1
|
Li X, Hegarty K, Lin F, Chang JL, Abdalla A, Dhanabalan K, Solomevich SO, Song W, Roder K, Yao C, Lu W, Carmeliet P, Choudhary G, Dennery PA, Yao H. Endothelial Cpt1a Inhibits Neonatal Hyperoxia-Induced Pulmonary Vascular Remodeling by Repressing Endothelial-Mesenchymal Transition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415824. [PMID: 39799584 PMCID: PMC11923872 DOI: 10.1002/advs.202415824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/15/2024] [Indexed: 01/15/2025]
Abstract
Pulmonary hypertension (PH) increases the mortality of preterm infants with bronchopulmonary dysplasia (BPD). There are no curative therapies for this disease. Lung endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine shuttle system, is reduced in a rodent model of BPD. It is unknown whether endothelial Cpt1a reduction causes pulmonary vascular (PV) remodeling. The latter can be the result of endothelial-mesenchymal transition (EndoMT). Here, endothelial cell (EC)-specific Cpt1a KO and WT mice (<12 h old) are exposed to hyperoxia (70% O2) for 14 days and allow them to recover in normoxia until postnatal day 28. Hyperoxia causes PH, which is aggravated in EC-specific Cpt1a KO mice. Upregulating endothelial Cpt1a expression inhibits hyperoxia-induced PV remodeling. Hyperoxia causes lung EndoMT, detected by immunofluorescence, scRNA-sequencing, and EC lineage tracing, which is further increased in EC-specific Cpt1a KO mice. Blocking EndoMT inhibits hyperoxia-induced PV remodeling. Male mice under the same high oxygen conditions develop a higher degree of PH than females, which is associated with reduced endothelial Cpt1a expression. Conclusively, neonatal hyperoxia causes PH by decreasing endothelial Cpt1a expression and upregulating EndoMT. This provides a valuable strategy for developing targeted therapies by upregulating endothelial Cpt1a levels or inhibiting EndoMT to treat BPD-associated PH.
Collapse
Affiliation(s)
- Xiaoyun Li
- Department of Molecular BiologyCellular Biology, and BiochemistryBrown UniversityProvidenceRI02912USA
- Providence VA Medical CenterProvidenceRI02908USA
- Division of CardiologyDepartment of MedicineWarren Alpert Medical School of Brown UniversityProvidenceRI02903USA
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Katy Hegarty
- Department of Molecular BiologyCellular Biology, and BiochemistryBrown UniversityProvidenceRI02912USA
| | - Fanjie Lin
- State Key Laboratory of Respiratory DiseaseGuangdong Key Laboratory of Vascular DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510120China
| | - Jason L. Chang
- Department of Molecular BiologyCellular Biology, and BiochemistryBrown UniversityProvidenceRI02912USA
| | - Amro Abdalla
- Providence VA Medical CenterProvidenceRI02908USA
| | - Karthik Dhanabalan
- Division of CardiologyDepartment of MedicineWarren Alpert Medical School of Brown UniversityProvidenceRI02903USA
| | - Sergey O. Solomevich
- Division of CardiologyDepartment of MedicineWarren Alpert Medical School of Brown UniversityProvidenceRI02903USA
| | - Wenliang Song
- Division of CardiologyDepartment of MedicineWarren Alpert Medical School of Brown UniversityProvidenceRI02903USA
| | - Karim Roder
- Division of CardiologyDepartment of MedicineWarren Alpert Medical School of Brown UniversityProvidenceRI02903USA
| | - Chenrui Yao
- College of Arts & SciencesBoston UniversityBostonMA02215USA
| | - Wenju Lu
- State Key Laboratory of Respiratory DiseaseGuangdong Key Laboratory of Vascular DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510120China
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular MetabolismDepartment of Oncology and Leuven Cancer InstituteKU LeuvenVIB Center for Cancer Biology, VIBLeuvenBrussels3000Belgium
- Center for BiotechnologyKhalifa UniversityAbu Dhabi127788UAE
| | - Gaurav Choudhary
- Providence VA Medical CenterProvidenceRI02908USA
- Division of CardiologyDepartment of MedicineWarren Alpert Medical School of Brown UniversityProvidenceRI02903USA
| | - Phyllis A. Dennery
- Department of Molecular BiologyCellular Biology, and BiochemistryBrown UniversityProvidenceRI02912USA
- Department of PediatricsWarren Alpert Medical School of Brown UniversityProvidenceRI02903USA
| | - Hongwei Yao
- Department of Molecular BiologyCellular Biology, and BiochemistryBrown UniversityProvidenceRI02912USA
- Providence VA Medical CenterProvidenceRI02908USA
- Division of CardiologyDepartment of MedicineWarren Alpert Medical School of Brown UniversityProvidenceRI02903USA
| |
Collapse
|
2
|
Fang C, Tu H, Li R, Bi D, Shu G. Bronchopulmonary dysplasia: analysis and validation of ferroptosis-related diagnostic biomarkers and immune cell infiltration features. Pediatr Res 2024; 96:1673-1680. [PMID: 38760473 DOI: 10.1038/s41390-024-03249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Early and precise diagnosis of bronchopulmonary dysplasia (BPD) is essential to improve the prognosis of preterm infants with BPD. Studying ferroptosis-related genes for diagnostic markers of BPD was the objective of this study. METHODS Using the GEO database and the FerrDb database, we obtained the GSE32472 dataset and screened the ferroptosis-related differentially expressed mRNAs (FRDE-mRNAs). By using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), possible biological functions and pathways were identified for FRDE-mRNAs. Three machine learning algorithms (LASSO, SVM-RFE, Random Forest) were used to recognize hub genes, as well as CIBERSORT for exploring the immune landscape of BPD and controls. Functional predictions for hub genes were made using single-gene gene set enrichment analysis (GSEA). RESULTS Twenty three FRDE-mRNAs were obtained and were mainly involved in autophagy, fatty acid metabolism and ferroptosis. The four hub genes (LPIN1, ACADSB, WIPI1 and SLC7A11) screened were utilized to construct a diagnostic nomogram. The receiver operating characteristic (ROC) curves and calibration curves demonstrateld that the nomogram exhibited good predictive performance. Eight types of immune cell markers differed significantly between BPD and controls. CONCLUSION We developed a diagnostic model for BPD, which could facilitate the early diagnosis and timely intervention of BPD. IMPACT The role of ferroptosis in bronchopulmonary dysplasia is rarely reported. The ferroptosis-related genes (LPIN1, ACADSB, WIPI1 and SLC7A11) we identified could serve as early diagnostic biomarkers for BPD. Immune cell infiltration features in BPD and signaling pathways associated with marker genes give new insight into the disease process and provide a basis for further research.
Collapse
Affiliation(s)
| | - Haixia Tu
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Rong Li
- Dalian Medical University, Dalian, China
| | - Dengqin Bi
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Guihua Shu
- School of Medicine, Yangzhou University, Yangzhou, China.
- Department of Neonatology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Guo Y, Liu Y, Zhang R, Xu S, Guo X, Yu Z, Chen G. Analysis of variable metabolites in preterm infants with bronchopulmonary dysplasia: a systematic review and meta-analysis. Ital J Pediatr 2024; 50:246. [PMID: 39543750 PMCID: PMC11566045 DOI: 10.1186/s13052-024-01812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/27/2024] [Indexed: 11/17/2024] Open
Abstract
Numerous studies have attempted to identify potential biomarkers for early detection of bronchopulmonary dysplasia (BPD) in preterm infants using metabolomics techniques. However, the presence of consistent evidence remains elusive. Our study aimed to conduct a systematic review and meta-analysis to identify differences in small-molecule metabolites between BPD and non-BPD preterm infants. Through meticulous screening of numerous samples, we identified promising candidates, providing valuable insights for future research. We searched PubMed, the Cochrane Library, Embase, Web of Science, China National Knowledge Internet, Wan-fang database, Chinese Science and Technique Journal Database and Chinese Biomedical Literature Database from inception until January 16, 2024. Studies were comprehensively reviewed against inclusion criteria. We included case-control studies and adhered to Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Study quality was assessed with the Newcastle-Ottawa scale. We compared the changes in metabolite levels between the BPD and non-BPD preterm infants. A meta-analysis was conducted on targeted metabolomics research data based on the strategy of standardized mean differences (MD) and 95% confidence intervals (CI).Fifteen studies (1357 participants) were included. These clinical-based metabolomics studies clarified 110 differential metabolites between BPD and non-BPD preterm infants. The meta-analysis revealed higher glutamate concentration in the BPD group compared to the non-BPD group (MD = 1, 95% CI 0.59 to 1.41, p < 0.00001). Amino acids were identified as the key metabolites distinguishing preterm infants with and without BPD, with glutamate potentially serving as a BPD predictor in this population.
Collapse
Affiliation(s)
- Yanping Guo
- Department of Pediatrics, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ying Liu
- Department of Pediatrics, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ruolin Zhang
- Department of Pediatrics, Division of Neonatology, Nanshan Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Songzhou Xu
- Department of Pediatrics, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xin Guo
- Division of Neonatology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Zhangbin Yu
- Department of Pediatrics, Division of Neonatology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China.
| | - Guobing Chen
- Department of Pediatrics, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
4
|
Pang B, Dong G, Pang T, Sun X, Liu X, Nie Y, Chang X. Emerging insights into the pathogenesis and therapeutic strategies for vascular endothelial injury-associated diseases: focus on mitochondrial dysfunction. Angiogenesis 2024; 27:623-639. [PMID: 39060773 PMCID: PMC11564294 DOI: 10.1007/s10456-024-09938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
As a vital component of blood vessels, endothelial cells play a key role in maintaining overall physiological function by residing between circulating blood and semi-solid tissue. Various stress stimuli can induce endothelial injury, leading to the onset of corresponding diseases in the body. In recent years, the importance of mitochondria in vascular endothelial injury has become increasingly apparent. Mitochondria, as the primary site of cellular aerobic respiration and the organelle for "energy information transfer," can detect endothelial cell damage by integrating and receiving various external stress signals. The generation of reactive oxygen species (ROS) and mitochondrial dysfunction often determine the evolution of endothelial cell injury towards necrosis or apoptosis. Therefore, mitochondria are closely associated with endothelial cell function, helping to determine the progression of clinical diseases. This article comprehensively reviews the interconnection and pathogenesis of mitochondrial-induced vascular endothelial cell injury in cardiovascular diseases, renal diseases, pulmonary-related diseases, cerebrovascular diseases, and microvascular diseases associated with diabetes. Corresponding therapeutic approaches are also provided. Additionally, strategies for using clinical drugs to treat vascular endothelial injury-based diseases are discussed, aiming to offer new insights and treatment options for the clinical diagnosis of related vascular injuries.
Collapse
Affiliation(s)
- Boxian Pang
- Beijing University of Chinese Medicine, Beijing, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | | | - Tieliang Pang
- Beijing Anding hospital, Capital Medical University, Beijing, China
| | - Xinyao Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Xin Liu
- Bioscience Department, University of Nottingham, Nottingham, UK
| | - Yifeng Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiagge, Xicheng District, Beijing, China.
| |
Collapse
|
5
|
Li H, Dai X, Zhou J, Wang Y, Zhang S, Guo J, Shen L, Yan H, Jiang H. Mitochondrial dynamics in pulmonary disease: Implications for the potential therapeutics. J Cell Physiol 2024; 239:e31370. [PMID: 38988059 DOI: 10.1002/jcp.31370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Mitochondria are dynamic organelles that continuously undergo fusion/fission to maintain normal cell physiological activities and energy metabolism. When mitochondrial dynamics is unbalanced, mitochondrial homeostasis is broken, thus damaging mitochondrial function. Accumulating evidence demonstrates that impairment in mitochondrial dynamics leads to lung tissue injury and pulmonary disease progression in a variety of disease models, including inflammatory responses, apoptosis, and barrier breakdown, and that the role of mitochondrial dynamics varies among pulmonary diseases. These findings suggest that modulation of mitochondrial dynamics may be considered as a valid therapeutic strategy in pulmonary diseases. In this review, we discuss the current evidence on the role of mitochondrial dynamics in pulmonary diseases, with a particular focus on its underlying mechanisms in the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis (PF), pulmonary arterial hypertension (PAH), lung cancer and bronchopulmonary dysplasia (BPD), and outline effective drugs targeting mitochondrial dynamics-related proteins, highlighting the great potential of targeting mitochondrial dynamics in the treatment of pulmonary disease.
Collapse
Affiliation(s)
- Hui Li
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Xinyan Dai
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Junfu Zhou
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yujuan Wang
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Shiying Zhang
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jiacheng Guo
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Lidu Shen
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Hengxiu Yan
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Huiling Jiang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Shao M, Gao Y, Xu X, Shi J, Wang Z, Du J. Expediting the development of robust 5-FU-resistant colorectal cancer models using innovative combined in vivo and in vitro strategies. Biomed Pharmacother 2024; 180:117576. [PMID: 39442235 DOI: 10.1016/j.biopha.2024.117576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/14/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND 5-Fluorouracil (5-FU) is a cornerstone in colorectal cancer therapy, but resistance has compromised its efficacy, necessitating detailed research into resistance mechanisms. Traditional methods for developing 5-FU-resistant cell lines are lengthy, unstable, and often unrepresentative of clinical scenarios. METHODS We devised a rapid approach to create 5-FU-resistant colorectal cancer cells using an integrated in vivo/in vitro methodology. HCT116 cells were pretreated with 5-FU, then implanted into nude mice. Tumor growth was monitored, and cells from the tumors were cultured to establish the HCT116-Tumor cell line. Cells from 5-FU-exposed tumors received increasing 5-FU doses to induce resistance, creating the tumor-derived resistant (TR) cell line. Cells cultured without 5-FU were termed tumor-derived parental (TP) cells. An in vitro 5-FU resistance model, CR, served as a benchmark. Resistance metrics were evaluated using CCK-8 assays, Western Blotting, flow cytometry, and in vivo studies. Proteomics identified resistance-related differentially expressed proteins (DEPs). RESULTS Low-dose 5-FU pretreatment accelerated tumor growth. Combining in vivo and in vitro methods, we developed 5-FU-resistant TR cells within two and a half months, faster than the ten-month conventional protocol. TR cells showed stronger and more durable 5-FU resistance than CR cells, with inhibited apoptosis, autophagy, and ferroptosis, and activation of MDR1. Proteomic analysis indicated more DEPs in TR cells, suggesting unique resistance mechanisms. Animal studies confirmed enhanced drug resistance in TR cells. CONCLUSIONS Our integrated approach rapidly develops colorectal cancer cells with robust 5-FU resistance, offering a potent model for exploring multiple resistance pathways and counter-resistance strategies.
Collapse
Affiliation(s)
- Ming Shao
- Department of Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yunran Gao
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xiling Xu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jiyuan Shi
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Zunyun Wang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Juan Du
- Department of Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, China; School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
7
|
Ren Y, Qin S, Liu X, Feng B, Liu J, Zhang J, Yuan P, Yu K, Mei H, Chen M. Hyperoxia can Induce Lung Injury by Upregulating AECII Autophagy and Apoptosis Via the mTOR Pathway. Mol Biotechnol 2024; 66:3357-3368. [PMID: 37938537 PMCID: PMC11549204 DOI: 10.1007/s12033-023-00945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023]
Abstract
Oxygen therapy is a crucial medical intervention, but it is undeniable that it can lead to lung damage. The mTOR pathway plays a pivotal role in governing cell survival, including autophagy and apoptosis, two phenomena deeply entwined with the evolution of diseases. However, it is unclarified whether the mTOR pathway is involved in hyperoxic acute lung injury (HALI). The current study aims to clarify the molecular mechanism underlying the pathogenesis of HALI by constructing in vitro and in vivo models using H2O2 and hyperoxia exposure, respectively. To investigate the role of mTOR, the experiment was divided into five groups, including normal group, injury group, mTOR inhibitor group, mTOR activator group, and DMSO control group. Western blotting, Autophagy double labeling, TUNEL staining, and HE staining were applied to evaluate protein expression, autophagy activity, cell apoptosis, and pathological changes in lung tissues. Our data revealed that hyperoxia can induce autophagy and apoptosis in Type II alveolar epithelial cell (AECII) isolated from the treated rats, as well as injuries in the rat lung tissues; also, H2O2 stimulation increased autophagy and apoptosis in MLE-12 cells. Noticeably, the experiments performed in both in vitro and in vivo models proved that the mTOR inhibitor Rapamycin (Rapa) functioned synergistically with hyperoxia or H2O2 to promote AECII autophagy, which led to increased apoptosis and exacerbated lung injury. On the contrary, activation of mTOR with MHY1485 suppressed autophagy activity, consequently resulting in reduced apoptosis and lung injury in H2O2-challenged MLE-12 cells and hyperoxia-exposed rats. In conclusion, hyperoxia caused lung injury via mTOR-mediated AECII autophagy.
Collapse
Affiliation(s)
- Yingcong Ren
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Song Qin
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xinxin Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Banghai Feng
- Department of Critical Care Medicine, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, 563000, Guizhou, China
| | - Junya Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jing Zhang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ping Yuan
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Kun Yu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Hong Mei
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
8
|
Guo Y, Chen J, Zhang Z, Liu C, Li J, Liu Y. Analysis of blood metabolite characteristics at birth in preterm infants with bronchopulmonary dysplasia: an observational cohort study. Front Pediatr 2024; 12:1474381. [PMID: 39544337 PMCID: PMC11560417 DOI: 10.3389/fped.2024.1474381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Background To analyze the characteristics of blood metabolites within 24 h after birth in preterm infants with bronchopulmonary dysplasia (BPD) and to identify biomarkers for predicting the occurrence of BPD. Methods Dried blood spots (DBS) were collected at birth from preterm infants with gestational age (GA) of less than 32 weeks in the cohort. The infants were divided into the BPD group and non-BPD group based on whether they eventually developed BPD. Dried blood spot filter papers were prepared from venous blood collected within the first 24 h of life. Metabolites were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and analyzed using the R software package. Results DBS samples from 140 infants with the GA < 32 weeks were used in the study, with 4 infants who died being excluded. Among the remaining 136 preterm infants, 38 developed BPD and 98 did not. To control for GA differences, we conducted a subgroup analysis. In the GA 24+4-27+6 weeks subgroup, we observed a significant decrease in histidine levels and the ornithine/citrulline ratio in the BPD group. Additionally, the ratios of acylcarnitines C3/C0 and C5/C0 were also significantly reduced. Conclusions Metabolic markers in DBS within 24 h after birth are promising for predicting the occurrence of BPD in preterm infants with GA < 28 weeks. Clinical Trial Registration [https://www.chictr.org.cn/], identifier [ChiCTR2100048293, ChiCTR2400081615].
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Liu
- Department of Pediatrics, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
9
|
Wang S, Chen H, Li Z, Xu G, Bao X. Hyperbaric oxygen-induced acute lung injury: A mouse model study on pathogenic characteristics and recovery dynamics. Front Physiol 2024; 15:1474933. [PMID: 39493864 PMCID: PMC11527661 DOI: 10.3389/fphys.2024.1474933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Oxygen is an essential substance for the maintenance of human life. It is also widely used in clinical and diving medicine. Although oxygen is crucial for survival, too much oxygen can be harmful. Excessive oxygen inhalation in a short period of time can lead to injury, and the lung is one of the main target organs. Acute lung injury (ALI) induced by hyperbaric oxygen (HBO) is notably more severe than that caused by normobaric oxygen, yet systematic research on such injury and its regression is scarce. In this study, two independent experiments were designed. In the first experiment, mice were exposed to 2 atmospheres absolute (ATA), ≥95% oxygen for 2, 4, 6, and 8 h. Changes in lung histopathology, inflammation and expression of chemokines, alveolar-capillary barrier, and 8-OHdG were detected before and after the exposure. In the second experiment, these parameters were measured at 0 h, 12 h, and 24 h following 6 h of exposure to 2 ATA of ≥95% oxygen. Research indicates that ALI induced by HBO is characterized histologically by alveolar expansion, atelectasis, inflammatory cell infiltration, and hemorrhage. At 2 ATA, significant changes in the alveolar-capillary barrier were observed after more than 95% oxygen exposure for 4 h, as evidenced by increased Evans blue (EB) extravasation (p = 0.0200). After 6 h of HBO exposure, lung tissue pathology scores, 8-OHdG levels, and inflammatory and chemotactic factors (such as Il6, CCL2, CCL3, CXCL5, and CXCL10), intercellular adhesion molecule 1 (ICAM1), and vascular cell adhesion molecule 1 (VCAM1) were significantly elevated. Compared to lung injury caused by normobaric oxygen, the onset time of injury was significantly shortened. Additionally, it was observed that these markers continued to increase after leaving the HBO environment, peaking at 12 h and starting to recover at 24 h, indicating that the peak of inflammatory lung injury occurs within 12 h post-exposure, with recovery beginning at 24 h. This contradicts the common belief that lung injury is alleviated upon removal from a high-oxygen environment. However, EB levels, which reflect damage to the alveolar-capillary barrier, and VE-Cadherin (VE-Cad), tight junction protein 1 (ZO-1), ICAM1, and VCAM1 remained significantly altered 24 h after leaving the HBO environment. This suggests that the alveolar-capillary barrier is the most sensitive and slowest recovering part of the lung injury induced by HBO. These findings can provide insights into the pathogenesis and progression of lung injury caused by HBO and offer references for identifying corresponding intervention targets.
Collapse
Affiliation(s)
- Shu Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Diving and Hyperbaric Medicine, Naval Medical Center, Shanghai, China
| | - Hong Chen
- Cadre Diagnosis and Treatment Department, The General Hospital of the People’s Liberation Army, Beijing, China
| | - Zhi Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangxu Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaochen Bao
- Department of Diving and Hyperbaric Medicine, Naval Medical Center, Shanghai, China
| |
Collapse
|
10
|
Rana U, Joshi C, Whitney E, Afolayan A, Dowell J, Teng RJ, Konduri GG. Decreased Liver Kinase B1 Expression and Impaired Angiogenesis in a Murine Model of Bronchopulmonary Dysplasia. Am J Respir Cell Mol Biol 2024; 71:481-494. [PMID: 38869353 DOI: 10.1165/rcmb.2024-0037oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/13/2024] [Indexed: 06/14/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by impaired lung alveolar and vascular growth. We investigated the hypothesis that neonatal exposure to hyperoxia leads to persistent BPD phenotype caused by decreased expression of liver kinase B1 (LKB1), a key regulator of mitochondrial function. We exposed mouse pups from Postnatal Day (P)1 through P10 to 21% or 75% oxygen. Half of the pups in each group received metformin or saline intraperitoneally from P1 to P10. Pups were killed at P4 or P10 or recovered in 21% O2 until euthanasia at P21. Lung histology and morphometry, immunofluorescence, and immunoblots were performed to detect changes in lung structure and expression of LKB1; downstream targets AMPK, PGC-1α, and electron transport chain (ETC) complexes; and Notch ligands Jagged 1 and delta-like 4. LKB1 signaling and in vitro angiogenesis were assessed in human pulmonary artery endothelial cells (exposed to 21% or 95% O2 for 36 hours. Levels of LKB1, phosphorylated AMPK, PGC-1α, and ETC complexes were decreased in lungs at P10 and P21 in hyperoxia. Metformin increased LKB1, phosphorylated AMPK, PGC-1α, and ETC complexes at P10 and P21 in pups exposed to hyperoxia. Radial alveolar count was decreased, and mean linear intercept increased in pups exposed to hyperoxia at P10 and P21; these were improved by metformin. Lung capillary density was decreased in hyperoxia at P10 and P21 and was increased by metformin. In vitro angiogenesis was decreased in human pulmonary artery endothelial cells by 95% O2 and was improved by metformin. Decreased LKB1 signaling may contribute to decreased alveolar and vascular growth in a mouse model of BPD.
Collapse
Affiliation(s)
- Ujala Rana
- Neonatology Division, Department of Pediatrics, Medical College of Wisconsin and Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin
| | - Chintamani Joshi
- Neonatology Division, Department of Pediatrics, Medical College of Wisconsin and Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin
| | - Elijah Whitney
- Neonatology Division, Department of Pediatrics, Medical College of Wisconsin and Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin
| | - Adeleye Afolayan
- Neonatology Division, Department of Pediatrics, Medical College of Wisconsin and Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin
| | - Jasmine Dowell
- Neonatology Division, Department of Pediatrics, Medical College of Wisconsin and Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin
| | - Ru-Jeng Teng
- Neonatology Division, Department of Pediatrics, Medical College of Wisconsin and Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin
| | - Girija G Konduri
- Neonatology Division, Department of Pediatrics, Medical College of Wisconsin and Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
11
|
Ren H, Hu W, Jiang T, Yao Q, Qi Y, Huang K. Mechanical stress induced mitochondrial dysfunction in cardiovascular diseases: Novel mechanisms and therapeutic targets. Biomed Pharmacother 2024; 174:116545. [PMID: 38603884 DOI: 10.1016/j.biopha.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Others and our studies have shown that mechanical stresses (forces) including shear stress and cyclic stretch, occur in various pathological conditions, play significant roles in the development and progression of CVDs. Mitochondria regulate the physiological processes of cardiac and vascular cells mainly through adenosine triphosphate (ATP) production, calcium flux and redox control while promote cell death through electron transport complex (ETC) related cellular stress response. Mounting evidence reveal that mechanical stress-induced mitochondrial dysfunction plays a vital role in the pathogenesis of many CVDs including heart failure and atherosclerosis. This review summarized mitochondrial functions in cardiovascular system under physiological mechanical stress and mitochondrial dysfunction under pathological mechanical stress in CVDs (graphical abstract). The study of mitochondrial dysfunction under mechanical stress can further our understanding of the underlying mechanisms, identify potential therapeutic targets, and aid the development of novel treatments of CVDs.
Collapse
Affiliation(s)
- He Ren
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Weiyi Hu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Tao Jiang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Qingping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Yingxin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Kai Huang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China.
| |
Collapse
|
12
|
Lu X, Li G, Liu Y, Luo G, Ding S, Zhang T, Li N, Geng Q. The role of fatty acid metabolism in acute lung injury: a special focus on immunometabolism. Cell Mol Life Sci 2024; 81:120. [PMID: 38456906 PMCID: PMC10923746 DOI: 10.1007/s00018-024-05131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Reputable evidence from multiple studies suggests that excessive and uncontrolled inflammation plays an indispensable role in mediating, amplifying, and protracting acute lung injury (ALI). Traditionally, immunity and energy metabolism are regarded as separate functions regulated by distinct mechanisms, but recently, more and more evidence show that immunity and energy metabolism exhibit a strong interaction which has given rise to an emerging field of immunometabolism. Mammalian lungs are organs with active fatty acid metabolism, however, during ALI, inflammation and oxidative stress lead to a series metabolic reprogramming such as impaired fatty acid oxidation, increased expression of proteins involved in fatty acid uptake and transport, enhanced synthesis of fatty acids, and accumulation of lipid droplets. In addition, obesity represents a significant risk factor for ALI/ARDS. Thus, we have further elucidated the mechanisms of obesity exacerbating ALI from the perspective of fatty acid metabolism. To sum up, this paper presents a systematical review of the relationship between extensive fatty acid metabolic pathways and acute lung injury and summarizes recent advances in understanding the involvement of fatty acid metabolism-related pathways in ALI. We hold an optimistic believe that targeting fatty acid metabolism pathway is a promising lung protection strategy, but the specific regulatory mechanisms are way too complex, necessitating further extensive and in-depth investigations in future studies.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Tianyu Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
13
|
Wang GY, Xu X, Xiong DY, Deng L, Liu W, Huang XT. CPT1A as a potential therapeutic target for lipopolysaccharide-induced acute lung injury in mice. Sci Rep 2024; 14:1600. [PMID: 38238472 PMCID: PMC10796431 DOI: 10.1038/s41598-024-52042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
Acute lung injury (ALI) remains a high mortality rate with dramatic lung inflammation and alveolar epithelial cell death. Although fatty acid β-oxidation (FAO) impairment has been implicated in the pathogenesis of ALI, whether Carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme for FAO, plays roles in lipopolysaccharide (LPS)-induced ALI remains unclear. Accordingly, we focused on exploring the effect of CPT1A in the context of ALI and the underlying mechanisms. We found that overexpression of CPT1A (AAV-CPT1A) effectively alleviated lung injury by reduction of lung wet-to-dry ratio, inflammatory cell infiltration, and protein levels in the BALF of ALI mice. Meanwhile, AAV-CPT1A significantly lessened histopathological changes and several cytokines' secretions. In contrast, blocking CPT1A with etomoxir augmented inflammatory responses and lung injury in ALI mice. Furthermore, we found that overexpression of CPT1A with lentivirus reduced the apoptosis rates of alveolar epithelial cells and the expression of apoptosis-related proteins induced by LPS in MLE12 cells, while etomoxir increased the apoptosis of MLE12 cells. Overexpression of CPT1A prevented the drop in bioenergetics, palmitate oxidation, and ATP levels. In conclusion, the results rendered CPT1A worthy of further development into a pharmaceutical drug for the treatment of ALI.
Collapse
Affiliation(s)
- Gui-Yun Wang
- Shandong Xiehe University, Jinan, 250109, Shandong, China
| | - Xia Xu
- Shandong Xiehe University, Jinan, 250109, Shandong, China
| | - Da-Yan Xiong
- Xiangya School of Nursing, Central South University, Changsha, 410013, Hunan, China
| | - Lang Deng
- Xiangya School of Nursing, Central South University, Changsha, 410013, Hunan, China
| | - Wei Liu
- Xiangya School of Nursing, Central South University, Changsha, 410013, Hunan, China
| | - Xiao-Ting Huang
- Xiangya School of Nursing, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
14
|
Acharya R, Shetty SS, Pavan G, Monteiro F, Munikumar M, Naresh S, Kumari NS. AI-Based Homology Modelling of Fatty Acid Transport Protein 1 Using AlphaFold: Structural Elucidation and Molecular Dynamics Exploration. Biomolecules 2023; 13:1670. [PMID: 38002353 PMCID: PMC10669040 DOI: 10.3390/biom13111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Fatty acid transport protein 1 (FATP1) is an integral transmembrane protein that is involved in facilitating the translocation of long-chain fatty acids (LCFA) across the plasma membrane, thereby orchestrating the importation of LCFA into the cell. FATP1 also functions as an acyl-CoA ligase, catalyzing the ATP-dependent formation of fatty acyl-CoA using LCFA and VLCFA (very-long-chain fatty acids) as substrates. It is expressed in various types of tissues and is involved in the regulation of crucial signalling pathways, thus playing a vital role in numerous physiological and pathological conditions. Structural insight about FATP1 is, thus, extremely important for understanding the mechanism of action of this protein and developing efficient treatments against its anomalous expression and dysregulation, which are often associated with pathological conditions such as breast cancer. As of now, there has been no prior prediction or evaluation of the 3D configuration of the human FATP1 protein, hindering a comprehensive understanding of the distinct functional roles of its individual domains. In our pursuit to unravel the structure of the most commonly expressed isoforms of FATP1, we employed the cutting-edge ALPHAFOLD 2 model for an initial prediction of the entire protein's structure. This prediction was complemented by molecular dynamics simulations, focusing on the most promising model. We predicted the structure of FATP1 in silico and thoroughly refined and validated it using coarse and molecular dynamics in the absence of the complete crystal structure. Their relative dynamics revealed the different properties of the characteristic FATP1.
Collapse
Affiliation(s)
- Ranjitha Acharya
- Department of Biochemistry, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (R.A.); (F.M.); (S.N.)
| | - Shilpa S. Shetty
- Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (S.S.S.); (G.P.)
| | - Gollapalli Pavan
- Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (S.S.S.); (G.P.)
| | - Flama Monteiro
- Department of Biochemistry, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (R.A.); (F.M.); (S.N.)
| | - Manne Munikumar
- Clinical Division, ICMR-National Institute of Nutrition, Jamai-Osmania (Post), Hyderabad 500007, India;
| | - Sriram Naresh
- Department of Biochemistry, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (R.A.); (F.M.); (S.N.)
| | - Nalilu Suchetha Kumari
- Department of Biochemistry, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (R.A.); (F.M.); (S.N.)
| |
Collapse
|
15
|
Wu D, He H, Chen J, Yao S, Xie H, Jiang W, Lv X, Gao W, Meng L, Yao X. L-carnitine reduces acute lung injury via mitochondria modulation and inflammation control in pulmonary macrophages. Braz J Med Biol Res 2023; 56:e12830. [PMID: 37878885 PMCID: PMC10591484 DOI: 10.1590/1414-431x2023e12830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/11/2023] [Indexed: 10/27/2023] Open
Abstract
Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a critical respiratory syndrome with limited effective interventions. Lung macrophages play a critical role in the pathogenesis of abnormal inflammatory response in the syndrome. Recently, impaired fatty acid oxidation (FAO), one of the key lipid metabolic signalings, was found to participate in the onset and development of various lung diseases, including ALI/ARDS. Lipid/fatty acid contents within mouse lungs were quantified using the Oil Red O staining. The protective effect of FAO activator L-carnitine (Lca, 50, 500, or 5 mg/mL) was evaluated by cell counting kit 8 (CCK-8) assay, real-time quantitative PCR (qPCR), ELISA, immunoblotting, fluorescence imaging, and fluorescence plate reader detection in lipopolysaccharide (LPS) (100 ng/mL)-stimulated THP-1-derived macrophages. The in vivo efficacy of Lca (300 mg/kg) was determined in a 10 mg/kg LPS-induced ALI mouse model. We found for the first time that lipid accumulation in pulmonary macrophages was significantly increased in a classical ALI murine model, which indicated disrupted FAO induced by LPS. Lca showed potent anti-inflammatory and antioxidative effects on THP-1 derived macrophages upon LPS stimulation. Mechanistically, Lca was able to maintain FAO, mitochondrial activity, and ameliorate mitochondrial dynamics. In the LPS-induced ALI mouse model, we further discovered that Lca inhibited neutrophilic inflammation and decreased diffuse damage, which might be due to the preservation of mitochondrial homeostasis. These results broadened our understanding of ALI/ARDS pathogenesis and provided a promising drug candidate for this syndrome.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou, Nanjing, China
| | - Haiyan He
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nantong University, North Haierxiang, Nantong, China
| | - Jinliang Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nantong University, North Haierxiang, Nantong, China
| | - Sumei Yao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nantong University, North Haierxiang, Nantong, China
| | - Haiqin Xie
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nantong University, North Haierxiang, Nantong, China
| | - Wenyan Jiang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nantong University, North Haierxiang, Nantong, China
| | - Xuedong Lv
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nantong University, North Haierxiang, Nantong, China
| | - Wei Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Jimo, Shanghai, China
| | - Linlin Meng
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Jimo, Shanghai, China
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou, Nanjing, China
| |
Collapse
|
16
|
Sun T, Yu H, Li D, Zhang H, Fu J. Emerging role of metabolic reprogramming in hyperoxia-associated neonatal diseases. Redox Biol 2023; 66:102865. [PMID: 37659187 PMCID: PMC10480540 DOI: 10.1016/j.redox.2023.102865] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
Oxygen therapy is common during the neonatal period to improve survival, but it can increase the risk of oxygen toxicity. Hyperoxia can damage multiple organs and systems in newborns, commonly causing lung conditions such as bronchopulmonary dysplasia and pulmonary hypertension, as well as damage to other organs, including the brain, gut, and eyes. These conditions are collectively referred to as newborn oxygen radical disease to indicate the multi-system damage caused by hyperoxia. Hyperoxia can also lead to changes in metabolic pathways and the production of abnormal metabolites through a process called metabolic reprogramming. Currently, some studies have analyzed the mechanism of metabolic reprogramming induced by hyperoxia. The focus has been on mitochondrial oxidative stress, mitochondrial dynamics, and multi-organ interactions, such as the lung-gut, lung-brain, and brain-gut axes. In this article, we provide an overview of the major metabolic pathway changes reported in hyperoxia-associated neonatal diseases and explore the potential mechanisms of metabolic reprogramming. Metabolic reprogramming induced by hyperoxia can cause multi-organ metabolic disorders in newborns, including abnormal glucose, lipid, and amino acid metabolism. Moreover, abnormal metabolites may predict the occurrence of disease, suggesting their potential as therapeutic targets. Although the mechanism of metabolic reprogramming caused by hyperoxia requires further elucidation, mitochondria and the gut-lung-brain axis may play a key role in metabolic reprogramming.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Danni Li
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jianhua Fu
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
17
|
Tang Y, Zhang W, Wang Y, Li H, Zhang C, Wang Y, Lin Y, Shi H, Xiang H, Huang L, Zhu J. Expression Variation of CPT1A Induces Lipid Reconstruction in Goat Intramuscular Precursor Adipocytes. Int J Mol Sci 2023; 24:13415. [PMID: 37686221 PMCID: PMC10488119 DOI: 10.3390/ijms241713415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Intramuscular fat (IMF) deposition is one of the most important factors affecting meat quality and is closely associated with the expression of carnitine palmitoyl transferase 1A (CPT1A) which facilitates the transfer of long-chain fatty acids (LCFAs) into the mitochondria. However, the role of how CPT1A regulates the IMF formation remains unclear. Herein, we established the temporal expression profile of CPT1A during the differentiation of goat intramuscular precursor adipocytes. Functionally, the knockdown of CPT1A by siRNA treatment significantly increased the mRNA expression of adipogenic genes and promoted lipid deposition in goat intramuscular precursor adipocytes. Meanwhile, a CPT1A deficiency inhibited cell proliferation and promoted cell apoptosis significantly. CPT1A was then supported by the overexpression of CPT1A which significantly suppressed the cellular triglyceride deposition and promoted cell proliferation although the cell apoptosis also was increased. For RNA sequencing, a total of 167 differential expression genes (DEGs), including 125 upregulated DEGs and 42 downregulated DEGs, were observed after the RNA silencing of CPT1A compared to the control, and were predicted to enrich in the focal adhesion pathway, cell cycle, apoptosis and the MAPK signaling pathway by KEGG analysis. Specifically, blocking the MAPK signaling pathway by a specific inhibitor (PD169316) rescued the promotion of cell proliferation in CPT1A overexpression adipocytes. In conclusion, the expression variation of CPT1A may reconstruct the lipid distribution between cellular triglyceride deposition and cell proliferation in goat intramuscular precursor adipocyte. Furthermore, we demonstrate that CPT1A promotes the proliferation of goat adipocytes through the MAPK signaling pathway. This work widened the genetic regulator networks of IMF formation and delivered theoretical support for improving meat quality from the aspect of IMF deposition.
Collapse
Affiliation(s)
- Yinmei Tang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610225, China; (Y.T.); (Y.W.); (H.L.); (C.Z.); (Y.W.); (Y.L.); (H.X.); (L.H.)
| | - Wenyang Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu 610041, China;
| | - Yinggui Wang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610225, China; (Y.T.); (Y.W.); (H.L.); (C.Z.); (Y.W.); (Y.L.); (H.X.); (L.H.)
| | - Haiyang Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610225, China; (Y.T.); (Y.W.); (H.L.); (C.Z.); (Y.W.); (Y.L.); (H.X.); (L.H.)
| | - Changhui Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610225, China; (Y.T.); (Y.W.); (H.L.); (C.Z.); (Y.W.); (Y.L.); (H.X.); (L.H.)
| | - Yong Wang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610225, China; (Y.T.); (Y.W.); (H.L.); (C.Z.); (Y.W.); (Y.L.); (H.X.); (L.H.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu 610041, China;
| | - Yaqiu Lin
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610225, China; (Y.T.); (Y.W.); (H.L.); (C.Z.); (Y.W.); (Y.L.); (H.X.); (L.H.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu 610041, China;
| | - Hengbo Shi
- College of Animal Science, Zhejiang University, Hangzhou 310058, China;
| | - Hua Xiang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610225, China; (Y.T.); (Y.W.); (H.L.); (C.Z.); (Y.W.); (Y.L.); (H.X.); (L.H.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu 610041, China;
| | - Lian Huang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610225, China; (Y.T.); (Y.W.); (H.L.); (C.Z.); (Y.W.); (Y.L.); (H.X.); (L.H.)
| | - Jiangjiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610225, China; (Y.T.); (Y.W.); (H.L.); (C.Z.); (Y.W.); (Y.L.); (H.X.); (L.H.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu 610041, China;
| |
Collapse
|
18
|
Golomb BA, Sanchez Baez R, Schilling JM, Dhanani M, Fannon MJ, Berg BK, Miller BJ, Taub PR, Patel HH. Mitochondrial impairment but not peripheral inflammation predicts greater Gulf War illness severity. Sci Rep 2023; 13:10739. [PMID: 37438460 DOI: 10.1038/s41598-023-35896-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/25/2023] [Indexed: 07/14/2023] Open
Abstract
Gulf War illness (GWI) is an important exemplar of environmentally-triggered chronic multisymptom illness, and a potential model for accelerated aging. Inflammation is the main hypothesized mechanism for GWI, with mitochondrial impairment also proposed. No study has directly assessed mitochondrial respiratory chain function (MRCF) on muscle biopsy in veterans with GWI (VGWI). We recruited 42 participants, half VGWI, with biopsy material successfully secured in 36. Impaired MRCF indexed by complex I and II oxidative phosphorylation with glucose as a fuel source (CI&CIIOXPHOS) related significantly or borderline significantly in the predicted direction to 17 of 20 symptoms in the combined sample. Lower CI&CIIOXPHOS significantly predicted GWI severity in the combined sample and in VGWI separately, with or without adjustment for hsCRP. Higher-hsCRP (peripheral inflammation) related strongly to lower-MRCF (particularly fatty acid oxidation (FAO) indices) in VGWI, but not in controls. Despite this, whereas greater MRCF-impairment predicted greater GWI symptoms and severity, greater inflammation did not. Surprisingly, adjusted for MRCF, higher hsCRP significantly predicted lesser symptom severity in VGWI selectively. Findings comport with a hypothesis in which the increased inflammation observed in GWI is driven by FAO-defect-induced mitochondrial apoptosis. In conclusion, impaired mitochondrial function-but not peripheral inflammation-predicts greater GWI symptoms and severity.
Collapse
Affiliation(s)
- Beatrice A Golomb
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive #0995, La Jolla, CA, 92093-0995, USA.
| | - Roel Sanchez Baez
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive #0995, La Jolla, CA, 92093-0995, USA
- San Ysidro Health Center, San Diego, CA, 92114, USA
| | - Jan M Schilling
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, San Diego, CA, 92161, USA
| | - Mehul Dhanani
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, San Diego, CA, 92161, USA
- Avidity Biosciences, San Diego, CA, 92121, USA
| | - McKenzie J Fannon
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, San Diego, CA, 92161, USA
| | - Brinton K Berg
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive #0995, La Jolla, CA, 92093-0995, USA
| | - Bruce J Miller
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive #0995, La Jolla, CA, 92093-0995, USA
| | - Pam R Taub
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, San Diego, CA, 92161, USA
| |
Collapse
|
19
|
Ran L, Chen Q, Lu X, Gao Z, Cui F, Liu X, Xue B. Novel treatment and insight for irradiation-induced injuries: Dibucaine ameliorates irradiation-induced testicular injury by inhibiting fatty acid oxidation in primary Leydig cells. Biomed Pharmacother 2023; 164:114903. [PMID: 37224756 DOI: 10.1016/j.biopha.2023.114903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Male infertility is a worldwide problem but few treatments, especially irradiation-induced testicular injury. The aim of this research was to investigate novel drugs for the treatment of irradiation-induced testicular injury. METHODS We administered dibucaine (0.8 mg/kg) intraperitoneally to male mice (6 mice per group) after five consecutive daily 0.5 Gy whole-body irradiation, and evaluated its ameliorating efficacy by testicular HE staining and morphological measurements. Drug affinity responsive target stability assay (Darts) were used to find target protein and pathway; mouse primary Leydig cells were isolated and to explore the mechanism (Flow cytometry, Western blot, and Seahorse palmitate oxidative stress assays); finally rescue experiments were completed by combining dibucaine with fatty acid oxidative pathway inhibitors and activators. RESULTS The testicular HE staining and morphological measurements in dibucaine treatment group was significantly better than that in irradiation group (P < 0.05); sperm motility and mRNA levels of spermatogenic cell markers were also higher than those in the latter (P < 0.05). Darts and Western blot results showed that dibucaine targets CPT1A and downregulate fatty acid oxidation. Flow cytometry, Western blot, and Palmitate oxidative stress assays of primary Leydig cells demonstrated that dibucaine inhibits fatty acid oxidation in Leydig cells. Dibucaine combined with etomoxir/baicalin confirmed that its inhibition of fatty acid oxidation was beneficial in ameliorating irradiation-induced testicular injury. CONCLUSIONS In conclusion, our data suggest that dibucaine ameliorates irradiation-induced testicular injury in mice by inhibiting fatty acid oxidation in Leydig cells. This will provide novel ideas for the treatment of irradiation-induced testicular injury.
Collapse
Affiliation(s)
- Lingxiang Ran
- Department of Urology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Qiu Chen
- School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xingyu Lu
- School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhixiang Gao
- Department of Urology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Fengmei Cui
- School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Xiaolong Liu
- Department of Urology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China.
| | - Boxin Xue
- Department of Urology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China.
| |
Collapse
|
20
|
Teape D, Peterson A, Ahsan N, Ellis K, Correia N, Luo R, Hegarty K, Yao H, Dennery P. Hyperoxia impairs intraflagellar transport and causes dysregulated metabolism with resultant decreased cilia length. Am J Physiol Lung Cell Mol Physiol 2023; 324:L325-L334. [PMID: 36719084 PMCID: PMC9988522 DOI: 10.1152/ajplung.00522.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Supplemental oxygen is a lifesaving measure in infants born premature to facilitate oxygenation. Unfortunately, it may lead to alveolar simplification and loss of proximal airway epithelial cilia. Little is known about the mechanism by which hyperoxia causes ciliary dysfunction in the proximal respiratory tract. We hypothesized that hyperoxia causes intraflagellar transport (IFT) dysfunction with resultant decreased cilia length. Differentiated basal human airway epithelial cells (HAEC) were exposed to hyperoxia or air for up to 48 h. Neonatal mice (<12 h old) were exposed to hyperoxia for 72 h and recovered in room air until postnatal day (PND) 60. Cilia length was measured from scanning electron microscopy images using a MATLAB-derived program. Proteomics and metabolomics were carried out in cells after hyperoxia. After hyperoxia, there was a significant time-dependent reduction in cilia length after hyperoxia in HAEC. Proteomic analysis showed decreased abundance of multiple proteins related to IFT including dynein motor proteins. In neonatal mice exposed to hyperoxia, there was a significant decrease in acetylated α tubulin at PND10 followed by recovery to normal levels at PND60. In HAEC, hyperoxia decreased the abundance of multiple proteins associated with complex I of the electron transport chain. In HAEC, hyperoxia increased levels of malate, fumarate, and citrate, and reduced the ATP/ADP ratio at 24 h with a subsequent increase at 36 h. Exposure to hyperoxia reduced cilia length, and this was associated with aberrant IFT protein expression and dysregulated metabolism. This suggests that hyperoxic exposure leads to aberrant IFT protein expression in the respiratory epithelium resulting in shortened cilia.
Collapse
Affiliation(s)
- Daniella Teape
- Department of Pediatrics, Alpert Medical School, Brown University, Providence, Rhode Island, United States
| | - Abigail Peterson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Alpert Medical School, Brown University, Providence, Rhode Island, United States
| | - Nagib Ahsan
- COBRE Center for Cancer Research Development at Rhode Island Hospital, Proteomics Core Facility, Division of Surgical Research, Brown University, Providence, Rhode Island, United States
| | - Kimberlyn Ellis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Alpert Medical School, Brown University, Providence, Rhode Island, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Nicholas Correia
- Department of Molecular Biology, Cell Biology, and Biochemistry, Alpert Medical School, Brown University, Providence, Rhode Island, United States
| | - Ryan Luo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Alpert Medical School, Brown University, Providence, Rhode Island, United States
| | - Katy Hegarty
- Department of Molecular Biology, Cell Biology, and Biochemistry, Alpert Medical School, Brown University, Providence, Rhode Island, United States
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology, and Biochemistry, Alpert Medical School, Brown University, Providence, Rhode Island, United States
| | - Phyllis Dennery
- Department of Pediatrics, Alpert Medical School, Brown University, Providence, Rhode Island, United States
- Department of Molecular Biology, Cell Biology, and Biochemistry, Alpert Medical School, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
21
|
Yao H, Wallace J, Peterson AL, Scaffa A, Rizal S, Hegarty K, Maeda H, Chang JL, Oulhen N, Kreiling JA, Huntington KE, De Paepe ME, Barbosa G, Dennery PA. Timing and cell specificity of senescence drives postnatal lung development and injury. Nat Commun 2023; 14:273. [PMID: 36650158 PMCID: PMC9845377 DOI: 10.1038/s41467-023-35985-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Senescence causes age-related diseases and stress-related injury. Paradoxically, it is also essential for organismal development. Whether senescence contributes to lung development or injury in early life remains unclear. Here, we show that lung senescence occurred at birth and decreased throughout the saccular stage in mice. Reducing senescent cells at this stage disrupted lung development. In mice (<12 h old) exposed to hyperoxia during the saccular stage followed by air recovery until adulthood, lung senescence increased particularly in type II cells and secondary crest myofibroblasts. This peaked during the alveolar stage and was mediated by the p53/p21 pathway. Decreasing senescent cells during the alveolar stage attenuated hyperoxia-induced alveolar and vascular simplification. Conclusively, early programmed senescence orchestrates postnatal lung development whereas later hyperoxia-induced senescence causes lung injury through different mechanisms. This defines the ontogeny of lung senescence and provides an optimal therapeutic window for mitigating neonatal hyperoxic lung injury by inhibiting senescence.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.
| | - Joselynn Wallace
- Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI, 02912, USA
| | - Abigail L Peterson
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Alejandro Scaffa
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Salu Rizal
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Katy Hegarty
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Hajime Maeda
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Jason L Chang
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Nathalie Oulhen
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Kelsey E Huntington
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Monique E De Paepe
- Department of Pathology, Women and Infants Hospital, Providence, RI, 02905, USA
| | - Guilherme Barbosa
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
22
|
Zhao Y, Feng H, Wang Y, Jiang L, Yan J, Cai W. Impaired FXR-CPT1a signaling contributes to parenteral nutrition-induced villus atrophy in short-bowel syndrome. FASEB J 2023; 37:e22713. [PMID: 36520086 DOI: 10.1096/fj.202201527r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Parenteral nutrition (PN)-induced villus atrophy is a major cause of intestinal failure (IF) for children suffering from short bowel syndrome (SBS), but the precise mechanism remains unclear. Herein, we report a pivotal role of farnesoid X receptor (FXR) signaling and fatty acid oxidation (FAO) in PN-induced villus atrophy. A total of 14 pediatric SBS patients receiving PN were enrolled in this study. Those patients with IF showed longer PN duration and significant intestinal villus atrophy, characterized by remarkably increased enterocyte apoptosis concomitant with impaired FXR signaling and decreased FAO genes including carnitine palmitoyltransferase 1a (CPT1a). Likewise, similar changes were found in an in vivo model of neonatal Bama piglets receiving 14-day PN, including villus atrophy and particularly disturbed FAO process responding to impaired FXR signaling. Finally, in order to consolidate the role of the FXR-CPT1a axis in modulating enterocyte apoptosis, patient-derived organoids (PDOs) were used as a mini-gut model in vitro. Consequently, pharmacological inhibition of FXR by tauro-β-muricholic acid (T-βMCA) evidently suppressed CPT1a expression leading to reduced mitochondrial FAO function and inducible apoptosis. In conclusion, impaired FXR/CPT1a axis and disturbed FAO may play a pivotal role in PN-induced villus atrophy, contributing to intestinal failure in SBS patients.
Collapse
Affiliation(s)
- Yuling Zhao
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haixia Feng
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Lu Jiang
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Junkai Yan
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
23
|
Vorotnikov AV, Khapchaev AY, Nickashin AV, Shirinsky VP. In Vitro Modeling of Diabetes Impact on Vascular Endothelium: Are Essentials Engaged to Tune Metabolism? Biomedicines 2022; 10:biomedicines10123181. [PMID: 36551937 PMCID: PMC9775148 DOI: 10.3390/biomedicines10123181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Angiopathy is a common complication of diabetes mellitus. Vascular endothelium is among the first targets to experience blood-borne metabolic alterations, such as hyperglycemia and hyperlipidemia, the hallmarks of type 2 diabetes. To explore mechanisms of vascular dysfunction and eventual damage brought by these pathologic conditions and to find ways to protect vasculature in diabetic patients, various research approaches are used including in vitro endothelial cell-based models. We present an analysis of the data available from these models that identifies early endothelial cell apoptosis associated with oxidative stress as the major outcome of mimicking hyperglycemia and hyperlipidemia in vitro. However, the fate of endothelial cells observed in these studies does not closely follow it in vivo where massive endothelial damage occurs mainly in the terminal stages of diabetes and in conjunction with comorbidities. We propose that the discrepancy is likely in missing essentials that should be available to cultured endothelial cells to adjust the metabolic state and withstand the immediate apoptosis. We discuss the role of carnitine, creatine, and AMP-activated protein kinase (AMPK) in suiting the endothelial metabolism for long-term function in diabetic type milieu in vitro. Engagement of these essentials is anticipated to expand diabetes research options when using endothelial cell-based models.
Collapse
|
24
|
Li L, Zhang Y, Gong J, Yang G, Zhi S, Ren D, Zhao H. Cpt1a alleviates cigarette smoke‑induced chronic obstructive pulmonary disease. Exp Ther Med 2022; 25:54. [PMID: 36588819 PMCID: PMC9780514 DOI: 10.3892/etm.2022.11753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022] Open
Abstract
The current study aimed to determine the expression of carnitine palmitoyltransferase 1A (Cpt1a) in the lung tissue of chronic obstructive pulmonary disease (COPD) patients and its correlation with lung function. An increase in Cpt1a expression improved lung function in patients with COPD by inhibiting apoptosis and the inflammatory response of lung endothelial cells. Lung tissues of 20 patients with COPD and 10 control patients were collected, their Cpt1a expression was determined by western blotting and apoptosis and inflammation were assessed by haematoxylin-eosin staining, TUNEL assay and ELISA. Mice with knockout or overexpression of Cpt1a were constructed by lentivirus in vivo. A COPD model was induced by cigarette smoke and the role of Cpt1a in COPD was determined in vivo and in vitro. Cpt1a expression was positively correlated with lung function and negatively correlated with apoptosis and inflammation. Patients with COPD with higher expression of Cpt1a in lung tissues had improved lung function indices and lung tissue morphology with less apoptosis and decreased inflammatory response. Compared with the control group, COPD mice with Cpt1a knockdown had aggravated lung dysfunction and increased lung inflammation and apoptosis. Overexpression of Cpt1a alleviated lung dysfunction and reduced inflammatory response and apoptosis of lung tissues in COPD mice. Pulmonary microvascular endothelial cells of mice were isolated in vitro and the results were consistent with the findings obtained in vivo. In conclusion, the clinical, in vivo and in vitro data confirmed for the first time that Cpt1a alleviated lung dysfunction of patients with COPD by inhibiting apoptosis of endothelial cells and inflammatory responses.
Collapse
Affiliation(s)
- Lifang Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yaqian Zhang
- School of Basic Medical Sciences, Department of Pharmacology, Shanxi Medical University, Taiyuan 030000, P.R. China
| | - Jiannan Gong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Guang Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Shuyin Zhi
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Dongping Ren
- Department of R&D, USBAY Biotechnology Co., Ltd, Beijing 102006, P.R. China
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China,School of Basic Medical Sciences, Department of Pharmacology, Shanxi Medical University, Taiyuan 030000, P.R. China,Correspondence to: Professor Hui Zhao, Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Xinghualing, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
25
|
Fatty Acid Metabolism in Endothelial Cell. Genes (Basel) 2022; 13:genes13122301. [PMID: 36553568 PMCID: PMC9777652 DOI: 10.3390/genes13122301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/26/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
The endothelium is a monolayer of cells lining the inner blood vessels. Endothelial cells (ECs) play indispensable roles in angiogenesis, homeostasis, and immune response under normal physiological conditions, and their dysfunction is closely associated with pathologies such as cardiovascular diseases. Abnormal EC metabolism, especially dysfunctional fatty acid (FA) metabolism, contributes to the development of many diseases including pulmonary hypertension (PH). In this review, we focus on discussing the latest advances in FA metabolism in ECs under normal and pathological conditions with an emphasis on PH. We also highlight areas of research that warrant further investigation.
Collapse
|
26
|
Long Y, Chen H, Deng J, Ning J, Yang P, Qiao L, Cao Z. Deficiency of endothelial FGFR1 alleviates hyperoxia-induced bronchopulmonary dysplasia in neonatal mice. Front Pharmacol 2022; 13:1039103. [PMID: 36467073 PMCID: PMC9716472 DOI: 10.3389/fphar.2022.1039103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Disrupted neonatal lung angiogenesis and alveologenesis often give rise to bronchopulmonary dysplasia (BPD), the most common chronic lung disease in children. Hyperoxia-induced pulmonary vascular and alveolar damage in premature infants is one of the most common and frequent factors contributing to BPD. The purpose of the present study was to explore the key molecules and the underlying mechanisms in hyperoxia-induced lung injury in neonatal mice and to provide a new strategy for the treatment of BPD. In this work, we reported that hyperoxia decreased the proportion of endothelial cells (ECs) in the lungs of neonatal mice. In hyperoxic lung ECs of neonatal mice, we detected upregulated fibroblast growth factor receptor 1 (FGFR1) expression, accompanied by upregulation of the classic downstream signaling pathway of activated FGFR1, including the ERK/MAPK signaling pathway and PI3K-Akt signaling pathway. Specific deletion of Fgfr1 in the ECs of neonatal mice protected the lungs from hyperoxia-induced lung injury, with improved angiogenesis, alveologenesis and respiratory metrics. Intriguingly, the increased Fgfr1 expression was mainly attributed to aerosol capillary endothelial (aCap) cells rather than general capillary endothelial (gCap) cells. Deletion of endothelial Fgfr1 increased the expression of gCap cell markers but decreased the expression of aCap cell markers. Additionally, inhibition of FGFR1 by an FGFR1 inhibitor improved alveologenesis and respiratory metrics. In summary, this study suggests that in neonatal mice, hyperoxia increases the expression of endothelial FGFR1 in lung ECs and that deficiency of endothelial Fgfr1 can ameliorate hyperoxia-induced BPD. These data suggest that FGFR1 may be a potential therapeutic target for BPD, which will provide a new strategy for the prevention and treatment of BPD.
Collapse
Affiliation(s)
| | | | | | | | | | - Lina Qiao
- *Correspondence: Lina Qiao, ; Zhongwei Cao,
| | | |
Collapse
|
27
|
Chang JL, Gong J, Rizal S, Peterson AL, Chang J, Yao C, Dennery PA, Yao H. Upregulating carnitine palmitoyltransferase 1 attenuates hyperoxia-induced endothelial cell dysfunction and persistent lung injury. Respir Res 2022; 23:205. [PMID: 35964084 PMCID: PMC9375342 DOI: 10.1186/s12931-022-02135-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a chronic lung disease in premature infants that may cause long-term lung dysfunction. Accumulating evidence supports the vascular hypothesis of BPD, in which lung endothelial cell dysfunction drives this disease. We recently reported that endothelial carnitine palmitoyltransferase 1a (Cpt1a) is reduced by hyperoxia, and that endothelial cell-specific Cpt1a knockout mice are more susceptible to developing hyperoxia-induced injury than wild type mice. Whether Cpt1a upregulation attenuates hyperoxia-induced endothelial cell dysfunction and lung injury remains unknown. We hypothesized that upregulation of Cpt1a by baicalin or L-carnitine ameliorates hyperoxia-induced endothelial cell dysfunction and persistent lung injury. METHODS Lung endothelial cells or newborn mice (< 12 h old) were treated with baicalin or L-carnitine after hyperoxia (50% and 95% O2) followed by air recovery. RESULTS We found that incubation with L-carnitine (40 and 80 mg/L) and baicalin (22.5 and 45 mg/L) reduced hyperoxia-induced apoptosis, impaired cell migration and angiogenesis in cultured lung endothelial cells. This was associated with increased Cpt1a gene expression. In mice, neonatal hyperoxia caused persistent alveolar and vascular simplification in a concentration-dependent manner. Treatment with L-carnitine (150 and 300 mg/kg) and baicalin (50 and 100 mg/kg) attenuated neonatal hyperoxia-induced alveolar and vascular simplification in adult mice. These effects were diminished in endothelial cell-specific Cpt1a knockout mice. CONCLUSIONS Upregulating Cpt1a by baicalin or L-carnitine ameliorates hyperoxia-induced lung endothelial cell dysfunction, and persistent alveolar and vascular simplification. These findings provide potential therapeutic avenues for using L-carnitine and baicalin as Cpt1a upregulators to prevent persistent lung injury in premature infants with BPD.
Collapse
Affiliation(s)
- Jason L Chang
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, SFH, Providence, RI, 02912, USA
| | - Jiannan Gong
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, SFH, Providence, RI, 02912, USA
- Department of Respiratory Medicine, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Salu Rizal
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, SFH, Providence, RI, 02912, USA
| | - Abigail L Peterson
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, SFH, Providence, RI, 02912, USA
| | - Julia Chang
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, SFH, Providence, RI, 02912, USA
| | - Chenrui Yao
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, SFH, Providence, RI, 02912, USA
| | - Phyllis A Dennery
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, SFH, Providence, RI, 02912, USA
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Hongwei Yao
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, SFH, Providence, RI, 02912, USA.
| |
Collapse
|
28
|
Wang L, Zhong WH, Liu DY, Shen HQ, He ZJ. Metabolic analysis of infants with bronchopulmonary dysplasia under early nutrition therapy: An observational cohort study. Exp Biol Med (Maywood) 2022; 247:470-479. [PMID: 34894806 PMCID: PMC8943329 DOI: 10.1177/15353702211060513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/24/2021] [Indexed: 11/15/2022] Open
Abstract
To assess the amino acid and fatty acid metabolite patterns between infants with and without bronchopulmonary dysplasia in different nutritional stages after birth and identify metabolic indicators of bronchopulmonary dysplasia. This was an observational cohort of preterm infants born at a gestational age ≤32 + 6 weeks and with a body weight ≤2000 g. Amino acid and carnitine profiles were measured in dried blood spots (DBSs) during the early nutrition transitional phase using tandem mass spectrometry. Bronchopulmonary dysplasia was defined as oxygen dependence at 36 weeks of postmenstrual age or 28 days after birth. Metabolomic analysis was employed to define metabolites with significant differences, map significant metabolites into pathways, and identify metabolic indicators of bronchopulmonary dysplasia. We evaluated 45 neonates with and 40 without bronchopulmonary dysplasia. Four amino acids and three carnitines showed differences between the groups. Three carnitines (C0, C2, and C6:1) were high in the bronchopulmonary dysplasia group mostly; conversely, all four amino acids (threonine, arginine, methionine, and glutamine (Gln)) were low in the bronchopulmonary dysplasia group. Pathway analysis of these metabolites revealed two pathways with significant changes (p < 0.05). ROC analysis showed Gln/C6:1 at total parenteral nutrition phase had both 80% sensitivity and specificity for predicting the development of bronchopulmonary dysplasia, with an area under the curve of 0.81 (95% confidence interval 0.71-0.89). Amino acid and fatty acid metabolite profiles changed in infants with bronchopulmonary dysplasia after birth during the nutrition transitional period, suggesting that metabolic dysregulation may participate in the development of bronchopulmonary dysplasia. Our findings demonstrate that metabolic indicators are promising for forecasting the occurrence of bronchopulmonary dysplasia among preterm neonates.
Collapse
Affiliation(s)
- Li Wang
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
| | - Wen Hua Zhong
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
- Department of Neonatology, Jiaxing Maternity and Child Health Care Hospital, Jiaxing 314001, China
| | - Dan Yang Liu
- Department of Neonatology, Jingan District Zhabei Central Hospital, Shanghai 200070, China
| | - Hai Qing Shen
- Department of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai 200030, China *These authors have contributed equally to this work
| | - Zhen Juan He
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
29
|
Thomas JM, Sudhadevi T, Basa P, Ha AW, Natarajan V, Harijith A. The Role of Sphingolipid Signaling in Oxidative Lung Injury and Pathogenesis of Bronchopulmonary Dysplasia. Int J Mol Sci 2022; 23:ijms23031254. [PMID: 35163176 PMCID: PMC8835774 DOI: 10.3390/ijms23031254] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Premature infants are born with developing lungs burdened by surfactant deficiency and a dearth of antioxidant defense systems. Survival rate of such infants has significantly improved due to advances in care involving mechanical ventilation and oxygen supplementation. However, a significant subset of such survivors develops the chronic lung disease, Bronchopulmonary dysplasia (BPD), characterized by enlarged, simplified alveoli and deformed airways. Among a host of factors contributing to the pathogenesis is oxidative damage induced by exposure of the developing lungs to hyperoxia. Recent data indicate that hyperoxia induces aberrant sphingolipid signaling, leading to mitochondrial dysfunction and abnormal reactive oxygen species (ROS) formation (ROS). The role of sphingolipids such as ceramides and sphingosine 1-phosphate (S1P), in the development of BPD emerged in the last decade. Both ceramide and S1P are elevated in tracheal aspirates of premature infants of <32 weeks gestational age developing BPD. This was faithfully reflected in the murine models of hyperoxia and BPD, where there is an increased expression of sphingolipid metabolites both in lung tissue and bronchoalveolar lavage. Treatment of neonatal pups with a sphingosine kinase1 specific inhibitor, PF543, resulted in protection against BPD as neonates, accompanied by improved lung function and reduced airway remodeling as adults. This was accompanied by reduced mitochondrial ROS formation. S1P receptor1 induced by hyperoxia also aggravates BPD, revealing another potential druggable target in this pathway for BPD. In this review we aim to provide a detailed description on the role played by sphingolipid signaling in hyperoxia induced lung injury and BPD.
Collapse
Affiliation(s)
- Jaya M. Thomas
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
| | - Tara Sudhadevi
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
| | - Prathima Basa
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
| | - Alison W. Ha
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Anantha Harijith
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
- Correspondence: ; Tel.: +1-(216)-286-7038
| |
Collapse
|
30
|
Gu L, Surolia R, Larson-Casey JL, He C, Davis D, Kang J, Antony VB, Carter AB. Targeting Cpt1a-Bcl-2 interaction modulates apoptosis resistance and fibrotic remodeling. Cell Death Differ 2022; 29:118-132. [PMID: 34413485 PMCID: PMC8738732 DOI: 10.1038/s41418-021-00840-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial calcium uniporter (MCU) regulates metabolic reprogramming in lung macrophages and the progression of pulmonary fibrosis. Fibrosis progression is associated with apoptosis resistance in lung macrophages; however, the mechanism(s) by which apoptosis resistance occurs is poorly understood. Here, we found a marked increase in mitochondrial B-cell lymphoma-2 (Bcl-2) in lung macrophages from subjects with idiopathic pulmonary fibrosis (IPF). Similar findings were seen in bleomycin-injured wild-type (WT) mice, whereas Bcl-2 was markedly decreased in mice expressing a dominant-negative mitochondrial calcium uniporter (DN-MCU). Carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme for fatty acid β-oxidation, directly interacted with Bcl-2 by binding to its BH3 domain, which anchored Bcl-2 in the mitochondria to attenuate apoptosis. This interaction was dependent on Cpt1a activity. Lung macrophages from IPF subjects had a direct correlation between CPT1A and Bcl-2, whereas the absence of binding induced apoptosis. The deletion of Bcl-2 in macrophages protected mice from developing pulmonary fibrosis. Moreover, mice had resolution when Bcl-2 was deleted or was inhibited with ABT-199 after fibrosis was established. These observations implicate an interplay between macrophage fatty acid β-oxidation, apoptosis resistance, and dysregulated fibrotic remodeling.
Collapse
Affiliation(s)
- Linlin Gu
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Ranu Surolia
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Jennifer L. Larson-Casey
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Chao He
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Dana Davis
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Jungsoon Kang
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Veena B. Antony
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - A. Brent Carter
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,grid.280808.a0000 0004 0419 1326Birmingham VAMC, Birmingham, AL USA
| |
Collapse
|
31
|
Scaffa A, Yao H, Oulhen N, Wallace J, Peterson AL, Rizal S, Ragavendran A, Wessel G, De Paepe ME, Dennery PA. Single-cell transcriptomics reveals lasting changes in the lung cellular landscape into adulthood after neonatal hyperoxic exposure. Redox Biol 2021; 48:102091. [PMID: 34417156 PMCID: PMC8710996 DOI: 10.1016/j.redox.2021.102091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/22/2021] [Accepted: 07/31/2021] [Indexed: 01/11/2023] Open
Abstract
Ventilatory support, such as supplemental oxygen, used to save premature infants impairs the growth of the pulmonary microvasculature and distal alveoli, leading to bronchopulmonary dysplasia (BPD). Although lung cellular composition changes with exposure to hyperoxia in neonatal mice, most human BPD survivors are weaned off oxygen within the first weeks to months of life, yet they may have persistent lung injury and pulmonary dysfunction as adults. We hypothesized that early-life hyperoxia alters the cellular landscape in later life and predicts long-term lung injury. Using single-cell RNA sequencing, we mapped lung cell subpopulations at postnatal day (pnd)7 and pnd60 in mice exposed to hyperoxia (95% O2) for 3 days as neonates. We interrogated over 10,000 cells and identified a total of 45 clusters within 32 cell states. Neonatal hyperoxia caused persistent compositional changes in later life (pnd60) in all five type II cell states with unique signatures and function. Premature infants requiring mechanical ventilation with different durations also showed similar alterations in these unique signatures of type II cell states. Pathologically, neonatal hyperoxic exposure caused alveolar simplification in adult mice. We conclude that neonatal hyperoxia alters the lung cellular landscape in later life, uncovering neonatal programing of adult lung dysfunction.
Collapse
Affiliation(s)
- Alejandro Scaffa
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Nathalie Oulhen
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Joselynn Wallace
- Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI, United States
| | - Abigail L Peterson
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Salu Rizal
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Ashok Ragavendran
- Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI, United States
| | - Gary Wessel
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Monique E De Paepe
- Department of Pathology, Women and Infants Hospital, Providence, RI, United States
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States; Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, United States.
| |
Collapse
|
32
|
Wang M, Wang K, Liao X, Hu H, Chen L, Meng L, Gao W, Li Q. Carnitine Palmitoyltransferase System: A New Target for Anti-Inflammatory and Anticancer Therapy? Front Pharmacol 2021; 12:760581. [PMID: 34764874 PMCID: PMC8576433 DOI: 10.3389/fphar.2021.760581] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/17/2021] [Indexed: 11/20/2022] Open
Abstract
Lipid metabolism involves multiple biological processes. As one of the most important lipid metabolic pathways, fatty acid oxidation (FAO) and its key rate-limiting enzyme, the carnitine palmitoyltransferase (CPT) system, regulate host immune responses and thus are of great clinical significance. The effect of the CPT system on different tissues or organs is complex: the deficiency or over-activation of CPT disrupts the immune homeostasis by causing energy metabolism disorder and inflammatory oxidative damage and therefore contributes to the development of various acute and chronic inflammatory disorders and cancer. Accordingly, agonists or antagonists targeting the CPT system may become novel approaches for the treatment of diseases. In this review, we first briefly describe the structure, distribution, and physiological action of the CPT system. We then summarize the pathophysiological role of the CPT system in chronic obstructive pulmonary disease, bronchial asthma, acute lung injury, chronic granulomatous disease, nonalcoholic fatty liver disease, hepatic ischemia–reperfusion injury, kidney fibrosis, acute kidney injury, cardiovascular disorders, and cancer. We are also concerned with the current knowledge in either preclinical or clinical studies of various CPT activators/inhibitors for the management of diseases. These compounds range from traditional Chinese medicines to novel nanodevices. Although great efforts have been made in studying the different kinds of CPT agonists/antagonists, only a few pharmaceuticals have been applied for clinical uses. Nevertheless, research on CPT activation or inhibition highlights the pharmacological modulation of CPT-dependent FAO, especially on different CPT isoforms, as a promising anti-inflammatory/antitumor therapeutic strategy for numerous disorders.
Collapse
Affiliation(s)
- Muyun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ximing Liao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiyang Hu
- Department of Vascular Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Liangzhi Chen
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linlin Meng
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Dark Side of Cancer Therapy: Cancer Treatment-Induced Cardiopulmonary Inflammation, Fibrosis, and Immune Modulation. Int J Mol Sci 2021; 22:ijms221810126. [PMID: 34576287 PMCID: PMC8465322 DOI: 10.3390/ijms221810126] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Advancements in cancer therapy increased the cancer free survival rates and reduced the malignant related deaths. Therapeutic options for patients with thoracic cancers include surgical intervention and the application of chemotherapy with ionizing radiation. Despite these advances, cancer therapy-related cardiopulmonary dysfunction (CTRCPD) is one of the most undesirable side effects of cancer therapy and leads to limitations to cancer treatment. Chemoradiation therapy or immunotherapy promote acute and chronic cardiopulmonary damage by inducing reactive oxygen species, DNA damage, inflammation, fibrosis, deregulation of cellular immunity, cardiopulmonary failure, and non-malignant related deaths among cancer-free patients who received cancer therapy. CTRCPD is a complex entity with multiple factors involved in this pathogenesis. Although the mechanisms of cancer therapy-induced toxicities are multifactorial, damage to the cardiac and pulmonary tissue as well as subsequent fibrosis and organ failure seem to be the underlying events. The available biomarkers and treatment options are not sufficient and efficient to detect cancer therapy-induced early asymptomatic cell fate cardiopulmonary toxicity. Therefore, application of cutting-edge multi-omics technology, such us whole-exome sequencing, DNA methylation, whole-genome sequencing, metabolomics, protein mass spectrometry and single cell transcriptomics, and 10 X spatial genomics, are warranted to identify early and late toxicity, inflammation-induced carcinogenesis response biomarkers, and cancer relapse response biomarkers. In this review, we summarize the current state of knowledge on cancer therapy-induced cardiopulmonary complications and our current understanding of the pathological and molecular consequences of cancer therapy-induced cardiopulmonary fibrosis, inflammation, immune suppression, and tumor recurrence, and possible treatment options for cancer therapy-induced cardiopulmonary toxicity.
Collapse
|
34
|
Yue L, Lu X, Dennery PA, Yao H. Metabolic dysregulation in bronchopulmonary dysplasia: Implications for identification of biomarkers and therapeutic approaches. Redox Biol 2021; 48:102104. [PMID: 34417157 PMCID: PMC8710987 DOI: 10.1016/j.redox.2021.102104] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/03/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature infants. Accumulating evidence shows that dysregulated metabolism of glucose, lipids and amino acids are observed in premature infants. Animal and cell studies demonstrate that abnormal metabolism of these substrates results in apoptosis, inflammation, reduced migration, abnormal proliferation or senescence in response to hyperoxic exposure, and that rectifying metabolic dysfunction attenuates neonatal hyperoxia-induced alveolar simplification and vascular dysgenesis in the lung. BPD is often associated with several comorbidities, including pulmonary hypertension and neurodevelopmental abnormalities, which significantly increase the morbidity and mortality of this disease. Here, we discuss recent progress on dysregulated metabolism of glucose, lipids and amino acids in premature infants with BPD and in related in vivo and in vitro models. These findings suggest that metabolic dysregulation may serve as a biomarker of BPD and plays important roles in the pathogenesis of this disease. We also highlight that targeting metabolic pathways could be employed in the prevention and treatment of BPD.
Collapse
Affiliation(s)
- Li Yue
- Department of Orthopedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Xuexin Lu
- Department of Pediatrics, Ascension St. John Hospital, Detroit, MI, USA
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA; Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
35
|
Sharma A, Ahmad S, Ahmad T, Ali S, Syed MA. Mitochondrial dynamics and mitophagy in lung disorders. Life Sci 2021; 284:119876. [PMID: 34389405 DOI: 10.1016/j.lfs.2021.119876] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Mitochondria are biosynthetic, bioenergetic, and signaling organelles which are critical for physiological adaptations and cellular stress responses to the environment. Various endogenous and environmental stress affects critical processes in mitochondrial homeostasis such as oxidative phosphorylation, biogenesis, mitochondrial redox system which leads to the formation of reactive oxygen species (ROS) and free radicals. The state of function of the mitochondrion is particularly dependent on the dynamic balance between mitochondrial biogenesis, fusion and fission, and degradation of damaged mitochondria by mitophagy. Increasing evidence has suggested a prominent role of mitochondrial dysfunction in the onset and progression of various lung pathologies, ranging from acute to chronic disorders. In this comprehensive review, we discuss the emerging findings of multifaceted regulations of mitochondrial dynamics and mitophagy in normal lung homeostasis as well as the prominence of mitochondrial dysfunction as a determining factor in different lung disorders such as lung cancer, COPD, IPF, ALI/ARDS, BPD, and asthma. The review will contribute to the existing understanding of critical molecular machinery regulating mitochondrial dynamic state during these pathological states. Furthermore, we have also highlighted various molecular checkpoints involved in mitochondrial dynamics, which may serve as hopeful therapeutic targets for the development of potential therapies for these lung disorders.
Collapse
Affiliation(s)
- Archana Sharma
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shaniya Ahmad
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advance Research and Studies, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
36
|
Stevens RP, Paudel SS, Johnson SC, Stevens T, Lee JY. Endothelial metabolism in pulmonary vascular homeostasis and acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2021; 321:L358-L376. [PMID: 34159794 PMCID: PMC8384476 DOI: 10.1152/ajplung.00131.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/27/2022] Open
Abstract
Capillary endothelial cells possess a specialized metabolism necessary to adapt to the unique alveolar-capillary environment. Here, we highlight how endothelial metabolism preserves the integrity of the pulmonary circulation by controlling vascular permeability, defending against oxidative stress, facilitating rapid migration and angiogenesis in response to injury, and regulating the epigenetic landscape of endothelial cells. Recent reports on single-cell RNA-sequencing reveal subpopulations of pulmonary capillary endothelial cells with distinctive reparative capacities, which potentially offer new insight into their metabolic signature. Lastly, we discuss broad implications of pulmonary vascular metabolism on acute respiratory distress syndrome, touching on emerging findings of endotheliitis in coronavirus disease 2019 (COVID-19) lungs.
Collapse
Affiliation(s)
- Reece P Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Sunita S Paudel
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Santina C Johnson
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama
- Department of Biomolecular Engineering, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Ji Young Lee
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, Alabama
- Division of Pulmonary and Critical Care Medicine, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
37
|
Forno E, Abman SH, Singh J, Robbins ME, Selvadurai H, Schumacker PT, Robinson PD. Update in Pediatrics 2020. Am J Respir Crit Care Med 2021; 204:274-284. [PMID: 34126039 DOI: 10.1164/rccm.202103-0605up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Erick Forno
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Steven H Abman
- Department of Pediatrics, Children's Hospital Colorado, Denver, Colorado.,University of Colorado Anschutz School of Medicine, Denver, Colorado
| | - Jagdev Singh
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mary E Robbins
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hiran Selvadurai
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Paul T Schumacker
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paul D Robinson
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
38
|
Garcia D, Carr JF, Chan F, Peterson AL, Ellis KA, Scaffa A, Ghio AJ, Yao H, Dennery PA. Short exposure to hyperoxia causes cultured lung epithelial cell mitochondrial dysregulation and alveolar simplification in mice. Pediatr Res 2021; 90:58-65. [PMID: 33144707 PMCID: PMC8089115 DOI: 10.1038/s41390-020-01224-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Prolonged exposure to high oxygen concentrations in premature infants, although lifesaving, can induce lung oxidative stress and increase the risk of developing BPD, a form of chronic lung disease. The lung alveolar epithelium is damaged by sustained hyperoxia, causing oxidative stress and alveolar simplification; however, it is unclear what duration of exposure to hyperoxia negatively impacts cellular function. METHODS Here we investigated the role of a very short exposure to hyperoxia (95% O2, 5% CO2) on mitochondrial function in cultured mouse lung epithelial cells and neonatal mice. RESULTS In epithelial cells, 4 h of hyperoxia reduced oxidative phosphorylation, respiratory complex I and IV activity, utilization of mitochondrial metabolites, and caused mitochondria to form elongated tubular networks. Cells allowed to recover in air for 24 h exhibited a persistent global reduction in fuel utilization. In addition, neonatal mice exposed to hyperoxia for only 12 h demonstrated alveolar simplification at postnatal day 14. CONCLUSION A short exposure to hyperoxia leads to changes in lung cell mitochondrial metabolism and dynamics and has a long-term impact on alveolarization. These findings may help inform our understanding and treatment of chronic lung disease. IMPACT Many studies use long exposures (up to 14 days) to hyperoxia to mimic neonatal chronic lung disease. We show that even a very short exposure to hyperoxia leads to long-term cellular injury in type II-like epithelial cells. This study demonstrates that a short (4 h) period of hyperoxia has long-term residual effects on cellular metabolism. We show that neonatal mice exposed to hyperoxia for a short time (12 h) demonstrate later alveolar simplification. This work suggests that any exposure to clinical hyperoxia leads to persistent lung dysfunction.
Collapse
Affiliation(s)
- David Garcia
- Department of Chemistry, Brown University, Providence, Rhode Island
| | - Jennifer F. Carr
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Felix Chan
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Abigail L. Peterson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Kimberlyn A. Ellis
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Alejandro Scaffa
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island
| | - Andrew J. Ghio
- US Environmental Protection Agency, Chapel Hill, North Carolina
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Phyllis A. Dennery
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island,Department of Pediatrics, Warren Alpert Medical School, Brown University, Providence, Rhode Island,Hasbro Children’s Hospital, Providence, Rhode Island.,Corresponding author information: Phyllis A. Dennery; Hasbro Children’s Hospital, Department of Pediatrics, 593 Eddy St, Providence, RI 02903; ; (401) 444-5648
| |
Collapse
|
39
|
Yue L, Vuong B, Yao H, Owens BD. Doxycycline preserves chondrocyte viability and function in human and calf articular cartilage ex vivo. Physiol Rep 2021; 8:e14571. [PMID: 32918797 PMCID: PMC7507091 DOI: 10.14814/phy2.14571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023] Open
Abstract
Prolonging chondrocyte survival is essential to ensure fresh osteochondral (OC) grafts for treatment of articular cartilage lesions. Doxycycline has been shown to enhance cartilage growth, disrupt terminal differentiation of chondrocytes, and inhibit cartilage matrix degradation. It is unknown whether doxycycline prolongs chondrocyte survival in OC grafts. We hypothesized that doxycycline protects against chondrocyte death and maintains function of articular cartilage. To test this hypothesis, we employed human and calf articular cartilages, and incubated chondrocytes isolated from cartilage or cartilage plugs with doxycycline (0, 1 or 10 μg/ml) at either 37°C or 4°C. Chondrocyte viability, apoptosis, glycosaminoglycan (GAG), collagen, and mechanical test in cartilage plugs were measured. We found that reduced chondrocyte viability, increased chondrocyte apoptosis, reduced GAG contents, and impaired equilibrium modulus in cartilage plugs were observed in a time-dependent manner at both 37°C and 4°C. Chondrocyte viability was further reduced when the plugs were cultured at 4°C as compared to 37°C. Doxycycline prolonged viability and reduced apoptosis of chondrocytes during culture of cartilage plugs. Functionally, doxycycline protected against reduced production of GAG and collagen II as well as impaired mechanical properties in cartilage plugs during culture. Mechanistically, doxycycline increased mitochondrial respiration in cultured chondrocytes. In conclusion, preservation at 37°C is beneficial for maintaining chondrocyte viability in cartilage plugs compared to 4°C. Incubation of doxycycline protects against chondrocyte apoptosis, reduced extracellular matrix, and impaired mechanical properties in cartilage plugs. The findings provide a potential approach using doxycycline at 37°C to preserve chondrocyte viability in fresh OC grafts for treatment of articular cartilage lesions.
Collapse
Affiliation(s)
- Li Yue
- Department of Orthopaedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Brian Vuong
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology and Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Brett D Owens
- Department of Orthopaedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA.,University Orthopedics, East Providence, RI, USA
| |
Collapse
|
40
|
Loss of the transcriptional repressor Rev-erbα upregulates metabolism and proliferation in cultured mouse embryonic fibroblasts. Sci Rep 2021; 11:12356. [PMID: 34117285 PMCID: PMC8196003 DOI: 10.1038/s41598-021-91516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 05/19/2021] [Indexed: 12/04/2022] Open
Abstract
The transcriptional repressor Rev-erbα is known to down-regulate fatty acid metabolism and gluconeogenesis gene expression. In animal models, disruption of Rev-erbα results in global changes in exercise performance, oxidative capacity, and blood glucose levels. However, the complete extent to which Rev-erbα-mediated transcriptional repression of metabolism impacts cell function remains unknown. We hypothesized that loss of Rev-erbα in a mouse embryonic fibroblast (MEF) model would result in global changes in metabolism. MEFs lacking Rev-erbα exhibited a hypermetabolic phenotype, demonstrating increased levels of glycolysis and oxidative phosphorylation. Rev-erbα deletion increased expression of hexokinase II, transketolase, and ribose-5-phosphate isomerase genes involved in glycolysis and the pentose phosphate pathway (PPP), and these effects were not mediated by the transcriptional activator BMAL1. Upregulation of oxidative phosphorylation was not accompanied by an increase in mitochondrial biogenesis or numbers. Rev-erbα repressed proliferation via glycolysis, but not the PPP. When treated with H2O2, cell viability was reduced in Rev-erbα knockout MEFs, accompanied by increased ratio of oxidized/reduced NADPH, suggesting that perturbation of the PPP reduces capacity to mount an antioxidant defense. These findings uncover novel mechanisms by which glycolysis and the PPP are modulated through Rev-erbα, and provide new insights into how Rev-erbα impacts proliferation.
Collapse
|
41
|
Yoshinaga A, Kajihara N, Kukidome D, Motoshima H, Matsumura T, Nishikawa T, Araki E. Hypoglycemia Induces Mitochondrial Reactive Oxygen Species Production Through Increased Fatty Acid Oxidation and Promotes Retinal Vascular Permeability in Diabetic Mice. Antioxid Redox Signal 2021; 34:1245-1259. [PMID: 32757614 DOI: 10.1089/ars.2019.8008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Aims: Hypoglycemia is associated with increased reactive oxygen species (ROS) production and vascular events. We have previously reported that low-glucose (LG) conditions induce mitochondrial ROS (mtROS) production in aortic endothelial cells (ECs). However, the mechanism by which hypoglycemia promotes diabetic retinopathy (DR) is unclear. Blood-retinal barrier (BRB) disruption occurs in the early stages of DR. We hypothesized that the mechanisms underlying hypoglycemia-induced DR are associated with BRB breakdown due to mtROS generation during hypoglycemia. Here, we aimed to determine whether hypoglycemia exacerbated mtROS production and induced BRB disruption. Results: We observed that hypoglycemia induced mtROS production by increasing fatty acid oxidation (FAO), which was suppressed by overexpression of mitochondrial-specific manganese superoxide dismutase (MnSOD) in retinal ECs. Furthermore, FAO blockade decreased the hypoglycemia-induced mtROS production. Recurrent hypoglycemia increased albumin leak in diabetic mice retina, which was suppressed in diabetic vascular endothelial cell-specific MnSOD transgenic (eMnSOD-Tg) mice. Pharmacological FAO blockade also reduced mtROS production, reduced vascular endothelial growth factor (VEGF) production during hypoglycemia, and prevented retinal vascular permeability in diabetic mice. MnSOD overexpression or carnitine palmitoyltransferase I (CPT1) blockade suppressed vascular endothelial-cadherin phosphorylation under LG in retinal ECs. Innovation and Conclusion: Reduction of mtROS and VEGF production via pharmacological FAO and/or CPT1 blockade may prevent hypoglycemia-induced worsening of DR.
Collapse
Affiliation(s)
- Ayaka Yoshinaga
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Nobuhiro Kajihara
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Daisuke Kukidome
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Department of Diabetes and Endocrinology, Sugimura Hospital, Kumamoto, Japan
| | - Hiroyuki Motoshima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Nishikawa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Department of Diabetes and Endocrinology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
42
|
Xuefei Y, Xinyi Z, Qing C, Dan Z, Ziyun L, Hejuan Z, Xindong X, Jianhua F. Effects of Hyperoxia on Mitochondrial Homeostasis: Are Mitochondria the Hub for Bronchopulmonary Dysplasia? Front Cell Dev Biol 2021; 9:642717. [PMID: 33996802 PMCID: PMC8120003 DOI: 10.3389/fcell.2021.642717] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are involved in energy metabolism and redox reactions in the cell. Emerging data indicate that mitochondria play an essential role in physiological and pathological processes of neonatal lung development. Mitochondrial damage due to exposure to high concentrations of oxygen is an indeed important factor for simplification of lung structure and development of bronchopulmonary dysplasia (BPD), as reported in humans and rodent models. Here, we comprehensively review research that have determined the effects of oxygen environment on alveolar development and morphology, summarize changes in mitochondria under high oxygen concentrations, and discuss several mitochondrial mechanisms that may affect cell plasticity and their effects on BPD. Thus, the pathophysiological effects of mitochondria may provide insights into targeted mitochondrial and BPD therapy.
Collapse
Affiliation(s)
- Yu Xuefei
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Zhao Xinyi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Cai Qing
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Zhang Dan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Liu Ziyun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Zheng Hejuan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Xue Xindong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Fu Jianhua
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, China
| |
Collapse
|
43
|
Gong J, Feng Z, Peterson AL, Carr JF, Lu X, Zhao H, Ji X, Zhao YY, De Paepe ME, Dennery PA, Yao H. The pentose phosphate pathway mediates hyperoxia-induced lung vascular dysgenesis and alveolar simplification in neonates. JCI Insight 2021; 6:137594. [PMID: 33497360 PMCID: PMC8021105 DOI: 10.1172/jci.insight.137594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/20/2021] [Indexed: 01/02/2023] Open
Abstract
Dysmorphic pulmonary vascular growth and abnormal endothelial cell (EC) proliferation are paradoxically observed in premature infants with bronchopulmonary dysplasia (BPD), despite vascular pruning. The pentose phosphate pathway (PPP), a metabolic pathway parallel to glycolysis, generates NADPH as a reducing equivalent and ribose 5-phosphate for nucleotide synthesis. It is unknown whether hyperoxia, a known mediator of BPD in rodent models, alters glycolysis and the PPP in lung ECs. We hypothesized that hyperoxia increases glycolysis and the PPP, resulting in abnormal EC proliferation and dysmorphic angiogenesis in neonatal mice. To test this hypothesis, lung ECs and newborn mice were exposed to hyperoxia and allowed to recover in air. Hyperoxia increased glycolysis and the PPP. Increased PPP, but not glycolysis, caused hyperoxia-induced abnormal EC proliferation. Blocking the PPP reduced hyperoxia-induced glucose-derived deoxynucleotide synthesis in cultured ECs. In neonatal mice, hyperoxia-induced abnormal EC proliferation, dysmorphic angiogenesis, and alveolar simplification were augmented by nanoparticle-mediated endothelial overexpression of phosphogluconate dehydrogenase, the second enzyme in the PPP. These effects were attenuated by inhibitors of the PPP. Neonatal hyperoxia augments the PPP, causing abnormal lung EC proliferation, dysmorphic vascular development, and alveolar simplification. These observations provide mechanisms and potential metabolic targets to prevent BPD-associated vascular dysgenesis.
Collapse
Affiliation(s)
- Jiannan Gong
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
- Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zihang Feng
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Abigail L. Peterson
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Jennifer F. Carr
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Xuexin Lu
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Haifeng Zhao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Xiangming Ji
- Department of Nutrition, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University, Atlanta, Georgia, USA
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Departments of Pediatrics (Critical Care Division), Pharmacology, and Medicine (Pulmonary and Critical Care Medicine), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Monique E. De Paepe
- Department of Pathology, Women and Infants Hospital, Providence, Rhode Island, USA
| | - Phyllis A. Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
44
|
Yang K, Dong W. SIRT1-Related Signaling Pathways and Their Association With Bronchopulmonary Dysplasia. Front Med (Lausanne) 2021; 8:595634. [PMID: 33693011 PMCID: PMC7937618 DOI: 10.3389/fmed.2021.595634] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic and debilitating disease that can exert serious and overwhelming effects on the physical and mental health of premature infants, predominantly due to intractable short- and long-term complications. Oxidative stress is one of the most predominant causes of BPD. Hyperoxia activates a cascade of hazardous events, including mitochondrial dysfunction, uncontrolled inflammation, reduced autophagy, increased apoptosis, and the induction of fibrosis. These events may involve, to varying degrees, alterations in SIRT1 and its associated targets. In the present review, we describe SIRT1-related signaling pathways and their association with BPD. Our intention is to provide new insights into the molecular mechanisms that regulate BPD and identify potential therapeutic targets for this debilitating condition.
Collapse
Affiliation(s)
- Kun Yang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenbin Dong
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
45
|
Lee DD, Park SJ, Zborek KL, Schwarz MA. A shift from glycolytic and fatty acid derivatives toward one-carbon metabolites in the developing lung during transitions of the early postnatal period. Am J Physiol Lung Cell Mol Physiol 2021; 320:L640-L659. [PMID: 33502935 DOI: 10.1152/ajplung.00417.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During postnatal lung development, metabolic changes that coincide with stages of alveolar formation are poorly understood. Responding to developmental and environmental factors, metabolic changes can be rapidly and adaptively altered. The objective of the present study was to determine biological and technical determinants of metabolic changes during postnatal lung development. Over 118 metabolic features were identified by liquid chromatography with tandem mass spectrometry (LC-MS/MS, Sciex QTRAP 5500 Triple Quadrupole). Biological determinants of metabolic changes were the transition from the postnatal saccular to alveolar stages and exposure to 85% hyperoxia, an environmental insult. Technical determinants of metabolic identification were brevity and temperature of harvesting, both of which improved metabolic preservation within samples. Multivariate statistical analyses revealed the transition between stages of lung development as the period of major metabolic alteration. Of three distinctive groups that clustered by age, the saccular stage was identified by its enrichment of both glycolytic and fatty acid derivatives. The critical transition between stages of development were denoted by changes in amino acid derivatives. Of the amino acid derivatives that significantly changed, a majority were linked to metabolites of the one-carbon metabolic pathway. The enrichment of one-carbon metabolites was independent of age and environmental insult. Temperature was also found to significantly influence the metabolic levels within the postmortem sampled lung, which underscored the importance of methodology. Collectively, these data support not only distinctive stages of metabolic change but also highlight amino acid metabolism, in particular one-carbon metabolites as metabolic signatures of the early postnatal lung.
Collapse
Affiliation(s)
- Daniel D Lee
- Department of Pediatrics, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana
| | - Sang Jun Park
- Department of Preprofessional Studies, University of Notre Dame, South Bend, Indiana
| | - Kirsten L Zborek
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana
| | - Margaret A Schwarz
- Department of Pediatrics, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana
| |
Collapse
|
46
|
Gong J, Feng Z, Peterson AL, Carr JF, Vang A, Braza J, Choudhary G, Dennery PA, Yao H. Endothelial to mesenchymal transition during neonatal hyperoxia-induced pulmonary hypertension. J Pathol 2020; 252:411-422. [PMID: 32815166 DOI: 10.1002/path.5534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
Abstract
Bronchopulmonary dysplasia (BPD), a chronic lung disease in premature infants, results from mechanical ventilation and hyperoxia, amongst other factors. Although most BPD survivors can be weaned from supplemental oxygen, many show evidence of cardiovascular sequelae in adulthood, including pulmonary hypertension and pulmonary vascular remodeling. Endothelial-mesenchymal transition (EndoMT) plays an important role in mediating vascular remodeling in idiopathic pulmonary arterial hypertension. Whether hyperoxic exposure, a known mediator of BPD in rodent models, causes EndoMT resulting in vascular remodeling and pulmonary hypertension remains unclear. We hypothesized that neonatal hyperoxic exposure causes EndoMT, leading to the development of pulmonary hypertension in adulthood. To test this hypothesis, newborn mice were exposed to hyperoxia and then allowed to recover in room air until adulthood. Neonatal hyperoxic exposure gradually caused pulmonary vascular and right ventricle remodeling as well as pulmonary hypertension. Male mice were more susceptible to developing pulmonary hypertension compared to female mice, when exposed to hyperoxia as newborns. Hyperoxic exposure induced EndoMT in mouse lungs as well as in cultured lung microvascular endothelial cells (LMVECs) isolated from neonatal mice and human fetal donors. This was augmented in cultured LMVECs from male donors compared to those from female donors. Using primary mouse LMVECs, hyperoxic exposure increased phosphorylation of both Smad2 and Smad3, but reduced Smad7 protein levels. Treatment with a selective TGF-β inhibitor SB431542 blocked hyperoxia-induced EndoMT in vitro. Altogether, we show that neonatal hyperoxic exposure caused vascular remodeling and pulmonary hypertension in adulthood. This was associated with increased EndoMT. These novel observations provide mechanisms underlying hyperoxia-induced vascular remodeling and potential approaches to prevent BPD-associated pulmonary hypertension by targeting EndoMT. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jiannan Gong
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, PR China
| | - Zihang Feng
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Abigail L Peterson
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Jennifer F Carr
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Alexander Vang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, USA
| | - Julie Braza
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, USA
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, USA.,Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
47
|
Sun R, Man Z, Ji J, Ji S, Xu K, Pu Y, Yu L, Zhang J, Yin L, Pu Y. l-Carnitine protects against 1,4-benzoquinone-induced apoptosis and DNA damage by suppressing oxidative stress and promoting fatty acid oxidation in K562 cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:1033-1042. [PMID: 32478940 DOI: 10.1002/tox.22939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/05/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Widespread occupational and environmental exposure to benzene is unavoidable and poses a public health threat. Studies of potential interventions to prevent or relieve benzene toxicity are, thus, essential. Research has shown l-carnitine (LC) has beneficial effects against various pathological processes and diseases. LC possesses antioxidant activities and participates in fatty acid oxidation (FAO). In this study, we investigated whether 1,4-benzoquinone (1,4-BQ) affects LC levels and the FAO pathway, as well as analyzed the influence of LC on the cytotoxic effects of 1,4-BQ. We found that 1,4-BQ significantly decreased LC levels and downregulated Cpt1a, Cpt2, Crat, Hadha, Acaa2, and Acadvl mRNA expression in K562 cells. Subsequent assays confirmed that 1,4-BQ decreased cell viability and increased apoptosis and caspase-3, -8, and -9 activities. It also induced obvious oxidative stress and DNA damage, including an increase in the levels of reactive oxygen species and malondialdehyde, tail DNA%, and olive tail moment. Additionally, the mitochondrial membrane potential was significantly reduced. Cotreatment with LC (500 μmol/L) relieved these alterations by reducing oxidative stress and increasing the protein expression levels of Cpt1a and Hadha, particularly in the 20 μmol/L 1,4-BQ group. Thus, our results demonstrate that 1,4-BQ causes cytotoxicity, reduces LC levels, and downregulates the FAO genes. In contrast, LC exhibits protective effects against 1,4-BQ-induced apoptosis and DNA damage by decreasing oxidative stress and promoting the FAO pathway.
Collapse
Affiliation(s)
- Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Zhaodi Man
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Jiahui Ji
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Shuangbin Ji
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Yunqiu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Linling Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
48
|
Hyperoxic Exposure Caused Lung Lipid Compositional Changes in Neonatal Mice. Metabolites 2020; 10:metabo10090340. [PMID: 32825609 PMCID: PMC7569933 DOI: 10.3390/metabo10090340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
Treatments with supplemental oxygen in premature infants can impair lung development, leading to bronchopulmonary dysplasia (BPD). Although a stage-specific alteration of lung lipidome occurs during postnatal lung development, whether neonatal hyperoxia, a known mediator of BPD in rodent models, changes lipid profiles in mouse lungs is still to be elucidated. To answer this question, newborn mice were exposed to hyperoxia for 3 days and allowed to recover in normoxia until postnatal day (pnd) 7 and pnd14, time-points spanning the peak stage of alveologenesis. A total of 2263 lung lipid species were detected by liquid chromatography–mass spectrometry, covering 5 lipid categories and 18 lipid subclasses. The most commonly identified lipid species were glycerophospholipids, followed by sphingolipids and glycerolipids. In normoxic conditions, certain glycerophospholipid and glycerolipid species augmented at pnd14 compared to pnd7. At pnd7, hyperoxia generally increased glycerophospholipid, sphingolipid, and glycerolipid species. Hyperoxia increased NADPH, acetyl CoA, and citrate acid but reduced carnitine and acyl carnitine. Hyperoxia increased oxidized glutathione but reduced catalase. These changes were not apparent at pnd14. Hyperoxia reduced docosahexaenoic acid and arachidonic acid at pnd14 but not at pnd7. Altogether, the lung lipidome changes throughout alveolarization. Neonatal hyperoxia alters the lung lipidome, which may contribute to alveolar simplification and dysregulated vascular development.
Collapse
|
49
|
Arabi YM, Mallampalli R, Englert JA, Bosch NA, Walkey AJ, Al-Dorzi HM. Update in Critical Care 2019. Am J Respir Crit Care Med 2020; 201:1050-1057. [PMID: 32176850 DOI: 10.1164/rccm.202002-0285up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yaseen M Arabi
- Intensive Care Department, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Rama Mallampalli
- Division of Pulmonary, Critical Care, and Sleep Medicine, Ohio State Wexner Medical, Center, Columbus, Ohio; and
| | - Joshua A Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Ohio State Wexner Medical, Center, Columbus, Ohio; and
| | - Nicholas A Bosch
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Allan J Walkey
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Hasan M Al-Dorzi
- Intensive Care Department, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
50
|
The Utility of Comprehensive Metabolic Panel Tests for the Prediction of Bronchopulmonary Dysplasia in Extremely Premature Infants. DISEASE MARKERS 2019; 2019:5681954. [PMID: 31772691 PMCID: PMC6854975 DOI: 10.1155/2019/5681954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Abstract
Background Comprehensive metabolic panel tests (CMP) are routinely performed in extremely premature infants within the first days of life. The association between the parameters of first postnatal CMP and the risk of bronchopulmonary dysplasia (BPD) remains elusive. Methods A retrospective analysis was performed to evaluate the correlation between the parameters of first postnatal CMP and the risk of BPD in a cohort of extremely premature infants (born with a gestational age less than 28 weeks or a birth weight less than 1000 grams) at the neonatal intensive care unit, Shenzhen Maternity and Child Healthcare Hospital, from January 2016 to October 2018. A multivariant regression model was built to assess the association of the first postnatal CMP with the development of BPD. Results A total of 256 extremely premature infants were included in this study. BPD developed in 76 (29.7%) infants. The first CMP in these infants was performed at 5 to 8 days after birth. The levels of blood urea nitrogen (BUN) and magnesium were significantly higher in infants with BPD compared to infants with no BPD (10.2 versus 7.5 mmol/L, P < 0.001 and 0.9 versus 0.8 U/L, P = 0.001, respectively) whereas the level of alkaline phosphatase (ALP) and total protein was significantly lower in infants with BPD (215.5 versus 310.0 U/L, P = 0.002 and 41.2 versus 42.9 g/L, P = 0.037, respectively). Multiple analysis showed that a higher level of BUN (>8.18 mmol/L) was independently associated with BPD (OR 3.261, 95% CI 1.779-5.978). Conclusion Our findings indicate that a higher postnatal BUN level (>8.18 mmol/L) may be a predictor for the development of BPD in extremely premature infants.
Collapse
|