1
|
Fiocca Vernengo F, Röwekamp I, Boillot L, Caesar S, Dörner PJ, Tarnowski B, Gutbier B, Nouailles G, Fatykhova D, Hellwig K, Witzenrath M, Hocke AC, Klatt AB, Opitz B. Diabetes impairs IFNγ-dependent antibacterial defense in the lungs. Mucosal Immunol 2025; 18:431-440. [PMID: 39746547 DOI: 10.1016/j.mucimm.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/21/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Diabetes mellitus is associated with an increased risk of pneumonia, often caused by so-called typical and atypical pathogens including Streptoccocus pneumoniae and Legionella pneumophila, respectively. Here, we employed a variety of mouse models to investigate how diabetes influences pulmonary antibacterial immunity. Following intranasal infection with S. pneumoniae or L. pneumophila, type 2 diabetic and prediabetic mice exhibited higher bacterial loads in their lungs compared to control animals. Single cell RNA sequencing, flow cytometry, and functional analyses revealed a compromised IFNγ production by natural killer cells in diabetic and prediabetic mice, which was associated with reduced IL-12 production by CD103+ dendritic cells. Blocking IFNγ enhanced susceptibility of non-diabetic mice to L. pneumophila, while IFNγ treatment restored defense against this intracellular pathogen in diabetic animals. In contrast, IFNγ treatment did not increase resistance of diabetic mice to S. pneumoniae, suggesting that impaired IFNγ production is not the sole mechanism underlying the heightened susceptibility of these animals to pneumococcal infection. Thus, our findings uncover a mechanism that could help to explain how type 2 diabetes predisposes to pneumonia. We establish proof of concept for host-directed treatment strategies to reinforce compromised IFNγ-mediated antibacterial defense against atypical lung pathogens.
Collapse
Affiliation(s)
- Facundo Fiocca Vernengo
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ivo Röwekamp
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Léa Boillot
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sandra Caesar
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Patrick Johann Dörner
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Benjamin Tarnowski
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Birgitt Gutbier
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Diana Fatykhova
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Katharina Hellwig
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; German center for lung research (DZL), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Andreas C Hocke
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ann-Brit Klatt
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Bastian Opitz
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; German center for lung research (DZL), Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
2
|
Lim PN, Cervantes MM, Pham LK, Doherty SR, Tufts A, Dubey D, Mai D, Aderem A, Diercks AH, Rothchild AC. Absence of c-Maf and IL-10 enables type I IFN enhancement of innate responses to LPS in alveolar macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkae029. [PMID: 40073087 PMCID: PMC11952875 DOI: 10.1093/jimmun/vkae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/19/2024] [Indexed: 03/14/2025]
Abstract
Alveolar macrophages (AMs) are lung-resident myeloid cells and airway sentinels for inhaled pathogens and environmental particles. While AMs can be highly inflammatory in response to respiratory viruses, they do not mount proinflammatory responses to all airborne pathogens. For example, we previously showed that AMs fail to mount a robust proinflammatory response to Mycobacterium tuberculosis. Here, we address this discrepancy by investigating the capacity of murine AMs for direct innate immune sensing, using LPS as a model. Use of LPS-coated fluorescent beads enabled us to distinguish between directly exposed and bystander cells to measure transcriptional responses, by RNA-sequencing after cell sorting, and cytokine responses, by flow cytometry. We find that AMs have decreased proinflammatory responses to low-dose LPS compared to other macrophage types (bone marrow-derived macrophages, peritoneal macrophages), as measured by TNF, IL-6, Ifnb, and Ifit3. The reduced response to low-dose LPS correlates with minimal TLR4 and CD14 surface expression, despite sufficient internal expression of TLR4. We also find that AMs do not produce IL-10 in response to a variety of stimuli due to low expression of the transcription factor c-Maf, while exogenous c-Maf expression restores IL-10 production in AMs. Lastly, we show that lack of IL-10 enables type I IFN enhancement of AM responses to LPS. Overall, we demonstrate AMs have a cell-intrinsic hyporesponsiveness to LPS, which makes them uniquely tolerant to low-dose exposure. Regulation of AM innate responses by distinct CD14, c-Maf, and IL-10 expression patterns has important implications for both respiratory infections and environmental airborne exposures.
Collapse
Affiliation(s)
- Pamelia N Lim
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Maritza M Cervantes
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Linh K Pham
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- Graduate Program in Animal Biotechnology & Biomedical Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Sydney R Doherty
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Ankita Tufts
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Divya Dubey
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Dat Mai
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Alan H Diercks
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Alissa C Rothchild
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
3
|
Woods PS, Mutlu GM. Differences in glycolytic metabolism between tissue-resident alveolar macrophages and recruited lung macrophages. Front Immunol 2025; 16:1535796. [PMID: 40092977 PMCID: PMC11906440 DOI: 10.3389/fimmu.2025.1535796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Immunometabolism has emerged as a key area of focus in immunology and has the potential to lead to new treatments for immune-related diseases. It is well-established that glycolytic metabolism is essential for adaptation to hypoxia and for macrophage inflammatory function. Macrophages have been shown to upregulate their glycolytic metabolism in response to pathogens and pathogen-associated molecular patterns such as LPS. As a direct link to the external environment, the lungs' distinctive nutrient composition and multiple macrophage subtypes provide a unique opportunity to study macrophage metabolism. This review aims to highlight how the steady-state airway and severely inflamed airway offer divergent environments for macrophage glycolytic metabolism. We describe the differences in glycolytic metabolism between tissue-resident alveolar macrophages, and other lung macrophages at steady-state and during inflammation/injury. We also provide an overview of experimental guidelines on how to assess metabolism at the cellular level using Seahorse-based bioenergetic analysis including a review of pharmacologic agents used to inhibit or activate glycolysis.
Collapse
Affiliation(s)
| | - Gökhan M. Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University
of Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Peng D, Li M, Yu Z, Yan T, Yao M, Li S, Liu Z, Li L, Qiu H. Synergy between pluripotent stem cell-derived macrophages and self-renewing macrophages: Envisioning a promising avenue for the modelling and cell therapy of infectious diseases. Cell Prolif 2025; 58:e13770. [PMID: 39537185 PMCID: PMC11839195 DOI: 10.1111/cpr.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
As crucial phagocytes of the innate immune system, macrophages (Mϕs) protect mammalian hosts, maintain tissue homeostasis and influence disease pathogenesis. Nonetheless, Mϕs are susceptible to various pathogens, including bacteria, viruses and parasites, which cause various infectious diseases, necessitating a deeper understanding of pathogen-Mϕ interactions and therapeutic insights. Pluripotent stem cells (PSCs) have been efficiently differentiated into PSC-derived Mϕs (PSCdMϕs) resembling primary Mϕs, advancing the modelling and cell therapy of infectious diseases. However, the mass production of PSCdMϕs, which lack proliferative capacity, relies on large-scale expansions of PSCs, thereby increasing both costs and culture cycles. Notably, Mϕs deficient in the MafB/c-Maf genes have been reported to re-enter the cell cycle with the stimulation of specific growth factor cocktails, turning into self-renewing Mϕs (SRMϕs). This review summarizes the applications of PSCdMϕs in the modelling and cell therapy of infectious diseases and strategies for establishing SRMϕs. Most importantly, we innovatively propose that PSCs can serve as a gene editing platform to creating PSC-derived SRMϕs (termed PSRMϕs), addressing the resistance of Mϕs against genetic manipulation. We discuss the challenges and possible solutions in creating PSRMϕs. In conclusion, this review provides novel insights into the development of physiologically relevant and expandable Mϕ models, highlighting the enormous potential of PSRMϕs as a promising avenue for the modelling and cell therapy of infectious diseases.
Collapse
Affiliation(s)
- Dingkun Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Meilin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Zhuoran Yu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life ScienceNortheast Agricultural UniversityHarbinChina
| | - Tingsheng Yan
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life ScienceNortheast Agricultural UniversityHarbinChina
| | - Meng Yao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life ScienceNortheast Agricultural UniversityHarbinChina
| | - Lian‐Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Hua‐Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| |
Collapse
|
5
|
Kim J, Yuan Y, Agaronyan K, Zhao A, Wang VD, Gau D, Toosi N, Gupta G, Essayas H, Kaminski A, McGovern J, Yu S, Woo S, Lee CJ, Gandhi S, Saber T, Saleh T, Hu B, Sun Y, Ishikawa G, Bain W, Evankovich J, Chen L, Yun H, Herzog EL, Dela Cruz CS, Ryu C, Sharma L. Damage sensing through TLR9 regulates inflammatory and antiviral responses during influenza infection. Mucosal Immunol 2025:S1933-0219(25)00008-X. [PMID: 39884393 DOI: 10.1016/j.mucimm.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/05/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Host response aimed at eliminating the infecting pathogen, as well as the pathogen itself, can cause tissue injury. Tissue injury leads to the release of a myriad of cellular components including mitochondrial DNA (mtDNA), which the host senses through pattern recognition receptors. How the sensing of tissue injury by the host shapes the anti-pathogen response remains poorly understood. In this study, we utilized mice that are deficient in toll-like receptor-9 (TLR9), which binds to unmethylated CpG DNA sequences such as those present in bacterial and mtDNA. To avoid direct pathogen sensing by TLR9, we utilized the influenza virus, which lacks ligands for TLR9, to determine how damage sensing by TLR9 contributes to anti-influenza immunity. Our data showed that TLR9-mediated sensing of tissue damage promoted an inflammatory response during early infection, driven by epithelial and myeloid cells. Along with the diminished inflammatory response, the absence of TLR9 led to impaired viral clearance manifested as higher and prolonged influenza components in myeloid cells, including monocytes and macrophages, rendering them highly inflammatory. The persistent inflammation driven by infected myeloid cells led to persistent lung injury and impaired recovery in influenza-infected TLR9-/- mice. Further, we found elevated TLR9 ligands in the plasma samples of patients with influenza infection and its association with the disease severity in hospitalized patients, demonstrating its clinical relevance. Overall, we demonstrated an essential role of damage sensing through TLR9 in promoting anti-influenza immunity and inflammatory response. AUTHOR SUMMARY: Tissue damage is an inevitable outcome of clinically relevant lung infections, but the host mechanisms for detecting such damage during infection are not well understood. We investigated the role of Toll-like receptor 9 (TLR9) in sensing tissue damage caused by influenza. Since influenza lacks TLR9 ligands, we hypothesized that TLR9 signaling is driven by tissue damage molecules like mitochondrial DNA (mtDNA). Our data revealed that TLR9 deficiency reduces early inflammatory lung injury but impairs viral clearance, resulting in extensive infection of immune cells, persistent inflammation, and delayed recovery. Myeloid-specific TLR9 deletion ameliorated late-stage inflammatory responses. In humans, influenza-infected individuals exhibited elevated TLR9 activity and mtDNA levels in plasma compared to healthy controls, with higher TLR9 activation potential correlating with severe disease requiring ICU admission. These findings suggest that TLR9-mediated damage sensing triggers both inflammatory tissue injury and viral clearance. These data indicate that TLR9 activity can serve as a crucial biomarker and therapeutic target to limit influenza-induced tissue injury.
Collapse
Affiliation(s)
- Jooyoung Kim
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center Pittsburgh PA USA; Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA
| | - Yifan Yuan
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA; University of Maryland MD USA
| | - Karen Agaronyan
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA; Howard Hughes Medical Institute, USA
| | - Amy Zhao
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA
| | - Victoria D Wang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center Pittsburgh PA USA
| | - David Gau
- Department of Pathology, University of Pittsburgh Pittsburgh PA USA; Department of Bioengineering, University of Pittsburgh Pittsburgh PA USA
| | - Nicholas Toosi
- Department of Bioengineering, University of Pittsburgh Pittsburgh PA USA
| | - Gayatri Gupta
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA
| | - Heran Essayas
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA
| | - Ayelet Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA
| | - John McGovern
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA
| | - Sheeline Yu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA
| | - Samuel Woo
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA
| | - Chris J Lee
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA
| | - Shifa Gandhi
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA
| | - Tina Saber
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA
| | - Tayebeh Saleh
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center Pittsburgh PA USA
| | - Buqu Hu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA
| | - Ying Sun
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA
| | - Genta Ishikawa
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center Pittsburgh PA USA; VA Medical Center Pittsburgh PA USA
| | - John Evankovich
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center Pittsburgh PA USA
| | - Lujia Chen
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - HongDuck Yun
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center Pittsburgh PA USA
| | - Erica L Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA
| | - Charles S Dela Cruz
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center Pittsburgh PA USA; Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA; VA Medical Center Pittsburgh PA USA
| | - Changwan Ryu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA.
| | - Lokesh Sharma
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center Pittsburgh PA USA; Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA.
| |
Collapse
|
6
|
Tang J, Shi J, Han Z, Chen X. Application of Macrophage Subtype Analysis in Acute Lung Injury/Acute Respiratory Distress Syndrome. FRONT BIOSCI-LANDMRK 2024; 29:412. [PMID: 39735977 DOI: 10.31083/j.fbl2912412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/28/2024] [Accepted: 08/16/2024] [Indexed: 12/31/2024]
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common critical illness. Supportive therapy is still the main strategy for ALI/ARDS. Macrophages are the predominant immune cells in the lungs and play a pivotal role in maintaining homeostasis, regulating metabolism, and facilitating tissue repair. During ALI/ARDS, these versatile cells undergo polarization into distinct subtypes with significant variations in transcriptional profiles, developmental trajectory, phenotype, and functionality. This review discusses developments in the analysis of alveolar macrophage subtypes in the study of ALI/ARDS, and the potential value of targeting new macrophage subtypes in the diagnosis, prognostic evaluation, and treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Jiajia Tang
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, 100048 Beijing, China
- School of Medicine, South China University of Technology, 510006 Guangzhou, Guangdong, China
| | - Jun Shi
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, 100048 Beijing, China
- School of Medicine, South China University of Technology, 510006 Guangzhou, Guangdong, China
| | - Zhihai Han
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, 100048 Beijing, China
- School of Medicine, South China University of Technology, 510006 Guangzhou, Guangdong, China
| | - Xuxin Chen
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, 100048 Beijing, China
- School of Medicine, South China University of Technology, 510006 Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Lercher A, Cheong JG, Bale MJ, Jiang C, Hoffmann HH, Ashbrook AW, Lewy T, Yin YS, Quirk C, DeGrace EJ, Chiriboga L, Rosenberg BR, Josefowicz SZ, Rice CM. Antiviral innate immune memory in alveolar macrophages following SARS-CoV-2 infection ameliorates secondary influenza A virus disease. Immunity 2024; 57:2530-2546.e13. [PMID: 39353439 PMCID: PMC11563926 DOI: 10.1016/j.immuni.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/16/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
Pathogen encounter can result in epigenetic remodeling that shapes disease caused by heterologous pathogens. Here, we examined innate immune memory in the context of commonly circulating respiratory viruses. Single-cell analyses of airway-resident immune cells in a disease-relevant murine model of SARS-CoV-2 recovery revealed epigenetic reprogramming in alveolar macrophages following infection. Post-COVID-19 human monocytes exhibited similar epigenetic signatures. In airway-resident macrophages, past SARS-CoV-2 infection increased activity of type I interferon (IFN-I)-related transcription factors and epigenetic poising of antiviral genes. Viral pattern recognition and canonical IFN-I signaling were required for the establishment of this innate immune memory and augmented secondary antiviral responses. Antiviral innate immune memory mounted by airway-resident macrophages post-SARS-CoV-2 was necessary and sufficient to ameliorate secondary disease caused by influenza A virus and curtailed hyperinflammatory dysregulation and mortality. Our findings provide insights into antiviral innate immune memory in the airway that may facilitate the development of broadly effective therapeutic strategies.
Collapse
Affiliation(s)
- Alexander Lercher
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| | - Jin-Gyu Cheong
- Department of Pathology and Laboratory Medicine, Laboratory of Epigenetics and Immunity, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Michael J Bale
- Department of Pathology and Laboratory Medicine, Laboratory of Epigenetics and Immunity, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chenyang Jiang
- Department of Pathology and Laboratory Medicine, Laboratory of Epigenetics and Immunity, Weill Cornell Medicine, New York, NY 10065, USA; BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Alison W Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Tyler Lewy
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Yue S Yin
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Emma J DeGrace
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luis Chiriboga
- Department of Pathology, New York University Medical Center, New York, NY 10016, USA; Center for Biospecimen Research and Development, New York, NY 10016, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steven Z Josefowicz
- Department of Pathology and Laboratory Medicine, Laboratory of Epigenetics and Immunity, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
8
|
Earhart AP, Alburquerque RA, Starick M, Nallapu A, Garnica L, Ozanturk AN, Maurya RK, Wu X, Haspel JA, Kulkarni HS. The C3-C3aR axis modulates trained immunity in alveolar macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621042. [PMID: 39554000 PMCID: PMC11565986 DOI: 10.1101/2024.11.01.621042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Complement protein C3 is crucial for immune responses in mucosal sites such as the lung, where it aids in microbe elimination and enhances inflammation. While trained immunity - enhanced secondary responses of innate immune cells after prior exposure - is well-studied, the role of the complement system in trained immune responses remains unclear. We investigated the role of C3 in trained immunity and found that in vivo , trained wild-type mice showed significantly elevated pro-inflammatory cytokines and increased C3a levels upon a second stimulus, whereas C3-deficient mice exhibited a blunted cytokine response and heightened evidence of lung injury. Ex vivo , C3-deficient alveolar macrophages (AMs) displayed reduced chemokine and cytokine output after training, which was restored by exogenous C3 but not by C3a. Inhibiting C3aR, both pharmacologically and with a genetic C3aR knockout, prevented this restoration, indicating the necessity of C3aR engagement. Mechanistically, trained WT AMs demonstrated enhanced glycolytic activity compared to C3-deficient AMs - a defect corrected by exogenous C3 in a C3aR-dependent manner. These findings reveal that C3 modulates trained immunity in AMs through C3aR signaling, affecting cytokine production and metabolic reprogramming, and highlight a novel role for C3 in trained immunity.
Collapse
|
9
|
Devkota SP, Onah C, Joshi PR, Adhikari S, Baral P. Optimized method for higher yield of alveolar macrophage isolation for ex vivo studies. Heliyon 2024; 10:e37221. [PMID: 39319125 PMCID: PMC11419857 DOI: 10.1016/j.heliyon.2024.e37221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Alveolar macrophages (AMs) are a fully differentiated lung-resident immune cell population and are a critical component of lung immunity. AMs can be easily isolated from mice via bronchoalveolar lavage fluid (BALF) collection. The quality and quantity of AMs in BALF isolation are critical for generating reliable and high-quality data for ex vivo studies. Traditional techniques use ice-cold (4°C) buffer to collect AMs in BALF and result in low yield. Hence, a new method that consistently gives a higher yield of AMs is needed. We demonstrate here an optimized method that significantly increases the quantity of AM recovery in BALF (>2.8 times than the traditional method). Our method uses a warm-buffer (37°C) containing EDTA. We compared the viability and functional parameters (cytokine/chemokine expression, phagocytosis) of AMs isolated by our new and traditional methods. Our study revealed that AMs collected using our method have similar viability and functional characteristics to those collected using traditional method. Hence, our new method can be used for the collection of a higher number of AMs without altering their function. This protocol might also be useful for isolating tissue-resident immune cells from other anatomical sites for ex vivo and other downstream applications.
Collapse
Affiliation(s)
- Surya Prasad Devkota
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Chinemerem Onah
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Prabhu Raj Joshi
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Sandeep Adhikari
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS, USA
| | | |
Collapse
|
10
|
Thomas SM, Ankley LM, Conner KN, Rapp AW, McGee AP, LeSage F, Tanner CD, Vielma TE, Scheeres EC, Obar JJ, Olive AJ. TGFβ primes alveolar-like macrophages to induce type I IFN following TLR2 activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611226. [PMID: 39282428 PMCID: PMC11398362 DOI: 10.1101/2024.09.04.611226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Alveolar macrophages (AMs) are key mediators of lung function and are potential targets for therapies during respiratory infections. TGFβ is an important regulator of AM differentiation and maintenance, but how TGFβ directly modulates the innate immune responses of AMs remains unclear. This shortcoming prevents effective targeting of AMs to improve lung function in health and disease. Here we leveraged an optimized ex vivo AM model system, fetal-liver derived alveolar-like macrophages (FLAMs), to dissect the role of TGFβ in AMs. Using transcriptional analysis, we first globally defined how TGFβ regulates gene expression of resting FLAMs. We found that TGFβ maintains the baseline metabolic state of AMs by driving lipid metabolism through oxidative phosphorylation and restricting inflammation. To better understand inflammatory regulation in FLAMs, we next directly tested how TGFβ alters the response to TLR2 agonists. While both TGFβ (+) and TGFβ (-) FLAMs robustly responded to TLR2 agonists, we found an unexpected activation of type I interferon (IFN) responses in FLAMs and primary AMs in a TGFβ-dependent manner. Surprisingly, mitochondrial antiviral signaling protein and the interferon regulator factors 3 and 7 were required for IFN production by TLR2 agonists. Together, these data suggest that TGFβ modulates AM metabolic networks and innate immune signaling cascades to control inflammatory pathways in AMs.
Collapse
Affiliation(s)
- Sean M. Thomas
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Laurisa M. Ankley
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Kayla N. Conner
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Alexander W. Rapp
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Abigail P. McGee
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Francois LeSage
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Christopher D. Tanner
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Taryn E. Vielma
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Eleanor C. Scheeres
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Joshua J. Obar
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Andrew J. Olive
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| |
Collapse
|
11
|
Yuan Y, Xu W, Li L, Guo T, Liu B, Xiao J, Yin Y, Zhang X. A Streptococcus pneumoniae endolysin mutant protein ΔA146Ply elicits rapid broad-spectrum mucosal protection in mice via upregulation of GPX4 through TLR4/IRG1/NRF2 to alleviate macrophage ferroptosis. Free Radic Biol Med 2024; 222:344-360. [PMID: 38945457 DOI: 10.1016/j.freeradbiomed.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Innovative solutions for rapid protection against broad-spectrum infections are very important in dealing with complex infection environments. We utilized a functionally inactive mutated endolysin protein of Streptococcus pneumoniae (ΔA146Ply) to immunize mice against pneumonic infections by multidrug-resistant bacteria, Candida albicans and influenza virus type A. ΔA146Ply protection relied on both immunized tissue-resident and monocyte-derived alveolar macrophages and inhibited infection induced ferroptosis that upregulated expression of GPX4 (glutathione peroxidase) in alveolar macrophages. Ferroptosis resistance endowed macrophages with enhanced phagocytosis by inhibiting lipid peroxidation during infection. Moreover, we demonstrated ΔA146Ply upregulated GPX4 through the TLR4/IRG1/NRF2 pathway. ΔA146Ply also induced ferroptosis inhibition and phagocytosis improvement in human monocytes. This mode of action is a novel and potentially prophylactic and rapid broad-spectrum anti-infection mechanism. Our study provides new insights into protective interventions that act by regulating ferroptosis to improve multiple pathogen resistance via GPX4 targeting.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Wenlong Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China; Department of Medical Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou District, Chongqing, 404100, China
| | - Lian Li
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Ting Guo
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Bichen Liu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Jiangming Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Yibin Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
12
|
Ono Y, Fujino N, Saito T, Matsumoto S, Konno S, Endo T, Suzuki M, Yamada M, Okada Y, Sugiura H. Characterization of IL-6R-expressing monocytes in the lung of patients with chronic obstructive pulmonary disease. Respir Investig 2024; 62:856-866. [PMID: 39068895 DOI: 10.1016/j.resinv.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Monocytes play a crucial role in innate immune responses for host defense, however, their involvement in chronic obstructive pulmonary disease (COPD) remains poorly understood. We previously identified a subset of monocytes in COPD lung tissues characterized by high interleukin-6 receptor (IL-6R) expression. This study aimed to characterize the phenotypes of IL-6Rhi monocytes in the lungs of COPD patients. METHODS Using flow cytometry, we assessed the abundance of pulmonary CD14+IL-6Rhi cells in never smokers (CNS), control ex-smokers (CES) and COPD patients. IL-6 expression in CD14+ monocytes isolated from the peripheral blood of patients with COPD was also examined. CD45+CD206-CD14+IL-6Rhi and CD45+CD206-CD14+IL-6R-/lo cells were isolated from COPD lung tissues for transcriptome analysis. A monocyte line THP1 cell with constitutive IL-6R expression was stimulated with recombinant IL-6, followed by RNA sequencing to evaluate the IL-6 responsiveness of IL-6R+ monocytes. RESULTS The number of pulmonary CD14+IL-6Rhi monocytes was elevated in COPD patients compared to CNS, whereas CD14+ monocytes in the peripheral blood of COPD patients did not express IL-6R. Upregulated mRNA expression in CD14+IL-6Rhi monocytes was associated with chemotaxis, monocyte differentiation, fatty acid metabolism and integrin-mediated signaling pathway. Stimulation of THP1 cells with recombinant IL-6 induced changes in the expression of genes linked to chemotaxis and organism development. CONCLUSION In patients with COPD, CD14+IL-6Rhi monocytes are increased in lung tissues compared to those in CNS. They exhibit a transcriptome profile different from that of CD14+IL-6R-/lo monocytes.
Collapse
Affiliation(s)
- Yoshinao Ono
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryocho, Aoba-ku, Sendai, Miyagi, 980 8574, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryocho, Aoba-ku, Sendai, Miyagi, 980 8574, Japan.
| | - Takuya Saito
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryocho, Aoba-ku, Sendai, Miyagi, 980 8574, Japan
| | - Shuichiro Matsumoto
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryocho, Aoba-ku, Sendai, Miyagi, 980 8574, Japan
| | - Shuichi Konno
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryocho, Aoba-ku, Sendai, Miyagi, 980 8574, Japan
| | - Takuto Endo
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryocho, Aoba-ku, Sendai, Miyagi, 980 8574, Japan
| | - Manami Suzuki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryocho, Aoba-ku, Sendai, Miyagi, 980 8574, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryocho, Aoba-ku, Sendai, Miyagi, 980 8574, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryocho, Aoba-ku, Sendai, Miyagi, 980 8575, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryocho, Aoba-ku, Sendai, Miyagi, 980 8574, Japan
| |
Collapse
|
13
|
Kim J, Yuan Y, Agaronyan K, Zhao A, D Wang V, Gupta G, Essayas H, Kaminski A, McGovern J, Yu S, Woo S, Lee CJ, Gandhi S, Saber T, Saleh T, Hu B, Sun Y, Ishikawa G, Bain W, Evankovich J, Chen L, Yun H, Herzog EL, Dela Cruz CS, Ryu C, Sharma L. Damage sensing through TLR9 Regulates Inflammatory and Antiviral Responses During Influenza Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583378. [PMID: 38496452 PMCID: PMC10942338 DOI: 10.1101/2024.03.04.583378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Host response aimed at eliminating the infecting pathogen, as well as the pathogen itself, can cause tissue injury. Tissue injury leads to the release of a myriad of cellular components including mitochondrial DNA, which the host senses through pattern recognition receptors. How the sensing of tissue injury by the host shapes the anti-pathogen response remains poorly understood. In this study, we utilized mice that are deficient in toll-like receptor-9 (TLR9), which binds to unmethylated CpG DNA sequences such as those present in bacterial and mitochondrial DNA. To avoid direct pathogen sensing by TLR9, we utilized the influenza virus, which lacks ligands for TLR9, to determine how damage sensing by TLR9 contributes to anti-influenza immunity. Our data show that TLR9-mediated sensing of tissue damage promotes an inflammatory response during early infection, driven by the epithelial and myeloid cells. Along with the diminished inflammatory response, the absence of TLR9 led to impaired viral clearance manifested as a higher and prolonged influenza components in myeloid cells including monocytes and macrophages rendering them highly inflammatory. The persistent inflammation driven by infected myeloid cells led to persistent lung injury and impaired recovery in influenza-infected TLR9-/- mice. Further, we show elevated TLR9 activation in the plasma samples of patients with influenza and its association with the disease severity in hospitalized patients, demonstrating its clinical relevance. Overall, we demonstrate an essential role of damage sensing through TLR9 in promoting anti-influenza immunity and inflammatory response.
Collapse
Affiliation(s)
- Jooyoung Kim
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT
| | - Yifan Yuan
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT
- University of Maryland, MD
| | - Karen Agaronyan
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT
- Howard Hughes Medical Institute
| | - Amy Zhao
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT
| | - Victoria D Wang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Gayatri Gupta
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT
| | - Heran Essayas
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT
| | - Ayelet Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT
| | - John McGovern
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT
| | - Sheeline Yu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT
| | - Samuel Woo
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT
| | - Chris J. Lee
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT
| | - Shifa Gandhi
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT
| | - Tina Saber
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT
| | - Tayebeh Saleh
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Buqu Hu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT
| | - Ying Sun
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT
| | - Genta Ishikawa
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
- VA Medical Center, Pittsburgh, PA
| | - John Evankovich
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Lujia Chen
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - HongDuck Yun
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Erica L. Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT
| | - Charles S. Dela Cruz
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT
- VA Medical Center, Pittsburgh, PA
| | - Changwan Ryu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT
| | - Lokesh Sharma
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT
| |
Collapse
|
14
|
Gao Y, Liang Z, Mao B, Zheng X, Shan J, Jin C, Liu S, Kolliputi N, Chen Y, Xu F, Shi L. Gut microbial GABAergic signaling improves stress-associated innate immunity to respiratory viral infection. J Adv Res 2024; 60:41-56. [PMID: 37353002 PMCID: PMC10284622 DOI: 10.1016/j.jare.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023] Open
Abstract
INTRODUCTION Epidemiological evidences reveal that populations with psychological stress have an increased likelihood of respiratory viral infection involving influenza A virus (IAV) and SARS-CoV-2. OBJECTIVES This study aims to explore the potential correlation between psychological stress and increased susceptibility to respiratory viral infections and how this may contribute to a more severe disease progression. METHODS A chronic restraint stress (CRS) mouse model was used to infect IAV and estimate lung inflammation. Alveolar macrophages (AMs) were observed in the numbers, function and metabolic-epigenetic properties. To confirm the central importance of the gut microbiome in stress-exacerbated viral pneumonia, mice were conducted through microbiome depletion and gut microbiome transplantation. RESULTS Stress exposure induced a decline in Lactobacillaceae abundance and hence γ-aminobutyric acid (GABA) level in mice. Microbial-derived GABA was released in the peripheral and sensed by AMs via GABAAR, leading to enhanced mitochondrial metabolism and α-ketoglutarate (αKG) generation. The metabolic intermediator in turn served as the cofactor for the epigenetic regulator Tet2 to catalyze DNA hydroxymethylation and promoted the PPARγ-centered gene program underpinning survival, self-renewing, and immunoregulation of AMs. Thus, we uncover an unappreciated GABA/Tet2/PPARγ regulatory circuitry initiated by the gut microbiome to instruct distant immune cells through a metabolic-epigenetic program. Accordingly, reconstitution with GABA-producing probiotics, adoptive transferring of GABA-conditioned AMs, or resumption of pulmonary αKG level remarkably improved AMs homeostasis and alleviated severe pneumonia in stressed mice. CONCLUSION Together, our study identifies microbiome-derived tonic signaling tuned by psychological stress to imprint resident immune cells and defensive response in the lungs. Further studies are warranted to translate these findings, basically from murine models, into the individuals with psychiatric stress during respiratory viral infection.
Collapse
Affiliation(s)
- Yanan Gao
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihao Liang
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bingyong Mao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xudong Zheng
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cuiyuan Jin
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
| | - Shijia Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yugen Chen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Feng Xu
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Liyun Shi
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
15
|
Lim PN, Cervantes MM, Pham LK, Doherty S, Tufts A, Dubey D, Mai D, Aderem A, Diercks AH, Rothchild AC. Absence of c-Maf and IL-10 enables Type I IFN enhancement of innate responses to low-dose LPS in alveolar macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.594428. [PMID: 38826239 PMCID: PMC11142172 DOI: 10.1101/2024.05.22.594428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Alveolar macrophages (AMs) are lower-airway resident myeloid cells and are among the first to respond to inhaled pathogens. Here, we interrogate AM innate sensing to Pathogen Associated Molecular Patterns (PAMPs) and determine AMs have decreased responses to low-dose LPS compared to other macrophages, as measured by TNF, IL-6, Ifnb, and Ifit3. We find the reduced response to low-dose LPS correlates with minimal TLR4 and CD14 surface expression, despite sufficient internal expression of TLR4. Additionally, we find that AMs do not produce IL-10 in response to a variety of PAMPs due to low expression of transcription factor c-Maf and that lack of IL-10 production contributes to an enhancement of pro-inflammatory responses by Type I IFN. Our findings demonstrate that AMs have cell-intrinsic dampened responses to LPS, which is enhanced by type I IFN exposure. These data implicate conditions where AMs may have reduced or enhanced sentinel responses to bacterial infections.
Collapse
Affiliation(s)
- Pamelia N. Lim
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Maritza M. Cervantes
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Linh K. Pham
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
- Graduate Program in Animal Biotechnology & Biomedical Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Sydney Doherty
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Ankita Tufts
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Divya Dubey
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Dat Mai
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98019
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98019
| | - Alan H. Diercks
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98019
| | - Alissa C. Rothchild
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
16
|
Ankley LM, Conner KN, Vielma TE, Godfrey JJ, Thapa M, Olive AJ. GSK3α/β Restrain IFN-γ-Inducible Costimulatory Molecule Expression in Alveolar Macrophages, Limiting CD4+ T Cell Activation. Immunohorizons 2024; 8:147-162. [PMID: 38345473 PMCID: PMC10916365 DOI: 10.4049/immunohorizons.2300107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/15/2024] Open
Abstract
Macrophages play a crucial role in eliminating respiratory pathogens. Both pulmonary resident alveolar macrophages (AMs) and recruited macrophages contribute to detecting, responding to, and resolving infections in the lungs. Despite their distinct functions, it remains unclear how these macrophage subsets regulate their responses to infection, including how activation by the cytokine IFN-γ is regulated. This shortcoming prevents the development of therapeutics that effectively target distinct lung macrophage populations without exacerbating inflammation. We aimed to better understand the transcriptional regulation of resting and IFN-γ-activated cells using a new ex vivo model of AMs from mice, fetal liver-derived alveolar-like macrophages (FLAMs), and immortalized bone marrow-derived macrophages. Our findings reveal that IFN-γ robustly activates both macrophage types; however, the profile of activated IFN-γ-stimulated genes varies greatly between these cell types. Notably, FLAMs show limited expression of costimulatory markers essential for T cell activation upon stimulation with only IFN-γ. To understand cell type-specific differences, we examined how the inhibition of the regulatory kinases GSK3α/β alters the IFN-γ response. GSK3α/β controlled distinct IFN-γ responses, and in AM-like cells, we found that GSK3α/β restrained the induction of type I IFN and TNF, thus preventing the robust expression of costimulatory molecules and limiting CD4+ T cell activation. Together, these data suggest that the capacity of AMs to respond to IFN-γ is restricted in a GSK3α/β-dependent manner and that IFN-γ responses differ across distinct macrophage populations. These findings lay the groundwork to identify new therapeutic targets that activate protective pulmonary responses without driving deleterious inflammation.
Collapse
Affiliation(s)
- Laurisa M. Ankley
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Kayla N. Conner
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Taryn E. Vielma
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Jared J. Godfrey
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Mahima Thapa
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Andrew J. Olive
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| |
Collapse
|
17
|
Kendall RL, Holian A. Lysosomal BK channels facilitate silica-induced inflammation in macrophages. Inhal Toxicol 2024; 36:31-43. [PMID: 38261520 PMCID: PMC11080613 DOI: 10.1080/08958378.2024.2305112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Lysosomal ion channels are proposed therapeutic targets for a number of diseases, including those driven by NLRP3 inflammasome-mediated inflammation. Here, the specific role of the lysosomal big conductance Ca2+-activated K+ (BK) channel was evaluated in a silica model of inflammation in murine macrophages. A specific-inhibitor of BK channel function, paxilline (PAX), and activators NS11021 and NS1619 were utilized to evaluate the role of lysosomal BK channel activity in silica-induced lysosomal membrane permeabilization (LMP) and NLRP3 inflammasome activation resulting in IL-1β release. METHODS Murine macrophages were exposed in vitro to crystalline silica following pretreatment with BK channel inhibitors or activators and LMP, cell death, and IL-1β release were assessed. In addition, the effect of PAX treatment on silica-induced cytosolic K+ decrease was measured. Finally, the effects of BK channel modifiers on lysosomal pH, proteolytic activity, and cholesterol transport were also evaluated. RESULTS PAX pretreatment significantly attenuated silica-induced cell death and IL-1β release. PAX caused an increase in lysosomal pH and decrease in lysosomal proteolytic activity. PAX also caused a significant accumulation of lysosomal cholesterol. BK channel activators NS11021 and NS1619 increased silica-induced cell death and IL-1β release. BK channel activation also caused a decrease in lysosomal pH and increase in lysosomal proteolytic function as well as a decrease in cholesterol accumulation. CONCLUSION Taken together, these results demonstrate that inhibiting lysosomal BK channel activity with PAX effectively reduced silica-induced cell death and IL-1β release. Blocking cytosolic K+ entry into the lysosome prevented LMP through the decrease of lysosomal acidification and proteolytic function and increase in lysosomal cholesterol.
Collapse
Affiliation(s)
- Rebekah L Kendall
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
18
|
Albright JM, Sydor MJ, Shannahan J, Ferreira CR, Holian A. Imipramine Treatment Alters Sphingomyelin, Cholesterol, and Glycerophospholipid Metabolism in Isolated Macrophage Lysosomes. Biomolecules 2023; 13:1732. [PMID: 38136603 PMCID: PMC10742328 DOI: 10.3390/biom13121732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Lysosomes are degradative organelles that facilitate the removal and recycling of potentially cytotoxic materials and mediate a variety of other cellular processes, such as nutrient sensing, intracellular signaling, and lipid metabolism. Due to these central roles, lysosome dysfunction can lead to deleterious outcomes, including the accumulation of cytotoxic material, inflammation, and cell death. We previously reported that cationic amphiphilic drugs, such as imipramine, alter pH and lipid metabolism within macrophage lysosomes. Therefore, the ability for imipramine to induce changes to the lipid content of isolated macrophage lysosomes was investigated, focusing on sphingomyelin, cholesterol, and glycerophospholipid metabolism as these lipid classes have important roles in inflammation and disease. The lysosomes were isolated from control and imipramine-treated macrophages using density gradient ultracentrifugation, and mass spectrometry was used to measure the changes in their lipid composition. An unsupervised hierarchical cluster analysis revealed a clear differentiation between the imipramine-treated and control lysosomes. There was a significant overall increase in the abundance of specific lipids mostly composed of cholesterol esters, sphingomyelins, and phosphatidylcholines, while lysophosphatidylcholines and ceramides were overall decreased. These results support the conclusion that imipramine's ability to change the lysosomal pH inhibits multiple pH-sensitive enzymes in macrophage lysosomes.
Collapse
Affiliation(s)
- Jacob M. Albright
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences (CEHS), University of Montana, Missoula, MT 59812, USA
| | - Matthew J. Sydor
- Department of Biomedical and Pharmaceutical Sciences, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Christina R. Ferreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN 47907, USA;
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences (CEHS), University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
19
|
Lercher A, Cheong JG, Jiang C, Hoffmann HH, Ashbrook AW, Yin YS, Quirk C, DeGrace EJ, Chiriboga L, Rosenberg BR, Josefowicz SZ, Rice CM. Antiviral innate immune memory in alveolar macrophages following SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.24.568354. [PMID: 38076887 PMCID: PMC10705235 DOI: 10.1101/2023.11.24.568354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Pathogen encounter results in long-lasting epigenetic imprinting that shapes diseases caused by heterologous pathogens. The breadth of this innate immune memory is of particular interest in the context of respiratory pathogens with increased pandemic potential and wide-ranging impact on global health. Here, we investigated epigenetic imprinting across cell lineages in a disease relevant murine model of SARS-CoV-2 recovery. Past SARS-CoV-2 infection resulted in increased chromatin accessibility of type I interferon (IFN-I) related transcription factors in airway-resident macrophages. Mechanistically, establishment of this innate immune memory required viral pattern recognition and canonical IFN-I signaling and augmented secondary antiviral responses. Past SARS-CoV-2 infection ameliorated disease caused by the heterologous respiratory pathogen influenza A virus. Insights into innate immune memory and how it affects subsequent infections with heterologous pathogens to influence disease pathology could facilitate the development of broadly effective therapeutic strategies.
Collapse
Affiliation(s)
- Alexander Lercher
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Jin-Gyu Cheong
- Department of Pathology and Laboratory Medicine, Laboratory of Epigenetics and Immunity, Weill Cornell Medicine, New York, NY, 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Chenyang Jiang
- Department of Pathology and Laboratory Medicine, Laboratory of Epigenetics and Immunity, Weill Cornell Medicine, New York, NY, 10065, USA
- BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Alison W. Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Yue S. Yin
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Emma J. DeGrace
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Luis Chiriboga
- Department of Pathology, New York University Medical Center, New York, NY, 10016, USA
- Center for Biospecimen Research and Development, New York, NY, 10016, USA
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Steven Z. Josefowicz
- Department of Pathology and Laboratory Medicine, Laboratory of Epigenetics and Immunity, Weill Cornell Medicine, New York, NY, 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
20
|
Favor OK, Rajasinghe LD, Wierenga KA, Maddipati KR, Lee KSS, Olive AJ, Pestka JJ. Crystalline silica-induced proinflammatory eicosanoid storm in novel alveolar macrophage model quelled by docosahexaenoic acid supplementation. Front Immunol 2023; 14:1274147. [PMID: 38022527 PMCID: PMC10665862 DOI: 10.3389/fimmu.2023.1274147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Phagocytosis of inhaled crystalline silica (cSiO2) particles by tissue-resident alveolar macrophages (AMs) initiates generation of proinflammatory eicosanoids derived from the ω-6 polyunsaturated fatty acid (PUFA) arachidonic acid (ARA) that contribute to chronic inflammatory disease in the lung. While supplementation with the ω-3 PUFA docosahexaenoic acid (DHA) may influence injurious cSiO2-triggered oxylipin responses, in vitro investigation of this hypothesis in physiologically relevant AMs is challenging due to their short-lived nature and low recovery numbers from mouse lungs. To overcome these challenges, we employed fetal liver-derived alveolar-like macrophages (FLAMs), a self-renewing surrogate that is phenotypically representative of primary lung AMs, to discern how DHA influences cSiO2-induced eicosanoids. Methods We first compared how delivery of 25 µM DHA as ethanolic suspensions or as bovine serum albumin (BSA) complexes to C57BL/6 FLAMs impacts phospholipid fatty acid content. We subsequently treated FLAMs with 25 µM ethanolic DHA or ethanol vehicle (VEH) for 24 h, with or without LPS priming for 2 h, and with or without cSiO2 for 1.5 or 4 h and then measured oxylipin production by LC-MS lipidomics targeting for 156 oxylipins. Results were further related to concurrent proinflammatory cytokine production and cell death induction. Results DHA delivery as ethanolic suspensions or BSA complexes were similarly effective at increasing ω-3 PUFA content of phospholipids while decreasing the ω-6 PUFA arachidonic acid (ARA) and the ω-9 monounsaturated fatty acid oleic acid. cSiO2 time-dependently elicited myriad ARA-derived eicosanoids consisting of prostaglandins, leukotrienes, thromboxanes, and hydroxyeicosatetraenoic acids in unprimed and LPS-primed FLAMs. This cSiO2-induced eicosanoid storm was dramatically suppressed in DHA-supplemented FLAMs which instead produced potentially pro-resolving DHA-derived docosanoids. cSiO2 elicited marked IL-1α, IL-1β, and TNF-α release after 1.5 and 4 h of cSiO2 exposure in LPS-primed FLAMs which was significantly inhibited by DHA. DHA did not affect cSiO2-triggered death induction in unprimed FLAMs but modestly enhanced it in LPS-primed FLAMs. Discussion FLAMs are amenable to lipidome modulation by DHA which suppresses cSiO2-triggered production of ARA-derived eicosanoids and proinflammatory cytokines. FLAMs are a potential in vitro alternative to primary AMs for investigating interventions against early toxicant-triggered inflammation in the lung.
Collapse
Affiliation(s)
- Olivia K. Favor
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Lichchavi D. Rajasinghe
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kathryn A. Wierenga
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | | | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Andrew J. Olive
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
21
|
Malainou C, Abdin SM, Lachmann N, Matt U, Herold S. Alveolar macrophages in tissue homeostasis, inflammation, and infection: evolving concepts of therapeutic targeting. J Clin Invest 2023; 133:e170501. [PMID: 37781922 PMCID: PMC10541196 DOI: 10.1172/jci170501] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Alveolar macrophages (AMs) are the sentinel cells of the alveolar space, maintaining homeostasis, fending off pathogens, and controlling lung inflammation. During acute lung injury, AMs orchestrate the initiation and resolution of inflammation in order to ultimately restore homeostasis. This central role in acute lung inflammation makes AMs attractive targets for therapeutic interventions. Single-cell RNA-Seq and spatial omics approaches, together with methodological advances such as the generation of human macrophages from pluripotent stem cells, have increased understanding of the ontogeny, function, and plasticity of AMs during infectious and sterile lung inflammation, which could move the field closer to clinical application. However, proresolution phenotypes might conflict with proinflammatory and antibacterial responses. Therefore, therapeutic targeting of AMs at vulnerable time points over the course of infectious lung injury might harbor the risk of serious side effects, such as loss of antibacterial host defense capacity. Thus, the identification of key signaling hubs that determine functional fate decisions in AMs is of the utmost importance to harness their therapeutic potential.
Collapse
Affiliation(s)
- Christina Malainou
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Shifaa M. Abdin
- German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology and
- REBIRTH Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology and
- REBIRTH Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- RESIST (Resolving Infection Susceptibility), Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Ulrich Matt
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Susanne Herold
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
22
|
Smith LC, Gow AJ, Abramova E, Vayas K, Guo C, Noto J, Lyman J, Rodriquez J, Gelfand-Titiyevskiy B, Malcolm C, Laskin JD, Laskin DL. Role of PPARγ in dyslipidemia and altered pulmonary functioning in mice following ozone exposure. Toxicol Sci 2023; 194:109-119. [PMID: 37202362 PMCID: PMC10306402 DOI: 10.1093/toxsci/kfad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Exposure to ozone causes decrements in pulmonary function, a response associated with alterations in lung lipids. Pulmonary lipid homeostasis is dependent on the activity of peroxisome proliferator activated receptor gamma (PPARγ), a nuclear receptor that regulates lipid uptake and catabolism by alveolar macrophages (AMs). Herein, we assessed the role of PPARγ in ozone-induced dyslipidemia and aberrant lung function in mice. Exposure of mice to ozone (0.8 ppm, 3 h) resulted in a significant reduction in lung hysteresivity at 72 h post exposure; this correlated with increases in levels of total phospholipids, specifically cholesteryl esters, ceramides, phosphatidylcholines, phosphorylethanolamines, sphingomyelins, and di- and triacylglycerols in lung lining fluid. This was accompanied by a reduction in relative surfactant protein-B (SP-B) content, consistent with surfactant dysfunction. Administration of the PPARγ agonist, rosiglitazone (5 mg/kg/day, i.p.) reduced total lung lipids, increased relative amounts of SP-B, and normalized pulmonary function in ozone-exposed mice. This was associated with increases in lung macrophage expression of CD36, a scavenger receptor important in lipid uptake and a transcriptional target of PPARγ. These findings highlight the role of alveolar lipids as regulators of surfactant activity and pulmonary function following ozone exposure and suggest that targeting lipid uptake by lung macrophages may be an efficacious approach for treating altered respiratory mechanics.
Collapse
Affiliation(s)
- Ley Cody Smith
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, Connecticut 06269, USA
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Elena Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Kinal Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Changjiang Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jack Noto
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jack Lyman
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jessica Rodriquez
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Benjamin Gelfand-Titiyevskiy
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Callum Malcolm
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
23
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, et alBao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Show More Authors] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
24
|
Kendall RL, Ray JL, Hamilton RF, Holian A. Self-replicating murine ex vivo cultured alveolar macrophages as a model for toxicological studies of particle-induced inflammation. Toxicol Appl Pharmacol 2023; 461:116400. [PMID: 36702314 PMCID: PMC10022441 DOI: 10.1016/j.taap.2023.116400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Alveolar macrophages (AM) are integral to maintaining homeostasis within the lungs following exposure to inhaled particles. However, due to the high animal number requirements for in vitro research with primary AM, there remains a need for validated cell models that replicate alveolar macrophages in form and function to better understand the mechanisms that contribute to particle-induced inflammation and disease. A novel, easily adaptable, culture model that facilitates the continued expansion of murine alveolar macrophages for several months, termed murine ex vivo cultured AM (mexAM) has been recently described. Therefore, the present work evaluated the use of mexAMs as a suitable model for primary AM interactions with nano- and micro-sized particles. mexAM displayed a comparable profile of functional phenotype gene expression as primary AM and similar particle uptake capabilities. The NLRP3 inflammasome-driven IL-1β inflammatory response to crystalline silica and various nanoparticles was also assessed, as well as the effects of cationic amphiphilic drugs to block particle-induced inflammation. For all endpoints, mexAM showed a comparable response to primary AM. Altogether, the present work supports the use of mexAM as a validated replacement for primary AM cultures thereby reducing animal numbers and serving as an effective model for mechanistic investigation of inflammatory pathways in particle-induced respiratory disease.
Collapse
Affiliation(s)
- Rebekah L Kendall
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States of America.
| | - Jessica L Ray
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States of America
| | - Raymond F Hamilton
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States of America
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States of America
| |
Collapse
|
25
|
Wang Y, Zheng J, Wang X, Yang P, Zhao D. Alveolar macrophages and airway hyperresponsiveness associated with respiratory syncytial virus infection. Front Immunol 2022; 13:1012048. [PMID: 36341376 PMCID: PMC9630648 DOI: 10.3389/fimmu.2022.1012048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a ubiquitous pathogen of viral bronchiolitis and pneumonia in children younger than 2 years of age, which is closely associated with recurrent wheezing and airway hyperresponsiveness (AHR). Alveolar macrophages (AMs) located on the surface of the alveoli cavity are the important innate immune barrier in the respiratory tract. AMs are recognized as recruited airspace macrophages (RecAMs) and resident airspace macrophages (RAMs) based on their origins and roaming traits. AMs are polarized in the case of RSV infection, forming two macrophage phenotypes termed as M1-like and M2-like macrophages. Both M1 macrophages and M2 macrophages are involved in the modulation of inflammatory responses, among which M1 macrophages are capable of pro-inflammatory responses and M2 macrophages are capable of anti-proinflammatory responses and repair damaged tissues in the acute and convalescent phases of RSV infection. Polarized AMs affect disease progression through the alteration of immune cell surface phenotypes as well as participate in the regulation of T lymphocyte differentiation and the type of inflammatory response, which are closely associated with long-term AHR. In recent years, some progress have been made in the regulatory mechanism of AM polarization caused by RSV infection, which participates in acute respiratory inflammatory response and mediating AHR in infants. Here we summarized the role of RSV-infection-mediated AM polarization associated with AHR in infants.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junwen Zheng
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xia Wang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pu Yang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Children’s Digital Health and Data Center of Wuhan University, Wuhan, China
- *Correspondence: Dongchi Zhao, ; Pu Yang,
| | - Dongchi Zhao
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Children’s Digital Health and Data Center of Wuhan University, Wuhan, China
- *Correspondence: Dongchi Zhao, ; Pu Yang,
| |
Collapse
|
26
|
Aegerter H, Lambrecht BN, Jakubzick CV. Biology of lung macrophages in health and disease. Immunity 2022; 55:1564-1580. [PMID: 36103853 DOI: 10.1016/j.immuni.2022.08.010] [Citation(s) in RCA: 272] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022]
Abstract
Tissue-resident alveolar and interstitial macrophages and recruited macrophages are critical players in innate immunity and maintenance of lung homeostasis. Until recently, assessing the differential functional contributions of tissue-resident versus recruited macrophages has been challenging because they share overlapping cell surface markers, making it difficult to separate them using conventional methods. This review describes how scRNA-seq and spatial transcriptomics can separate these subpopulations and help unravel the complexity of macrophage biology in homeostasis and disease. First, we provide a guide to identifying and distinguishing lung macrophages from other mononuclear phagocytes in humans and mice. Second, we outline emerging concepts related to the development and function of the various lung macrophages in the alveolar, perivascular, and interstitial niches. Finally, we describe how different tissue states profoundly alter their functions, including acute and chronic lung disease, cancer, and aging.
Collapse
Affiliation(s)
- Helena Aegerter
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, Rotterdam, the Netherlands
| | - Claudia V Jakubzick
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, USA.
| |
Collapse
|
27
|
Yurakova TR, Gubernatorova EO, Gorshkova EA, Nosenko MA, Nedospasov SA, Drutskaya MS. HDM induces distinct immunometabolic phenotype in macrophages in TLR4-dependent manner. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166531. [PMID: 36038040 DOI: 10.1016/j.bbadis.2022.166531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022]
Abstract
Asthma is one of the most common chronic diseases. In many cases it is preceded by the development of an immune response to allergens such as animal fur, dust, pollens and etc. In human population this disease is heterogeneous, and no selective drugs are available at the moment for some endotypes of asthma. The role of the adaptive immune system in the pathogenesis of asthma was extensively studied, while the role of innate immune cells, in particular myeloid cells, was not sufficiently addressed. Myeloid cells, such as macrophages and dendritic cells, are characterized by high plasticity, heterogenicity and ability to undergo polarization in response to various pathogenic stimuli, including those engaging innate immune receptors. Recently, special attention was drawn to the link between polarization of macrophages and cell metabolism. We hypothesized that immunometabolic reprogramming of myeloid cells, in particular, of macrophages and dendritic cells during sensitization with an allergen may affect further immune response and asthma development. To test this hypothesis, we generated distinct types of myeloid cells in vitro from murine bone marrow and analyzed their immunometabolic profiles upon activation with house dust mite extract (HDM) and its key active components. We found that the combination of lipopolysaccharide (LPS) and beta-glucan is sufficient to upregulate proinflammatory cytokine production as well as respiratory and glycolytic capacity of myeloid cells, comparably to HDM. This specific immunometabolic phenotype was associated with altered mitochondrial morphology and possibly with increased ROS production in macrophages. Moreover, we found that both TNF production and metabolic remodeling of macrophages in response to HDM are TLR4-dependent processes. Altogether, these results expand our understanding of molecular mechanisms underlying asthma induction and pathogenesis and may potentially lead to new therapeutic strategies for the treatment of this disease.
Collapse
Affiliation(s)
- Taisiya R Yurakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Federal Territory Sirius, Russia
| | | | - Ekaterina A Gorshkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maxim A Nosenko
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Federal Territory Sirius, Russia; Faculty of Biology and Belozersky Insitute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Federal Territory Sirius, Russia.
| |
Collapse
|
28
|
Zahalka S, Starkl P, Watzenboeck ML, Farhat A, Radhouani M, Deckert F, Hladik A, Lakovits K, Oberndorfer F, Lassnig C, Strobl B, Klavins K, Matsushita M, Sanin DE, Grzes KM, Pearce EJ, Gorki AD, Knapp S. Trained immunity of alveolar macrophages requires metabolic rewiring and type 1 interferon signaling. Mucosal Immunol 2022; 15:896-907. [PMID: 35856089 PMCID: PMC9385480 DOI: 10.1038/s41385-022-00528-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023]
Abstract
Environmental microbial triggers shape the development and functionality of the immune system. Alveolar macrophages (AMs), tissue-resident macrophages of the lungs, are in constant and direct contact with inhaled particles and microbes. Such exposures likely impact AM reactivity to subsequent challenges by immunological imprinting mechanisms referred to as trained immunity. Here, we investigated whether a ubiquitous microbial compound has the potential to induce AM training in vivo. We discovered that intranasal exposure to ambient amounts of lipopolysaccharide (LPS) induced a pronounced AM memory response, characterized by enhanced reactivity upon pneumococcal challenge. Exploring the mechanistic basis of AM training, we identified a critical role of type 1 interferon signaling and found that inhibition of fatty acid oxidation and glutaminolysis significantly attenuated the training effect. Notably, adoptive transfer of trained AMs resulted in increased bacterial loads and tissue damage upon subsequent pneumococcal infection. In contrast, intranasal pre-exposure to LPS promoted bacterial clearance, highlighting the complexity of stimulus-induced immune responses, which likely involve multiple cell types and may depend on the local immunological and metabolic environment. Collectively, our findings demonstrate the profound impact of ambient microbial exposure on pulmonary immune memory and reveal tissue-specific features of trained immunity.
Collapse
Affiliation(s)
- Sophie Zahalka
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Philipp Starkl
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Martin L Watzenboeck
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Asma Farhat
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mariem Radhouani
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florian Deckert
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anastasiya Hladik
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Karin Lakovits
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Caroline Lassnig
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Biomodels Austria, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kristaps Klavins
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of General Chemical Engineering, Riga Technical University, Riga, Latvia
| | - Mai Matsushita
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - David E Sanin
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katarzyna M Grzes
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | - Anna-Dorothea Gorki
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sylvia Knapp
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
29
|
Creutzenberg O, Oliveira H, Farcal L, Schaudien D, Mendes A, Menezes AC, Tischler T, Burla S, Ziemann C. PLATOX: Integrated In Vitro/In Vivo Approach for Screening of Adverse Lung Effects of Graphene-Related 2D Nanomaterials. NANOMATERIALS 2022; 12:nano12081254. [PMID: 35457962 PMCID: PMC9028947 DOI: 10.3390/nano12081254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023]
Abstract
Graphene-related two-dimensional nanomaterials possess very technically promising characteristics, but gaps exist regarding their potential adverse health effects. Based on their nano-thickness and lateral micron dimensions, nanoplates exhibit particular aerodynamic properties, including respirability. To develop a lung-focused, in vitro/in vivo screening approach for toxicological hazard assessment, various graphene-related nanoplates, i.e., single-layer graphene (SLG), graphene nanoplatelets (GNP), carboxyl graphene, graphene oxide, graphite oxide and Printex 90® (particle reference) were used. Material characterization preceded in vitro (geno)toxicity screening (membrane integrity, metabolic activity, proliferation, DNA damage) with primary rat alveolar macrophages (AM), MRC-5 lung fibroblasts, NR8383 and RAW 264.7 cells. Submerse cell exposure and material-adapted methods indicated material-, cell type-, concentration-, and time-specific effects. SLG and GNP were finally chosen as in vitro biologically active or more inert graphene showed eosinophils in lavage fluid for SLG but not GNP. The subsequent 28-day inhalation study (OECD 412) confirmed a toxic, genotoxic and pro-inflammatory potential for SLG at 3.2 mg/m3 with an in vivo-ranking of lung toxicity: SLG > GNP > Printex 90®. The in vivo ranking finally pointed to AM (lactate dehydrogenase release, DNA damage) as the most predictive in vitro model for the (geno)toxicity screening of graphene nanoplates.
Collapse
Affiliation(s)
- Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany; (D.S.); (T.T.)
- Correspondence: (O.C.); (C.Z.); Tel.: +49-511-5350-461 (O.C.); +49-511-5350-203 (C.Z.)
| | - Helena Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (H.O.); (A.M.); (A.C.M.)
| | - Lucian Farcal
- BIOTOX SRL, 407280 Cluj-Napoca, Romania; (L.F.); (S.B.)
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany; (D.S.); (T.T.)
| | - Ana Mendes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (H.O.); (A.M.); (A.C.M.)
| | - Ana Catarina Menezes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (H.O.); (A.M.); (A.C.M.)
| | - Tatjana Tischler
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany; (D.S.); (T.T.)
| | - Sabina Burla
- BIOTOX SRL, 407280 Cluj-Napoca, Romania; (L.F.); (S.B.)
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, 4422 Belvaux, Luxembourg
| | - Christina Ziemann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany; (D.S.); (T.T.)
- Correspondence: (O.C.); (C.Z.); Tel.: +49-511-5350-461 (O.C.); +49-511-5350-203 (C.Z.)
| |
Collapse
|
30
|
Thomas ST, Wierenga KA, Pestka JJ, Olive AJ. Fetal Liver-Derived Alveolar-like Macrophages: A Self-Replicating Ex Vivo Model of Alveolar Macrophages for Functional Genetic Studies. Immunohorizons 2022; 6:156-169. [PMID: 35193942 DOI: 10.4049/immunohorizons.2200011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Alveolar macrophages (AMs) are tissue-resident cells in the lungs derived from the fetal liver that maintain lung homeostasis and respond to inhaled stimuli. Although the importance of AMs is undisputed, they remain refractory to standard experimental approaches and high-throughput functional genetics, as they are challenging to isolate and rapidly lose AM properties in standard culture. This limitation hinders our understanding of key regulatory mechanisms that control AM maintenance and function. In this study, we describe the development of a new model, fetal liver-derived alveolar-like macrophages (FLAMs), which maintains cellular morphologies, expression profiles, and functional mechanisms similar to murine AMs. FLAMs combine treatment with two key cytokines for AM maintenance, GM-CSF and TGF-β. We leveraged the long-term stability of FLAMs to develop functional genetic tools using CRISPR-Cas9-mediated gene editing. Targeted editing confirmed the role of AM-specific gene Marco and the IL-1 receptor Il1r1 in modulating the AM response to crystalline silica. Furthermore, a genome-wide knockout library using FLAMs identified novel genes required for surface expression of the AM marker Siglec-F, most notably those related to the peroxisome. Taken together, our results suggest that FLAMs are a stable, self-replicating model of AM function that enables previously impossible global genetic approaches to define the underlying mechanisms of AM maintenance and function.
Collapse
Affiliation(s)
- Sean T Thomas
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing MI
| | - Kathryn A Wierenga
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI
| | - James J Pestka
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing MI.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI; and.,Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI
| | - Andrew J Olive
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing MI;
| |
Collapse
|
31
|
Better J, Estiri M, Matt U. Cultured Mouse Alveolar Macrophages: A New Step Toward Targeted Cell Therapy? Am J Respir Cell Mol Biol 2021; 66:3-4. [PMID: 34735777 PMCID: PMC8803360 DOI: 10.1165/rcmb.2021-0416ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Julian Better
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus-Liebig-University, Department of Internal Medicine II, Giessen, Germany
| | - Mohammad Estiri
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus-Liebig-University, Department of Internal Medicine II, Giessen, Germany
| | - Ulrich Matt
- University of Giessen Lung Center, Giessen, Germany;
| |
Collapse
|