1
|
Chen Z, Yang Y, Wang X, Xia L, Wang W, Wu X, Gao Z. Keloids and inflammation: the crucial role of IL-33 in epidermal changes. Front Immunol 2025; 16:1514618. [PMID: 40230853 PMCID: PMC11994421 DOI: 10.3389/fimmu.2025.1514618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction Keloids are benign fibroproliferative disorders characterized by excessive collagen deposition and inflammation that extend beyond the original wound boundaries. IL-33 is an alarmin cytokine released upon cellular damage or stress. Dysregulation of IL-33 in epidermal keratinocytes compromises the skin barrier and triggers chronic inflammation. Method In this study, we first noticed an increased expression of IL-33 in the keratinocytes of keloid epidermis through histological staining. Then, an increased expression of IL-33 receptor (ST2) in the lymphocytes infiltrating the superficial dermis of keloid scars were identified through histological staining and flow cytometry analysis. The IFN-γ-IL-33 loop between lymphocytes and keratinocytes were further revealed by flow cytometry and Western blotting analysis. The abnormal keratinocyte differentiation in epiderm is mediated by IFN-γ-IL-33 loop were confirmed by in vitro studies in HaCaT cells via Western blotting analysis and immunofluorescence staining. Finally, the IFN-γ-IL-33 loop were also verified in cocultured peripheral blood mononuclear cells and HaCaT through ELISA analysis. Results Our results demonstrate that IL-33 levels are significantly elevated in the epidermis of keloid tissues, where it functions as an alarmin, promoting a chronic inflammatory response. We further reveal a feedback loop between IL-33 and interferon-gamma (IFN-γ), whereby IL-33 induces IFN-g production in lymphocytes, which in turn stimulates keratinocytes to produce more IL-33. This loop contributes to impaired keratinocyte differentiation and skin barrier dysfunction, exacerbating the inflammatory environment. Discussion By elucidating the role of the IL-33/ST2 axis in keloid formation, this research provides valuable insights into potential therapeutic targets for managing this challenging condition.
Collapse
Affiliation(s)
| | | | | | | | | | - XiaoLi Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Lépine M, Robert MC, Sleno L. Tear Protein Biomarkers for Ocular Mucous Membrane Pemphigoid Uncovered Using Targeted LC-MS/MS. J Proteome Res 2025; 24:1275-1284. [PMID: 40009735 DOI: 10.1021/acs.jproteome.4c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Mucous membrane pemphigoid (MMP) is a multisystemic rare autoimmune disease affecting the skin and mucous membranes. Ocular involvement is characterized by chronic conjunctival inflammation causing scar formation, leading to corneal opacification and vision loss. Conjunctival biopsies are currently used to confirm diagnosis, and the associated immunosuppression treatments prescribed can have serious consequences on patients. To address these challenges, a noninvasive approach to collect patient tears using untargeted and targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses has been developed to identify a list of potential biomarkers of ocular MMP. Samples were collected on Schirmer strips and subjected to tryptic digestion and LC-MS/MS analysis. Three cohorts of patients were studied, and targeted LC-scheduled multiple reaction monitoring (LC-sMRM) methods were developed for the verification of putative biomarkers. The comparison of three groups of patients, those diagnosed with ocular MMP, non-ocular MMP, and lichen planus, another ocular cicatricial conjunctivitis disorder, yielded 56 biomarkers of interest. Proteins distinguishing MMP patients with and without ocular involvement were linked to the extracellular matrix, metabolism, and neutrophil degranulation. The comparison between MMP and lichen planus patients highlighted lower levels of metabolic enzymes in the latter. This study highlights the use of multiple patient cohorts and tailored targeted quantitative proteomics methods for the discovery of biomarkers for diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Maggy Lépine
- Chemistry Department, University of Quebec in Montreal (UQAM), PO Box 8888, Downtown Station, Montreal, Quebec H3C 3P8, Canada
| | - Marie-Claude Robert
- Ophthalmology Department, Centre Hospitalier de l'Université de Montréal (CHUM), 900 Saint Denis St, Montreal, Quebec H2X 0A9, Canada
- CERMO-FC, Centre d'Excellence de Recherche sur les Maladies Orphelines-Fondation Courtois, Montreal, Quebec H2X 3Y7, Canada
| | - Lekha Sleno
- Chemistry Department, University of Quebec in Montreal (UQAM), PO Box 8888, Downtown Station, Montreal, Quebec H3C 3P8, Canada
- CERMO-FC, Centre d'Excellence de Recherche sur les Maladies Orphelines-Fondation Courtois, Montreal, Quebec H2X 3Y7, Canada
| |
Collapse
|
3
|
Song C, Wang K, Li L, Hu L, Bai J, Zhao L, Liu C, Li S. Analysis of candidate variants in a Chinese family with monozygotic twins with keratoconus: a case report. Ophthalmic Genet 2025; 46:31-39. [PMID: 39544142 DOI: 10.1080/13816810.2024.2427295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/30/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Keratoconus (KC) is an asymmetrical bilateral corneal ectasia, of which the pathogenesis is unknown. Moreover, genetic factors play an important role. We reported ophthalmic findings in a Chinese family with monozygotic twins with KC to describe the clinical features and identify genetic variants. METHODS Comprehensive ophthalmic clinical assessments and examinations, including history, slit-lamp biomicroscopy, best-corrected visual acuity, corneal topography, anterior segment optical coherence tomography, and corneal biomechanics, were carried out on the twins and their parents. Whole-genome sequencing (WGS) was performed to identify variants in this family. SIFT, PolyPhen2, MutationTaster, and CADD were used to predict the effect of amino acid substitutions on the affected protein. RESULTS The twins presented typical KC features. However, their mother did not meet the criteria for a KC diagnosis but exhibited KC subclinical manifestations. After screening, 12 potentially pathogenic variants in 10 genes were identified in both twins and emerged as candidate variants for this family. These genes included 1 previously reported KC-associated variant (ZNF469, c.4384 G>A); 8 variants in 6 KC-associated genes (GRHPR, c.337 G>A, c.862_863del; COL6A1, c.920 G>A; FLG, c.8753C>G; HSPG2, c.9503C>T; KRT82, c.1306 G>A; SCN9A, c.5702_5706del, c.641 G>A); and 3 variants in 3 non-KC-associated genes (PDE6G, c.6C>A; HAL, c.1724C>T; AGBL1, c.2381 G>A). CONCLUSIONS The accumulation of these potentially pathogenic variants in twins may have caused KC in these twins. These results expand the spectrum of KC candidate variants and provide a basis for further studies on KC.
Collapse
Affiliation(s)
- Chunyuan Song
- Aier Eye Hospital, Jinan University, Guangzhou, China
| | - Kehua Wang
- Department of Ophthalmology, Changsha Aier Eye Hospital, Changsha, China
| | - Ling Li
- Department of Ophthalmology, Beijing Aier-Intech Eye Hospital, Beijing, China
- Department of Ophthalmology, Aier Corneal Institute, Beijing, China
| | - Luping Hu
- Department of Ophthalmology, Beijing Aier-Intech Eye Hospital, Beijing, China
| | - Jie Bai
- Department of Ophthalmology, Beijing Aier-Intech Eye Hospital, Beijing, China
- Department of Ophthalmology, Aier Corneal Institute, Beijing, China
| | - Lin Zhao
- Department of Ophthalmology, Beijing Aier-Intech Eye Hospital, Beijing, China
- Department of Ophthalmology, Aier Corneal Institute, Beijing, China
| | - Chang Liu
- Department of Ophthalmology, Beijing Aier-Intech Eye Hospital, Beijing, China
- Department of Ophthalmology, Aier Corneal Institute, Beijing, China
| | - Shaowei Li
- Aier Eye Hospital, Jinan University, Guangzhou, China
- Department of Ophthalmology, Beijing Aier-Intech Eye Hospital, Beijing, China
- Department of Ophthalmology, Aier Corneal Institute, Beijing, China
- Aier Eye Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Chang Y, Huang T, Yang S, Li Y, Chen D. Causal Association Between Atopic Dermatitis and Keratoconus: A Mendelian Randomization Study. Transl Vis Sci Technol 2024; 13:13. [PMID: 39240549 PMCID: PMC11382964 DOI: 10.1167/tvst.13.9.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Purpose Although many studies have indicated that atopic dermatitis (AD) could contribute to the risk of keratoconus (KC), the causality between AD and KC remains controversial. This study aimed to explore the potential causal associations between AD and KC. Methods Instrumental variables for both exposures and outcomes were obtained from large-scale genome-wide association study summary statistics from previous meta-analyses. Mendelian randomization (MR) was applied to infer causal associations between AD and KC. Our main analyses were conducted by inverse-variance weighted (IVW) method multiplicative random effect model, complemented with additional five models and sensitivity analyses. Reverse MR analysis was applied to determine the direction of the causal association between AD and KC. Results Both IVW and weighted median methods revealed a causal effect of AD on KC (IVW odds ratio [OR], 1.475; P = 4.16 × 10-4; weighted median OR, 1.351; P = 7.65 × 10-3). The weighted mode, simple mode, and MR Egger methods demonstrated consistent direction of causality. Evidence from all sensitivity analyses further supported these associations. Reverse MR analyses did not suggest causal effects of KC on AD. Conclusions This study supported a significant causal effect of AD on KC, and reverse MR analysis proved that the causal association was unilateral. Translational Relevance This study provides valid evidence that regular ophthalmic examinations are recommended for patients with AD to detect and prevent KC at an early stage.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tianze Huang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shan Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Di Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Lombardo M, Camellin U, Gioia R, Serrao S, Scorcia V, Roszkowska AM, Lombardo G, Bertelli M, Medori MC, Alunni Fegatelli D, Vestri A, Mencucci R, Schiano Lomoriello D. Targeted next-generation sequencing analysis in Italian patients with keratoconus. Eye (Lond) 2024; 38:2610-2618. [PMID: 38684849 PMCID: PMC11383948 DOI: 10.1038/s41433-024-03090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 03/12/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
OBJECTIVE To report variants in 26 candidate genes and describe the clinical features of Italian patients with keratoconus (KC). SUBJECTS/METHODS Sixty-four patients with a confirmed diagnosis of KC were enrolled in this genetic association study. Patients were classified into two study groups according to whether they had a confirmed diagnosis of progressive or stable KC. A purpose-developed Next Generation Sequencing (NGS) panel was used to identify and analyse the coding exons and flanking exon/intron boundaries of 26 genes known to be associated with KC and corneal dystrophies. Interpretation of the pathogenic significance of variants was performed using in silico predictive algorithms. RESULT The targeted NGS research identified a total of 167 allelic variants of 22 genes in the study population; twenty-four patients had stable keratoconus (n. 54 variants) and forty patients had progressive disease (n. 113 variants). We identified genetic variants of certain pathogenic significance in five patients with progressive KC; in addition, eight novel genetic variants were found in eight patients with progressive KC. Mutations of FLG, LOXHD1, ZNF469, and DOCK9 genes were twice more frequently identified in patients with progressive than stable disease. Filaggrin gene variants were found in 49 patients (76% of total), of whom 32 patients (80% of progressive KC group) had progressive disease. CONCLUSIONS Targeted NGS research provided new insights into the causative effect of candidate genes in the clinical phenotype of keratoconus. Filaggrin mutations were found to represent a genetic risk factor for development of progressive disease in Italy.
Collapse
Affiliation(s)
- Marco Lombardo
- Studio Italiano di Oftalmologia, Via Livenza 3, 00198, Rome, Italy.
- Vision Engineering Italy srl, Via Livenza 3, 00198, Rome, Italy.
| | - Umberto Camellin
- Department of Biomedical Sciences, Ophthalmology Clinic, University of Messina, Via Consolare Valeria 1, 98124, Messina, Italy
| | - Raffaella Gioia
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Sebastiano Serrao
- Studio Italiano di Oftalmologia, Via Livenza 3, 00198, Rome, Italy
- Vision Engineering Italy srl, Via Livenza 3, 00198, Rome, Italy
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Anna Maria Roszkowska
- Department of Biomedical Sciences, Ophthalmology Clinic, University of Messina, Via Consolare Valeria 1, 98124, Messina, Italy
- Ophthalmology Department, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University, Krakow, Poland
| | - Giuseppe Lombardo
- Vision Engineering Italy srl, Via Livenza 3, 00198, Rome, Italy
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D'Alcontres 37, 98158, Messina, Italy
| | | | - Maria Chiara Medori
- MAGI's Lab srl, Via Maioliche 57, 38068, Rovereto, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, Siena, Italy
| | - Danilo Alunni Fegatelli
- Department of Public Health and infectious diseases, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Annarita Vestri
- Department of Public Health and infectious diseases, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Rita Mencucci
- Ophthalmology Clinic, AOU Careggi, University of Florence, Largo Brambilla 3, 50134, Firenze, Italy
| | | |
Collapse
|
6
|
Qutob SS, Roesch SPM, Smiley S, Bellier P, Williams A, Cook KB, Meier MJ, Rowan-Carroll A, Yauk CL, McNamee JP. Transcriptome analysis in mouse skin after exposure to ultraviolet radiation from a canopy sunbed. Photochem Photobiol 2024; 100:1378-1398. [PMID: 38317517 DOI: 10.1111/php.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Exposure to ultraviolet radiation (UV-R), from both natural and artificial tanning, heightens the risk of skin cancer by inducing molecular changes in cells and tissues. Despite established transcriptional alterations at a molecular level due to UV-R exposure, uncertainties persist regarding UV radiation characterization and subsequent genomic changes. Our study aimed to mechanistically explore dose- and time-dependent gene expression changes, that may drive short-term (e.g., sunburn) and long-term actinic (e.g., skin cancer) consequences. Using C57BL/6N mouse skin, we analyzed transcriptomic expression following exposure to five erythemally weighted UV-R doses (0, 5, 10, 20, and 40 mJ/cm2) emitted by a UV-R tanning device. At 96 h post-exposure, 5 mJ/cm2 induced 116 statistically significant differentially expressed genes (DEGs) associated with structural changes from UV-R damage. The highest number of significant gene expression changes occurred at 6 and 48 h post-exposure in the 20 and 40 mJ/cm2 dose groups. Notably, at 40 mJ/cm2, 13 DEGs related to skin barrier homeostasis were consistently perturbed across all timepoints. UV-R exposure activated pathways involving oxidative stress, P53 signaling, inflammation, biotransformation, skin barrier maintenance, and innate immunity. This in vivo study's transcriptional data offers mechanistic insights into both short-term and potential non-threshold-dependent long-term health effects of UV-R tanning.
Collapse
Affiliation(s)
- Sami S Qutob
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Samantha P M Roesch
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Sandy Smiley
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Pascale Bellier
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Kate B Cook
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - James P McNamee
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Song C, Li L, Liu C, Hu L, Bai J, Liang W, Zhao L, Song W, Li S. Whole-exome sequencing screening for candidate genes and variants associated with primary sporadic keratoconus in Chinese patients. Exp Eye Res 2024; 245:109978. [PMID: 38908538 DOI: 10.1016/j.exer.2024.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/29/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
The pathogenesis of keratoconus (KC) is complex, and genetic factors play an important role. The purpose of this study was to screen and analyse candidate genes and variants in Chinese patients with primary sporadic KC. Whole-exome sequencing (WES) was performed to identify candidate genes and variants in 105 unrelated Chinese patients with primary sporadic KC. Through a series of screening processes, 54 candidate variants in 26 KC candidate genes were identified in 53 KC patients (53/105, 50.5%). These 54 candidate variants included 10 previously identified variants in 9 KC candidate genes and 44 novel variants in 20 KC candidate genes. The previously identified variants occurred in 25.7% (27/105) of patients. Of these, 4 variants (COL6A5, c.5014T > G; CAST, c.1814G > A; ZNF469, c.946G > A; and MPDZ, c.3836A > G) were identified for the first time in Chinese KC patients. The novel variants occurred in 33.3% (35/105) of patients. Of the 26 screened KC candidate genes, 11 KC candidate genes (CAT, COL12A1, FLG, HKDC1, HSPG2, PLOD1, ITGA2, TFAP2B, USH2A, WNT10A, and COL6A5) were found to be potentially pathogenic in Chinese KC patients for the first time. Gene Ontology (GO) biological process (BP) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on the 26 KC candidate genes using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The results showed that the KC candidate genes were significantly enriched in biological processes such as collagen fibril organization and extracellular matrix (ECM) organization and in ECM-receptor interaction and protein digestion and absorption pathways. The results further expand the spectrum of KC candidate variants and provide a basis for further KC gene studies.
Collapse
Affiliation(s)
- Chunyuan Song
- Aier Eye Hospital, Jinan University, Guangzhou, 510071, China
| | - Ling Li
- Beijing Aier-Intech Eye Hospital, Beijing, 100021, China; Aier Corneal Institute, Beijing, 100021, China
| | - Chang Liu
- Beijing Aier-Intech Eye Hospital, Beijing, 100021, China; Aier Corneal Institute, Beijing, 100021, China
| | - Luping Hu
- Beijing Aier-Intech Eye Hospital, Beijing, 100021, China
| | - Jie Bai
- Beijing Aier-Intech Eye Hospital, Beijing, 100021, China; Aier Corneal Institute, Beijing, 100021, China
| | - Weiyan Liang
- Aier Eye Hospital of Anhui Medical University, Anhui, 230031, China; Tianjin Aier Eye Hospital, Tianjin, 300000, China
| | - Lin Zhao
- Beijing Aier-Intech Eye Hospital, Beijing, 100021, China; Aier Corneal Institute, Beijing, 100021, China
| | - Wenxiu Song
- Beijing Aier-Intech Eye Hospital, Beijing, 100021, China; Aier Corneal Institute, Beijing, 100021, China
| | - Shaowei Li
- Aier Eye Hospital, Jinan University, Guangzhou, 510071, China; Beijing Aier-Intech Eye Hospital, Beijing, 100021, China; Aier Corneal Institute, Beijing, 100021, China; Aier Eye Hospital of Anhui Medical University, Anhui, 230031, China; Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
8
|
Volatier T, Cursiefen C, Notara M. Current Advances in Corneal Stromal Stem Cell Biology and Therapeutic Applications. Cells 2024; 13:163. [PMID: 38247854 PMCID: PMC10814767 DOI: 10.3390/cells13020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Corneal stromal stem cells (CSSCs) are of particular interest in regenerative ophthalmology, offering a new therapeutic target for corneal injuries and diseases. This review provides a comprehensive examination of CSSCs, exploring their anatomy, functions, and role in maintaining corneal integrity. Molecular markers, wound healing mechanisms, and potential therapeutic applications are discussed. Global corneal blindness, especially in more resource-limited regions, underscores the need for innovative solutions. Challenges posed by corneal defects, emphasizing the urgent need for advanced therapeutic interventions, are discussed. The review places a spotlight on exosome therapy as a potential therapy. CSSC-derived exosomes exhibit significant potential for modulating inflammation, promoting tissue repair, and addressing corneal transparency. Additionally, the rejuvenation potential of CSSCs through epigenetic reprogramming adds to the evolving regenerative landscape. The imperative for clinical trials and human studies to seamlessly integrate these strategies into practice is emphasized. This points towards a future where CSSC-based therapies, particularly leveraging exosomes, play a central role in diversifying ophthalmic regenerative medicine.
Collapse
Affiliation(s)
- Thomas Volatier
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
9
|
Hofmann E, Schwarz A, Fink J, Kamolz LP, Kotzbeck P. Modelling the Complexity of Human Skin In Vitro. Biomedicines 2023; 11:biomedicines11030794. [PMID: 36979772 PMCID: PMC10045055 DOI: 10.3390/biomedicines11030794] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/08/2023] Open
Abstract
The skin serves as an important barrier protecting the body from physical, chemical and pathogenic hazards as well as regulating the bi-directional transport of water, ions and nutrients. In order to improve the knowledge on skin structure and function as well as on skin diseases, animal experiments are often employed, but anatomical as well as physiological interspecies differences may result in poor translatability of animal-based data to the clinical situation. In vitro models, such as human reconstructed epidermis or full skin equivalents, are valuable alternatives to animal experiments. Enormous advances have been achieved in establishing skin models of increasing complexity in the past. In this review, human skin structures are described as well as the fast evolving technologies developed to reconstruct the complexity of human skin structures in vitro.
Collapse
Affiliation(s)
- Elisabeth Hofmann
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Anna Schwarz
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Julia Fink
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Lars-Peter Kamolz
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Petra Kotzbeck
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| |
Collapse
|
10
|
Volatier T, Schumacher B, Meshko B, Hadrian K, Cursiefen C, Notara M. Short-Term UVB Irradiation Leads to Persistent DNA Damage in Limbal Epithelial Stem Cells, Partially Reversed by DNA Repairing Enzymes. BIOLOGY 2023; 12:265. [PMID: 36829542 PMCID: PMC9953128 DOI: 10.3390/biology12020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
The cornea is frequently exposed to ultraviolet (UV) radiation and absorbs a portion of this radiation. UVB in particular is absorbed by the cornea and will principally damage the topmost layer of the cornea, the epithelium. Epidemiological research shows that the UV damage of DNA is a contributing factor to corneal diseases such as pterygium. There are two main DNA photolesions of UV: cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts (6-4PPs). Both involve the abnormal linking of adjacent pyrimide bases. In particular, CPD lesions, which account for the vast majority of UV-induced lesions, are inefficiently repaired by nucleotide excision repair (NER) and are thus mutagenic and linked to cancer development in humans. Here, we apply two exogenous enzymes: CPD photolyase (CPDPL) and T4 endonuclease V (T4N5). The efficacy of these enzymes was assayed by the proteomic and immunofluorescence measurements of UVB-induced CPDs before and after treatment. The results showed that CPDs can be rapidly repaired by T4N5 in cell cultures. The usage of CPDPL and T4N5 in ex vivo eyes revealed that CPD lesions persist in the corneal limbus. The proteomic analysis of the T4N5-treated cells shows increases in the components of the angiogenic and inflammatory systems. We conclude that T4N5 and CPDPL show great promise in the treatment of CPD lesions, but the complete clearance of CPDs from the limbus remains a challenge.
Collapse
Affiliation(s)
- Thomas Volatier
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 62, 50937 Cologne, Germany
| | - Björn Schumacher
- Cologne Excellence Cluster for Cellular Stress Responses, Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
- Institute for Genome Stability in Aging and Disease, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Berbang Meshko
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 62, 50937 Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 62, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 21, 50931 Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 62, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 21, 50931 Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 62, 50937 Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses, Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| |
Collapse
|
11
|
Corneal epithelium in keratoconus underexpresses active NRF2 and a subset of oxidative stress-related genes. PLoS One 2022; 17:e0273807. [PMID: 36240204 PMCID: PMC9565379 DOI: 10.1371/journal.pone.0273807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/15/2022] [Indexed: 11/07/2022] Open
Abstract
Keratoconus (KC) is a multifactorial progressive ectatic disorder characterized by local thinning of the cornea, leading to decreased visual acuity due to irregular astigmatism and opacities. Despite the evolution of advanced imaging methods, the exact etiology of KC remains unknown. Our aim was to investigate the involvement of corneal epithelium in the pathophysiology of the disease. Corneal epithelial samples were collected from 23 controls and from 2 cohorts of patients with KC: 22 undergoing corneal crosslinking (early KC) and 6 patients before penetrating keratoplasty (advanced KC). The expression of genes involved in the epidermal terminal differentiation program and of the oxidative stress pathway was assessed by real time PCR analysis. Presence of some of the differentially expressed transcripts was confirmed at protein level using immunofluorescence on controls and advanced KC additional corneal samples. We found statistically significant under-expression in early KC samples of some genes known to be involved in the mechanical resistance of the epidermis (KRT16, KRT14, SPRR1A, SPRR2A, SPRR3, TGM1 and TGM5) and in oxidative stress pathways (NRF2, HMOX1 and HMOX2), as compared to controls. In advanced KC samples, expression of SPRR2A and HMOX1 was reduced. Decreased expression of keratin (KRT)16 and KRT14 proteins was observed. Moreover, differential localization was noted for involucrin, another protein involved in the epidermis mechanical properties. Finally, we observed an immunofluorescence staining for the active form of NRF2 in control epithelia that was reduced in KC epithelia. These results suggest a defect in the mechanical resistance and the oxidative stress defense possibly mediated via the NRF2 pathway in the corneal keratoconic epithelium.
Collapse
|
12
|
The Impact of Different Oxygen Delivery Methods on Corneal Epithelial Repair after Injury. J Ophthalmol 2022; 2022:3260087. [PMID: 36225607 PMCID: PMC9550470 DOI: 10.1155/2022/3260087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
The hyperbaric oxygen therapy is often used in the management of acid and base burns of the eyes. However, oxygen is rarely supplied locally through goggles or face mask in ophthalmology. Therefore, in this study, we aim to investigate how oxygen delivery affects eye recovery after injury. We used a rabbit model with corneal epithelial injury to examine the effects of local oxygen supply via goggles or face mask on the recovery of cornea. A total of 75 healthy New Zealand white rabbits were randomly divided into three groups, A, B, and C, with 25 rabbits in each group. Then, on each rabbit eye (150 eyes in total), a circle of corneal epithelium with 5 mm in diameter was scraped off from the center of the cornea with a corneal epithelial scraper. Group A was given oxygen goggles every day (the oxygen flow rate was 3 L/min, once a day, 2 hours each time); group B was given nasal inhalation of oxygen every day (the oxygen flow rate was 3 L/min, once a day, 2 hours each time); and group C did not receive any treatment and was healed naturally. We found that the group A, which received oxygen supply via goggles, showed the best eye recovery. Transmission electron microscopy showed that the cornea with local oxygen supply via goggles or face mask exhibited intact capillary structure and obvious desmosome/hemidesmosome connections between cells. Moreover, the protein and RNA levels of hypoxia-related genes were lower in group A and B, suggesting that the hypoxia factor is a sensitive and early regulator in the low oxygen environment.
Collapse
|
13
|
Xue Y, Lyu C, Taylor A, Van Ee A, Kiemen A, Choi Y, Khavanian N, Henn D, Lee C, Hwang L, Wier E, Wang S, Lee S, Li A, Kirby C, Wang G, Wu PH, Wirtz D, Garza LA, Reddy SK. Mechanical tension mobilizes Lgr6 + epidermal stem cells to drive skin growth. SCIENCE ADVANCES 2022; 8:eabl8698. [PMID: 35476447 PMCID: PMC9045722 DOI: 10.1126/sciadv.abl8698] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Uniquely among mammalian organs, skin is capable of marked size change in adults, yet the mechanisms underlying this notable capacity are unclear. Here, we use a system of controlled tissue expansion in mice to uncover cellular and molecular determinants of skin growth. Through machine learning-guided three-dimensional tissue reconstruction, we capture morphometric changes in growing skin. We find that most growth is driven by the proliferation of the epidermis in response to mechanical tension, with more limited changes in dermal and subdermal compartments. Epidermal growth is achieved through preferential activation and differentiation of Lgr6+ stem cells of the epidermis, driven in part by the Hippo pathway. By single-cell RNA sequencing, we uncover further changes in mechanosensitive and metabolic pathways underlying growth control in the skin. These studies point to therapeutic strategies to enhance skin growth and establish a platform for understanding organ size dynamics in adult mammals.
Collapse
Affiliation(s)
- Yingchao Xue
- Department of Dermatology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Chenyi Lyu
- Department of Dermatology, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Ainsley Taylor
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Amy Van Ee
- Department of Dermatology, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Ashley Kiemen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - YoungGeun Choi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Nima Khavanian
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Dominic Henn
- Department of Plastic Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chaewon Lee
- Department of Dermatology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Lisa Hwang
- Department of Dermatology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Eric Wier
- Department of Dermatology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Saifeng Wang
- Department of Dermatology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Sam Lee
- Department of Dermatology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Ang Li
- Department of Dermatology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Charles Kirby
- Department of Dermatology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Gaofeng Wang
- Department of Dermatology, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Luis A. Garza
- Department of Dermatology, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
- Corresponding author. (S.K.R.); (L.A.G.)
| | - Sashank K. Reddy
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore, MD 21231, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21231, USA
- Corresponding author. (S.K.R.); (L.A.G.)
| |
Collapse
|
14
|
Volatier T, Schumacher B, Cursiefen C, Notara M. UV Protection in the Cornea: Failure and Rescue. BIOLOGY 2022; 11:biology11020278. [PMID: 35205145 PMCID: PMC8868636 DOI: 10.3390/biology11020278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 01/07/2023]
Abstract
Simple Summary The sun is a deadly laser, and its damaging rays harm exposed tissues such as our skin and eyes. The skin’s protection and repair mechanisms are well understood and utilized in therapeutic approaches while the eye lacks such complete understanding of its defenses and therefore often lacks therapeutic support in most cases. The aim here was to document the similarities and differences between the two tissues as well as understand where current research stands on ocular, particularly corneal, ultraviolet protection. The objective is to identify what mechanisms may be best suited for future investigation and valuable therapeutic approaches. Abstract Ultraviolet (UV) irradiation induces DNA lesions in all directly exposed tissues. In the human body, two tissues are chronically exposed to UV: the skin and the cornea. The most frequent UV-induced DNA lesions are cyclobutane pyrimidine dimers (CPDs) that can lead to apoptosis or induce tumorigenesis. Lacking the protective pigmentation of the skin, the transparent cornea is particularly dependent on nucleotide excision repair (NER) to remove UV-induced DNA lesions. The DNA damage response also triggers intracellular autophagy mechanisms to remove damaged material in the cornea; these mechanisms are poorly understood despite their noted involvement in UV-related diseases. Therapeutic solutions involving xenogenic DNA-repair enzymes such as T4 endonuclease V or photolyases exist and are widely distributed for dermatological use. The corneal field lacks a similar set of tools to address DNA-lesions in photovulnerable patients, such as those with genetic disorders or recently transplanted tissue.
Collapse
Affiliation(s)
- Thomas Volatier
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 62, 50937 Cologne, Germany; (C.C.); (M.N.)
- Correspondence:
| | - Björn Schumacher
- Cologne Excellence Cluster for Cellular Stress Responses, Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany;
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 62, 50937 Cologne, Germany; (C.C.); (M.N.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 21, 50931 Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 62, 50937 Cologne, Germany; (C.C.); (M.N.)
- Cologne Excellence Cluster for Cellular Stress Responses, Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany;
| |
Collapse
|
15
|
Transcriptome Analysis of Pterygium and Pinguecula Reveals Evidence of Genomic Instability Associated with Chronic Inflammation. Int J Mol Sci 2021; 22:ijms222112090. [PMID: 34769520 PMCID: PMC8584501 DOI: 10.3390/ijms222112090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
Solar damage due to ultraviolet radiation (UVR) is implicated in the development of two proliferative lesions of the ocular surface: pterygium and pinguecula. Pterygium and pinguecula specimens were collected, along with adjacent healthy conjunctiva specimens. RNA was extracted and sequenced. Pairwise comparisons were made of differentially expressed genes (DEGs). Computational methods were used for analysis. Transcripts from 18,630 genes were identified. Comparison of two subgroups of pterygium specimens uncovered evidence of genomic instability associated with inflammation and the immune response; these changes were also observed in pinguecula, but to a lesser extent. Among the top DEGs were four genes encoding tumor suppressors that were downregulated in pterygium: C10orf90, RARRES1, DMBT1 and SCGB3A1; C10orf90 and RARRES1 were also downregulated in pinguecula. Ingenuity Pathway Analysis overwhelmingly linked DEGs to cancer for both lesions; however, both lesions are clearly still benign, as evidenced by the expression of other genes indicating their well-differentiated and non-invasive character. Pathways for epithelial cell proliferation were identified that distinguish the two lesions, as well as genes encoding specific pathway components. Upregulated DEGs common to both lesions, including KRT9 and TRPV3, provide a further insight into pathophysiology. Our findings suggest that pterygium and pinguecula, while benign lesions, are both on the pathological pathway towards neoplastic transformation.
Collapse
|
16
|
Autoimmune Epithelitis and Chronic Inflammation in Sjögren's Syndrome-Related Dry Eye Disease. Int J Mol Sci 2021; 22:ijms222111820. [PMID: 34769250 PMCID: PMC8584177 DOI: 10.3390/ijms222111820] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022] Open
Abstract
Autoimmune epithelitis and chronic inflammation are one of the characteristic features of the immune pathogenesis of Sjögren’s syndrome (SS)-related dry eye disease. Autoimmune epithelitis can cause the dysfunction of the excretion of tear fluid and mucin from the lacrimal glands and conjunctival epithelia and meibum from the meibomian glands. The lacrimal gland and conjunctival epithelia express major histocompatibility complex class II or human leukocyte antigen-DR and costimulatory molecules, acting as nonprofessional antigen-presenting cells for T cell and B cell activation in SS. Ocular surface epithelium dysfunction can lead to dry eye disease in SS. Considering the mechanisms underlying SS-related dry eye disease, this review highlights autoimmune epithelitis of the ocular surface, chronic inflammation, and several other molecules in the tear film, cornea, conjunctiva, lacrimal glands, and meibomian glands that represent potential targets in the treatment of SS-related dry eye disease.
Collapse
|
17
|
Callou TMP, Orfali RL, Sotto MN, Pereira NV, Zaniboni MC, Aoki V, Brito MP, Matsuda M, Santo RM. Increased expression of Filaggrin and Claudin-1 in the ocular surface of patients with atopic dermatitis. J Eur Acad Dermatol Venereol 2021; 36:247-254. [PMID: 34704317 DOI: 10.1111/jdv.17768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/02/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is an itchy, chronic and inflammatory skin condition, with dysfunctional immune response and skin barrier defects. Reduction of filaggrin (FLG) and tight junctions (TJ) proteins, such as claudin-1 (CLDN-1), expression in cutaneous epithelial barrier is remarkable in AD pathogenesis. Ocular involvement occurs in approximately 40% of AD patients leading to changes in the structure of the conjunctiva. OBJECTIVES We aimed to evaluate the expression of FLG and CLDN-1 in the ocular surface of adults with AD, analysing bulbar conjunctival cells collected by a novel non-invasive cellular imprint. METHODS Bulbar conjunctival epithelial cells were collected by cellular imprint technique, and FLG and CLDN-1 expression were assessed by immunofluorescence (IF) and real-time polymerase chain reaction (RT-PCR). RESULTS We detected increased expression of FLG and CLDN-1, as well as their transcript levels in AD patients compared with healthy controls (HC). There was a positive correlation between tear film break-up time (TBUT) and FLG expression. Fluorescein staining was inversely associated with FLG expression. CONCLUSIONS Our results may reflect a reactive response of the ocular surface to AD-related ocular inflammation and associated dry eye disease. Further investigations focusing on the role of FLG and TJ expression in the ocular surface of AD patients may increment the understanding of the pathophysiology of extracutaneous AD and developing future targeted therapies.
Collapse
Affiliation(s)
- T M P Callou
- Department of Ophthalmology, Faculdade de Medicina FMUSP, Universidade de São Paulo, Sao Paulo, Brazil
| | - R L Orfali
- Department of Dermatology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - M N Sotto
- Department of Pathology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - N V Pereira
- Department of Dermatology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - M C Zaniboni
- Department of Dermatology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - V Aoki
- Department of Dermatology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - M P Brito
- Department of Dermatology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - M Matsuda
- Department of Ophthalmology, Faculdade de Medicina FMUSP, Universidade de São Paulo, Sao Paulo, Brazil
| | - R M Santo
- Department of Ophthalmology, Faculdade de Medicina FMUSP, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
18
|
Moleiro AF, Aires AF, Alves H, Viana Pinto J, Carneiro Â, Falcão-Reis F, Figueira L, Pinheiro-Costa J. The Role of Atopy in the Choroidal Profile of Keratoconus Patients. Clin Ophthalmol 2021; 15:1799-1807. [PMID: 33953539 PMCID: PMC8090985 DOI: 10.2147/opth.s301330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Although classically classified as a non-inflammatory condition, an inflammatory basis for keratoconus (KC) appears to be a growing evidence. Recently, it has been shown that KC patients have an increased choroidal thickness (CT). Among inflammatory disorders, atopy has been associated with KC development; therefore, the aim of this study was to evaluate if the increased CT in patients with KC is related to atopy. Methods This is an analytical cross-sectional study of patients with KC. Patients were classified as atopic and non-atopic according to their atopy history (allergic rhinoconjunctivitis (AR), asthma (AA) and/or atopic dermatitis (AD)) and were also classified based on their eye rubbing habits. Choroidal profile of all subjects was evaluated using a Spectralis optical coherence tomography (OCT) device with enhanced depth imaging (EDI) mode. CT was measured and compared between groups at the center of the fovea and at 500 µm intervals along a horizontal section. A multivariable analysis, adjusted for sex, age, spherical equivalent, history of medication and atopy, was performed to assess the influence of atopy in CT. Results Of the 80 patients included, 51 were atopic and 29 non-atopic. Atopic patients showed a thicker choroid in every measured location than the non-atopic patients (mean subfoveal CT 391.53 µm vs 351.17 µm, respectively), although the differences were not statistically different. The multivariable analysis revealed that being atopic makes the choroid statistically thicker, on average, 55.14 µm, when compared to non-atopic patients (p=0.043). Furthermore, patients who are frequent eye rubbers have significantly thicker choroids than non-rubbers (p=0.004). Conclusion Although some results do not reach statistical significance, atopic KC patients seem to have thicker choroids compared with non-atopic KC patients, suggesting a possible role for atopy in the choroidal profile of KC. This constitutes a completely new sight in this field of research that needs further investigation.
Collapse
Affiliation(s)
- Ana Filipa Moleiro
- Department of Ophthalmology, Centro Hospitalar Universitário São João, Porto, Portugal.,Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Hélio Alves
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Viana Pinto
- Department of Otorhinolaryngology, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Ângela Carneiro
- Department of Ophthalmology, Centro Hospitalar Universitário São João, Porto, Portugal.,Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Fernando Falcão-Reis
- Department of Ophthalmology, Centro Hospitalar Universitário São João, Porto, Portugal.,Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Luís Figueira
- Department of Ophthalmology, Centro Hospitalar Universitário São João, Porto, Portugal.,Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Pinheiro-Costa
- Department of Ophthalmology, Centro Hospitalar Universitário São João, Porto, Portugal.,Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Liu YC, Yam GHF, Lin MTY, Teo E, Koh SK, Deng L, Zhou L, Tong L, Mehta JS. Comparison of tear proteomic and neuromediator profiles changes between small incision lenticule extraction (SMILE) and femtosecond laser-assisted in-situ keratomileusis (LASIK). J Adv Res 2021; 29:67-81. [PMID: 33842006 PMCID: PMC8020296 DOI: 10.1016/j.jare.2020.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction The tear proteomics and neuromediators are associated with clinical dry eye parameters following refractive surgery. Purpose To investigate and compare the tear proteomic and neuromediator profiles following small incision lenticule extraction (SMILE) versus laser-assisted in-situ keratomileusis (LASIK). Methods In this randomized controlled trial with paired-eye design, 70 patients were randomized to receive SMILE in one eye and LASIK in the other eye. Tear samples were collected preoperatively, and 1 week, 1, 3, 6 and 12 months postoperatively, and were examined for protein concentration changes using sequential window acquisition of all theoretical fragment ion mass spectrometry (SWATH-MS). The data were analyzed with DAVID Bioinformatics Resources for enriched gene ontology terms and over-represented pathways. Tear neuromediators levels were correlated with clinical parameters. Results Post-SMILE eyes had significantly better Oxford staining scores and tear break-up time (TBUT) than post-LASIK eyes at 1 and 3 months, respectively. Tear substance P and nerve growth factor levels were significantly higher in the LASIK group for 3 months and 1 year, respectively. SMILE and LASIK shared some similar biological responses postoperatively, but there was significant up-regulation in leukocyte migration and wound healing at 1 week, humoral immune response and apoptosis at 1 month, negative regulation of endopeptidase activity at 3 to 6 months, and extracellular structure organization at 1 year in the post-LASIK eyes. Tear mucin-like protein 1 and substance P levels were significantly correlated with TBUT (r = -0.47, r = -0.49, respectively). Conclusion Significant differences in the tear neuromediators and proteomics were observed between SMILE and LASIK, even though clinical dry eye signs have subsided and became comparable between 2 procedures.
Collapse
Affiliation(s)
- Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Gary Hin-Fai Yam
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
- Department of Ophthalmology, University of Pittsburgh, PA, USA
| | - Molly Tzu-Yu Lin
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
| | - Ericia Teo
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
| | - Siew-Kwan Koh
- Ocular Proteomics, Singapore Eye Research Institute, Singapore
| | - Lu Deng
- Department of Statistics and Applied Probability, Faculty of Science, National University of Singapore, Singapore
| | - Lei Zhou
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
- Ocular Proteomics, Singapore Eye Research Institute, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Louis Tong
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Ocular Surface Group, Singapore Eye Research Institute, Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
20
|
Low-dose Bisphenol A and its analogues Bisphenol F and S activate estrogen receptor ß and slightly modulate genes in human gingival keratinocytes. Dent Mater 2021; 37:625-635. [PMID: 33558057 DOI: 10.1016/j.dental.2021.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVES This study investigated the putative activation of estrogen receptor β (ERβ) and possible effects related on gene expression in oral mucosal cells in response to the endocrine disruptor Bisphenol A (BPA) and its analogues Bisphenol F (BPF) and Bisphenol S (BPS). METHODS Human gingival keratinocytes (HGK) were exposed to BPA-, BPF-, and BPS-solutions in concentrations of 1.3 μM, 0.16 μM and 11.4 nM as well as 200 pM and 100 nM estradiol (E2) for 6 h, 24 h and 4 d. Indirect immunofluorescence (IIF) was performed to detect a possible ERβ activation. Additionally, transcription of keratinocyte-relevant biomarkers was analyzed by quantitative real-time PCR (qRT-PCR). A linear mixed model and pairwise comparisons were applied for statistical analyses. RESULTS The tested concentrations of BPA, BPF, BPS and E2 revealed distinct activation of ERβ at all time periods, whereat 100 nM E2 induced the most pronounced activation. Despite the detected ERβ activation, the concentrations of BPA and its analogues induced only moderate modulation of the tested keratinocyte-relevant biomarker genes at all time periods. This also applied to 200 pM E2, while in case of 100 nM E2 significant changes (p < 0.05) were detected for almost all analyzed genes. SIGNIFICANCE Though BPA and its analogues induce activation of ERß irrespective from the chosen concentrations and incubation periods, they lack significant modulation of gene expression of keratinocyte-relevant biomarkers. Although limited to a selected number of genes, the sparse modulation of gene expression may give a hint that the substances do slightly affect transcription of gingival-keratinocyte-innate genes, since the concentrations applied to HGK were of physiological importance.
Collapse
|
21
|
Single-cell transcriptomics identifies limbal stem cell population and cell types mapping its differentiation trajectory in limbal basal epithelium of human cornea. Ocul Surf 2021; 20:20-32. [PMID: 33388438 DOI: 10.1016/j.jtos.2020.12.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/27/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE This study aimed to uncover novel cell types in heterogenous basal limbus of human cornea for identifying LSC at single cell resolution. METHODS Single cells of human limbal basal epithelium were isolated from young donor corneas. Single-cell RNA-Sequencing was performed using 10x Genomics platform, followed by clustering cell types through the graph-based visualization method UMAP and unbiased computational informatic analysis. Tissue RNA in situ hybridization with RNAscope, immunofluorescent staining and multiple functional assays were performed using human corneas and limbal epithelial culture models. RESULTS Single-cell transcriptomics of 16,360 limbal basal cells revealed 12 cell clusters belonging to three lineages. A smallest cluster (0.4% of total cells) was identified as LSCs based on their quiescent and undifferentiated states with enriched marker genes for putative epithelial stem cells. TSPAN7 and SOX17 are discovered and validated as new LSC markers based on their exclusive expression pattern and spatial localization in limbal basal epithelium by RNAscope and immunostaining, and functional role in cell growth and tissue regeneration models with RNA interference in cultures. Interestingly, five cell types/states mapping a developmental trajectory of LSC from quiescence to proliferation and differentiation are uncovered by Monocle3 and CytoTRACE pseudotime analysis. The transcription factor networks linking novel signaling pathways are revealed to maintain LSC stemness. CONCLUSIONS This human corneal scRNA-Seq identifies the LSC population and uncovers novel cell types mapping the differentiation trajectory in heterogenous limbal basal epithelium. The findings provide insight into LSC concept and lay the foundation for understanding the corneal homeostasis and diseases.
Collapse
|
22
|
Rosa-Fernandes L, Barbosa RH, dos Santos MLB, Angeli CB, Silva TP, Melo RCN, de Oliveira GS, Lemos B, Van Eyk JE, Larsen MR, Cardoso CA, Palmisano G. Cellular Imprinting Proteomics Assay: A Novel Method for Detection of Neural and Ocular Disorders Applied to Congenital Zika Virus Syndrome. J Proteome Res 2020; 19:4496-4515. [PMID: 32686424 PMCID: PMC7640952 DOI: 10.1021/acs.jproteome.0c00320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 12/24/2022]
Abstract
Congenital Zika syndrome was first described due to increased incidence of congenital abnormalities associated with Zika virus (ZIKV) infection. Since the eye develops as part of the embryo central nervous system (CNS) structure, it becomes a specialized compartment able to display symptoms of neurodegenerative diseases and has been proposed as a noninvasive approach to the early diagnosis of neurological diseases. Ocular lesions result from defects that occurred during embryogenesis and can become apparent in newborns exposed to ZIKV. Furthermore, the absence of microcephaly cannot exclude the occurrence of ocular lesions and other CNS manifestations. Considering the need for surveillance of newborns and infants with possible congenital exposure, we developed a method termed cellular imprinting proteomic assay (CImPA) to evaluate the ocular surface proteome specific to infants exposed to ZIKV during gestation compared to nonexposure. CImPA combines surface cells and fluid capture using membrane disks and a large-scale quantitative proteomics approach, which allowed the first-time report of molecular alterations such as neutrophil degranulation, cell death signaling, ocular and neurological pathways, which are associated with ZIKV infection with and without the development of congenital Zika syndrome, CZS. Particularly, infants exposed to ZIKV during gestation and without early clinical symptoms could be detected using the CImPA method. Lastly, this methodology has broad applicability as it could be translated in the study of several neurological diseases to identify novel diagnostic biomarkers. Data are available via ProteomeXchange with identifier PXD014038.
Collapse
Affiliation(s)
- Livia Rosa-Fernandes
- GlycoProteomics
Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense, Denmark
| | - Raquel Hora Barbosa
- GlycoProteomics
Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Molecular
and Integrative Physiological Sciences Program, Department of Environmental
Health, Harvard School of Public Health, Boston, Massachusetts, United States
- Maternal
and Child Department, Faculty of Medicine, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Genetics
Program, National Cancer Institute, Rio de Janeiro, Brazil
| | - Maria Luiza B. dos Santos
- Maternal
and Child Department, Faculty of Medicine, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Claudia B. Angeli
- GlycoProteomics
Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Thiago P. Silva
- Laboratory
of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Rossana C. N. Melo
- Laboratory
of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Gilberto Santos de Oliveira
- GlycoProteomics
Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Bernardo Lemos
- Molecular
and Integrative Physiological Sciences Program, Department of Environmental
Health, Harvard School of Public Health, Boston, Massachusetts, United States
| | - Jennifer E Van Eyk
- Advanced
Clinical BioSystems Research Institute, Cedars Sinai Precision Biomarker
Laboratories, Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Martin R. Larsen
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense, Denmark
| | - Claudete Araújo Cardoso
- Maternal
and Child Department, Faculty of Medicine, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics
Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
23
|
Bollag WB, Olala LO, Xie D, Lu X, Qin H, Choudhary V, Patel R, Bogorad D, Estes A, Watsky M. Dioleoylphosphatidylglycerol Accelerates Corneal Epithelial Wound Healing. Invest Ophthalmol Vis Sci 2020; 61:29. [PMID: 32186673 PMCID: PMC7401755 DOI: 10.1167/iovs.61.3.29] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose In contact with the external environment, the cornea can easily be injured. Although corneal wounds generally heal rapidly, the pain and increased risk of infection associated with a damaged cornea, as well as the impaired healing observed in some individuals, emphasize the need for novel treatments to accelerate corneal healing. We previously demonstrated in epidermal keratinocytes that the glycerol channel aquaporin-3 (AQP3) interacts with phospholipase D2 (PLD2) to produce the signaling phospholipid phosphatidylglycerol (PG), which has been shown to accelerate skin wound healing in vivo. We hypothesized that the same signaling pathway might be operational in corneal epithelial cells. Methods We used co-immunoprecipitation, immunohistochemistry, scratch wound healing assays in vitro, and corneal epithelial wound healing assays in vivo to determine the role of the AQP3/PLD2/PG signaling pathway in corneal epithelium. Results AQP3 was present in human corneas in situ, and AQP3 and PLD2 were co-immunoprecipitated from corneal epithelial cell lysates. The two proteins could also be co-immunoprecipitated from insect cells simultaneously infected with AQP3- and PLD2-expressing baculoviruses, suggesting a likely direct interaction. A particular PG, dioleoylphosphatidylglycerol (DOPG), enhanced scratch wound healing of a corneal epithelial monolayer in vitro. DOPG also accelerated corneal epithelial wound healing in vivo, both in wild-type mice and in a mouse model exhibiting impaired corneal wound healing (AQP3 knockout mice). Conclusions These results indicate the importance of the AQP3/PLD2/PG signaling pathway in corneal epithelial cells and suggest the possibility of developing DOPG as a pharmacologic therapy to enhance corneal wound healing in patients.
Collapse
Affiliation(s)
- Wendy B. Bollag
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Lawrence O. Olala
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Ding Xie
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Xiaowen Lu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Haixia Qin
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Hospital Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Vivek Choudhary
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Rachana Patel
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - David Bogorad
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Amy Estes
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Mitchell Watsky
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| |
Collapse
|
24
|
Keratin 5-Cre-driven deletion of Ncstn in an acne inversa-like mouse model leads to a markedly increased IL-36a and Sprr2 expression. Front Med 2019; 14:305-317. [DOI: 10.1007/s11684-019-0722-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/07/2019] [Indexed: 10/25/2022]
|
25
|
Abstract
The cornea is a transparent outermost structure of the eye anterior segment comprising the highest density of innervated tissue. In the process of corneal innervation, trigeminal ganglion originated corneal nerves diligently traverse different corneal cell types in different corneal layers including the corneal stroma and epithelium. While crossing the stromal and epithelial cell layers during innervation, due to the existing physical contacts, close interactions occur between stromal keratocytes, epithelial cells, resident immune cells and corneal nerves. Furthermore, by producing various trophic and growth factors corneal cells assist in maintaining the growth and function of corneal nerves. Similarly, corneal nerve generated growth factors critically modify the corneal cell function in all the corneal layers. Due to their close association and contacts, on-going cross-communication between these cell types and corneal nerves play a vital role in the modulation of corneal nerve function, regeneration during wound healing. The present review highlights the influence of different corneal cell types and growth factors released from these cells on corneal nerve regeneration and function.
Collapse
Affiliation(s)
- Bhavani S Kowtharapu
- Department of Ophthalmology, Rostock University Medical Centre, Rostock, Germany
| | - Oliver Stachs
- Department of Ophthalmology, Rostock University Medical Centre, Rostock, Germany
| |
Collapse
|
26
|
Volatier TLA, Figueiredo FC, Connon CJ. Keratoconus at a Molecular Level: A Review. Anat Rec (Hoboken) 2019; 303:1680-1688. [DOI: 10.1002/ar.24090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/19/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Che J. Connon
- Institute of Genetic MedicineNewcastle University Newcastle upon Tyne UK
| |
Collapse
|
27
|
Zhang X, Wang D, Dongye M, Zhu Y, Chen C, Wang R, Long E, Liu Z, Wu X, Lin D, Chen J, Lin Z, Wang J, Li W, Li Y, Li D, Lin H. Loss-of-function mutations in FREM2 disrupt eye morphogenesis. Exp Eye Res 2019; 181:302-312. [PMID: 30802441 DOI: 10.1016/j.exer.2019.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/30/2019] [Accepted: 02/17/2019] [Indexed: 10/27/2022]
Abstract
Cryptophthalmos is a rare congenital disorder characterized by ocular dysplasia with eyelid malformation. Complete cryptophthalmos is characterized by the presence of continuous skin from the forehead over the eyes and onto the cheek, along with complete fusion of the eyelids. In the present study, we characterized the clinical manifestations of three patients with isolated bilateral cryptophthalmos. These patients shared the same c.6499C > T missense mutation in the FRAS1-related extracellular matrix protein 2 (FREM2) gene, while each individual presented an additional nonsense mutation in the same gene (Patient #1, c.2206C > T; Patient #2, c.5309G > A; and Patient #3, c.4063C > T). Then, we used CRISPR/Cas9 to generate mice carrying Frem2R725X/R2156W compound heterozygous mutations, and showed that these mice recapitulated the human isolated cryptophthalmos phenotype. We detected FREM2 expression in the outer plexiform layer of the retina for the first time in the cryptophthalmic eyes, and the levels were comparable to the wild-type mice. Moreover, a set of different expressed genes that may contribute secondarily to the phenotypes were identified by performing RNA sequencing (RNA-seq) of the fetal Frem2 mutant mice. Our findings extend the spectrum of FREM2 mutations, and provide insights into opportunities for the prenatal diagnosis of isolated cryptophthalmos. Furthermore, our work highlights the importance of the FREM2 protein during the development of eyelids and the anterior segment of the eyeballs, establishes a suitable animal model for studying epithelial reopening during eyelid development and serves as a valuable reference for further mechanistic studies of the pathogenesis of isolated cryptophthalmos.
Collapse
Affiliation(s)
- Xiayin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Dongni Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Meimei Dongye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yi Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Chuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ruixin Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Erping Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaohang Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Duoru Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jingjing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhuoling Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jinghui Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Wangting Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yang Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Science, Beijing, 100730, China
| | - Dongmei Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Science, Beijing, 100730, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
28
|
Ogawa Y, Shimizu E, Tsubota K. Interferons and Dry Eye in Sjögren's Syndrome. Int J Mol Sci 2018; 19:E3548. [PMID: 30423813 PMCID: PMC6274689 DOI: 10.3390/ijms19113548] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/24/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023] Open
Abstract
Various cytokines, including interferon (IFN)-γ and IL-17, are augmented, and autoreactive T cells and B cells are activated in the immune pathogenesis of Sjögren's syndrome (SS). In particular, IFNs are involved in both the early stages of innate immunity by high level of type I IFN in glandular tissue and sera and the later stages of disease progression by type I and type II IFN producing T cells and B cells through B cell activating factor in SS. Genetically modified mouse models for some of these molecules have been reported and will be discussed in this review. New findings from human SS and animal models of SS have elucidated some of the mechanisms underlying SS-related dry eye. We will discuss IFN-γ and several other molecules that represent candidate targets for treating inflammation in SS-related dry eye.
Collapse
Affiliation(s)
- Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| |
Collapse
|
29
|
Subasi S, Altintas O, Kasap M, Guzel N, Akpinar G, Karaman S. Comparative proteomic analysis of amnion membrane transplantation and cross-linking treatments in an experimental alkali injury model. Int Ophthalmol 2017; 38:2563-2574. [PMID: 29170974 DOI: 10.1007/s10792-017-0770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 11/16/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE In this study, by using a two-dimensional (2D) electrophoresis-based experimental approach, we aimed at understanding the nature of alkali injuries and the underlying mechanisms. A secondary aim was to compare the effects of cross-linking (CXL) and amnion membrane transplantation (AMT) on corneal protein compositions at the end of the early repair phase after injured with alkali. METHOD The right corneas of 24 rabbits were injured with a 1 N solution of NaOH. Groups were formed based on the adjuvant therapies as (1) healthy group, (2) control group, (3) CXL group, (4) AMT group. In addition to the therapies, a conventional medical treatment was applied to all groups. Left eyes were used as within-subject healthy corneas (1). The corneas were excised at day 21, and a comparative proteomic analysis was performed using 2D gel electrophoresis coupled with MALDI-TOF/TOF. RESULT 2D gel electrophoresis revealed the presence seven protein spots whose abundance changed among the groups. Those proteins were SH3 domain-binding protein, plant homeodomain finger protein 23, S100 calcium binding protein A-11(S100 A11), keratin type 2 cytoskeletal 1 and 2, transketolase and glyceraldehyde 3-phosphate dehydrogenase. Ingenuity pathway analysis predicted that the observed changes may be linked to a central metabolic pathway, transforming growth factor beta 1. Canonical pathway analysis focused our attention to two different pathways, namely nicotinamide adenine dinucleotide repair pathway and non-oxidative branch of pentose phosphate pathway. CONCLUSION Our results shed some light onto the molecular mechanisms affected by alkali injury and adjuvant treatments. Further research is needed to propose medically significant target molecules that may be used for novel drug developments for alkali injury.
Collapse
Affiliation(s)
- Sevgi Subasi
- Department of Ophthalmology, Körfez State Hospital, Kocaeli, Turkey.
| | - Ozgul Altintas
- Department of Ophthalmology, Medical Faculty, Acıbadem University, Istanbul, Turkey
| | - Murat Kasap
- Department of Medical Biology, Medical Faculty, Kocaeli University, Kocaeli, Turkey
| | - Nil Guzel
- Department of Medical Biology, Medical Faculty, Kocaeli University, Kocaeli, Turkey
| | - Gurler Akpinar
- Department of Medical Biology, Medical Faculty, Kocaeli University, Kocaeli, Turkey
| | - Suleyman Karaman
- Department of Ophthalmology, Talya Medical Center, Antalya, Turkey
| |
Collapse
|
30
|
Abstract
EGR1 is an early growth response zinc finger transcription factor with broad actions, including in differentiation, mitogenesis, tumor suppression, and neuronal plasticity. Here we demonstrate that Egr1-/- mice on the C57BL/6 background have normal eyelid development, but back-crossing to BALB/c background for four or five generations resulted in defective eyelid development by day E15.5, at which time EGR1 was expressed in eyelids of WT mice. Defective eyelid formation correlated with profound ocular anomalies evident by postnatal days 1-4, including severe cryptophthalmos, microphthalmia or anophthalmia, retinal dysplasia, keratitis, corneal neovascularization, cataracts, and calcification. The BALB/c albino phenotype-associated Tyrc tyrosinase mutation appeared to contribute to the phenotype, because crossing the independent Tyrc-2J allele to Egr1-/- C57BL/6 mice also produced ocular abnormalities, albeit less severe than those in Egr1-/- BALB/c mice. Thus EGR1, in a genetic background-dependent manner, plays a critical role in mammalian eyelid development and closure, with subsequent impact on ocular integrity.
Collapse
|
31
|
Bron AJ, de Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S, Knop E, Markoulli M, Ogawa Y, Perez V, Uchino Y, Yokoi N, Zoukhri D, Sullivan DA. TFOS DEWS II pathophysiology report. Ocul Surf 2017; 15:438-510. [PMID: 28736340 DOI: 10.1016/j.jtos.2017.05.011] [Citation(s) in RCA: 1113] [Impact Index Per Article: 139.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022]
Abstract
The TFOS DEWS II Pathophysiology Subcommittee reviewed the mechanisms involved in the initiation and perpetuation of dry eye disease. Its central mechanism is evaporative water loss leading to hyperosmolar tissue damage. Research in human disease and in animal models has shown that this, either directly or by inducing inflammation, causes a loss of both epithelial and goblet cells. The consequent decrease in surface wettability leads to early tear film breakup and amplifies hyperosmolarity via a Vicious Circle. Pain in dry eye is caused by tear hyperosmolarity, loss of lubrication, inflammatory mediators and neurosensory factors, while visual symptoms arise from tear and ocular surface irregularity. Increased friction targets damage to the lids and ocular surface, resulting in characteristic punctate epithelial keratitis, superior limbic keratoconjunctivitis, filamentary keratitis, lid parallel conjunctival folds, and lid wiper epitheliopathy. Hybrid dry eye disease, with features of both aqueous deficiency and increased evaporation, is common and efforts should be made to determine the relative contribution of each form to the total picture. To this end, practical methods are needed to measure tear evaporation in the clinic, and similarly, methods are needed to measure osmolarity at the tissue level across the ocular surface, to better determine the severity of dry eye. Areas for future research include the role of genetic mechanisms in non-Sjögren syndrome dry eye, the targeting of the terminal duct in meibomian gland disease and the influence of gaze dynamics and the closed eye state on tear stability and ocular surface inflammation.
Collapse
Affiliation(s)
- Anthony J Bron
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Vision and Eye Research Unit, Anglia Ruskin University, Cambridge, UK.
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute & Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Stefano Bonini
- Department of Ophthalmology, University Campus Biomedico, Rome, Italy
| | - Eric E Gabison
- Department of Ophthalmology, Fondation Ophtalmologique Rothschild & Hôpital Bichat Claude Bernard, Paris, France
| | - Sandeep Jain
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Erich Knop
- Departments of Cell and Neurobiology and Ocular Surface Center Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Markoulli
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Victor Perez
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Yuichi Uchino
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Driss Zoukhri
- Tufts University School of Dental Medicine, Boston, MA, USA
| | - David A Sullivan
- Schepens Eye Research Institute & Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Hou A, Tin MQ, Tong L. Toll-like receptor 2-mediated NF-kappa B pathway activation in ocular surface epithelial cells. EYE AND VISION 2017; 4:17. [PMID: 28706958 PMCID: PMC5506675 DOI: 10.1186/s40662-017-0082-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/27/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Gram-positive bacteria stimulate Toll-like receptor (TLR) 2 and then activate the pro-inflammatory nuclear factor-kappa B (NF-κB) pathway. As the human ocular surface is heavily colonised by gram-positive cocci bacteria, a balance of activation/repression of NF-κB target genes is essential to avoid uncontrolled infection or autoimmune-related inflammation. It is advantageous to test NF-κB targeting molecules in an ocular surface culture system that allows assessment of temporal NF-κB activation in a longitudinal fashion without destruction of cells. Such initial testing under standardised conditions should reduce the number of molecules that progress to further evaluation in animal models. This study aims to establish an in-vitro cell culture system to assess NF-κB activation in the context of ocular surface cells. METHODS NF-κB activity was evaluated through a secretory alkaline phosphatase reporter assay (SEAP). Immunoblots and immunofluorescence were used to examine IκBα phosphorylation and p65/p50 nuclear localization. Monocyte chemoattractant protein-1 (MCP-1) transcripts were evaluated by real time PCR and protein levels were measured by ELISA. RESULTS NF-κB activity in HCE-T cells treated with TLR2 activator Pam3CSK4 was higher than control cells at both 6 and 24 h. Pam3CSK4-stimulated NF-κB activation was inhibited by IκK inhibitors, Wedelolactone and BMS-345541. In Pam3CSK4 treated cells, active NF-κB subunits p50 and p65 increased in cell nuclear fractions as early as 1.5 h. Although the level of total IκB-α remained constant, phospho-IκB-α increased with treatment over time. In the culture media of Pam3CSK4-stimulated cells, MCP-1 protein level was increased, which was suppressed in the presence of IκK inhibitors. CONCLUSION NF-κB pathway can be activated by the TLR2 ligand and inhibited by IκK inhibitors in the ocular surface cell culture system. This cell culture system may be used to evaluate TLR-related innate defences in ocular surface diseases.
Collapse
Affiliation(s)
- Aihua Hou
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Min Qi Tin
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Louis Tong
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore.,Singapore National Eye Center, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Oortveld MAW, van Vlijmen-Willems IMJJ, Kersten FFJ, Cheng T, Verdoes M, van Erp PEJ, Verbeek S, Reinheckel T, Hendriks WJAJ, Schalkwijk J, Zeeuwen PLJM. Cathepsin B as a potential cystatin M/E target in the mouse hair follicle. FASEB J 2017; 31:4286-4294. [PMID: 28596234 PMCID: PMC5602906 DOI: 10.1096/fj.201700267r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/22/2017] [Indexed: 01/19/2023]
Abstract
Deficiency of the cysteine protease inhibitor cystatin M/E (Cst6) in mice leads to disturbed epidermal cornification, impaired barrier function, and neonatal lethality. We report the rescue of the lethal skin phenotype of ichq (Cst6-deficient; Cst6−/−) mice by transgenic, epidermis-specific, reexpression of Cst6 under control of the human involucrin (INV) promoter. Rescued Tg(INV-Cst6)Cst6ichq/ichq mice survive the neonatal phase, but display severe eye pathology and alopecia after 4 mo. We observed keratitis and squamous metaplasia of the corneal epithelium, comparable to Cst6−/−Ctsl+/− mice, as we have reported in other studies. We found the INV promoter to be active in the hair follicle infundibulum; however, we did not observe Cst6 protein expression in the lower regions of the hair follicle in Tg(INV-Cst6)Cst6ichq/ichq mice. This result suggests that unrestricted activity of proteases is involved in disturbance of hair follicle biology, eventually leading to baldness. Using quenched activity-based probes, we identified mouse cathepsin B (CtsB), which is expressed in the lower regions of the hair follicle, as an additional target of mouse Cst6. These data suggest that Cst6 is necessary to control CtsB activity in hair follicle morphogenesis and highlight Cst6-controlled proteolytic pathways as targets for preventing hair loss.—Oortveld, M. A. W., van Vlijmen-Willems, I. M. J. J., Kersten, F. F. J., Cheng, T., Verdoes, M., van Erp, P. E. J., Verbeek, S., Reinheckel, T., Hendriks, W. J. A. J., Schalkwijk, J., Zeeuwen, P. L. J. M. Cathepsin B as a potential cystatin M/E target in the mouse hair follicle.
Collapse
Affiliation(s)
- Merel A W Oortveld
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Ivonne M J J van Vlijmen-Willems
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Ferry F J Kersten
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Tsing Cheng
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Piet E J van Erp
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | - Wiljan J A J Hendriks
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands;
| | - Patrick L J M Zeeuwen
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands;
| |
Collapse
|
34
|
Schulz SD, Rüppell C, Tomakidi P, Steinberg T, Reichl FX, Hellwig E, Polydorou O. Gene expression analysis of conventional and interactive human gingival cell systems exposed to dental composites. Dent Mater 2015; 31:1321-34. [PMID: 26345997 DOI: 10.1016/j.dental.2015.08.157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/31/2015] [Accepted: 08/17/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aim of this study was the detection of putative gene expression-related effects of dental composites in conventional and interactive gingival cell systems. METHODS Conventional monoculture (MC) and interactive cell systems (ICS) comprising human gingival fibroblast (HGF) and immortalized human gingival keratinocytes (IHGK) were exposed for 24h and 7 days according to ISO10993-12:2012 manufactured eluates of different composites (Ceram X(®), Filtek™ Supreme XT, Filtek™ Silorane, Fusio™ Liquid Dentin, and Vertise™ Flow). qRT-PCR-based mRNA analysis for biomarkers indicating cell proliferation, differentiation, apoptosis, inflammation, and adhesion was performed. Apoptotic cells were quantified by annexin-V labeling. RESULTS Due to low RNA amounts, qPCR could not be performed for Vertise™ Flow and Fusio™ Liquid Dentin at day 7. At 24h, flowables yielded increased transcription for biomarkers of inflammation and apoptosis in IHGK, irrespective of the cell system. HGF cultures displayed lower transcription for cell adhesion markers in both cell systems. Filtek™ Supreme XT showed increased differentiation by elevated filaggrin gene expression in both cell systems for IHGK at day 7, while Filtek™ Silorane and Ceram X(®) yielded elevation of inflammation biomarkers in both cell types. Annexin-V labeling revealed high apoptosis rates for both flowables and Filtek™ Supreme XT for IHGK, while low rates were detected for Filtek™ Silorane and Ceram X(®). SIGNIFICANCE Among the composites evaluated, exposition of IHGK and HGF in conventional and interactive cell systems demonstrated most pronounced gene expression alterations in response to flowables, coinciding with elevated levels of apoptosis.
Collapse
Affiliation(s)
- Simon Daniel Schulz
- Department of Oral Biotechnology, University Medical Center Freiburg, Center of Dental Medicine, Freiburg, Germany
| | - Christopher Rüppell
- Department of Operative Dentistry and Periodontology, University Medical Center Freiburg, Center of Dental Medicine, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Department of Oral Biotechnology, University Medical Center Freiburg, Center of Dental Medicine, Freiburg, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, University Medical Center Freiburg, Center of Dental Medicine, Freiburg, Germany
| | - Franz-Xaver Reichl
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-University of Munich, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Munich, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, University Medical Center Freiburg, Center of Dental Medicine, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Olga Polydorou
- Department of Operative Dentistry and Periodontology, University Medical Center Freiburg, Center of Dental Medicine, Hugstetter Straße 55, 79106 Freiburg, Germany.
| |
Collapse
|
35
|
Deng Z, Matsuda K, Tanikawa C, Lin J, Furukawa Y, Hamamoto R, Nakamura Y. Late Cornified Envelope Group I, a novel target of p53, regulates PRMT5 activity. Neoplasia 2015; 16:656-64. [PMID: 25220593 PMCID: PMC4234875 DOI: 10.1016/j.neo.2014.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/26/2014] [Accepted: 07/29/2014] [Indexed: 12/04/2022]
Abstract
p53 is one of the most important tumor suppressor genes involved in human carcinogenesis. Although downstream targets of p53 and their biologic functions in cancer cells have been extensively investigated, it is still far from the full understanding. Here, we demonstrate that Late Cornified Envelope Group I (LCE1) genes, which are located in the LCE gene clusters encoding multiple well-conserved stratum-corneum proteins, are novel downstream targets of p53. Exogenous p53 overexpression using an adenoviral vector system significantly enhanced the expression of LCE1 cluster genes. We also observed induction of LCE1 expressions by DNA damage, which was caused by treatment with adriamycin or UV irradiation in a wild-type p53-dependent manner. Concordantly, the induction of LCE1 by DNA damage was significantly attenuated by the knockdown of p53. Among predicted p53-binding sites within the LCE1 gene cluster, we confirmed one site to be a p53-enhancer sequence by reporter assays. Furthermore, we identified LCE1 to interact with protein arginine methyltransferase 5 (PRMT5). Knockdown of LCE1 by specific small interfering RNAs significantly increased the symmetric dimethylation of histone H3 arginine 8, a substrate of PRMT5, and overexpression of LCE1F remarkably decreased its methylation level. Our data suggest that LCE1 is a novel p53 downstream target that can be directly transactivated by p53 and is likely to have tumor suppressor functions through modulation of the PRMT5 activity.
Collapse
Affiliation(s)
- Zhenzhong Deng
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637 USA; Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Matsuda
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chizu Tanikawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jiaying Lin
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637 USA; Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637 USA.
| |
Collapse
|
36
|
Ji H, Zhang X, Oh S, Mayhew CN, Ulm A, Somineni HK, Ericksen M, Wells JM, Khurana Hershey GK. Dynamic transcriptional and epigenomic reprogramming from pediatric nasal epithelial cells to induced pluripotent stem cells. J Allergy Clin Immunol 2014; 135:236-44. [PMID: 25441642 DOI: 10.1016/j.jaci.2014.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/24/2014] [Accepted: 08/27/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND Induced pluripotent stem cells (iPSCs) hold tremendous potential, both as a biological tool to uncover the pathophysiology of disease by creating relevant human cell models and as a source of cells for cell-based therapeutic applications. Studying the reprogramming process will also provide significant insight into tissue development. OBJECTIVE We sought to characterize the derivation of iPSC lines from nasal epithelial cells (NECs) isolated from nasal mucosa samples of children, a highly relevant and easily accessible tissue for pediatric populations. METHODS We performed detailed comparative analysis on the transcriptomes and methylomes of NECs, iPSCs derived from NECs (NEC-iPSCs), and embryonic stem cells (ESCs). RESULTS NEC-iPSCs express pluripotent cell markers, can differentiate into all 3 germ layers in vivo and in vitro, and have a transcriptome and methylome remarkably similar to those of ESCs. However, residual DNA methylation marks exist, which are differentially methylated between NEC-iPSCs and ESCs. A subset of these methylation markers related to epithelium development and asthma and specific to NEC-iPSCs persisted after several passages in vitro, suggesting the retention of an epigenetic memory of their tissue of origin. Our analysis also identified novel candidate genes with dynamic gene expression and DNA methylation changes during reprogramming, which are indicative of possible roles in airway epithelium development. CONCLUSION NECs are an excellent tissue source to generate iPSCs in pediatric asthmatic patients, and detailed characterization of the resulting iPSC lines would help us better understand the reprogramming process and retention of epigenetic memory.
Collapse
Affiliation(s)
- Hong Ji
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio.
| | - Xue Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Sunghee Oh
- Division of Human Genetics, Kim Sook Za Children's Hospital Medical Center Research Foundation, Cheongju, South Korea
| | - Christopher N Mayhew
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Ashley Ulm
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Hari K Somineni
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Mark Ericksen
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
37
|
Randon M, Liang H, El Hamdaoui M, Tahiri R, Batellier L, Denoyer A, Labbé A, Baudouin C. In vivo confocal microscopy as a novel and reliable tool for the diagnosis of Demodex eyelid infestation. Br J Ophthalmol 2014; 99:336-41. [PMID: 25253768 DOI: 10.1136/bjophthalmol-2014-305671] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIMS Demodex mites are implicated in several ocular surface diseases such as blepharitis, ocular rosacea and dry eye syndrome. Demodex eyelid infestation is classically diagnosed by analysing depilated eyelashes under the light microscope. The use of in vivo confocal microscopy (IVCM) could be an easy way to improve its diagnosis. The ability of IVCM to identify Demodex was evaluated and compared with the classic depilation method. METHODS Eight healthy subjects, 22 patients with dry eye syndrome without anterior blepharitis and 18 patients with anterior blepharitis were examined using lower eyelid IVCM (lash follicles and meibomian glands (MGs)). Twenty-five of the 48 subjects underwent both an IVCM examination and classic depilation to compare the two methods. Ex vivo Demodex obtained from lash depilation were also analysed using the confocal microscope. RESULTS IVCM found 100% of the mite infestations among patients with anterior blepharitis, 60% among dry eye patients without blepharitis and 12% in healthy subjects, whereas the depilation technique found 100%, 50% and 0%, respectively. Demodex brevis and Demodex larvae inside the lash follicles were better detected by IVCM. In symptomatic patients, the Demodex infestation was often associated with MG dysfunction, which was better characterised using IVCM in symptomatic patients (60% and 40% of meibomianitis and gland fibrosis, respectively). CONCLUSIONS IVCM is an efficient and reliable tool for the diagnosis of eyelid mite infestation and may also provide an evaluation of MGs.
Collapse
Affiliation(s)
- Matthieu Randon
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC, Paris, France INSERM, U968, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France CNRS, UMR_7210, Paris, France
| | - Hong Liang
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC, Paris, France INSERM, U968, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France CNRS, UMR_7210, Paris, France
| | - Mohamed El Hamdaoui
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC, Paris, France
| | - Rachid Tahiri
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC, Paris, France
| | - Laurence Batellier
- Department of Medical Biology, Quinze-Vingts National Ophthalmology Hospital, Paris, France
| | - Alexandre Denoyer
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC, Paris, France INSERM, U968, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France CNRS, UMR_7210, Paris, France
| | - Antoine Labbé
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC, Paris, France INSERM, U968, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France CNRS, UMR_7210, Paris, France Department of Ophthalmology, Ambroise Paré Hospital, APHP, University of Versailles Saint-Quentin en Yvelines, Versailles, France
| | - Christophe Baudouin
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC, Paris, France INSERM, U968, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France CNRS, UMR_7210, Paris, France Department of Ophthalmology, Ambroise Paré Hospital, APHP, University of Versailles Saint-Quentin en Yvelines, Versailles, France
| |
Collapse
|
38
|
Sensory rewiring in an echolocator: genome-wide modification of retinogenic and auditory genes in the bat Myotis davidii. G3-GENES GENOMES GENETICS 2014; 4:1825-35. [PMID: 25096539 PMCID: PMC4199690 DOI: 10.1534/g3.114.011262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bats comprise 20% of all mammalian species and display a number of characteristics, including true flight, echolocation, and a heightened ability to resist viral load that uniquely position this group for comparative genomic studies. Here we searched for evidence of genomic variation consistent with sensory rewiring through bat evolution. We focused on two species with divergent sensory preferences. Myotis davidii is a bat species that echolocates and possesses dim- but not daylight-adapted vision whereas the black flying fox (Pteropus alecto) has highly developed day vision but does not echolocate. Using the naked mole rat as a reference, we found five functional genes (CYP1A2, RBP3, GUCY2F, CRYBB1, and GRK7) encoding visual proteins that have degenerated into pseudogenes in M. davidii but not P. alecto. In a second approach genome-wide codon usage bias (CUB) was compared between the two bat species. This CUB ranking systematically enriched for vision-related (CLN8, RD3, IKZF1, LAMC3, CRX, SOX8, VAX2, HPS1, RHO, PRPH2, and SOX9) and hearing-related (TPRN, TMIE, SLC52A3, OTOF, WFS1, SOD1, TBX18, MAP1A, OTOS, GPX1, and USH1G) machinery in M. davidii but not P. alecto. All vision and hearing genes selectively enriched in M. davidii for which orthologs could be identified also were more biased in the echolocating M. lucifugus than the nonecholocating P. vampyrus. We suggest that the existence of codon bias in vision- and hearing-related genes in a species that has evolved echolocation implies CUB is part of evolution’s toolkit to rewire sensory systems. We propose that the two genetic changes (pseudogene formation and CUB) collectively paint a picture of that incorporates a combination of destruction and gain-of-function. Together, they help explain how natural selection has reduced physiological costs associated with the development of a smaller eye poorly adapted to day vision but that also contribute to enhanced dim light vision and the hearing adaptations consonant with echolocation.
Collapse
|
39
|
Shaheen BS, Bakir M, Jain S. Corneal nerves in health and disease. Surv Ophthalmol 2014; 59:263-85. [PMID: 24461367 PMCID: PMC4004679 DOI: 10.1016/j.survophthal.2013.09.002] [Citation(s) in RCA: 327] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 08/23/2013] [Accepted: 09/03/2013] [Indexed: 12/14/2022]
Abstract
Corneal nerves are responsible for the sensations of touch, pain, and temperature and play an important role in the blink reflex, wound healing, and tear production and secretion. Corneal nerve dysfunction is a frequent feature of diseases that cause opacities and result in corneal blindness. Corneal opacities rank as the second most frequent cause of blindness. Technological advances in in vivo corneal nerve imaging, such as optical coherence tomography and confocal scanning, have generated new knowledge regarding the phenomenological events that occur during reinnervation of the cornea following disease, injury, or surgery. The recent availability of transgenic neurofluorescent murine models has stimulated the search for molecular modulators of corneal nerve regeneration. New evidence suggests that neuroregenerative and inflammatory pathways in the cornea are intertwined. Evidence-based treatment of neurotrophic corneal diseases includes using neuroregenerative (blood component-based and neurotrophic factors), neuroprotective, and ensconcing (bandage contact lens and amniotic membrane) strategies and avoiding anti-inflammatory therapies, such as cyclosporine and corticosteroids.
Collapse
Affiliation(s)
- Brittany Simmons Shaheen
- Corneal Neurobiology Laboratory, Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - May Bakir
- Corneal Neurobiology Laboratory, Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Sandeep Jain
- Corneal Neurobiology Laboratory, Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
40
|
Lapp T, Auw-Haedrich C, Reinhard T, Evans R, Rodríguez E, Weidinger S, Jakob T. Analysis of filaggrin mutations and expression in corneal specimens from patients with or without atopic dermatitis. Int Arch Allergy Immunol 2013; 163:20-4. [PMID: 24247645 DOI: 10.1159/000355965] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/23/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Filaggrin is expressed in the epidermis and is essential for the maintenance of the epidermal barrier. Null mutations within the filaggrin gene (FLG) lead to a disturbed epidermal barrier and are associated with a significantly increased risk of atopic dermatitis (AD). The association of AD with ocular surface disorders prompted us to speculate that common FLG mutations may be particularly prevalent in AD patients with ocular comorbidities. METHODS Corneal buttons and biopsies from AD patients with ocular involvement (n = 11) and from non-atopic patients (n = 9) with a histological diagnosis of keratitis were included in the study. DNA samples obtained from paraffin-embedded corneal specimens were genotyped for the two most common FLG mutations (R501X and 2282del4). Filaggrin protein expression was analysed by immunohistochemistry. RESULTS Normal skin and corneal specimens (n = 6) were positive for filaggrin, which could be detected in the stratum corneum of the skin and in the basal epithelial layer of the cornea. Interestingly, all AD corneal specimens as well as the specimens from keratitis patients without AD were negative for filaggrin expression. Genotyping of the FLG mutations R501X and 2282del4 revealed wild-type alleles in all analysed samples. CONCLUSIONS The lack of filaggrin expression observed in the analysed corneal specimens from AD patients is not due to the two most common FLG mutations (R501X, 2282del4) but is most likely secondary to inflammation, as all keratitis specimens of non-AD patients showed lack of filaggrin expression as well.
Collapse
Affiliation(s)
- Thabo Lapp
- University Eye Hospital, University Medical Centre Freiburg, Freiburg im Breisgau, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Hou A, Toh LX, Gan KH, Lee KJR, Manser E, Tong L. Rho GTPases and regulation of cell migration and polarization in human corneal epithelial cells. PLoS One 2013; 8:e77107. [PMID: 24130842 PMCID: PMC3795020 DOI: 10.1371/journal.pone.0077107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/06/2013] [Indexed: 01/11/2023] Open
Abstract
Purpose Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. Methods Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. Results Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. Conclusion Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells.
Collapse
Affiliation(s)
- Aihua Hou
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore, Singapore
| | - Li Xian Toh
- RGS Group, Institute of Medical Biology, A, Star, Singapore, Singapore
| | - Kah Hui Gan
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore, Singapore
| | - Khee Jin Ryan Lee
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore, Singapore
| | - Edward Manser
- RGS Group, Institute of Medical Biology, A, Star, Singapore, Singapore
| | - Louis Tong
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore, Singapore
- Singapore National Eye Center, Singapore, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
42
|
Carregaro F, Stefanini ACB, Henrique T, Tajara EH. Study of small proline-rich proteins (SPRRs) in health and disease: a review of the literature. Arch Dermatol Res 2013; 305:857-66. [DOI: 10.1007/s00403-013-1415-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 09/11/2013] [Accepted: 09/16/2013] [Indexed: 12/26/2022]
|
43
|
Schulz S, Beck D, Laird D, Steinberg T, Tomakidi P, Reinhard T, Eberwein P. Natural corneal cell-based microenvironment as prerequisite for balanced 3D corneal epithelial morphogenesis: a promising animal experiment-abandoning tool in ophthalmology. Tissue Eng Part C Methods 2013; 20:297-307. [PMID: 23886248 DOI: 10.1089/ten.tec.2013.0195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To achieve durable recognition as a promising animal experiment-abandoning tool in ophthalmology, in vitro engineered tissue equivalents of the human cornea should exhibit proper morphogenesis. Regarding this issue, we were seeking for the natural cell microenvironment fulfilling the minimum requirements to allow human corneal keratinocytes to develop a balanced epithelial morphology with regular spatial appearance of tissue homeostatic biomarkers. Hence, we established cocultures of 3D cell-based collagen scaffolds comprising immortalized corneal keratinocytes combined with a gradual cornea-derived in vivo-like cell microenvironment, together with immortalized stromal fibroblasts alone (nonholistic) or fibroblasts and immortalized endothelial cells (holistic). With matched non-holistic microenvironments revealing mostly flattened cells and putative apical cell ablation foci at day 6, and 9 in HE stains, holistic counterparts yielded proper epithelial stratification with cell flattening restricted to apical layers. Concordantly, RT(2)-PCR showed a tremendous increase in gene expression for progressive and terminal biomarkers of corneal keratinocyte differentiation, cytokeratin (CK) 12, and filaggrin (FIL), in response to nonholistic environments, while involucrin (INV) was moderately but significantly upregulated. Although visible, this increase was moderate in corneal keratinocytes with a holistic environment. On the protein level, indirect immunofluorescence revealed that only epithelia of holistic environments showed diminishment in CK19, counteracted by CK12 rising over time. This time-dependent progression in differentiation coincided with declined proliferation and tissue-regular focus of differentiation biomarkers inv and fil to suprabasal and apical cell layers. Our novel findings suggest the interplay of native tissue forming cell entities, important for balanced corneal epithelial morphogenesis. In addition, they provide evidence for a holistic cell microenvironment as a prerequisite for development of an in vitro engineered corneal epithelial tissue equivalent, exhibiting a regular appearance of tissue homeostatic biomarkers. Such equivalents will be promising tools in ophthalmology, for example, for mechanistic studies in basic research and/or testing of generics or preclinical validation of innovative cornea-tailored biomaterials, desired for regenerative strategies.
Collapse
Affiliation(s)
- Simon Schulz
- 1 Department of Oral Biotechnology, Dental School, University Hospital of Freiburg , Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Moers K, Steinberg T, Schlunck G, Reinhard T, Tomakidi P, Eberwein P. Substrate elasticity as biomechanical modulator of tissue homeostatic parameters in corneal keratinocytes. Exp Cell Res 2013; 319:1889-1901. [DOI: 10.1016/j.yexcr.2013.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 12/01/2022]
|
45
|
Spdef null mice lack conjunctival goblet cells and provide a model of dry eye. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:35-48. [PMID: 23665202 DOI: 10.1016/j.ajpath.2013.03.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 02/07/2013] [Accepted: 03/04/2013] [Indexed: 12/19/2022]
Abstract
Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef(-/-) mice, we determined that Spdef is required for conjunctival goblet cell differentiation and that Spdef(-/-) mice, which lack conjunctival goblet cells, have significantly increased corneal surface fluorescein staining and tear volume, a phenotype consistent with dry eye. Microarray analysis of conjunctival epithelium in Spdef(-/-) mice revealed down-regulation of goblet cell-specific genes (Muc5ac, Tff1, Gcnt3). Up-regulated genes included epithelial cell differentiation/keratinization genes (Sprr2h, Tgm1) and proinflammatory genes (Il1-α, Il-1β, Tnf-α), all of which are up-regulated in dry eye. Interestingly, four Wnt pathway genes were down-regulated. SPDEF expression was significantly decreased in the conjunctival epithelium of Sjögren syndrome patients with dry eye and decreased goblet cell mucin expression. These data demonstrate that Spdef is required for conjunctival goblet cell differentiation and down-regulation of SPDEF may play a role in human dry eye with goblet cell loss. Spdef(-/-) mice have an ocular surface phenotype similar to that in moderate dry eye, providing a new, more convenient model for the disease.
Collapse
|
46
|
Neurotrophins and nerve regeneration-associated genes are expressed in the cornea after lamellar flap surgery. Cornea 2013; 31:1460-7. [PMID: 22673847 DOI: 10.1097/ico.0b013e318247b60e] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE To determine the in vivo expression of neurotrophins (NTs) and nerve regeneration-associated genes (RAGs) after surgically creating a hinged lamellar corneal flap in thy1-YFP mice. METHODS Lamellar corneal flaps with multiple hinges were created in thy1-YFP mice. Mice were killed at weeks 2, 4, and 8. Quantitative polymerase chain reaction was performed to determine the expression of NTs and RAGs in the corneas after lamellar transection. Nerve growth factor (Ngf), brain-derived neurotrophic factor (Bdnf), glial cell-derived neurotrophic factor (Gdnf), neurotrophin 3, neurotrophin 5, small proline-rich repeat protein 1A (Sprr1a), growth-associated protein 43 (Gap43), and beta III tubulin (Tubb3) gene expressions were analyzed. Whole-mount confocal immunofluorescence and Western analyses were performed for localization and abundance of robustly expressed genes. RESULTS Sprouts of fine YFP-positive fronds emanating from transected (injured) nerve bundles were seen in the flap area at 2 weeks onward. Bdnf and Sprr1a were robustly and significantly expressed at 2 weeks postoperatively (>2-fold increase in expression; P<0.05). Bdnf localized to thy1-YFP+ cells in operated corneas. Sprr1a localized to corneal epithelial cell membranes. At 8 weeks, none of the NTs and RAGs had increased expression. Bdnf (ρ=0.73, P=0.001) and Sprr1a (ρ=0.76, P=0.001) showed a significant positive correlation with beta III tubulin. CONCLUSIONS The neurotrophin Bdnf and RAG Sprr1a are robustly and significantly expressed during corneal nerve regeneration in vivo.
Collapse
|
47
|
Lund ASK, Heegaard S, Prause JU, Toft PB, Skov L. Expression of filaggrin in normal and keratinized conjunctiva. Open Ophthalmol J 2012; 6:137-40. [PMID: 23304250 PMCID: PMC3537116 DOI: 10.2174/1874364101206010137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 10/22/2012] [Accepted: 10/24/2012] [Indexed: 11/22/2022] Open
Abstract
Purpose: We wanted to investigate filaggrin expression in normal conjunctiva and in conjunctiva exposed to different degrees of mechanical stress. Mechanical stress results in parakeratinization of the conjunctiva. If filaggrin is expressed in the milder forms of parakeratinization, it might be used as a sensitive marker of mechanical stress. Methods: Immunohistochemical staining using antibodies to filaggrin was performed on paraffin sections of normal human conjunctiva, and on conjunctiva with different degrees of mechanical conjunctival stress. Results: Filaggrin was not expressed in the normal conjunctiva, nor in conjunctiva with milder forms of mechanical stress. Intense staining of filaggrin was seen in the conjunctiva of a patient with Stevens-Johnson syndrome, and marked expression of filaggrin was found in the conjunctival epithelium of a patient with moderate dysplasia of the conjunctiva. Conclusion: Filaggrin is not a sensitive marker of mechanical stress; it is, however, expressed in some moderate and severe forms of parakeratinization of the conjunctiva.
Collapse
Affiliation(s)
- Anne Sofie Kragegaard Lund
- Institute of Neuroscience and Pharmacology, Eye Pathology Institute, University of Copenhagen, Copenhagen, Denmark ; Department of Dermato-allergology, Gentofte Hospital, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
48
|
Lin J, Yoon KC, Zhang L, Su Z, Lu R, Ma P, De Paiva CS, Pflugfelder SC, Li DQ. A native-like corneal construct using donor corneal stroma for tissue engineering. PLoS One 2012; 7:e49571. [PMID: 23166715 PMCID: PMC3499466 DOI: 10.1371/journal.pone.0049571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/10/2012] [Indexed: 11/19/2022] Open
Abstract
Tissue engineering holds great promise for corneal transplantation to treat blinding diseases. This study was to explore the use of natural corneal stroma as an optimal substrate to construct a native like corneal equivalent. Human corneal epithelium was cultivated from donor limbal explants on corneal stromal discs prepared by FDA approved Horizon Epikeratome system. The morphology, phenotype, regenerative capacity and transplantation potential were evaluated by hematoxylin eosin and immunofluorescent staining, a wound healing model, and the xeno-transplantation of the corneal constructs to nude mice. An optically transparent and stratified epithelium was rapidly generated on donor corneal stromal substrate and displayed native-like morphology and structure. The cells were polygonal in the basal layer and became flattened in superficial layers. The epithelium displayed a phenotype similar to human corneal epithelium in vivo. The differentiation markers, keratin 3, involucrin and connexin 43, were expressed in full or superficial layers. Interestingly, certain basal cells were immunopositive to antibodies against limbal stem/progenitor cell markers ABCG2 and p63, which are usually negative in corneal epithelium in vivo. It suggests that this bioengineered corneal epithelium shared some characteristics of human limbal epithelium in vivo. This engineered epithelium was able to regenerate in 4 days following from a 4mm-diameter wound created by a filter paper soaked with 1 N NaOH. This corneal construct survived well after xeno-transplantation to the back of a nude mouse. The transplanted epithelium remained multilayer and became thicker with a phenotype similar to human corneal epithelium. Our findings demonstrate that natural corneal stroma is an optimal substrate for tissue bioengineering, and a native-like corneal construct has been created with epithelium containing limbal stem cells. This construct may have great potential for clinical use in corneal reconstruction.
Collapse
Affiliation(s)
- Jing Lin
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Kyung-Chul Yoon
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Lili Zhang
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Zhitao Su
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rong Lu
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ping Ma
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cintia S. De Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Stephen C. Pflugfelder
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - De-Quan Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
49
|
Kara N, Yildirim Y, Demircan A, Cankaya I, Kutlubay Z, Engin B, Serdaroglu S. Topographic and biomechanical evaluation of cornea in patients with ichthyosis vulgaris. Cont Lens Anterior Eye 2012; 35:208-12. [PMID: 22677890 DOI: 10.1016/j.clae.2012.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 05/02/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
|
50
|
Abstract
PURPOSE The 27-kDa heat shock protein (HSP27) has been implicated in wound healing in multiple tissues. We investigated the expression and localization of phosphorylated HSP27 during epithelial wound healing in the murine cornea. METHODS Corneas of 8- to 10-week-old C57BL6 mice were wounded by epithelial debridement (n = 40). Unwounded corneas served as controls (n = 3). After 3, 7, and 14 days, phosphorylated HSP27 localization in wounded corneas was observed by confocal immunohistochemistry and double immunogold labeling transmission immunoelectron microscopy. Western blot analysis was performed to determine expression levels of phosphorylated HSP27 in scraped epithelia. Phosphorylated HSP27 localization was also separately performed with confocal immunohistochemistry 8 hours after epithelial debridement to investigate the early epithelial wound-healing process. RESULTS In unwounded corneas, phosphorylated HSP27 was localized only to the superficial epithelium. In contrast, phosphorylated HSP27 was localized in the basal and superficial epithelia 3 days after corneal epithelial wounding. After 7 and 14 days, HSP27 localization was similar to that in unwounded controls. Expression levels of phosphorylated HSP27 were greater in wounded corneal epithelia on day 3 than in unwounded controls and on day 14. After 8 hours, phosphorylated HSP27 expression was prominent in the leading edge of migrating corneal epithelium. CONCLUSIONS Constitutive expression of phosphorylated HSP27 is limited to the superficial corneal epithelium in unwounded murine corneas. Changes in HSP27 epithelial distribution and expression levels after corneal epithelial wounding suggest that phosphorylated HSP27 plays a role in early phase of corneal epithelial wound healing.
Collapse
|