1
|
Zhao Y, Ge Z, Guo T, Liu H, Zhou Y, Chen J, Xu H, Chen Z. Complement C3/C3aR Signaling Pathway Inhibition Ameliorates Retinal Damage in Experimental Retinal Vein Occlusion. Invest Ophthalmol Vis Sci 2025; 66:2. [PMID: 40310626 PMCID: PMC12054687 DOI: 10.1167/iovs.66.5.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Purpose Retinal vein occlusion (RVO) is a common retinal vascular disease that severely threatens visual function. This study aims to elucidate the role of the complement C3/C3aR signaling pathway in a laser-induced RVO mouse model and to explore its potential as a therapeutic target. Methods RVO was induced in C57BL/6J mice using laser photocoagulation combined with photosensitizer dye administration. Two days later, retinal tissues were collected for bulk RNA sequencing. The activation of the C3/C3aR signaling pathway was validated through RT-qPCR and Western blot. The C3aR antagonist SB290157 (C3aRA) was administered intravitreally and retinal morphological and functional changes were examined 1, 2, and 8 days later by optical coherence tomography (OCT), fundus photography (FP), and fluorescein angiography (FA), optomotor response (OKR) test, and electroretinogram (ERG). Results RVO mice exhibited marked increases in retinal thickness (P < 0.001) and fluorescence leakage (P < 0.01) compared to the sham-laser group. Bulk RNA-seq revealed significant upregulation of the complement pathway. Elevated expression of C3 and C3aR (P < 0.05) was confirmed by RT-qPCR and Western blot. Blocking C3aR with SB290157 significantly alleviated RVO-induced retinal edema, vascular leakage, and structural damage. Functional assessment showed that SB290157 treatment significantly improved contrast sensitivity (P < 0.05), increased b-wave (P < 0.001), and oscillatory potentials (Ops) amplitudes (P < 0.05) in RVO mice. RNA-seq analysis demonstrated that SB290157 significantly reduced the inflammatory mediator-related pathways and upregulated visual perception pathways (P < 0.05). Conclusions The complement C3/C3aR signaling pathway is critically involved in RVO-induced retinal damage and targeting this pathway may be a promising approach for RVO treatment.
Collapse
Affiliation(s)
- Yanying Zhao
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan Province, China
- Changsha Aier Eye Hospital, Changsha, Hunan Province, China
| | - Zhengwei Ge
- Changsha Aier Eye Hospital, Changsha, Hunan Province, China
- Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Tingting Guo
- Changsha Aier Eye Hospital, Changsha, Hunan Province, China
- Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Hengwei Liu
- Changsha Aier Eye Hospital, Changsha, Hunan Province, China
| | - Yufan Zhou
- Changsha Aier Eye Hospital, Changsha, Hunan Province, China
| | - Juan Chen
- Changsha Aier Eye Hospital, Changsha, Hunan Province, China
- Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Heping Xu
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan Province, China
- Changsha Aier Eye Hospital, Changsha, Hunan Province, China
- Aier Eye Institute, Changsha, Hunan Province, China
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Zhongping Chen
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan Province, China
- Changsha Aier Eye Hospital, Changsha, Hunan Province, China
- Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province, China
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, China
| |
Collapse
|
2
|
Behnke V, Wolf A, Hector M, Langmann T. C3aR1-Deletion Delays Retinal Degeneration in a White-Light Damage Mouse Model. Invest Ophthalmol Vis Sci 2025; 66:15. [PMID: 39775695 PMCID: PMC11717133 DOI: 10.1167/iovs.66.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
Purpose In the aging retina, persistent activation of microglia is known to play a key role in retinal degenerative diseases like age-related macular degeneration (AMD). Furthermore, dysregulation of the alternative complement pathway is generally accepted as the main driver for AMD disease progression and microglia are important producers of local complement and are equipped with complement receptors themselves. Here, we investigate the involvement of anaphylatoxin signaling, predominantly on Iba1+ cell activity, in light-induced retinal degeneration as a model for dry AMD, using anaphylatoxin receptor knockout (KO) mice. Methods Bright white light with an intensity of 10,000 lux was applied for 30 minutes to complement component 3a receptor 1 (C3ar1) or complement component 5a receptor 1 (C5ar1) KO and wildtype (WT) mice. Analyses of transcriptome changes and migration activity of Iba1+ cells as well as retinal thickness were performed 4 days after light exposure. Results Full body KO mice of either C3aR1 or C5aR1 were tested, but none led to mitigated migration of Iba1+ cells to the subretinal space or decreased expression of complement factors after light damage compared to WT mice. However, a partial rescue of retinal thickness was shown in C3aR1 KO mice, which was mirrored by significant less membrane attack complex (MAC) occurrence in the outer retina. Conclusions We conclude that deletion of the anaphylatoxin receptor C3aR1 cannot modulate mononuclear phagocytes but diminishes retinal degeneration through interference with the complement pathway and thus decreased MAC assembling. C3aR1-targeted therapy may be considered for patients with dry AMD.
Collapse
MESH Headings
- Animals
- Mice
- Mice, Knockout
- Disease Models, Animal
- Retinal Degeneration/metabolism
- Retinal Degeneration/etiology
- Retinal Degeneration/genetics
- Retinal Degeneration/pathology
- Light/adverse effects
- Mice, Inbred C57BL
- Microglia/metabolism
- Microglia/pathology
- Retina/metabolism
- Retina/pathology
- Retina/radiation effects
- Receptor, Anaphylatoxin C5a/genetics
- Receptor, Anaphylatoxin C5a/metabolism
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
- Radiation Injuries, Experimental/pathology
- Radiation Injuries, Experimental/metabolism
- Radiation Injuries, Experimental/genetics
- Calcium-Binding Proteins
- Microfilament Proteins
- Receptors, G-Protein-Coupled
Collapse
Affiliation(s)
- Verena Behnke
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Mandy Hector
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| |
Collapse
|
3
|
Ayten M, Díaz-Lezama N, Ghanawi H, Haffelder FC, Kajtna J, Straub T, Borso M, Imhof A, Hauck SM, Koch SF. Metabolic plasticity in a Pde6b STOP/STOP retinitis pigmentosa mouse model following rescue. Mol Metab 2024; 88:101994. [PMID: 39032643 PMCID: PMC11362769 DOI: 10.1016/j.molmet.2024.101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024] Open
Abstract
OBJECTIVE Retinitis pigmentosa (RP) is a hereditary retinal disease characterized by progressive photoreceptor degeneration, leading to vision loss. The best hope for a cure for RP lies in gene therapy. However, given that RP patients are most often diagnosed in the midst of ongoing photoreceptor degeneration, it is unknown how the retinal proteome changes as RP disease progresses, and which changes can be prevented, halted, or reversed by gene therapy. METHODS Here, we used a Pde6b-deficient RP gene therapy mouse model and performed untargeted proteomic analysis to identify changes in protein expression during degeneration and after treatment. RESULTS We demonstrated that Pde6b gene restoration led to a novel form of homeostatic plasticity in rod phototransduction which functionally compensates for the decreased number of rods. By profiling protein levels of metabolic genes and measuring metabolites, we observed an upregulation of proteins associated with oxidative phosphorylation in mutant and treated photoreceptors. CONCLUSION In conclusion, the metabolic demands of the retina differ in our Pde6b-deficient RP mouse model and are not rescued by gene therapy treatment. These findings provide novel insights into features of both RP disease progression and long-term rescue with gene therapy.
Collapse
Affiliation(s)
- Monika Ayten
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nundehui Díaz-Lezama
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hanaa Ghanawi
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Felia C Haffelder
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacqueline Kajtna
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tobias Straub
- Bioinformatics Unit, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Borso
- Molecular Biology, Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Axel Imhof
- Molecular Biology, Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne F Koch
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
4
|
Csaky KG, Miller JML, Martin DF, Johnson MW. Drug Approval for the Treatment of Geographic Atrophy: How We Got Here and Where We Need to Go. Am J Ophthalmol 2024; 263:231-239. [PMID: 38387826 PMCID: PMC11162935 DOI: 10.1016/j.ajo.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
PURPOSE To discuss the clinical trial results leading to the US Food and Drug Administration (FDA) approval of anti-complement therapies for geographic atrophy (GA), perspectives on functional data from the GA clinical trials, and how lessons from the FDA approval may guide future directions for basic and clinical research in AMD. DESIGN Selected literature review with analysis and perspective METHODS: We performed a targeted review of publicly available data from the clinical trials of pegcetacoplan and avacincaptad for the treatment of GA, as well as scientific literature on the natural history of GA and the genetics and basic science of complement in AMD. RESULTS The approval of pegcetacoplan and avacincaptad was based on an anatomic endpoint of a reduction in the rate of GA expansion over time. However, functional data from 2 phase 3 clinical trials for each drug demonstrated no visual benefit to patients in the treatment groups. Review of the genetics of AMD and the basic science of the role for complement in AMD provides only modest support for targeting complement as treatment for GA expansion, and alternative molecular targets for GA treatment are therefore discussed. Reasons for the disconnect between anatomic and functional outcomes in the clinical trials of anti-complement therapies are discussed, providing insight to guide the configuration of future clinical studies for GA. CONCLUSION Although avacincaptad and pegcetacoplan are our first FDA-approved treatments for GA, results from the clinical trials failed to show any functional improvement after 1 and 2 years, respectively, calling into question whether the drugs represent a "clinically relevant outcome." To improve the chances of more impactful therapies in the future, we provide basic-science rationale for pursuing non-complement targets; emphasize the importance of ongoing clinical research that more closely pins anatomic features of GA to functional outcomes; and provide suggestions for clinical endpoints for future clinical trials on GA.
Collapse
Affiliation(s)
- Karl G Csaky
- From the Retina Foundation of the Southwest (K.G.C.), Dallas, Texas, USA.
| | - Jason M L Miller
- Kellogg Eye Center (J.M.L.M., M.W.J.), University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program (J.M.L.M.), University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel F Martin
- Cole Eye Institute (D.F.M.), Cleveland Clinic, Cleveland Ohio, USA
| | - Mark W Johnson
- Kellogg Eye Center (J.M.L.M., M.W.J.), University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Ong J, Zarnegar A, Selvam A, Driban M, Chhablani J. The Complement System as a Therapeutic Target in Retinal Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:945. [PMID: 38929562 PMCID: PMC11205777 DOI: 10.3390/medicina60060945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
The complement cascade is a vital system in the human body's defense against pathogens. During the natural aging process, it has been observed that this system is imperative for ensuring the integrity and homeostasis of the retina. While this system is critical for proper host defense and retinal integrity, it has also been found that dysregulation of this system may lead to certain retinal pathologies, including geographic atrophy and diabetic retinopathy. Targeting components of the complement system for retinal diseases has been an area of interest, and in vivo, ex vivo, and clinical trials have been conducted in this area. Following clinical trials, medications targeting the complement system for retinal disease have also become available. In this manuscript, we discuss the pathophysiology of complement dysfunction in the retina and specific pathologies. We then describe the results of cellular, animal, and clinical studies targeting the complement system for retinal diseases. We then provide an overview of complement inhibitors that have been approved by the Food and Drug Administration (FDA) for geographic atrophy. The complement system in retinal diseases continues to serve as an emerging therapeutic target, and further research in this field will provide additional insights into the mechanisms and considerations for treatment of retinal pathologies.
Collapse
Affiliation(s)
- Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI 48105, USA
| | - Arman Zarnegar
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Amrish Selvam
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Matthew Driban
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Zhao Q, Lai K. Role of immune inflammation regulated by macrophage in the pathogenesis of age-related macular degeneration. Exp Eye Res 2024; 239:109770. [PMID: 38145794 DOI: 10.1016/j.exer.2023.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Age-related macular degeneration (AMD) can lead to irreversible impairment of visual function, and the number of patients with AMD has been increasing globally. The immunoinflammatory theory is an important pathogenic mechanism of AMD, with macrophages serving as the primary inflammatory infiltrating cells in AMD lesions. Its powerful immunoinflammatory regulatory function has attracted considerable attention. Herein, we provide an overview of the involvement of macrophage-regulated immunoinflammation in different stages of AMD. Additionally, we summarize novel therapeutic approaches for AMD, focusing on targeting macrophages, such as macrophage/microglia modulators, reduction of macrophage aggregation in the subretinal space, modulation of macrophage effector function, macrophage phenotypic alterations, and novel biomimetic nanocomposites development based on macrophage-associated functional properties. We aimed to provide a basis and reference for the further exploration of AMD pathogenesis, developmental influences, and new therapeutic approaches.
Collapse
Affiliation(s)
- Qin Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Chu L, Bi C, Wang C, Zhou H. The Relationship between Complements and Age-Related Macular Degeneration and Its Pathogenesis. J Ophthalmol 2024; 2024:6416773. [PMID: 38205100 PMCID: PMC10776198 DOI: 10.1155/2024/6416773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/08/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Age-related macular degeneration is a retinal disease that causes permanent loss of central vision in people over the age of 65. Its pathogenesis may be related to mitochondrial dysfunction, inflammation, apoptosis, autophagy, complement, intestinal flora, and lipid disorders. In addition, the patient's genes, age, gender, cardiovascular disease, unhealthy diet, and living habits may also be risk factors for this disease. Complement proteins are widely distributed in serum and tissue fluid. In the early 21st century, a connection was found between the complement cascade and age-related macular degeneration. However, little is known about the effect of complement factors on the pathogenesis of age-related macular degeneration. This article reviews the factors associated with age-related macular degeneration, the relationship between each factor and complement, the related functions, and variants and provides new ideas for the treatment of this disease.
Collapse
Affiliation(s)
- Liyuan Chu
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Chaoran Bi
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Caiming Wang
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyan Zhou
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Ahmed CM, Patel AP, Johnson HM, Ildefonso CJ, Lewin AS. Suppressor of cytokine signaling 3-derived peptide as a therapeutic for inflammatory and oxidative stress-induced damage to the retina. Mol Vis 2023; 29:338-356. [PMID: 38264613 PMCID: PMC10805335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Purpose Inflammation and oxidative stress contribute to age-related macular degeneration (AMD) and other retinal diseases. We tested a cell-penetrating peptide from the kinase inhibitory region of an intracellular checkpoint inhibitor suppressor of cytokine signaling 3 (R9-SOCS3-KIR) peptide for its ability to blunt the inflammatory or oxidative pathways leading to AMD. Methods We used anaphylatoxin C5a to mimic the effect of activated complement, lipopolysaccharide (LPS), and tumor necrosis factor alpha (TNFα) to stimulate inflammation and paraquat to induce mitochondrial oxidative stress. We used a human retinal pigment epithelium (RPE) cell line (ARPE-19) as proliferating cells and a mouse macrophage cell line (J774A.1) to follow cell propagation using microscopy or cell titer assays. We evaluated inflammatory pathways by monitoring the nuclear translocation of NF-κB p65 and mitogen-activated protein kinase p38. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were used to evaluate the induction of inflammatory markers. In differentiated ARPE-19 monolayers, we evaluated the integrity of tight junction proteins through microscopy and the measurement of transepithelial electrical resistance (TEER). We used intraperitoneal injection of sodium iodate in mice to test the ability of R9-SOC3-KIR to prevent RPE and retinal injury, as assessed by fundoscopy, optical coherence tomography, and histology. Results R9-SOCS3-KIR treatment suppressed C5a-induced nuclear translocation of the NF-kB activation domain p65 in undifferentiated ARPE-19 cells. TNF-mediated damage to tight junction proteins in RPE, and the loss of TEER was prevented in the presence of R9-SOCS3-KIR. Treatment with the R9-SOCS3-KIR peptide blocked the C5a-induced expression of inflammatory genes. The R9-SOCS3-KIR treatment also blocked the LPS-induced expression of interleukin-6, MCP1, cyclooxygenase 2, and interleukin-1 beta. R9-SOCS3-KIR prevented paraquat-mediated cell death and enhanced the levels of antioxidant effectors. Daily eye drop treatment with R9-SOCS3-KIR protected against retinal injury caused by i.p. administration of sodium iodate. Conclusions R9-SOCS3-KIR blocks the induction of inflammatory signaling in cell culture and reduces retinal damage in a widely used RPE/retinal oxidative injury model. As this peptide can be administered through corneal instillation, this treatment may offer a convenient way to slow down the progression of ocular diseases arising from inflammation and chronic oxidative stress.
Collapse
Affiliation(s)
- Chulbul M Ahmed
- Department of Molecular Genetics and Microbiology, University of Florida Gainesville, FL
| | - Anil P Patel
- Department of Molecular Genetics and Microbiology, University of Florida Gainesville, FL
| | - Howard M Johnson
- Department of Microbiology and Cell Science, University of Florida Gainesville, FL
| | | | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida Gainesville, FL
| |
Collapse
|
9
|
Rajanala K, Dotiwala F, Upadhyay A. Geographic atrophy: pathophysiology and current therapeutic strategies. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1327883. [PMID: 38983017 PMCID: PMC11182118 DOI: 10.3389/fopht.2023.1327883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 07/11/2024]
Abstract
Geographic atrophy (GA) is an advanced stage of age-related macular degeneration (AMD) that leads to gradual and permanent vision loss. GA is characterized by the loss of photoreceptor cells and retinal pigment epithelium (RPE), leading to distinct atrophic patches in the macula, which tends to increase with time. Patients with geographic atrophy often experience a gradual and painless loss of central vision, resulting in difficulty reading, recognizing faces, or performing activities that require detailed vision. The primary risk factor for the development of geographic atrophy is advanced age; however, other risk factors, such as family history, smoking, and certain genetic variations, are also associated with AMD. Diagnosis is usually based on a comprehensive eye examination, including imaging tests such as fundus photography, optical coherence tomography (OCT), and fluorescein angiography. Numerous clinical trials are underway, targeting identified molecular pathways associated with GA that are promising. Recent approvals of Syfovre and Izervay by the FDA for the treatment of GA provide hope to affected patients. Administration of these drugs resulted in slowing the rate of progression of the disease. Though these products provide treatment benefits to the patients, they do not offer a cure for geographic atrophy and are limited in efficacy. Considering these safety concerns and limited treatment benefits, there is still a significant need for therapeutics with improved efficacy, safety profiles, and better patient compliance. This comprehensive review discusses pathophysiology, currently approved products, their limitations, and potential future treatment strategies for GA.
Collapse
Affiliation(s)
| | | | - Arun Upadhyay
- Research and Development, Ocugen Inc., Malvern, PA, United States
| |
Collapse
|
10
|
Patel SS, Lally DR, Hsu J, Wykoff CC, Eichenbaum D, Heier JS, Jaffe GJ, Westby K, Desai D, Zhu L, Khanani AM. Avacincaptad pegol for geographic atrophy secondary to age-related macular degeneration: 18-month findings from the GATHER1 trial. Eye (Lond) 2023; 37:3551-3557. [PMID: 36964259 PMCID: PMC10686386 DOI: 10.1038/s41433-023-02497-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND/OBJECTIVES To assess the safety and efficacy of avacincaptad pegol (ACP), a C5 inhibitor, for geographic atrophy (GA) secondary to age-related macular degeneration (AMD) over an 18-month treatment course. SUBJECTS/METHODS This study was an international, prospective, randomized, double-masked, sham-controlled, phase 2/3 clinical trial that consisted of 2 parts. In part 1, 77 participants were randomized 1:1:1 to receive monthly intravitreal injections of ACP 1 mg, ACP 2 mg, or sham. In part 2, 209 participants were randomized 1:2:2 to receive monthly ACP 2 mg, ACP 4 mg, or sham. The mean rate of change of GA over 18 months was measured by fundus autofluorescence. RESULTS Compared with their respective sham cohorts, monthly ACP treatment reduced the mean GA growth (square root transformation) over 18 months by 28.1% (0.168 mm, 95% CI [0.066, 0.271]) for the 2 mg cohort and 30.0% (0.167 mm, 95% CI [0.062, 0.273]) for the 4 mg cohort. ACP treatment was generally well tolerated over 18 months, with most ocular adverse events (AEs) related to the injection procedure. Macular neovascularization (MNV) was more frequent in both 2 mg (11.9%) and 4 mg (15.7%) cohorts than their respective sham control groups (2.7% and 2.4%). CONCLUSIONS Over this 18-month study, ACP 2 mg and 4 mg showed continued reductions in the progression of GA growth compared to sham and continued to be generally well tolerated. A pivotal phase 3 GATHER2 trial is currently underway to support the efficacy and safety of ACP as a potential treatment for GA.
Collapse
Affiliation(s)
| | - David R Lally
- New England Retina Consultants, Springfield, MA, USA
| | - Jason Hsu
- The Retina Service of Wills Eye Hospital, Wills Eye Physicians-Mid Atlantic Retina, Philadelphia, PA, USA
| | | | - David Eichenbaum
- Retina Vitreous Associates of Florida, St. Petersburg, FL, USA
- Morsani College of Medicine at The University of South Florida, Tampa, FL, USA
| | | | - Glenn J Jaffe
- Department of Ophthalmology, Duke University, Durham, NC, USA
| | | | | | | | - Arshad M Khanani
- Sierra Eye Associates and The University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
11
|
Markitantova YV, Grigoryan EN. Cellular and Molecular Triggers of Retinal Regeneration in Amphibians. Life (Basel) 2023; 13:1981. [PMID: 37895363 PMCID: PMC10608152 DOI: 10.3390/life13101981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Understanding the mechanisms triggering the initiation of retinal regeneration in amphibians may advance the quest for prevention and treatment options for degenerating human retina diseases. Natural retinal regeneration in amphibians requires two cell sources, namely retinal pigment epithelium (RPE) and ciliary marginal zone. The disruption of RPE interaction with photoreceptors through surgery or injury triggers local and systemic responses for retinal protection. In mammals, disease-induced damage to the retina results in the shutdown of the function, cellular or oxidative stress, pronounced immune response, cell death and retinal degeneration. In contrast to retinal pathology in mammals, regenerative responses in amphibians have taxon-specific features ensuring efficient regeneration. These include rapid hemostasis, the recruitment of cells and factors of endogenous defense systems, activities of the immature immune system, high cell viability, and the efficiency of the extracellular matrix, cytoskeleton, and cell surface remodeling. These reactions are controlled by specific signaling pathways, transcription factors, and the epigenome, which are insufficiently studied. This review provides a summary of the mechanisms initiating retinal regeneration in amphibians and reveals its features collectively directed at recruiting universal responses to trauma to activate the cell sources of retinal regeneration. This study of the integrated molecular network of these processes is a prospect for future research in demand biomedicine.
Collapse
Affiliation(s)
| | - Eleonora N. Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
12
|
Spaide RF, Vavvas DG. COMPLEMENT INHIBITION FOR GEOGRAPHIC ATROPHY: Review of Salient Functional Outcomes and Perspective. Retina 2023; 43:1064-1069. [PMID: 36996460 DOI: 10.1097/iae.0000000000003796] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
PURPOSE To evaluate available rationale and outcomes of randomized trial results for complement inhibition for geographic atrophy. METHODS Data from recently completed randomized trials of complement inhibition, particularly for pegcetacoplan and avacincaptad pegol, were evaluated for both the outcome, area of autofluorescence loss, and functional vision tests. RESULTS Pegcetacoplan 2 mg showed statistically significant reduction in expansion of the area of autofluorescence loss with monthly, but not every-other-month dosing, in a 12-month phase two trial. Nearly 40% of patients recruited for the monthly arm did not complete the treatment. In two parallel phase 3 studies there was a statistically significant reduction in the area of atrophy in one but not both studies as compared with untreated controls. Data released at 24 months follow-up showed statistically significant reduction in the area of autofluorescence-detected atrophy in both studies compared with sham. Patients did not show functional difference in best-corrected visual acuity, maximum reading speed, Functional Reading Independence Index, and mean microperimetry threshold sensitivities in the treatment versus sham arms. Avacincaptad pegol was evaluated in two randomized pivotal studies and showed a statistically significant reduction in the expansion of autofluorescence loss at 12 months. Patients in the treatment arms did not show any difference as compared with sham in the best-corrected visual acuity or low luminance visual acuity, the only functional outcomes mentioned. Both drugs increased the risk of macular neovascularization. CONCLUSION Both avacincaptad pegol and pegcetacoplan show significant differences compared with sham in autofluorescence imaging but no benefit in visual function at 12 and 24 months, respectively.
Collapse
Affiliation(s)
- Richard F Spaide
- The Vitreous Retina, Macula Consultants of New York, New York, New York; and
| | - Demetrios G Vavvas
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Gibson BG, Cox TE, Marchbank KJ. Contribution of animal models to the mechanistic understanding of Alternative Pathway and Amplification Loop (AP/AL)-driven Complement-mediated Diseases. Immunol Rev 2023; 313:194-216. [PMID: 36203396 PMCID: PMC10092198 DOI: 10.1111/imr.13141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review aimed to capture the key findings that animal models have provided around the role of the alternative pathway and amplification loop (AP/AL) in disease. Animal models, particularly mouse models, have been incredibly useful to define the role of complement and the alternative pathway in health and disease; for instance, the use of cobra venom factor and depletion of C3 provided the initial insight that complement was essential to generate an appropriate adaptive immune response. The development of knockout mice have further underlined the importance of the AP/AL in disease, with the FH knockout mouse paving the way for the first anti-complement drugs. The impact from the development of FB, properdin, and C3 knockout mice closely follows this in terms of mechanistic understanding in disease. Indeed, our current understanding that complement plays a role in most conditions at one level or another is rooted in many of these in vivo studies. That C3, in particular, has roles beyond the obvious in innate and adaptive immunity, normal physiology, and cellular functions, with or without other recognized AP components, we would argue, only extends the reach of this arm of the complement system. Humanized mouse models also continue to play their part. Here, we argue that the animal models developed over the last few decades have truly helped define the role of the AP/AL in disease.
Collapse
Affiliation(s)
- Beth G. Gibson
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| | - Thomas E. Cox
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| | - Kevin J. Marchbank
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| |
Collapse
|
14
|
Yednock T, Fong DS, Lad EM. C1q and the classical complement cascade in geographic atrophy secondary to age-related macular degeneration. Int J Retina Vitreous 2022; 8:79. [PMID: 36348407 PMCID: PMC9641935 DOI: 10.1186/s40942-022-00431-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
Geographic atrophy (GA) secondary to age-related macular degeneration (AMD) is a retinal neurodegenerative disorder. Human genetic data support the complement system as a key component of pathogenesis in AMD, which has been further supported by pre-clinical and recent clinical studies. However, the involvement of the different complement pathways (classical, lectin, alternative), and thus the optimal complement inhibition target, has yet to be fully defined. There is evidence that C1q, the initiating molecule of the classical pathway, is a key driver of complement activity in AMD. C1q is expressed locally by infiltrating phagocytic cells and C1q-activating ligands are present at disease onset and continue to accumulate with disease progression. The accumulation of C1q on photoreceptor synapses with age and disease is consistent with its role in synapse elimination and neurodegeneration that has been observed in other neurodegenerative disorders. Furthermore, genetic deletion of C1q, local pharmacologic inhibition within the eye, or genetic deletion of downstream C4 prevents photoreceptor cell damage in mouse models. Hence, targeting the classical pathway in GA could provide a more specific therapeutic approach with potential for favorable efficacy and safety.
Collapse
Affiliation(s)
- Ted Yednock
- Annexon Biosciences, 1400 Sierra Point Parkway Building C, 2nd Floor, Brisbane, CA, 94005, USA
| | - Donald S Fong
- Annexon Biosciences, 1400 Sierra Point Parkway Building C, 2nd Floor, Brisbane, CA, 94005, USA.
| | - Eleonora M Lad
- Department of Ophthalmology, Duke University Medical Center, 2351 Erwin Rd, Durham, NC, 27705, USA
| |
Collapse
|
15
|
Luo S, Xu H, Gong X, Shen J, Chen X, Wu Z. The complement C3a‑C3aR and C5a‑C5aR pathways promote viability and inflammation of human retinal pigment epithelium cells by targeting NF‑κB signaling. Exp Ther Med 2022; 24:493. [PMID: 35837068 PMCID: PMC9257899 DOI: 10.3892/etm.2022.11420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/08/2022] [Indexed: 11/05/2022] Open
Abstract
Retinal detachment (RD) and its special form of rhegmatogenous RD associated with choroidal detachment (RRDCD) feature similar pathological alterations, including enhanced retinal cell inflammation. Although the importance of the complement components C3a and C5a and their corresponding receptors in retinal maintenance has been demonstrated, the relevance of these molecules to the pathogenesis of RD or RRDCD remains to be investigated. The contents of C3a, C5a and inflammatory factors, such as TNF-α, IL-1β, IL-6 and prostaglandin (PG)E2, in related clinical samples were examined by ELISA. Subsequently, human retinal pigment epithelial (HRPE) cells were subjected to challenge with the C3a and C5a recombinant proteins with or without C3a and C5a antagonists and NF-κB inhibitor, and the cell viability and inflammatory cytokines were then determined by a Cell Counting Kit-8 assay and ELISA, respectively. In addition, reverse transcription-quantitative PCR and western blot analyses were utilized to examine the mRNA or/and protein levels of C3a and its receptor C3aR, as well as C5a and its receptor C5aR, and NF-κB. In addition, the correlation of C3a and C5a with the aforementioned inflammatory factors was analyzed. The inflammatory factor levels of C3a and C5a were considerably elevated in patients with RRDCD compared to those in the controls. Consistently, C3a and C5a treatment led to increased cell viability and aggravated inflammation in HRPE cells. Accordingly, C3a and C5a induced upregulation of their corresponding receptors C3aR and C5aR, which was in turn observed to be linked to the activation of the NF-κB signaling pathway. Furthermore, there was a positive correlation of the complements C3a and C5a with individual TNF-α, IL-1β, IL-6 and PGE2. Taken together, the C3a-C3aR and C5a-C5aR pathways were indicated to promote cell viability and inflammation of HRPE cells by targeting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shasha Luo
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Huiyan Xu
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Xuechun Gong
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Jinyan Shen
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Xuan Chen
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Zhifeng Wu
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
16
|
Lin JB, Serghiou S, Miller JW, Vavvas DG. Systemic Complement Activation Profiles in Nonexudative Age-Related Macular Degeneration: A Systematic Review. OPHTHALMOLOGY SCIENCE 2022; 2:100118. [PMID: 35614900 PMCID: PMC9126439 DOI: 10.1016/j.xops.2022.100118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022]
Abstract
Topic To evaluate whether differences exist in systemic complement activation profiles in patients with early to intermediate nonexudative age-related macular degeneration (AMD) or geographic atrophy (GA) compared with control participants without AMD. Clinical Relevance Complement inhibition has emerged as a therapeutic strategy for GA, although clinical trials to date have yielded mixed results. Despite these efforts, no clear consensus exists regarding what portions of the complement pathway are dysregulated in AMD or when this dysregulation occurs relative to AMD stage. Although past studies have compared systemic complement activation profiles in patients with AMD versus in control participants without AMD, differences in AMD case definition and differing analytical approaches complicate their interpretation. Methods We performed a systematic review by identifying articles from database inception through October 11, 2020, that reported systemic complement activation profiles in patients with early or intermediate nonexudative AMD or GA versus control participants without AMD by searching PubMed, Google Scholar, and Embase. Risk of bias was assessed using a modified Newcastle-Ottawa score. Results The 8 reviewed studies included 2131 independent participants. Most studies report significantly higher systemic levels of products associated with complement activation and significantly lower systemic levels of products associated with complement inhibition in patients with early and advanced nonexudative AMD compared with control participants without AMD. Discussion Evidence suggests that systemic complement overactivation is a feature of early or intermediate and advanced nonexudative AMD. However, given significant heterogeneity, these findings are not conclusive and warrant further investigation.
Collapse
Affiliation(s)
- Jonathan B. Lin
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | | | - Joan W. Miller
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Demetrios G. Vavvas
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Abstract
The eye presents a unique opportunity for complement component 3 (C3) therapeutics. Drugs can be delivered directly to specific parts of the eye, and growing evidence has established a pivotal role for C3 in age-related macular degeneration (AMD). Emerging data show that C3 may be important to the pathophysiology of other eye diseases as well. This article will discuss the location of C3 expression in the eye as well as the preclinical and clinical data regarding C3's functions in AMD. We will provide a comprehensive review of developing C3 inhibitors for the eye, including the Phase 2 and 3 data for the C3 inhibitor pegcetacoplan as a treatment for the geographic atrophy of AMD. Developing evidence also points toward C3 as a therapeutic target for stages of AMD preceding geographic atrophy. We will also discuss data illuminating C3's relationship to other eye diseases, such as Stargardt disease, diabetic retinopathy, and glaucoma. In addition to being a converging point and centerpiece of the complement cascade, C3 has broad effects as a multifaceted controller of opsonophagocytosis, microglia/macrophage recruitment, and downstream terminal pathway activity. C3 is a crucial player in the pathophysiology of AMD but also seems to have importance in other diseases that are major causes of blindness. Directions for further investigation will be highlighted, as culminating evidence suggests that we may be approaching an era of C3 therapeutics for the eye.
Collapse
Affiliation(s)
- Benjamin J Kim
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Tianyu Liu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - John D Lambris
- Department of Laboratory Medicine and Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Mack HG, Colville DJ, Harraka P, Savige JA, Invernizzi A, Fraser-Bell S. Retinal findings in glomerulonephritis. Clin Exp Optom 2021; 105:474-486. [PMID: 34877922 DOI: 10.1080/08164622.2021.2003691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The complement system is part of the innate immune system activated by three distinct pathways: classical, lectin and alternative. It is also involved in retinal development and homoeostasis. Dense deposit disease is a rare renal disease associated with mutations in Complement factor H and overactivity of the alternative complement pathway. As well as glomerulonephritis, many affected individuals have retinal drusen and may be at risk of vision loss due to macular atrophy or choroidal neovascularisation. We discuss the reclassification of dense deposit disease as a type of C3 glomerulonephropathy, and hypothesise on the mechanisms of retinal abnormalities. Drusen have also been described in individuals with other types of glomerulonephritis involving abnormalities of the classical (membranoproliferative glomerulonephritis type 1) or lectin (IgA nephropathy, lupus nephritis) complement pathways. Although drusen are found in abnormalities of all three complement pathways, the age at onset, aetiology, and the threat to vision differs. This review describes drusen and other retinal abnormalities associated with the glomerulonephritides due to abnormal activation in each of the three complement activation pathways, and provides the first report of drusen occurring in a patient with the recently reclassified C3 glomerulonephritis with homozygous variant V62I in complement factor H. Optometric management of young patients presenting with retinal drusen is discussed, and complement-based therapies for visual loss are reviewed.
Collapse
Affiliation(s)
- Heather G Mack
- Department of Surgery (Ophthalmology), University of Melbourne, Melbourne, Australia.,Department of Ophthalmology, Melbourne Health, Melbourne, Australia.,Centre for Eye Research, University of Melbourne, Melbourne, Australia
| | - Deborah J Colville
- Department of Surgery (Ophthalmology), University of Melbourne, Melbourne, Australia.,Department of Ophthalmology, Melbourne Health, Melbourne, Australia
| | - Phillip Harraka
- Department of Medicine (Northern), University of Melbourne, Melbourne, Australia
| | - Judith Anne Savige
- Department of Medicine (Northern), University of Melbourne, Melbourne, Australia
| | - Alessandro Invernizzi
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy
| | | |
Collapse
|
19
|
Peterson SL, Li Y, Sun CJ, Wong KA, Leung KS, de Lima S, Hanovice NJ, Yuki K, Stevens B, Benowitz LI. Retinal Ganglion Cell Axon Regeneration Requires Complement and Myeloid Cell Activity within the Optic Nerve. J Neurosci 2021; 41:8508-8531. [PMID: 34417332 PMCID: PMC8513703 DOI: 10.1523/jneurosci.0555-21.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
Axon regenerative failure in the mature CNS contributes to functional deficits following many traumatic injuries, ischemic injuries, and neurodegenerative diseases. The complement cascade of the innate immune system responds to pathogen threat through inflammatory cell activation, pathogen opsonization, and pathogen lysis, and complement is also involved in CNS development, neuroplasticity, injury, and disease. Here, we investigated the involvement of the classical complement cascade and microglia/monocytes in CNS repair using the mouse optic nerve injury (ONI) model, in which axons arising from retinal ganglion cells (RGCs) are disrupted. We report that central complement C3 protein and mRNA, classical complement C1q protein and mRNA, and microglia/monocyte phagocytic complement receptor CR3 all increase in response to ONI, especially within the optic nerve itself. Importantly, genetic deletion of C1q, C3, or CR3 attenuates RGC axon regeneration induced by several distinct methods, with minimal effects on RGC survival. Local injections of C1q function-blocking antibody revealed that complement acts primarily within the optic nerve, not retina, to support regeneration. Moreover, C1q opsonizes and CR3+ microglia/monocytes phagocytose growth-inhibitory myelin debris after ONI, a likely mechanism through which complement and myeloid cells support axon regeneration. Collectively, these results indicate that local optic nerve complement-myeloid phagocytic signaling is required for CNS axon regrowth, emphasizing the axonal compartment and highlighting a beneficial neuroimmune role for complement and microglia/monocytes in CNS repair.SIGNIFICANCE STATEMENT Despite the importance of achieving axon regeneration after CNS injury and the inevitability of inflammation after such injury, the contributions of complement and microglia to CNS axon regeneration are largely unknown. Whereas inflammation is commonly thought to exacerbate the effects of CNS injury, we find that complement proteins C1q and C3 and microglia/monocyte phagocytic complement receptor CR3 are each required for retinal ganglion cell axon regeneration through the injured mouse optic nerve. Also, whereas studies of optic nerve regeneration generally focus on the retina, we show that the regeneration-relevant role of complement and microglia/monocytes likely involves myelin phagocytosis within the optic nerve. Thus, our results point to the importance of the innate immune response for CNS repair.
Collapse
Affiliation(s)
- Sheri L Peterson
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Yiqing Li
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong China, 510060
| | - Christina J Sun
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
| | - Kimberly A Wong
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Kylie S Leung
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
| | - Silmara de Lima
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Nicholas J Hanovice
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Kenya Yuki
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, and
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142
| | - Larry I Benowitz
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
20
|
Kim BJ, Mastellos DC, Li Y, Dunaief JL, Lambris JD. Targeting complement components C3 and C5 for the retina: Key concepts and lingering questions. Prog Retin Eye Res 2021; 83:100936. [PMID: 33321207 PMCID: PMC8197769 DOI: 10.1016/j.preteyeres.2020.100936] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration (AMD) remains a major cause of legal blindness, and treatment for the geographic atrophy form of AMD is a significant unmet need. Dysregulation of the complement cascade is thought to be instrumental for AMD pathophysiology. In particular, C3 and C5 are pivotal components of the complement cascade and have become leading therapeutic targets for AMD. In this article, we discuss C3 and C5 in detail, including their roles in AMD, biochemical and structural aspects, locations of expression, and the functions of C3 and C5 fragments. Further, the article critically reviews developing therapeutics aimed at C3 and C5, underscoring the potential effects of broad inhibition of complement at the level of C3 versus more specific inhibition at C5. The relationships of complement biology to the inflammasome and microglia/macrophage activity are highlighted. Concepts of C3 and C5 biology will be emphasized, while we point out questions that need to be settled and directions for future investigations.
Collapse
Affiliation(s)
- Benjamin J Kim
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Yafeng Li
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua L Dunaief
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Laboratory Medicine and Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Lin JB, Halawa OA, Miller JW, Vavvas DG. Complement Inhibition for Geographic Atrophy: A Tempting Target with Mixed Results. J Clin Med 2021; 10:jcm10132890. [PMID: 34209660 PMCID: PMC8267692 DOI: 10.3390/jcm10132890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 02/04/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness in older adults. One of the strongest genetic risk factors for AMD is a complement factor H (CFH) gene polymorphism characterized by a tyrosine-histidine change at amino acid position 402 (Y402H). The magnitude of this association between the Y402H variant and AMD is among the strongest that has been identified for any complex, multifactorial human disease. This strong association has motivated researchers to investigate a potential link between various elements of the complement pathway and AMD pathogenesis. Given the possible contribution of complement dysregulation to AMD, complement inhibition has emerged as a therapeutic strategy for slowing geographic atrophy (GA). Randomized clinical trials thus far have yielded mixed results. In this article, we provide the historical context for complement inhibition as a strategy for treating GA, discuss potential advantages and disadvantages of complement inhibition, and highlight the questions that must be addressed before complement inhibition can take center stage as a therapy for AMD.
Collapse
|
22
|
Fatoba O, Itokazu T, Yamashita T. Complement cascade functions during brain development and neurodegeneration. FEBS J 2021; 289:2085-2109. [PMID: 33599083 DOI: 10.1111/febs.15772] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
The complement system, an essential tightly regulated innate immune system, is a key regulator of normal central nervous system (CNS) development and function. However, aberrant complement component expression and activation in the brain may culminate into marked neuroinflammatory response, neurodegenerative processes and cognitive impairment. Over the years, complement-mediated neuroinflammatory responses and complement-driven neurodegeneration have been increasingly implicated in the pathogenesis of a wide spectrum of CNS disorders. This review describes how complement system contributes to normal brain development and function. We also discuss how pathologic insults such as misfolded proteins, lipid droplet/lipid droplet-associated protein or glycosaminoglycan accumulation could trigger complement-mediated neuroinflammatory responses and neurodegenerative process in neurodegenerative proteinopathies, age-related macular degeneration and neurodegenerative lysosomal storage disorders.
Collapse
Affiliation(s)
- Oluwaseun Fatoba
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
23
|
Malsy J, Alvarado AC, Lamontagne JO, Strittmatter K, Marneros AG. Distinct effects of complement and of NLRP3- and non-NLRP3 inflammasomes for choroidal neovascularization. eLife 2020; 9:60194. [PMID: 33305736 PMCID: PMC7732340 DOI: 10.7554/elife.60194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
NLRP3 inflammasome activation and complement-mediated inflammation have been implicated in promoting choroidal neovascularization (CNV) in age-related macular degeneration (AMD), but central questions regarding their contributions to AMD pathogenesis remain unanswered. Key open questions are (1) whether NLRP3 inflammasome activation mainly in retinal pigment epithelium (RPE) or rather in non-RPE cells promotes CNV, (2) whether inflammasome activation in CNV occurs via NLRP3 or also through NLRP3-independent mechanisms, and (3) whether complement activation induces inflammasome activation in CNV. Here we show in a neovascular AMD mouse model that NLRP3 inflammasome activation in non-RPE cells but not in RPE cells promotes CNV. We demonstrate that both NLRP3-dependent and NLRP3-independent inflammasome activation mechanisms induce CNV. Finally, we find that complement and inflammasomes promote CNV through independent mechanisms. Our findings uncover an unexpected role of non-NLRP3 inflammasomes for CNV and suggest that combination therapies targeting inflammasomes and complement may offer synergistic benefits to inhibit CNV.
Collapse
Affiliation(s)
- Jakob Malsy
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, United States.,Department of Ophthalmology, University of Halle, Halle, Germany
| | - Andrea C Alvarado
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| | - Joseph O Lamontagne
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| | - Karin Strittmatter
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| | - Alexander G Marneros
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| |
Collapse
|
24
|
Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, Stone L, Naggert JK, Nishina PM, Krebs MP. Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells 2020; 9:E931. [PMID: 32290105 PMCID: PMC7227028 DOI: 10.3390/cells9040931] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Navdeep Gogna
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jai Pinkney
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| |
Collapse
|
25
|
Mirzaei M, Deng L, Gupta VB, Graham S, Gupta V. Complement pathway in Alzheimer's pathology and retinal neurodegenerative disorders - the road ahead. Neural Regen Res 2020; 15:257-258. [PMID: 31552893 PMCID: PMC6905341 DOI: 10.4103/1673-5374.265550] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Mehdi Mirzaei
- Department of Molecular Sciences; Australian Proteome Analysis Facility; Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Liting Deng
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Veer Bala Gupta
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Stuart Graham
- Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
26
|
Li S, Li D, Shao M, Cao W, Sun X. Decreased Serum Levels of Complement C3 Reflect Complement System Dysregulation in Patients With Primary Open-angle Glaucoma: Results From a Pilot Study. J Glaucoma 2019; 27:761-768. [PMID: 30036292 DOI: 10.1097/ijg.0000000000001014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE To evaluate the serum complement component (C)3 concentration in patients with primary open-angle glaucoma (POAG) and to investigate the association between C3 levels and POAG severity. MATERIALS AND METHODS This study enrolled 190 consecutive POAG patients and 204 normal control subjects. A detailed eye and systematic examination, including intraocular pressure, gonioscopy, fundus photography, A-scan ultrasound, visual field testing, electrocardiograms, x-rays, liver function, renal function, infectious disease, etc., and measurement of serum C3 concentration by immunoturbidimetry, was performed. The subgroups were classified according to age (17 to 29, 30 to 49, 50 to 69, 70+ y), sex, and visual field: mild (MD≤6 dB), moderate (6 dB<MD≤12 dB), and severe (MD>12 dB) glaucoma. RESULTS The serum C3 level of the POAG (95.63±17.71 mg/dL) was ∼20.93% lower than that of the control group (115.65±22.19 mg/dL) (P<0.001). A similar result was observed when serum levels of C3 were compared between the POAG and control groups with respect to age and sex. The mean serum C3 level was lowest in the severe POAG group (85.18±19.62 mg/dL), followed by the moderate POAG group (96.62±12.63 mg/dL) and the mild POAG group (110.44±14.89 mg/dL) (P<0.001). Multiple logistic regression analyses revealed a significant correlation between the C3 levels and the vertical cup-disc ratio (B=-0.373, P=0.026), C3 levels and MD (B=-0.546, P=0.001). Logistic regression analyses revealed that serum C3 levels were associated (odds ratio=0.939, 95% CI=0.901-0.979, P=0.003) with severity of POAG. CONCLUSIONS The POAG patients had decreased C3 levels, which were further negatively associated with POAG severity, suggesting the involvement of C3 in the pathomechanisms of POAG.
Collapse
Affiliation(s)
- Shengjie Li
- Departments of Clinical Laboratory.,Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University
| | - Danhui Li
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School, Xi'an Jiaotong University, Xi'an, Shanxi, China
| | | | - Wenjun Cao
- Departments of Clinical Laboratory.,Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University
| | - Xinghuai Sun
- Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University.,Key Laboratory of Myopia, Ministry of Health, Fudan University.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai
| |
Collapse
|
27
|
Silverman SM, Ma W, Wang X, Zhao L, Wong WT. C3- and CR3-dependent microglial clearance protects photoreceptors in retinitis pigmentosa. J Exp Med 2019; 216:1925-1943. [PMID: 31209071 PMCID: PMC6683998 DOI: 10.1084/jem.20190009] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/04/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022] Open
Abstract
Silverman et al. demonstrate that complement activation features prominently in retinitis pigmentosa in close association with activated microglia. This response mediates adaptive neuroprotection for photoreceptors by facilitating a C3-CR3–dependent clearance of apoptotic photoreceptors by microglial phagocytosis. Complement activation has been implicated as contributing to neurodegeneration in retinal and brain pathologies, but its role in retinitis pigmentosa (RP), an inherited and largely incurable photoreceptor degenerative disease, is unclear. We found that multiple complement components were markedly up-regulated in retinas with human RP and the rd10 mouse model, coinciding spatiotemporally with photoreceptor degeneration, with increased C3 expression and activation localizing to activated retinal microglia. Genetic ablation of C3 accelerated structural and functional photoreceptor degeneration and altered retinal inflammatory gene expression. These phenotypes were recapitulated by genetic deletion of CR3, a microglia-expressed receptor for the C3 activation product iC3b, implicating C3-CR3 signaling as a regulator of microglia–photoreceptor interactions. Deficiency of C3 or CR3 decreased microglial phagocytosis of apoptotic photoreceptors and increased microglial neurotoxicity to photoreceptors, demonstrating a novel adaptive role for complement-mediated microglial clearance of apoptotic photoreceptors in RP. These homeostatic neuroinflammatory mechanisms are relevant to the design and interpretation of immunomodulatory therapeutic approaches to retinal degenerative disease.
Collapse
Affiliation(s)
- Sean M Silverman
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Wenxin Ma
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Xu Wang
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Lian Zhao
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Wai T Wong
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
28
|
Kumar-Singh R. The role of complement membrane attack complex in dry and wet AMD - From hypothesis to clinical trials. Exp Eye Res 2019; 184:266-277. [PMID: 31082363 DOI: 10.1016/j.exer.2019.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
Data from human dry and wet age-related macular degeneration (AMD) eyes support the hypothesis that constant 'tickover' of the alternative complement pathway results in chronic deposition of the complement membrane attack complex (MAC) on the choriocapillaris and the retinal pigment epithelium (RPE). Sub-lytic levels of MAC lead to cell signaling associated with tissue remodeling and the production of cytokines and inflammatory molecules. Lytic levels of MAC lead to cell death. CD59 is a naturally occurring inhibitor of the assembly of MAC. CD59 may thus be therapeutically efficacious against the pathophysiology of dry and wet AMD. The first gene therapy clinical trial for geographic atrophy - the advanced form of dry AMD has recently completed recruitment. This trial is studying the safety and tolerability of expressing CD59 from an adeno-associated virus (AAV) vector injected once into the vitreous. A second clinical trial assessing the efficacy of CD59 in wet AMD patients is also under way. Herein, the evidence for the role of MAC in the pathophysiology of dry as well as wet AMD and the scientific rationale underlying the use of AAV- delivered CD59 for the treatment of dry and wet AMD is discussed.
Collapse
Affiliation(s)
- Rajendra Kumar-Singh
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
29
|
Yu M, Peachey NS. Use of Direct Current Electroretinography for Analysis of Retinal Pigment Epithelium Function in Mouse Models. Methods Mol Biol 2019; 1753:103-113. [PMID: 29564784 DOI: 10.1007/978-1-4939-7720-8_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
A monolayer of pigmented epithelial cells, the retinal pigment epithelium (RPE), supports photoreceptor function in many ways. Consistent with these roles, RPE dysfunction underlies a number of hereditary retinal disorders. To monitor RPE function in vivo models for these conditions, we adapted an electroretinographic (ERG) technique based on direct current amplification (DC-ERG). This chapter describes the main features of this approach and its application to mouse models involving the RPE.
Collapse
Affiliation(s)
- Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA. .,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Neal S Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
30
|
Adaptive and Maladaptive Complement Activation in the Retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:33-37. [DOI: 10.1007/978-3-030-27378-1_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Yu M, Yan W, Beight C. Lutein and Zeaxanthin Isomers Reduce Photoreceptor Degeneration in the Pde6b rd10 Mouse Model of Retinitis Pigmentosa. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4374087. [PMID: 30643804 PMCID: PMC6311858 DOI: 10.1155/2018/4374087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022]
Abstract
PURPOSE Lutein, RR-zeaxanthin, and RS-zeaxanthin (L-Z) are antioxidants which can reduce endoplasmic reticulum stress (ERS) and oxidative stress (OS), and ameliorate neurodegenerative diseases. However, their treatment effect in the Pde6b rd10 (rd10) mouse model of retinitis pigmentosa (RP) and the underlying cellular mechanisms have not been studied. ERS is an important factor which causes photoreceptor apoptosis. The aim of the current project is to test the treatment effect of L-Z in rd10 mice and to investigate the underlying molecular mechanisms of ERS. METHODS L-Z (Lutemax 2020, 10 mg/kg) diluted in sunflower oil (SFO, 1 mg/ml) or the same volume of SFO was administrated via gavage from postnatal day 6 (P6) to P20 daily in L-Z group (n=5) or SFO group (n=6) of rd10 mice. At P21, electroretinography (ERG) was performed to show the functional change of retinas. 78 kDa glucose-regulated protein (GRP78) and endoplasmic reticulum protein 29 (ERp29) were tested by western blot and immunostaining. RESULTS The ERG amplitudes were larger in the L-Z group than those of the SFO group in all flash luminances of dark-adapted and light-adapted ERG (all p < 0.01). Western blot revealed that GRP78 in the retinas of the L-Z group was significantly downregulated compared to that of the SFO group (p < 0.01). Meanwhile, the retinal ERp29 protein was significantly upregulated in the L-Z treatment group than that of the SFO group (p < 0.01). CONCLUSIONS L-Z provide protection to the photoreceptors of rd10 mouse model of RP, which is probably associated with the reduction of ERS.
Collapse
Affiliation(s)
- Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Weiming Yan
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, Fourth Military University, Xi'an, China
| | - Craig Beight
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| |
Collapse
|
32
|
Krogh Nielsen M, Subhi Y, Molbech CR, Falk MK, Singh A, Nissen MH, Sørensen TL. Patients with a fast progression profile in geographic atrophy have increased CD200 expression on circulating monocytes. Clin Exp Ophthalmol 2018; 47:69-78. [PMID: 30047199 DOI: 10.1111/ceo.13362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/27/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022]
Abstract
IMPORTANCE Geographic atrophy (GA) is a progressing atrophy of the neuroretina with no treatment option. BACKGROUND Age-related malfunction of retinal microglia amplifies response towards age-related tissue stress in age-related macular degeneration. Here, we investigated monocyte CD200 expression - the circulating middleman negotiating retinal microglial activity - in a poorly understood subtype of age-related macular degeneration. DESIGN Prospective case-control study. PARTICIPANTS Forty-six patients with GA and 26 healthy controls were included. METHODS All participants were subjected to a structured interview and detailed retinal examination. Controls were recruited from patient's spouses accompanying them in the clinic to match the groups best possibly. Participants had no history of immune disorders or cancer, and did not receive any immune-modulating medication. Patients did not have any history or sign of choroidal neovascularization in either eye. Fresh drawn blood was stained with monoclonal antibodies and prepared for flow cytometry to evaluate CD200 expression in monocytes and their functional subsets. MAIN OUTCOME MEASURES The percentage of CD200+ monocytes in patients and controls. RESULTS We found that monocytes were more CD200 positive in patients with GA compared to healthy age-matched controls. Then, we explored the potential relationship between CD200 expression and important fundus autofluorescence patterns that predict disease progression. Patients with a high risk of progression (patients with high degree of hyperautofluorescence) had distinctly increased CD200 expression compared to other patients with GA. CONCLUSIONS AND RELEVANCE Our data reveals that abnormal monocytic CD200 expression is present in GA, and in particular among those identified as fast progressors.
Collapse
Affiliation(s)
- Marie Krogh Nielsen
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark.,Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Yousif Subhi
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark.,Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Christopher R Molbech
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark.,Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Mads K Falk
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
| | - Amardeep Singh
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Sciences Lund, Ophthalmology, Skane University Hospital, Lund University, Lund, Sweden
| | - Mogens H Nissen
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.,Eye Research Unit, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Torben L Sørensen
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark.,Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Keenan TD, Agrón E, Domalpally A, Clemons TE, van Asten F, Wong WT, Danis RG, Sadda S, Rosenfeld PJ, Klein ML, Ratnapriya R, Swaroop A, Ferris FL, Chew EY. Progression of Geographic Atrophy in Age-related Macular Degeneration: AREDS2 Report Number 16. Ophthalmology 2018; 125:1913-1928. [PMID: 30060980 DOI: 10.1016/j.ophtha.2018.05.028] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/25/2023] Open
Abstract
PURPOSE To analyze the prevalence, incidence, and clinical characteristics of eyes with geographic atrophy (GA) in age-related macular degeneration (AMD), including clinical and genetic factors affecting enlargement. DESIGN Prospective cohort study within a controlled clinical trial. PARTICIPANTS Age-Related Eye Disease Study 2 (AREDS2) participants, aged 50-85 years. METHODS Baseline and annual stereoscopic color fundus photographs were evaluated for GA presence and area. Analyses included GA prevalence and incidence rates, Kaplan-Meier rates, mixed-model regression, and multivariable analysis of the square root of GA, area adjusted for covariates, including clinical/imaging characteristics and genotype. MAIN OUTCOME MEASURES (1) Presence or development of GA; (2) change in the square root of GA area over time. RESULTS At baseline, 517 eyes (6.2%) of 411 participants (9.8%) had pre-existing GA (without neovascular AMD), with the following characteristics: 33% central, 67% noncentral; and the following configurations: 36% small, 26% solid/unifocal, 24% multifocal, 9% horseshoe/ring, and 6% indeterminate. Of the remaining 6530 eyes at risk, 1099 eyes (17.3%) of 883 participants developed incident GA without prior neovascular disease during mean follow-up of 4.4 years. The Kaplan-Meier rate of incident GA was 19% of eyes at 5 years. In eyes with incident GA, 4-year risk of subsequent neovascular AMD was 29%. In eyes with incident noncentral GA, 4-year risk of central involvement was 57%. GA enlargement rate (following square root transformation) was similar in eyes with pre-existing GA (0.29 mm/year; 95% confidence interval 0.27-0.30) and incident GA (0.28 mm/year; 0.27-0.30). In the combined group, GA enlargement was significantly faster with noncentrality, multifocality, intermediate baseline size, and bilateral GA (P < 0.0001 for interaction in each case) but not with AREDS2 treatment assignment (P = 0.33) or smoking status (P = 0.05). Enlargement was significantly faster with ARMS2 risk (P < 0.0001), C3 non-risk (P = 0.0002), and APOE non-risk (P = 0.001) genotypes. CONCLUSIONS Analyses of AREDS2 data on natural history of GA provide representative data on GA evolution and enlargement. GA enlargement, which was influenced by lesion features, was relentless, resulting in rapid central vision loss. The genetic variants associated with faster enlargement were partially distinct from those associated with risk of incident GA. These findings are relevant to further investigations of GA pathogenesis and clinical trial planning.
Collapse
Affiliation(s)
- Tiarnan D Keenan
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Elvira Agrón
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Amitha Domalpally
- Fundus Photographic Reading Center, The University of Wisconsin, Madison, Wisconsin
| | | | - Freekje van Asten
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Wai T Wong
- Unit on Microglia, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Ronald G Danis
- Fundus Photographic Reading Center, The University of Wisconsin, Madison, Wisconsin
| | | | - Philip J Rosenfeld
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Michael L Klein
- Casey Eye Institute, Portland, Oregon; Devers Eye Clinic, Portland, Oregon
| | - Rinki Ratnapriya
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Frederick L Ferris
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
| | | |
Collapse
|
34
|
Sadik CD, Miyabe Y, Sezin T, Luster AD. The critical role of C5a as an initiator of neutrophil-mediated autoimmune inflammation of the joint and skin. Semin Immunol 2018; 37:21-29. [PMID: 29602515 DOI: 10.1016/j.smim.2018.03.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/15/2023]
Abstract
The deposition of IgG autoantibodies in peripheral tissues and the subsequent activation of the complement system, which leads to the accumulation of the anaphylatoxin C5a in these tissues, is a common hallmark of diverse autoimmune diseases, including rheumatoid arthritis (RA) and pemphigoid diseases (PDs). C5a is a potent chemoattractant for granulocytes and mice deficient in its precursor C5 or its receptor C5aR1 are resistant to granulocyte recruitment and, consequently, to tissue inflammation in several models of autoimmune diseases. However, the mechanism whereby C5a/C5aR regulates granulocyte recruitment in these diseases has remained elusive. Mechanistic studies over the past five years into the role of C5a/C5aR1 in the K/BxN serum arthritis mouse model have provided novel insights into the mechanisms C5a/C5aR1 engages to initiate granulocyte recruitment into the joint. It is now established that the critical actions of C5a/C5aR1 do not proceed in the joint itself, but on the luminal endothelial surface of the joint vasculature, where C5a/C5aR1 mediate the arrest of neutrophils on the endothelium by activating β2 integrin. Then, C5a/C5aR1 induces the release of leukotriene B4 (LTB4) from the arrested neutrophils. The latter, subsequently, initiates by autocrine/paracrine actions via its receptor BLT1 the egress of neutrophils from the blood vessel lumen into the interstitial. Compelling evidence suggests that this C5a/C5aR1-LTB4/BLT1 axis driving granulocyte recruitment in arthritis may represent a more generalizable biological principle critically regulating effector cell recruitment in other IgG autoantibody-induced diseases, such as in pemphigoid diseases. Thus, dual inhibition of C5a and LTB4, as implemented in nature by the lipocalin coversin in the soft-tick Ornithodoros moubata, may constitute a most effective therapeutic principle for the treatment of IgG autoantibody-driven diseases.
Collapse
Affiliation(s)
- Christian D Sadik
- Department of Dermatology, Allergy, and Venereology University of Lübeck, 23538, Lübeck, Germany.
| | - Yoshishige Miyabe
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tanya Sezin
- Department of Dermatology, Allergy, and Venereology University of Lübeck, 23538, Lübeck, Germany
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Mukai R, Okunuki Y, Husain D, Kim CB, Lambris JD, Connor KM. The Complement System Is Critical in Maintaining Retinal Integrity during Aging. Front Aging Neurosci 2018; 10:15. [PMID: 29497373 PMCID: PMC5818470 DOI: 10.3389/fnagi.2018.00015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/12/2018] [Indexed: 12/20/2022] Open
Abstract
The complement system is a key component of innate immunity comprised of soluble components that form a proteolytic cascade leading to the generation of effector molecules involved in cellular clearance. This system is highly activated not only under general inflammatory conditions such as infections, collagen diseases, nephritis, and liver diseases, but also in focal ocular diseases. However, little is known about the role of the complement system in retinal homeostasis during aging. Using young (6-week-old) and adult (6-month-old) mice in wild type (C57BL/6) and complement knockout strains (C1q−/−, Mbl a/c−/−, Fb−/−, C3−/−, and C5−/−), we compared amplitudes of electroretinograms (ERG) and thicknesses of retinal layers in spectral domain optical coherence tomography between young and adult mice. The ERG amplitudes in adult mice were significantly decreased (p < 0.001, p < 0.0001) compared to that of young mice in all complement knockout strains, and there were significant decreases in the inner nuclear layer (INL) thickness in adult mice compared to young mice in all complement knockout strains (p < 0.0001). There were no significant differences in ERG amplitude or thickness of the INL between young and adult control mice. These data suggest that the complement system plays an important role in maintaining normal retinal integrity over time.
Collapse
Affiliation(s)
- Ryo Mukai
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Harvard University, Boston, MA, United States.,Department Ophthalmology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yoko Okunuki
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Deeba Husain
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Clifford B Kim
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Harvard University, Boston, MA, United States
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kip M Connor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Harvard University, Boston, MA, United States
| |
Collapse
|
36
|
Panton-Valentine Leukocidin Colocalizes with Retinal Ganglion and Amacrine Cells and Activates Glial Reactions and Microglial Apoptosis. Sci Rep 2018; 8:2953. [PMID: 29440661 PMCID: PMC5811455 DOI: 10.1038/s41598-018-20590-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Experimental models have established Panton-Valentine leukocidin (PVL) as a potential critical virulence factor during Staphylococcus aureus endophthalmitis. In the present study, we aimed to identify retinal cell targets for PVL and to analyze early retinal changes during infection. After the intravitreous injection of PVL, adult rabbits were euthanized at different time points (30 min, 1, 2, 4 and 8 h). PVL location in the retina, expression of its binding receptor C5a receptor (C5aR), and changes in Müller and microglial cells were analyzed using immunohistochemistry, Western blotting and RT-qPCR. In this model of PVL eye intoxication, only retinal ganglion cells (RGCs) expressed C5aR, and PVL was identified on the surface of two kinds of retinal neural cells. PVL-linked fluorescence increased in RGCs over time, reaching 98% of all RGCs 2 h after PVL injection. However, displaced amacrine cells (DACs) transiently colocalized with PVL. Müller and microglial cells were increasingly activated after injection over time. IL-6 expression in retina increased and some microglial cells underwent apoptosis 4 h and 8 h after PVL infection, probably because of abnormal nitrotyrosine production in the retina.
Collapse
|
37
|
Grajales-Esquivel E, Luz-Madrigal A, Bierly J, Haynes T, Reis ES, Han Z, Gutierrez C, McKinney Z, Tzekou A, Lambris JD, Tsonis PA, Del Rio-Tsonis K. Complement component C3aR constitutes a novel regulator for chick eye morphogenesis. Dev Biol 2017; 428:88-100. [PMID: 28576690 PMCID: PMC5726978 DOI: 10.1016/j.ydbio.2017.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/05/2016] [Accepted: 05/17/2017] [Indexed: 12/22/2022]
Abstract
Complement components have been implicated in a wide variety of functions including neurogenesis, proliferation, cell migration, differentiation, cancer, and more recently early development and regeneration. Following our initial observations indicating that C3a/C3aR signaling induces chick retina regeneration, we analyzed its role in chick eye morphogenesis. During eye development, the optic vesicle (OV) invaginates to generate a bilayer optic cup (OC) that gives rise to the retinal pigmented epithelium (RPE) and neural retina. We show by immunofluorescence staining that C3 and the receptor for C3a (the cleaved and active form of C3), C3aR, are present in chick embryos during eye morphogenesis in the OV and OC. Interestingly, C3aR is mainly localized in the nuclear compartment at the OC stage. Loss of function studies at the OV stage using morpholinos or a blocking antibody targeting the C3aR (anti-C3aR Ab), causes eye defects such as microphthalmia and defects in the ventral portion of the eye that result in coloboma. Such defects were not observed when C3aR was disrupted at the OC stage. Histological analysis demonstrated that microphthalmic eyes were unable to generate a normal optic stalk or a closed OC. The dorsal/ventral patterning defects were accompanied by an expansion of the ventral markers Pax2, cVax and retinoic acid synthesizing enzyme raldh-3 (aldh1a3) domains, an absence of the dorsal expression of Tbx5 and raldh-1 (aldh1a1) and a re-specification of the ventral RPE to neuroepithelium. In addition, the eyes showed overall decreased expression of Gli1 and a change in distribution of nuclear β-catenin, suggesting that Shh and Wnt pathways have been affected. Finally, we observed prominent cell death along with a decrease in proliferating cells, indicating that both processes contribute to the microphthalmic phenotype. Together our results show that C3aR is necessary for the proper morphogenesis of the OC. This is the first report implicating C3aR in eye development, revealing an unsuspected hitherto regulator for proper chick eye morphogenesis.
Collapse
Affiliation(s)
- Erika Grajales-Esquivel
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Agustin Luz-Madrigal
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA; Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, OH 45469, USA.
| | - Jeffrey Bierly
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Tracy Haynes
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Zeyu Han
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Christian Gutierrez
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Zachary McKinney
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Apostolia Tzekou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Panagiotis A Tsonis
- Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, OH 45469, USA.
| | - Katia Del Rio-Tsonis
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| |
Collapse
|
38
|
Song D, Sulewski ME, Wang C, Song J, Bhuyan R, Sterling J, Clark E, Song WC, Dunaief JL. Complement C5a receptor knockout has diminished light-induced microglia/macrophage retinal migration. Mol Vis 2017; 23:210-218. [PMID: 28442885 PMCID: PMC5389337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/07/2017] [Indexed: 11/02/2022] Open
Abstract
PURPOSE The complement system is involved in the pathogenesis of age-related macular degeneration (AMD). Because activated microglia are also associated with AMD, we studied the relationship between complement anaphylatoxin receptors and microglial recruitment. METHODS We assessed the effect of anaphylatoxin C3a receptor (C3aR) and C5a receptor (C5aR) knockout (KO) on light damage-induced migration of microglia/macrophages into the mouse outer retina via immunofluorescence and real-time quantitative PCR. RESULTS We found that the mRNA levels of C3, C5, C3aR, C5aR, and two activators of the complement alternative pathway, Cfb and Cfd, were all upregulated after light exposure. Retinal Iba1-positive microglia/macrophages express receptors for C3a and C5a. Light damage increased the number of retinal Iba1-positive cells and the mRNA levels of Iba1. Compared with the wild-type (WT) mice, these increases were attenuated in the C5aR KO mice but not in the C3aR KO mice. CONCLUSIONS C5aR but not C3aR promoted the recruitment of microglia/macrophages. These divergent properties of complement anaphylatoxins in the light damage model provide a rationale for testing the differential effects of these receptors in additional retinal and neurodegeneration models.
Collapse
Affiliation(s)
- Delu Song
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, PA
| | - Michael E. Sulewski
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, PA
| | - Chenguang Wang
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, PA,Department of Ophthalmology, The Second Hospital of Jilin University, Jilin, China
| | - Jiantao Song
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, PA,Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rupak Bhuyan
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, PA
| | - Jacob Sterling
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, PA
| | - Esther Clark
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, PA
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at University of Pennsylvania, PA
| | - Joshua L. Dunaief
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, PA
| |
Collapse
|
39
|
Kubicka-Trząska A, Wilańska J, Romanowska-Dixon B, Sanak M. Serum anti-endothelial cell antibodies in patients with age-related macular degeneration treated with intravitreal bevacizumab. Acta Ophthalmol 2016; 94:e617-e623. [PMID: 27329255 DOI: 10.1111/aos.13033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 01/23/2016] [Indexed: 12/28/2022]
Abstract
PURPOSE To analyse the prevalence and changes in circulating anti-endothelial cell antibodies (AECA) during anti-vascular endothelial growth factor (anti-VEGF) therapy. METHODS Ninety-eight patients with exudative age-related macular degeneration (AMD) were treated with intravitreal bevacizumab. Fifty sex- and age-matched healthy subjects were used as controls. Serum AECA were detected using indirect immunofluorescence on primate skeletal muscle and cultivated human umbilical vein endothelial cells (HUVEC). These investigations were repeated at 4-week intervals within 8 months of follow-up. RESULTS At baseline examination, 30 of the 98 patients (30.6%) were positive for AECA. The titres of AECA ranged from 1:10 to 1:320. In the control group, AECA were present in only nine sera (18%) with titres ranging between 1:20 and 1:80 (p = 0.0000). The greatest rates of reduction of AECA titres were observed during the 'loading' phase of therapy. During the 'maintenance' phase, the rates of changes in serum AECA levels were less significant and remained constant. In follow-up period in 13 patients (13.3%), serum AECA were detected de novo in titres of 1:10 to 1:80. Statistical analysis did not show any significant correlation between the presence of AECA and activity of the disease. CONCLUSIONS There is growing evidence that AMD is an immune-mediated disease, and thus it cannot be excluded that AECA may be involved in its pathogenesis and progression. We also speculate that AECA develop in response to retinal damage and anti-VEGF therapy.
Collapse
Affiliation(s)
- Agnieszka Kubicka-Trząska
- Department of Ophthalmology and Ocular Oncology; Jagiellonian University Medical College; Krakow Malopolska Poland
| | - Joanna Wilańska
- Division of Molecular Biology and Clinical Genetics; Jagiellonian University Medical College; Krakow Malopolska Poland
| | - Bożena Romanowska-Dixon
- Department of Ophthalmology and Ocular Oncology; Jagiellonian University Medical College; Krakow Malopolska Poland
| | - Marek Sanak
- Division of Molecular Biology and Clinical Genetics; Jagiellonian University Medical College; Krakow Malopolska Poland
| |
Collapse
|
40
|
Eidet JR, Reppe S, Pasovic L, Olstad OK, Lyberg T, Khan AZ, Fostad IG, Chen DF, Utheim TP. The Silk-protein Sericin Induces Rapid Melanization of Cultured Primary Human Retinal Pigment Epithelial Cells by Activating the NF-κB Pathway. Sci Rep 2016; 6:22671. [PMID: 26940175 PMCID: PMC4778122 DOI: 10.1038/srep22671] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/17/2016] [Indexed: 12/21/2022] Open
Abstract
Restoration of the retinal pigment epithelial (RPE) cells to prevent further loss of vision in patients with age-related macular degeneration represents a promising novel treatment modality. Development of RPE transplants, however, requires up to 3 months of cell differentiation. We explored whether the silk protein sericin can induce maturation of primary human retinal pigment epithelial (hRPE) cells. Microarray analysis demonstrated that sericin up-regulated RPE-associated transcripts (RPE65 and CRALBP). Upstream analysis identified the NF-κB pathway as one of the top sericin-induced regulators. ELISA confirmed that sericin stimulates the main NF-κB pathway. Increased levels of RPE-associated proteins (RPE65 and the pigment melanin) in the sericin-supplemented cultures were confirmed by western blot, spectrophotometry and transmission electron microscopy. Sericin also increased cell density and reduced cell death following serum starvation in culture. Inclusion of NF-κB agonists and antagonists in the culture medium showed that activation of the NF-κB pathway appears to be necessary, but not sufficient, for sericin-induced RPE pigmentation. We conclude that sericin promotes pigmentation of cultured primary hRPE cells by activating the main NF-κB pathway. Sericin’s potential role in culture protocols for rapid differentiation of hRPE cells derived from embryonic or induced pluripotent stem cells should be investigated.
Collapse
Affiliation(s)
- J R Eidet
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - S Reppe
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - L Pasovic
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - O K Olstad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - T Lyberg
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - A Z Khan
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - I G Fostad
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - D F Chen
- Schepens Eye Research Institute, Harvard Medical School/Massachusetts Eye and Ear, Boston, MA
| | - T P Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
41
|
Song D, Wilson B, Zhao L, Bhuyan R, Bandyopadhyay M, Lyubarsky A, Yu C, Li Y, Kanu L, Miwa T, Song WC, Finnemann SC, Rohrer B, Dunaief JL. Retinal Pre-Conditioning by CD59a Knockout Protects against Light-Induced Photoreceptor Degeneration. PLoS One 2016; 11:e0166348. [PMID: 27893831 PMCID: PMC5125596 DOI: 10.1371/journal.pone.0166348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/27/2016] [Indexed: 11/25/2022] Open
Abstract
Complement dysregulation plays a key role in the pathogenesis of age-related macular degeneration (AMD), but the specific mechanisms are incompletely understood. Complement also potentiates retinal degeneration in the murine light damage model. To test the retinal function of CD59a, a complement inhibitor, CD59a knockout (KO) mice were used for light damage (LD) experiments. Retinal degeneration and function were compared in WT versus KO mice following light damage. Gene expression changes, endoplasmic reticulum (ER) stress, and glial cell activation were also compared. At baseline, the ERG responses and rhodopsin levels were lower in CD59aKO compared to wild-type (WT) mice. Following LD, the ERG responses were better preserved in CD59aKO compared to WT mice. Correspondingly, the number of photoreceptors was higher in CD59aKO retinas than WT controls after LD. Under normal light conditions, CD59aKO mice had higher levels than WT for GFAP immunostaining in Müller cells, mRNA and protein levels of two ER-stress markers, and neurotrophic factors. The reduction in photon capture, together with the neurotrophic factor upregulation, may explain the structural and functional protection against LD in the CD59aKO.
Collapse
Affiliation(s)
- Delu Song
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | - Brooks Wilson
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC
| | - Liangliang Zhao
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin, China
| | - Rupak Bhuyan
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | | | - Arkady Lyubarsky
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | - Chen Yu
- Center for Cancer, Genetic Diseases, and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY
| | - Yafeng Li
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | - Levi Kanu
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | - Takashi Miwa
- Department of Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wen-Chao Song
- Department of Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Silvia C. Finnemann
- Center for Cancer, Genetic Diseases, and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC
- Research Service, Ralph H. Johnson VA Medical Center, Charleston, SC
- * E-mail: (JLD); (BR)
| | - Joshua L. Dunaief
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
- * E-mail: (JLD); (BR)
| |
Collapse
|
42
|
Brockmann C, Brockmann T, Dege S, Busch C, Kociok N, Vater A, Klussmann S, Strauß O, Joussen AM. Intravitreal inhibition of complement C5a reduces choroidal neovascularization in mice. Graefes Arch Clin Exp Ophthalmol 2015; 253:1695-704. [PMID: 25981118 DOI: 10.1007/s00417-015-3041-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 02/20/2015] [Accepted: 04/29/2015] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To investigate the influence of complement component C5a inhibition on laser-induced choroidal neovascularization (CNV) in mice using a C5a specific L-aptamer. METHODS In C57BL/6 J mice CNV was induced by argon-laser, C5a-inhibitor (NOX-D20) was intravitreally injected in three concentrations: 0.3, 3.0, and 30 mg/ml. The unPEGylated derivate (NOX-D20001) was applied at 3.0 mg/ml; the vehicle (5 % glucose) was injected in controls. Vascular leakage was evaluated using fluorescence angiography, CNV area was examined immunohistochemically. Activated immune cells surrounding the CNV lesion and potential cytotoxicity were analyzed. RESULTS Compared to controls, CNV areas were significantly reduced after NOX-D20 injection at a concentration of 0.3 and 3.0 mg/ml (p = 0.042; p = 0.016). NOX-D20001 significantly decreased CNV leakage but not the area (p = 0.007; p = 0.276). At a concentration of 30 mg/ml, NOX-D20 did not reveal significant effects on vascular leakage or CNV area (p = 0.624; p = 0.121). The amount of CD11b positive cells was significantly reduced after treatment with 0.3 and 3.0 mg/ml NOX-D20 (p = 0.027; p = 0.002). No adverse glial cell proliferation or increased apoptosis were observed at effective dosages. CONCLUSIONS Our findings demonstrate that the targeted inhibition of complement component C5a reduces vascular leakage and neovascular area in laser-induced CNV in mice. NOX-D20 was proven to be an effective and safe agent that might be considered as a therapeutic candidate for CNV treatment. The deficiency of activated immune cells highlights promising new aspects in the pathology of choroidal neovascularization, and warrants further investigations.
Collapse
Affiliation(s)
- Claudia Brockmann
- Department of Ophthalmology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Tobias Brockmann
- Department of Ophthalmology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sabrina Dege
- Department of Ophthalmology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Catharina Busch
- Department of Ophthalmology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Norbert Kociok
- Department of Ophthalmology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Axel Vater
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Sven Klussmann
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Olaf Strauß
- Department of Ophthalmology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Antonia M Joussen
- Department of Ophthalmology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
43
|
Paulus YM, Kuo CH, Morohoshi K, Nugent A, Zheng LL, Nomoto H, Blumenkranz MS, Palanker D, Ono SJ. Serum Inflammatory Markers After Rupture Retinal Laser Injury in Mice. Ophthalmic Surg Lasers Imaging Retina 2015; 46:362-8. [DOI: 10.3928/23258160-20150323-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 12/12/2014] [Indexed: 01/10/2023]
|
44
|
Syeda S, Patel AK, Lee T, Hackam AS. Reduced photoreceptor death and improved retinal function during retinal degeneration in mice lacking innate immunity adaptor protein MyD88. Exp Neurol 2015; 267:1-12. [PMID: 25725353 DOI: 10.1016/j.expneurol.2015.02.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/21/2015] [Accepted: 02/18/2015] [Indexed: 12/20/2022]
Abstract
The injury inflammatory response mediated by the innate immune system is an important contributor to neurodegeneration in the central nervous system (CNS) and retina. A major branch of the innate immune system is regulated by the Toll-like receptors (TLRs), which are receptors for endogenous damage associated molecules released from injured cells as well as pathogen-derived molecules, and interleukin-1 receptors (IL-1R), which are activated by IL-1α, IL-1β and IL-18 cytokines. TLRs and IL-1R are expressed on immune and non-immune cell types and act as first responders to cell damage, which results in tissue repair, or inflammation and apoptosis. Both TLR and IL-1R require the adaptor protein myeloid differentiation primary response gene 88 (MyD88) for signaling. Although inflammation is implicated in neuronal death in the retina, the role of MyD88-dependent TLR and IL-1R signaling in retinal degeneration is unknown. Therefore, the purpose of this study was to investigate the role of MyD88-mediated signaling in neuronal degeneration in the retinal degeneration 1 (rd1) mouse model, which exhibits a phenotype of rapid photoreceptor death and inflammation. To generate rd1 mice lacking the MyD88 gene, rd1 were bred with MyD88 knockout mice (MyD88(-/-)) for several generations to produce rd1/MyD88(+/+) and rd1/MyD88(-/-) genotypes. Chemokine mRNA expression levels were analyzed by qRT-PCR, and recruitment of activated microglia was quantified by immunodetection of the IBA-1 protein. Retinal outer nuclear layer cell counts were performed to quantify photoreceptor degeneration, and retinal function was assessed using electroretinograms (ERG). Our results revealed that retinal expression of Ccl2, Ccl4, Ccl7 and Cxcl10 was reduced by 2 to 8-fold in rd1/MyD88(-/-) mice compared with rd1/MyD88(+/+) mice (p<0.05), which coincided with attenuated microglial activation, higher numbers of photoreceptors and higher retina responses to photopic and scotopic stimuli. At later ages, rd1/MyD88(-/-) had reduced chemokine expression and higher photopic responses but no change in microglial recruitment compared with rd1 mice with functional MyD88. In conclusion, lack of MyD88-mediated signaling increased photoreceptor survival and retina function in rd1 mice, which implicates MyD88-mediated innate immunity pathways as an important pathogenic factor during retinal degeneration.
Collapse
Affiliation(s)
- Sarah Syeda
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, McKnight Bldg., Rm. 407, 1638 NW 10th Ave., Miami, FL 33136, USA
| | - Amit K Patel
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, McKnight Bldg., Rm. 407, 1638 NW 10th Ave., Miami, FL 33136, USA
| | - Tinthu Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, McKnight Bldg., Rm. 407, 1638 NW 10th Ave., Miami, FL 33136, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, McKnight Bldg., Rm. 407, 1638 NW 10th Ave., Miami, FL 33136, USA.
| |
Collapse
|
45
|
Schnabolk G, Coughlin B, Joseph K, Kunchithapautham K, Bandyopadhyay M, O'Quinn EC, Nowling T, Rohrer B. Local production of the alternative pathway component factor B is sufficient to promote laser-induced choroidal neovascularization. Invest Ophthalmol Vis Sci 2015; 56:1850-63. [PMID: 25593023 DOI: 10.1167/iovs.14-15910] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Complement factor B (CFB) is a required component of the alternative pathway (AP) of complement, and CFB polymorphisms are associated with age-related macular degeneration (AMD) risk. Complement factor B is made in the liver, but expression has also been detected in retina and retinal pigment epithelium (RPE)-choroid. We investigated whether production of CFB by the RPE can promote AP activation in mouse choroidal neovascularization (CNV). METHODS Transgenic mice expressing CFB under the RPE65 promoter were generated and crossed onto factor B-deficient (CFB-KO) mice. Biological activity was determined in vitro using RPE monolayers and in vivo using laser-induced CNV. Contribution of systemic CFB was investigated using CFB-KO reconstituted with CFB-sufficient serum. RESULTS Transgenic mice (CFB-tg) expressed CFB in RPE-choroid; no CFB was detected in serum. Cultured CFB-tg RPE monolayers secreted CFB apically and basally upon exposure to oxidative stress that was biologically active. Choroidal neovascularization sizes were comparable between wild-type and CFB-tg mice, but significantly increased when compared to lesions in CFB-KO mice. Injections of CFB-sufficient serum into CFB-KO mice resulted in partial reconstitution of systemic AP activity and significantly increased CNV size. CONCLUSIONS Mouse RPE cells express and secrete CFB sufficient to promote RPE damage and CNV. This further supports that local complement production may regulate disease processes; however, the reconstitution experiments suggest that additional components may be sequestered from the bloodstream. Understanding the process of ocular complement production and regulation will further our understanding of the AMD disease process and the requirements of a complement-based therapeutic.
Collapse
Affiliation(s)
- Gloriane Schnabolk
- Research Service, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, United States
| | - Beth Coughlin
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Kusumam Joseph
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Kannan Kunchithapautham
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Mausumi Bandyopadhyay
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Elizabeth C O'Quinn
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Tamara Nowling
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Bärbel Rohrer
- Research Service, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, United States Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
46
|
Kubicka-Trząska A, Wilańska J, Romanowska-Dixon B, Sanak M. Circulating anti-retinal antibodies in response to anti-angiogenic therapy in exudative age-related macular degeneration. Acta Ophthalmol 2014; 92:e610-4. [PMID: 24802549 DOI: 10.1111/aos.12435] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 03/21/2014] [Indexed: 11/29/2022]
Abstract
PURPOSE To determine changes in anti-retinal antibodies (ARAs) during anti-VEGF therapy in patients with exudative age-related macular degeneration (AMD) and to assess the correlations between ARAs and disease activity. METHODS The study comprised 98 patients treated with intravitreal bevacizumab. The ophthalmic examination included best corrected visual acuity (BCVA), slit lamp biomicroscopy, fundoscopy, fluorescein angiography (FA), and optical coherence tomography (OCT). Serum ARAs levels were assessed by indirect immunofluorescence (IIF) on normal monkey retina substrate. These studies were repeated at 4 week intervals within 8 months of a follow-up. The sera of 50 sex- and age-matched healthy subjects were used as controls. RESULTS At baseline examination, 94 (95.5%) of the 98 patients were positive for ARAs. The ARAs titres were significantly higher (p = 0.0000) than in controls. A positive correlation was found between titres of ARAs and the diameter of choroidal neovascularization (CNV) as measured by FA (p = 0.0000), and central retinal thickness (CRT) assessed by OCT (p = 0.0000). A positive correlation was also found between the diameter of CNV, CRT and the complexity of circulating ARAs. Following treatment all patients demonstrated significant decrease in ARAs levels as well as improvement of BCVA, reduction of subretinal fluid on OCT and decreased leakage on FA. CONCLUSION Changes in serum ARAs levels occurred in parallel with clinical outcomes of anti-VEGF therapy. Treatment reduced serum levels of ARAs, with the greatest reduction occurring during the 'loading' phase. This study demonstrated that ARAs may act as a serum biomarker of the efficacy of anti-VEGF therapy.
Collapse
Affiliation(s)
- Agnieszka Kubicka-Trząska
- Department of Ophthalmology and Ocular Oncology; Jagiellonian University Medical College; Krakow Poland
| | - Joanna Wilańska
- Division of Molecular Biology and Clinical Genetics; Jagiellonian University Medical College; Krakow Poland
| | - Bożena Romanowska-Dixon
- Department of Ophthalmology and Ocular Oncology; Jagiellonian University Medical College; Krakow Poland
| | - Marek Sanak
- Division of Molecular Biology and Clinical Genetics; Jagiellonian University Medical College; Krakow Poland
| |
Collapse
|
47
|
Warwick A, Khandhadia S, Ennis S, Lotery A. Age-Related Macular Degeneration: A Disease of Systemic or Local Complement Dysregulation? J Clin Med 2014; 3:1234-57. [PMID: 26237601 PMCID: PMC4470180 DOI: 10.3390/jcm3041234] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 01/25/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in developed countries. The role of complement in the development of AMD is now well-established. While some studies show evidence of complement dysregulation within the eye, others have demonstrated elevated systemic complement activation in association with AMD. It is unclear which one is the primary driver of disease. This has important implications for designing novel complement-based AMD therapies. We present a summary of the current literature and suggest that intraocular rather than systemic modulation of complement may prove more effective.
Collapse
Affiliation(s)
- Alasdair Warwick
- Clinical Neurosciences Research Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Samir Khandhadia
- Eye Unit, University Southampton NHS Trust, Southampton SO16 6YD, UK.
| | - Sarah Ennis
- Genomic Informatics, Human Genetics & Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Andrew Lotery
- Clinical Neurosciences Research Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
- Eye Unit, University Southampton NHS Trust, Southampton SO16 6YD, UK.
| |
Collapse
|
48
|
Kawa MP, Machalinska A, Roginska D, Machalinski B. Complement system in pathogenesis of AMD: dual player in degeneration and protection of retinal tissue. J Immunol Res 2014; 2014:483960. [PMID: 25276841 PMCID: PMC4168147 DOI: 10.1155/2014/483960] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/18/2014] [Accepted: 08/01/2014] [Indexed: 12/25/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of blindness among the elderly, especially in Western countries. Although the prevalence, risk factors, and clinical course of the disease are well described, its pathogenesis is not entirely elucidated. AMD is associated with a variety of biochemical abnormalities, including complement components deposition in the retinal pigment epithelium-Bruch's membrane-choriocapillaris complex. Although the complement system (CS) is increasingly recognized as mediating important roles in retinal biology, its particular role in AMD pathogenesis has not been precisely defined. Unrestricted activation of the CS following injury may directly damage retinal tissue and recruit immune cells to the vicinity of active complement cascades, therefore detrimentally causing bystander damage to surrounding cells and tissues. On the other hand, recent evidence supports the notion that an active complement pathway is a necessity for the normal maintenance of the neurosensory retina. In this scenario, complement activation appears to have beneficial effect as it promotes cell survival and tissue remodeling by facilitating the rapid removal of dying cells and resulting cellular debris, thus demonstrating anti-inflammatory and neuroprotective activities. In this review, we discuss both the beneficial and detrimental roles of CS in degenerative retina, focusing on the diverse aspects of CS functions that may promote or inhibit macular disease.
Collapse
Affiliation(s)
- Milosz P. Kawa
- Department of General Pathology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Anna Machalinska
- Department of Ophthalmology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
- Department of Histology and Embryology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Dorota Roginska
- Department of General Pathology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Boguslaw Machalinski
- Department of General Pathology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
49
|
Mueller-Ortiz SL, Morales JE, Wetsel RA. The receptor for the complement C3a anaphylatoxin (C3aR) provides host protection against Listeria monocytogenes-induced apoptosis. THE JOURNAL OF IMMUNOLOGY 2014; 193:1278-89. [PMID: 24981453 DOI: 10.4049/jimmunol.1302787] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Listeria monocytogenes is a Gram-positive intracellular bacterium that is acquired through tainted food and may lead to systemic infection and possible death. Despite the importance of the innate immune system in fighting L. monocytogenes infection, little is known about the role of complement and its activation products, including the potent C3a anaphylatoxin. In a model of systemic L. monocytogenes infection, we show that mice lacking the receptor for C3a (C3aR(-/-)) are significantly more sensitive to infection compared with wild-type mice, as demonstrated by decreased survival, increased bacterial burden, and increased damage to their livers and spleens. The inability of the C3aR(-/-) mice to clear the bacterial infection was not caused by defective macrophages or by a reduction in cytokines/chemokines known to be critical in the host response to L. monocytogenes, including IFN-γ and TNF-α. Instead, TUNEL staining, together with Fas, active caspase-3, and Bcl-2 expression data, indicates that the increased susceptibility of C3aR(-/-) mice to L. monocytogenes infection was largely caused by increased L. monocytogenes-induced apoptosis of myeloid and lymphoid cells in the spleen that are required for ultimate clearance of L. monocytogenes, including neutrophils, macrophages, dendritic cells, and T cells. These findings reveal an unexpected function of C3a/C3aR signaling during the host immune response that suppresses Fas expression and caspase-3 activity while increasing Bcl-2 expression, thereby providing protection to both myeloid and lymphoid cells against L. monocytogenes-induced apoptosis.
Collapse
Affiliation(s)
- Stacey L Mueller-Ortiz
- Brown Foundation Institute of Molecular Medicine, Research Center for Immunology and Autoimmune Diseases, University of Texas Medical School at Houston, Houston, TX 77030; and
| | - John E Morales
- Brown Foundation Institute of Molecular Medicine, Research Center for Immunology and Autoimmune Diseases, University of Texas Medical School at Houston, Houston, TX 77030; and
| | - Rick A Wetsel
- Brown Foundation Institute of Molecular Medicine, Research Center for Immunology and Autoimmune Diseases, University of Texas Medical School at Houston, Houston, TX 77030; and Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030
| |
Collapse
|
50
|
Kunchithapautham K, Atkinson C, Rohrer B. Smoke exposure causes endoplasmic reticulum stress and lipid accumulation in retinal pigment epithelium through oxidative stress and complement activation. J Biol Chem 2014; 289:14534-46. [PMID: 24711457 PMCID: PMC4031511 DOI: 10.1074/jbc.m114.564674] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/02/2014] [Indexed: 01/02/2023] Open
Abstract
Age-related macular degeneration (AMD) is a complex disease caused by genetic and environmental factors, including genetic variants in complement components and smoking. Smoke exposure leads to oxidative stress, complement activation, endoplasmic reticulum (ER) stress, and lipid dysregulation, which have all been proposed to be associated with AMD pathogenesis. Here we examine the effects of smoke exposure on the retinal pigment epithelium (RPE). Mice were exposed to cigarette smoke or filtered air for 6 months. RPE cells grown as stable monolayers were exposed to 5% cigarette smoke extract (CSE). Effects of smoke were determined by biochemical, molecular, and histological measures. Effects of the alternative pathway (AP) of complement and complement C3a anaphylatoxin receptor signaling were analyzed using knock-out mice or specific inhibitors. ER stress markers were elevated after smoke exposure in RPE of intact mice, which was eliminated in AP-deficient mice. To examine this relationship further, RPE monolayers were exposed to CSE. Short term smoke exposure resulted in production and release of complement C3, the generation of C3a, oxidative stress, complement activation on the cell membrane, and ER stress. Long term exposure to CSE resulted in lipid accumulation, and secretion. All measures were reversed by blocking C3a complement receptor (C3aR), alternative complement pathway signaling, and antioxidant therapy. Taken together, our results provide clear evidence that smoke exposure results in oxidative stress and complement activation via the AP, resulting in ER stress-mediated lipid accumulation, and further suggesting that oxidative stress and complement act synergistically in the pathogenesis of AMD.
Collapse
Affiliation(s)
| | - Carl Atkinson
- Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Bärbel Rohrer
- From the Departments of Ophthalmology and the Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401
| |
Collapse
|