1
|
Huang K, Yuan L, Liu J, Li X, Xu D, Zhang X, Peng J, Tian H, Li F, Wang W. Application of multi-omics technology in pathogen identification and resistance gene screening of sheep pneumonia. BMC Genomics 2025; 26:507. [PMID: 40394515 PMCID: PMC12090697 DOI: 10.1186/s12864-025-11699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Pneumonia constitutes a major health challenge in sheep, severely compromising growth rates and overall productivity, and resulting in considerable economic losses to the sheep industry. To address this issue, the development of disease-resistant breeding programs based on the identification of genetic markers associated with pneumonia susceptibility is of critical importance. This study investigated a sheep population on a farm where pneumonia was endemic. The purpose was to use multi-omics methods to rapidly identify the principal pathogens responsible for pneumonia outbreaks, and to screen for genetic loci and key genes related to pneumonia resistance, thereby providing a scientific basis for the implementation of targeted breeding strategies for pneumonia resistance. RESULTS Here, we assessed the impact of pneumonia on sheep growth by evaluating the pneumonia phenotypes of 912 sheep. High-throughput transcriptome sequencing of 40 lungs was conducted to obtain exogenous RNA fragments for microbial sequence alignment. Additionally, 16S rRNA sequencing was performed on lung tissues from 10 healthy and 10 diseased sheep to identify biomarkers associated with phenotypic differences. Mycoplasma ovipneumoniae was identified as the primary pneumonia pathogen, and its presence was further validated by load quantification and immunohistochemical analysis. Integration of genome-wide association study (GWAS) data from 266 lung pathological scores with transcriptome-based differentially expressed genes analysis enabled the identification of five single nucleotide polymorphisms (SNPs) and three potential candidate genes associated with Mycoplasma pneumonia. Subsequent genotyping and phenotype association analyses confirmed the significance of two SNPs and established a strong association between the FOXF1 gene and resistance to Mycoplasma pneumonia. CONCLUSIONS High-throughput sequencing technologies have enabled the rapid and accurate identification of the causative pathogen of sheep pneumonia. By integrating multi-omics data, two genomic loci significantly associated with Mycoplasma pneumonia were screened, as well as an anti-Mycoplasma pneumonia key gene, FOXF1.
Collapse
Affiliation(s)
- Kai Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Lvfeng Yuan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, China
| | - Jia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaolong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Dan Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jie Peng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huibin Tian
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Weimin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
2
|
Liu L, Zhao W, Zhang H, Shang Y, Huang W, Cheng Q. Relationship between pediatric asthma and respiratory microbiota, intestinal microbiota: a narrative review. Front Microbiol 2025; 16:1550783. [PMID: 40415934 PMCID: PMC12099452 DOI: 10.3389/fmicb.2025.1550783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/21/2025] [Indexed: 05/27/2025] Open
Abstract
Pediatric asthma is a common chronic airway inflammatory disease that begins in childhood and its impact persists throughout all age stages of patients. With the continuous progress of detection technologies, numerous studies have firmly demonstrated that gut microbiota and respiratory microbiota are closely related to the occurrence and development of asthma, and related research is increasing day by day. This article elaborates in detail on the characteristics, composition of normal gut microbiota and lung microbiota at different ages and in different sites, as well as the connection of the gut-lung axis. Subsequently, it deeply analyzes various factors influencing microbiota colonization, including host factor, delivery mode, maternal dietary and infant feeding patterns, environmental microbial exposure and pollutants, and the use of antibiotics in early life. These factors are highly likely to play a crucial role in the onset process and disease progression of asthma. Research shows that obvious changes have occurred in the respiratory and gut microbiota of asthma patients, and these microbiomes exhibit different characteristics according to the phenotypes and endotypes of asthma. Finally, the article summarizes the microbiota-related treatment approaches for asthma carried out in recent years, including the application of probiotics, nutritional interventions, and fecal microbiota transplantation. These treatment modalities are expected to become new directions for future asthma treatment and bring new hope for solving the problem of childhood asthma.
Collapse
Affiliation(s)
- Lian Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wenqi Zhao
- School of Clinical Medicine, Qilu Medical University, Zibo, China
| | - Han Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wanjie Huang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Cheng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Vidaur L, Guridi A, Leizaola O, Marin J, Rello J, Sarasqueta C, Sorarrain A, Marimón JM. Respiratory dysbiosis as prognostic biomarker of disease severity for adults with community-acquired pneumonia requiring mechanical ventilation. Pneumonia (Nathan) 2025; 17:10. [PMID: 40320531 PMCID: PMC12051328 DOI: 10.1186/s41479-025-00163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/20/2025] [Indexed: 05/08/2025] Open
Abstract
OBJETIVES To ascertain the role of the lung microbiome in the development of severe pneumonia and its potential as a biomarker for disease progression. METHODS BAL samples from 34 adults with severe community-acquired pneumonia (CAP) (17 viral, 8 viral coinfected with bacteria and 9 bacterial) admitted to the ICU for acute respiratory failure between 2019 and 2021 were collected within the first 48 h of admission to the ICU. The microbiome was characterized via the Ion 16S Metagenomics Kit and the Ion Torrent sequencing platform. Clinical factors, including survival, mechanical ventilation duration, blood biomarkers and organ failure in terms of acute respiratory distress syndrome (ARDS), shock or acute renal failure, were correlated with microbiome characteristics. RESULTS The microbiome diversity in patients with viral pneumonia was significantly greater than that in patients with bacterial or coinfected pneumonia: the Shannon diversity index was 3.75 (Q1-Q3: 2.5-4.1) versus 0.4 (Q1-Q3: 0.2-1.3) and 0.48 (Q1-Q3: 0.3-1.1), respectively (p < 0.05). The microbiome diversity index was associated with severity-of-illness (APACHE II), independent of the etiology of pneumonia (B coefficient -1.845; p < 0.01). Patients with severe viral CAP who developed ARDS had a lower presence of Proteobacteria, and those who were complicated with ventilator-associated pneumonia had a higher prevalence of Acinetobacter at admission. The mortality of patients with bacterial or coinfected pneumonia was 35%. In coinfected patients, the diversity index was associated with the development of shock. CONCLUSION Patients with severe CAP have low respiratory microbiome diversity, indicating that respiratory microbiome diversity is a potential biomarker of disease severity.
Collapse
Affiliation(s)
- Loreto Vidaur
- Intensive Care Unit, Donostia University Hospital, Paseo del Dr. Beguiristain S/N, Donostia-San Sebastián, 20014, Spain.
- Biogipuzkoa, Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group, Osakidetza Basque Health Service, Donostialdea Integrated Health Organization, Microbiology Department, Donostia-San Sebastian, 20014, Spain.
- Centro de Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
| | - Amalur Guridi
- Intensive Care Unit, Donostia University Hospital, Paseo del Dr. Beguiristain S/N, Donostia-San Sebastián, 20014, Spain
| | - Oihana Leizaola
- Intensive Care Unit, Donostia University Hospital, Paseo del Dr. Beguiristain S/N, Donostia-San Sebastián, 20014, Spain
| | - Jokin Marin
- Intensive Care Unit, Donostia University Hospital, Paseo del Dr. Beguiristain S/N, Donostia-San Sebastián, 20014, Spain
| | - Jordi Rello
- Centro de Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Clinical Research Epidemiology in Pneumonia and Sepsis (CRISP), Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- IMAGINE, UR-UM107, University of Montpellier, Division of Anaesthesia Critical Care, Pain and Emergency Medicine Nimes University Hospital, Nimes, France
| | - Cristina Sarasqueta
- Clinical Epidemiology Department, OSID Donostialdea. Biogipuzkoa, San Sebastian, Spain
| | - Ane Sorarrain
- Microbiology Department, Donostia University Hospital, Donostia-San Sebastian, 20014, Spain
| | - Jose María Marimón
- Biogipuzkoa, Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group, Osakidetza Basque Health Service, Donostialdea Integrated Health Organization, Microbiology Department, Donostia-San Sebastian, 20014, Spain
- Microbiology Department, Donostia University Hospital, Donostia-San Sebastian, 20014, Spain
| |
Collapse
|
4
|
de Córdoba‐Ansón PF, Linares‐Ambohades I, Baquero F, Coque TM, Pérez‐Cobas AE. The Respiratory Tract Microbiome and Human Health. Microb Biotechnol 2025; 18:e70147. [PMID: 40293161 PMCID: PMC12035874 DOI: 10.1111/1751-7915.70147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
The respiratory tract microbiome (RTM) is a multi-kingdom microbial ecosystem that inhabits various niches of the respiratory system. While previously overlooked, there is now sufficient evidence that the RTM plays a crucial role in human health related to immune system training and protection against pathogens. Accordingly, dysbiosis or disequilibrium of the RTM has been linked to several communicable and non-communicable respiratory diseases, highlighting the need to unveil its role in health and disease. Here, we define the RTM and its place in microbiome medicine. Moreover, we outline the challenges of RTM research, emphasising the need for combining methodologies, including multi-omics and computational tools. We also discuss the RTM's potential for diagnosing, preventing and treating respiratory diseases and developing novel microbiome-based therapies to improve pulmonary health.
Collapse
Affiliation(s)
| | - Iván Linares‐Ambohades
- Department of MicrobiologyRamón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University HospitalMadridSpain
| | - Fernando Baquero
- Department of MicrobiologyRamón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University HospitalMadridSpain
- CIBER in Epidemiology and Public Health (CIBERESP)MadridSpain
| | - Teresa M. Coque
- Department of MicrobiologyRamón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University HospitalMadridSpain
- CIBER in Infectious Diseases (CIBERINFEC)MadridSpain
| | - Ana Elena Pérez‐Cobas
- Department of MicrobiologyRamón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University HospitalMadridSpain
- CIBER in Infectious Diseases (CIBERINFEC)MadridSpain
| |
Collapse
|
5
|
Darawshy F, Tsay JCJ, Segal LN, Pass H. Microbial biomarker development for detection and prognosis of early-stage non-small cell lung cancer. Cancer Biomark 2025; 42:18758592251322045. [PMID: 40302376 DOI: 10.1177/18758592251322045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Non-small cell lung cancer (NSCLC) remains the most common cause for cancer-related mortality despite advances in treatment. Early detection is crucial for improving patient outcomes, yet current diagnostic and prognostic molecular biomarkers lack the sensitivity and specificity necessary to become clinically useful. Recent studies revealed that the lower airway microbiome play a role in NSCLC and that microbial signatures are associated with NSCLC development, progression, and prognosis, suggesting the potential for microbiome-based biomarkers for early diagnosis and risk stratification. Here we review recent advances in the role of the local and systemic microbiome in early-stage NSCLC. Primarily, several studies have identified specific microbial taxa associated with lung cancer suggesting novel insights into disease pathogenesis and progression. Integration of microbiome data with other 'omics' platforms, such as host transcriptomics and metabolomics, has the potential to enhance our understanding of microbial-host interactions and may provide more comprehensive biomarker signatures. While promising, challenges remain to the development of microbiome-based biomarkers such as those related to differences in samples utilized, sequencing methods, and data analysis. Here, we discuss such challenges as well as future directions for research needed to fulfil the promise of microbiome-based biomarkers for changing early detection and management strategies in NSCLC.
Collapse
Affiliation(s)
- Fares Darawshy
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Hadassah Medical Center, The Institute of Pulmonary Medicine, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jun-Chieh J Tsay
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Division of Pulmonary and Critical Care Medicine, VA New York Harbor Healthcare System, New York, NY, USA
| | - Leopoldo N Segal
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY, USA
| | - Harvey Pass
- Department of Cardiothoracic Surgery, NYU School of Medicine, New York, USA
| |
Collapse
|
6
|
Upadhyay V, Ortega EF, Ramirez Hernandez LA, Alexander M, Kaur G, Trepka K, Rock RR, Shima RT, Cheshire WC, Alipanah-Lechner N, Calfee CS, Matthay MA, Lee JV, Goga A, Jain IH, Turnbaugh PJ. Gut bacterial lactate stimulates lung epithelial mitochondria and exacerbates acute lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645052. [PMID: 40196632 PMCID: PMC11974820 DOI: 10.1101/2025.03.24.645052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Acute respiratory distress syndrome (ARDS) is an often fatal critical illness where lung epithelial injury leads to intrapulmonary fluid accumulation. ARDS became widespread during the COVID-19 pandemic, motivating a renewed effort to understand the complex etiology of this disease. Rigorous prior work has implicated lung endothelial and epithelial injury in response to an insult such as bacterial infection; however, the impact of microorganisms found in other organs on ARDS remains unclear. Here, we use a combination of gnotobiotic mice, cell culture experiments, and re-analyses of a large metabolomics dataset from ARDS patients to reveal that gut bacteria impact lung cellular respiration by releasing metabolites that alter mitochondrial activity in lung epithelium. Colonization of germ-free mice with a complex gut microbiota stimulated lung mitochondrial gene expression. A single human gut bacterial species, Bifidobacterium adolescentis, was sufficient to replicate this effect, leading to a significant increase in mitochondrial membrane potential in lung epithelial cells. We then used genome sequencing and mass spectrometry to confirm that B. adolescentis produces L -lactate, which was sufficient to increase mitochondrial activity in lung epithelial cells. Finally, we found that serum lactate was significantly associated with disease severity in patients with ARDS from the Early Assessment of Renal and Lung Injury (EARLI) cohort. Together, these results emphasize the importance of more broadly characterizing the microbial etiology of ARDS and other lung diseases given the ability of gut bacterial metabolites to remotely control lung cellular respiration. Our discovery of a single bacteria-metabolite pair provides a proof-of-concept for systematically testing other microbial metabolites and a mechanistic biomarker that could be pursued in future clinical studies. Furthermore, our work adds to the growing literature linking the microbiome to mitochondrial function, raising intriguing questions as to the bidirectional communication between our endo- and ecto-symbionts.
Collapse
|
7
|
Fan Y, Meng S, Song Y, Zhang Y, Song Y, Chen Z, Xie K. Interaction, diagnosis, and treatment of lung microbiota-NLRP3 inflammasome-target organ axis in sepsis. Int Immunopharmacol 2025; 149:114222. [PMID: 39923579 DOI: 10.1016/j.intimp.2025.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/14/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Sepsis is defined as a life-threatening condition caused by a dysregulated host response to infection, leading to multi-organ dysfunction, and representing a significant global health burden. The progression of sepsis is closely linked to disruptions in lung microbiota, including bacterial translocation, impaired barrier function, and local microenvironmental disturbances. Conversely, the worsening of sepsis exacerbates lung microbiota imbalances, contributing to multi-organ dysfunction. Recent culture-independent microbiological techniques have unveiled the complexity of the respiratory tract microbiome, necessitating a reassessment of the interactions between the host, microbes, and pathogenesis in sepsis. This review synthesizes current insights into the causes of microbiota dysbiosis and the regulatory mechanisms of the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, as well as their interactions during sepsis and sepsis-induced organ dysfunction. In addition, we summarize novel diagnostic and therapeutic approaches from the current study that may offer promising prospects for the management of sepsis.
Collapse
Affiliation(s)
- Yan Fan
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Shuqi Meng
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Yu Song
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Ying Zhang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Yan Song
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin China
| | - Zhe Chen
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin China.
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China; Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, China.
| |
Collapse
|
8
|
Zhang W, Li L, Zhang Y, Dai J, Qiu C, Chen R, Shi F. Perturbations in the airway microbiome are associated with type 2 asthma phenotype and severity. Ann Allergy Asthma Immunol 2025; 134:296-305.e9. [PMID: 39549985 DOI: 10.1016/j.anai.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Airway microbiome has been linked to asthma heterogeneity, yet little is known about the associations between airway microbiota and type 2 (T2) asthma phenotype and severity. OBJECTIVE To determine the relationship of nasopharyngeal (NP) and induced sputum (IS) microbiota to the phenotypic features of T2 asthma. METHODS NP and IS samples from subjects with T2 mild-to-moderate asthma (n = 23), subjects with severe asthma (n = 21), and healthy controls (n = 16) were analyzed. Bacterial microbiota and functional profiles were compared. The correlation between microbial communities and clinical and inflammatory features was evaluated in individuals with asthma of 2 statuses. RESULTS Differences in NP and IS microbiota were associated with T2 asthma phenotype. Alterations in NP microbiota were more reflective of T2 inflammation and severity, with additional stratification of a subgroup characterized by significant elevations in T2 inflammatory biomarkers and reductions in bacterial richness and diversity (P < .05). Burkholderia-Caballeronia-Paraburkholderia, Ralstonia, and Rhodococcus were identified as hub taxa within NP microbial network in T2 severe asthma, which were prevalent in the entire airway and involved in bacterial functions including inflammatory and steroid responses (P < .05). The composition and diversity of IS microbiota were complex, with Veillonella as the most altered genus, having an increase with increasing asthma severity. CONCLUSION Our work revealed the significant associations of microbiota perturbations throughout the entire respiratory tract to the extent of T2 inflammation, phenotype and severity in T2 asthma. The specific taxa identified invite further mechanistic investigations to unravel their possibility as biomarkers and therapeutic targets for T2 severe asthma.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Infectious Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), School of Medicine, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Lifei Li
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People's Republic of China
| | - Yu Zhang
- Department of Infectious Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), School of Medicine, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Junjie Dai
- Department of Infectious Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), School of Medicine, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Chen Qiu
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People's Republic of China
| | - Rongchang Chen
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People's Republic of China
| | - Fei Shi
- Department of Infectious Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), School of Medicine, Southern University of Science and Technology, Shenzhen, People's Republic of China.
| |
Collapse
|
9
|
Huang YJ. The Microbiome in Asthma Heterogeneity: The Role of Multi-Omic Investigations. Immunol Rev 2025; 330:e70015. [PMID: 40072031 PMCID: PMC11899502 DOI: 10.1111/imr.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/13/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Asthma is one of the most prevalent and extensively studied chronic respiratory conditions, yet the heterogeneity of asthma remains biologically puzzling. Established factors like exogenous exposures and treatment adherence contribute to variability in asthma risk and clinical outcomes. It is also clear that the endogenous factors of genetics and immune system response patterns play key roles in asthma. Despite significant existing knowledge in the above, divergent clinical trajectories and outcomes are still observed, even among individuals with similar risk profiles, biomarkers, and optimal medical management. This suggests uncaptured biological interactions that contribute to asthma's heterogeneity, for which the role of host microbiota has lately attracted much research attention. This review will highlight recent evidence in this area, focusing on bedside-to-bench investigations that have leveraged omic technologies to uncover microbiome links to asthma outcomes and immunobiology. Studies centered on the respiratory system and the use of multi-omics are noted in particular. These represent a new generation of reverse-translational investigations revealing potential functional crosstalk in host microbiomes that may drive phenotypic heterogeneity in chronic diseases like asthma. Multi-omic data offer a wide lens into ecosystem interactions within a host. This informs new hypotheses and experimental work to elucidate mechanistic pathways for unresolved asthma endotypes. Further incorporation of multi-omics into patient-centered investigations can yield new insights that hopefully lead to even more precise, microbiome-informed strategies to reduce asthma burden.
Collapse
Affiliation(s)
- Yvonne J. Huang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
10
|
Stadler SV, von Garnier C, Ubags ND. Post-viral lung diseases: the microbiota as a key player. ERJ Open Res 2025; 11:00560-2024. [PMID: 40196711 PMCID: PMC11973713 DOI: 10.1183/23120541.00560-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/08/2024] [Indexed: 04/09/2025] Open
Abstract
Viral infections of the respiratory tract can lead to chronic lung injury through immunopathological mechanisms that remain unclear. Communities of commensal bacteria colonising the respiratory tract, known as the respiratory tract microbiota, are altered in viral infections, which can contribute to inflammation, lung epithelial damage and subsequent development of lung disease. Emerging evidence on post-viral lung injury suggests an interplay between viral infections, immune responses and airway microbiota composition in the development of viral-induced lung diseases. In this review, we present the clinical characteristics of post-viral lung injury, along with the underlying immunopathological mechanisms and host-bacteria interactions, with a focus on influenza virus, respiratory syncytial virus and coronaviruses. Additionally, considering the important role of the airway microbiota in viral-induced pulmonary sequelae, we suggest key areas for future research on respiratory microbiota involvement in the development of post-viral lung diseases.
Collapse
Affiliation(s)
- Sabine V. Stadler
- Division of Pulmonary Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Christophe von Garnier
- Division of Pulmonary Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Niki D. Ubags
- Division of Pulmonary Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Utembe W, Kamng'ona AW. Inhalation exposure to chemicals, microbiota dysbiosis and adverse effects on humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176938. [PMID: 39414049 DOI: 10.1016/j.scitotenv.2024.176938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/21/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
As revealed by culture-independent methodologies, disruption of the normal lung microbiota (LM) configuration (LM dysbiosis) is a potential mediator of adverse effects from inhaled chemicals. LM, which consists of microbiota in the upper and lower respiratory tract, is influenced by various factors, including inter alia environmental exposures. LM dysbiosis has been associated with multiple respiratory pathologies such as asthma, lung cancer, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF). Chemically-induced LM dysbiosis appears to play significant roles in human respiratory diseases, as has been shown for some air pollutants, cigarette smoke and some inhalable chemical antibiotics. Lung microbiota are also linked with the central nervous system (CNS) in the so-called lung-brain axis. Inhaled chemicals that undergo mucociliary clearance may be linked to respiratory conditions through gut microbiota (GM) dysbiosis in the so-called Gut-Lung axis. However, current linkages of various disease states to LM appears to be associative, with causal linkages requiring further studies using more robust approaches, methods and techniques that are different from those applied in studies involving (GM). Most importantly, the sampling techniques determine the level of risk of cross contamination. Furthermore, the development of continuous or semi-continuous systems designed to replicate the lung microbiome will go a long way to further LM dysbiosis studies. These challenges notwithstanding, the preponderance of evidence points to the significant role of LM-mediated chemical toxicity in human disease and conditions.
Collapse
Affiliation(s)
- W Utembe
- Toxicology and Biochemistry Department, National Institute for Occupational Health, National Health Laboratory Services, Johannesburg 2000, South Africa; Environmental Health Division, School of Public Health and Family Medicine, University of Cape Town, Cape Town 7925, South Africa.
| | - A W Kamng'ona
- School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences, Blantyre Campus, Mahatma Gandhi Road, Blantyre 312224, Malawi
| |
Collapse
|
12
|
Campbell S, Gerasimidis K, Milling S, Dicker AJ, Hansen R, Langley RJ. The lower airway microbiome in paediatric health and chronic disease. Paediatr Respir Rev 2024; 52:31-43. [PMID: 38538377 DOI: 10.1016/j.prrv.2024.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/13/2024] [Indexed: 12/16/2024]
Abstract
The advent of next generation sequencing has rapidly challenged the paediatric respiratory physician's understanding of lung microbiology and the role of the lung microbiome in host health and disease. In particular, the role of "microbial key players" in paediatric respiratory disease is yet to be fully explained. Accurate profiling of the lung microbiome in children is challenging since the ability to obtain lower airway samples coupled with processing "low-biomass specimens" are both technically difficult. Many studies provide conflicting results. Early microbiota-host relationships may be predictive of the development of chronic respiratory disease but attempts to correlate lower airway microbiota in premature infants and risk of developing bronchopulmonary dysplasia (BPD) have produced mixed results. There are differences in lung microbiota in asthma and cystic fibrosis (CF). The increased abundance of oral taxa in the lungs may (or may not) promote disease processes in asthma and CF. In CF, correlation between microbiota diversity and respiratory decline is commonly observed. When one considers other pathogens beyond the bacterial kingdom, the contribution and interplay of fungi and viruses within the lung microbiome further increase complexity. Similarly, the interaction between microbial communities in different body sites, such as the gut-lung axis, and the influence of environmental factors, including diet, make the co-existence of host and microbes ever more complicated. Future, multi-omics approaches may help uncover novel microbiome-based biomarkers and therapeutic targets in respiratory disease and explain how we can live in harmony with our microbial companions.
Collapse
Affiliation(s)
- S Campbell
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - K Gerasimidis
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - S Milling
- School of Infection & Immunity, University of Glasgow
| | - A J Dicker
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee
| | - R Hansen
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee
| | - R J Langley
- Department of Paediatric Respiratory & Sleep Medicine, Royal Hospital for Children, Glasgow; Department of Maternal and Child Health, School of Medicine, Dentistry and Nursing, University of Glasgow.
| |
Collapse
|
13
|
Fadell F, Saliba R, El-Solh AA. Bacteriology of Aspiration Pneumonia: The Lung Microbiome and the Changing Microbial Etiology. Semin Respir Crit Care Med 2024; 45:626-633. [PMID: 39536943 DOI: 10.1055/s-0044-1792111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Aspiration pneumonia refers to the process of alveolar inflammation induced by the inhalation of oropharyngeal secretions into the lower respiratory tract. Predisposing factors comprise swallowing dysfunction, impaired cough reflex, and degenerative neurological diseases. Accumulating evidence projects a fading contribution of anaerobic bacteria in aspiration pneumonia at the expense of Gram-negative bacilli, with Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, becoming the predominant organisms recovered from respiratory specimens. Aspiration of oropharyngeal secretions colonized with respiratory pathogens induces a profound disequilibrium of the lung microbiota resulting in a state of dysbiosis. Understanding this complex temporal variability between microbiome-host associations was only made possible with the introduction of metagenomic sequencing. In this narrative review, we summarize existing knowledge and elaborate on the evolving microbiology of aspiration pneumonia including the link between oral microbiome and pulmonary aspiration. We also highlight the progress and challenges in instituting microbiome-targeted strategies for preventing and treating the sequelae of aspiration pneumonia.
Collapse
Affiliation(s)
- Francois Fadell
- VA Western New York Healthcare System, Research and Development, Buffalo, New York
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University at Buffalo, Buffalo, New York
| | - Ranime Saliba
- VA Western New York Healthcare System, Research and Development, Buffalo, New York
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University at Buffalo, Buffalo, New York
| | - Ali A El-Solh
- VA Western New York Healthcare System, Research and Development, Buffalo, New York
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University at Buffalo, Buffalo, New York
- Department of Anesthesiology, Jacobs School of Medicine, University at Buffalo, Buffalo, New York
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| |
Collapse
|
14
|
Du C, Zhang Y, Zhang H, Zhang H, Liu J, Shen N. Bibliometric Analysis of Research Trends and Prospective Directions of Lung Microbiome. Pathogens 2024; 13:996. [PMID: 39599549 PMCID: PMC11597221 DOI: 10.3390/pathogens13110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
The lung microbiome has emerged as a pivotal area of research in human health. Despite the increasing number of publications, there is a lack of research that comprehensively and objectively presents the current status of lung microbiome-related studies. Thus, this study aims to address this gap by examining over two decades of publications through bibliometric analysis. The original bibliographic data of this study were obtained from the Web of Science Core Collection, focusing on publications from 2003 to 2023. The analysis included the data extraction and examination of authors, affiliations, countries, institutions, abstracts, keywords, references, publication dates, journals, citations, H-indexes, and journal impact factors. A total of 845 publications were identified, showing an increasing trend in both publications and citations over the years, particularly in the last decade. The analysis highlighted the most productive authors, institutions, and countries/regions, and identified potential partners for interested researchers. Co-citation analysis revealed that lung microbiome- and infectious/pulmonary disease-related studies are at the forefront of the field. The hotspots and frontiers of the lung microbiome field have progressed from basic composition to exploring specific mechanisms and the clinical value of diseases. In conclusion, this study provides a comprehensive overview of the current research status and trends in the field of the lung microbiome over the past two decades and highlights the areas that need more attention and research efforts. It offers valuable insights for researchers and institutions and identifies key hotspots and frontiers, which can serve as references for related researchers and future research.
Collapse
Affiliation(s)
- Chunjing Du
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing 100191, China
| | - Yi Zhang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Hanwen Zhang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Hua Zhang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Jingyuan Liu
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
15
|
Tsay JCJ, Darawshy F, Wang C, Kwok B, Wong KK, Wu BG, Sulaiman I, Zhou H, Isaacs B, Kugler MC, Sanchez E, Bain A, Li Y, Schluger R, Lukovnikova A, Collazo D, Kyeremateng Y, Pillai R, Chang M, Li Q, Vanguri RS, Becker AS, Moore WH, Thurston G, Gordon T, Moreira AL, Goparaju CM, Sterman DH, Tsirigos A, Li H, Segal LN, Pass HI. Lung Microbial and Host Genomic Signatures as Predictors of Prognosis in Early-Stage Adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2024; 33:1433-1444. [PMID: 39225784 PMCID: PMC11530314 DOI: 10.1158/1055-9965.epi-24-0661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/15/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Risk of early-stage lung adenocarcinoma recurrence after surgical resection is significant, and the postrecurrence median survival is approximately 2 years. Currently, there are no commercially available biomarkers that predict recurrence. In this study, we investigated whether microbial and host genomic signatures in the lung can predict recurrence. METHODS In 91 patients with early-stage (stage IA/IB) lung adenocarcinoma with extensive follow-up, we used 16s rRNA gene sequencing and host RNA sequencing to map the microbial and host transcriptomic landscape in tumor and adjacent unaffected lung samples. RESULTS Of 91 subjects, 23 had tumor recurrence over 5-year period. In tumor samples, lung adenocarcinoma recurrence was associated with enrichment in Dialister and Prevotella, whereas in unaffected lung samples, recurrence was associated with enrichment in Sphingomonas and Alloiococcus. The strengths of the associations between microbial and host genomic signatures with lung adenocarcinoma recurrence were greater in adjacent unaffected lung samples than in the primary tumor. Among microbial-host features in the unaffected lung samples associated with recurrence, enrichment in Stenotrophomonas geniculata and Chryseobacterium was positively correlated with upregulation of IL2, IL3, IL17, EGFR, and HIF1 signaling pathways among the host transcriptome. In tumor samples, enrichment in Veillonellaceae (Dialister), Ruminococcaceae, Haemophilus influenzae, and Neisseria was positively correlated with upregulation of IL1, IL6, IL17, IFN, and tryptophan metabolism pathways. CONCLUSIONS Overall, modeling suggested that a combined microbial/transcriptome approach using unaffected lung samples had the best biomarker performance (AUC = 0.83). IMPACT This study suggests that lung adenocarcinoma recurrence is associated with distinct pathophysiologic mechanisms of microbial-host interactions in the unaffected lung rather than those present in the resected tumor.
Collapse
Affiliation(s)
- Jun-Chieh J. Tsay
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Division of Pulmonary and Critical Care Medicine, VA New York Harbor Healthcare System, New York, NY
| | - Fares Darawshy
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- The Institute of Pulmonary Medicine, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chan Wang
- Department of Population Health, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Benjamin Kwok
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Kendrew K. Wong
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Benjamin G. Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Division of Pulmonary and Critical Care Medicine, VA New York Harbor Healthcare System, New York, NY
| | - Imran Sulaiman
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Respiratory Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Respiratory Medicine, Beaumont Hospital, Dublin, Ireland
| | - Hua Zhou
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine New York, USA
| | - Bradley Isaacs
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Matthias C. Kugler
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Elizabeth Sanchez
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Alexander Bain
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Yonghua Li
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Rosemary Schluger
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Alena Lukovnikova
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Destiny Collazo
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Yaa Kyeremateng
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Ray Pillai
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Miao Chang
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Qingsheng Li
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Rami S. Vanguri
- Division of Precision Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, USA
| | - Anton S. Becker
- Department of Radiology, NYU Grossman School of Medicine New York, USA
| | - William H. Moore
- Department of Radiology, NYU Grossman School of Medicine New York, USA
| | - George Thurston
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Population Health, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, USA
| | - Terry Gordon
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, USA
| | - Andre L. Moreira
- Department of Pathology, NYU Grossman School of Medicine New York, USA
| | - Chandra M. Goparaju
- Department of Cardiothoracic Surgery, NYU Grossman School of Medicine, New York, USA
| | - Daniel H. Sterman
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY
| | - Aristotelis Tsirigos
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine New York, USA
- Division of Precision Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, USA
| | - Huilin Li
- Department of Population Health, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Leopoldo N. Segal
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY
| | - Harvey I. Pass
- Department of Cardiothoracic Surgery, NYU Grossman School of Medicine, New York, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY
| |
Collapse
|
16
|
Abbasi A, Wang D, Stringer WW, Casaburi R, Rossiter HB. Immune system benefits of pulmonary rehabilitation in chronic obstructive pulmonary disease. Exp Physiol 2024. [PMID: 39456127 DOI: 10.1113/ep091678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/04/2024] [Indexed: 10/28/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a respiratory disease characterized by pulmonary and systemic inflammation. Inflammatory mediators show relationships with shortness of breath, exercise intolerance and health related quality of life. Pulmonary rehabilitation (PR), a comprehensive education and exercise training programme, is the most effective therapy for COPD and is associated with reduced exacerbation and hospitalization rates and increased survival. Exercise training, the primary physiological intervention within PR, is known to exert a beneficial anti-inflammatory effect in health and chronic diseases. The question of this review article is whether exercise training can also make such a beneficial anti-inflammatory effect in COPD. Experimental studies using smoke exposure mice models suggest that the response of the immune system to exercise training is favourably anti-inflammatory. However, the evidence about the response of most known inflammatory mediators (C-reactive protein, tumour necrosis factor α, interleukin 6, interleukin 10) to exercise training in COPD patients is inconsistent, making it difficult to conclude whether regular exercise training has an anti-inflammatory effect in COPD. It is also unclear whether COPD patients with more persistent inflammation are a subgroup that would benefit more from hypothesized immunomodulatory effects of exercise training (i.e., personalized treatment). Nevertheless, it seems that PR combined with maintenance exercise training (i.e., lifestyle change) might be more beneficial in controlling inflammation and slowing disease progress in COPD patients, specifically in those with early stages of disease.
Collapse
Affiliation(s)
- Asghar Abbasi
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - David Wang
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - William W Stringer
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Richard Casaburi
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Harry B Rossiter
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| |
Collapse
|
17
|
Buytaers FE, Berger N, Van der Heyden J, Roosens NHC, De Keersmaecker SCJ. The potential of including the microbiome as biomarker in population-based health studies: methods and benefits. Front Public Health 2024; 12:1467121. [PMID: 39507669 PMCID: PMC11538166 DOI: 10.3389/fpubh.2024.1467121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
The key role of our microbiome in influencing our health status, and its relationship with our environment and lifestyle or health behaviors, have been shown in the last decades. Therefore, the human microbiome has the potential to act as a biomarker or indicator of health or exposure to health risks in the general population, if information on the microbiome can be collected in population-based health surveys or cohorts. It could then be associated with epidemiological participant data such as demographic, clinical or exposure profiles. However, to our knowledge, microbiome sampling has not yet been included as biological evidence of health or exposure to health risks in large population-based studies representative of the general population. In this mini-review, we first highlight some practical considerations for microbiome sampling and analysis that need to be considered in the context of a population study. We then present some examples of topics where the microbiome could be included as biological evidence in population-based health studies for the benefit of public health, and how this could be developed in the future. In doing so, we aim to highlight the benefits of having microbiome data available at the level of the general population, combined with epidemiological data from health surveys, and hence how microbiological data could be used in the future to assess human health. We also stress the challenges that remain to be overcome to allow the use of this microbiome data in order to improve proactive public health policies.
Collapse
|
18
|
Huo C, Jiao X, Wang Y, Jiang Q, Ning F, Wang J, Jia Q, Zhu Z, Tian L. Silica aggravates pulmonary fibrosis through disrupting lung microbiota and amino acid metabolites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174028. [PMID: 38889818 DOI: 10.1016/j.scitotenv.2024.174028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Silicosis, recognized as a severe global public health issue, is an irreversible pulmonary fibrosis caused by the long-term inhalation of silica particles. Given the intricate pathogenesis of silicosis, there is no effective intervention measure, which poses a severe threat to public health. Our previous study reported that dysbiosis of lung microbiota is associated with the development of pulmonary fibrosis, potentially involving the lipopolysaccharides/toll-like receptor 4 pathway. Similarly, the process of pulmonary fibrosis is accompanied by alterations in metabolic pathways. This study employed a combined approach of 16S rDNA sequencing and metabolomic analysis to investigate further the role of lung microbiota in silicosis delving deeper into the potential pathogenesis of silicosis. Silica exposure can lead to dysbiosis of the lung microbiota and the occurrence of pulmonary fibrosis, which was alleviated by a combination antibiotic intervention. Additionally, significant metabolic disturbances were found in silicosis, involving 85 differential metabolites among the three groups, which are mainly focused on amino acid metabolic pathways. The changed lung metabolites showed a substantial correlation with lung microbiota. The relative abundance of Pseudomonas negatively correlated with L-Aspartic acid, L-Glutamic acid, and L-Threonine levels. These results indicate that dysbiosis in pulmonary microbiota exacerbates silica-induced fibrosis through impacts on amino acid metabolism, providing new insights into the potential mechanisms and interventions of silicosis.
Collapse
Affiliation(s)
- Chuanyi Huo
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xukun Jiao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Fuao Ning
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jiaxin Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jia
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
19
|
Sumner JT, Pickens CI, Huttelmaier S, Moghadam AA, Abdala-Valencia H, NU SCRIPT Study Investigators, Hauser AR, Seed PC, Wunderink RG, Hartmann EM. Transitions in lung microbiota landscape associate with distinct patterns of pneumonia progression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.02.24311426. [PMID: 39148859 PMCID: PMC11326345 DOI: 10.1101/2024.08.02.24311426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The precise microbial determinants driving clinical outcomes in severe pneumonia are unknown. Competing ecological forces produce dynamic microbiota states in health; infection and treatment effects on microbiota state must be defined to improve pneumonia therapy. Here, we leverage our unique clinical setting, which includes systematic and serial bronchoscopic sampling in patients with suspected pneumonia, to determine lung microbial ecosystem dynamics throughout pneumonia therapy. We combine 16S rRNA gene amplicon, metagenomic, and transcriptomic sequencing with bacterial load quantification to reveal clinically-relevant pneumonia progression drivers. Microbiota states are predictive of pneumonia category and exhibit differential stability and pneumonia therapy response. Disruptive forces, like aspiration, associate with cohesive changes in gene expression and microbial community structure. In summary, we show that host and microbiota landscapes change in unison with clinical phenotypes and that microbiota state dynamics reflect pneumonia progression. We suggest that distinct pathways of lung microbial community succession mediate pneumonia progression.
Collapse
Affiliation(s)
- Jack T. Sumner
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University, Chicago, IL, USA
| | - Chiagozie I. Pickens
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University, Chicago, IL, USA
| | - Stefanie Huttelmaier
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Anahid A. Moghadam
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Hiam Abdala-Valencia
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University, Chicago, IL, USA
| | | | - Alan R Hauser
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL, USA
| | - Patrick C. Seed
- Department of Medicine, Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Richard G. Wunderink
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University, Chicago, IL, USA
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Lead contact
| |
Collapse
|
20
|
Dora D, Szőcs E, Soós Á, Halasy V, Somodi C, Mihucz A, Rostás M, Mógor F, Lohinai Z, Nagy N. From bench to bedside: an interdisciplinary journey through the gut-lung axis with insights into lung cancer and immunotherapy. Front Immunol 2024; 15:1434804. [PMID: 39301033 PMCID: PMC11410641 DOI: 10.3389/fimmu.2024.1434804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
This comprehensive review undertakes a multidisciplinary exploration of the gut-lung axis, from the foundational aspects of anatomy, embryology, and histology, through the functional dynamics of pathophysiology, to implications for clinical science. The gut-lung axis, a bidirectional communication pathway, is central to understanding the interconnectedness of the gastrointestinal- and respiratory systems, both of which share embryological origins and engage in a continuous immunological crosstalk to maintain homeostasis and defend against external noxa. An essential component of this axis is the mucosa-associated lymphoid tissue system (MALT), which orchestrates immune responses across these distant sites. The review delves into the role of the gut microbiome in modulating these interactions, highlighting how microbial dysbiosis and increased gut permeability ("leaky gut") can precipitate systemic inflammation and exacerbate respiratory conditions. Moreover, we thoroughly present the implication of the axis in oncological practice, particularly in lung cancer development and response to cancer immunotherapies. Our work seeks not only to synthesize current knowledge across the spectrum of science related to the gut-lung axis but also to inspire future interdisciplinary research that bridges gaps between basic science and clinical application. Our ultimate goal was to underscore the importance of a holistic understanding of the gut-lung axis, advocating for an integrated approach to unravel its complexities in human health and disease.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Emőke Szőcs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Viktória Halasy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Csenge Somodi
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Anna Mihucz
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Melinda Rostás
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Mógor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
21
|
Chen YF, Hou HH, Chien N, Lu KZ, Lin CH, Liao YC, Lor KL, Chien JY, Chen CM, Chen CY, Cheng SL, Wang HC, Hsueh PR, Yu CJ. The clinical impacts of lung microbiome in bronchiectasis with fixed airflow obstruction: a prospective cohort study. Respir Res 2024; 25:308. [PMID: 39143556 PMCID: PMC11325704 DOI: 10.1186/s12931-024-02931-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Airflow obstruction is a hallmark of disease severity and prognosis in bronchiectasis. The relationship between lung microbiota, airway inflammation, and outcomes in bronchiectasis with fixed airflow obstruction (FAO) remains unclear. This study explores these interactions in bronchiectasis patients, with and without FAO, and compares them to those diagnosed with chronic obstructive pulmonary disease (COPD). METHODS This prospective observational study in Taiwan enrolled patients with either bronchiectasis or COPD. To analyze the lung microbiome and assess inflammatory markers, bronchoalveolar lavage (BAL) samples were collected for 16S rRNA gene sequencing. The study cohort comprised 181 patients: 86 with COPD, 46 with bronchiectasis, and 49 with bronchiectasis and FAO, as confirmed by spirometry. RESULTS Patients with bronchiectasis, with or without FAO, had similar microbiome profiles characterized by reduced alpha diversity and a predominance of Proteobacteria, distinctly different from COPD patients who exhibited more Firmicutes, greater diversity, and more commensal taxa. Furthermore, compared to COPD and bronchiectasis without FAO, bronchiectasis with FAO showed more severe disease and a higher risk of exacerbations. A significant correlation was found between the presence of Pseudomonas aeruginosa and increased airway neutrophilic inflammation such as Interleukin [IL]-1β, IL-8, and tumor necrosis factor-alpha [TNF]-α, as well as with higher bronchiectasis severity, which might contribute to an increased risk of exacerbations. Moreover, in bronchiectasis patients with FAO, the ROSE (Radiology, Obstruction, Symptoms, and Exposure) criteria were employed to classify individuals as either ROSE (+) or ROSE (-), based on smoking history. This classification highlighted differences in clinical features, inflammatory profiles, and slight microbiome variations between ROSE (-) and ROSE (+) patients, suggesting diverse endotypes within the bronchiectasis with FAO group. CONCLUSION Bronchiectasis patients with FAO may exhibit two distinct endotypes, as defined by ROSE criteria, characterized by greater disease severity and a lung microbiome more similar to bronchiectasis without FAO than to COPD. The significant correlation between Pseudomonas aeruginosa colonization and increased airway neutrophilic inflammation, as well as disease severity, underscores the clinical relevance of microbial patterns. This finding reinforces the potential role of these patterns in the progression and exacerbations of bronchiectasis with FAO.
Collapse
Affiliation(s)
- Yen-Fu Chen
- Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch, Yunlin County, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, 7 Chung-Shan South Road, Taipei, 100, Taiwan (ROC)
- Thoracic Medicine Center, Department of Medicine and Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin County, Taiwan
| | - Hsin-Han Hou
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ning Chien
- Department of Medical Imaging, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Kai-Zen Lu
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chieh-Hua Lin
- Big Data Center, China Medical University Hospital, Taichung, Taiwan
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, 350, Taiwan
| | - Yu-Chieh Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, 350, Taiwan
| | - Kuo-Lung Lor
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Jung-Yien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, 7 Chung-Shan South Road, Taipei, 100, Taiwan (ROC)
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Ming Chen
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chung-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch, Yunlin County, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, 7 Chung-Shan South Road, Taipei, 100, Taiwan (ROC)
- Thoracic Medicine Center, Department of Medicine and Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin County, Taiwan
| | - Shih-Lung Cheng
- Division of Thoracic Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City 320, Taiwan
| | - Hao-Chien Wang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Ph.D Programme for Aging, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chong-Jen Yu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, 7 Chung-Shan South Road, Taipei, 100, Taiwan (ROC).
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan.
| |
Collapse
|
22
|
Sun Y, Gan Z, Wang X, Liu J, Zhong W, Zhang Z, Zuo J, Zhong H, Huang X, Yan Z, Cao Q. Integrative metagenomic, transcriptomic, and proteomic analysis reveal the microbiota-host interplay in early-stage lung adenocarcinoma among non-smokers. J Transl Med 2024; 22:652. [PMID: 38997719 PMCID: PMC11245786 DOI: 10.1186/s12967-024-05485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND The incidence of early-stage lung adenocarcinoma (ES-LUAD) is steadily increasing among non-smokers. Previous research has identified dysbiosis in the gut microbiota of patients with lung cancer. However, the local microbial profile of non-smokers with ES-LUAD remains largely unknown. In this study, we systematically characterized the local microbial community and its associated features to enable early intervention. METHODS A prospective collection of ES-LUAD samples (46 cases) and their corresponding normal tissues adjacent to the tumor (41 cases), along with normal lung tissue samples adjacent to pulmonary bullae in patients with spontaneous pneumothorax (42 cases), were subjected to ultra-deep metagenomic sequencing, host transcriptomic sequencing, and proteomic sequencing. The obtained omics data were subjected to both individual and integrated analysis using Spearman correlation coefficients. RESULTS We concurrently detected the presence of bacteria, fungi, and viruses in the lung tissues. The microbial profile of ES-LUAD exhibited similarities to NAT but demonstrated significant differences from the healthy controls (HCs), characterized by an overall reduction in species diversity. Patients with ES-LUAD exhibited local microbial dysbiosis, suggesting the potential pathogenicity of certain microbial species. Through multi-omics correlations, intricate local crosstalk between the host and local microbial communities was observed. Additionally, we identified a significant positive correlation (rho > 0.6) between Methyloversatilis discipulorum and GOLM1 at both the transcriptional and protein levels using multi-omics data. This correlated axis may be associated with prognosis. Finally, a diagnostic model composed of six bacterial markers successfully achieved precise differentiation between patients with ES-LUAD and HCs. CONCLUSIONS Our study depicts the microbial spectrum in patients with ES-LUAD and provides evidence of alterations in lung microbiota and their interplay with the host, enhancing comprehension of the pathogenic mechanisms that underlie ES-LUAD. The specific model incorporating lung microbiota can serve as a potential diagnostic tool for distinguishing between ES-LUAD and HCs.
Collapse
Affiliation(s)
- Yaohui Sun
- Department of Thoracic Surgery and Lung Transplantation, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Zhiming Gan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Xiaojin Wang
- Department of Thoracic Surgery and Lung Transplantation, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Jian Liu
- Department of Thoracic Surgery and Lung Transplantation, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Wei Zhong
- Department of Thoracic Surgery and Lung Transplantation, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Zhiyan Zhang
- Department of Thoracic Surgery and Lung Transplantation, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Jiebin Zuo
- Cardiovascular Disease Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Hang Zhong
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Xiuting Huang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Zhixiang Yan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| | - Qingdong Cao
- Department of Thoracic Surgery and Lung Transplantation, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
23
|
Glieca S, Quarta E, Bottari B, Lal VC, Sonvico F, Buttini F. The role of airways microbiota on local and systemic diseases: a rationale for probiotics delivery to the respiratory tract. Expert Opin Drug Deliv 2024; 21:991-1005. [PMID: 39041243 DOI: 10.1080/17425247.2024.2380334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Recent discoveries in the field of lung microbiota have enabled the investigation of new therapeutic interventions involving the use of inhaled probiotics. AREAS COVERED This review provides an overview of what is known about the correlation between airway dysbiosis and the development of local and systemic diseases, and how this knowledge can be exploited for therapeutic interventions. In particular, the review focused on attempts to formulate probiotics that can be deposited directly on the airways. EXPERT OPINION Despite considerable progress since the emergence of respiratory microbiota restoration as a new research field, numerous clinical implications and benefits remain to be determined. In the case of local diseases, once the pathophysiology is understood, manipulating the lung microbiota through probiotic administration is an approach that can be exploited. In contrast, the effect of pulmonary dysbiosis on systemic diseases remains to be clarified; however, this approach could represent a turning point in their treatment.
Collapse
Affiliation(s)
| | - Eride Quarta
- Food and Drug Department, University of Parma, Parma, Italy
| | | | | | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parma, Italy
- Interdepartmental Center for Innovation in Health Products, Biopharmanet_TEC, University of Parma, Parma, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parma, Italy
- Interdepartmental Center for Innovation in Health Products, Biopharmanet_TEC, University of Parma, Parma, Italy
| |
Collapse
|
24
|
Mac Aogáin M, Dicker AJ, Mertsch P, Chotirmall SH. Infection and the microbiome in bronchiectasis. Eur Respir Rev 2024; 33:240038. [PMID: 38960615 PMCID: PMC11220623 DOI: 10.1183/16000617.0038-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is marked by bronchial dilatation, recurrent infections and significant morbidity, underpinned by a complex interplay between microbial dysbiosis and immune dysregulation. The identification of distinct endophenotypes have refined our understanding of its pathogenesis, including its heterogeneous disease mechanisms that influence treatment and prognosis responses. Next-generation sequencing (NGS) has revolutionised the way we view airway microbiology, allowing insights into the "unculturable". Understanding the bronchiectasis microbiome through targeted amplicon sequencing and/or shotgun metagenomics has provided key information on the interplay of the microbiome and host immunity, a central feature of disease progression. The rapid increase in translational and clinical studies in bronchiectasis now provides scope for the application of precision medicine and a better understanding of the efficacy of interventions aimed at restoring microbial balance and/or modulating immune responses. Holistic integration of these insights is driving an evolving paradigm shift in our understanding of bronchiectasis, which includes the critical role of the microbiome and its unique interplay with clinical, inflammatory, immunological and metabolic factors. Here, we review the current state of infection and the microbiome in bronchiectasis and provide views on the future directions in this field.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital, Dublin, Ireland
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Alison J Dicker
- Respiratory Research Group, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Pontus Mertsch
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center (CPC), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
25
|
Quiles KR, Shao FZ, Johnson WE, Chen F. EPITHELIAL REMODELING AND MICROBIAL DYSBIOSIS IN THE LOWER RESPIRATORY TRACT OF VITAMIN A-DEFICIENT MOUSE LUNGS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600110. [PMID: 38948802 PMCID: PMC11212965 DOI: 10.1101/2024.06.21.600110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The World Health Organization identified vitamin A deficiency (VAD) as a major public health issue in low-income communities and developing countries, while additional studies have shown dietary VAD leads to various lung pathologies. Once believed to be sterile, research now shows that transient microbial communities exist within healthy lungs and are often dysregulated in patients suffering from malnourishment, respiratory infections, and disease. The inability to parse vitamin A-mediated mechanisms from other metabolic mechanisms in humans with pathogenic endotypes, as well as the lack of data investigating how VAD affects the lung microbiome, remains a significant gap in the field. To address this unmet need, we compared molecular, metatranscriptomic, and morphometric data to identify how dietary VAD affects the lung as well as the lung microbiome. Our research shows structural and functional alterations in host-microbe-diet interactions in VAD lungs compared to vitamin A-sufficient (VAS) lungs; these changes are associated with epithelial remodeling, a breakdown in mucociliary clearance, microbial imbalance, and altered microbial colonization patterns after 8 weeks of vitamin A deficient diet. These findings confirm vitamin A is critical for lung homeostasis and provide mechanistic insights that could be valuable for the prevention of respiratory infections and disease.
Collapse
Affiliation(s)
- Kiloni. R. Quiles
- Boston University Pulmonary Allergy, Sleep, and Critical Care Center
| | - Feng-Zhi Shao
- Boston University Pulmonary Allergy, Sleep, and Critical Care Center
| | - W. Evan Johnson
- Rutgers University, New Jersey Medical School, Division of Infectious Disease, Department of Medicine
- Rutgers University, New Jersey Medical School, Center for Data Science
| | - Felicia Chen
- Boston University Pulmonary Allergy, Sleep, and Critical Care Center
| |
Collapse
|
26
|
Azoicai A, Lupu A, Alexoae MM, Starcea IM, Mocanu A, Lupu VV, Mitrofan EC, Nedelcu AH, Tepordei RT, Munteanu D, Mitrofan C, Salaru DL, Ioniuc I. Lung microbiome: new insights into bronchiectasis' outcome. Front Cell Infect Microbiol 2024; 14:1405399. [PMID: 38895737 PMCID: PMC11183332 DOI: 10.3389/fcimb.2024.1405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
The present treatments for bronchiectasis, which is defined by pathological dilatation of the airways, are confined to symptom relief and minimizing exacerbations. The condition is becoming more common worldwide. Since the disease's pathophysiology is not entirely well understood, developing novel treatments is critically important. The interplay of chronic infection, inflammation, and compromised mucociliary clearance, which results in structural alterations and the emergence of new infection, is most likely responsible for the progression of bronchiectasis. Other than treating bronchiectasis caused by cystic fibrosis, there are no approved treatments. Understanding the involvement of the microbiome in this disease is crucial, the microbiome is defined as the collective genetic material of all bacteria in an environment. In clinical practice, bacteria in the lungs have been studied using cultures; however, in recent years, researchers use next-generation sequencing methods, such as 16S rRNA sequencing. Although the microbiome in bronchiectasis has not been entirely investigated, what is known about it suggests that Haemophilus, Pseudomonas and Streptococcus dominate the lung bacterial ecosystems, they present significant intraindividual stability and interindividual heterogeneity. Pseudomonas and Haemophilus-dominated microbiomes have been linked to more severe diseases and frequent exacerbations, however additional research is required to fully comprehend the role of microbiome in the evolution of bronchiectasis. This review discusses recent findings on the lung microbiota and its association with bronchiectasis.
Collapse
Affiliation(s)
- Alice Azoicai
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ancuta Lupu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Monica Mihaela Alexoae
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Iuliana Magdalena Starcea
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Adriana Mocanu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Vasile Valeriu Lupu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Razvan Tudor Tepordei
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Dragos Munteanu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Costica Mitrofan
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ileana Ioniuc
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
27
|
Bongers KS, Massett A, O'Dwyer DN. The Oral-Lung Microbiome Axis in Connective Tissue Disease-Related Interstitial Lung Disease. Semin Respir Crit Care Med 2024; 45:449-458. [PMID: 38626906 DOI: 10.1055/s-0044-1785673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Connective tissue disease-related interstitial lung disease (CTD-ILD) is a frequent and serious complication of CTD, leading to high morbidity and mortality. Unfortunately, its pathogenesis remains poorly understood; however, one intriguing contributing factor may be the microbiome of the mouth and lungs. The oral microbiome, which is a major source of the lung microbiome through recurrent microaspiration, is altered in ILD patients. Moreover, in recent years, several lines of evidence suggest that changes in the oral and lung microbiota modulate the pulmonary immune response and thus may play a role in the pathogenesis of ILDs, including CTD-ILD. Here, we review the existing data demonstrating oral and lung microbiota dysbiosis and possible contributions to the development of CTD-ILD in rheumatoid arthritis, Sjögren's syndrome, systemic sclerosis, and systemic lupus erythematosus. We identify several areas of opportunity for future investigations into the role of the oral and lung microbiota in CTD-ILD.
Collapse
Affiliation(s)
- Kale S Bongers
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Angeline Massett
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - David N O'Dwyer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
28
|
Combs MP, Luth JE, Falkowski NR, Wheeler DS, Walker NM, Erb-Downward JR, Wakeam E, Sjoding MW, Dunlap DG, Admon AJ, Dickson RP, Lama VN. The Lung Microbiome Predicts Mortality and Response to Azithromycin in Lung Transplant Recipients with Chronic Rejection. Am J Respir Crit Care Med 2024; 209:1360-1375. [PMID: 38271553 PMCID: PMC11146567 DOI: 10.1164/rccm.202308-1326oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024] Open
Abstract
Rationale: Chronic lung allograft dysfunction (CLAD) is the leading cause of death after lung transplant, and azithromycin has variable efficacy in CLAD. The lung microbiome is a risk factor for developing CLAD, but the relationship between lung dysbiosis, pulmonary inflammation, and allograft dysfunction remains poorly understood. Whether lung microbiota predict outcomes or modify treatment response after CLAD is unknown. Objectives: To determine whether lung microbiota predict post-CLAD outcomes and clinical response to azithromycin. Methods: Retrospective cohort study using acellular BAL fluid prospectively collected from recipients of lung transplant within 90 days of CLAD onset. Lung microbiota were characterized using 16S rRNA gene sequencing and droplet digital PCR. In two additional cohorts, causal relationships of dysbiosis and inflammation were evaluated by comparing lung microbiota with CLAD-associated cytokines and measuring ex vivo P. aeruginosa growth in sterilized BAL fluid. Measurements and Main Results: Patients with higher bacterial burden had shorter post-CLAD survival, independent of CLAD phenotype, azithromycin treatment, and relevant covariates. Azithromycin treatment improved survival in patients with high bacterial burden but had negligible impact on patients with low or moderate burden. Lung bacterial burden was positively associated with CLAD-associated cytokines, and ex vivo growth of P. aeruginosa was augmented in BAL fluid from transplant recipients with CLAD. Conclusions: In recipients of lung transplants with chronic rejection, increased lung bacterial burden is an independent risk factor for mortality and predicts clinical response to azithromycin. Lung bacterial dysbiosis is associated with alveolar inflammation and may be promoted by underlying lung allograft dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elliot Wakeam
- Division of Thoracic Surgery, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Michael W. Sjoding
- Division of Pulmonary and Critical Care and
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, Michigan
| | - Daniel G. Dunlap
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew J. Admon
- Division of Pulmonary and Critical Care and
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, Michigan
| | - Robert P. Dickson
- Division of Pulmonary and Critical Care and
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, Michigan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan; and
| | - Vibha N. Lama
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
29
|
Yang J, Li J, Zhang L, Shen Z, Xiao Y, Zhang G, Chen M, Chen F, Liu L, Wang Y, Chen L, Wang X, Zhang L, Wang L, Wang Z, Wang J, Li M, Ren L. Highly diverse sputum microbiota correlates with the disease severity in patients with community-acquired pneumonia: a longitudinal cohort study. Respir Res 2024; 25:223. [PMID: 38811936 PMCID: PMC11137881 DOI: 10.1186/s12931-024-02821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/24/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Community-acquired pneumonia (CAP) is a common and serious condition that can be caused by a variety of pathogens. However, much remains unknown about how these pathogens interact with the lower respiratory commensals, and whether any correlation exists between the dysbiosis of the lower respiratory microbiota and disease severity and prognosis. METHODS We conducted a retrospective cohort study to investigate the composition and dynamics of sputum microbiota in patients diagnosed with CAP. In total, 917 sputum specimens were collected consecutively from 350 CAP inpatients enrolled in six hospitals following admission. The V3-V4 region of the 16 S rRNA gene was then sequenced. RESULTS The sputum microbiota in 71% of the samples were predominately composed of respiratory commensals. Conversely, 15% of the samples demonstrated dominance by five opportunistic pathogens. Additionally, 5% of the samples exhibited sterility, resembling the composition of negative controls. Compared to non-severe CAP patients, severe cases exhibited a more disrupted sputum microbiota, characterized by the highly dominant presence of potential pathogens, greater deviation from a healthy state, more significant alterations during hospitalization, and sparser bacterial interactions. The sputum microbiota on admission demonstrated a moderate prediction of disease severity (AUC = 0.74). Furthermore, different pathogenic infections were associated with specific microbiota alterations. Acinetobacter and Pseudomonas were more abundant in influenza A infections, with Acinetobacter was also enriched in Klebsiella pneumoniae infections. CONCLUSION Collectively, our study demonstrated that pneumonia may not consistently correlate with severe dysbiosis of the respiratory microbiota. Instead, the degree of microbiota dysbiosis was correlated with disease severity in CAP patients.
Collapse
Affiliation(s)
- Jing Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Changping Laboratory, Beijing, 102206, China
| | - Jinman Li
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Linfeng Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zijie Shen
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Xiao
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Guoliang Zhang
- Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Mingwei Chen
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fuhui Chen
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Ying Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lan Chen
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xinming Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Li Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
| | - Lu Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
| | - Zhang Wang
- Institute of Ecological Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Mingkun Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
30
|
Motta H, Reuwsaat JCV, Lopes FC, Viezzer G, Volpato FCZ, Barth AL, de Tarso Roth Dalcin P, Staats CC, Vainstein MH, Kmetzsch L. Comparative microbiome analysis in cystic fibrosis and non-cystic fibrosis bronchiectasis. Respir Res 2024; 25:211. [PMID: 38762736 PMCID: PMC11102160 DOI: 10.1186/s12931-024-02835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Bronchiectasis is a condition characterized by abnormal and irreversible bronchial dilation resulting from lung tissue damage and can be categorized into two main groups: cystic fibrosis (CF) and non-CF bronchiectasis (NCFB). Both diseases are marked by recurrent infections, inflammatory exacerbations, and lung damage. Given that infections are the primary drivers of disease progression, characterization of the respiratory microbiome can shed light on compositional alterations and susceptibility to antimicrobial drugs in these cases compared to healthy individuals. METHODS To assess the microbiota in the two studied diseases, 35 subjects were recruited, comprising 10 NCFB and 13 CF patients and 12 healthy individuals. Nasopharyngeal swabs and induced sputum were collected, and total DNA was extracted. The DNA was then sequenced by the shotgun method and evaluated using the SqueezeMeta pipeline and R. RESULTS We observed reduced species diversity in both disease cohorts, along with distinct microbial compositions and profiles of antimicrobial resistance genes, compared to healthy individuals. The nasopharynx exhibited a consistent microbiota composition across all cohorts. Enrichment of members of the Burkholderiaceae family and an increased Firmicutes/Bacteroidetes ratio in the CF cohort emerged as key distinguishing factors compared to NCFB group. Staphylococcus aureus and Prevotella shahii also presented differential abundance in the CF and NCFB cohorts, respectively, in the lower respiratory tract. Considering antimicrobial resistance, a high number of genes related to antibiotic efflux were detected in both disease groups, which correlated with the patient's clinical data. CONCLUSIONS Bronchiectasis is associated with reduced microbial diversity and a shift in microbial and resistome composition compared to healthy subjects. Despite some similarities, CF and NCFB present significant differences in microbiome composition and antimicrobial resistance profiles, suggesting the need for customized management strategies for each disease.
Collapse
Affiliation(s)
- Heryk Motta
- Laboratório de Biologia Molecular de Patógenos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Júlia Catarina Vieira Reuwsaat
- Laboratório de Biologia Molecular de Patógenos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Cortez Lopes
- Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Graciele Viezzer
- Serviço de Pneumologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Fabiana Caroline Zempulski Volpato
- Laboratório de Pesquisa em Resistência Bacteriana, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Afonso Luís Barth
- Laboratório de Pesquisa em Resistência Bacteriana, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Paulo de Tarso Roth Dalcin
- Serviço de Pneumologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Charley Christian Staats
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilene Henning Vainstein
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Microrganismos de Importância Médica e Biotecnológica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lívia Kmetzsch
- Laboratório de Biologia Molecular de Patógenos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
31
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Kaur J, Sharma A, Passi G, Dey P, Khajuria A, Alajangi HK, Jaiswal PK, Barnwal RP, Singh G. Nanomedicine at the Pulmonary Frontier: Immune-Centric Approaches for Respiratory Disease Treatment. Immunol Invest 2024; 53:295-347. [PMID: 38206610 DOI: 10.1080/08820139.2023.2298398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Respiratory diseases (RD) are a group of common ailments with a rapidly increasing global prevalence, posing a significant threat to humanity, especially the elderly population, and imposing a substantial burden on society and the economy. RD represents an unmet medical need that requires the development of viable pharmacotherapies. While various promising strategies have been devised to advance potential treatments for RD, their implementation has been hindered by difficulties in drug delivery, particularly in critically ill patients. Nanotechnology offers innovative solutions for delivering medications to the inflamed organ sites, such as the lungs. Although this approach is enticing, delivering nanomedicine to the lungs presents complex challenges that require sophisticated techniques. In this context, we review the potential of novel nanomedicine-based immunomodulatory strategies that could offer therapeutic benefits in managing this pressing health condition.
Collapse
Affiliation(s)
- Jatinder Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Gautam Passi
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Piyush Dey
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Akhil Khajuria
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Hema Kumari Alajangi
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas, USA
| | | | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
33
|
Zheng L, Liu C, Wang H, Zhang J, Mao L, Dong X, Hu S, Li N, Pi D, Qiu J, Xu F, Chen C, Zou Z. Intact lung tissue and bronchoalveolar lavage fluid are both suitable for the evaluation of murine lung microbiome in acute lung injury. MICROBIOME 2024; 12:56. [PMID: 38494479 PMCID: PMC10946114 DOI: 10.1186/s40168-024-01772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/30/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Accumulating clinical evidence suggests that lung microbiome is closely linked to the progression of pulmonary diseases; however, it is still controversial which specimen type is preferred for the evaluation of lung microbiome. METHODS AND RESULTS To address this issue, we established a classical acute lung injury (ALI) mice model by intratracheal instillation of lipopolysaccharides (LPS). We found that the bacterial DNA obtained from the bronchoalveolar lavage fluid (BALF), intact lung tissue [Lung(i)], lung tissue after perfused [Lung(p)], and feces of one mouse were enough for 16S rRNA sequencing, except the BALF of mice treated with phosphate buffer saline (PBS), which might be due to the biomass of lung microbiome in the BALF were upregulated in the mice treated with LPS. Although the alpha diversity among the three specimens from lungs had minimal differences, Lung(p) had higher sample-to-sample variation compared with BALF and Lung(i). Consistently, PCoA analysis at phylum level indicated that BALF was similar to Lung(i), but not Lung(p), in the lungs of mice treated with LPS, suggesting that BALF and Lung(i) were suitable for the evaluation of lung microbiome in ALI. Importantly, Actinobacteria and Firmicutes were identified as the mostly changed phyla in the lungs and might be important factors involved in the gut-lung axis in ALI mice. Moreover, Actinobacteria and Proteobacteria might play indicative roles in the severity of lung injury. CONCLUSION This study shows both Lung(i) and BALF are suitable for the evaluation of murine lung microbiome in ALI, and several bacterial phyla, such as Actinobacteria, may serve as potential biomarkers for the severity of ALI. Video Abstract.
Collapse
Affiliation(s)
- Lijun Zheng
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chengjun Liu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Hongjing Wang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing, 400016, People's Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaomei Dong
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Siyao Hu
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Na Li
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dandan Pi
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Research Center for Environment and Human Health, School of Public Health, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
34
|
Ziaka M, Exadaktylos A. Pathophysiology of acute lung injury in patients with acute brain injury: the triple-hit hypothesis. Crit Care 2024; 28:71. [PMID: 38454447 PMCID: PMC10918982 DOI: 10.1186/s13054-024-04855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
It has been convincingly demonstrated in recent years that isolated acute brain injury (ABI) may cause severe dysfunction of peripheral extracranial organs and systems. Of all potential target organs and systems, the lung appears to be the most vulnerable to damage after ABI. The pathophysiology of the bidirectional brain-lung interactions is multifactorial and involves inflammatory cascades, immune suppression, and dysfunction of the autonomic system. Indeed, the systemic effects of inflammatory mediators in patients with ABI create a systemic inflammatory environment ("first hit") that makes extracranial organs vulnerable to secondary procedures that enhance inflammation, such as mechanical ventilation (MV), surgery, and infections ("second hit"). Moreover, accumulating evidence supports the knowledge that gut microbiota constitutes a critical superorganism and an organ on its own, potentially modifying various physiological functions of the host. Furthermore, experimental and clinical data suggest the existence of a communication network among the brain, gastrointestinal tract, and its microbiome, which appears to regulate immune responses, gastrointestinal function, brain function, behavior, and stress responses, also named the "gut-microbiome-brain axis." Additionally, recent research evidence has highlighted a crucial interplay between the intestinal microbiota and the lungs, referred to as the "gut-lung axis," in which alterations during critical illness could result in bacterial translocation, sustained inflammation, lung injury, and pulmonary fibrosis. In the present work, we aimed to further elucidate the pathophysiology of acute lung injury (ALI) in patients with ABI by attempting to develop the "double-hit" theory, proposing the "triple-hit" hypothesis, focused on the influence of the gut-lung axis on the lung. Particularly, we propose, in addition to sympathetic hyperactivity, blast theory, and double-hit theory, that dysbiosis and intestinal dysfunction in the context of ABI alter the gut-lung axis, resulting in the development or further aggravation of existing ALI, which constitutes the "third hit."
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic for Geriatric Medicine, Center for Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
35
|
Mac Aogáin M, Tiew PY, Jaggi TK, Narayana JK, Singh S, Hansbro PM, Segal LN, Chotirmall SH. Targeting respiratory microbiomes in COPD and bronchiectasis. Expert Rev Respir Med 2024; 18:111-125. [PMID: 38743428 DOI: 10.1080/17476348.2024.2355155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION This review summarizes our current understanding of the respiratory microbiome in COPD and Bronchiectasis. We explore the interplay between microbial communities, host immune responses, disease pathology, and treatment outcomes. AREAS COVERED We detail the dynamics of the airway microbiome, its influence on chronic respiratory diseases, and analytical challenges. Relevant articles from PubMed and Medline (January 2010-March 2024) were retrieved and summarized. We examine clinical correlations of the microbiome in COPD and bronchiectasis, assessing how current therapies impact upon it. The potential of emerging immunotherapies, antiinflammatories and antimicrobial strategies is discussed, with focus on the pivotal role of commensal taxa in maintaining respiratory health and the promising avenue of microbiome remodeling for disease management. EXPERT OPINION Given the heterogeneity in microbiome composition and its pivotal role in disease development and progression, a shift toward microbiome-directed therapeutics is appealing. This transition, from traditional 'pathogencentric' diagnostic and treatment modalities to those acknowledging the microbiome, can be enabled by evolving crossdisciplinary platforms which have the potential to accelerate microbiome-based interventions into routine clinical practice. Bridging the gap between comprehensive microbiome analysis and clinical application, however, remains challenging, necessitating continued innovation in research, diagnostics, trials, and therapeutic development pipelines.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Department of Biochemistry, St. James's Hospital, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Shivani Singh
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Leopoldo N Segal
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
36
|
Puiu R, Motoc NS, Lucaciu S, Ruta MV, Rajnoveanu RM, Todea DA, Man MA. The Role of Lung Microbiome in Fibrotic Interstitial Lung Disease-A Systematic Review. Biomolecules 2024; 14:247. [PMID: 38540667 PMCID: PMC10968628 DOI: 10.3390/biom14030247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 07/23/2024] Open
Abstract
Interstitial Lung Disease (ILD) involves lung disorders marked by chronic inflammation and fibrosis. ILDs include pathologies like idiopathic pulmonary fibrosis (IPF), connective tissue disease-associated ILD (CTD-ILD), hypersensitivity pneumonitis (HP) or sarcoidosis. Existing data covers pathogenesis, diagnosis (especially using high-resolution computed tomography), and treatments like antifibrotic agents. Despite progress, ILD diagnosis and management remains challenging with significant morbidity and mortality. Recent focus is on Progressive Fibrosing ILD (PF-ILD), characterized by worsening symptoms and fibrosis on HRCT. Prevalence is around 30%, excluding IPF, with a poor prognosis. Early diagnosis is crucial for optimizing outcomes in PF-ILD individuals. The lung microbiome comprises all the microorganisms that are in the respiratory tract. Relatively recent research try to evaluate its role in respiratory disease. Healthy lungs have a diverse microbial community. An imbalance in bacterial composition, changes in bacterial metabolic activities, or changes in bacterial distribution within the lung termed dysbiosis is linked to conditions like COPD, asthma and ILDs. We conducted a systematic review of three important scientific data base using a focused search strategy to see how the lung microbiome is involved in the progression of ILDs. Results showed that some differences in the composition and quality of the lung microbiome exist in ILDs that show progressive fibrosing phenotype. The results seem to suggest that the lung microbiota could be involved in ILD progression, but more studies showing its exact pathophysiological mechanisms are needed.
Collapse
Affiliation(s)
- Ruxandra Puiu
- Department of Medical Sciences, Pulmonology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania or (R.P.); (S.L.); (D.A.T.); (M.A.M.)
| | - Nicoleta Stefania Motoc
- Department of Medical Sciences, Pulmonology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania or (R.P.); (S.L.); (D.A.T.); (M.A.M.)
| | - Sergiu Lucaciu
- Department of Medical Sciences, Pulmonology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania or (R.P.); (S.L.); (D.A.T.); (M.A.M.)
| | - Maria Victoria Ruta
- I Department of Pulmonology, “Leon Daniello” Clinical Hospital of Pulmonology, 400371 Cluj-Napoca, Romania;
| | - Ruxandra-Mioara Rajnoveanu
- Department of Palliative Medicine, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Doina Adina Todea
- Department of Medical Sciences, Pulmonology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania or (R.P.); (S.L.); (D.A.T.); (M.A.M.)
| | - Milena Adina Man
- Department of Medical Sciences, Pulmonology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania or (R.P.); (S.L.); (D.A.T.); (M.A.M.)
| |
Collapse
|
37
|
Yagi K, Lukacs NW, Huffnagle GB, Kato H, Asai N. Respiratory and Gut Microbiome Modification during Respiratory Syncytial Virus Infection: A Systematic Review. Viruses 2024; 16:220. [PMID: 38399997 PMCID: PMC10893256 DOI: 10.3390/v16020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection is a major cause of lower respiratory tract infection, especially in infants, and increases the risk of recurrent wheezing and asthma. Recently, researchers have proposed a possible association between respiratory diseases and microbiome alterations. However, this connection has not been fully established. Herein, we conducted a systematic literature review to evaluate the reported evidence of microbiome alterations in patients with RSV infection. METHODS The systematic literature review on the association between RSV and microbiome in humans was conducted by searching PubMed, EMBASE, Scopus, and CINAHL from 2012 until February 2022. The results were analyzed qualitatively, focusing on the relationship between microbiome and RSV infection with available key microbiome-related parameters. RESULTS In the 405 articles identified by searching databases, 12 (Respiratory tract: 9, Gut: 2, Both: 1) articles in line with the research aims were eligible for this qualitative review. The types of samples for the respiratory tract microbiome and the sequencing methods utilized varied from study to study. This review revealed that the overall microbial composition in both the respiratory tract and gut in RSV-infected patients was different from that in healthy controls. Our generated results demonstrated an increase in the abundance of Haemophilus and Streptococcus, which could contribute to the distinctive separation based on the beta diversity in the respiratory tract. CONCLUSIONS The respiratory tract and gut microbiome changed in patients with RSV infection. Further research with a well-organized longitudinal design is warranted to clarify the impact of microbiome alterations on disease pathogenesis.
Collapse
Affiliation(s)
- Kazuma Yagi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (K.Y.); (N.W.L.)
| | - Nicholas W. Lukacs
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (K.Y.); (N.W.L.)
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Gary B. Huffnagle
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hideo Kato
- Department of Pharmacy, Mie University Hospital, Tsu 514-8507, Japan;
- Department of Clinical Pharmaceutics, Division of Clinical Medical Science, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Nobuhiro Asai
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (K.Y.); (N.W.L.)
| |
Collapse
|
38
|
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther 2024; 9:19. [PMID: 38228603 PMCID: PMC10791971 DOI: 10.1038/s41392-023-01722-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
The lungs were long thought to be sterile until technical advances uncovered the presence of the lung microbial community. The microbiome of healthy lungs is mainly derived from the upper respiratory tract (URT) microbiome but also has its own characteristic flora. The selection mechanisms in the lung, including clearance by coughing, pulmonary macrophages, the oscillation of respiratory cilia, and bacterial inhibition by alveolar surfactant, keep the microbiome transient and mobile, which is different from the microbiome in other organs. The pulmonary bacteriome has been intensively studied recently, but relatively little research has focused on the mycobiome and virome. This up-to-date review retrospectively summarizes the lung microbiome's history, composition, and function. We focus on the interaction of the lung microbiome with the oropharynx and gut microbiome and emphasize the role it plays in the innate and adaptive immune responses. More importantly, we focus on multiple respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), fibrosis, bronchiectasis, and pneumonia. The impact of the lung microbiome on coronavirus disease 2019 (COVID-19) and lung cancer has also been comprehensively studied. Furthermore, by summarizing the therapeutic potential of the lung microbiome in lung diseases and examining the shortcomings of the field, we propose an outlook of the direction of lung microbiome research.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
39
|
Shin D, Kim J, Lee JH, Kim JI, Oh YM. Profiling of Microbial Landscape in Lung of Chronic Obstructive Pulmonary Disease Patients Using RNA Sequencing. Int J Chron Obstruct Pulmon Dis 2023; 18:2531-2542. [PMID: 38022823 PMCID: PMC10644840 DOI: 10.2147/copd.s426260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose The aim of the study was to use RNA sequencing (RNA-seq) data of lung from chronic obstructive pulmonary disease (COPD) patients to identify the bacteria that are most commonly detected. Additionally, the study sought to investigate the differences in these infections between normal lung tissues and those affected by COPD. Patients and Methods We re-analyzed RNA-seq data of lung from 99 COPD patients and 93 non-COPD smokers to determine the extent to which the metagenomes differed between the two groups and to assess the reliability of the metagenomes. We used unmapped reads in the RNA-seq data that were not aligned to the human reference genome to identify more common infections in COPD patients. Results We identified 18 bacteria that exhibited significant differences between the COPD and non-COPD smoker groups. Among these, Yersinia enterocolitica was found to be more than 30% more abundant in COPD. Additionally, we observed difference in detection rate based on smoking history. To ensure the accuracy of our findings and distinguish them from false positives, we double-check the metagenomic profile using Basic Local Alignment Search Tool (BLAST). We were able to identify and remove specific species that might have been misclassified as other species in Kraken2 but were actually Staphylococcus aureus, as identified by BLAST analysis. Conclusion This study highlighted the method of using unmapped reads, which were not typically used in sequencing data, to identify microorganisms present in patients with lung diseases such as COPD. This method expanded our understanding of the microbial landscape in COPD and provided insights into the potential role of microorganisms in disease development and progression.
Collapse
Affiliation(s)
- Dongjin Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Juhyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jang Ho Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Genomic Medicine Institute, Seoul National University, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
40
|
Miao Y, Zhao X, Lei J, Ding J, Feng H, Wu K, Liu J, Wang C, Ye D, Wang X, Wang J, Yang Z. Characterization of Lung Microbiomes in Pneumonic Hu Sheep Using Culture Technique and 16S rRNA Gene Sequencing. Animals (Basel) 2023; 13:2763. [PMID: 37685027 PMCID: PMC10486422 DOI: 10.3390/ani13172763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Hu sheep, a locally bred species in China known for its high productivity, is currently suffering from pneumonia. Here, we combine high-throughput 16SrRNA gene sequencing and bacterial culturing to examine the bacterial community in pneumonic Hu Sheep lungs (p < 0.05). The results showed that the abundance and diversity of lung bacteria in healthy sheep were significantly higher than those in pneumonia sheep (p = 0.139), while there was no significant difference between moderate and severe pneumonia. Furthermore, the composition of the lung microbiota community underwent significant alterations between different levels of pneumonia severity. The application of LEfSe analysis revealed a notable enrichment of Mannheimiae within the lungs of sheep afflicted with moderate pneumonia (p < 0.01), surpassing the levels observed in their healthy counterparts. Additionally, Fusobacterium emerged as the prevailing bacterial group within the lungs of sheep suffering from severe pneumonia. Integrating the results of bacterial isolation and identification, we conclusively determined that Mannheimia haemolytica was the primary pathogenic bacterium within the lungs of sheep afflicted with moderate pneumonia. Furthermore, the exacerbation of pneumonia may be attributed to the synergistic interplay between Fusobacterium spp. and other bacterial species. Our results provide new insights for guiding preventive and therapeutic measures for pneumonia of different severities in sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (X.Z.); (J.L.); (J.D.); (H.F.); (K.W.); (C.W.); (X.W.); (J.W.)
| |
Collapse
|
41
|
Belizário J, Garay-Malpartida M, Faintuch J. Lung microbiome and origins of the respiratory diseases. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100065. [PMID: 37456520 PMCID: PMC10339129 DOI: 10.1016/j.crimmu.2023.100065] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
The studies on the composition of the human microbiomes in healthy individuals, its variability in the course of inflammation, infection, antibiotic therapy, diets and different pathological conditions have revealed their intra and inter-kingdom relationships. The lung microbiome comprises of major species members of the phylum Bacteroidetes, Firmicutes, Actinobacteria, Fusobacteria and Proteobacteria, which are distributed in ecological niches along nasal cavity, nasopharynx, oropharynx, trachea and in the lungs. Commensal and pathogenic species are maintained in equilibrium as they have strong relationships. Bacterial overgrowth after dysbiosis and/or imbalanced of CD4+ helper T cells, CD8+ cytotoxic T cells and regulatory T cells (Treg) populations can promote lung inflammatory reactions and distress, and consequently acute and chronic respiratory diseases. This review is aimed to summarize the latest advances in resident lung microbiome and its participation in most common pulmonary infections and pneumonia, community-acquired pneumonia (CAP), ventilator-associated pneumonia (VAP), immunodeficiency associated pneumonia, SARS-CoV-2-associated pneumonia, acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD). We briefly describe physiological and immunological mechanisms that selectively create advantages or disadvantages for relative growth of pathogenic bacterial species in the respiratory tract. At the end, we propose some directions and analytical methods that may facilitate the identification of key genera and species of resident and transient microbes involved in the respiratory diseases' initiation and progression.
Collapse
Affiliation(s)
- José Belizário
- School of Arts, Sciences and Humanities of the University of Sao Paulo, Rua Arlindo Bettio, 1000, São Paulo, CEP 03828-000, Brazil
| | - Miguel Garay-Malpartida
- School of Arts, Sciences and Humanities of the University of Sao Paulo, Rua Arlindo Bettio, 1000, São Paulo, CEP 03828-000, Brazil
| | - Joel Faintuch
- Department of Gastroenterology of the Clinics Hospital of the University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, São Paulo, CEP 05403-000, Brazil
| |
Collapse
|
42
|
Bustos IG, Martín-Loeches I, Acosta-González A, Chotirmall SH, Dickson RP, Reyes LF. Exploring the complex relationship between the lung microbiome and ventilator-associated pneumonia. Expert Rev Respir Med 2023; 17:889-901. [PMID: 37872770 DOI: 10.1080/17476348.2023.2273424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Understanding the presence and function of a diverse lung microbiome in acute lung infections, particularly ventilator-associated pneumonia (VAP), is still limited, evidencing significant gaps in our knowledge. AREAS COVERED In this comprehensive narrative review, we aim to elucidate the contribution of the respiratory microbiome in the development of VAP by examining the current knowledge on the interactions among microorganisms. By exploring these intricate connections, we endeavor to enhance our understanding of the disease's pathophysiology and pave the way for novel ideas and interventions in studying the respiratory tract microbiome. EXPERT OPINION The conventional perception of lungs as sterile is deprecated since it is currently recognized the existence of a diverse microbial community within them. However, despite extensive research on the role of the respiratory microbiome in healthy lungs, respiratory chronic diseases and acute lung infections such as pneumonia are not fully understood. It is crucial to investigate further the relationship between the pathophysiology of VAP and the pulmonary microbiome, elucidating the mechanisms underlying the interactions between the microbiome, host immune response and mechanical ventilation for the development of VAP.
Collapse
Affiliation(s)
- Ingrid G Bustos
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Doctorado de Biociencias, Department of Engineering, Universidad de la Sabana, Chia, Colombia
| | - Ignacio Martín-Loeches
- Multidisciplinary Intensive Care Research Organization (MICRO), St James's Hospital, Dublin, Ireland
| | - Alejandro Acosta-González
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Bioprospection Research Group (GIBP), Department of Engineering, Universidad de La Sabana, Chia, Colombia
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Weil Institute for Critical Care Research & Innovation, Ann Arbor, MI, USA
| | - Luis Felipe Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Critical Care Department, Clinica Universidad de La Sabana, Chia, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Lin L, Yi X, Liu H, Meng R, Li S, Liu X, Yang J, Xu Y, Li C, Wang Y, Xiao N, Li H, Liu Z, Xiang Z, Shu W, Guan WJ, Zheng XY, Sun J, Wang Z. The airway microbiome mediates the interaction between environmental exposure and respiratory health in humans. Nat Med 2023:10.1038/s41591-023-02424-2. [PMID: 37349537 DOI: 10.1038/s41591-023-02424-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
Exposure to environmental pollution influences respiratory health. The role of the airway microbial ecosystem underlying the interaction of exposure and respiratory health remains unclear. Here, through a province-wide chronic obstructive pulmonary disease surveillance program, we conducted a population-based survey of bacterial (n = 1,651) and fungal (n = 719) taxa and metagenomes (n = 1,128) from induced sputum of 1,651 household members in Guangdong, China. We found that cigarette smoking and higher PM2.5 concentration were associated with lung function impairment through the mediation of bacterial and fungal communities, respectively, and that exposure was associated with an enhanced inter-kingdom microbial interaction resembling the pattern seen in chronic obstructive pulmonary disease. Enrichment of Neisseria was associated with a 2.25-fold increased risk of high respiratory symptom burden, coupled with an elevation in Aspergillus, in association with occupational pollution. We developed an individualized microbiome-based health index, which covaried with exposure, respiratory symptoms and diseases, with potential generalizability to global datasets. Our results may inform environmental risk prevention and guide interventions that harness airway microbiome.
Collapse
Affiliation(s)
- Lifeng Lin
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Haiyue Liu
- Xiamen Key Laboratory of Genetic Testing, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ruilin Meng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Saiqiang Li
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaomin Liu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Junhao Yang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yanjun Xu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Chuan Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ye Wang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ni Xiao
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Huimin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zuheng Liu
- Xiamen Key Laboratory of Cardiac Electrophysiology, Department of Cardiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhiming Xiang
- Department of Radiology, Panyu Central Hospital, Guangzhou, China
| | - Wensheng Shu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Department of Thoracic Surgery, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Xue-Yan Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| | - Jiufeng Sun
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, China.
| |
Collapse
|
44
|
Chung CJ, Hermes BM, Gupta Y, Ibrahim S, Belheouane M, Baines JF. Genome-wide mapping of gene-microbe interactions in the murine lung microbiota based on quantitative microbial profiling. Anim Microbiome 2023; 5:31. [PMID: 37264412 DOI: 10.1186/s42523-023-00250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/10/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Mammalian lungs comprise a complex microbial ecosystem that interacts with host physiology. Previous research demonstrates that the environment significantly contributes to bacterial community structure in the upper and lower respiratory tract. However, the influence of host genetics on the makeup of lung microbiota remains ambiguous, largely due to technical difficulties related to sampling, as well as challenges inherent to investigating low biomass communities. Thus, innovative approaches are warranted to clarify host-microbe interactions in the mammalian lung. RESULTS Here, we aimed to characterize host genomic regions associated with lung bacterial traits in an advanced intercross mouse line (AIL). By performing quantitative microbial profiling (QMP) using the highly precise method of droplet digital PCR (ddPCR), we refined 16S rRNA gene amplicon-based traits to identify and map candidate lung-resident taxa using a QTL mapping approach. In addition, the two abundant core taxa Lactobacillus and Pelomonas were chosen for independent microbial phenotyping using genus-specific primers. In total, this revealed seven significant loci involving eight bacterial traits. The narrow confidence intervals afforded by the AIL population allowed us to identify several promising candidate genes related to immune and inflammatory responses, cell apoptosis, DNA repair, and lung functioning and disease susceptibility. Interestingly, one genomic region associated with Lactobacillus abundance contains the well-known anti-inflammatory cytokine Il10, which we confirmed through the analysis of Il10 knockout mice. CONCLUSIONS Our study provides the first evidence for a role of host genetic variation contributing to variation in the lung microbiota. This was in large part made possible through the careful curation of 16S rRNA gene amplicon data and the incorporation of a QMP-based methods. This approach to evaluating the low biomass lung environment opens new avenues for advancing lung microbiome research using animal models.
Collapse
Affiliation(s)
- C J Chung
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - B M Hermes
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - Y Gupta
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - S Ibrahim
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
| | - Meriem Belheouane
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany.
- Research Center Borstel, Evolution of the Resistome, Leibniz Lung Center, Parkallee 1-40, 23845, Borstel, Germany.
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany.
| |
Collapse
|
45
|
Mikacenic C, Fussner LA, Bell J, Burnham EL, Chlan LL, Cook SK, Dickson RP, Almonor F, Luo F, Madan K, Morales-Nebreda L, Mould KJ, Simpson AJ, Singer BD, Stapleton RD, Wendt CH, Files DC. Research Bronchoscopies in Critically Ill Research Participants: An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2023; 20:621-631. [PMID: 37125997 PMCID: PMC10174130 DOI: 10.1513/annalsats.202302-106st] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Bronchoscopy for research purposes is a valuable tool to understand lung-specific biology in human participants. Despite published reports and active research protocols using this procedure in critically ill patients, no recent document encapsulates the important safety considerations and downstream applications of this procedure in this setting. The objectives were to identify safe practices for patient selection and protection of hospital staff, provide recommendations for sample procurement to standardize studies, and give guidance on sample preparation for novel research technologies. Seventeen international experts in the management of critically ill patients, bronchoscopy in clinical and research settings, and experience in patient-oriented clinical or translational research convened for a workshop. Review of relevant literature, expert presentations, and discussion generated the findings presented herein. The committee concludes that research bronchoscopy with bronchoalveolar lavage in critically ill patients on mechanical ventilation is valuable and safe in appropriately selected patients. This report includes recommendations on standardization of this procedure and prioritizes the reporting of sample management to produce more reproducible results between laboratories. This document serves as a resource to the community of researchers who endeavor to include bronchoscopy as part of their research protocols and highlights key considerations for the inclusion and safety of research participants.
Collapse
|
46
|
Karvela A, Veloudiou OZ, Karachaliou A, Kloukina T, Gomatou G, Kotteas E. Lung microbiome: an emerging player in lung cancer pathogenesis and progression. Clin Transl Oncol 2023:10.1007/s12094-023-03139-z. [PMID: 36995519 DOI: 10.1007/s12094-023-03139-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/26/2023] [Indexed: 03/31/2023]
Abstract
The microbiome of the lungs, although until recently neglected, is now emerging as a potential contributor to chronic lung diseases, including cancer. Preclinical evidence suggests that the microbial burden of the lungs shapes the host immunity mechanisms and affects local antitumor immune responses. Studies of cohorts of patients with lung cancer reveal that different microbiome profiles are detected in patients with lung cancer compared to controls. In addition, an association between differential lung microbiome composition and distinct responses to immunotherapy has been suggested, yet, with limited data. Scarce evidence exists on the role of the lung microbiome in the development of metastases in the lungs. Interestingly, the lung microbiome is not isolated and interacts with the gut microbiome through a dynamic axis. Future research on the involvement of the lung microbiome in lung cancer pathogenesis and potential therapeutic implications is greatly anticipated.
Collapse
Affiliation(s)
- Alexandra Karvela
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| | - Orsalia-Zoi Veloudiou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| | - Anastasia Karachaliou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| | - Theoni Kloukina
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| | - Georgia Gomatou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece.
| | - Elias Kotteas
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| |
Collapse
|
47
|
Broderick D, Marsh R, Waite D, Pillarisetti N, Chang AB, Taylor MW. Realising respiratory microbiomic meta-analyses: time for a standardised framework. MICROBIOME 2023; 11:57. [PMID: 36945040 PMCID: PMC10031919 DOI: 10.1186/s40168-023-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
In microbiome fields of study, meta-analyses have proven to be a valuable tool for identifying the technical drivers of variation among studies and results of investigations in several diseases, such as those of the gut and sinuses. Meta-analyses also represent a powerful and efficient approach to leverage existing scientific data to both reaffirm existing findings and generate new hypotheses within the field. However, there are currently limited data in other fields, such as the paediatric respiratory tract, where extension of original data becomes even more critical due to samples often being difficult to obtain and process for a range of both technical and ethical reasons. Performing such analyses in an evolving field comes with challenges related to data accessibility and heterogeneity. This is particularly the case in paediatric respiratory microbiomics - a field in which best microbiome-related practices are not yet firmly established, clinical heterogeneity abounds and ethical challenges can complicate sharing of patient data. Having recently conducted a large-scale, individual participant data meta-analysis of the paediatric respiratory microbiota (n = 2624 children from 20 studies), we discuss here some of the unique barriers facing these studies and open and invite a dialogue towards future opportunities. Video Abstract.
Collapse
Affiliation(s)
- David Broderick
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Robyn Marsh
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - David Waite
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Anne B Chang
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, Brisbane, QLD, Australia
- Australian Centre for Health Services Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Michael W Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
48
|
Vásquez V, Orozco J. Detection of COVID-19-related biomarkers by electrochemical biosensors and potential for diagnosis, prognosis, and prediction of the course of the disease in the context of personalized medicine. Anal Bioanal Chem 2023; 415:1003-1031. [PMID: 35970970 PMCID: PMC9378265 DOI: 10.1007/s00216-022-04237-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
As a more efficient and effective way to address disease diagnosis and intervention, cutting-edge technologies, devices, therapeutic approaches, and practices have emerged within the personalized medicine concept depending on the particular patient's biology and the molecular basis of the disease. Personalized medicine is expected to play a pivotal role in assessing disease risk or predicting response to treatment, understanding a person's health status, and, therefore, health care decision-making. This work discusses electrochemical biosensors for monitoring multiparametric biomarkers at different molecular levels and their potential to elucidate the health status of an individual in a personalized manner. In particular, and as an illustration, we discuss several aspects of the infection produced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a current health care concern worldwide. This includes SARS-CoV-2 structure, mechanism of infection, biomarkers, and electrochemical biosensors most commonly explored for diagnostics, prognostics, and potentially assessing the risk of complications in patients in the context of personalized medicine. Finally, some concluding remarks and perspectives hint at the use of electrochemical biosensors in the frame of other cutting-edge converging/emerging technologies toward the inauguration of a new paradigm of personalized medicine.
Collapse
Affiliation(s)
- Viviana Vásquez
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia.
| |
Collapse
|
49
|
Zhao L, Luo JL, Ali MK, Spiekerkoetter E, Nicolls MR. The Human Respiratory Microbiome: Current Understandings and Future Directions. Am J Respir Cell Mol Biol 2023; 68:245-255. [PMID: 36476129 PMCID: PMC9989478 DOI: 10.1165/rcmb.2022-0208tr] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microorganisms colonize the human body. The lungs and respiratory tract, previously believed to be sterile, harbor diverse microbial communities and the genomes of bacteria (bacteriome), viruses (virome), and fungi (mycobiome). Recent advances in amplicon and shotgun metagenomic sequencing technologies and data-analyzing methods have greatly aided the identification and characterization of microbial populations from airways. The respiratory microbiome has been shown to play roles in human health and disease and is an area of rapidly emerging interest in pulmonary medicine. In this review, we provide updated information in the field by focusing on four lung conditions, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, and idiopathic pulmonary fibrosis. We evaluate gut, oral, and upper airway microbiomes and how they contribute to lower airway flora. The discussion is followed by a systematic review of the lower airway microbiome in health and disease. We conclude with promising research avenues and implications for evolving therapeutics.
Collapse
Affiliation(s)
- Lan Zhao
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California.,VA Palo Alto Health Care System, Palo Alto, California; and
| | - Jun-Li Luo
- The Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Mohammed Khadem Ali
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California
| | - Edda Spiekerkoetter
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California
| | - Mark R Nicolls
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California.,VA Palo Alto Health Care System, Palo Alto, California; and
| |
Collapse
|
50
|
Alsayed AR, Abed A, Khader HA, Al-Shdifat LMH, Hasoun L, Al-Rshaidat MMD, Alkhatib M, Zihlif M. Molecular Accounting and Profiling of Human Respiratory Microbial Communities: Toward Precision Medicine by Targeting the Respiratory Microbiome for Disease Diagnosis and Treatment. Int J Mol Sci 2023; 24:4086. [PMID: 36835503 PMCID: PMC9966333 DOI: 10.3390/ijms24044086] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The wide diversity of microbiota at the genera and species levels across sites and individuals is related to various causes and the observed differences between individuals. Efforts are underway to further understand and characterize the human-associated microbiota and its microbiome. Using 16S rDNA as a genetic marker for bacterial identification improved the detection and profiling of qualitative and quantitative changes within a bacterial population. In this light, this review provides a comprehensive overview of the basic concepts and clinical applications of the respiratory microbiome, alongside an in-depth explanation of the molecular targets and the potential relationship between the respiratory microbiome and respiratory disease pathogenesis. The paucity of robust evidence supporting the correlation between the respiratory microbiome and disease pathogenesis is currently the main challenge for not considering the microbiome as a novel druggable target for therapeutic intervention. Therefore, further studies are needed, especially prospective studies, to identify other drivers of microbiome diversity and to better understand the changes in the lung microbiome along with the potential association with disease and medications. Thus, finding a therapeutic target and unfolding its clinical significance would be crucial.
Collapse
Affiliation(s)
- Ahmad R. Alsayed
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Anas Abed
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 11931, Jordan
| | - Heba A. Khader
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Laith M. H. Al-Shdifat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Luai Hasoun
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Mamoon M. D. Al-Rshaidat
- Laboratory for Molecular and Microbial Ecology (LaMME), Department of Biological Sciences, School of Sciences, The University of Jordan, Amman 11942, Jordan
| | - Mohammad Alkhatib
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Roma, Italy
| | - Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|