1
|
Chen S, Fang L, Yang T, Li Z, Zhang M, Wang M, Lan T, Dong J, Lu Z, Li Q, Luo Y, Yang B. Unveiling the systemic impact of airborne microplastics: Integrating breathomics and machine learning with dual-tissue transcriptomics. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137781. [PMID: 40022938 DOI: 10.1016/j.jhazmat.2025.137781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Airborne microplastics (MPs) pose significant respiratory and systemic health risks upon inhalation; however, current assessment methods remain inadequate. This study integrates breathomics and transcriptomics to establish a non-invasive approach for evaluating MP-induced damage to the lungs and heart. C57BL/6 mice were exposed to polystyrene MPs (0.1 μm, 2 μm, and 10 μm), and their exhaled volatile organic compounds (VOCs) were analyzed using photoinduced associative ionization time-of-flight mass spectrometry. Machine learning algorithms identified hydrogen sulfide, acetone, acrolein, propionitrile, and butyronitrile as key VOC biomarkers, linking MP exposure to oxidative stress and metabolic dysregulation. Transcriptomic analysis further revealed significant gene expression alterations in pulmonary and cardiac tissues, implicating immune dysregulation, metabolic disturbance, and cardiac dysfunction. Pathway enrichment analysis, supported by histological and immunohistochemical validation, confirmed pulmonary inflammation and cardiac injury. By integrating exhaled biomarker profiling with transcriptomic insights, this study advances non-invasive detection strategies for MP-related health effects, offering valuable prospects for public health monitoring and early diagnosis.
Collapse
Affiliation(s)
- Siwei Chen
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longfa Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems. Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Teng Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China.
| | - Mo Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| | - Meng Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Ting Lan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Dong
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongbing Lu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qirun Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinwei Luo
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Bo Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Lindsay ME, Scimone ER, Lawton J, Richa R, Yonker LM, Di YP, Buch K, Ouyang W, Mo X, Lin AE, Mou H. Gain-of-function variants in SMAD4 compromise respiratory epithelial function. J Allergy Clin Immunol 2025; 155:107-119.e2. [PMID: 39243984 DOI: 10.1016/j.jaci.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Myhre syndrome is an exceedingly rare yet increasingly diagnosed genetic disorder arising from germline variants in the SMAD4 gene. Its core manifestation is the progression of stiffness and fibrosis across multiple organs. Individuals with Myhre syndrome exhibit a propensity for upper respiratory tract remodeling and infections. The molecular and cellular mechanisms underlying this phenotype remain unclear. OBJECTIVE We sought to investigate how SMAD4 pathogenic variants associated with Myhre syndrome affect SMAD4 protein levels, activation, and physiological functions in patient-derived nasal epithelial cells. METHODS Clinical observations were conducted on a cohort of 47 patients recruited at Massachusetts General Hospital from 2016 to 2023. Nasal epithelial basal cells were isolated and cultured from inferior turbinate brushings of healthy subjects (n = 8) and patients with Myhre syndrome (n = 3; SMAD4-Ile500Val, Arg496Cys, and Ile500Thr). Transcriptomic analysis and functional assays were performed to assess SMAD4 levels, transcriptional activity, and epithelial cell host defense functions, including cell proliferation, mucociliary differentiation, and bacterial elimination. RESULTS Clinical observations revealed a prevalent history of otitis media and sinusitis among most individuals with Myhre syndrome. Analyses of nasal epithelial cells indicated that SMAD4 mutations do not alter SMAD4 protein stability or upstream regulatory SMAD phosphorylation but enhance signaling transcriptional activity, supporting a gain-of-function mechanism, likely attributable to increased protein-protein interaction of the SMAD complex. Consequently, Myhre syndrome nasal basal cells exhibit reduced potential in cell proliferation and mucociliary differentiation. Furthermore, Myhre syndrome nasal epithelia are impaired in bacterial killing. CONCLUSIONS Compromised innate immunity originating from epithelial cells in Myhre syndrome may contribute to increased susceptibility to upper respiratory tract infections.
Collapse
Affiliation(s)
- Mark E Lindsay
- Cardiovascular Genetics Program, Massachusetts General Hospital, Boston, Mass; Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Mass
| | - Eleanor R Scimone
- Medical Genetics, Department of Pediatrics, Mass General for Children, Boston, Mass
| | - Joseph Lawton
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Mass
| | - Rashmi Richa
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Mass
| | - Lael M Yonker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Mass
| | - Yuanpu P Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pa
| | - Karen Buch
- Department of Radiology, Massachusetts General Hospital, Boston, Mass
| | - Wukun Ouyang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Ga
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Ga
| | - Angela E Lin
- Medical Genetics, Department of Pediatrics, Mass General for Children, Boston, Mass
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Mass.
| |
Collapse
|
3
|
Ren Y, Huang P, Zhang L, Tang Y, He S, Li H, Huang X, Ding Y, Liu L, Liu L, He X. Multi-omics landscape of childhood simple obesity: novel insights into pathogenesis and biomarkers discovery. Cell Biosci 2024; 14:145. [PMID: 39609876 PMCID: PMC11606102 DOI: 10.1186/s13578-024-01322-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The increasing incidence of childhood obesity annually has led to a surge in physical and mental health risks, making it a significant global public health concern. This study aimed to discover novel biomarkers of childhood simple obesity through integrative multi-omics analysis, uncovering their potential connections and providing fresh research directions for the complex pathogenesis and treatment strategies. METHODS Transcriptome, untargeted metabolome, and 16 S rDNA sequencing were conducted on subjects to examine transcripts, metabolites in blood, and gut microflora in stool. RESULTS Transcriptomic analysis identified 599 differentially expressed genes (DEGs), of which 25 were immune-related genes, and participated in immune pathways such as antimicrobial peptides, neutrophil degranulation, and interferons. The optimal random forest model based on these genes exhibited an AUC of 0.844. The metabolomic analysis examined 71 differentially expressed metabolites (DEMs), including 12 immune-related metabolites. Notably, lauric acid showed an extremely strong positive correlation with BMI and showed a good discriminative power for obesity (AUC = 0.82). DEMs were found to be significantly enriched in four metabolic pathways, namely "Aminoacyl-tRNA biosynthesis", "Valine leucine and isoleucine biosynthesis, and Glycine", "Serine and threonine metabolism", and "Biosynthesis of unsaturated fatty acids". Microbiome analysis revealed 12 differential gut microbiotas (DGMs) at the phylum and genus levels, with p_Firmicutes dominating in the obese group and g_Escherichia-Shigella in the normal group. Subsequently, a Random Forest model was developed based on the DEMs, immune-related DEGs, and metabolites with an AUC value of 0.912. The 14 indicators identified by this model could potentially serve as a set of biomarkers for obesity. The analysis of the inter-omics correlation network found 233 pairs of significant correlations. DEGs BPIFA1, BPI, and SAA1, DEMs Dimethy(tetradecyl)amine, Deoxycholic acid, Pathalic anhydride, and DL-Alanine, and DGMs g_Intestinimonas and g_Turicibacter showed strong connectivity within the network, constituting a large proportion of interactions. CONCLUSION This study presents the first comprehensive description of the multi-omics characteristics of childhood simple obesity, recognizing promising biomarkers. Immune-related markers offer a new perspective for researching the immunological mechanisms underlying obesity and its associated complications. The revealed interactions among these biomarkers contribute to a deeper understanding the intricate biological regulatory networks associated with obesity.
Collapse
Affiliation(s)
- Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatrics, Haikou Hospital of the Maternal and Child Health, Haikou, 570100, China
- Department of Pediatrics, Hainan Modern Women and Children's. Medical, Haikou, 570100, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Siyi He
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan, 570311, China
- Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, China
| | - HaiDan Li
- Department of Pediatrics, Hainan Women and Children's Medical Center, Hainan, 570100, China
| | - XiaoYan Huang
- Department of Pediatrics, Hainan Women and Children's Medical Center, Hainan, 570100, China
| | - Yan Ding
- Department of Dermatology, Hospital of Hainan Medical University, Haikou, Hainan, 570311, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Xiaojie He
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Laboratory of Pediatric Nephrology, Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
4
|
Boese AS, Warner BM, McQueen P, Vendramelli R, Tailor N, Griffin BD, Chan M, Audet J, Leung A, McCorrister S, Grant C, Westmacott G, Kobasa D. SARS-CoV-2 infection results in a unique lung proteome long after virus resolution in the hamster. NPJ VIRUSES 2024; 2:40. [PMID: 40295670 PMCID: PMC11721347 DOI: 10.1038/s44298-024-00049-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/20/2024] [Indexed: 04/30/2025]
Abstract
Long COVID or post-acute sequelae of COVID-19 (PASC) remains an ongoing public health issue that causes impairment for those afflicted and diminishes their ability to contribute to society. To address the host response underpinning respiratory PASC, we used the Golden Syrian hamster model infected with ancestral SARS-CoV-2 and examined its lung proteome in a longitudinal experiment. We infected young 6-week old male and female hamsters with 105 TCID50 of virus via the intranasal route and sampled the lung at 1, 3, 5, and 31 days post infection (dpi). We compared the infected lung proteome to that of uninfected sex-matched controls. We found almost no differences in protein levels at 1 dpi, with hundreds at 3 dpi, and thousands at 5 dpi. Many overlapping differential protein levels and pathways were seen in both sexes at 3 and 5 dpi including the Coagulation and Complement cascades. Notably, we found differences between the sexes at 31 dpi which included many targets with decreased levels of protein in the males. We also noted an increase in 7 proteins in both sexes at 31 dpi including proteins responsible for airway mucosal layer integrity such as Mucin 5B and Calcium-activated chloride channel regulator 1. Longitudinally, 38 proteins were changed in levels across more than one timepoint in the males but only three proteins were in the females, Secretoglobin family 1 A member 1, Poly [ADP-ribose] polymerase, and Apolipoprotein D. Overall, we show that there are changes to the lung proteome at 31 dpi, a time when no SARS-CoV-2 remains, and that there are sex differences in that proteome after infection with the ancestral strain. We conclude that biological sex should be examined as a variable when testing medical countermeasures for PASC in the Golden Syrian hamster due to host differences between the sexes.
Collapse
Affiliation(s)
- Amrit S Boese
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.
| | - Bryce M Warner
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Peter McQueen
- Mass Spectrometry and Proteomics Core, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Robert Vendramelli
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Nikesh Tailor
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Bryan D Griffin
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Mable Chan
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jonathan Audet
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Anders Leung
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Stuart McCorrister
- Mass Spectrometry and Proteomics Core, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Chris Grant
- Mass Spectrometry and Proteomics Core, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Garrett Westmacott
- Mass Spectrometry and Proteomics Core, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Juaiti M, Feng Y, Tang Y, Liang B, Zha L, Yu Z. Integrated bioinformatics analysis and experimental animal models identify a robust biomarker and its correlation with the immune microenvironment in pulmonary arterial hypertension. Heliyon 2024; 10:e29587. [PMID: 38660271 PMCID: PMC11040037 DOI: 10.1016/j.heliyon.2024.e29587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Background Pulmonary arterial hypertension (PAH) represents a substantial global risk to human health. This study aims to identify diagnostic biomarkers for PAH and assess their association with the immune microenvironment through the utilization of sophisticated bioinformatics techniques. Methods Based on two microarray datasets, differentially expressed genes (DEGs) were detected, and hub genes underwent a sequence of machine learning analyses. After pathways associated with PAH were assessed by gene enrichment analysis, the identified genes were validated using external datasets and confirmed in a monocrotaline (MCT)-induced rat model. In addition, three algorithms were employed to estimate the proportions of various immune cell types, and the link between hub genes and immune cells was substantiated. Results Using SVM, LASSO, and WGCNA, we identified seven hub genes, including (BPIFA1, HBA2, HBB, LOC441081, PI15, S100A9, and WIF1), of which only BPIFA1 remained stable in the external datasets and was validated in an MCT-induced rat model. Furthermore, the results of the functional enrichment analysis established a link between PAH and both metabolism and the immune system. Correlation assessment showed that BPIFA1 expression in the MCP-counter algorithm was negatively associated with various immune cell types, positively correlated with macrophages in the ssGSEA algorithm, and correlated with M1 and M2 macrophages in the CIBERSORT algorithm. Conclusion BPIFA1 serves as a modulator of PAH, with the potential to impact the immune microenvironment and disease progression, possibly through its regulatory influence on both M1 and M2 macrophages.
Collapse
Affiliation(s)
- Mukamengjiang Juaiti
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Yilu Feng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Yiyang Tang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Benhui Liang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Lihuang Zha
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Zaixin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| |
Collapse
|
6
|
Ben-Meir E, Perrem L, Shaw M, Ratjen F, Grasemann H. SPLUNC1 as a biomarker of pulmonary exacerbations in children with cystic fibrosis. J Cyst Fibros 2024; 23:288-292. [PMID: 38413298 DOI: 10.1016/j.jcf.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) is an innate defence protein that acts as an anti-microbial agent and regulates airway surface liquid volume through inhibition of the epithelial sodium channel (ENaC). SPLUNC1 levels were found to be reduced in airway secretions of adults with cystic fibrosis (CF). The potential of SPLUNC1 as a biomarker in children with CF is unknown. METHODS We quantified SPLUNC1, interleukin-8 (IL-8) and neutrophil elastase (NE) in sputum of CF children treated with either intravenous antibiotics or oral antibiotics for a pulmonary exacerbation (PEx)s, and in participants of a prospective cohort of CF children with preserved lung function on spirometry, followed over a period of two years. RESULTS Sputum SPLUNC1 levels were significantly lower before compared to after intravenous and oral antibiotic therapy for PEx. In the longitudinal cohort, SPLUNC1 levels were found to be decreased at PEx visits compared to both previous and subsequent stable visits. Higher SPLUNC1 levels at stable visits were associated with longer PEx-free time (hazard ratio 0.85, p = 0.04). SPLUNC1 at PEx visits did not correlate with IL-8 or NE levels in sputum or forced expiratory volume in one second (FEV1) but did correlate with the lung clearance index (LCI) (r=-0.53, p < 0.001). CONCLUSION SPLUNC1 demonstrates promising clinometric properties as a biomarker of PEx in children with CF.
Collapse
Affiliation(s)
- E Ben-Meir
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada; Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - L Perrem
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada; Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - M Shaw
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada; Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - F Ratjen
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada; Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - H Grasemann
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada; Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Kaushik A, Kest H, Sood M, Steussy BW, Thieman C, Gupta S. Biofilm Producing Methicillin-Resistant Staphylococcus aureus (MRSA) Infections in Humans: Clinical Implications and Management. Pathogens 2024; 13:76. [PMID: 38251383 PMCID: PMC10819455 DOI: 10.3390/pathogens13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Since its initial description in the 1960s, methicillin-resistant Staphylococcus aureus (MRSA) has developed multiple mechanisms for antimicrobial resistance and evading the immune system, including biofilm production. MRSA is now a widespread pathogen, causing a spectrum of infections ranging from superficial skin issues to severe conditions like osteoarticular infections and endocarditis, leading to high morbidity and mortality. Biofilm production is a key aspect of MRSA's ability to invade, spread, and resist antimicrobial treatments. Environmental factors, such as suboptimal antibiotics, pH, temperature, and tissue oxygen levels, enhance biofilm formation. Biofilms are intricate bacterial structures with dense organisms embedded in polysaccharides, promoting their resilience. The process involves stages of attachment, expansion, maturation, and eventually disassembly or dispersion. MRSA's biofilm formation has a complex molecular foundation, involving genes like icaADBC, fnbA, fnbB, clfA, clfB, atl, agr, sarA, sarZ, sigB, sarX, psm, icaR, and srtA. Recognizing pivotal genes for biofilm formation has led to potential therapeutic strategies targeting elemental and enzymatic properties to combat MRSA biofilms. This review provides a practical approach for healthcare practitioners, addressing biofilm pathogenesis, disease spectrum, and management guidelines, including advances in treatment. Effective management involves appropriate antimicrobial therapy, surgical interventions, foreign body removal, and robust infection control practices to curtail spread within healthcare environments.
Collapse
Affiliation(s)
- Ashlesha Kaushik
- Division of Pediatric Infectious Diseases, St. Luke’s Regional Medical Center, Unity Point Health, 2720 Stone Park Blvd, Sioux City, IA 51104, USA
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Master of Science, Healthcare Quality and Safety, Harvard Medical School, Boston, MA 02115, USA
| | - Helen Kest
- Division of Pediatric Infectious Diseases, St. Joseph’s Children’s Hospital, 703 Main Street, Paterson, NJ 07503, USA;
| | - Mangla Sood
- Department of Pediatrics, Indira Gandhi Medical College, Shimla 171006, India;
| | - Bryan W. Steussy
- Division of Microbiology, St. Luke’s Regional Medical Center, Unity Point Health, 2720 Stone Park Blvd, Sioux City, IA 51104, USA;
| | - Corey Thieman
- Division of Pharmacology, St. Luke’s Regional Medical Center, Unity Point Health, 2720 Stone Park Blvd, Sioux City, IA 51104, USA;
| | - Sandeep Gupta
- Division of Pulmonary and Critical Care, St. Luke’s Regional Medical Center, Unity Point Health, 2720 Stone Park Blvd, Sioux City, IA 51104, USA;
| |
Collapse
|
8
|
Fang H, Liu Y, Yang Q, Han S, Zhang H. Prognostic Biomarkers Based on Proteomic Technology in COPD: A Recent Review. Int J Chron Obstruct Pulmon Dis 2023; 18:1353-1365. [PMID: 37408604 PMCID: PMC10319291 DOI: 10.2147/copd.s410387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common heterogeneous respiratory disease which is characterized by persistent and incompletely reversible airflow limitation. Due to the heterogeneity and phenotypic complexity of COPD, traditional diagnostic methods provide limited information and pose a great challenge to clinical management. In recent years, with the development of omics technologies, proteomics, metabolomics, transcriptomics, etc., have been widely used in the study of COPD, providing great help to discover new biomarkers and elucidate the complex mechanisms of COPD. In this review, we summarize the prognostic biomarkers of COPD based on proteomic studies in recent years and evaluate their association with COPD prognosis. Finally, we present the prospects and challenges of COPD prognostic-related studies. This review is expected to provide cutting-edge evidence in prognostic evaluation of clinical patients with COPD and to inform future proteomic studies on prognostic biomarkers of COPD.
Collapse
Affiliation(s)
- Hanyu Fang
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Ying Liu
- The Second Health and Medical Department, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Qiwen Yang
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Siyu Han
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Hongchun Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- The Second Health and Medical Department, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| |
Collapse
|
9
|
Tiew PY, Meldrum OW, Chotirmall SH. Applying Next-Generation Sequencing and Multi-Omics in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2023; 24:ijms24032955. [PMID: 36769278 PMCID: PMC9918109 DOI: 10.3390/ijms24032955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Microbiomics have significantly advanced over the last decade, driven by the widespread availability of next-generation sequencing (NGS) and multi-omic technologies. Integration of NGS and multi-omic datasets allow for a holistic assessment of endophenotypes across a range of chronic respiratory disease states, including chronic obstructive pulmonary disease (COPD). Valuable insight has been attained into the nature, function, and significance of microbial communities in disease onset, progression, prognosis, and response to treatment in COPD. Moving beyond single-biome assessment, there now exists a growing literature on functional assessment and host-microbe interaction and, in particular, their contribution to disease progression, severity, and outcome. Identifying specific microbes and/or metabolic signatures associated with COPD can open novel avenues for therapeutic intervention and prognosis-related biomarkers. Despite the promise and potential of these approaches, the large amount of data generated by such technologies can be challenging to analyze and interpret, and currently, there remains a lack of standardized methods to address this. This review outlines the current use and proposes future avenues for the application of NGS and multi-omic technologies in the endophenotyping, prognostication, and treatment of COPD.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore 169608, Singapore
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Oliver W. Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Correspondence:
| |
Collapse
|
10
|
Tai J, Shin JM, Park J, Han M, Kim TH. Oxidative Stress and Antioxidants in Chronic Rhinosinusitis with Nasal Polyps. Antioxidants (Basel) 2023; 12:antiox12010195. [PMID: 36671057 PMCID: PMC9854928 DOI: 10.3390/antiox12010195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Oxidative stress results from an imbalance between the production of reactive oxygen species and the body's antioxidant defense system. It plays an important role in the regulation of the immune response and can be a pathogenic factor in various diseases. Chronic rhinosinusitis (CRS) is a complex and heterogeneous disease with various phenotypes and endotypes. Recently, an increasing number of studies have proposed that oxidative stress (caused by both environmental and intrinsic stimuli) plays an important role in the pathogenesis and persistence of CRS. This has attracted the attention of several researchers. The relationship between the presence of reactive oxygen species composed of free radicals and nasal polyp pathology is a key topic receiving attention. This article reviews the role of oxidative stress in respiratory diseases, particularly CRS, and introduces potential therapeutic antioxidants that may offer targeted treatment for CRS.
Collapse
Affiliation(s)
- Junhu Tai
- Department of Otorhinolaryngology—Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Min Shin
- Department of Otorhinolaryngology—Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Jaehyung Park
- Department of Otorhinolaryngology—Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Munsoo Han
- Department of Otorhinolaryngology—Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology—Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Correspondence: ; Tel.: +82-02-920-5486
| |
Collapse
|
11
|
Xiong J, Bao J, Hu W, Shang M, Zhang L. Whole-genome resequencing reveals genetic diversity and selection characteristics of dairy goat. Front Genet 2023; 13:1044017. [PMID: 36685859 PMCID: PMC9852865 DOI: 10.3389/fgene.2022.1044017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
The dairy goat is one of the earliest dairy livestock species, which plays an important role in the economic development, especially for developing countries. With the development of agricultural civilization, dairy goats have been widely distributed across the world. However, few studies have been conducted on the specific characteristics of dairy goat. In this study, we collected the whole-genome data of 89 goat individuals by sequencing 48 goats and employing 41 publicly available goats, including five dairy goat breeds (Saanen, Nubian, Alpine, Toggenburg, and Guanzhong dairy goat; n = 24, 15, 11, 6, 6), and three goat breeds (Guishan goat, Longlin goat, Yunshang Black goat; n = 6, 15, 6). Through compared the genomes of dairy goat and non-dairy goat to analyze genetic diversity and selection characteristics of dairy goat. The results show that the eight goats could be divided into three subgroups of European, African, and Chinese indigenous goat populations, and we also found that Australian Nubian, Toggenburg, and Australian Alpine had the highest linkage disequilibrium, the lowest level of nucleotide diversity, and a higher inbreeding coefficient, indicating that they were strongly artificially selected. In addition, we identified several candidate genes related to the specificity of dairy goat, particularly genes associated with milk production traits (GHR, DGAT2, ELF5, GLYCAM1, ACSBG2, ACSS2), reproduction traits (TSHR, TSHB, PTGS2, ESR2), immunity traits (JAK1, POU2F2, LRRC66). Our results provide not only insights into the evolutionary history and breed characteristics of dairy goat, but also valuable information for the implementation and improvement of dairy goat cross breeding program.
Collapse
|
12
|
Ahmad HI, Khan FA, Khan MA, Imran S, Akhtar RW, Pandupuspitasari NS, Negara W, Chen J. Molecular Evolution of the Bactericidal/Permeability-Increasing Protein (BPIFA1) Regulating the Innate Immune Responses in Mammals. Genes (Basel) 2022; 14:genes14010015. [PMID: 36672756 PMCID: PMC9858190 DOI: 10.3390/genes14010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Bactericidal/permeability-increasing protein, a primary factor of the innate immune system of mammals, participates in natural immune protection against invading bacteria. BPIFA1 actively contributes to host defense via multiple mechanisms, such as antibacterial, surfactant, airway surface liquid control, and immunomodulatory activities. However, the evolutionary history and selection forces on the BPIFA1 gene in mammals during adaptive evolution are poorly understood. This study examined the BPIFA1 gene of humans compared with that of other mammalian species to estimate the selective pressure derived by adaptive evolution. To assess whether or not positive selection occurred, we employed several different possibility tests (M1 vs. M2 and M7 vs. M8). The proportions of positively selected sites were significant, with a likelihood log value of 93.63 for the BPIFA1 protein. The Selecton server was used on the same dataset to reconfirm positive selection for specific sites by employing the Mechanistic-Empirical Combination model, thus providing additional evidence supporting the findings of positive selection. There was convincing evidence for positive selection signals in the BPIFA1 genes of mammalian species, which was more significant for selection signs and creating signals. We performed probability tests comparing various models based on dN/dS ratios to recognize specific codons under positive selection pressure. We identified positively selected sites in the LBP-BPI domain of BPIFA1 proteins in the mammalian genome, including a lipid-binding domain with a very high degree of selectivity for DPPC. BPIFA1 activates the upper airway's innate immune system in response to numerous genetic signals in the mammalian genome. These findings highlight evolutionary advancements in immunoregulatory effects that play a significant role in the antibacterial and antiviral defenses of mammalian species.
Collapse
Affiliation(s)
- Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (H.I.A.); (J.C.)
| | - Faheem Ahmed Khan
- Laboratory of Molecular Biology and Genomics, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan
- Research Center for Animal Husbandry, National Research and Innovation Agency, South Tangerang 15314, Indonesia
| | - Musarrat Abbas Khan
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Safdar Imran
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Rana Waseem Akhtar
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Nuruliarizki Shinta Pandupuspitasari
- Laboratory of Animal Nutrition and Feed Science, Animal Science Department, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang 50275, Indonesia
| | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, South Tangerang 15314, Indonesia
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
- Correspondence: (H.I.A.); (J.C.)
| |
Collapse
|
13
|
Santos HM, Carvalho LB, Lodeiro C, Martins G, Gomes IL, D. T. Antunes W, Correia V, Almeida-Santos MM, Rebelo-de-Andrade H, Matos AP, Capelo J. “How to dissect viral infections and their interplay with the host-proteome by immunoaffinity and mass spectrometry: A tutorial.”. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Clifton C, Niemeyer BF, Novak R, Can UI, Hainline K, Benam KH. BPIFA1 is a secreted biomarker of differentiating human airway epithelium. Front Cell Infect Microbiol 2022; 12:1035566. [PMID: 36519134 PMCID: PMC9744250 DOI: 10.3389/fcimb.2022.1035566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
In vitro culture and differentiation of human-derived airway basal cells under air-liquid interface (ALI) into a pseudostratified mucociliated mucosal barrier has proven to be a powerful preclinical tool to study pathophysiology of respiratory epithelium. As such, identifying differentiation stage-specific biomarkers can help investigators better characterize, standardize, and validate populations of regenerating epithelial cells prior to experimentation. Here, we applied longitudinal transcriptomic analysis and observed that the pattern and the magnitude of OMG, KRT14, STC1, BPIFA1, PLA2G7, TXNIP, S100A7 expression create a unique biosignature that robustly indicates the stage of epithelial cell differentiation. We then validated our findings by quantitative hemi-nested real-time PCR from in vitro cultures sourced from multiple donors. In addition, we demonstrated that at protein-level secretion of BPIFA1 accurately reflects the gene expression profile, with very low quantities present at the time of ALI induction but escalating levels were detectable as the epithelial cells terminally differentiated. Moreover, we observed that increase in BPIFA1 secretion closely correlates with emergence of secretory cells and an anti-inflammatory phenotype as airway epithelial cells undergo mucociliary differentiation under air-liquid interface in vitro.
Collapse
Affiliation(s)
- Clarissa Clifton
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian F. Niemeyer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Richard Novak
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Uryan Isik Can
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kelly Hainline
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Kambez H. Benam
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Kambez H. Benam,
| |
Collapse
|
15
|
Lopardo V, Conti V, Montella F, Iannaccone T, Esposito RM, Sellitto C, Manzo V, Maciag A, Ricciardi R, Pagliano P, Puca AA, Filippelli A, Ciaglia E. Gender Differences Associated with the Prognostic Value of BPIFB4 in COVID-19 Patients: A Single-Center Preliminary Study. J Pers Med 2022; 12:1058. [PMID: 35887555 PMCID: PMC9319362 DOI: 10.3390/jpm12071058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022] Open
Abstract
In the ongoing global COVID-19 pandemic, male sex is a risk factor for severe disease and death, and the reasons for these clinical discrepancies are largely unknown. The aim of this work is to study the influence of sex on the course of infection and the differences in prognostic markers between genders in COVID-19 patients. Our cohort consisted of 64 adult patients (n = 34 men and n = 30 women) with PCR-proven SARS-CoV-2 infection. Further, a group of patients was characterized by a different severity degree (n = 8 high- and n = 8 low-grade individuals for both male and female patients). As expected, the serum concentrations of LDH, fibrinogen, CRP, and leucocyte count in men were significantly higher than in females. When serum concentrations of the inflammatory cytokines, including IL-6, IL-2, IP-10 and IL-4 and chemokines like MCP-1, were measured with multiplex ELISA, no significant differences between male and female patients were found. In COVID-19 patients, we recently attributed a new prognostic value to BPIFB4, a natural defensin against dysregulation of the immune responses. Here, we clarify that BPIFB4 is inversely related to the disease degree in men but not in women. Indeed, higher levels of BPIFB4 characterized low-grade male patients compared to high-grade ones. On the contrary, no significant difference was reported between low-grade female patients and high-grade ones. In conclusion, the identification of BPIFB4 as a biomarker of mild/moderate disease and its sex-specific activity would open an interesting field for research to underpin gender-related susceptibility to the disease.
Collapse
Affiliation(s)
- Valentina Lopardo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (V.L.); (V.C.); (F.M.); (T.I.); (R.M.E.); (C.S.); (V.M.); (P.P.); (A.F.)
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (V.L.); (V.C.); (F.M.); (T.I.); (R.M.E.); (C.S.); (V.M.); (P.P.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy;
| | - Francesco Montella
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (V.L.); (V.C.); (F.M.); (T.I.); (R.M.E.); (C.S.); (V.M.); (P.P.); (A.F.)
| | - Teresa Iannaccone
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (V.L.); (V.C.); (F.M.); (T.I.); (R.M.E.); (C.S.); (V.M.); (P.P.); (A.F.)
| | - Roberta Maria Esposito
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (V.L.); (V.C.); (F.M.); (T.I.); (R.M.E.); (C.S.); (V.M.); (P.P.); (A.F.)
| | - Carmine Sellitto
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (V.L.); (V.C.); (F.M.); (T.I.); (R.M.E.); (C.S.); (V.M.); (P.P.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy;
| | - Valentina Manzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (V.L.); (V.C.); (F.M.); (T.I.); (R.M.E.); (C.S.); (V.M.); (P.P.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy;
| | - Anna Maciag
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138 Milan, Italy;
| | - Rosaria Ricciardi
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy;
| | - Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (V.L.); (V.C.); (F.M.); (T.I.); (R.M.E.); (C.S.); (V.M.); (P.P.); (A.F.)
- Infectious Diseases Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (V.L.); (V.C.); (F.M.); (T.I.); (R.M.E.); (C.S.); (V.M.); (P.P.); (A.F.)
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138 Milan, Italy;
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (V.L.); (V.C.); (F.M.); (T.I.); (R.M.E.); (C.S.); (V.M.); (P.P.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy;
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (V.L.); (V.C.); (F.M.); (T.I.); (R.M.E.); (C.S.); (V.M.); (P.P.); (A.F.)
| |
Collapse
|
16
|
Flores-Torres AS, Samarasinghe AE. Impact of Therapeutics on Unified Immunity During Allergic Asthma and Respiratory Infections. FRONTIERS IN ALLERGY 2022; 3:852067. [PMID: 35386652 PMCID: PMC8974821 DOI: 10.3389/falgy.2022.852067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 11/04/2022] Open
Abstract
Asthma is a common chronic respiratory disease that affects millions of people worldwide. Patients with allergic asthma, the most prevalent asthma endotype, are widely considered to possess a defective immune response against some respiratory infectious agents, including viruses, bacteria and fungi. Furthermore, respiratory pathogens are associated with asthma development and exacerbations. However, growing data suggest that the immune milieu in allergic asthma may be beneficial during certain respiratory infections. Immunomodulatory asthma treatments, although beneficial, should then be carefully prescribed to avoid misuse and overuse as they can also alter the host microbiome. In this review, we summarize and discuss recent evidence of the correlations between allergic asthma and the most significant respiratory infectious agents that have a role in asthma pathogenesis. We also discuss the implications of current asthma therapeutics beyond symptom prevention.
Collapse
Affiliation(s)
- Armando S. Flores-Torres
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Amali E. Samarasinghe
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| |
Collapse
|
17
|
Britto CJ. Charting a New Path: A Single-cell Atlas of Porcine CF Airways at Birth. Am J Respir Cell Mol Biol 2022; 66:585-586. [PMID: 35294854 PMCID: PMC9163641 DOI: 10.1165/rcmb.2022-0065ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Clemente J Britto
- Yale University, 5755, Department of Internal Medicine. Division of Pulmonary, Critical Care, and Sleep Medicine, New Haven, Connecticut, United States;
| |
Collapse
|
18
|
Hu N, Mo XM, Xu SN, Tang HN, Zhou YH, Li L, Zhou HD. A novel antimicrobial peptide derived from human BPIFA1 protein protects against Candida albicans infection. Innate Immun 2022; 28:67-78. [PMID: 35201913 PMCID: PMC9058375 DOI: 10.1177/17534259221080543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/19/2022] [Accepted: 01/30/2022] [Indexed: 11/15/2022] Open
Abstract
Bactericidal/permeability-increasing fold containing family A, member 1 (BPIFA1) is an innate immunity defense protein. Our previous studies proved its antibacterial and antiviral effects, but its role in fungi remains unknown. The study aimed to identify antifungal peptides (AFP) derived from BPIFA1, and three antimicrobial peptides (AMP1-3) were designed. The antifungal effects were proved by growth inhibition assay. AMP3 activity was confirmed by germ tube growth experiment and XTT assay. Its effects on cell wall and membrane of Candida albicans were assessed by tannic acid and Annexin V-FITC/PI double staining, respectively. Additionally, scanning electron microscope (SEM) and transmission electron microscopy (TEM) were used for morphological and ultrastructural observation. The expression of ALS1, EAP1, and SUN41 was tested by qPCR. Ultimately, three AMPs could fight against C. albicans in vitro, and AMP3 was highly effective. It functioned by destroying the integrity of cell wall and normal structure of cell membrane. It also inhibited biofilm formation of C. albicans. In addition, AMP3 down-regulated the expression of ALS1, EAP1, and SUN41, those are known to be involved in virulence of C. albicans. Altogether, the study reported successful development of a novel AFP, which could be used as a new strategy for antifungal therapy.
Collapse
Affiliation(s)
- Nan Hu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Nan Hu and Xi-Ming Mo contribute equally to the paper
| | - Xi-Ming Mo
- Department of clinical laboratory medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Nan Hu and Xi-Ming Mo contribute equally to the paper
| | - Shi-Na Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hao-Neng Tang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Department of clinical laboratory medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ying-Hui Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
19
|
Montella F, Lopardo V, Cattaneo M, Carrizzo A, Vecchione C, Ciaglia E, Puca AA. The Role of BPIFB4 in Immune System and Cardiovascular Disease: The Lesson from Centenarians. Transl Med UniSa 2021; 24:1-12. [PMID: 36447743 PMCID: PMC9673912 DOI: 10.37825/2239-9754.1029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 06/16/2023] Open
Abstract
Recent discoveries have shed light on the participation of the immune system in the physio pathology of the cardiovascular system underpinning the importance of keeping the balance of the first to preserve the latter. Aging, along with other risk factors, can challenge such balance triggering the onset of cardiovascular diseases. Among several mediators ensuring the proper cross-talk between the two systems, bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4) has been shown to have a pivotal role, also by sustaining important signals such as eNOS and PKC-alpha. In addition, the Longevity-associated variant (LAV), which is an haplotype allele in BPIFB4 characterized by 4 missense polymorphisms, enriched in homozygosity in Long Living Individuals (LLIs), has been shown to be efficient, if administered systemically through gene therapy, in improving many aspects of cardiovascular diseases (CVDs). This occurs mainly through a fine immune system remodeling across: 1) a M2 macrophage polarizing effect, 2) a favorable redistribution of the circulating monocyte cell subsets and 3) the reduction of T-cell activation. Furthermore, LAV-BPIFB4 treatment induced a desirable recovery of the inflammatory balance by mitigating the pro-inflammatory factor levels and enhancing the anti-inflammatory boost through a mechanism that is partially dependent on SDF-1/CXCR4 axis. Importantly, the remarkable effects of LAV-BPIFB4 treatment, which translates in increased BPIFB4 circulating levels, mirror what occurs in long-living individuals (LLIs) in whom the high circulating levels of BPIFB4 are protective from age-related and CVDs and emphasize the reason why LLIs are considered a model of successful aging. Here, we review the mechanisms by which LAV-BPIFB4 exerts its immunomodulatory activity in improving the cardiovascular-immune system dialogue that might strengthen its role as a key mediator in CVDs.
Collapse
Affiliation(s)
- Francesco Montella
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081, Baronissi, Salerno,
Italy
| | - Valentina Lopardo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081, Baronissi, Salerno,
Italy
| | - Monica Cattaneo
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138, Milan,
Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081, Baronissi, Salerno,
Italy
- Department of Vascular Physiopathology, IRCCS Neuromed, Pozzilli, 86077, Isernia,
Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081, Baronissi, Salerno,
Italy
- Department of Vascular Physiopathology, IRCCS Neuromed, Pozzilli, 86077, Isernia,
Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081, Baronissi, Salerno,
Italy
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081, Baronissi, Salerno,
Italy
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138, Milan,
Italy
| |
Collapse
|
20
|
Kim M, Park J, Bouhaddou M, Kim K, Rojc A, Modak M, Soucheray M, McGregor MJ, O'Leary P, Wolf D, Stevenson E, Foo TK, Mitchell D, Herrington KA, Muñoz DP, Tutuncuoglu B, Chen KH, Zheng F, Kreisberg JF, Diolaiti ME, Gordan JD, Coppé JP, Swaney DL, Xia B, van 't Veer L, Ashworth A, Ideker T, Krogan NJ. A protein interaction landscape of breast cancer. Science 2021; 374:eabf3066. [PMID: 34591612 PMCID: PMC9040556 DOI: 10.1126/science.abf3066] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Minkyu Kim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Jisoo Park
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA
| | - Mehdi Bouhaddou
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Kyumin Kim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Ajda Rojc
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Maya Modak
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Margaret Soucheray
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Michael J McGregor
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Patrick O'Leary
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Denise Wolf
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Erica Stevenson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Tzeh Keong Foo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Dominique Mitchell
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Kari A Herrington
- Department of Biochemistry and Biophysics, Center for Advanced Light Microscopy, University of California, San Francisco, CA, USA
| | - Denise P Muñoz
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Beril Tutuncuoglu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Kuei-Ho Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Fan Zheng
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA
| | - Jason F Kreisberg
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA
| | - Morgan E Diolaiti
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - John D Gordan
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Jean-Philippe Coppé
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Laura van 't Veer
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Alan Ashworth
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Trey Ideker
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA.,Department of Bioengineering, University of California, San Diego, CA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| |
Collapse
|
21
|
Ciaglia E, Lopardo V, Montella F, Sellitto C, Manzo V, De Bellis E, Iannaccone T, Franci G, Zannella C, Pagliano P, Di Pietro P, Carrizzo A, Vecchione C, Conti V, Filippelli A, Puca AA. BPIFB4 Circulating Levels and Its Prognostic Relevance in COVID-19. J Gerontol A Biol Sci Med Sci 2021; 76:1775-1783. [PMID: 34396395 PMCID: PMC8436991 DOI: 10.1093/gerona/glab208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Aging and comorbidities make individuals at greatest risk of COVID-19 serious illness and mortality due to senescence-related events and deleterious inflammation. Long-living individuals (LLIs) are less susceptible to inflammation and develop more resiliency to COVID-19. As demonstrated, LLIs are characterized by high circulating levels of BPIFB4, a protein involved in homeostatic response to inflammatory stimuli. Also, LLIs show enrichment of homozygous genotype for the minor alleles of a 4 missense single-nucleotide polymorphism haplotype (longevity-associated variant [LAV]) in BPIFB4, able to counteract progression of diseases in animal models. Thus, the present study was designed to assess the presence and significance of BPIFB4 level in COVID-19 patients and the potential therapeutic use of LAV-BPIFB4 in fighting COVID-19. BPIFB4 plasma concentration was found significantly higher in LLIs compared to old healthy controls while it significantly decreased in 64 COVID-19 patients. Further, the drop in BPIFB4 values correlated with disease severity. Accordingly to the LAV-BPIFB4 immunomodulatory role, while lysates of SARS-CoV-2-infected cells induced an inflammatory response in healthy peripheral blood mononuclear cells in vitro, the co-treatment with recombinant protein (rh) LAV-BPIFB4 resulted in a protective and self-limiting reaction, culminating in the downregulation of CD69 activating-marker for T cells (both TCD4+ and TCD8+) and in MCP-1 reduction. On the contrary, rhLAV-BPIFB4 induced a rapid increase in IL-18 and IL-1b levels, shown largely protective during the early stages of the virus infection. This evidence, along with the ability of rhLAV-BPIFB4 to counteract the cytotoxicity induced by SARS-CoV-2 lysate in selected target cell lines, corroborates BPIFB4 prognostic value and open new therapeutic possibilities in more vulnerable people.
Collapse
Affiliation(s)
- Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Valentina Lopardo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Francesco Montella
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Carmine Sellitto
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy.,Department of Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Valentina Manzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy.,Department of Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Emanuela De Bellis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy.,Department of Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Teresa Iannaccone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy.,Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy.,Infectious Diseases Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy.,Department of Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy.,Department of Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy.,Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
22
|
Titz B, Sewer A, Luettich K, Wong ET, Guedj E, Nury C, Schneider T, Xiang Y, Trivedi K, Vuillaume G, Leroy P, Büttner A, Martin F, Ivanov NV, Vanscheeuwijck P, Hoeng J, Peitsch MC. Respiratory Effects of Exposure to Aerosol From the Candidate Modified-Risk Tobacco Product THS 2.2 in an 18-Month Systems Toxicology Study With A/J Mice. Toxicol Sci 2021; 178:138-158. [PMID: 32780831 PMCID: PMC7657339 DOI: 10.1093/toxsci/kfaa132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Smoking cessation is the most effective measure for reducing the risk of smoking-related diseases. However, switching to less harmful products (modified-risk tobacco products [MRTP]) can be an alternative to help reduce the risk for adult smokers who would otherwise continue to smoke. In an 18-month chronic carcinogenicity/toxicity study in A/J mice (OECD Test Guideline 453), we assessed the aerosol of Tobacco Heating System 2.2 (THS 2.2), a candidate MRTP based on the heat-not-burn principle, compared with 3R4F cigarette smoke (CS). To capture toxicity- and disease-relevant mechanisms, we complemented standard toxicology endpoints with in-depth systems toxicology analyses. In this part of our publication series, we report on integrative assessment of the apical and molecular exposure effects on the respiratory tract (nose, larynx, and lungs). Across the respiratory tract, we found changes in inflammatory response following 3R4F CS exposure (eg, antimicrobial peptide response in the nose), with both shared and distinct oxidative and xenobiotic responses. Compared with 3R4F CS, THS 2.2 aerosol exerted far fewer effects on respiratory tract histology, including adaptive tissue changes in nasal and laryngeal epithelium and inflammation and emphysematous changes in the lungs. Integrative analysis of molecular changes confirmed the substantially lower impact of THS 2.2 aerosol than 3R4F CS on toxicologically and disease-relevant molecular processes such as inflammation, oxidative stress responses, and xenobiotic metabolism. In summary, this work exemplifies how apical and molecular endpoints can be combined effectively for toxicology assessment and further supports findings on the reduced respiratory health risks of THS 2.2 aerosol.
Collapse
Affiliation(s)
- Bjoern Titz
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Alain Sewer
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Karsta Luettich
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Ee Tsin Wong
- Philip Morris International Research Laboratories Pte. Ltd, Singapore 117406
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Catherine Nury
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | | | - Yang Xiang
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Keyur Trivedi
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | | | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | | | - Florian Martin
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | | | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
23
|
Theprungsirikul J, Skopelja-Gardner S, Rigby WF. Killing three birds with one BPI: Bactericidal, opsonic, and anti-inflammatory functions. J Transl Autoimmun 2021; 4:100105. [PMID: 34142075 PMCID: PMC8187252 DOI: 10.1016/j.jtauto.2021.100105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 01/17/2023] Open
Abstract
Bactericidal/permeability-increasing protein (BPI) is an anti-microbial protein predominantly expressed in azurophilic granules of neutrophils. BPI has been shown to mediate cytocidal and opsonic activity against Gram-negative bacteria, while also blunting inflammatory activity of lipopolysaccharide (LPS). Despite awareness of these functions in vitro, the magnitude of the contribution of BPI to innate immunity remains unclear, and the nature of the functional role of BPI in vivo has been submitted to limited investigation. Understanding this role takes on particular interest with the recognition that autoimmunity to BPI is tightly linked to a specific infectious trigger like Pseudomonas aeruginosa in chronic lung infection. This has led to the notion that anti-BPI autoantibodies compromise the activity of BPI in innate immunity against P. aeruginosa, which is primarily mediated by neutrophils. In this review, we explore the three main mechanisms in bactericidal, opsonic, and anti-inflammatory of BPI. We address the etiology and the effects of BPI autoreactivity on BPI function. We explore BPI polymorphism and its link to multiple diseases. We summarize BPI therapeutic potential in both animal models and human studies, as well as offer therapeutic approaches to designing a sustainable and promising BPI molecule.
Collapse
Affiliation(s)
- Jomkuan Theprungsirikul
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Sladjana Skopelja-Gardner
- Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - William F.C. Rigby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
24
|
Khanal S, Webster M, Niu N, Zielonka J, Nunez M, Chupp G, Slade MD, Cohn L, Sauler M, Gomez JL, Tarran R, Sharma L, Dela Cruz CS, Egan M, Laguna T, Britto CJ. SPLUNC1: a novel marker of cystic fibrosis exacerbations. Eur Respir J 2021; 58:13993003.00507-2020. [PMID: 33958427 DOI: 10.1183/13993003.00507-2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/29/2021] [Indexed: 11/05/2022]
Abstract
Acute pulmonary Exacerbations (AE) are episodes of clinical worsening in cystic fibrosis (CF), often precipitated by infection. Timely detection is critical to minimise morbidity and lung function declines associated with acute inflammation during AE. Based on our previous observations that airway protein Short Palate Lung Nasal epithelium Clone 1 (SPLUNC1) is regulated by inflammatory signals, we investigated the use of SPLUNC1 fluctuations to diagnose and predict AE in CF.We enrolled CF participants from two independent cohorts to measure AE markers of inflammation in sputum and recorded clinical outcomes for a 1-year follow-up period.SPLUNC1 levels were high in healthy controls (n=9, 10.7 μg mL-1), and significantly decreased in CF participants without AE (n=30, 5.7 μg mL-1, p=0.016). SPLUNC1 levels were 71.9% lower during AE (n=14, 1.6 μg mL-1, p=0.0034) regardless of age, sex, CF-causing mutation, or microbiology findings. Cytokines Il-1β and TNFα were also increased in AE, whereas lung function did not consistently decrease. Stable CF participants with lower SPLUNC1 levels were much more likely to have an AE at 60 days (HR: 11.49, Standard Error: 0.83, p=0.0033). Low-SPLUNC1 stable participants remained at higher AE risk even one year after sputum collection (HR: 3.21, Standard Error: 0.47, p=0.0125). SPLUNC1 was downregulated by inflammatory cytokines and proteases increased in sputum during AE.In acute CF care, low SPLUNC1 levels could support a decision to increase airway clearance or to initiate pharmacological interventions. In asymptomatic, stable patients, low SPLUNC1 levels could inform changes in clinical management to improve long-term disease control and clinical outcomes in CF.
Collapse
Affiliation(s)
- Sara Khanal
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Megan Webster
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Naiqian Niu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jana Zielonka
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Myra Nunez
- Division of Pediatric Respiratory Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Geoffrey Chupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Martin D Slade
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lauren Cohn
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maor Sauler
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jose L Gomez
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marie Egan
- Division of Pediatric Pulmonology, Allergy, Immunology, and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Theresa Laguna
- Division of Pediatric Respiratory Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clemente J Britto
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
25
|
Zhang R, Trower J, Wu T. Degradation of bacterial permeability family member A1 (BPIFA1) by house dust mite (HDM) cysteine protease Der p 1 abrogates immune modulator function. Int J Biol Macromol 2020; 164:4022-4031. [PMID: 32890564 PMCID: PMC7467078 DOI: 10.1016/j.ijbiomac.2020.08.214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023]
Abstract
Bacterial permeability family member A1 (BPIFA1) is one of the most abundant proteins present in normal airway surface liquid (ASL). It is known to be diminished in asthmatic patients' sputum, which causes airway hyperresponsiveness (AHR). What is currently unclear is how environmental factors, such as allergens' impact on BPIFA1's abundance and functions in the context of allergic asthma. House dust mite (HDM) is a predominant domestic source of aeroallergens. The group of proteases found in HDM is thought to cleave multiple cellular protective mechanisms, and therefore foster the development of allergic asthma. Here, we show that BPIFA1 is cleaved by HDM proteases in a time-, dose-, and temperature-dependent manner. We have also shown the main component in HDM that is responsible for BPIFA1's degradation is Der p1. Fragmented BPIFA1 failed to bind E. coli lipopolysaccharide (LPS), and hence elevated TNFα and IL-6 secretion in human whole blood. BPIFA1 degradation is also observed in vivo in bronchoalveolar fluid (BALF) of mice which are intranasally instilled with HDM. These data suggest that proteases associated with environmental allergens such as HDM cleave BPIFA1 and therefore impair its immune modulator function.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, PR China
| | - Jessika Trower
- Department of Pharmaceutical Sciences, 302 East Lawson Street, North Carolina Central University, Durham, NC 27707, USA
| | - Tongde Wu
- Department of Pharmaceutical Sciences, 302 East Lawson Street, North Carolina Central University, Durham, NC 27707, USA; Biomanufacturing Research Institute & Technology Enterprise (BRITE), 302 East Lawson Street, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
26
|
The longevity-associated variant of BPIFB4 improves a CXCR4-mediated striatum-microglia crosstalk preventing disease progression in a mouse model of Huntington's disease. Cell Death Dis 2020; 11:546. [PMID: 32683420 PMCID: PMC7368858 DOI: 10.1038/s41419-020-02754-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 01/10/2023]
Abstract
The longevity-associated variant (LAV) of the bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4) has been found significantly enriched in long-living individuals. Neuroinflammation is a key player in Huntington's disease (HD), a neurodegenerative disorder caused by neural death due to expanded CAG repeats encoding a long polyglutamine tract in the huntingtin protein (Htt). Herein, we showed that striatal-derived cell lines with expanded Htt (STHdh Q111/111) expressed and secreted lower levels of BPIFB4, when compared with Htt expressing cells (STHdh Q7/7), which correlated with a defective stress response to proteasome inhibition. Overexpression of LAV-BPIFB4 in STHdh Q111/111 cells was able to rescue both the BPIFB4 secretory profile and the proliferative/survival response. According to a well-established immunomodulatory role of LAV-BPIFB4, conditioned media from LAV-BPIFB4-overexpressing STHdh Q111/111 cells were able to educate Immortalized Human Microglia-SV40 microglial cells. While STHdh Q111/111 dying cells were ineffective to induce a CD163 + IL-10high pro-resolving microglia compared to normal STHdh Q7/7, LAV-BPIFB4 transduction promptly restored the central immune control through a mechanism involving the stromal cell-derived factor-1. In line with the in vitro results, adeno-associated viral-mediated administration of LAV-BPIFB4 exerted a CXCR4-dependent neuroprotective action in vivo in the R6/2 HD mouse model by preventing important hallmarks of the disease including motor dysfunction, body weight loss, and mutant huntingtin protein aggregation. In this view, LAV-BPIFB4, due to its pleiotropic ability in both immune compartment and cellular homeostasis, may represent a candidate for developing new treatment for HD.
Collapse
|
27
|
Ciaglia E, Montella F, Lopardo V, Scala P, Ferrario A, Cattaneo M, Carrizzo A, Malovini A, Madeddu P, Vecchione C, Puca AA. Circulating BPIFB4 Levels Associate With and Influence the Abundance of Reparative Monocytes and Macrophages in Long Living Individuals. Front Immunol 2020; 11:1034. [PMID: 32547549 PMCID: PMC7272600 DOI: 10.3389/fimmu.2020.01034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/29/2020] [Indexed: 12/31/2022] Open
Abstract
Long-Living Individuals (LLIs) delay aging and are less prone to chronic inflammatory reactions. Whether a distinct monocytes and macrophages repertoire is involved in such a characteristic remains unknown. Previous studies from our group have shown high levels of the host defense BPI Fold Containing Family B Member 4 (BPIFB4) protein in the peripheral blood of LLIs. Moreover, a polymorphic variant of the BPIFB4 gene associated with exceptional longevity (LAV-BPIFB4) confers protection from cardiovascular diseases underpinned by low-grade chronic inflammation, such as atherosclerosis. We hypothesize that BPIFB4 may influence monocytes pool and macrophages skewing, shifting the balance toward an anti-inflammatory phenotype. We profiled circulating monocytes in 52 LLIs (median-age 97) and 52 healthy volunteers (median-age 55) using flow cytometry. If the frequency of total monocyte did not change, the intermediate CD14++CD16+ monocytes counts were lower in LLIs compared to control adults. Conversely, non-classical CD14+CD16++ monocyte counts, which are M2 macrophage precursors with an immunomodulatory function, were found significantly associated with the LLIs' state. In a differentiation assay, supplementation of the LLIs' plasma enhanced the capacity of monocytes, either from LLIs or controls, to acquire a paracrine M2 phenotype. A neutralizing antibody against the phosphorylation site (ser 75) of BPIFB4 blunted the M2 skewing effect of the LLIs' plasma. These data indicate that LLIs carry a peculiar anti-inflammatory myeloid profile, which is associated with and possibly sustained by high circulating levels of BPIFB4. Supplementation of recombinant BPIFB4 may represent a novel means to attenuate inflammation-related conditions typical of unhealthy aging.
Collapse
Affiliation(s)
- Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Francesco Montella
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Valentina Lopardo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Pasqualina Scala
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Anna Ferrario
- Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| | - Monica Cattaneo
- Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| | - Albino Carrizzo
- Vascular Pathophysiology Unit - IRCCS Neuromed, Pozzilli, Italy
| | - Alberto Malovini
- Laboratory of Informatics and Systems Engineering for Clinical Research, Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Paolo Madeddu
- Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy.,Bristol Medical School - Translational Health Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy.,Vascular Pathophysiology Unit - IRCCS Neuromed, Pozzilli, Italy
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy.,Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
28
|
Leahy T, Rickard JP, Bernecic NC, Druart X, de Graaf SP. Ram seminal plasma and its functional proteomic assessment. Reproduction 2020; 157:R243-R256. [PMID: 30844754 DOI: 10.1530/rep-18-0627] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/07/2019] [Indexed: 12/30/2022]
Abstract
Ejaculation results in the confluence of epididymal spermatozoa with secretions of the accessory sex glands. This interaction is not a prerequisite for fertilisation success, but seminal factors do play a crucial role in prolonging the survival of spermatozoa both in vitro and in vivo by affording protection from handling induced stress and some selective mechanisms of the female reproductive tract. Reproductive biologists have long sought to identify specific factors in seminal plasma that influence sperm function and fertility in these contexts. Many seminal plasma proteins have been identified as diagnostic predictors of sperm function and have been isolated and applied in vitro to prevent sperm damage associated with the application of artificial reproductive technologies. Proteomic assessment of the spermatozoon, and its surroundings, has provided considerable advances towards these goals and allowed for greater understanding of their physiological function. In this review, the importance of seminal plasma will be examined through a proteomic lens to provide comprehensive analysis of the ram seminal proteome and detail the use of proteomic studies that correlate seminal plasma proteins with ram sperm function and preservation ability.
Collapse
Affiliation(s)
- T Leahy
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, New South Wales, Australia
| | - J P Rickard
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, New South Wales, Australia
| | - N C Bernecic
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, New South Wales, Australia
| | - X Druart
- Physiologie de la Reproduction et du Comportement, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - S P de Graaf
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, New South Wales, Australia
| |
Collapse
|
29
|
Li J, Xu P, Wang L, Feng M, Chen D, Yu X, Lu Y. Molecular biology of BPIFB1 and its advances in disease. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:651. [PMID: 32566588 PMCID: PMC7290611 DOI: 10.21037/atm-20-3462] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bactericidal/permeability-increasing (BPI)-fold-containing family B member 1 (BPIFB1), also known as long-palate lung and nasal epithelium clone 1 (LPLUNC1), belongs to the BPI-fold-containing family, is a newly discovered natural immune protection molecule, which, having the function of bactericidal and osmotic enhancement protein domain, can respond to the external physical and chemical stimuli. The gene of BPIFB1 is located at chromosome 20q11.21-20q11.22, and contains 16 exons and 15 introns, encoding 484 amino acids. The 5' terminal of the BPIFB1 protein has a signal peptide sequence composed of 19 amino acids. BPIFB1 is abnormally expressed in nasopharyngeal carcinoma (NPC), gastric cancer, and other cancer tissues, regulate chronic infections and inflammation, indicating that it may play an important role in the development of tumors. Meanwhile, BPIFB1 has well-recognized roles in sensing and responding to Gram-negative bacteria due to its structural similarity with BPI protein and lipopolysaccharide (LPS)-binding protein, both of which are innate immune molecules with recognized roles in sensing and responding to Gram-negative bacteria, so it can regulate cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), asthma, and other respiratory diseases. In this article, we will discuss the progress of BPIFB1 in a variety of diseases and fully understand its function.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Peng Xu
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Lingwei Wang
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Mengjie Feng
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Dandan Chen
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Xiu Yu
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Yongzhen Lu
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| |
Collapse
|
30
|
Guan D, Landi V, Luigi-Sierra MG, Delgado JV, Such X, Castelló A, Cabrera B, Mármol-Sánchez E, Fernández-Alvarez J, de la Torre Casañas JLR, Martínez A, Jordana J, Amills M. Analyzing the genomic and transcriptomic architecture of milk traits in Murciano-Granadina goats. J Anim Sci Biotechnol 2020; 11:35. [PMID: 32175082 PMCID: PMC7065321 DOI: 10.1186/s40104-020-00435-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background In this study, we aimed to investigate the molecular basis of lactation as well as to identify the genetic factors that influence milk yield and composition in goats. To achieve these two goals, we have analyzed how the mRNA profile of the mammary gland changes in seven Murciano-Granadina goats at each of three different time points, i.e. 78 d (T1, early lactation), 216 d (T2, late lactation) and 285 d (T3, dry period) after parturition. Moreover, we have performed a genome-wide association study (GWAS) for seven dairy traits recorded in the 1st lactation of 822 Murciano-Granadina goats. Results The expression profiles of the mammary gland in the early (T1) and late (T2) lactation were quite similar (42 differentially expressed genes), while strong transcriptomic differences (more than one thousand differentially expressed genes) were observed between the lactating (T1/T2) and non-lactating (T3) mammary glands. A large number of differentially expressed genes were involved in pathways related with the biosynthesis of amino acids, cholesterol, triglycerides and steroids as well as with glycerophospholipid metabolism, adipocytokine signaling, lipid binding, regulation of ion transmembrane transport, calcium ion binding, metalloendopeptidase activity and complement and coagulation cascades. With regard to the second goal of the study, the performance of the GWAS allowed us to detect 24 quantitative trait loci (QTLs), including three genome-wide significant associations: QTL1 (chromosome 2, 130.72-131.01 Mb) for lactose percentage, QTL6 (chromosome 6, 78.90-93.48 Mb) for protein percentage and QTL17 (chromosome 17, 11.20 Mb) for both protein and dry matter percentages. Interestingly, QTL6 shows positional coincidence with the casein genes, which encode 80% of milk proteins. Conclusions The abrogation of lactation involves dramatic changes in the expression of genes participating in a broad array of physiological processes such as protein, lipid and carbohydrate metabolism, calcium homeostasis, cell death and tissue remodeling, as well as immunity. We also conclude that genetic variation at the casein genes has a major impact on the milk protein content of Murciano-Granadina goats.
Collapse
Affiliation(s)
- Dailu Guan
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Vincenzo Landi
- 2Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain
| | - María Gracia Luigi-Sierra
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Xavier Such
- 3Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Anna Castelló
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,3Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Betlem Cabrera
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,3Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Emilio Mármol-Sánchez
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Javier Fernández-Alvarez
- Asociación Nacional de Criadores de Caprino de Raza Murciano-Granadina (CAPRIGRAN), 18340 Granada, Spain
| | | | - Amparo Martínez
- 2Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Jordi Jordana
- 3Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marcel Amills
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,3Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
31
|
Calcium-activated chloride channel regulator 1 (CLCA1): More than a regulator of chloride transport and mucus production. World Allergy Organ J 2019; 12:100077. [PMID: 31871532 PMCID: PMC6909348 DOI: 10.1016/j.waojou.2019.100077] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 09/07/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
CLCA1 is a member of the CLCA (calcium-activated chloride channel regulator) family and plays an essential role in goblet cell mucus production from the respiratory tract epithelium. CLCA1 also regulates Ca2+-dependent Cl- transport that involves the channel protein transmembrane protein 16A (TMEM16A) and its accessary molecules. CLCA1 modulates epithelial cell chloride current and participates in the pathogenesis of mucus hypersecretory-associated respiratory and gastrointestinal diseases, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, pneumonia, colon colitis, cystic fibrosis intestinal mucous disease, ulcerative colitis, and gastrointestinal parasitic infection. Most studies have been focused on the expression regulation of CLCA1 in human specimens. Limited studies used the CLCA1-deficient mice and CLCA1 blocking agents and yielded inconsistent conclusions regarding its role in these diseases. CLCA1 not only regulates mucin expression, but also participates in innate immune responses by binding to yet unidentified molecules on inflammatory cells for cytokine and chemokine production. CLCA1 also targets lymphatic endothelial cells and cancer cells by regulating lymphatic cell proliferation and lymphatic sinus growth in the lymphatic organs and controlling cancer cell differentiation, proliferation, and apoptosis, all which depend on the location of the lymphatic vessels, the type of cancers, the presence of Th2 cytokines, and possibly the availability and type of CLCA1-binding proteins. Here we summarize available studies related to these different activities of CLCA1 to assist our understanding of how this secreted modifier of calcium-activated chloride channels (CaCCs) affects mucus production and innate immunity during the pathogenesis of respiratory, gastrointestinal, and malignant diseases.
Collapse
Key Words
- AMCase, acidic mammalian chitinase
- BALF, bronchoalveolar lavage fluid
- Bpifa1, bactericidal/permeability-increasing protein (BPI) fold-containing family A member 1
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- CLCA1
- CLCA1, calcium-activated chloride channel regulator 1
- COPD, chronic obstructive pulmonary disease
- CXCL-1, C-X-C motif chemokine ligand 1
- CaCCs, calcium-activated chloride channels
- Cancer
- CeO2NPs, cerium dioxide nanoparticles
- DOG1, discovered on gastrointestinal stromal tumours-1
- DSS, dextran sodium sulfate
- EGFR, epidermal growth factor receptor
- EMT, epithelial-mesenchymal transition
- ERK, extracellular signal-regulated kinase
- EpOCs, epithelial organoid cultures
- FAK, focal adhesion kinase
- Gastrointestinal disease
- Gob-5, goblet cell protein-5
- HDMA, house dust mite allergen
- IAD, inflammatory airway diseases
- Innate immunity
- KCNMB1, potassium calcium-activated channel subfamily M regulatory beta subunit 1
- LFA-1, lymphocyte function-associated antigen 1.
- LFC, log2 fold change
- MUC5AC, mucin 5AC
- Mucin
- NFA, niflumic acid
- OVA, ovalbumin
- Respiratory diseases
- SPDEF, sterile alpha motif [SAM] domain-containing prostate-derived Ets transcription factor
- STAT6, signal transducer and activator of transcription 6
- TMEM16A, transmembrane protein 16A
- TNF-α, tumor necrosis factor-α
- VWA, von Willebrand factor type A
- WT, wild-type
- cAMP, cyclic adenosine monophosphate
- rIFABP, rat intestinal fatty acid binding protein promoter
- β4BMs, β4-binding motifs
Collapse
|
32
|
Burbelo PD, Ferré EMN, Chaturvedi A, Chiorini JA, Alevizos I, Lionakis MS, Warner BM. Profiling Autoantibodies against Salivary Proteins in Sicca Conditions. J Dent Res 2019; 98:772-778. [PMID: 31095438 DOI: 10.1177/0022034519850564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Salivary gland dysfunction occurs in several autoimmune and immune-related conditions, including Sjögren syndrome (SS); immune checkpoint inhibitor-induced sicca (ICIS) that develops in some cancer patients and is characterized by severe, sudden-onset dry mouth; and autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). Although subjects with these conditions present with oral dryness and often exhibit inflammatory infiltration of the salivary gland, little is known about the B-cell humoral responses directed against salivary gland protein targets. In this study, autoantibodies were evaluated against Ro52, Ro60, and La, as well as against a panel of 22 proteins derived from the salivary proteome. The tested cohort included healthy volunteers and subjects with SS, ICIS, and APECED without and with sicca. As expected, a high percentage of autoantibody seropositivity was detected against Ro52, Ro60, and La in SS, but only a few ICIS patients were seropositive for these autoantigens. A few APECED subjects also harbored autoantibodies to Ro52 and La, but only Ro60 autoantibodies were weakly associated with a small subset of APECED patients with sicca. Additional testing of the salivary panel failed to detect seropositive autoantibodies against any of the salivary-enriched proteins in the SS and ICIS subjects. However, APECED subjects selectively demonstrated seropositivity against BPI fold containing family A member 1 (BPIFA1), BPI fold containing family A member 2 (BPIFA2)/parotid salivary protein (PSP), and lactoperoxidase, 3 salivary-enriched proteins. Moreover, high levels of serum autoantibodies against BPIFA1 and BPIFA2/PSP occurred in 30% and 67% of the APECED patients with sicca symptoms, respectively, and were associated with an earlier age onset of oral dryness (P = 0.001). These findings highlight the complexity of humoral responses in different sicca diseases and provide new insights and biomarkers for APECED-associated sicca (ClinicalTrials.gov: NCT00001196; NCT00001390; NCT01425892; NCT01386437).
Collapse
Affiliation(s)
- P D Burbelo
- 1 Dental Clinical Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - E M N Ferré
- 2 Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - A Chaturvedi
- 1 Dental Clinical Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - J A Chiorini
- 3 Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - I Alevizos
- 4 Sjogren's Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - M S Lionakis
- 2 Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - B M Warner
- 3 Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,4 Sjogren's Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Fu XG, Huang Z, Zhou SJ, Yang J, Peng YJ, Cao LY, Guo H, Wu GH, Lin YH, Huang BY. Novel heterozygous BPIFC variant in a Chinese pedigree with hereditary trichilemmal cysts. Mol Genet Genomic Med 2019; 7:e697. [PMID: 31033252 PMCID: PMC6565563 DOI: 10.1002/mgg3.697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/15/2019] [Accepted: 04/08/2019] [Indexed: 12/30/2022] Open
Abstract
Background Trichilemmal cysts (TCs) are common intradermal or subcutaneous cysts, which are commonly sporadic and rarely autosomal dominantly inherited. However, little is known about the disease‐determining genes in families with TCs exhibiting Mendelian inheritance. Objective The aim of this study was to identify the causative gene in a family with TCs. Methods Whole‐exome sequencing was performed on a TCs family to identify the candidate gene. Sanger sequencing was conducted to validate the candidate variants and familial segregation. Results We identified the heterozygous variant c.3G>C (p.Met1?) within the BPIFC gene. Sanger sequencing confirmed the cosegregation of this variant with the TCs phenotype in the family by demonstrating the presence of the heterozygous variant in all the 12 affected and absence in all the seven unaffected individuals. This variant was found to be absent in dbSNP141, 1,000 Genomes database and 500 ethnicity matched controls. Conclusion Our results imply that BPIFC is a causative gene in this Chinese family with hereditary TCs. Further studies should be performed to validate the role of BPIFC in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Xian-Guo Fu
- Department of Central Laboratory, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China.,Department of Clinical Laboratory, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | - Zhao Huang
- Department of Pathology, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | - Su-Juan Zhou
- Department of Pathology, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | - Jing Yang
- Department of Central Laboratory, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | - Yun-Juan Peng
- Department of Clinical Laboratory, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | - Luo-Yuan Cao
- Department of Central Laboratory, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | - Hua Guo
- Department of Pathology, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | - Guang-Hui Wu
- Department of Neurosurgery, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | - Ying-Hua Lin
- Department of Central Laboratory, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | - Bao-Ying Huang
- Department of Central Laboratory, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| |
Collapse
|
34
|
Suresh MK, Biswas R, Biswas L. An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. Int J Med Microbiol 2019; 309:1-12. [DOI: 10.1016/j.ijmm.2018.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
|
35
|
Britto CJ, Niu N, Khanal S, Huleihel L, Herazo-Maya JD, Thompson A, Sauler M, Slade MD, Sharma L, Dela Cruz CS, Kaminski N, Cohn LE. BPIFA1 regulates lung neutrophil recruitment and interferon signaling during acute inflammation. Am J Physiol Lung Cell Mol Physiol 2018; 316:L321-L333. [PMID: 30461288 DOI: 10.1152/ajplung.00056.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bpifa1 (BPI fold-containing group A member 1) is an airway host-protective protein with immunomodulatory properties that binds to LPS and is regulated by infectious and inflammatory signals. Differential expression of Bpifa1 has been widely reported in lung disease, yet the biological significance of this observation is unclear. We sought to understand the role of Bpifa1 fluctuations in modulating lung inflammation. We treated wild-type (WT) and Bpifa1-/- mice with intranasal LPS and performed immunological and transcriptomic analyses of lung tissue to determine the immune effects of Bpifa1 deficiency. We show that neutrophil (polymorphonuclear cells, PMNs) lung recruitment and transmigration to the airways in response to LPS is impaired in Bpifa1-/- mice. Transcriptomic analysis revealed a signature of 379 genes that differentiated Bpifa1-/- from WT mice. During acute lung inflammation, the most downregulated genes in Bpifa1-/- mice were Cxcl9 and Cxcl10. Bpifa1-/- mice had lower bronchoalveolar lavage concentrations of C-X-C motif chemokine ligand 10 (Cxcl10) and Cxcl9, interferon-inducible PMN chemokines. This was consistent with lower expression of IFNγ, IFNλ, downstream IFN-stimulated genes, and IFN-regulatory factors, which are important for the innate immune response. Administration of Cxcl10 before LPS treatment restored the inflammatory response in Bpifa1-/- mice. Our results identify a novel role for Bpifa1 in the regulation of Cxcl10-mediated PMN recruitment to the lungs via IFNγ and -λ signaling during acute inflammation.
Collapse
Affiliation(s)
- Clemente J Britto
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Naiqian Niu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Sara Khanal
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Luai Huleihel
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Jose D Herazo-Maya
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Alison Thompson
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Maor Sauler
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Martin D Slade
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut.,Yale University School of Public Health, Department of Environmental Health Sciences , New Haven, Connecticut
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Lauren E Cohn
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
36
|
Little MS, Redinbo MR. Crystal structure of the mouse innate immunity factor bacterial permeability-increasing family member A1. Acta Crystallogr F Struct Biol Commun 2018; 74:268-276. [PMID: 29717993 PMCID: PMC5931138 DOI: 10.1107/s2053230x18004600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/20/2018] [Indexed: 01/14/2023] Open
Abstract
Bacterial permeability-increasing family member A1 (BPIFA1) is an innate immunity factor and one of the most abundantly secreted proteins in the upper airways. BPIFA1 is multifunctional, with antimicrobial, surfactant and lipopolysaccharide-binding activities, as well as established roles in lung hydration. Here, the 2.5 Å resolution crystal structure of BPIFA1 from Mus musculus (mBPIFA1) is presented and compared with those of human BPIFA1 (hBPIFA1) and structural homologs. Structural distinctions between mBPIFA1 and hBPIFA1 suggest potential differences in biological function, including the regulation of a key pulmonary ion channel.
Collapse
Affiliation(s)
- Michael S. Little
- Department of Chemistry, University of North Carolina, 4350 Genome Sciences Building, Chapel Hill, NC 27599-3290, USA
| | - Matthew R. Redinbo
- Department of Chemistry, University of North Carolina, 4350 Genome Sciences Building, Chapel Hill, NC 27599-3290, USA
- Department of Biochemistry and Biophysics, University of North Carolina, 4350 Genome Sciences Building, Chapel Hill, NC 27599-3290, USA
- Department of Microbiology and Immunology and the Integrated Program for Biological and Genome Science, University of North Carolina, 4350 Genome Sciences Building, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|
37
|
Honore PM, De Bels D, Spapen HD. BPI fold-containing family a member 2 as a biomarker of acute kidney injury-close but no (clinical) cigar? ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:191. [PMID: 29951513 PMCID: PMC5994521 DOI: 10.21037/atm.2018.03.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/07/2018] [Indexed: 08/30/2023]
Affiliation(s)
- Patrick M. Honore
- Department of Intensive Care, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | - David De Bels
- Department of Intensive Care, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | - Herbert D. Spapen
- Department of Intensive Care Unit, Universitair Ziekenhuis Brussel, VUB University, Brussels, Belgium
| |
Collapse
|
38
|
Erickson NA, Dietert K, Enders J, Glauben R, Nouailles G, Gruber AD, Mundhenk L. Soluble mucus component CLCA1 modulates expression of leukotactic cytokines and BPIFA1 in murine alveolar macrophages but not in bone marrow-derived macrophages. Histochem Cell Biol 2018; 149:619-633. [PMID: 29610986 PMCID: PMC5999134 DOI: 10.1007/s00418-018-1664-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 11/18/2022]
Abstract
The secreted airway mucus cell protein chloride channel regulator, calcium-activated 1, CLCA1, plays a role in inflammatory respiratory diseases via as yet unidentified pathways. For example, deficiency of CLCA1 in a mouse model of acute pneumonia resulted in reduced cytokine expression with less leukocyte recruitment and the human CLCA1 was shown to be capable of activating macrophages in vitro. Translation of experimental data between human and mouse models has proven problematic due to several CLCA species-specific differences. We therefore characterized activation of macrophages by CLCA1 in detail in solely murine ex vivo and in vitro models. Only alveolar but not bone marrow-derived macrophages freshly isolated from C57BL6/J mice increased their expression levels of several pro-inflammatory and leukotactic cytokines upon CLCA1 stimulation. Among the most strongly regulated genes, we identified the host-protective and immunomodulatory airway mucus component BPIFA1, previously unknown to be expressed by airway macrophages. Furthermore, evidence from an in vivo Staphylococcus aureus pneumonia mouse model suggests that CLCA1 may also modify BPIFA1 expression in airway epithelial cells. Our data underscore and specify the role of mouse CLCA1 in inflammatory airway disease to activate airway macrophages. In addition to its ability to upregulate cytokine expression which explains previous observations in the Clca1-deficient S. aureus pneumonia mouse model, modulation of BPIFA1 expression expands the role of CLCA1 in airway disease to involvement in more complex downstream pathways, possibly including liquid homeostasis, airway protection, and antimicrobial defense.
Collapse
Affiliation(s)
- Nancy A Erickson
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Kristina Dietert
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Jana Enders
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Rainer Glauben
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Lars Mundhenk
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany.
| |
Collapse
|
39
|
Mulay A, Hood DW, Williams D, Russell C, Brown SDM, Bingle L, Cheeseman M, Bingle CD. Loss of the homeostatic protein BPIFA1, leads to exacerbation of otitis media severity in the Junbo mouse model. Sci Rep 2018; 8:3128. [PMID: 29449589 PMCID: PMC5814562 DOI: 10.1038/s41598-018-21166-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/30/2018] [Indexed: 02/02/2023] Open
Abstract
Otitis Media (OM) is characterized by epithelial abnormalities and defects in innate immunity in the middle ear (ME). Although, BPIFA1, a member of the BPI fold containing family of putative innate defence proteins is abundantly expressed by the ME epithelium and SNPs in Bpifa1 have been associated with OM susceptibility, its role in the ME is not well characterized. We investigated the role of BPIFA1 in protection of the ME and the development of OM using murine models. Loss of Bpifa1 did not lead to OM development. However, deletion of Bpifa1 in Evi1Jbo/+ mice, a model of chronic OM, caused significant exacerbation of OM severity, thickening of the ME mucosa and increased collagen deposition, without a significant increase in pro-inflammatory gene expression. Our data suggests that BPIFA1 is involved in maintaining homeostasis within the ME under steady state conditions and its loss in the presence of inflammation, exacerbates epithelial remodelling leading to more severe OM.
Collapse
Affiliation(s)
- Apoorva Mulay
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Derek W Hood
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
| | - Debbie Williams
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
| | - Catherine Russell
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Steve D M Brown
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
| | - Lynne Bingle
- Oral and Maxillofacial Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Michael Cheeseman
- Roslin Institute, University of Edinburgh, Edinburgh, UK.,Division of Pathology, University of Edinburgh, Edinburgh, UK
| | - Colin D Bingle
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK. .,Florey Institute for Host Pathogen Interactions, University of Sheffield, Sheffield, UK.
| |
Collapse
|
40
|
Mundhenk L, Erickson NA, Klymiuk N, Gruber AD. Interspecies diversity of chloride channel regulators, calcium-activated 3 genes. PLoS One 2018; 13:e0191512. [PMID: 29346439 PMCID: PMC5773202 DOI: 10.1371/journal.pone.0191512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/06/2018] [Indexed: 12/15/2022] Open
Abstract
Members of the chloride channel regulators, calcium-activated (CLCA) family, have been implicated in diverse biomedical conditions, including chronic inflammatory airway diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, the activation of macrophages, and the growth and metastatic spread of tumor cells. Several observations, however, could not be repeated across species boundaries and increasing evidence suggests that select CLCA genes are particularly prone to dynamic species-specific evolvements. Here, we systematically characterized structural and expressional differences of the CLCA3 gene across mammalian species, revealing a spectrum of gene duplications, e.g., in mice and cows, and of gene silencing via diverse chromosomal modifications in pigs and many primates, including humans. In contrast, expression of a canonical CLCA3 protein from a single functional gene seems to be evolutionarily retained in carnivores, rabbits, guinea pigs, and horses. As an accepted asthma model, we chose the cat to establish the tissue and cellular expression pattern of the CLCA3 protein which was primarily found in mucin-producing cells of the respiratory tract and in stratified epithelia of the esophagus. Our results suggest that, among developmental differences in other CLCA genes, the CLCA3 gene possesses a particularly high dynamic evolutionary diversity with pivotal consequences for humans and other primates that seem to lack a CLCA3 protein. Our data also help to explain previous contradictory results on CLCA3 obtained from different species and warrant caution in extrapolating data from animal models in conditions where CLCA3 may be involved.
Collapse
Affiliation(s)
- Lars Mundhenk
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| | - Nancy A. Erickson
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität, Oberschleissheim, Germany
| | - Achim D. Gruber
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
41
|
Behura SK, Tizioto PC, Kim J, Grupioni NV, Seabury CM, Schnabel RD, Gershwin LJ, Van Eenennaam AL, Toaff-Rosenstein R, Neibergs HL, Regitano LCA, Taylor JF. Tissue Tropism in Host Transcriptional Response to Members of the Bovine Respiratory Disease Complex. Sci Rep 2017; 7:17938. [PMID: 29263411 PMCID: PMC5738336 DOI: 10.1038/s41598-017-18205-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/07/2017] [Indexed: 01/11/2023] Open
Abstract
Bovine respiratory disease (BRD) is the most common infectious disease of beef and dairy cattle and is characterized by a complex infectious etiology that includes a variety of viral and bacterial pathogens. We examined the global changes in mRNA abundance in healthy lung and lung lesions and in the lymphoid tissues bronchial lymph node, retropharyngeal lymph node, nasopharyngeal lymph node and pharyngeal tonsil collected at the peak of clinical disease from beef cattle experimentally challenged with either bovine respiratory syncytial virus, infectious bovine rhinotracheitis, bovine viral diarrhea virus, Mannheimia haemolytica or Mycoplasma bovis. We identified signatures of tissue-specific transcriptional responses indicative of tropism in the coordination of host's immune tissue responses to infection by viral or bacterial infections. Furthermore, our study shows that this tissue tropism in host transcriptional response to BRD pathogens results in the activation of different networks of response genes. The differential crosstalk among genes expressed in lymphoid tissues was predicted to be orchestrated by specific immune genes that act as 'key players' within expression networks. The results of this study serve as a basis for the development of innovative therapeutic strategies and for the selection of cattle with enhanced resistance to BRD.
Collapse
Affiliation(s)
- Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
| | - Polyana C Tizioto
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America.,Embrapa Southeast Livestock, São Carlos, SP, Brazil
| | - JaeWoo Kim
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
| | - Natalia V Grupioni
- Departamento de Ciencias Exatas, UNESP - Univ Estadual Paulista, Faculdade de Ciencias Agrarias e Veterinarias, Jaboticabal, SP, 14884-900, Brazil
| | - Christopher M Seabury
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, United States of America
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America.,Informatics Institute, University of Missouri, Columbia, MO, United States of America
| | - Laurel J Gershwin
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Alison L Van Eenennaam
- Department of Animal Science, College of Agriculture, University of California, Davis, CA, United States of America
| | - Rachel Toaff-Rosenstein
- Department of Animal Science, College of Agriculture, University of California, Davis, CA, United States of America
| | - Holly L Neibergs
- Department of Animal Sciences, College of Agriculture and Natural Resource Sciences, Washington State University, Pullman, WA, United States of America
| | | | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America.
| |
Collapse
|
42
|
De Smet EG, Seys LJM, Verhamme FM, Vanaudenaerde BM, Brusselle GG, Bingle CD, Bracke KR. Association of innate defense proteins BPIFA1 and BPIFB1 with disease severity in COPD. Int J Chron Obstruct Pulmon Dis 2017; 13:11-27. [PMID: 29296079 PMCID: PMC5741069 DOI: 10.2147/copd.s144136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by an abnormal inflammatory response in the lungs caused by the inhalation of noxious particles and gases. The airway epithelium has a protective function against these harmful agents by maintaining a physical barrier and by secreting defensive proteins, such as bactericidal/permeability-increasing fold-containing (BPIF) proteins, BPIFA1 and BPIFB1. However, inconsistent data regarding BPIFA1 expression in smokers and COPD patients have been reported to date. Therefore, we investigated the expression of BPIFA1 and BPIFB1 in a large cohort of never-smokers and smokers with and without COPD, both on the messenger RNA (mRNA) level in lung tissue and on the protein level in airway epithelium. Furthermore, we examined the correlation between BPIFA1 and BPIFB1 levels, goblet cell hyperplasia, and lung function measurements. BPIFA1 and BPIFB1 mRNA expressions were significantly increased in stage III-IV COPD patients compared with stage II COPD patients and subjects without COPD. In addition, protein levels in COPD patients were significantly increased in comparison with subjects without COPD. BPIFA1 and BPIFB1 levels were inversely correlated with measurements of airflow limitation and positively correlated with goblet cell hyperplasia. In addition, by the use of immunofluorescence double staining, we demonstrated the expression of BPIFB1 in goblet cells. In conclusion, we show that BPIFA1 and BPIFB1 levels are elevated in COPD patients and correlate with disease severity.
Collapse
Affiliation(s)
- Elise G De Smet
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Leen JM Seys
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Fien M Verhamme
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Bart M Vanaudenaerde
- Laboratory for Respiratory Diseases, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Guy G Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Colin D Bingle
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
43
|
Terryah ST, Fellner RC, Ahmad S, Moore PJ, Reidel B, Sesma JI, Kim CS, Garland AL, Scott DW, Sabater JR, Carpenter J, Randell SH, Kesimer M, Abraham WM, Arendshorst WJ, Tarran R. Evaluation of a SPLUNC1-derived peptide for the treatment of cystic fibrosis lung disease. Am J Physiol Lung Cell Mol Physiol 2017; 314:L192-L205. [PMID: 28982737 DOI: 10.1152/ajplung.00546.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In cystic fibrosis (CF) lungs, epithelial Na+ channel (ENaC) hyperactivity causes a reduction in airway surface liquid volume, leading to decreased mucocilliary clearance, chronic bacterial infection, and lung damage. Inhibition of ENaC is an attractive therapeutic option. However, ENaC antagonists have failed clinically because of off-target effects in the kidney. The S18 peptide is a naturally occurring short palate lung and nasal epithelial clone 1 (SPLUNC1)-derived ENaC antagonist that restores airway surface liquid height for up to 24 h in CF human bronchial epithelial cultures. However, its efficacy and safety in vivo are unknown. To interrogate the potential clinical efficacy of S18, we assessed its safety and efficacy using human airway cultures and animal models. S18-mucus interactions were tested using superresolution microscopy, quartz crystal microbalance with dissipation, and confocal microscopy. Human and murine airway cultures were used to measure airway surface liquid height. Off-target effects were assessed in conscious mice and anesthetized rats. Morbidity and mortality were assessed in the β-ENaC-transgenic (Tg) mouse model. Restoration of normal mucus clearance was measured in cystic fibrosis transmembrane conductance regulator inhibitor 172 [CFTR(inh)-172]-challenged sheep. We found that S18 does not interact with mucus and rapidly penetrated dehydrated CF mucus. Compared with amiloride, an early generation ENaC antagonist, S18 displayed a superior ability to slow airway surface liquid absorption, reverse CFTR(inh)-172-induced reduction of mucus transport, and reduce morbidity and mortality in the β-ENaC-Tg mouse, all without inducing any detectable signs of renal toxicity. These data suggest that S18 is the first naturally occurring ENaC antagonist to show improved preclinical efficacy in animal models of CF with no signs of renal toxicity.
Collapse
Affiliation(s)
- Shawn T Terryah
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Robert C Fellner
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Saira Ahmad
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Patrick J Moore
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Boris Reidel
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | | | - Christine S Kim
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Alaina L Garland
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | | | - Juan R Sabater
- Department of Research, Mount Sinai Medical Center , Miami Beach, Florida
| | - Jerome Carpenter
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Scott H Randell
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina.,Cell Biology and Physiology, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Mehmet Kesimer
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - William M Abraham
- Department of Research, Mount Sinai Medical Center , Miami Beach, Florida
| | - William J Arendshorst
- Cell Biology and Physiology, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Robert Tarran
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina.,Cell Biology and Physiology, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| |
Collapse
|
44
|
Franks SE, Briah R, Jones RA, Moorehead RA. Unique roles of Akt1 and Akt2 in IGF-IR mediated lung tumorigenesis. Oncotarget 2016; 7:3297-316. [PMID: 26654940 PMCID: PMC4823107 DOI: 10.18632/oncotarget.6489] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/16/2015] [Indexed: 01/22/2023] Open
Abstract
AKT is a serine-threonine kinase that becomes hyperactivated in a number of cancers including lung cancer. Based on AKT's association with malignancy, molecules targeting AKT have entered clinical trials for solid tumors including lung cancer. However, the AKT inhibitors being evaluated in clinical trials indiscriminately inhibit all three AKT isoforms (AKT1-3) and it remains unclear whether AKT isoforms have overlapping or divergent functions. Using a transgenic mouse model where IGF-IR overexpression drives lung tumorigenesis, we found that loss of Akt1 inhibited while loss of Akt2 enhanced lung tumor development. Lung tumors that developed in the absence of Akt2 were less likely to appear as discrete nodules and more frequently displayed a dispersed growth pattern. RNA sequencing revealed a number of genes differentially expressed in lung tumors lacking Akt2 and five of these genes, Actc1, Bpifa1, Mmp2, Ntrk2, and Scgb3a2 have been implicated in human lung cancer. Using 2 human lung cancer cell lines, we observed that a selective AKT1 inhibitor, A-674563, was a more potent regulator of cell survival than the pan-AKT inhibitor, MK-2206. This study suggests that compounds selectively targeting AKT1 may prove more effective than compounds that inhibit all three AKT isoforms at least in the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- S Elizabeth Franks
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Ritesh Briah
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Robert A Jones
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Roger A Moorehead
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
45
|
LeMessurier KS, Lin Y, McCullers JA, Samarasinghe AE. Antimicrobial peptides alter early immune response to influenza A virus infection in C57BL/6 mice. Antiviral Res 2016; 133:208-17. [PMID: 27531368 DOI: 10.1016/j.antiviral.2016.08.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/12/2016] [Indexed: 02/07/2023]
Abstract
Influenza is a disease of the respiratory system caused by single stranded RNA viruses with varying genotypes. Immunopathogenesis to influenza viruses differs based on virus strain, dose, and mouse strain used in laboratory models. Although effective mucosal immune defenses are important in early host defense against influenza, information on the kinetics of these immune defense mechanisms during the course of influenza infection is limited. We investigated changes to antimicrobial peptides and primary innate immune cells at early time points after infection and compared these variables between two prominent H1N1 influenza A virus (IAV) strains, A/CA/04/2009 and A/PR/08/1934 in C57BL/6 mice. Alveolar and parenchymal macrophage ratios were altered after IAV infection and pro-inflammatory cytokine production in macrophages was induced after IAV infection. Genes encoding antimicrobial peptides, β-defensin (Defb4), bactericidal-permeability increasing protein (Bpifa1), and cathelicidin antimicrobial peptide (Camp), were differentially regulated after IAV infection and the kinetics of Defb4 expression differed in response to each virus strain. Beta-defensin reduced infectivity of A/CA/04/2009 virus but not A/PR/08/1934. Beta defensins also changed the innate immune cell profile wherein mice pre-treated with β-defensin had increased alveolar macrophages and CD103(+) dendritic cells, and reduced CD11b(+) dendritic cells and neutrophils. In addition to highlighting that immune responses may vary based on influenza virus strain used, our data suggest an important role for antimicrobial peptides in host defense against influenza virus.
Collapse
Affiliation(s)
- Kim S LeMessurier
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Yanyan Lin
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Jonathan A McCullers
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Amali E Samarasinghe
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
46
|
Walton WG, Ahmad S, Little MR, Kim CS, Tyrrell J, Lin Q, Di YP, Tarran R, Redinbo MR. Structural Features Essential to the Antimicrobial Functions of Human SPLUNC1. Biochemistry 2016; 55:2979-91. [PMID: 27145151 PMCID: PMC4887393 DOI: 10.1021/acs.biochem.6b00271] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SPLUNC1 is an abundantly secreted innate immune protein in the mammalian respiratory tract that exerts bacteriostatic and antibiofilm effects, binds to lipopolysaccharide (LPS), and acts as a fluid-spreading surfactant. Here, we unravel the structural elements essential for the surfactant and antimicrobial functions of human SPLUNC1 (short palate lung nasal epithelial clone 1). A unique α-helix (α4) that extends from the body of SPLUNC1 is required for the bacteriostatic, surfactant, and LPS binding activities of this protein. Indeed, we find that mutation of just four leucine residues within this helical motif to alanine is sufficient to significantly inhibit the fluid spreading abilities of SPLUNC1, as well as its bacteriostatic actions against Gram-negative pathogens Burkholderia cenocepacia and Pseudomonas aeruginosa. Conformational flexibility in the body of SPLUNC1 is also involved in the bacteriostatic, surfactant, and LPS binding functions of the protein as revealed by disulfide mutants introduced into SPLUNC1. In addition, SPLUNC1 exerts antibiofilm effects against Gram-negative bacteria, although α4 is not involved in this activity. Interestingly, though, the introduction of surface electrostatic mutations away from α4 based on the unique dolphin SPLUNC1 sequence, and confirmed by crystal structure, is shown to impart antibiofilm activity against Staphylococcus aureus, the first SPLUNC1-dependent effect against a Gram-positive bacterium reported to date. Together, these data pinpoint SPLUNC1 structural motifs required for the antimicrobial and surfactant actions of this protective human protein.
Collapse
Affiliation(s)
- William G. Walton
- Departments of Chemistry, Biochemistry and Microbiology, 4350 Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Saira Ahmad
- Marsico Lung Institute, Cystic Fibrosis/Pulmonary Research and Treatment Center, 7102 Marsico Hall, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | - Michael R. Little
- Departments of Chemistry, Biochemistry and Microbiology, 4350 Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Christine S.K. Kim
- Marsico Lung Institute, Cystic Fibrosis/Pulmonary Research and Treatment Center, 7102 Marsico Hall, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | - Jean Tyrrell
- Marsico Lung Institute, Cystic Fibrosis/Pulmonary Research and Treatment Center, 7102 Marsico Hall, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | - Qiao Lin
- Department of Environmental and Occupational Health, 331 Bridgeside Point Building, University of Pittsburgh, Pittsburgh, PA 15260
| | - Y. Peter Di
- Department of Environmental and Occupational Health, 331 Bridgeside Point Building, University of Pittsburgh, Pittsburgh, PA 15260
| | - Robert Tarran
- Marsico Lung Institute, Cystic Fibrosis/Pulmonary Research and Treatment Center, 7102 Marsico Hall, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | - Matthew R. Redinbo
- Departments of Chemistry, Biochemistry and Microbiology, 4350 Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|
47
|
Abstract
Cystic fibrosis (CF) lung disease is characterized by persistent and unresolved inflammation, with elevated proinflammatory and decreased anti-inflammatory cytokines, and greater numbers of immune cells. Hyperinflammation is recognized as a leading cause of lung tissue destruction in CF. Hyper-inflammation is not solely observed in the lungs of CF patients, since it may contribute to destruction of exocrine pancreas and, likely, to defects in gastrointestinal tract tissue integrity. Paradoxically, despite the robust inflammatory response, and elevated number of immune cells (such as neutrophils and macrophages), CF lungs fail to clear bacteria and are more susceptible to infections. Here, we have summarized the current understanding of immune dysregulation in CF, which may drive hyperinflammation and impaired host defense.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Section of Respiratory Medicine, Department of Pediatrics, Yale University School of Medicine, 330 Cedar Street, FMP, Room#524, New Haven, CT 06520, USA.
| | - Tracey L Bonfield
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, Case Western Reserve University School of Medicine, 0900 Euclid Avenue, Cleveland, OH 44106-4948, USA.
| |
Collapse
|
48
|
Gautier T, Masson D, Lagrost L. The potential of cholesteryl ester transfer protein as a therapeutic target. Expert Opin Ther Targets 2015. [PMID: 26212254 DOI: 10.1517/14728222.2015.1073713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Over recent decades, attempts to ascertain the pro-atherogenic nature of plasma cholesteryl ester transfer protein (CETP) and to establish the relevance of its pharmacological blockade as a promising high density lipoproteins-raising and anti-atherogenic therapy have been disappointing. AREAS COVERED The current review focuses on CETP as a multifaceted protein, on genetic variations at the CETP gene and on their possible consequences for cardiovascular risk in human populations. Specific attention is given to physiological modulation of endogenous CETP activity by the apoC1 inhibitor. Finally, the rationale behind the need for selection of patients to treat is discussed in the light of recent studies. EXPERT OPINION At this stage one can only speculate on the clinical outcome of pharmacological CETP inhibitors in high-risk populations, but recent advances give cause to adjust the expectations from now on. The CETP effect is probably largely influenced by the overall metabolic state, and whether CETP blockade may be relevant or not in promoting cholesterol disposal is still questioned. The possible need for a careful stratification of patients to treat with CETP inhibitors is outlined. Finally, manipulation of CETP activity should be considered with caution in the context of sepsis and infectious diseases.
Collapse
Affiliation(s)
- Thomas Gautier
- a 1 INSERM, LNC UMR866 , F-21000 Dijon, France.,b 2 University of Bourgogne Franche-Comté , F-21000 Dijon, France.,c 3 LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté , F-21000 Dijon, France
| | - David Masson
- a 1 INSERM, LNC UMR866 , F-21000 Dijon, France.,b 2 University of Bourgogne Franche-Comté , F-21000 Dijon, France.,c 3 LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté , F-21000 Dijon, France.,d 4 University Hospital of Dijon , F-21000 Dijon, France
| | - Laurent Lagrost
- a 1 INSERM, LNC UMR866 , F-21000 Dijon, France.,b 2 University of Bourgogne Franche-Comté , F-21000 Dijon, France.,c 3 LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté , F-21000 Dijon, France.,d 4 University Hospital of Dijon , F-21000 Dijon, France.,e 5 UMR866, UFR Sciences de Santé, 7 boulevard Jeanne d'Arc , F-21000 Dijon, France
| |
Collapse
|
49
|
Gao J, Ohlmeier S, Nieminen P, Toljamo T, Tiitinen S, Kanerva T, Bingle L, Araujo B, Rönty M, Höyhtyä M, Bingle CD, Mazur W, Pulkkinen V. Elevated sputum BPIFB1 levels in smokers with chronic obstructive pulmonary disease: a longitudinal study. Am J Physiol Lung Cell Mol Physiol 2015; 309:L17-26. [PMID: 25979078 DOI: 10.1152/ajplung.00082.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/12/2015] [Indexed: 01/22/2023] Open
Abstract
A previous study involving a proteomic screen of induced sputum from smokers and patients with chronic obstructive pulmonary disease (COPD) demonstrated elevated levels of bactericidal/permeability-increasing fold-containing protein B1 (BPIFB1). The aim of the present study was to further evaluate the association of sputum BPIFB1 levels with smoking and longitudinal changes in lung function in smokers with COPD. Sputum BPIFB1 was characterized by two-dimensional gel electrophoresis and mass spectrometry. The expression of BPIFB1 in COPD was investigated by immunoblotting and immunohistochemistry using sputum and lung tissue samples. BPIFB1 levels were also assessed in induced sputum from nonsmokers (n = 31), smokers (n = 169), and patients with COPD (n = 52) via an ELISA-based method. The longitudinal changes in lung function during the 4-year follow-up period were compared with the baseline sputum BPIFB1 levels. In lung tissue samples, BPIFB1 was localized to regions of goblet cell metaplasia. Secreted and glycosylated BPIFB1 was significantly elevated in the sputum of patients with COPD compared with that of smokers and nonsmokers. Sputum BPIFB1 levels correlated with pack-years and lung function as measured by forced expiratory volume in 1 s (FEV1) % predicted and FEV1/FVC (forced vital capacity) at baseline and after the 4-year follow-up in all participants. The changes in lung function over 4 years were significantly associated with BPIFB1 levels in current smokers with COPD. In conclusion, higher sputum concentrations of BPIFB1 were associated with changes of lung function over time, especially in current smokers with COPD. BPIFB1 may be involved in the pathogenesis of smoking-related lung diseases.
Collapse
Affiliation(s)
- J Gao
- HUCH Heart and Lung Center, Department of Pulmonary Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - S Ohlmeier
- Proteomics Core Facility, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - P Nieminen
- Medical Informatics and Statistics Group, University of Oulu, Oulu, Finland
| | - T Toljamo
- Department of Pulmonary Medicine, Lapland Central Hospital, Rovaniemi, Finland
| | | | - T Kanerva
- HUCH Heart and Lung Center, Department of Pulmonary Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - L Bingle
- Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, Sheffield, UK; and
| | - B Araujo
- Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, Sheffield, UK; and
| | - M Rönty
- HUSLAB, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - M Höyhtyä
- Medix Biochemica, Kauniainen, Finland
| | - C D Bingle
- Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, Sheffield, UK; and
| | - W Mazur
- HUCH Heart and Lung Center, Department of Pulmonary Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - V Pulkkinen
- HUCH Heart and Lung Center, Department of Pulmonary Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland;
| |
Collapse
|