCs). Ras, Raf, MEK, ERK and AP-1 inhibitors and their small interfering RNAs (siRNAs) inhibited S1P-induced PDGF-A expression and EPC angiogenesis. Our results indicate that S1P promotes the expression of PDGF-A in chondrosarcoma via the Ras/Raf/MEK/ERK/AP-1 signaling cascade and stimulates EPC angiogenesis.
Collapse
Affiliation(s)
- Chao-Qun Wang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chih-Yang Lin
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan Wang
- Department of Medical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Bi-Fei Huang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yu-Wei Lai
- Division of Urology, Taipei Hospital Renai Branch, Taipei, Taiwan.,Department of Urology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Shun-Long Weng
- Department of Obstetrics and Gynaecology, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Zhong Lv
- Department of General Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| |
Collapse
|
20
|
Yu H, Zhang Z, Huang H, Wang Y, Lin B, Wu S, Ma J, Chen B, He Z, Wu J, Zhao Z, Zhang H. Inhibition of bleomycin-induced pulmonary fibrosis in mice by the novel peptide EZY-1 purified from Eucheuma. Food Funct 2019; 10:3198-3208. [PMID: 31165849 DOI: 10.1039/c9fo00308h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
For the first time, a new 16-amino-acid peptide was isolated from Eucheuma, an edible seaweed, and named EZY-1. EZY-1 was used to interfere with bleomycin-induced mice pulmonary fibrosis. The target proteins of EZY-1 were screened by an in vitro pull-down method combined with LC-MS/MS. The results showed that EZY-1 can inhibit the idiopathic pulmonary fibrosis (IPF) induced by bleomycin. The potency and safety of EZY-1 are superior to those of the drug used for clinical treatment, pirfenidone. The results showed that EZY-1 suppresses the TGF-β/Smad, PI3K-Akt-mTOR, Rac1-PAK2-cAb1 and MAPK signal transduction pathways. Proteins such as ERK, Akt, PDGF receptor β, vitronectin, raptor and SHP2 exhibited binding to EZY-1 in an in vitro pull-down assay combined with LC-MS/MS analysis. EZY-1 was confirmed to be an effective component of Eucheuma in the inhibition of IPF. The signalling pathways and target proteins of EZY-1 were preliminarily predicted. This study lays the foundation for the development of new drugs from Eucheuma for the treatment of IPF.
Collapse
Affiliation(s)
- Huajun Yu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Xu F, Xu F, Xie S, Zuo W, Wen G, Zhao T, Wan X. MicroRNA-448 overexpression inhibits fibroblast proliferation and collagen synthesis and promotes cell apoptosis via targeting ABCC3 through the JNK signaling pathway. J Cell Physiol 2019; 235:1374-1385. [PMID: 31506947 DOI: 10.1002/jcp.29056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/12/2019] [Indexed: 01/14/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a condition that results in the progressive deterioration of lung function with poor prognosis. The current study is aimed at exploring how microRNA-448 (miR-448) targeting ABCC3 affects fibroblast proliferation, apoptosis, and collagen synthesis of mice with IPF via the Jun N-terminal kinase (JNK) signaling pathway. Bioinformatics and dual-luciferase polymerase chain reaction were used to predict the relationship of miR-448 and ABCC3. The expression of miR-448 and ABCC3 was detected in IPF tissues. Using IPF mouse models, lung fibroblasts for the experiments were treated with miR-448 mimic, miR-448 inhibitor, si-ABCC3, or SP600125 (inhibitor of JNK) to evaluate the cell proliferation and apoptosis in response to miR-448. Reverse transcription quantitative polymerase chain reaction and western blot analysis were used to identify the expression of miR-448, ABCC3, and the activation of the JNK signaling pathway. ABCC3 was targeted and downregulated by miR-448 based on bioinformatics prediction and dual-luciferase reporter gene assay. Additionally, miR-448 was found to be highly expressed in IPF lung tissues with low expression levels of ABCC3. In response to the treatment of miR-448 mimic or si-ABCC3, lung fibroblasts exhibited decreased cell proliferation and increased apoptotic rates, whereas the miR-448 inhibitor reversed the conditions. Notably, we also found that miR-448 mimic inhibited the JNK signaling pathway. In conclusion, by using miR-448 to target and downregulate ABCC3 to block the JNK signaling pathway in mice with IPF, we found an increase in fibroblast apoptosis, inhibited cell proliferation, and decreased collagen synthesis of fibroblasts.
Collapse
Affiliation(s)
- Feihong Xu
- Clinical Medicine, Queen Mary College, Nanchang University, Nanchang, China
| | - Fei Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shiguang Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Zuo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guilan Wen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tiantian Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Wan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Calvello M, Flore MC, Richeldi L. Novel drug targets in idiopathic pulmonary fibrosis. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1590196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mariarosaria Calvello
- Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Chiara Flore
- Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Richeldi
- Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UniversitàCattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
23
|
Laveneziana P, Beurnier A. [Dyspnoea in asthma: diagnostic approach]. Presse Med 2019; 48:274-281. [PMID: 30853285 DOI: 10.1016/j.lpm.2019.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 01/31/2019] [Indexed: 12/21/2022] Open
Abstract
Dyspnoea is a cardinal symptom of asthma and an essential part of assessing control of the disease. Its intensity is variable for the same level of bronchial obstruction, which suggests the involvement of other mechanisms. Therefore, it is extremely important to characterize and measure dyspnoea in asthmatic patients because its profile can be quantitatively and qualitatively modified by disease control, comorbidities and anxiety. Hence the value of using additional tools to ACT and ACQ because the latter do not characterize nor measure specifically dyspnoea in asthma. Different tools can be used in this regard, at rest as the subjective assessment of dyspnoea by scales such as the modified Medical Research Council (mMRC), the New York Heart Association (NYHA) and the Visual Analogue Scale (VAS) or more recently using the Dyspnea-12 and the Multidimensional Dyspnea Profile (MDP) questionnaire, which assesses the sensory and affective dimensions of dyspnoea; and during exercise testing such as the "modified" Borg scale, graduated from 0 to 10, or the VAS. Among the factors contributing to dyspnoea in asthmatic patients, probably bronchial obstruction, increased airway resistance and dynamic hyperinflation play an important role. Despite this, the asthmatic patient's description of dyspnoea may be masked by hyperventilation syndrome or other comorbidities that can easily be detected and treated through educational programs and targeted therapies.
Collapse
Affiliation(s)
- Pierantonio Laveneziana
- Sorbonne Université, INSERM, UMRS 1158, neurophysiologie respiratoire expérimentale et clinique, 75013 Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, service des explorations fonctionnelles de la respiration, de l'exercice et de la dyspnée, 75013 Paris, France.
| | - Antoine Beurnier
- Université Paris-Sud, faculté de médecine, université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; AP-HP, Hôpital Bicêtre, service de physiologie, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
24
|
|
25
|
Saito M, Ichikawa J, Ando T, Schoenecker JG, Ohba T, Koyama K, Suzuki-Inoue K, Haro H. Platelet-Derived TGF-β Induces Tissue Factor Expression via the Smad3 Pathway in Osteosarcoma Cells. J Bone Miner Res 2018; 33:2048-2058. [PMID: 29949655 DOI: 10.1002/jbmr.3537] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/04/2018] [Accepted: 06/20/2018] [Indexed: 01/03/2023]
Abstract
Over the last three decades, the prognosis of osteosarcoma has remained unchanged; the prognosis for patients with lung metastasis is still poor, and the development of new treatments is urgently required. We previously showed that aggressive osteosarcoma cells express more tissue factor (TF) and demonstrate enhanced extrinsic pathway capacity. Furthermore, tumor growth can be suppressed with the anticoagulant low molecular weight heparin. However, the molecular mechanisms underlying TF regulation are still unclear. Here, we report that transforming growth factor-β (TGF-β) upregulates TF, which can occur via activated platelets. TF was found to be expressed on osteosarcoma cell surfaces, which mediated the production of Xa and thrombin. TF induction by TGF-β was observed in several osteosarcoma cells, and especially in MG 63 cells. Both TF expression by TGF-β and extrinsic pathway activity through TF were rapidly increased. This reaction was inhibited by a TGF-β type I receptor inhibitor and TGF-β neutralizing antibody. Although TGF-β was found to phosphorylate both Smad2 and Smad3, their roles were markedly disparate. Surprisingly, Smad2 knockdown resulted in no inhibitory effect, whereas Smad3 knockdown completely suppressed TGF-β-induced TF expression. Next, data suggested that platelets were the source of TGF-β. We confirmed that thrombin-activated platelets and osteosarcoma cells could release TGF-β, and that platelet-derived TGF-β could induce TF expression. These processes were also inhibited by a TGF-β type I receptor inhibitor and Smad3 knockdown. Moreover, CD42b, TF, TGF-β, Smad2/3, and p-Smad2/3 were also detected in a biopsy sample from an osteosarcoma patient. Collectively, these finding suggested that the interaction between osteosarcoma cells and platelets, via thrombin and TGF-β, results in a continuous cycle, and that anti-platelet or anti-TGF-β therapy could be a promising tool for disease treatment. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Masanori Saito
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Takashi Ando
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | | | - Tetsuro Ohba
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Kensuke Koyama
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
26
|
Filidou E, Valatas V, Drygiannakis I, Arvanitidis K, Vradelis S, Kouklakis G, Kolios G, Bamias G. Cytokine Receptor Profiling in Human Colonic Subepithelial Myofibroblasts: A Differential Effect of Th Polarization-Associated Cytokines in Intestinal Fibrosis. Inflamm Bowel Dis 2018; 24:2224-2241. [PMID: 29860326 DOI: 10.1093/ibd/izy204] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Colonic subepithelial myofibroblasts (cSEMFs) are mesenchymal cells with a pivotal role in the pathophysiology of Crohn's disease (CD) fibrosis. Here, we demonstrate for the first time a complete expression mapping of cytokine receptors, implicated in inflammatory bowel diseases, in primary human cSEMFs and how pro-inflammatory cytokines regulate this expression. Furthermore, we show the effect of Th1-, Th2-, Th17- and Treg-related cytokines on a fibrosis-related phenotype of cSEMFs. METHODS Colonic subepithelial myofibroblasts were isolated from healthy individuals' colonic biopsies. Interleukin (IL)-1α- and/or tumor necrosis factor (TNF)-α-induced mRNA and protein expression of cytokine receptors was assayed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunofluorescence, respectively. Th-related cytokine effects on mRNA and protein profibrotic factor expression were analyzed by qRT-PCR and/or colorimetric assays and on the wound-healing capacity of cSEMFs by scratch test. RESULTS In cSEMFs, we observed basal cytokine receptor expression, which was modified by IL-1α and TNF-α. Th1-related cytokines upregulated tissue factor (TF), collagen, fibronectin and matrix metalloproteinase (MMP)-1 and downregulated α-smooth muscle actin (α-SMA), MMP-9, and wound healing rate. Th2-related cytokines upregulated collagen, TF, α-SMA, MMP-1, and wound healing rate and downregulated fibronectin and MMP-9. IL-17 and IL-23 upregulated fibronectin, and IL-22 downregulated TF. IL-17 and IL-22 decreased wound healing rate. Similar to TGF-β, IL-23 upregulated MMP-1, tissue inhibitor of metalloproteinases-1, collagen expression, and wound healing rates. CONCLUSIONS Our results suggest that cSEMFs have a central role in inflammation and fibrosis, as they express a great variety of Th-related cytokine receptors, making them responsive to pro-inflammatory cytokines, abundant in the inflamed mucosa of CD patients.
Collapse
Affiliation(s)
- Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Alexandroupolis, Greece
| | - Vasilis Valatas
- Laboratory of Gastroenterology, University of Crete, Heraklion, Greece
| | | | | | - Stergios Vradelis
- 2nd Department of Internal Medicine of University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Georgios Kouklakis
- 1st Department of Internal Medicine of University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Alexandroupolis, Greece
| | - Giorgos Bamias
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| |
Collapse
|
27
|
Aryal S, Nathan SD. An update on emerging drugs for the treatment of idiopathic pulmonary fibrosis. Expert Opin Emerg Drugs 2018; 23:159-172. [DOI: 10.1080/14728214.2018.1471465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Shambhu Aryal
- Inova Advanced Lung Disease and Lung Transplant program, Falls Church, VA, USA
| | - Steven D. Nathan
- Inova Advanced Lung Disease and Lung Transplant program, Falls Church, VA, USA
| |
Collapse
|
28
|
Bouros E, Filidou E, Arvanitidis K, Mikroulis D, Steiropoulos P, Bamias G, Bouros D, Kolios G. Lung fibrosis-associated soluble mediators and bronchoalveolar lavage from idiopathic pulmonary fibrosis patients promote the expression of fibrogenic factors in subepithelial lung myofibroblasts. Pulm Pharmacol Ther 2017; 46:78-87. [PMID: 28865842 DOI: 10.1016/j.pupt.2017.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 01/13/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by infiltration of inflammatory cells, excessive collagen production and accumulation of myofibroblasts. We explored the possible role of subepithelial lung myofibroblasts (SELMs) in the development of fibrosis in IPF. SELMs, isolated from surgical specimens of healthy lung tissue, were cultured with pro-inflammatory factors or bronchoalveolar lavage fluid (BALF) from patients with IPF or idiopathic non-specific interstitial pneumonia (iNSIP) and their fibrotic activity was assessed. Stimulation of SELMs with pro-inflammatory factors induced a significant increase of Tissue Factor (TF) and Tumor necrosis factor-Like cytokine 1 A (TL1A) expression and collagen production in culture supernatants. Stimulation with BALF from IPF patients with mild to moderate, but not severe disease, and from iNSIP patients induced a significant increase of TF expression. BALF from all IPF patients induced a significant increase of TL1A expression and collagen production, while BALF from iNSIP patients induced a significant increase of TL1A, but not of collagen production. Interestingly, TGF-β1 and BALF from all IPF, but not iNSIP patients, induced a significant increase in SELMs migration. In conclusion, BALF from IPF patients induces fibrotic activity in lung myofibroblasts, similar to mediators associated with lung fibrosis, indicating a key role of SELMs in IPF.
Collapse
Affiliation(s)
- Evangelos Bouros
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Dimitrios Mikroulis
- Thoracic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Paschalis Steiropoulos
- Pneumonology Department, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.
| | - George Bamias
- Gastroenterology Department of Laiko Hospital, Medical School, National and Kapodistrian University, Athens, Greece.
| | - Demosthenes Bouros
- Interstitial Lung Disease Unit of 1st Department of Pneumonology, Medical School, National and Kapodistrian University, Athens, Greece.
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
29
|
Inchingolo R, Condoluci C, Smargiassi A, Mastrobattista A, Boccabella C, Comes A, Golfi N, Richeldi L. Are newly launched pharmacotherapies efficacious in treating idiopathic pulmonary fibrosis? Or is there still more work to be done? Expert Opin Pharmacother 2017; 18:1583-1594. [DOI: 10.1080/14656566.2017.1383382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Riccardo Inchingolo
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carola Condoluci
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Smargiassi
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Cristina Boccabella
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessia Comes
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nicoletta Golfi
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Richeldi
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
30
|
Varone F, Montemurro G, Macagno F, Calvello M, Conte E, Intini E, Iovene B, Leone PM, Mari PV, Richeldi L. Investigational drugs for idiopathic pulmonary fibrosis. Expert Opin Investig Drugs 2017; 26:1019-1031. [PMID: 28777013 DOI: 10.1080/13543784.2017.1364361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION IPF is a specific form of chronic fibrosing interstitial pneumonia of unknown cause, characterized by progressive worsening in lung function and an unfavorable prognosis. Current concepts on IPF pathogenesis are based on a dysregulated wound healing response, leading to an over production of extracellular matrix. Based on recent research however, several other mechanisms are now proposed as potential targets for novel therapeutic strategies. Areas covered: This review analyzes the current investigational strategies targeting extracellular matrix deposition, tyrosine-kinase antagonism, immune and autoimmune response, and cell-based therapy. A description of the pathogenic rationale implied in each novel therapeutic approach is summarized. Expert opinion: New IPF drugs are being evaluated in the context of phase 1 and 2 clinical trials. Nevertheless, many drugs that have shown efficacy in preclinical studies, failed to exhibit the same positive effect when translated to humans. A possible explanation for these failures might be related to the known limitations of animal models of the disease. The recent development of 3D systems composed of cells from individual patients that recreate an ex-vivo model of IPF, could lead to significant improvements in disease pathogenesis and treatment. New drugs could be tested on more genuine models and clinicians could tailor therapy based on patient's response.
Collapse
Affiliation(s)
- Francesco Varone
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Giuliano Montemurro
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Francesco Macagno
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Mariarosaria Calvello
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Emanuele Conte
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Enrica Intini
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Bruno Iovene
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Paolo Maria Leone
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Pier-Valerio Mari
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Luca Richeldi
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| |
Collapse
|
31
|
Macagno F, Varone F, Leone PM, Mari PV, Panico L, Berardini L, Richeldi L. New treatment directions for IPF: current status of ongoing and upcoming clinical trials. Expert Rev Respir Med 2017; 11:533-548. [DOI: 10.1080/17476348.2017.1335601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Francesco Macagno
- Università Cattolica del Sacro Cuore, Unità Operativa Complessa di Pneumologia, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Francesco Varone
- Università Cattolica del Sacro Cuore, Unità Operativa Complessa di Pneumologia, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Paolo Maria Leone
- Università Cattolica del Sacro Cuore, Unità Operativa Complessa di Pneumologia, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Pier-Valerio Mari
- Università Cattolica del Sacro Cuore, Unità Operativa Complessa di Pneumologia, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Loredana Panico
- Università Cattolica del Sacro Cuore, Unità Operativa Complessa di Pneumologia, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Ludovica Berardini
- Università Cattolica del Sacro Cuore, Unità Operativa Complessa di Pneumologia, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Luca Richeldi
- Università Cattolica del Sacro Cuore, Unità Operativa Complessa di Pneumologia, Fondazione Policlinico A. Gemelli, Rome, Italy
- Academic Unit of Clinical and Experimental Sciences, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
| |
Collapse
|
32
|
Hypercoagulation and complement: Connected players in tumor development and metastases. Semin Immunol 2016; 28:578-586. [PMID: 27876232 DOI: 10.1016/j.smim.2016.10.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022]
Abstract
Hypercoagulation is a common feature of several tumors to the extent that individuals with coagulation defects often present with occult visceral cancers. Recent evidence has shown that hypercoagulation is not just a mere secondary effect due to the presence of the tumor, rather it actively contributes to tumor development and dissemination. Among the numerous mechanisms that can contribute to cancer-associated hypercoagulation, the ones involving immune-mediated processes are gaining increasing attention. In particular, complement cascade and hypercoagulation are one inducing the other in a vicious circle that involves neutrophil extracellular traps (NETs) formation. Together, in this feedback loop, they can promote the protumorigenic phenotype of immune cells and the protection of tumor cells from immune attack, ultimately favouring tumor development, progression and metastases formation. In this review, we summarize the role of these processes in cancer development and highlight new possible intervention strategies based on anticoagulants that can arrest this vicious circle.
Collapse
|
33
|
Fan Z, Hao C, Li M, Dai X, Qin H, Li J, Xu H, Wu X, Zhang L, Fang M, Zhou B, Tian W, Xu Y. MKL1 is an epigenetic modulator of TGF-β induced fibrogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1219-28. [PMID: 26241940 DOI: 10.1016/j.bbagrm.2015.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/13/2015] [Accepted: 07/31/2015] [Indexed: 12/29/2022]
Abstract
Transforming growth factor (TGF-β) induced activation of portal fibroblast cells serves as a primary cause for liver fibrosis following cholestatic injury. The underlying epigenetic mechanism is not clear. We studied the role of a transcriptional modulator, megakaryoblastic leukemia 1 (MKL1) in this process. We report here that MKL1 deficiency ameliorated BDL-induced liver fibrosis in mice as assessed by histological stainings and expression levels of pro-fibrogenic genes. MKL1 silencing by small interfering RNA (siRNA) abrogated TGF-β induced transactivation of pro-fibrogenic genes in portal fibroblast cells. TGF-β stimulated the binding of MKL1 on the promoters of pro-fibrogenic genes and promoted the interaction between MKL1 and SMAD3. While SMAD3 was necessary for MKL1 occupancy on the gene promoters, MKL1 depletion impaired SMAD3 binding reciprocally. TGF-β treatment induced the accumulation of trimethylated histone H3K4 on the gene promoters by recruiting a methyltransferase complex. Knockdown of individual members of this complex significantly weakened the binding of SMAD3 and down-regulated the activation of portal fibroblast cells. In conclusion, we have identified an epigenetic pathway that dictates TGF-β induced pro-fibrogenic transcription in portal fibroblast thereby providing novel insights for the development of therapeutic solutions to treat liver fibrosis.
Collapse
Affiliation(s)
- Zhiwen Fan
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Chenzhi Hao
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Min Li
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xin Dai
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hao Qin
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Jianfei Li
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liping Zhang
- Department of Biochemistry, Xinjiang Medical University, Urumqi, China
| | - Mingming Fang
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China
| | - Bisheng Zhou
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenfang Tian
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
34
|
He M, Zheng B, Zhang Y, Zhang XH, Wang C, Yang Z, Sun Y, Wu XL, Wen JK. KLF4 mediates the link between TGF-β1-induced gene transcription and H3 acetylation in vascular smooth muscle cells. FASEB J 2015; 29:4059-70. [PMID: 26082460 DOI: 10.1096/fj.15-272658] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/02/2015] [Indexed: 11/11/2022]
Abstract
Transcriptional activation by transcription factors is coupled with histone acetylation and chromatin remodeling. However, the relationship between TGF-β1-induced gene transcription by Krüppel-like factor (KLF)-4 and histone acetylation remains unknown. In our study, KLF4 overexpression or knockdown, respectively increased or decreased H3 acetylation and p300 occupancy, which is concentrated in the region containing TGF-β1 control elements (TCEs) of the genes by TGF-β1 regulation during vascular smooth muscle cell (VSMC) differentiation. Coimmunoprecipitation and glutathione S-transferase pull-down assays showed that phosphatase and tensin homolog (PTEN) formed a complex with KLF4 to inhibit the phosphorylation of the latter in basal conditions. After TGF-β1 signaling activation, PTEN was phosphorylated by p38 MAPK or PI3K/Akt signaling, phosphorylated PTEN lost its ability to dephosphorylate KLF4, and the cofactors interacting with KLF4 switched from PTEN to p300. Then, KLF4-p300 complexes were recruited to KLF4-binding sites of the gene promoter of VSMCs, to acetylate histone H3 and activate transcription. In addition, phosphorylated KLF4 enhanced p300 histone acetyltransferase (HAT) activity via the p38 MAPK pathway, which may be responsible for H3 acetylation. Taken together, the results of our study reveal a novel mechanism whereby KLF4 mediates the link between TGF-β1-induced gene transcription activation and H3 acetylation during VSMC differentiation.
Collapse
Affiliation(s)
- Ming He
- *Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; and Institute of Chinese Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Bin Zheng
- *Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; and Institute of Chinese Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yu Zhang
- *Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; and Institute of Chinese Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xin-Hua Zhang
- *Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; and Institute of Chinese Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Chang Wang
- *Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; and Institute of Chinese Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhan Yang
- *Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; and Institute of Chinese Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yan Sun
- *Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; and Institute of Chinese Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiao-Li Wu
- *Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; and Institute of Chinese Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jin-Kun Wen
- *Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; and Institute of Chinese Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
35
|
Xu T, Wu BM, Yao HW, Meng XM, Huang C, Ni MM, Li J. Novel insights into TRPM7 function in fibrotic diseases: a potential therapeutic target. J Cell Physiol 2015; 230:1163-9. [PMID: 25204892 DOI: 10.1002/jcp.24801] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 09/05/2014] [Indexed: 12/13/2022]
Abstract
"Transient receptor potential (TRP) channels are cellular sensors for a wide spectrum of physical and chemical stimuli. Activation of TRP channels changes the membrane potential, translocates important signaling ions crossing the cell membrane, alters enzymatic activity, and initiates endocytosis/exocytosis (Zheng, 2013)." Fibrosis is the leading cause of organ dysfunction in diseases, which is characterized by an imbalance in the turnover of extracellular matrix components. Accumulating evidence has demonstrated that TRPM7, a member of TRP channels superfamily, participates in the development and pathogenesis of fibrotic diseases, such as hepatic, pulmonary and cardiac fibrosis. In this review, we discuss the comprehensive role of TRPM7 in modulating profibrotic response and its potential as therapeutic target for fibrotic diseases.
Collapse
Affiliation(s)
- Tao Xu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Caballé-Serrano J, Schuldt Filho G, Bosshardt DD, Gargallo-Albiol J, Buser D, Gruber R. Conditioned medium from fresh and demineralized bone enhances osteoclastogenesis in murine bone marrow cultures. Clin Oral Implants Res 2015; 27:226-32. [PMID: 25754222 DOI: 10.1111/clr.12573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Osteoclasts rapidly form on the surface of bone chips at augmentation sites. The underlying molecular mechanism, however, is unclear. Soluble factors released from bone chips in vitro have a robust impact on mesenchymal cell differentiation. Whether these soluble factors change the differentiation of hematopoietic cells into osteoclasts remains unknown. METHODS Osteoclastogenesis, the formation of tartrate-resistant acid phosphatase-positive multinucleated cells, was studied with murine bone marrow cultures exposed to RANKL and M-CSF, and conditioned medium from fresh (BCM) and demineralized bone matrix (DCM). Histochemical staining, gene and protein expression, as well as viability assays were performed. RESULTS This study shows that BCM had no impact on osteoclastogenesis. However, when BCM was heated to 85°C (BCMh), the number of tartrate-resistant acid phosphatase-positive multinucleated cells that developed in the presence of RANKL and M-CSF approximately doubled. In line with the histochemical observations, there was a trend that BCMh increased expression of osteoclast marker genes, in particular the transcription factor c-fos. The expression of c-fos was significantly reduced by the TGF-β receptor I antagonist SB431542. DCM significantly stimulated osteoclastogenesis, independent of thermal processing. CONCLUSIONS These data demonstrate that activated BCM by heat and DBM are able to stimulate osteoclastogenesis in vitro. These in vitro results support the notion that the resorption of autografts may be supported by as yet less defined paracrine mechanisms.
Collapse
Affiliation(s)
- Jordi Caballé-Serrano
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Guenther Schuldt Filho
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Implant Dentistry, School of Dentistry, Universidade Federal de Santa Catarina Florianopolis, Florianópolis, Brazil
| | - Dieter D Bosshardt
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jordi Gargallo-Albiol
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Daniel Buser
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Reinhard Gruber
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Han X, Guo B, Li Y, Zhu B. Tissue factor in tumor microenvironment: a systematic review. J Hematol Oncol 2014; 7:54. [PMID: 25084809 PMCID: PMC4237870 DOI: 10.1186/s13045-014-0054-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/09/2014] [Indexed: 01/01/2023] Open
Abstract
The aberrant hemostasis is a common manifestation of cancer, and venous thromboembolism (VTE) is the second leading cause of cancer patients’ mortality. Tissue factor (TF), comprising of a 47-kDa transmembrane protein that presents in subendothelial tissues and leukocytes and a soluble isoform, have distinct roles in the initiation of extrinsic coagulation cascade and thrombosis. Laboratory and clinical evidence showed the deviant expression of TF in several cancer systems and its tumor-promoting effects. TF contributes to myeloid cell recruitment in tumor stroma, thereby remodeling of tumor microenvironment. Additionally, the number of TF-positive-microparticles (TF+MP) from tumor origins correlates with the VTE rates in cancer patients. In this review, we summarize our current understanding of the TF regulation and roles in tumor progression and clinical complications.
Collapse
|
38
|
Wu ML, Chen CH, Lin YT, Jheng YJ, Ho YC, Yang LT, Chen L, Layne MD, Yet SF. Divergent signaling pathways cooperatively regulate TGFβ induction of cysteine-rich protein 2 in vascular smooth muscle cells. Cell Commun Signal 2014; 12:22. [PMID: 24674138 PMCID: PMC3973006 DOI: 10.1186/1478-811x-12-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/23/2014] [Indexed: 01/31/2023] Open
Abstract
Background Vascular smooth muscle cells (VSMCs) of the arterial wall play a critical role in the development of occlusive vascular diseases. Cysteine-rich protein 2 (CRP2) is a VSMC-expressed LIM-only protein, which functionally limits VSMC migration and protects against pathological vascular remodeling. The multifunctional cytokine TGFβ has been implicated to play a role in the pathogenesis of atherosclerosis through numerous downstream signaling pathways. We showed previously that TGFβ upregulates CRP2 expression; however, the detailed signaling mechanisms remain unclear. Results TGFβ treatment of VSMCs activated both Smad2/3 and ATF2 phosphorylation. Individually knocking down Smad2/3 or ATF2 pathways with siRNA impaired the TGFβ induction of CRP2, indicating that both contribute to CRP2 expression. Inhibiting TβRI kinase activity by SB431542 or TβRI knockdown abolished Smad2/3 phosphorylation but did not alter ATF2 phosphorylation, indicating while Smad2/3 phosphorylation was TβRI-dependent ATF2 phosphorylation was independent of TβRI. Inhibiting Src kinase activity by SU6656 suppressed TGFβ-induced RhoA and ATF2 activation but not Smad2 phosphorylation. Blocking ROCK activity, the major downstream target of RhoA, abolished ATF2 phosphorylation and CRP2 induction but not Smad2 phosphorylation. Furthermore, JNK inhibition with SP600125 reduced TGFβ-induced ATF2 (but not Smad2) phosphorylation and CRP2 protein expression while ROCK inhibition blocked JNK activation. These results indicate that downstream of TβRII, Src family kinase-RhoA-ROCK-JNK signaling pathway mediates TβRI-independent ATF2 activation. Promoter analysis revealed that the TGFβ induction of CRP2 was mediated through the CRE and SBE promoter elements that were located in close proximity. Conclusions Our results demonstrate that two signaling pathways downstream of TGFβ converge on the CRE and SBE sites of the Csrp2 promoter to cooperatively control CRP2 induction in VSMCs, which represents a previously unrecognized mechanism of VSMC gene induction by TGFβ.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
39
|
Cui Y, Osorio JC, Risquez C, Wang H, Shi Y, Gochuico BR, Morse D, Rosas IO, El-Chemaly S. Transforming growth factor-β1 downregulates vascular endothelial growth factor-D expression in human lung fibroblasts via the Jun NH2-terminal kinase signaling pathway. Mol Med 2014; 20:120-34. [PMID: 24515257 DOI: 10.2119/molmed.2013.00123] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/03/2014] [Indexed: 01/28/2023] Open
Abstract
Vascular endothelial growth factor (VEGF)-D, a member of the VEGF family, induces both angiogenesis and lymphangiogenesis by activating VEGF receptor-2 (VEGFR-2) and VEGFR-3 on the surface of endothelial cells. Transforming growth factor (TGF)-β1 has been shown to stimulate VEGF-A expression in human lung fibroblast via the Smad3 signaling pathway and to induce VEGF-C in human proximal tubular epithelial cells. However, the effects of TGF-β1 on VEGF-D regulation are unknown. To investigate the regulation of VEGF-D, human lung fibroblasts were studied under pro-fibrotic conditions in vitro and in idiopathic pulmonary fibrosis (IPF) lung tissue. We demonstrate that TGF-β1 downregulates VEGF-D expression in a dose- and time-dependent manner in human lung fibroblasts. This TGF-β1 effect can be abolished by inhibitors of TGF-β type I receptor kinase and Jun NH2-terminal kinase (JNK), but not by Smad3 knockdown. In addition, VEGF-D knockdown in human lung fibroblasts induces G1/S transition and promotes cell proliferation. Importantly, VEGF-D protein expression is decreased in lung homogenates from IPF patients compared with control lung. In IPF lung sections, fibroblastic foci show very weak VEGF-D immunoreactivity, whereas VEGF-D is abundantly expressed within alveolar interstitial cells in control lung. Taken together, our data identify a novel mechanism for downstream signal transduction induced by TGF-β1 in lung fibroblasts, through which they may mediate tissue remodeling in IPF.
Collapse
Affiliation(s)
- Ye Cui
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Juan C Osorio
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cristobal Risquez
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hao Wang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ying Shi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Danielle Morse
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
40
|
Biasin V, Marsh LM, Egemnazarov B, Wilhelm J, Ghanim B, Klepetko W, Wygrecka M, Olschewski H, Eferl R, Olschewski A, Kwapiszewska G. Meprinβ, a novel mediator of vascular remodelling underlying pulmonary hypertension. J Pathol 2014; 233:7-17. [DOI: 10.1002/path.4303] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Valentina Biasin
- Ludwig Boltzmann Institute for Lung Vascular Research; Graz Austria
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research; Graz Austria
| | | | - Jochen Wilhelm
- Department of Internal Medicine II; Universities of Giessen and Marburg Lung Centre (UGMLC), Justus-Liebig University; Giessen Germany
| | - Bahil Ghanim
- Ludwig Boltzmann Institute for Lung Vascular Research; Graz Austria
- Division of Thoracic Surgery, Department of Surgery; Medical University of Vienna; Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery; Medical University of Vienna; Austria
| | | | | | - Robert Eferl
- Institute for Cancer Research of the Medical University Vienna; Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research; Graz Austria
- Department of Experimental Anaesthesiology; Medical University of Graz; Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research; Graz Austria
- Department of Experimental Anaesthesiology; Medical University of Graz; Austria
| |
Collapse
|
41
|
Kramann R, Dirocco DP, Maarouf OH, Humphreys BD. Matrix Producing Cells in Chronic Kidney Disease: Origin, Regulation, and Activation. CURRENT PATHOBIOLOGY REPORTS 2013; 1. [PMID: 24319648 DOI: 10.1007/s40139-013-0026-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chronic injury to the kidney causes kidney fibrosis with irreversible loss of functional renal parenchyma and leads to the clinical syndromes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). Regardless of the type of initial injury, kidney disease progression follows the same pathophysiologic processes characterized by interstitial fibrosis, capillary rarefaction and tubular atrophy. Myofibroblasts play a pivotal role in fibrosis by driving excessive extracellular matrix (ECM) deposition. Targeting these cells in order to prevent the progression of CKD is a promising therapeutic strategy, however, the cellular source of these cells is still controversial. In recent years, a growing amount of evidence points to resident mesenchymal cells such as pericytes and perivascular fibroblasts, which form extensive networks around the renal vasculature, as major contributors to the pool of myofibroblasts in renal fibrogenesis. Identifying the cellular origin of myofibroblasts and the key regulatory pathways that drive myofibroblast proliferation and transdifferentiation as well as capillary rarefaction is the first step to developing novel anti-fibrotic therapeutics to slow or even reverse CKD progression and ultimately reduce the prevalence of ESRD. This review will summarize recent findings concerning the cellular source of myofibroblasts and highlight recent discoveries concerning the key regulatory signaling pathways that drive their expansion and progression in CKD.
Collapse
Affiliation(s)
- Rafael Kramann
- Brigham and Women's Hospital, Boston, Massachusetts ; Harvard Medical School, Boston, Massachusetts ; RWTH Aachen University, Division of Nephrology, Aachen, Germany
| | | | | | | |
Collapse
|
42
|
Akamatsu T, Arai Y, Kosugi I, Kawasaki H, Meguro S, Sakao M, Shibata K, Suda T, Chida K, Iwashita T. Direct isolation of myofibroblasts and fibroblasts from bleomycin-injured lungs reveals their functional similarities and differences. FIBROGENESIS & TISSUE REPAIR 2013; 6:15. [PMID: 23927729 PMCID: PMC3751789 DOI: 10.1186/1755-1536-6-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023]
Abstract
Background Myofibroblasts play a crucial role in tissue repair. The functional similarities and differences between myofibroblasts and fibroblasts are not fully understood because they have not been separately isolated from a living body. The purpose of this study was to establish a method for the direct isolation of myofibroblasts and fibroblasts from injured lungs by using fluorescence-activated cell sorting and to compare their functions. Results We demonstrated that lineage-specific cell surface markers (lin), such as CD31, CD45, CD146, EpCAM (CD326), TER119, and Lyve-1 were not expressed in myofibroblasts or fibroblasts. Fibroblasts of bleomycin-injured lungs and saline-treated lungs were shown to be enriched in linneg Sca-1high, and myofibroblasts of bleomycin-injured lungs were shown to be enriched in linneg Sca-1low CD49ehigh. Results from in-vitro proliferation assays indicated in-vitro proliferation of fibroblasts but not myofibroblasts of bleomycin-injured lungs and of fibroblasts of saline-treated lungs. However, fibroblasts and myofibroblasts might have a low proliferative capacity in vivo. Analysis of genes for collagen and collagen synthesis enzymes by qRT-PCR showed that the expression levels of about half of the genes were significantly higher in fibroblasts and myofibroblasts of bleomycin-injured lungs than in fibroblasts of saline-treated lungs. By contrast, the expression levels of 8 of 11 chemokine genes of myofibroblasts were significantly lower than those of fibroblasts. Conclusions This is the first study showing a direct isolation method of myofibroblasts and fibroblasts from injured lungs. We demonstrated functional similarities and differences between myofibroblasts and fibroblasts in terms of both their proliferative capacity and the expression levels of genes for collagen, collagen synthesis enzymes, and chemokines. Thus, this direct isolation method has great potential for obtaining useful information from myofibroblasts and fibroblasts.
Collapse
Affiliation(s)
- Taisuke Akamatsu
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rafii R, Juarez MM, Albertson TE, Chan AL. A review of current and novel therapies for idiopathic pulmonary fibrosis. J Thorac Dis 2013; 5:48-73. [PMID: 23372951 DOI: 10.3978/j.issn.2072-1439.2012.12.07] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 12/25/2012] [Indexed: 12/30/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressively fibrotic interstitial lung disease that is associated with a median survival of 2-3 years from initial diagnosis. To date, there is no treatment approved for IPF in the United States, and only one pharmacological agent has been approved outside of the United States. Nevertheless, research over the past 10 years has provided us with a wealth of information on its histopathology, diagnostic work-up, and a greater understanding of its pathophysiology. Specifically, IPF is no longer thought to be a predominantly pro-inflammatory disorder. Rather, the fibrosis in IPF is increasingly understood to be the result of a fibroproliferative and aberrant wound healing cascade. The development of therapeutic targets has shifted in accord with this paradigm change. This review highlights the current understanding of IPF, and the recent as well as novel therapeutics being explored in clinical trials for the treatment of this devastating disease.
Collapse
Affiliation(s)
- Rokhsara Rafii
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Davis, School of Medicine and VA Northern California Health Care System, Sacramento, California, USA
| | | | | | | |
Collapse
|
44
|
Protein Arginine Methyltransferases (PRMTs): promising targets for the treatment of pulmonary disorders. Int J Mol Sci 2012. [PMID: 23202904 PMCID: PMC3497278 DOI: 10.3390/ijms131012383] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Protein arginine methylation is a novel posttranslational modification that plays a pivotal role in a variety of intracellular events, such as signal transduction, protein-protein interaction and transcriptional regulation, either by the direct regulation of protein function or by metabolic products originating from protein arginine methylation that influence nitric oxide (NO)-dependent processes. A growing body of evidence suggests that both mechanisms are implicated in cardiovascular and pulmonary diseases. This review will present and discuss recent research on PRMTs and the methylation of non-histone proteins and its consequences for the pathogenesis of various lung disorders, including lung cancer, pulmonary fibrosis, pulmonary hypertension, chronic obstructive pulmonary disease and asthma. This article will also highlight novel directions for possible future investigations to evaluate the functional contribution of arginine methylation in lung homeostasis and disease.
Collapse
|