1
|
Hu JQ, Wang CC, Ma RX, Qi SQ, Fu W, Zhong J, Cao C, Zhang XL, Liu GH, Gao YD. Co-exposure to polyethylene microplastics and house dust mites aggravates airway epithelial barrier dysfunction and airway inflammation via CXCL1 signaling pathway in a mouse model. Int Immunopharmacol 2025; 146:113921. [PMID: 39732106 DOI: 10.1016/j.intimp.2024.113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/21/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Environmental pollutants have been found to contribute to the development and acute exacerbation of asthma. Microplastics (MPs) have received widespread attention as an emerging global pollutant. Airborne MPs can cause various adverse health effects. Due to their hydrophobicity, MPs can act as a carrier for other pollutants, pathogens, and allergens. This carrier effect of MPs may adsorb allergens and thus make the body exposed to MPs and a large number of allergens simultaneously. We hypothesized that co-exposure to inhaled MPs and aeroallergens may promote the development of airway inflammation of asthma by disrupting the airway epithelial barrier. METHODS The effects of co-exposure to Polyethylene microplastics (PE-MPs) and allergens on allergic airway inflammation and airway epithelial barrier were examined in a mouse model of asthma. The mice were divided into four groups: (i) Control group, treated only with PBS; (ii) MP group, exposed to PE-MPs and PBS; (iii) HDM group, mice were sensitized and challenged with HDM, and intranasally treated with PBS; (iv) HDM + MP group, mice were sensitized and challenged with HDM, and intranasally treated with PE-MPs. Histology and ELISA assays were used to evaluate the severity of airway inflammation. FITC-dextran permeability assay, immunofluorescence assay, and RT-PCR were used to evaluate the airway epithelial barrier function and the expression of relevant molecules. Transcriptomics analysis with lung tissue sequencing was conducted to identify possible pathways responsible for the effects of PE-MPs. RESULTS Co-exposure of mice to PE-MPs and HDM induced a higher degree of inflammatory cell infiltration, bronchial goblet cell hyperplasia, collagen deposition, allergen sensitization, and Th2 immune bias than exposure to HDM alone. Co-exposure to PE-MPs and HDM aggravated oxidative stress injury in the lung and the production of cytokine IL-33 in the BALF. In addition, co-exposure of mice to PE-MPs and HDM resulted in a more pronounced decrease in the expression of relevant molecules of the airway epithelial barrier and more significant increase in the permeability of airway epithelia. Lung tissue transcriptomics analysis revealed that PE-MPs exposure was associated with CXCL1 signaling and neutrophil activation. CONCLUSION Co-exposure to MPs and HDM may promote airway inflammation and airway epithelial barrier disruption and induce immune responses characterized by CXCL1 signaling and neutrophilic inflammation.
Collapse
Affiliation(s)
- Jia-Qian Hu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chang-Chang Wang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ru-Xue Ma
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shi-Quan Qi
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Fu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jian Zhong
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Can Cao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiao-Lian Zhang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Guang-Hui Liu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Allergy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
2
|
McMahan RH, Boe D, Giesy LE, Najarro KM, Khair S, Walrath T, Frank DN, Kovacs EJ. Advanced Age Worsens Respiratory Function and Pulmonary Inflammation After Burn Injury and This Correlates With Changes in the Fecal Microbiome in Mice. J Burn Care Res 2025; 46:53-60. [PMID: 38837704 DOI: 10.1093/jbcr/irae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 06/07/2024]
Abstract
Cutaneous burn injury in the elderly is associated with poor clinical outcomes and increased pulmonary-related complications. We and others have shown that burn injury triggers a cascade of inflammatory mediators which increase gut permeability and dysbiosis of the fecal microbiota and this is more dramatic in the aged. Since crosstalk between intestinal microbes and the lung, termed the "gut-lung axis," impacts immunity and homeostasis in the airway, we hypothesized that the increased intestinal dysbiosis in age and burn injury may contribute to excessive pulmonary inflammation and poor prognosis after injury. To explore this hypothesis, we used a clinically relevant murine model of burn injury in which young and aged mice are subjected to a 12% TBSA dorsal scald burn or sham injury. About 24 h after injury, lung function was assessed and lungs and feces were collected for analysis of inflammatory mediators and fecal microbial species. The results show that, when compared to younger mice, burn injury in aged mice triggers a decline in respiratory function and exacerbates pulmonary inflammation. In addition to heightened levels of the neutrophil recruiting chemokine CXCL1, aged mice displayed a profound increase in the pro-inflammatory protein, calprotectin, in the lung after burn injury. Comparison of the fecal microbiome and inflammatory markers in the lung revealed unique, age-dependent, correlation patterns between individual taxa and pulmonary inflammation. Taken together, these findings suggest that the postburn dysbiosis of the gut flora in aged mice may contribute to the changes in pulmonary inflammatory profiles.
Collapse
Affiliation(s)
- Rachel H McMahan
- Alcohol Research Program, Burn Research Program, Division of GI, Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
- Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA
| | - Devin Boe
- Alcohol Research Program, Burn Research Program, Division of GI, Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lauren E Giesy
- Alcohol Research Program, Burn Research Program, Division of GI, Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kevin M Najarro
- Alcohol Research Program, Burn Research Program, Division of GI, Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
- Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA
| | - Shanawaj Khair
- Alcohol Research Program, Burn Research Program, Division of GI, Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Travis Walrath
- Alcohol Research Program, Burn Research Program, Division of GI, Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel N Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elizabeth J Kovacs
- Alcohol Research Program, Burn Research Program, Division of GI, Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
- Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA
| |
Collapse
|
3
|
Palmer LD, Traina KA, Juttukonda LJ, Lonergan ZR, Bansah DA, Ren X, Geary JH, Pinelli C, Boyd KL, Yang TS, Skaar EP. Dietary zinc deficiency promotes Acinetobacter baumannii lung infection via IL-13 in mice. Nat Microbiol 2024; 9:3196-3209. [PMID: 39548344 PMCID: PMC11800279 DOI: 10.1038/s41564-024-01849-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
Dietary zinc deficiency is a major risk factor for pneumonia. Acinetobacter baumannii is a leading cause of ventilator-associated pneumonia and a critical public health threat due to increasing rates of multidrug resistance. Patient populations at increased risk for A. baumannii pneumonia are also at increased risk of zinc deficiency. Here we established a mouse model of dietary zinc deficiency and acute A. baumannii pneumonia to test the hypothesis that host zinc deficiency contributes to A. baumannii pathogenesis. We showed that zinc-deficient mice have significantly increased A. baumannii burdens in the lungs, dissemination to the spleen and higher mortality. During infection, zinc-deficient mice produce more pro-inflammatory cytokines, including IL-13. Administration of IL-13 promotes A. baumannii dissemination in zinc-sufficient mice, while antibody neutralization of IL-13 protects zinc-deficient mice from A. baumannii dissemination and mortality during infection. These data highlight the therapeutic potential of anti-IL-13 antibody treatments, which are well tolerated in humans, for the treatment of pneumonia.
Collapse
Affiliation(s)
- Lauren D Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA.
| | - Kacie A Traina
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lillian J Juttukonda
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Zachery R Lonergan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Rutgers University, New Brunswick, NJ, USA
| | - Dziedzom A Bansah
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
- American University of the Caribbean, Cupecoy, Sint Maarten
| | - Xiaomei Ren
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - John H Geary
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Christopher Pinelli
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- NAMSA, Minneapolis, MN, USA
| | - Kelli L Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Gilead Sciences, Inc., Foster City, CA, USA
| | - Tzushan S Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
4
|
Saheb Sharif-Askari N, Mdkhana B, Hafezi S, Khalil BA, Al-Sheakly BK, Halwani H, Saheb Sharif-Askari F, Halwani R. Calprotectin is regulated by IL-17A and induces steroid hyporesponsiveness in asthma. Inflamm Res 2024; 73:1875-1888. [PMID: 39212675 DOI: 10.1007/s00011-024-01937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Calprotectin, a calcium-binding protein, plays a crucial role in inflammation and has been associated with various inflammatory diseases, including asthma. However, its regulation and impact on steroid hyporesponsiveness, especially in severe asthma, remain poorly understood. METHODS This study investigated the regulation of calprotectin proteins (S100A8 and S100A9) by IL-17 and its role in steroid hyporesponsiveness using in vitro and in vivo models. Calprotectin expression was assessed in primary bronchial fibroblasts from healthy controls and severe asthmatic patients, as well as in mouse models of steroid hyporesponsive lung inflammation induced by house dust mite (HDM) allergen and cyclic-di-GMP (cdiGMP) adjuvant. The effects of IL-17A stimulation on calprotectin expression and steroid response markers in bronchial epithelial and fibroblast cells were examined. Additionally, the therapeutic potential of paquinimod, a calprotectin inhibitor, in mitigating airway inflammation and restoring steroid response signatures in the mouse model was evaluated. RESULTS The results demonstrated upregulation of calprotectin expression in asthmatic bronchial fibroblasts compared to healthy controls, as well as in refractory asthma samples compared to non-refractory asthma. IL-17 stimulation induced calprotectin expression and dysregulated glucocorticoid response signatures in lung epithelial and fibroblast cells. Treatment with paquinimod reversed IL-17-induced dysregulation of steroid signatures, indicating the involvement of calprotectin in this process. In the HDM/cdiGMP mouse model, paquinimod significantly attenuated airway inflammation and hyperresponsiveness, and restored steroid response signatures, whereas dexamethasone showed limited efficacy. Mechanistically, paquinimod inhibited MAPK/ERK and NF-κB pathways downstream of calprotectin, leading to reduced lung inflammation. CONCLUSION These findings highlight calprotectin as a potential therapeutic target regulated by IL-17 in steroid hyporesponsive asthma. Targeting calprotectin may offer a promising approach to alleviate airway inflammation and restore steroid responsiveness in severe asthma. Further investigations are warranted to explore its therapeutic potential in clinical settings and elucidate its broader implications in steroid mechanisms of action.
Collapse
Affiliation(s)
- Narjes Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Bushra Mdkhana
- Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Shirin Hafezi
- Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Bariaa A Khalil
- Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Baraa Khalid Al-Sheakly
- Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Hala Halwani
- Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Fatemeh Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Rabih Halwani
- Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Pediatrics, Faculty of Medicine, Prince Abdullah Ben Khaled Celiac Disease Research Chair, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Iguchi T, Toma-Hirano M, Takanashi M, Masai H, Miyatake S. Loss of a single Zn finger, but not that of two Zn fingers, of GATA3 drives skin inflammation. Genes Cells 2024. [PMID: 39435584 DOI: 10.1111/gtc.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024]
Abstract
Transcription factor GATA3 is essential for the developmental processes of T cells. Recently, the silencer of a cytokine IFNγ gene was identified, the inhibitory activity of which requires GATA3. GATA3 has 2 Zn fingers and the commonly used GATA3 deficient mice lack both fingers (D2). We have established a mouse line that lacks only one Zn finger close to the C terminus (D1). The D1 mice line developed dermatitis, which was not observed in D2 mice. The expression of S100a8/S100a9 was elevated in D1 to a level higher than in D2, suggesting their roles in dermatitis development. CD8 T cells of both D1 and D2 lines expressed inhibitory receptors associated with the exhausted state. In the absence of MHC class II, the skin inflammation was exacerbated in both lines. The gene expression pattern of CD8 T cells became similar to that of effector T cells. Blocking Ab against LAG3 upregulated the expression of the effector molecules of T cells. These results suggest that the disfunction of GATA3 can lead to the spontaneous activation of CD8 T cells that causes skin inflammation, and that suppressive activity of MHC class II - LAG3 interaction ameliorates dermatitis development.
Collapse
Affiliation(s)
- Tomohiro Iguchi
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Makiko Toma-Hirano
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, Itabashi, Japan
| | - Masakatsu Takanashi
- Department of Pathology, Graduate School of Environmental Health Sciences, Azabu University, Sagamihara, Japan
| | - Hisao Masai
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Shoichiro Miyatake
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
- Department of Immunology, Graduate School of Environmental Health Sciences, Azabu University, Sagamihara, Japan
| |
Collapse
|
6
|
Wang Y, Zou M, Liu J, Guo Q, Lv S, Chen C, Wang T, Zhao W, Li S, Peng X. Alarming and calming: Dual functions of S100A9 on Mycoplasma gallisepticun infection in avian cells. Vet Microbiol 2024; 296:110175. [PMID: 39018941 DOI: 10.1016/j.vetmic.2024.110175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/09/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Mycoplasma gallisepticum (MG) is the primary causative agent of chronic respiratory disease (CRD) in chickens, characterized by respiratory inflammation. S100A9 plays a pivotal role in modulating the inflammatory response to microbial pathogens. Our prior investigation revealed a significant upregulation of S100A9 in the lungs of chickens following MG infection. This study delves into the immunomodulatory effects of S100A9 during MG infection, demonstrating a notable increase in S100A9 levels in the lungs, immune organs, alveolar epithelial type II cells (AECII), and macrophage HD11 cells of MG-infected chicks and embryos. In MG-infected AECII cells, S100A9 overexpression significantly enhanced MG proliferation and adhesion, suppressed AVBD1, NFκB, pro-inflammatory factors (IL1β and TNFα), and chemokines, reduced apoptosis, and promoted cell proliferation, thereby facilitating MG infection. Conversely, inhibiting S100A9 produced opposing effects. In MG-infected HD11 cells, S100A9 impeded MG proliferation and adhesion, increased AVBD1, NFκB, pro-inflammatory factors, and chemokines, and induced cell apoptosis while inhibiting proliferation. Additional results demonstrated that S100A9 facilitates MG infection by modulating the TLR7/NFκB/JAK/STAT pathway in AECII/HD11 cells. In summary, S100A9 exhibits a dual role in activating/inhibiting the natural immune response through TLR7/NFκB/JAK/STAT pathway regulation. This dual role promotes MG infection in AECII cells while enabling MG to evade immune surveillance by HD11 cells, ultimately enhancing the overall infection process. These findings advance our understanding of host-pathogen interactions during MG infection and underscore S100A9's potential as a therapeutic target for CRD in chickens.
Collapse
Affiliation(s)
- Yingjie Wang
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengyun Zou
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Liu
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiao Guo
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shan Lv
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunyu Chen
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Tengfei Wang
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqing Zhao
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiying Li
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Peng
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
van Linge CCA, Hulme KD, Peters-Sengers H, Sirard JC, Goessens WHF, de Jong MD, Russell CA, de Vos AF, van der Poll T. Immunostimulatory Effect of Flagellin on MDR- Klebsiella-Infected Human Airway Epithelial Cells. Int J Mol Sci 2023; 25:309. [PMID: 38203480 PMCID: PMC10778885 DOI: 10.3390/ijms25010309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Pneumonia caused by multi-drug-resistant Klebsiella pneumoniae (MDR-Kpneu) poses a major public health threat, especially to immunocompromised or hospitalized patients. This study aimed to determine the immunostimulatory effect of the Toll-like receptor 5 ligand flagellin on primary human lung epithelial cells during infection with MDR-Kpneu. Human bronchial epithelial (HBE) cells, grown on an air-liquid interface, were inoculated with MDR-Kpneu on the apical side and treated during ongoing infection with antibiotics (meropenem) and/or flagellin on the basolateral and apical side, respectively; the antimicrobial and inflammatory effects of flagellin were determined in the presence or absence of meropenem. In the absence of meropenem, flagellin treatment of MDR-Kpneu-infected HBE cells increased the expression of antibacterial defense genes and the secretion of chemokines; moreover, supernatants of flagellin-exposed HBE cells activated blood neutrophils and monocytes. However, in the presence of meropenem, flagellin did not augment these responses compared to meropenem alone. Flagellin did not impact the outgrowth of MDR-Kpneu. Flagellin enhances antimicrobial gene expression and chemokine release by the MDR-Kpneu-infected primary human bronchial epithelium, which is associated with the release of mediators that activate neutrophils and monocytes. Topical flagellin therapy may have potential to boost immune responses in the lung during pneumonia.
Collapse
Affiliation(s)
- Christine C. A. van Linge
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands (A.F.d.V.); (T.v.d.P.)
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Katina D. Hulme
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
| | - Hessel Peters-Sengers
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands (A.F.d.V.); (T.v.d.P.)
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Jean-Claude Sirard
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, INSERM U1019, CNRS UMR9017, CHU Lille, University Lille, 59000 Lille, France
| | - Wil H. F. Goessens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Menno D. de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
| | - Colin A. Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
- Department of Global Health, School of Public Health, Boston University, Boston, MA 02215, USA
| | - Alex F. de Vos
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands (A.F.d.V.); (T.v.d.P.)
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands (A.F.d.V.); (T.v.d.P.)
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
| |
Collapse
|
8
|
Tutino M, Hankinson J, Murray C, Lowe L, Kerry G, Rattray M, Custovic A, Johnston SL, Shi C, Orozco G, Eyre S, Martin P, Simpson A, Curtin JA. Identification of differences in CD4 + T-cell gene expression between people with asthma and healthy controls. Sci Rep 2023; 13:22796. [PMID: 38129444 PMCID: PMC10739740 DOI: 10.1038/s41598-023-49135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Functional enrichment analysis of genome-wide association study (GWAS)-summary statistics has suggested that CD4+ T-cells play an important role in asthma pathogenesis. Despite this, CD4+ T-cells are under-represented in asthma transcriptome studies. To fill the gap, 3'-RNA-Seq was used to generate gene expression data on CD4+ T-cells (isolated within 2 h from collection) from peripheral blood from participants with well-controlled asthma (n = 32) and healthy controls (n = 11). Weighted Gene Co-expression Network Analysis (WGCNA) was used to identify sets of co-expressed genes (modules) associated with the asthma phenotype. We identified three modules associated with asthma, which are strongly enriched for GWAS-identified asthma genes, antigen processing/presentation and immune response to viral infections. Through integration of publicly available eQTL and GWAS summary statistics (colocalisation), and protein-protein interaction (PPI) data, we identified PTPRC, a potential druggable target, as a putative master regulator of the asthma gene-expression profiles. Using a co-expression network approach, with integration of external genetic and PPI data, we showed that CD4+ T-cells from peripheral blood from asthmatics have different expression profiles, albeit small in magnitude, compared to healthy controls, for sets of genes involved in immune response to viral infections (upregulated) and antigen processing/presentation (downregulated).
Collapse
Affiliation(s)
- Mauro Tutino
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK.
| | - Jenny Hankinson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Clare Murray
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Lesley Lowe
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Gina Kerry
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Magnus Rattray
- Division of Informatics, Imaging and Data Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Adnan Custovic
- National Heart and Lung Institute, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Sebastian L Johnston
- National Heart and Lung Institute, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Chenfu Shi
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Gisela Orozco
- Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Stephen Eyre
- Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Martin
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - John A Curtin
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
9
|
Ding D, Luan R, Xue Q, Yang J. Prognostic significance of peripheral blood S100A12, S100A8, and S100A9 concentrations in idiopathic pulmonary fibrosis. Cytokine 2023; 172:156387. [PMID: 37826869 DOI: 10.1016/j.cyto.2023.156387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND S100A12, S100A8, and S100A9 are inflammatory disease biomarkers whose functional significance in idiopathic pulmonary fibrosis (IPF) remains unclear. We evaluated the significance of S100A12, S100A8, and S100A9 levels in IPF development and prognosis. METHODS The dataset was collected from the Gene Expression Omnibus (GEO) database and differentially expressed genes were screened using GEO2R. We conducted a retrospective study of 106 patients with IPF to explore the relationships between different biomarkers and poor outcomes. Pearson's correlation coefficient, Kaplan-Meier, Cox regression, and functional enrichment analyses were used to evaluate relationships between these biomarkers' levels and clinical parameters or prognosis. RESULTS Serum levels of S100A12, S100A8, and S100A9 were significantly elevated in patients with IPF. The two most significant co-expression genes of S100A12 were S100A8 and S100A9. Patients with levels of S100A12 (median 231.21 ng/mL), S100A9 (median 57.09 ng/mL) or S100A8 (median 52.20 ng/mL), as well as combined elevated S100A12, S100A9, and S100A8 levels, exhibited shorter progression-free survival and overall survival. Serum S100A12 and S100A8, S100A12 and S100A9, S100A9 and S100A8 concentrations also displayed a strong positive correlation (rs2 = 0.4558, rs2 = 0.4558, rs2 = 0.6373; P < 0.001). S100A12 and S100A8/9 concentrations were independent of FVC%, DLCO%, and other clinical parameters (age, laboratory test data, and smoking habit). Finally, in multivariate analysis, the serum levels of S100A12, S100A8, and S100A9 were significant prognostic factors (hazard ratio 1.002, P = 0.032, hazard ratio 1.039, P = 0.001, and hazard ratio 1.048, P = 0.003). CONCLUSIONS S100A12, S100A8, and S100A9 are promising circulating biomarkers that may aid in determining IPF patient prognosis. Multicenter clinical trials are needed to confirm their clinical value.
Collapse
Affiliation(s)
- Dongyan Ding
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Rumei Luan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Qianfei Xue
- Department of Respiratory Medicine, The University Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
10
|
Gagnon PA, Klein M, De Vos J, Biardel S, Côté A, Godbout K, Laviolette M, Laprise C, Assou S, Chakir J. S100A alarmins and thymic stromal lymphopoietin (TSLP) regulation in severe asthma following bronchial thermoplasty. Respir Res 2023; 24:294. [PMID: 37996952 PMCID: PMC10668474 DOI: 10.1186/s12931-023-02604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
RATIONALE Severe asthma affects a small proportion of asthmatics but represents a significant healthcare challenge. Bronchial thermoplasty (BT) is an interventional treatment approach preconized for uncontrolled severe asthma after considering biologics therapy. It was showed that BT long-lastingly improves asthma control. These improvements seem to be related to the ability of BT to reduce airway smooth muscle remodeling, reduce the number of nerve fibers and to modulate bronchial epithelium integrity and behavior. Current evidence suggest that BT downregulates epithelial mucins expression, cytokine production and metabolic profile. Despite these observations, biological mechanisms explaining asthma control improvement post-BT are still not well understood. OBJECTIVES To assess whether BT affects gene signatures in bronchial epithelial cells (BECs). METHODS In this study we evaluated the transcriptome of cultured bronchial epithelial cells (BECs) of severe asthmatics obtained pre- and post-BT treatment using microarrays. We further validated gene and protein expressions in BECs and in bronchial biopsies with immunohistochemistry pre- and post-BT treatment. MEASUREMENTS AND MAIN RESULTS Transcriptomics analysis revealed that a large portion of differentially expressed genes (DEG) was involved in anti-viral response, anti-microbial response and pathogen induced cytokine storm signaling pathway. S100A gene family stood out as five members of this family where consistently downregulated post-BT. Further validation revealed that S100A7, S100A8, S100A9 and their receptor (RAGE, TLR4, CD36) expressions were highly enriched in severe asthmatic BECs. Further, these S100A family members were downregulated at the gene and protein levels in BECs and in bronchial biopsies of severe asthmatics post-BT. TLR4 and CD36 protein expression were also reduced in BECs post-BT. Thymic stromal lymphopoietin (TSLP) and human β-defensin 2 (hBD2) were significantly decreased while no significant change was observed in IL-25 and IL-33. CONCLUSIONS These data suggest that BT might improve asthma control by downregulating epithelial derived S100A family expression and related downstream signaling pathways.
Collapse
Affiliation(s)
- Pierre-Alexandre Gagnon
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval (IUCPQ-UL), 2725 Chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada
| | - Martin Klein
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval (IUCPQ-UL), 2725 Chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada
| | - John De Vos
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Sabrina Biardel
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval (IUCPQ-UL), 2725 Chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada
| | - Andréanne Côté
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval (IUCPQ-UL), 2725 Chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada
| | - Krystelle Godbout
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval (IUCPQ-UL), 2725 Chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada
| | - Michel Laviolette
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval (IUCPQ-UL), 2725 Chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi (UQAC), Saguenay, QC, Canada
| | - Said Assou
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Jamila Chakir
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval (IUCPQ-UL), 2725 Chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada.
| |
Collapse
|
11
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Study on Potential Differentially Expressed Genes in Idiopathic Pulmonary Fibrosis by Bioinformatics and Next-Generation Sequencing Data Analysis. Biomedicines 2023; 11:3109. [PMID: 38137330 PMCID: PMC10740779 DOI: 10.3390/biomedicines11123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with reduced quality of life and earlier mortality, but its pathogenesis and key genes are still unclear. In this investigation, bioinformatics was used to deeply analyze the pathogenesis of IPF and related key genes, so as to investigate the potential molecular pathogenesis of IPF and provide guidance for clinical treatment. Next-generation sequencing dataset GSE213001 was obtained from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified between IPF and normal control group. The DEGs between IPF and normal control group were screened with the DESeq2 package of R language. The Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. Using the g:Profiler, the function and pathway enrichment analyses of DEGs were performed. Then, a protein-protein interaction (PPI) network was constructed via the Integrated Interactions Database (IID) database. Cytoscape with Network Analyzer was used to identify the hub genes. miRNet and NetworkAnalyst databaseswereused to construct the targeted microRNAs (miRNAs), transcription factors (TFs), and small drug molecules. Finally, receiver operating characteristic (ROC) curve analysis was used to validate the hub genes. A total of 958 DEGs were screened out in this study, including 479 up regulated genes and 479 down regulated genes. Most of the DEGs were significantly enriched in response to stimulus, GPCR ligand binding, microtubule-based process, and defective GALNT3 causes HFTC. In combination with the results of the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network, hub genes including LRRK2, BMI1, EBP, MNDA, KBTBD7, KRT15, OTX1, TEKT4, SPAG8, and EFHC2 were selected. Cyclothiazide and rotigotinethe are predicted small drug molecules for IPF treatment. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of IPF, and provide a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Muttanagouda Giriyappagoudar
- Department of Radiation Oncology, Karnataka Institute of Medical Sciences (KIMS), Hubballi 580022, Karnataka, India;
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Socitey’s College of Pharmacy, Gadag 582101, Karnataka, India;
| | - Rajeshwari Horakeri
- Department of Computer Science, Govt First Grade College, Hubballi 580032, Karnataka, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
12
|
Studies on the role of non-coding RNAs in controlling the activity of T cells in asthma. Noncoding RNA Res 2023; 8:211-217. [PMID: 36865391 PMCID: PMC9972402 DOI: 10.1016/j.ncrna.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Bronchial asthma, commonly known as asthma, is a chronic inflammatory disease characterized by airway inflammation, increased responsiveness and changes in airway structure. T cells, particularly T helper cells, play a crucial role in the disease. Non-coding RNAs, which are RNAs that do not code for proteins, mainly include microRNAs, long non-coding RNAs, and circular RNAs, play a role in regulating various biological processes. Studies have shown that non-coding RNAs have an important role in the activation and transformation of T cells and other biological processes in asthma. The specific mechanisms and clinical applications are worth further examination. This article reviews the recent research on the role of microRNAs, long non-coding RNAs and circular RNAs in T cells in asthma.
Collapse
|
13
|
Lin L, Zhao Y, Li Z, Li Y, Wang W, Kang J, Wang Q. Expression of S100A9 and KL-6 in common interstitial lung diseases. Medicine (Baltimore) 2022; 101:e29198. [PMID: 35512076 PMCID: PMC9276110 DOI: 10.1097/md.0000000000029198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/10/2022] [Indexed: 01/04/2023] Open
Abstract
By evaluating S100 calcium binding protein A9 (S100A9) and Klebs von den Lungen-6 (KL-6) expression in patients with 4 common interstitial lung diseases (ILDs), we aimed to investigate whether S100A9 or KL-6 can be of any value in the differential diagnosis of these ILDs and simultaneously signal the disease progression.We collected the data of patients diagnosed with the 4 ILDs and underwent fiber-optic bronchoscopy and BAL in the First Affiliated Hospital, China Medical University from January 2012 to December 2020. The data related to BGA, C-reactive protein, pulmonary function test, total number and fraction of cells, T lymphocyte subsets in bronchoalveolar lavage fluid (BALF), and the expression of S100A9 and KL-6 in BALF and serum were collected. We analyzed, whether S100A9 or KL-6 could serve as a biomarker for differential diagnosis between the 4 common ILDs; whether the levels of S100A9 and KL-6 correlated with each other; whether they were correlated with other clinical parameters and disease severity.This study included 98 patients, 37 patients with idiopathic pulmonary fibrosis (IPF), 12 with hypersensitivity pneumonitis, 13 with connective tissue disease-associated ILD, and 36 with sarcoidosis (SAR): stage I (18), stage II (9), stage III (5), and stage IV (4). The expression of KL-6 in BALF was significantly higher in IPF patients than other 3 groups (all P-value < .05). However, there was no significant difference in the levels of S100A9 in BALF and serum between the 4 groups (P-value > .05). The levels of S100A9 in BALF of IPF patients was positively and significantly correlated with KL-6 expression and the percentage of neutrophils in BALF (P-value < .05). Along with the stage increase of SAR patients, the level of S100A9 in BALF gradually increased, which was negatively and significantly correlated with the forced vital capacity/predicted, carbon monoxide diffusing capacity/predicted%, and PaO2 (all P-value < .05).The expression of KL-6 in BALF can be used as a biomarker to differentiate IPF from the other 3 common ILDs. While, this was not the case with expression of S100A9 in BALF and serum. However, the expression S100A9 in BALF is useful to indicate the progression of SAR. Thus, simultaneous measurement of KL-6 and S100A9 levels in BALF makes more sense in differential diagnosing of the 4 common ILDS.
Collapse
Affiliation(s)
- Li Lin
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Yabin Zhao
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Zhenhua Li
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Yun Li
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
- Department of Geriatric Respiratory, The First Hospital of Kunming Medical University, Kunming, China
| | - Wei Wang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Qiuyue Wang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Bagheri-Hosseinabadi Z, Abbasi M, Kahnooji M, Ghorbani Z, Abbasifard M. The prognostic value of S100A calcium binding protein family members in predicting severe forms of COVID-19. Inflamm Res 2022; 71:369-376. [PMID: 35217896 PMCID: PMC8881187 DOI: 10.1007/s00011-022-01545-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 11/26/2022] Open
Abstract
Background Excessive inflammation has been implicated in the immunopathogenesis of coronavirus disease 2019 (COVID-19). In the current study, the involvement of S100 calcium binding protein S100A4, S100A9, and S100A10 in the inflammatory settings of COVID-19 patients were evaluated. Methods Peripheral blood samples were obtained from 65 COVID-19 subjects and 50 healthy controls. From the blood samples, RNA was extracted and cDNA was synthesized, and then the mRNA expression levels of S100A4, S100A9, and S100A10 were measured by Real-time PCR. Results The mRNA expression of S100A4 (fold change [FC] = 1.45, P = 0.0011), S100A9 (FC = 1.47, P = 0.0013), and S100A10 (FC = 1.35, P = 0.0053) was significantly upregulated in COVID-19 patients than controls. The mRNA expression of S100A4 (FC = 1.43, P = 0.0071), (FC = 1.66, P = 0.0001), and S100A10 (FC = 1.63, P = 0.0003) was significantly upregulated in the severe COVID-19 subjects than mild-to-moderate subjects. There was a significant positive correlation between mRNA expression of S100A4 (ρ = 0.49, P = 0.030), S100A9 (ρ = 0.55, P = 0.009), and S100A10 (ρ = 0.39, P = 0.040) and d-dimer in the COVID-19 patients. The AUC for S100A4, S100A9, and S100A10 mRNAs were 0.79 (95% CI 0.66–0.92, P = 0.004), 0.80 (95% CI 0.67–0.93, P = 0.002), and 0.71 (95% CI 0.56–0.85, P = 0.010), respectively. Conclusions S100A4, S100A9, and S100A10 play a role in the inflammatory conditions in COVID-19 patients and have potential in prognosis of severe form of COVID-19. Targeting these modules, hopefully, might confer a therapeutic tool in preventing sever symptoms in the COVID-19 patients.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohadese Abbasi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahmood Kahnooji
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zainab Ghorbani
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mitra Abbasifard
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
15
|
Gandhi VD, Cephus JY, Norlander AE, Chowdhury NU, Zhang J, Ceneviva ZJ, Tannous E, Polosukhin VV, Putz ND, Wickersham N, Singh A, Ware LB, Bastarache JA, Shaver CM, Chu HW, Peebles RS, Newcomb DC. Androgen receptor signaling promotes Treg suppressive function during allergic airway inflammation. J Clin Invest 2022; 132:e153397. [PMID: 35025767 PMCID: PMC8843736 DOI: 10.1172/jci153397] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Women have higher prevalence of asthma compared with men. In asthma, allergic airway inflammation is initiated by IL-33 signaling through ST2, leading to increased IL-4, IL-5, and IL-13 production and eosinophil infiltration. Foxp3+ Tregs suppress and ST2+ Tregs promote allergic airway inflammation. Clinical studies showed that the androgen dehydroepiandrosterone (DHEA) reduced asthma symptoms in patients, and mouse studies showed that androgen receptor (AR) signaling decreased allergic airway inflammation. Yet the impact of AR signaling on lung Tregs remains unclear. Using AR-deficient and Foxp3 fate-mapping mice, we determined that AR signaling increased Treg suppression during Alternaria extract (Alt Ext; allergen) challenge by stabilizing Foxp3+ Tregs and limiting the number of ST2+ ex-Tregs and IL-13+ Th2 cells and ex-Tregs. AR signaling also decreased Alt Ext-induced ST2+ Tregs in mice by limiting expression of Gata2, a transcription factor for ST2, and by decreasing Alt Ext-induced IL-33 production from murine airway epithelial cells. We confirmed our findings in human cells where 5α-dihydrotestosterone (DHT), an androgen, decreased IL-33-induced ST2 expression in lung Tregs and decreased Alt Ext-induced IL-33 secretion in human bronchial epithelial cells. Our findings showed that AR signaling stabilized Treg suppressive function, providing a mechanism for the sex difference in asthma.
Collapse
Affiliation(s)
| | | | | | - Nowrin U. Chowdhury
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | | | | - Amrit Singh
- Prevention of Organ Failure (PROOF) Centre of Excellence, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | - Hong Wei Chu
- National Jewish Medical Center, Denver, Colorado, USA
| | - R. Stokes Peebles
- Department of Medicine and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dawn C. Newcomb
- Department of Medicine and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Sugiura A, Andrejeva G, Voss K, Heintzman DR, Xu X, Madden MZ, Ye X, Beier KL, Chowdhury NU, Wolf MM, Young AC, Greenwood DL, Sewell AE, Shahi SK, Freedman SN, Cameron AM, Foerch P, Bourne T, Garcia-Canaveras JC, Karijolich J, Newcomb DC, Mangalam AK, Rabinowitz JD, Rathmell JC. MTHFD2 is a metabolic checkpoint controlling effector and regulatory T cell fate and function. Immunity 2022; 55:65-81.e9. [PMID: 34767747 PMCID: PMC8755618 DOI: 10.1016/j.immuni.2021.10.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/23/2021] [Accepted: 10/13/2021] [Indexed: 01/13/2023]
Abstract
Antigenic stimulation promotes T cell metabolic reprogramming to meet increased biosynthetic, bioenergetic, and signaling demands. We show that the one-carbon (1C) metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) regulates de novo purine synthesis and signaling in activated T cells to promote proliferation and inflammatory cytokine production. In pathogenic T helper-17 (Th17) cells, MTHFD2 prevented aberrant upregulation of the transcription factor FoxP3 along with inappropriate gain of suppressive capacity. MTHFD2 deficiency also promoted regulatory T (Treg) cell differentiation. Mechanistically, MTHFD2 inhibition led to depletion of purine pools, accumulation of purine biosynthetic intermediates, and decreased nutrient sensor mTORC1 signaling. MTHFD2 was also critical to regulate DNA and histone methylation in Th17 cells. Importantly, MTHFD2 deficiency reduced disease severity in multiple in vivo inflammatory disease models. MTHFD2 is thus a metabolic checkpoint to integrate purine metabolism with pathogenic effector cell signaling and is a potential therapeutic target within 1C metabolism pathways.
Collapse
Affiliation(s)
- Ayaka Sugiura
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gabriela Andrejeva
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kelsey Voss
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Darren R Heintzman
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xincheng Xu
- Department of Chemistry, Ludwig Cancer Research Institute Princeton Branch, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Matthew Z Madden
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiang Ye
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Katherine L Beier
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nowrin U Chowdhury
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Melissa M Wolf
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Arissa C Young
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dalton L Greenwood
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Allison E Sewell
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shailesh K Shahi
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Alanna M Cameron
- Sitryx Therapeutics Limited, Magdalen Centre, Oxford Science Park, Oxford, UK
| | - Patrik Foerch
- Sitryx Therapeutics Limited, Magdalen Centre, Oxford Science Park, Oxford, UK
| | - Tim Bourne
- Sitryx Therapeutics Limited, Magdalen Centre, Oxford Science Park, Oxford, UK
| | - Juan C Garcia-Canaveras
- Department of Chemistry, Ludwig Cancer Research Institute Princeton Branch, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - John Karijolich
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dawn C Newcomb
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Joshua D Rabinowitz
- Department of Chemistry, Ludwig Cancer Research Institute Princeton Branch, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
17
|
Johnstone KF, Wei Y, Bittner-Eddy PD, Vreeman GW, Stone IA, Clayton JB, Reilly CS, Walbon TB, Wright EN, Hoops SL, Boyle WS, Costalonga M, Herzberg MC. Calprotectin (S100A8/A9) Is an Innate Immune Effector in Experimental Periodontitis. Infect Immun 2021; 89:e0012221. [PMID: 34097505 PMCID: PMC8445179 DOI: 10.1128/iai.00122-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/12/2021] [Indexed: 01/26/2023] Open
Abstract
Upregulated in inflammation, calprotectin (complexed S100A8 and S100A9; S100A8/A9) functions as an innate immune effector molecule, promoting inflammation, and also as an antimicrobial protein. We hypothesized that antimicrobial S100A8/A9 would mitigate change to the local microbial community and promote resistance to experimental periodontitis in vivo. To test this hypothesis, S100A9-/- and wild-type (WT; S100A9+/+) C57BL/6 mice were compared using a model of ligature-induced periodontitis. On day 2, WT mice showed fewer infiltrating innate immune cells than S100A9-/- mice; by day 5, the immune cell numbers were similar. At 5 days post ligature placement, oral microbial communities sampled with swabs differed significantly in beta diversity between the mouse genotypes. Ligatures recovered from molar teeth of S100A9-/- and WT mice contained significantly dissimilar microbial genera from each other and the overall oral communities from swabs. Concomitantly, the S100A9-/- mice had significantly greater alveolar bone loss than WT mice around molar teeth in ligated sites. When the oral microflora was ablated by antibiotic pretreatment, differences disappeared between WT and S100A9-/- mice in their immune cell infiltrates and alveolar bone loss. Calprotectin, therefore, suppresses emergence of a dysbiotic, proinflammatory oral microbial community, which reduces innate immune effector activity, including early recruitment of innate immune cells, mitigating subsequent alveolar bone loss and protecting against experimental periodontitis.
Collapse
Affiliation(s)
- Karen F. Johnstone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuping Wei
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter D. Bittner-Eddy
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gerrit W. Vreeman
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ian A. Stone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan B. Clayton
- BioTechnology Institute, Computer Science and Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - Cavan S. Reilly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Travis B. Walbon
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elisa N. Wright
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan L. Hoops
- BioTechnology Institute, Computer Science and Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - William S. Boyle
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Massimo Costalonga
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
18
|
Perkins TN, Oury TD. The perplexing role of RAGE in pulmonary fibrosis: causality or casualty? Ther Adv Respir Dis 2021; 15:17534666211016071. [PMID: 34275342 PMCID: PMC8293846 DOI: 10.1177/17534666211016071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease in which most patients die within 3 years of diagnosis. With an unknown etiology, IPF results in progressive fibrosis of the lung parenchyma, diminishing normal lung function, which results in respiratory failure, and eventually, death. While few therapies are available to reduce disease progression, patients continue to advance toward respiratory failure, leaving lung transplantation the only viable option for survival. As incidence and mortality rates steadily increase, the need for novel therapeutics is imperative. The receptor for advanced glycation endproducts (RAGE) is most highly expressed in the lungs and plays a significant role in a number of chronic lung diseases. RAGE has long been linked to IPF; however, confounding data from both human and experimental studies have left an incomplete and perplexing story. This review examines the present understanding of the role of RAGE in human and experimental models of IPF, drawing parallels to recent advances in RAGE biology. Moreover, this review discusses the role of RAGE in lung injury response, type 2 immunity, and cellular senescence, and how such mechanisms may relate to RAGE as both a biomarker of disease progression and potential therapeutic target in IPF.The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Timothy N Perkins
- Department of Pathology, University of Pittsburgh School of Medicine, 3550 Terrace Street, S-784 Scaife Hall, Pittsburgh, PA 15261, USA
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Tanaka K, Enomoto N, Hozumi H, Isayama T, Naoi H, Aono Y, Katsumata M, Yasui H, Karayama M, Suzuki Y, Furuhashi K, Fujisawa T, Inui N, Nakamura Y, Suda T. Serum S100A8 and S100A9 as prognostic biomarkers in acute exacerbation of idiopathic pulmonary fibrosis. Respir Investig 2021; 59:827-836. [PMID: 34154976 DOI: 10.1016/j.resinv.2021.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is a devastating and life-threatening condition during its clinical course. Biomarkers for precisely anticipating the prognosis of AE-IPF remain to be fully established. The objective of this study was to clarify whether S100A8 and S100A9, which are calcium-binding proteins mainly produced by activated neutrophils, are significant prognostic biomarkers in AE-IPF. METHODS Thirty-seven patients with AE-IPF who were diagnosed and treated at our hospital were retrospectively evaluated. The serum levels of S100A8 and S100A9 were measured using enzyme-linked immunosorbent assay, and the relationships between these levels and clinical parameters or prognosis were evaluated. RESULTS The serum levels of S100A8 (median 386.5 ng/mL) and S100A9 (median 60.2 ng/mL) in patients with AE-IPF were significantly higher than those in age-matched healthy controls and in patients at IPF diagnosis (p < 0.001 for all combinations). The serum levels of S100A8 negatively correlated with percent forced vital capacity (r = -0.356, p = 0.049) and positively correlated with peripheral white blood cell number (r = 0.509, p = 0.002). Immunohistochemical staining of autopsy lung specimens showed that neutrophils, present mainly in the alveolar septum, were positive for S100A8 and S100A9. Patients with AE-IPF with higher levels of S100A8 or S100A9 showed significantly worse 3-month survival than those with lower levels (log-rank test, both p = 0.028). Finally, in multivariate analysis, the serum levels of both S100A8 and S100A9 were significant prognostic factors (hazard ratio 4.032, p = 0.023 and hazard ratio 4.327, p = 0.012). CONCLUSION The serum levels of S100A8 and S100A9 at AE were significant prognostic biomarkers in patients with AE-IPF.
Collapse
Affiliation(s)
- Kazuki Tanaka
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan; Health Administration Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takuya Isayama
- Medical & Biological Laboratories Co., Ltd., Nagoya, Japan
| | - Hyogo Naoi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuya Aono
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mineo Katsumata
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yutaro Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
20
|
The S100 Protein Family as Players and Therapeutic Targets in Pulmonary Diseases. Pulm Med 2021; 2021:5488591. [PMID: 34239729 PMCID: PMC8214497 DOI: 10.1155/2021/5488591] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
The S100 protein family consists of over 20 members in humans that are involved in many intracellular and extracellular processes, including proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation, tissue repair, and migration/invasion. Although there are structural similarities between each member, they are not functionally interchangeable. The S100 proteins function both as intracellular Ca2+ sensors and as extracellular factors. Dysregulated responses of multiple members of the S100 family are observed in several diseases, including the lungs (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cystic fibrosis, pulmonary hypertension, and lung cancer). To this degree, extensive research was undertaken to identify their roles in pulmonary disease pathogenesis and the identification of inhibitors for several S100 family members that have progressed to clinical trials in patients for nonpulmonary conditions. This review outlines the potential role of each S100 protein in pulmonary diseases, details the possible mechanisms observed in diseases, and outlines potential therapeutic strategies for treatment.
Collapse
|
21
|
Chatziparasidis G, Kantar A. Calprotectin: An Ignored Biomarker of Neutrophilia in Pediatric Respiratory Diseases. CHILDREN-BASEL 2021; 8:children8060428. [PMID: 34063831 PMCID: PMC8223968 DOI: 10.3390/children8060428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022]
Abstract
Calprotectin (CP) is a non-covalent heterodimer formed by the subunits S100A8 (A8) and S100A9 (A9). When neutrophils become activated, undergo disruption, or die, this abundant cytosolic neutrophil protein is released. By fervently chelating trace metal ions that are essential for bacterial development, CP plays an important role in human innate immunity. It also serves as an alarmin by controlling the inflammatory response after it is released. Extracellular concentrations of CP increase in response to infection and inflammation, and are used as a biomarker of neutrophil activation in a variety of inflammatory diseases. Although it has been almost 40 years since CP was discovered, its use in daily pediatric practice is still limited. Current evidence suggests that CP could be used as a biomarker in a variety of pediatric respiratory diseases, and could become a valuable key factor in promoting diagnostic and therapeutic capacity. The aim of this study is to re-introduce CP to the medical community and to emphasize its potential role with the hope of integrating it as a useful adjunct, in the practice of pediatric respiratory medicine.
Collapse
Affiliation(s)
| | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Instituti Ospedalieri Bergamaschi, University and Research Hospitals, 24046 Bergamo, Italy
- Correspondence:
| |
Collapse
|
22
|
Perkins TN, Donnell ML, Oury TD. The axis of the receptor for advanced glycation endproducts in asthma and allergic airway disease. Allergy 2021; 76:1350-1366. [PMID: 32976640 DOI: 10.1111/all.14600] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Asthma is a generalized term that describes a scope of distinct pathologic phenotypes of variable severity, which share a common complication of reversible airflow obstruction. Asthma is estimated to affect almost 400 million people worldwide, and nearly ten percent of asthmatics have what is considered "severe" disease. The majority of moderate to severe asthmatics present with a "type 2-high" (T2-hi) phenotypic signature, which pathologically is driven by the type 2 cytokines Interleukin-(IL)-4, IL-5, and IL-13. However, "type 2-low" (T2-lo) phenotypic signatures are often associated with more severe, steroid-refractory neutrophilic asthma. A wide range of clinical and experimental studies have found that the receptor for advanced glycation endproducts (RAGE) plays a significant role in the pathogenesis of asthma and allergic airway disease (AAD). Current experimental data indicates that RAGE is a critical mediator of the type 2 inflammatory reactions which drive the development of T2-hi AAD. However, clinical studies demonstrate that increased RAGE ligands and signaling strongly correlate with asthma severity, especially in severe neutrophilic asthma. This review presents an overview of the current understandings of RAGE in asthma pathogenesis, its role as a biomarker of disease, and future implications for mechanistic studies, and potential therapeutic intervention strategies.
Collapse
Affiliation(s)
- Timothy N Perkins
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mason L Donnell
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Kotsiou OS, Papagiannis D, Papadopoulou R, Gourgoulianis KI. Calprotectin in Lung Diseases. Int J Mol Sci 2021; 22:1706. [PMID: 33567747 PMCID: PMC7915440 DOI: 10.3390/ijms22041706] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
Calprotectin (CLP) is a heterodimer formed by two S-100 calcium-binding cytosolic proteins, S100A8 and S100A9. It is a multifunctional protein expressed mainly by neutrophils and released extracellularly by activated or damaged cells mediating a broad range of physiological and pathological responses. It has been more than 20 years since the implication of S100A8/A9 in the inflammatory process was shown; however, the evaluation of its role in the pathogenesis of respiratory diseases or its usefulness as a biomarker for the appropriate diagnosis and prognosis of lung diseases have only gained attention in recent years. This review aimed to provide current knowledge regarding the potential role of CLP in the pathophysiology of lung diseases and describe how this knowledge is, up until now, translated into daily clinical practice. CLP is involved in numerous cellular processes in lung health and disease. In addition to its anti-microbial functions, CLP also serves as a molecule with pro- and anti-tumor properties related to cell survival and growth, angiogenesis, DNA damage response, and the remodeling of the extracellular matrix. The findings of this review potentially introduce CLP in daily clinical practice within the spectrum of respiratory diseases.
Collapse
Affiliation(s)
- Ourania S. Kotsiou
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
- Department of Nursing, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Dimitrios Papagiannis
- Department of Nursing, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Rodanthi Papadopoulou
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G31 2ER, UK;
| | | |
Collapse
|
24
|
Railwah C, Lora A, Zahid K, Goldenberg H, Campos M, Wyman A, Jundi B, Ploszaj M, Rivas M, Dabo A, Majka SM, Foronjy R, El Gazzar M, Geraghty P. Cigarette smoke induction of S100A9 contributes to chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2020; 319:L1021-L1035. [PMID: 32964723 DOI: 10.1152/ajplung.00207.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
S100 calcium-binding protein A9 (S100A9) is elevated in plasma and bronchoalveolar lavage fluid (BALF) of patients with chronic obstructive pulmonary disease (COPD), and aging enhances S100A9 expression in several tissues. Currently, the direct impact of S100A9-mediated signaling on lung function and within the aging lung is unknown. Here, we observed that elevated S100A9 levels in human BALF correlated with age. Elevated lung levels of S100A9 were higher in older mice compared with in young animals and coincided with pulmonary function changes. Both acute and chronic exposure to cigarette smoke enhanced S100A9 levels in age-matched mice. To examine the direct role of S100A9 on the development of COPD, S100a9-/- mice or mice administered paquinimod were exposed to chronic cigarette smoke. S100A9 depletion and inhibition attenuated the loss of lung function, pressure-volume loops, airway inflammation, lung compliance, and forced expiratory volume in 0.05 s/forced vital capacity, compared with age-matched wild-type or vehicle-administered animals. Loss of S100a9 signaling reduced cigarette smoke-induced airspace enlargement, alveolar remodeling, lung destruction, ERK and c-RAF phosphorylation, matrix metalloproteinase-3 (MMP-3), matrix metalloproteinase-9 (MMP-9), monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), and keratinocyte-derived chemokine (KC) release into the airways. Paquinimod administered to nonsmoked, aged animals reduced age-associated loss of lung function. Since fibroblasts play a major role in the production and maintenance of extracellular matrix in emphysema, primary lung fibroblasts were treated with the ERK inhibitor LY3214996 or the c-RAF inhibitor GW5074, resulting in less S100A9-induced MMP-3, MMP-9, MCP-1, IL-6, and IL-8. Silencing Toll-like receptor 4 (TLR4), receptor for advanced glycation endproducts (RAGE), or extracellular matrix metalloproteinase inducer (EMMPRIN) prevented S100A9-induced phosphorylation of ERK and c-RAF. Our data suggest that S100A9 signaling contributes to the progression of smoke-induced and age-related COPD.
Collapse
Affiliation(s)
- Christopher Railwah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | - Alnardo Lora
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | - Kanza Zahid
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | - Hannah Goldenberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | - Michael Campos
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Anne Wyman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | - Bakr Jundi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | - Magdalena Ploszaj
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | - Melissa Rivas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | - Abdoulaye Dabo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, New York.,Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | - Susan M Majka
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Robert Foronjy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, New York.,Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | - Mohamed El Gazzar
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Patrick Geraghty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, New York.,Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York
| |
Collapse
|
25
|
Saglani S, Wisnivesky JP, Charokopos A, Pascoe CD, Halayko AJ, Custovic A. Update in Asthma 2019. Am J Respir Crit Care Med 2020; 202:184-192. [PMID: 32338992 DOI: 10.1164/rccm.202003-0596up] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Juan P Wisnivesky
- Division of General Internal Medicine and.,Division of Pulmonary and Critical Care Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Antonios Charokopos
- Division of Pulmonary and Critical Care Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christopher D Pascoe
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; and.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; and.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
26
|
Histidine Utilization Is a Critical Determinant of Acinetobacter Pathogenesis. Infect Immun 2020; 88:IAI.00118-20. [PMID: 32341119 DOI: 10.1128/iai.00118-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen capable of causing a range of diseases, including respiratory and urinary tract infections and bacteremia. Treatment options are limited due to the increasing rates of antibiotic resistance, underscoring the importance of identifying new targets for antimicrobial development. During infection, A. baumannii must acquire nutrients for replication and survival. These nutrients include carbon- and nitrogen-rich molecules that are needed for bacterial growth. One possible nutrient source within the host is amino acids, which can be utilized for protein synthesis or energy generation. Of these, the amino acid histidine is among the most energetically expensive for bacteria to synthesize; therefore, scavenging histidine from the environment is likely advantageous. We previously identified the A. baumannii histidine utilization (Hut) system as being linked to nutrient zinc homeostasis, but whether the Hut system is important for histidine-dependent energy generation or vertebrate colonization is unknown. Here, we demonstrate that the Hut system is conserved among pathogenic Acinetobacter and regulated by the transcriptional repressor HutC. In addition, the Hut system is required for energy generation using histidine as a carbon and nitrogen source. Histidine was also detected extracellularly in the murine lung, demonstrating that it is bioavailable during infection. Finally, the ammonia-releasing enzyme HutH is required for acquiring nitrogen from histidine in vitro, and strains inactivated for hutH are severely attenuated in a murine model of pneumonia. These results suggest that bioavailable histidine in the lung promotes Acinetobacter pathogenesis and that histidine serves as a crucial nitrogen source during infection.
Collapse
|
27
|
Kim DH, Gu A, Lee JS, Yang EJ, Kashif A, Hong MH, Kim G, Park BS, Lee SJ, Kim IS. Suppressive effects of S100A8 and S100A9 on neutrophil apoptosis by cytokine release of human bronchial epithelial cells in asthma. Int J Med Sci 2020; 17:498-509. [PMID: 32174780 PMCID: PMC7053304 DOI: 10.7150/ijms.37833] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/05/2019] [Indexed: 12/28/2022] Open
Abstract
S100A8 and S100A9 are important proteins in the pathogenesis of allergy. Asthma is an allergic lung disease, characterized by bronchial inflammation due to leukocytes, bronchoconstriction, and allergen-specific IgE. In this study, we examined the role of S100A8 and S100A9 in the interaction of cytokine release from bronchial epithelial cells, with constitutive apoptosis of neutrophils. S100A8 and S100A9 induce increased secretion of neutrophil survival cytokines such as MCP-1, IL-6 and IL-8. This secretion is suppressed by TLR4 inhibitor), LY294002, AKT inhibitor, PD98059, SB202190, SP600125, and BAY-11-7085. S100A8 and S100A9 also induce the phosphorylation of AKT, ERK, p38 MAPK and JNK, and activation of NF-κB, which were blocked after exposure to TLR4i, LY294002, AKTi, PD98059, SB202190 or SP600125. Furthermore, supernatants collected from bronchial epithelial cells after S100A8 and S100A9 stimulation suppressed the apoptosis of normal and asthmatic neutrophils. These inhibitory mechanisms are involved in suppression of caspase 9 and caspase 3 activation, and BAX expression. The degradation of MCL-1 and BCL-2 was also blocked by S100A8 and S100A9 stimulation. Essentially, neutrophil apoptosis was blocked by co-culture of normal and asthmatic neutrophils with BEAS-2B cells in the presence of S100A8 and S100A9. These findings will enable elucidation of asthma pathogenesis.
Collapse
Affiliation(s)
- Da Hye Kim
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824
| | - Ayoung Gu
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824
| | - Ji-Sook Lee
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan, 54538
| | - Eun Ju Yang
- Department of Clinical Laboratory Science, Daegu Haany University, Gyeongsan, 38610
| | - Ayesha Kashif
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824
| | - Min Hwa Hong
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824
| | - Geunyeong Kim
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824
| | - Beom Seok Park
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824.,Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam 13135
| | - Soo Jin Lee
- Department of Pediatrics, School of Medicine, Eulji University, Daejeon, 301-746
| | - In Sik Kim
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824.,Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| |
Collapse
|
28
|
Manni ML, Alcorn JF. Calprotectin-g the Lung during Type 2 Allergic Airway Inflammation. Am J Respir Cell Mol Biol 2019; 61:405-407. [PMID: 31046403 PMCID: PMC6775944 DOI: 10.1165/rcmb.2019-0125ed] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Michelle L Manni
- Department of PediatricsUPMC Children's Hospital of PittsburghPittsburgh, Pennsylvania
| | - John F Alcorn
- Department of PediatricsUPMC Children's Hospital of PittsburghPittsburgh, Pennsylvania
| |
Collapse
|