1
|
Cho H, Ha SE, Singh R, Kim D, Ro S. microRNAs in Type 1 Diabetes: Roles, Pathological Mechanisms, and Therapeutic Potential. Int J Mol Sci 2025; 26:3301. [PMID: 40244147 PMCID: PMC11990060 DOI: 10.3390/ijms26073301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the progressive destruction of pancreatic β-cells, leading to insulin deficiency. The primary drivers of β-cell destruction in T1D involve autoimmune-mediated processes that trigger chronic inflammation and ultimately β-cell loss. Regulatory microRNAs (miRNAs) play a crucial role in modulating these processes by regulating gene expression through post-transcriptional suppression of target mRNAs. Dysregulated miRNAs have been implicated in T1D pathogenesis, serving as both potential diagnostic biomarkers and therapeutic targets. This review explores the role of miRNAs in T1D, highlighting their involvement in disease mechanisms across both rodent models and human patients. While current antidiabetic therapies manage T1D symptoms, they do not prevent β-cell destruction, leaving patients reliant on lifelong insulin therapy. By summarizing key miRNA expression profiles in diabetic animal models and patients, this review explores the potential of miRNA-based therapies to restore β-cell function and halt or slow the progression of the disease.
Collapse
Affiliation(s)
| | | | | | | | - Seungil Ro
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (H.C.); (S.E.H.); (R.S.); (D.K.)
| |
Collapse
|
2
|
Karpagavalli M, Sindal MD, Arunachalam JP, Chidambaram S. miRNAs, piRNAs, and lncRNAs: A triad of non-coding RNAs regulating the neurovascular unit in diabetic retinopathy and their therapeutic potentials. Exp Eye Res 2025; 251:110236. [PMID: 39800284 DOI: 10.1016/j.exer.2025.110236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/04/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Diabetic Retinopathy (DR), a leading complication of diabetes mellitus, has long been considered as a microvascular disease of the retina. However, recent evidence suggests that DR is a neurovascular disease, characterized by the degeneration of retinal neural tissue and microvascular abnormalities encompassing ischemia, neovascularization, and blood-retinal barrier breakdown, ultimately leading to blindness. The intricate relationship between the retina and vascular cells constitutes a neurovascular unit, a multi-cellular framework of retinal neurons, glial cells, immune cells, and vascular cells, which facilitates neurovascular coupling, linking neuronal activity to blood flow. These interconnections between the neurovascular components get compromised due to hyperglycemia and are further associated with the progression of DR early on in the disease. As a result, therapeutic approaches are needed to avert the advancement of DR by acting at its initial stage to delay or prevent the pathogenesis. Non-coding RNAs (ncRNAs) such as microRNAs, piwi-interacting RNAs, and long non-coding RNAs regulate various cellular components in the neurovascular unit. These ncRNAs are key regulators of neurodegeneration, apoptosis, inflammation, and oxidative stress in DR. In this review, research related to alterations in the expression of ncRNAs and, correspondingly, their effect on the disintegration of the neurovascular coupling will be discussed briefly to understand the potential of ncRNAs as therapeutic targets for treating this debilitating disease.
Collapse
Affiliation(s)
| | | | - Jayamuruga Pandian Arunachalam
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India
| | - Subbulakshmi Chidambaram
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India.
| |
Collapse
|
3
|
Zhang Y, Wei M, Wang X, Xu Y, Zong R, Lin X, Li S, Chen W, Liu Z, Chen Q. Dipeptide alanine-glutamine ameliorates retinal neurodegeneration in an STZ-induced rat model. Front Pharmacol 2024; 15:1490443. [PMID: 39629074 PMCID: PMC11611560 DOI: 10.3389/fphar.2024.1490443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
Introduction Diabetic retinopathy (DR) is a common complication of diabetes. Retinal neuronal degeneration is an early event in DR, indicated by the declined electroretinogram (ERG). Dipeptide alanine-glutamine (Ala-Gln) is widely used as a nutritional supplement in the clinic and has anti-inflammatory effects on the gastrointestinal system. Studies also reported that glutamine has beneficial effects on diabetes. This study aimed to investigate the possible therapeutic effects of Ala-Gln in diabetic retinal neurodegeneration and to delineate its mechanism of action. Methods The Streptozotocin (STZ)-induced rat model was used as a DR model. ERG was used to measure the neuronal function of the retina. Western blot analysis was performed to test the expression of proteins. Immunofluorescence staining was used for the detection and localization of proteins. Results In diabetic rats, the amplitudes of ERG were declined, while Ala-Gln restored the declined ERG. Retinal levels of inflammatory factors were significantly decreased in Ala-Gln-treated diabetic rats. Ala-Gln mitigated the declined levels of glutamine synthetase and ameliorated the upregulated levels of glial fibrillary acidic protein (GFAP) in diabetic retinas. Moreover, Ala-Gln upregulated the glycolytic enzymes pyruvate kinase isozymes 2 (PKM2), lactate dehydrogenase A (LDHA) and LDHB and stimulated the mTOR signaling pathway in diabetic retinas. The mitochondrial function was improved after the treatment of Ala-Gln in diabetic retinas. Discussion Ala-Gln ameliorates retinal neurodegeneration by reducing inflammation and enhancing glucose metabolism and mitochondrial function in DR. Therefore, manipulation of metabolism by Ala-Gln may be a novel therapeutic avenue for retinal neurodegeneration in DR.
Collapse
Affiliation(s)
- Yuhan Zhang
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mingyan Wei
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Wang
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuan Xu
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Rongrong Zong
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiang Lin
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shiying Li
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Wensheng Chen
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zuguo Liu
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qian Chen
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
4
|
Xu Y, Huang S, Zhou S, Wang X, Wei M, Chen X, Zong R, Lin X, Li S, Liu Z, Chen Q. Iron Chelator Deferiprone Restores Iron Homeostasis and Inhibits Retinal Neovascularization in Experimental Neovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:5. [PMID: 39093298 PMCID: PMC11305424 DOI: 10.1167/iovs.65.10.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Purpose Retinal neovascularization is a significant feature of advanced age-related macular degeneration (AMD) and a major cause of blindness in patients with AMD. However, the underlying mechanism of this pathological neovascularization remains unknown. Iron metabolism has been implicated in various biological processes. This study was conducted to investigate the effects of iron metabolism on retinal neovascularization in neovascular AMD (nAMD). Methods C57BL/6J and very low-density lipoprotein receptor (VLDLR) knockout (Vldlr-/-) mice, a murine model of nAMD, were used in this study. Bulk-RNA sequencing was used to identify differentially expressed genes. Western blot analysis was performed to test the expression of proteins. Iron chelator deferiprone (DFP) was administrated to the mice by oral gavage. Fundus fluorescein angiography was used to evaluate retinal vascular leakage. Immunofluorescence staining was used to detect macrophages and iron-related proteins. Results RNA sequencing (RNA-seq) results showed altered transferrin expression in the retina and RPE of Vldlr-/- mice. Disrupted iron homeostasis was observed in the retina and RPE of Vldlr-/- mice. DFP mitigated iron overload and significantly reduced retinal neovascularization and vascular leakage. In addition, DFP suppressed the inflammation in Vldlr-/- retinas. The reduced signals of macrophages were observed at sites of neovascularization in the retina and RPE of Vldlr-/- mice after DFP treatment. Further, the IL-6/JAK2/STAT3 signaling pathway was activated in the retina and RPE of Vldlr-/- mice and reversed by DFP treatment. Conclusions Disrupted iron metabolism may contribute to retinal neovascularization in nAMD. Restoring iron homeostasis by DFP could be a potential therapeutic approach for nAMD.
Collapse
Affiliation(s)
- Yuan Xu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shiya Huang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shengmei Zhou
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xin Wang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Mingyan Wei
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaodong Chen
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Rongrong Zong
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiang Lin
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shiying Li
- Department of Ophthalmology, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qian Chen
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
5
|
Wu Q, Liu C, Shu X, Duan L. Mechanistic and therapeutic perspectives of non-coding RNA-modulated apoptotic signaling in diabetic retinopathy. Cell Biol Toxicol 2024; 40:53. [PMID: 38970639 PMCID: PMC11227466 DOI: 10.1007/s10565-024-09896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024]
Abstract
Diabetic retinopathy (DR), a significant and vision-endangering complication associated with diabetes mellitus, constitutes a substantial portion of acquired instances of preventable blindness. The progression of DR appears to prominently feature the loss of retinal cells, encompassing neural retinal cells, pericytes, and endothelial cells. Therefore, mitigating the apoptosis of retinal cells in DR could potentially enhance the therapeutic approach for managing the condition by suppressing retinal vascular leakage. Recent advancements have highlighted the crucial regulatory roles played by non-coding RNAs (ncRNAs) in diverse biological processes. Recent advancements have highlighted that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs), act as central regulators in a wide array of biogenesis and biological functions, exerting control over gene expression associated with histogenesis and cellular differentiation within ocular tissues. Abnormal expression and activity of ncRNAs has been linked to the regulation of diverse cellular functions such as apoptosis, and proliferation. This implies a potential involvement of ncRNAs in the development of DR. Notably, ncRNAs and apoptosis exhibit reciprocal regulatory interactions, jointly influencing the destiny of retinal cells. Consequently, a thorough investigation into the complex relationship between apoptosis and ncRNAs is crucial for developing effective therapeutic and preventative strategies for DR. This review provides a fundamental comprehension of the apoptotic signaling pathways associated with DR. It then delves into the mutual relationship between apoptosis and ncRNAs in the context of DR pathogenesis. This study advances our understanding of the pathophysiology of DR and paves the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Qin Wu
- Jinan Second People's Hospital & The Ophthalmologic Hospital of Jinan, Jinan, 250021, China.
| | | | - Xiangwen Shu
- Jinan Second People's Hospital & The Ophthalmologic Hospital of Jinan, Jinan, 250021, China
| | - Lian Duan
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| |
Collapse
|
6
|
Zhong Y, Xia J, Liao L, Momeni MR. Non-coding RNAs and exosomal non-coding RNAs in diabetic retinopathy: A narrative review. Int J Biol Macromol 2024; 259:128182. [PMID: 37977468 DOI: 10.1016/j.ijbiomac.2023.128182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Diabetic retinopathy (DR) is a devastating complication of diabetes, having extensive and resilient effects on those who suffer from it. As yet, the underlying cell mechanisms of this microvascular disorder are largely unclear. Recently, growing evidence suggests that epigenetic mechanisms can be responsible for gene deregulation leading to the alteration of key processes in the development and progression of DR, in addition to the widely recognized pathological mechanisms. It is noteworthy that seemingly unending epigenetic modifications, caused by a prolonged period of hyperglycemia, may be a prominent factor that leads to metabolic memory, and brings epigenetic entities such as non-coding RNA into the equation. Consequently, further investigation is necessary to truly understand this mechanism. Exosomes are responsible for carrying signals from cells close to the vasculature that are participating in abnormal signal transduction to faraway organs and cells by sailing through the bloodstream. These signs indicate metabolic disorders. With the aid of their encased structure, they can store diverse signaling molecules, which then can be dispersed into the blood, urine, and tears. Herein, we summarized various non-coding RNAs (ncRNAs) that are related to DR pathogenesis. Moreover, we highlighted the role of exosomal ncRNAs in this disease.
Collapse
Affiliation(s)
- Yuhong Zhong
- Endocrinology Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China
| | - Juan Xia
- Endocrinology Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China
| | - Li Liao
- Department of Respiratory and Critical Care Medicine 3, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China.
| | - Mohammad Reza Momeni
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
7
|
Bian J, Ge W, Jiang Z. miR-26a-5p Attenuates Oxidative Stress and Inflammation in Diabetic Retinopathy through the USP14/NF- κB Signaling Pathway. J Ophthalmol 2024; 2024:1470898. [PMID: 38282961 PMCID: PMC10817816 DOI: 10.1155/2024/1470898] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Purpose Diabetic retinopathy (DR) is an ocular disease caused by diabetes and may lead to vision impairment and even blindness. Oxidative stress and inflammation are two key pathogenic factors of DR. Recently, regulatory roles of different microRNAs (miRNAs) in DR have been widely verified. miR-26a-5p has been confirmed to be a potential biomarker of DR. Nevertheless, the specific functions of miR-26a-5p in DR are still unclear. Methods Primary cultured mouse retinal Müller cells in exposure to high glucose (HG) were used to establish an in vitro DR model. Müller cells were identified via morphology observation under phase contrast microscope and fluorescence staining for glutamine synthetase. The in vivo animal models for DR were constructed using streptozotocin-induced diabetic C57BL/6 mice. Western blotting was performed to quantify cytochrome c protein level in the cytoplasm and mitochondria of Müller cells and to measure protein levels of glial fibrillary acidic protein (GFAP), ubiquitin-specific peptidase 14 (USP14), as well as factors associated with NF-κB signaling (p-IκBα, IκBα, p-p65, and p65) in Müller cells or murine retinal tissues. ROS production was detected by CM-H2DCFDA staining, and the concentration of oxidative stress markers (MDA, SOD, and CAT) was estimated by using corresponding commercial kits. Quantification of mRNA expression was conducted by RT-qPCR analysis. The concentration of proinflammatory factors (TNF-α, IL-1β, and IL-6) was evaluated by ELISA. Hematoxylin-eosin staining for murine retinal tissues was performed for histopathological analysis. Immunofluorescence staining was conducted to determine NF-κB p65 nuclear translocation in Müller cells. Furthermore, the interaction between miR-26a-5p and USP14 was verified via the luciferase reporter assays. Results HG stimulation contributed to Müller cell dysfunction by inducing inflammation, oxidative injury, and mitochondrial damage to Müller cells. miR-26a-5p was downregulated in Müller cells under HG condition, and overexpression of miR-26a-5p relieved HG-induced Müller cell dysfunction. Moreover, miR-26a-5p targeted USP14 and inversely regulated USP14 expression. Additionally, HG-evoked activation of NF-κB signaling was suppressed by USP14 knockdown or miR-26a-5p upregulation. Rescue assays showed that the protective impact of miR-26a-5p upregulation against HG-induced Müller cell dysfunction was reversed by USP14 overexpression. Furthermore, USP14 upregulation and activation of NF-κB signaling in the retinas of DR mice were detected in animal experiments. Injection with miR-26a-5p agomir improved retinal histopathological injury and weakened the concentration of proinflammatory cytokines and oxidative stress markers in the retinas of DR mice. Conclusion miR-26a-5p inhibits oxidative stress and inflammation in DR progression by targeting USP14 and inactivating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jie Bian
- Department of Ophthalmology, Yixing People's Hospital, The Affiliated Hospital of Jiangsu University, Yixing 214200, Jiangsu, China
| | - Weizhong Ge
- Department of Ophthalmology, Yixing People's Hospital, The Affiliated Hospital of Jiangsu University, Yixing 214200, Jiangsu, China
| | - Zhengmei Jiang
- Department of Ophthalmology, Yixing People's Hospital, The Affiliated Hospital of Jiangsu University, Yixing 214200, Jiangsu, China
| |
Collapse
|
8
|
Zucchini C, Serpe C, De Sanctis P, Ghezzo A, Visconti P, Posar A, Facchin F, Marini M, Abruzzo PM. TLDc Domain-Containing Genes in Autism Spectrum Disorder: New Players in the Oxidative Stress Response. Int J Mol Sci 2023; 24:15802. [PMID: 37958785 PMCID: PMC10647648 DOI: 10.3390/ijms242115802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Oxidative stress (OS) plays a key role in autism spectrum disorder (ASD), a neurodevelopmental disorder characterized by deficits in social communication, restricted interests, and repetitive behaviors. Recent evidence suggests that the TLDc [Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic] domain is a highly conserved motif present in proteins that are important players in the OS response and in neuroprotection. Human proteins sharing the TLDc domain include OXR1, TLDC1, NCOA7, TBC1D24, and C20ORF118. This study was aimed at understanding whether TLDc domain-containing mRNAs together with specific microRNAs (200b-3p and 32-5p) and long noncoding RNAs (TUG1), known to target TLDc proteins, contributed to regulate the OS response in ASD. Data showed a significant increase in the levels of OXR1 and TLDC1 mRNAs in peripheral blood mononuclear cells (PBMCs) of ASD children compared to their neurotypically developing (NTD) counterparts, along with an increase in TUG1 mRNA expression levels, suggesting its possible role in the regulation of TLDc proteins. A positive correlation between the expression of some TLDc mRNAs and the Childhood Autism Rating Scale (CARS) global score as well as inflammatory gene expression was found. In conclusion, our data suggest a novel biological pathway in the OS response of ASD subjects that deserves further exploration.
Collapse
Affiliation(s)
- Cinzia Zucchini
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (C.Z.); (C.S.); (P.D.S.); (F.F.); (P.M.A.)
| | - Carmela Serpe
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (C.Z.); (C.S.); (P.D.S.); (F.F.); (P.M.A.)
| | - Paola De Sanctis
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (C.Z.); (C.S.); (P.D.S.); (F.F.); (P.M.A.)
| | - Alessandro Ghezzo
- Grioni Center-Danelli Foundation, Largo Stefano ed Angela Danelli 1, 26900 Lodi, Italy;
| | - Paola Visconti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Via Altura 3, 40139 Bologna, Italy; (P.V.); (A.P.)
| | - Annio Posar
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Via Altura 3, 40139 Bologna, Italy; (P.V.); (A.P.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Altura 3, 40139 Bologna, Italy
| | - Federica Facchin
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (C.Z.); (C.S.); (P.D.S.); (F.F.); (P.M.A.)
| | - Marina Marini
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (C.Z.); (C.S.); (P.D.S.); (F.F.); (P.M.A.)
| | - Provvidenza Maria Abruzzo
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (C.Z.); (C.S.); (P.D.S.); (F.F.); (P.M.A.)
| |
Collapse
|
9
|
Yu J, Qin M, Li J, Cui S. LncRNA SNHG4 sponges miR-200b to inhibit cell apoptosis in diabetic retinopathy. Arch Physiol Biochem 2023; 129:1117-1122. [PMID: 33822671 DOI: 10.1080/13813455.2021.1900873] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
This study aimed to investigate the role of long non-coding RNA (lncRNA) small nucleolar RNA host gene 4 (SNHG4) in diabetic retinopathy (DR). We found that SNHG4 was downregulated in DR. SNHG4 could directly interact with miR-200b, while overexpression of miR-200b did not affect the expression of SNHG4 in human retinal pigment epithelial cells ARPE-19. In contrast, overexpression of SNHG4 led to the upregulation of oxidation resistance 1 (Oxr1), a target of miR-200b. Cell apoptosis analysis showed that overexpression of miR-200b increased the apoptotic rate of ARPE-19 cells under high glucose treatment. Oxr1 and SNHG4 played opposite roles and reduced the effects of overexpression of miR-200b. In conclusion, SNHG4 may sponge miR-200b to inhibit cell apoptosis in DR by upregulating Oxr1.
Collapse
Affiliation(s)
- Jia Yu
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, People's Republic of China
| | - Mei Qin
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, People's Republic of China
| | - Juan Li
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, People's Republic of China
| | - Shumin Cui
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, People's Republic of China
| |
Collapse
|
10
|
Lin X, Wang W, Yang M, Damseh N, de Sousa MML, Jacob F, Lång A, Kristiansen E, Pannone M, Kissova M, Almaas R, Kuśnierczyk A, Siller R, Shahrour M, Al-Ashhab M, Abu-Libdeh B, Tang W, Slupphaug G, Elpeleg O, Bøe SO, Eide L, Sullivan GJ, Rinholm JE, Song H, Ming GL, van Loon B, Edvardson S, Ye J, Bjørås M. A loss-of-function mutation in human Oxidation Resistance 1 disrupts the spatial-temporal regulation of histone arginine methylation in neurodevelopment. Genome Biol 2023; 24:216. [PMID: 37773136 PMCID: PMC10540402 DOI: 10.1186/s13059-023-03037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/04/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Oxidation Resistance 1 (OXR1) gene is a highly conserved gene of the TLDc domain-containing family. OXR1 is involved in fundamental biological and cellular processes, including DNA damage response, antioxidant pathways, cell cycle, neuronal protection, and arginine methylation. In 2019, five patients from three families carrying four biallelic loss-of-function variants in OXR1 were reported to be associated with cerebellar atrophy. However, the impact of OXR1 on cellular functions and molecular mechanisms in the human brain is largely unknown. Notably, no human disease models are available to explore the pathological impact of OXR1 deficiency. RESULTS We report a novel loss-of-function mutation in the TLDc domain of the human OXR1 gene, resulting in early-onset epilepsy, developmental delay, cognitive disabilities, and cerebellar atrophy. Patient lymphoblasts show impaired cell survival, proliferation, and hypersensitivity to oxidative stress. These phenotypes are rescued by TLDc domain replacement. We generate patient-derived induced pluripotent stem cells (iPSCs) revealing impaired neural differentiation along with dysregulation of genes essential for neurodevelopment. We identify that OXR1 influences histone arginine methylation by activating protein arginine methyltransferases (PRMTs), suggesting OXR1-dependent mechanisms regulating gene expression during neurodevelopment. We model the function of OXR1 in early human brain development using patient-derived brain organoids revealing that OXR1 contributes to the spatial-temporal regulation of histone arginine methylation in specific brain regions. CONCLUSIONS This study provides new insights into pathological features and molecular underpinnings associated with OXR1 deficiency in patients.
Collapse
Affiliation(s)
- Xiaolin Lin
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, 0373, Oslo, Norway
| | - Wei Wang
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Mingyi Yang
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, 0373, Oslo, Norway
- Norwegian Centre for Stem Cell Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Nadirah Damseh
- Department of Pediatrics, Makassed Hospital and Al-Quds University, East Jerusalem, Palestine
| | - Mirta Mittelstedt Leal de Sousa
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Fadi Jacob
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anna Lång
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Elise Kristiansen
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, 0373, Oslo, Norway
| | - Marco Pannone
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Miroslava Kissova
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Runar Almaas
- Department of Pediatric Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Anna Kuśnierczyk
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- The Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Richard Siller
- Norwegian Centre for Stem Cell Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Maher Shahrour
- Department of Pediatrics, Makassed Hospital and Al-Quds University, East Jerusalem, Palestine
- Department of Newborn and Developmental Paediatrics, Toronto, ON, Canada
| | - Motee Al-Ashhab
- Department of Pediatrics, Makassed Hospital and Al-Quds University, East Jerusalem, Palestine
| | - Bassam Abu-Libdeh
- Department of Pediatrics, Makassed Hospital and Al-Quds University, East Jerusalem, Palestine
| | - Wannan Tang
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Geir Slupphaug
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- The Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Orly Elpeleg
- Department of Genetics, Hadassah University Hospital, Jerusalem, Israel
| | - Stig Ove Bøe
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Lars Eide
- Department of Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gareth J Sullivan
- Norwegian Centre for Stem Cell Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Johanne Egge Rinholm
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- The Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Barbara van Loon
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Simon Edvardson
- Department of Genetics, Hadassah University Hospital, Jerusalem, Israel.
| | - Jing Ye
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.
- Department of Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway.
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
- Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, 0373, Oslo, Norway.
- Norwegian Centre for Stem Cell Research, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
11
|
Shi X, Xue Z, Ye K, Yuan J, Zhang Y, Qu J, Su J. Roles of non-coding RNAs in eye development and diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1785. [PMID: 36849659 DOI: 10.1002/wrna.1785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/17/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023]
Abstract
The prevalence of ocular disorders is dramatically increasing worldwide, especially those that cause visual impairment and permanent loss of vision, including cataract, glaucoma, age-related macular degeneration, and diabetic retinopathy. Extensive evidence has shown that ncRNAs are key regulators in various biogenesis and biological functions, controlling gene expression related to histogenesis and cell differentiation in ocular tissues. Aberrant expression and function of ncRNA can lead to dysfunction of visual system and mediate progression of eye disorders. Here, we mainly offer an overview of the role of precise modulation of ncRNAs in eye development and function in patients with eye diseases. We also highlight the challenges and future perspectives in conducting ncRNA studies, focusing specifically on the role of ncRNAs that may hold expanded promise for their diagnostic and therapeutic applications in various eye diseases. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Xinrui Shi
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhengbo Xue
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kaicheng Ye
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Yuan
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Zhejiang, China
| | - Yan Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Zhejiang, China
| | - Jianzhong Su
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Zhejiang, China
- Institute of PSI Genomics, Zhejiang, China
| |
Collapse
|
12
|
Si TE, Li Z, Zhang J, Su S, Liu Y, Chen S, Peng GH, Cao J, Zang W. Epigenetic mechanisms of Müller glial reprogramming mediating retinal regeneration. Front Cell Dev Biol 2023; 11:1157893. [PMID: 37397254 PMCID: PMC10309042 DOI: 10.3389/fcell.2023.1157893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023] Open
Abstract
Retinal degenerative diseases, characterized by retinal neuronal death and severe vision loss, affect millions of people worldwide. One of the most promising treatment methods for retinal degenerative diseases is to reprogram non-neuronal cells into stem or progenitor cells, which then have the potential to re-differentiate to replace the dead neurons, thereby promoting retinal regeneration. Müller glia are the major glial cell type and play an important regulatory role in retinal metabolism and retinal cell regeneration. Müller glia can serve as a source of neurogenic progenitor cells in organisms with the ability to regenerate the nervous system. Current evidence points toward the reprogramming process of Müller glia, involving changes in the expression of pluripotent factors and other key signaling molecules that may be regulated by epigenetic mechanisms. This review summarizes recent knowledge of epigenetic modifications involved in the reprogramming process of Müller glia and the subsequent changes to gene expression and the outcomes. In living organisms, epigenetic mechanisms mainly include DNA methylation, histone modification, and microRNA-mediated miRNA degradation, all of which play a crucial role in the reprogramming process of Müller glia. The information presented in this review will improve the understanding of the mechanisms underlying the Müller glial reprogramming process and provide a research basis for the development of Müller glial reprogramming therapy for retinal degenerative diseases.
Collapse
Affiliation(s)
- Tian-En Si
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Zhixiao Li
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jingjing Zhang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Songxue Su
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Yupeng Liu
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Shiyue Chen
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Guang-Hua Peng
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Weidong Zang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Da'as SI, Ahmed I, Hasan WH, Abdelrahman DA, Aliyev E, Nisar S, Bhat AA, Joglekar MV, Hardikar AA, Fakhro KA, Akil ASAS. The link between glycemic control measures and eye microvascular complications in a clinical cohort of type 2 diabetes with microRNA-223-3p signature. J Transl Med 2023; 21:171. [PMID: 36869348 PMCID: PMC9985290 DOI: 10.1186/s12967-023-03893-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/16/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a critical healthcare challenge and priority in Qatar which is listed amongst the top 10 countries in the world, with its prevalence presently at 17% double the global average. MicroRNAs (miRNAs) are implicated in the pathogenesis of (T2D) and long-term microvascular complications including diabetic retinopathy (DR). METHODS In this study, a T2D cohort that accurately matches the characteristics of the general population was employed to find microRNA (miRNA) signatures that are correlated with glycemic and β cell function measurements. Targeted miRNA profiling was performed in (471) T2D individuals with or without DR and (491) (non-diabetic) healthy controls from the Qatar Biobank. Discovery analysis identified 20 differentially expressed miRNAs in T2D compared to controls, of which miR-223-3p was significantly upregulated (fold change:5.16, p = 3.6e-02) and positively correlated with glucose and hemoglobin A1c (HbA1c) levels (p-value = 9.88e-04 and 1.64e-05, respectively), but did not show any significant associations with insulin or C-peptide. Accordingly, we performed functional validation using a miR-223-3p mimic (overexpression) under control and hyperglycemia-induced conditions in a zebrafish model. RESULTS Over-expression of miR-223-3p alone was associated with significantly higher glucose (42.7 mg/dL, n = 75 vs 38.7 mg/dL, n = 75, p = 0.02) and degenerated retinal vasculature, and altered retinal morphology involving changes in the ganglion cell layer and inner and outer nuclear layers. Assessment of retinal angiogenesis revealed significant upregulation in the expression of vascular endothelial growth factor and its receptors, including kinase insert domain receptor. Further, the pancreatic markers, pancreatic and duodenal homeobox 1, and the insulin gene expressions were upregulated in the miR-223-3p group. CONCLUSION Our zebrafish model validates a novel correlation between miR-223-3p and DR development. Targeting miR-223-3p in T2D patients may serve as a promising therapeutic strategy to control DR in at-risk individuals.
Collapse
Affiliation(s)
- Sahar I Da'as
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.,Zebrafish Functional Genomics, Integrated Genomic Services Core Facility, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Waseem H Hasan
- Zebrafish Functional Genomics, Integrated Genomic Services Core Facility, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Doua A Abdelrahman
- Zebrafish Functional Genomics, Integrated Genomic Services Core Facility, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Elbay Aliyev
- Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sabah Nisar
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ajaz Ahmad Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW, 2560, Australia
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW, 2560, Australia.,Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Khalid A Fakhro
- Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar. .,Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
| |
Collapse
|
14
|
Sadashiv, Sharma P, Dwivedi S, Tiwari S, Singh PK, Pal A, Kumar S. Micro (mi) RNA and Diabetic Retinopathy. Indian J Clin Biochem 2022; 37:267-274. [PMID: 35873619 PMCID: PMC9300788 DOI: 10.1007/s12291-021-01018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022]
Abstract
Diabetic Retinopathy (DR), a debilitating microvascular complication of diabetes, is one of the leading cause of blindness. However, the pathogenesis of this disease is not fully understood. Few Studies have reported the role of MicroRNA (miRNA), which is deregulated or altered in many diseases. Further, few pathways linked genes which have been suggested to be regulated by miRNAs, may play an important role in the regulation of glucose homeostasis and eventually may contribute to the establishment of DR. However, the roles of microRNAs (miRNAs) in DR are still not very clear. In current review, we explored various findings of scientific database demonstrating the role of miRNA in the progression and development of Diabetic Retinopathy.
Collapse
Affiliation(s)
- Sadashiv
- Department of Biochemistry, All India Institute of Medical Sciences, Raebareli, Uttar Pradesh 229405 India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005 India
| | - Shailendra Dwivedi
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh 273008 India
| | - Sunita Tiwari
- Department of Physiology, King Gearge’s Medical University, Lucknow, Uttar Pradesh 226003 India
| | - Pankaj Kumar Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Vijaypur, Jammu 184120 India
| | - Amit Pal
- Department of Biochemistry, All India Institute of Medical Sciences, Kalyani, West Bengal 5741245 India
| | - Sandeep Kumar
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912 USA
| |
Collapse
|
15
|
Shosha E, Qin L, Lemtalsi T, Zaidi SAH, Rojas M, Xu Z, Caldwell RW, Caldwell RB, Fouda AY. Investigation of Retinal Metabolic Function in Type 1 Diabetic Akita Mice. Front Cardiovasc Med 2022; 9:900640. [PMID: 35722112 PMCID: PMC9201036 DOI: 10.3389/fcvm.2022.900640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss in working age adults. Understanding the retinal metabolic response to circulating high glucose levels in diabetic patients is critical for development of new therapeutics to treat DR. Measuring retinal metabolic function using the Seahorse analyzer is a promising technique to investigate the effect of hyperglycemia on retinal glycolysis and mitochondrial respiration. Here, we analyzed the retinal metabolic function in young and old diabetic and control mice. We also compared the expression of key glycolytic enzymes between the two groups. The Seahorse XF analyzer was used to measure the metabolic function of retina explants from young and old type 1 diabetic Akita (Ins2Akita) mice and their control littermates. Rate-limiting glycolytic enzymes were analyzed in retina lysates from the two age groups by Western blotting. Retinas from young adult Akita mice showed a decreased glycolytic response as compared to control littermates. However, this was not observed in the older mice. Western blotting analysis showed decreased expression of the glycolytic enzyme PFKFB3 in the young Akita mice retinas. Measurement of the oxygen consumption rate showed no difference in retinal mitochondrial respiration between Akita and WT littermates under normal glucose conditions ex vivo despite mitochondrial fragmentation in the Akita retinas as examined by electron microscopy. However, Akita mice retinas showed decreased mitochondrial respiration under glucose-free conditions. In conclusion, diabetic retinas display a decreased glycolytic response during the early course of diabetes which is accompanied by a reduction in PFKFB3. Diabetic retinas exhibit decreased mitochondrial respiration under glucose deprivation.
Collapse
Affiliation(s)
- Esraa Shosha
- Vascular Biology Center, Augusta University, Augusta, GA, United States
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Giza, Egypt
- University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Luke Qin
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Tahira Lemtalsi
- Vascular Biology Center, Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
| | - Syed A. H. Zaidi
- Vascular Biology Center, Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
| | - Modesto Rojas
- Vascular Biology Center, Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
| | - Zhimin Xu
- Vascular Biology Center, Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
| | - Robert William Caldwell
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Ruth B. Caldwell
- Vascular Biology Center, Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
- *Correspondence: Ruth B. Caldwell,
| | - Abdelrahman Y. Fouda
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Giza, Egypt
- University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Abdelrahman Y. Fouda,
| |
Collapse
|
16
|
The Role of Epigenetic Modifications in Late Complications in Type 1 Diabetes. Genes (Basel) 2022; 13:genes13040705. [PMID: 35456511 PMCID: PMC9029845 DOI: 10.3390/genes13040705] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Type 1 diabetes is a chronic autoimmune disease in which the destruction of pancreatic β cells leads to hyperglycemia. The prevention of hyperglycemia is very important to avoid or at least postpone the development of micro- and macrovascular complications, also known as late complications. These include diabetic retinopathy, chronic renal failure, diabetic neuropathy, and cardiovascular diseases. The impact of long-term hyperglycemia has been shown to persist long after the normalization of blood glucose levels, a phenomenon known as metabolic memory. It is believed that epigenetic mechanisms such as DNA methylation, histone modifications, and microRNAs, play an important role in metabolic memory. The aim of this review is to address the impact of long-term hyperglycemia on epigenetic marks in late complications of type 1 diabetes.
Collapse
|
17
|
Wilson NRC, Veatch OJ, Johnson SM. On the Relationship between Diabetes and Obstructive Sleep Apnea: Evolution and Epigenetics. Biomedicines 2022; 10:668. [PMID: 35327470 PMCID: PMC8945691 DOI: 10.3390/biomedicines10030668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
This review offers an overview of the relationship between diabetes, obstructive sleep apnea (OSA), obesity, and heart disease. It then addresses evidence that the traditional understanding of this relationship is incomplete or misleading. In the process, there is a brief discussion of the evolutionary rationale for the development and retention of OSA in light of blood sugar dysregulation, as an adaptive mechanism in response to environmental stressors, followed by a brief overview of the general concepts of epigenetics. Finally, this paper presents the results of a literature search on the epigenetic marks and changes in gene expression found in OSA and diabetes. (While some of these marks will also correlate with obesity and heart disease, that is beyond the scope of this project). We conclude with an exploration of alternative explanations for the etiology of these interlinking diseases.
Collapse
Affiliation(s)
- N. R. C. Wilson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Olivia J. Veatch
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Steven M. Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| |
Collapse
|
18
|
Shang X, Böker KO, Taheri S, Lehmann W, Schilling AF. Extracellular Vesicles Allow Epigenetic Mechanotransduction between Chondrocytes and Osteoblasts. Int J Mol Sci 2021; 22:ijms222413282. [PMID: 34948080 PMCID: PMC8703680 DOI: 10.3390/ijms222413282] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs) can be transported in extracellular vesicles (EVs) and are qualified as possible messengers for cell–cell communication. In the context of osteoarthritis (OA), miR-221-3p has been shown to have a mechanosensitive and a paracrine function inside cartilage. However, the question remains if EVs with miR-221-3p can act as molecular mechanotransducers between cells of different tissues. Here, we studied the effect of EV-mediated transport in the communication between chondrocytes and osteoblasts in vitro in a rat model. In silico analysis (Targetscan, miRWalk, miRDB) revealed putative targets of miRNA-221-3p (CDKN1B/p27, TIMP-3, Tcf7l2/TCF4, ARNT). Indeed, transfection of miRNA-221-3p in chondrocytes and osteoblasts resulted in regulation of these targets. Coculture experiments of transfected chondrocytes with untransfected osteoblasts not only showed regulation of these target genes in osteoblasts but also inhibition of their bone formation capacity. Direct treatment with chondrocyte-derived EVs validated that chondrocyte-produced extracellular miR-221-3p was responsible for this effect. Altogether, our study provides a novel perspective on a possible communication pathway of a mechanically induced epigenetic signal through EVs. This may be important for processes at the interface of bone and cartilage, such as OA development, physiologic joint homeostasis, growth or fracture healing, as well as for other tissue interfaces with differing biomechanical properties.
Collapse
|
19
|
ElShelmani H, Brennan I, Kelly DJ, Keegan D. Differential Circulating MicroRNA Expression in Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:ijms222212321. [PMID: 34830203 PMCID: PMC8625913 DOI: 10.3390/ijms222212321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023] Open
Abstract
This study explored the expression of several miRNAs reported to be deregulated in age-related macular degeneration (AMD). Total RNA was isolated from sera from patients with dry AMD (n = 12), wet AMD (n = 14), and controls (n = 10). Forty-two previously investigated miRNAs were selected based on published data and their role in AMD pathogenesis, such as angiogenic and inflammatory effects, and were co-analysed using a miRCURY LNA miRNA SYBR® Green PCR kit via quantitative real-time polymerase chain reaction (qRT-PCR) to validate their presence. Unsupervised hierarchical clustering indicated that AMD serum specimens have a different miRNA profile to healthy controls. We successfully validated the differentially regulated miRNAs in serum from AMD patients versus controls. Eight miRNAs (hsa-let-7a-5p, hsa-let-7d-5p, hsa-miR-23a-3p, hsa-miR-301a-3p, hsa-miR-361-5p, hsa-miR-27b-3p, hsa-miR-874-3p, hsa-miR-19b-1-5p) showed higher expression in the serum of dry AMD patients than wet AMD patients and compared with healthy controls. Increased quantities of certain miRNAs in the serum of AMD patients indicate that these miRNAs could potentially serve as diagnostic AMD biomarkers and might be used as future AMD treatment targets. The discovery of significant serum miRNA biomarkers in AMD patients would provide an easy screening tool for at-risk populations.
Collapse
Affiliation(s)
- Hanan ElShelmani
- Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland; (H.E.); (I.B.)
| | - Ian Brennan
- Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland; (H.E.); (I.B.)
- University College Cork, College Road, Cork, Ireland
| | - David J. Kelly
- Zoology Department, School of Natural Sciences, Trinity College Dublin, University of Dublin, Dublin 2, Ireland;
| | - David Keegan
- Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland; (H.E.); (I.B.)
- Correspondence:
| |
Collapse
|
20
|
Rajool Dezfuly A, Safaee A, Salehi H. Therapeutic effects of mesenchymal stem cells-derived extracellular vesicles' miRNAs on retinal regeneration: a review. Stem Cell Res Ther 2021; 12:530. [PMID: 34620234 PMCID: PMC8499475 DOI: 10.1186/s13287-021-02588-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs), which consist of microvesicles and exosomes, are secreted from all cells to transform vital information in the form of lipids, proteins, mRNAs and small RNAs such as microRNAs (miRNAs). Many studies demonstrated that EVs' miRNAs have effects on target cells. Numerous people suffer from the blindness caused by retinal degenerations. The death of retinal neurons is irreversible and creates permanent damage to the retina. In the absence of acceptable cures for retinal degenerative diseases, stem cells and their paracrine agents including EVs have become a promising therapeutic approach. Several studies showed that the therapeutic effects of stem cells are due to the miRNAs of their EVs. Considering the effects of microRNAs in retinal cells development and function and studies which provide the possible roles of mesenchymal stem cells-derived EVs miRNA content on retinal diseases, we focused on the similarities between these two groups of miRNAs that could be helpful for promoting new therapeutic techniques for retinal degenerative diseases.
Collapse
Affiliation(s)
- Ali Rajool Dezfuly
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Safaee
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
21
|
Sahu B, Leon LM, Zhang W, Puranik N, Periasamy R, Khanna H, Volkert M. Oxidative Stress Resistance 1 Gene Therapy Retards Neurodegeneration in the rd1 Mutant Mouse Model of Retinopathy. Invest Ophthalmol Vis Sci 2021; 62:8. [PMID: 34505865 PMCID: PMC8434758 DOI: 10.1167/iovs.62.12.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose Oxidative stress is a major factor underlying many neurodegenerative diseases. However, antioxidant therapy has had mixed results, possibly because of its indiscriminate activity. The purpose of our study was to determine if the human OXR1 (hOXR1) antioxidant regulatory gene could protect neurons from oxidative stress and delay photoreceptor cell death. Methods The cone-like 661W cell line was transfected to stably express the hOXR1 gene. Oxidative stress was induced by the addition of hydrogen peroxide (H2O2). Intracellular levels of reactive oxygen species (ROS), caspase cleavage, and cellular resistance to oxidative stress were determined and compared between the control and hOXR1 cells. For in vivo analysis, AAV8-hOXR1 was injected subretinally into the rd1 mouse model of retinal degeneration. Functional and structural integrity of the photoreceptors were assessed using electroretinography (ERG), histology, and immunofluorescence analysis. Results Expression of hOXR1 increased cellular resistance and reduced ROS levels and caspase cleavage in the 661W cell line after H2O2-induced oxidative stress. Subretinal injection of AAV8-hOXR1 in the rd1 mice improved their photoreceptor light response, expression and localization of photoreceptor-specific proteins, and delayed retinal degeneration. Conclusions Our results suggest that OXR1 is a potential therapy candidate for retinal degeneration. Because OXR1 targets oxidative stress, a common feature of many retinal degenerative diseases, it should be of therapeutic value to multiple retinal degenerative diseases.
Collapse
Affiliation(s)
- Bhubanananda Sahu
- Department of Ophthalmology and Visual Science, University of Massachusetts Medical School, Worcester, Massachusetts, United States
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, United States
| | - Laura Moreno Leon
- Department of Ophthalmology and Visual Science, University of Massachusetts Medical School, Worcester, Massachusetts, United States
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, United States
| | - Wei Zhang
- Department of Ophthalmology and Visual Science, University of Massachusetts Medical School, Worcester, Massachusetts, United States
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, United States
| | - Nikita Puranik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States
| | - Ramesh Periasamy
- Department of Ophthalmology and Visual Science, University of Massachusetts Medical School, Worcester, Massachusetts, United States
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, United States
| | - Hemant Khanna
- Department of Ophthalmology and Visual Science, University of Massachusetts Medical School, Worcester, Massachusetts, United States
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, United States
- NeuroNexus Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States
| | - Michael Volkert
- NeuroNexus Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States
| |
Collapse
|
22
|
Singh HD, Ma JX, Takahashi Y. Distinct roles of LRP5 and LRP6 in Wnt signaling regulation in the retina. Biochem Biophys Res Commun 2021; 545:8-13. [PMID: 33545636 DOI: 10.1016/j.bbrc.2021.01.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Dysregulation of Wnt signaling is implicated in multiple ocular disorders. The roles of Wnt co-receptors LRP5 and LRP6 in Wnt signaling regulation remain elusive, as most retinal cells express both of the co-receptors. To address this question, LRP5 and LRP6 were individually knocked-out in a human retinal pigment epithelium cell line using the CRISPR-Cas9 technology. Wnt signaling activity induced by various Wnt ligands was measured using wild-type and the KO cell lines. The results identified three groups of Wnt ligands based on their co-receptor specificity: 1) activation of Wnt signaling only through LRP6, 2) through both LRP5 and LRP6 and 3) predominantly through LRP5. These results indicate that LRP5 and LRP6 have differential roles in Wnt signaling regulation.
Collapse
Affiliation(s)
- Harminder D Singh
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jian-Xing Ma
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yusuke Takahashi
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
23
|
Pang B, Ni Q, Di S, Du LJ, Qin YL, Li QW, Li M, Tong XL. Luo Tong Formula Alleviates Diabetic Retinopathy in Rats Through Micro-200b Target. Front Pharmacol 2020; 11:551766. [PMID: 33324202 PMCID: PMC7723456 DOI: 10.3389/fphar.2020.551766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Aim: Diabetic retinopathy (DR) is a serious complication of diabetes (DM). Luo Tong formula (LTF) exerts protective effects against DR in rats, but its underlying mechanism remains unknown. Methods: Sprague-Dawley rats injected with streptozotocin (STZ) were used as an experimental diabetes model. LTF or calcium dobesilate (CaD) was administered to diabetic rats via gastric gavage. After the 12 weeks of treatment, blood and tissue samples were collected to determine serum glucose and retinal structure. Blood samples were collected for blood glucose and hemorheology analysis. Gene or protein expression levels were evaluated by immunohistochemistry, western blotting and/or quantitative real-time polymerase chain reaction (PCR). Results: DM rats exhibits significantly increased blood retinal-barrier (BRB) breakdown and VEGF/VEGFR expression in the retina, and decreased miR-200b and tight junction ZO-1/Occludin/ Claudin-5 genes expression, as well as Ang-1/Tie-2 expressions in the retina compared to normal control group. LTF treatment significantly moderated histological abnormalities in diabetic rats, independent of blood glucose level; improved some hemorrheological parameters; decreased the expressions of VEGF/VEGFR and BRB breakdown, significantly increased PEDF and tight junction proteins ZO-1/Occludin, as well as increased retinal miR-200b expression compared to non-treatment diabetic rats. Moreover, LTF prevented the reduction in Ang-1/Tie-2 expression. Conclusions: LTF treatment ameliorated DR through its repair vascular and attenuate vascular leakage. A mechanism involving miR-200b may contribute to benefit effects.
Collapse
Affiliation(s)
- Bing Pang
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Ni
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Sha Di
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Juan Du
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ya-Li Qin
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qing-Wei Li
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Molecular Biology Laboratory, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Lin Tong
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Volkert MR, Crowley DJ. Preventing Neurodegeneration by Controlling Oxidative Stress: The Role of OXR1. Front Neurosci 2020; 14:611904. [PMID: 33384581 PMCID: PMC7770112 DOI: 10.3389/fnins.2020.611904] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022] Open
Abstract
Parkinson’s disease, diabetic retinopathy, hyperoxia induced retinopathy, and neuronal damage resulting from ischemia are among the notable neurodegenerative diseases in which oxidative stress occurs shortly before the onset of neurodegeneration. A shared feature of these diseases is the depletion of OXR1 (oxidation resistance 1) gene products shortly before the onset of neurodegeneration. In animal models of these diseases, restoration of OXR1 has been shown to reduce or eliminate the deleterious effects of oxidative stress induced cell death, delay the onset of symptoms, and reduce overall severity. Moreover, increasing OXR1 expression in cells further increases oxidative stress resistance and delays onset of disease while showing no detectable side effects. Thus, restoring or increasing OXR1 function shows promise as a therapeutic for multiple neurodegenerative diseases. This review examines the role of OXR1 in oxidative stress resistance and its impact on neurodegenerative diseases. We describe the potential of OXR1 as a therapeutic in light of our current understanding of its function at the cellular and molecular level and propose a possible cascade of molecular events linked to OXR1’s regulatory functions.
Collapse
Affiliation(s)
- Michael R Volkert
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - David J Crowley
- Department of Biological and Physical Sciences, Assumption University, Worcester, MA, United States
| |
Collapse
|
25
|
Chan HW, Yang B, Wong W, Blakeley P, Seah I, Tan QSW, Wang H, Bhargava M, Lin HA, Chai CHC, Mangunkusumo EA, Thet N, Yuen YS, Sethi R, Wang S, Hunziker W, Lingam G, Su X. A Pilot Study on MicroRNA Profile in Tear Fluid to Predict Response to Anti-VEGF Treatments for Diabetic Macular Edema. J Clin Med 2020; 9:E2920. [PMID: 32927780 PMCID: PMC7564365 DOI: 10.3390/jcm9092920] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Intravitreal anti-vascular endothelial growth factor (anti-VEGF) is an established treatment for center-involving diabetic macular edema (ci-DME). However, the clinical response is heterogeneous. This study investigated miRNAs as a biomarker to predict treatment response to anti-VEGF in DME. (2) Methods: Tear fluid, aqueous, and blood were collected from patients with treatment-naïve DME for miRNA expression profiling with quantitative polymerase chain reaction. Differentially expressed miRNAs between good and poor responders were identified from tear fluid. Bioinformatics analysis with the miEAA tool, miRTarBase Annotations, Gene Ontology categories, KEGG, and miRWalk pathways identified interactions between enriched miRNAs and biological pathways. (3) Results: Of 24 participants, 28 eyes received bevacizumab (15 eyes) or aflibercept (13 eyes). Tear fluid had the most detectable miRNA species (N = 315), followed by serum (N = 309), then aqueous humor (N = 134). MiRNAs that correlated with change in macular thickness were miR-214-3p, miR-320d, and hsa-miR-874-3p in good responders; and miR-98-5p, miR-196b-5p, and miR-454-3p in poor responders. VEGF-related pathways and the angiogenin-PRI complex were enriched in good responders, while transforming growth factor-β and insulin-like growth factor pathways were enriched in poor responders. (4) Conclusions: We reported a panel of novel miRNAs that provide insight into biological pathways in DME. Validation in larger independent cohorts is needed to determine the predictive performance of these miRNA candidate biomarkers.
Collapse
Affiliation(s)
- Hwei Wuen Chan
- Department of Ophthalmology, National University Hospital, Singapore S118177, Singapore; (H.W.C.); (W.W.); (I.S.); (M.B.); (H.A.L.); (C.H.C.); (E.A.M.); (N.T.); (Y.S.Y.); (G.L.)
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (P.B.); (S.W.)
| | - Binxia Yang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (B.Y.); (Q.S.W.T.); (H.W.); (R.S.); (W.H.)
| | - Wendy Wong
- Department of Ophthalmology, National University Hospital, Singapore S118177, Singapore; (H.W.C.); (W.W.); (I.S.); (M.B.); (H.A.L.); (C.H.C.); (E.A.M.); (N.T.); (Y.S.Y.); (G.L.)
| | - Paul Blakeley
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (P.B.); (S.W.)
| | - Ivan Seah
- Department of Ophthalmology, National University Hospital, Singapore S118177, Singapore; (H.W.C.); (W.W.); (I.S.); (M.B.); (H.A.L.); (C.H.C.); (E.A.M.); (N.T.); (Y.S.Y.); (G.L.)
| | - Queenie Shu Woon Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (B.Y.); (Q.S.W.T.); (H.W.); (R.S.); (W.H.)
| | - Haofei Wang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (B.Y.); (Q.S.W.T.); (H.W.); (R.S.); (W.H.)
| | - Mayuri Bhargava
- Department of Ophthalmology, National University Hospital, Singapore S118177, Singapore; (H.W.C.); (W.W.); (I.S.); (M.B.); (H.A.L.); (C.H.C.); (E.A.M.); (N.T.); (Y.S.Y.); (G.L.)
| | - Hazel Anne Lin
- Department of Ophthalmology, National University Hospital, Singapore S118177, Singapore; (H.W.C.); (W.W.); (I.S.); (M.B.); (H.A.L.); (C.H.C.); (E.A.M.); (N.T.); (Y.S.Y.); (G.L.)
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (P.B.); (S.W.)
| | - Charmaine HC Chai
- Department of Ophthalmology, National University Hospital, Singapore S118177, Singapore; (H.W.C.); (W.W.); (I.S.); (M.B.); (H.A.L.); (C.H.C.); (E.A.M.); (N.T.); (Y.S.Y.); (G.L.)
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (P.B.); (S.W.)
| | - Erlangga Ariadarma Mangunkusumo
- Department of Ophthalmology, National University Hospital, Singapore S118177, Singapore; (H.W.C.); (W.W.); (I.S.); (M.B.); (H.A.L.); (C.H.C.); (E.A.M.); (N.T.); (Y.S.Y.); (G.L.)
| | - Naing Thet
- Department of Ophthalmology, National University Hospital, Singapore S118177, Singapore; (H.W.C.); (W.W.); (I.S.); (M.B.); (H.A.L.); (C.H.C.); (E.A.M.); (N.T.); (Y.S.Y.); (G.L.)
| | - Yew Sen Yuen
- Department of Ophthalmology, National University Hospital, Singapore S118177, Singapore; (H.W.C.); (W.W.); (I.S.); (M.B.); (H.A.L.); (C.H.C.); (E.A.M.); (N.T.); (Y.S.Y.); (G.L.)
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (P.B.); (S.W.)
| | - Raman Sethi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (B.Y.); (Q.S.W.T.); (H.W.); (R.S.); (W.H.)
| | - Si Wang
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (P.B.); (S.W.)
| | - Walter Hunziker
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (B.Y.); (Q.S.W.T.); (H.W.); (R.S.); (W.H.)
| | - Gopal Lingam
- Department of Ophthalmology, National University Hospital, Singapore S118177, Singapore; (H.W.C.); (W.W.); (I.S.); (M.B.); (H.A.L.); (C.H.C.); (E.A.M.); (N.T.); (Y.S.Y.); (G.L.)
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (P.B.); (S.W.)
| | - Xinyi Su
- Department of Ophthalmology, National University Hospital, Singapore S118177, Singapore; (H.W.C.); (W.W.); (I.S.); (M.B.); (H.A.L.); (C.H.C.); (E.A.M.); (N.T.); (Y.S.Y.); (G.L.)
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (P.B.); (S.W.)
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (B.Y.); (Q.S.W.T.); (H.W.); (R.S.); (W.H.)
- Singapore Eye Research Institute (SERI), Singapore National Eye Centre, Singapore 169856, Singapore
| |
Collapse
|
26
|
Ye S, Chen Q, Jiang N, Liang X, Li J, Zong R, Huang C, Qiu Y, Ma JX, Liu Z. PPARα-Dependent Effects of Palmitoylethanolamide Against Retinal Neovascularization and Fibrosis. Invest Ophthalmol Vis Sci 2020; 61:15. [PMID: 32298438 PMCID: PMC7401460 DOI: 10.1167/iovs.61.4.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose Pathological neovascularization and fibrosis are common pathological changes of many retinal diseases, such as proliferative retinopathy (PR) and age-related macular degeneration (AMD). Treatment modalities for these pathological changes are limited. The purpose of the present study was to test the effects of palmitoylethanolamide (PEA), an endocannabinoid mimetic amide, on retinal neovascularization and fibrosis and to determine its molecular mechanism of action. Methods A rat Müller cell line (rMC-1), a mouse model of oxygen-induced retinopathy (OIR), and the very-low-density lipoprotein receptor (VLDLR) knockout mouse model were used. PEA was intraperitoneally injected or orally administrated in animal models. Inflammation and profibrotic changes were evaluated by western blot analysis. Glial fibrillary acidic protein (GFAP) and peroxisome proliferator-activated receptor alpha (PPARα) were measured by RT-PCR and western blot analysis. Results Profibrotic changes were present in OIR and Vldlr-/- retinas. PEA significantly alleviated inflammation and inhibited neovascularization in OIR and Vldlr-/- retinas and suppressed profibrotic changes in OIR and Vldlr-/- retinas. Moreover, PEA potently suppressed Müller gliosis in these retinas. In rMC-1 cells, PEA suppressed Müller gliosis, reduced inflammatory cytokines, and attenuated profibrotic changes. Further, both mRNA and protein levels of PPARα were elevated in the retina under PEA treatment, and the effects of PEA were abolished in Pparα-/- OIR mice. Conclusions PEA reduced retinal neovascularization and fibrotic changes and suppressed Müller gliosis in experimental PR and neovascular AMD by activating PPARα. PEA may be a potential treatment for retinopathies with pathological neovascularization and fibrosis.
Collapse
|
27
|
Martins B, Amorim M, Reis F, Ambrósio AF, Fernandes R. Extracellular Vesicles and MicroRNA: Putative Role in Diagnosis and Treatment of Diabetic Retinopathy. Antioxidants (Basel) 2020; 9:E705. [PMID: 32759750 PMCID: PMC7463887 DOI: 10.3390/antiox9080705] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is a complex, progressive, and heterogenous retinal degenerative disease associated with diabetes duration. It is characterized by glial, neural, and microvascular dysfunction, being the blood-retinal barrier (BRB) breakdown a hallmark of the early stages. In advanced stages, there is formation of new blood vessels, which are fragile and prone to leaking. This disease, if left untreated, may result in severe vision loss and eventually legal blindness. Although there are some available treatment options for DR, most of them are targeted to the advanced stages of the disease, have some adverse effects, and many patients do not adequately respond to the treatment, which demands further research. Oxidative stress and low-grade inflammation are closely associated processes that play a critical role in the development of DR. Retinal cells communicate with each other or with another one, using cell junctions, adhesion contacts, and secreted soluble factors that can act in neighboring or long-distance cells. Another mechanism of cell communication is via secreted extracellular vesicles (EVs), through exchange of material. Here, we review the current knowledge on deregulation of cell-to-cell communication through EVs, discussing the changes in miRNA expression profiling in body fluids and their role in the development of DR. Thereafter, current and promising therapeutic agents for preventing the progression of DR will be discussed.
Collapse
Affiliation(s)
- Beatriz Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.M.); (M.A.); (F.R.); (A.F.A.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Madania Amorim
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.M.); (M.A.); (F.R.); (A.F.A.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Flávio Reis
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.M.); (M.A.); (F.R.); (A.F.A.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.M.); (M.A.); (F.R.); (A.F.A.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.M.); (M.A.); (F.R.); (A.F.A.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| |
Collapse
|
28
|
Taheri M, Eghtedarian R, Dinger ME, Ghafouri-Fard S. Emerging roles of non-coding RNAs in the pathogenesis of type 1 diabetes mellitus. Biomed Pharmacother 2020; 129:110509. [PMID: 32768981 DOI: 10.1016/j.biopha.2020.110509] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes mellitus (T1D) is a lifelong autoimmune disorder that is increasingly prevalent in populations worldwide. As well as affecting adults, T1D is one of the most prevalent chronic childhood disorders. Several lines of evidence point to dysregulation of both cellular and humoral immune responses in this disorder. Several genetic loci have been associated with risk of T1D, implying the presence of a complex multifactorial pattern of inheritance for this disorder. Moreover, recent studies have reported dysregulation of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in animal models of T1D or clinical samples. Several immune-related molecules and pathways such as NF-κB, PI3K/Akt/FOXO, JAK, MAPK, mTOR and STAT pathways are regulated by non-coding RNAs in the context of T1D. Improved understanding of the role of lncRNAs and miRNAs in the pathogenesis of T1D would facilitate design of preventive therapeutic modalities. In the current review, we summarize the results of animal and human studies that report dysregulation of these transcripts and their function in T1D.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhane Eghtedarian
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Wang W, Tam KC, Ng TC, Goit RK, Chan KLS, Lo ACY. Long-term lutein administration attenuates retinal inflammation and functional deficits in early diabetic retinopathy using the Ins2 Akita/+ mice. BMJ Open Diabetes Res Care 2020; 8:8/1/e001519. [PMID: 32665315 PMCID: PMC7365433 DOI: 10.1136/bmjdrc-2020-001519] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Lutein is a carotenoid whose protective effects in the retina have been reported in various studies. The effect of lutein has not been reported in the retina of the Ins2Akita/+ mouse, a well-characterized genetic model for diabetic retinopathy (DR) in which the etiology of diabetes is better defined than the chemically induced diabetes. The objective of the present study is to investigate the effect of long-term administration of lutein in early stages of DR using the Ins2Akita/+ mouse. RESEARCH DESIGN AND METHODS Heterozygous male Ins2Akita/+ and age-matched wild-type mice were used. Lutein was administered to the mice in drinking water starting 6 weeks old daily until analysis at 4.5, 6.5 or 9 months of age. Plain water served as non-treatment control. Microglia were immunostained with ionized calcium-binding adapter molecule 1 (Iba-1) and cluster of differentiation 68 (CD68) in retinal flat-mounts. Vascular endothelial growth factor (VEGF) level in the retina was assessed by enzyme-linked immunosorbent assay (ELISA). Vascular permeability was analyzed in retinal flat-mounts after fluorescein isothiocyanate (FITC)-dextran perfusion. Retinal occludin expression was assessed via Western blots. Retinal function was examined by electroretinography (ERG). RESULTS Increased microglial reactivity was detected in the Ins2Akita/+ mouse retina and was suppressed by lutein. Lutein administration also reduced the upregulation of VEGF in the Ins2Akita/+ mouse retina. Increased vascular leakage and decreased occludin expression were observed in the Ins2Akita/+ mouse retina, and these alterations were attenuated by lutein treatment. ERG recordings showed reduced a-wave and b-wave amplitudes in the Ins2Akita/+ mice. With lutein treatment, the ERG deficits were significantly alleviated. CONCLUSIONS We showed beneficial effects of long-term lutein administration in the Ins2Akita/+ mouse retina, including suppression of retinal inflammation, protection of retinal vasculature and preservation of retinal function. These results point to lutein's potential as a long-term therapeutic intervention for prevention of inflammation and retinal degeneration in patients with early DR.
Collapse
Affiliation(s)
- Wei Wang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ka Cheung Tam
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tsz Chung Ng
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rajesh Kumar Goit
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kate Lok San Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
Cho H, Hwang M, Hong EH, Yu H, Park HH, Koh SH, Shin YU. Micro-RNAs in the aqueous humour of patients with diabetic macular oedema. Clin Exp Ophthalmol 2020; 48:624-635. [PMID: 32173975 DOI: 10.1111/ceo.13750] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
IMPORTANCE Micro-RNAs (miRNAs) have been studied as new biomarkers or mediators in various diseases, but the value of aqueous humour (AH) miRNAs in diabetic macular oedema (DMO) is still not known. BACKGROUND To compare AH miRNAs and related cytokine expression in DMO patients and healthy controls. DESIGN Prospective cross-sectional study. PARTICIPANTS Twenty naïve DMO patients and 13 control subjects, who were scheduled for intravitreal injection and cataract surgery, respectively. METHODS AH samples were collected at the beginning of each procedure and analysed using a miRNA polymerase chain reaction (PCR) array composed of 84 miRNAs, reverse transcripase-quantitative PCR (qPCR) for verifying selected differentially expressed miRNAs, and a cytokine assay, the results of which were compared with bioinformatics conducted to find out genes associated with DMO-related miRNAs. MAIN OUTCOMES MEASURES AH expression of miRNAs and cytokines and the bioinformatics results. RESULTS Five miRNAs (hsa-miR-185-5p, hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-15b-5p and hsa-miR-15a-5p) showing a fold change greater than -50 in log2 values in the miRNA PCR array were selected, all significantly down-regulated in the DMO group compared to the control group (P < .05), and showed a direct relationship with tumour necrosis factor, nuclear factor kappa B subunit 1 and interleukin-6 (IL-6) in bioinformatics analysis, all of which were related to vascular endothelial growth factor (VEGF). In the cytokine assay, the aqueous concentrations of VEGF, placental growth factor, IL-6 and IL-8 were significantly higher in the DMO group compared to the control group. CONCLUSIONS AND RELEVANCE This study is the first to perform miRNA profiling of the AH of DMO patients. We identified differentially expressed miRNAs in DMO AH, which may be used as potential biomarkers or novel therapeutic targets for DMO.
Collapse
Affiliation(s)
- Heeyoon Cho
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Mina Hwang
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Eun H Hong
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hyoseon Yu
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea.,Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Korea
| | - Yong U Shin
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
31
|
Liu CH, Huang S, Britton WR, Chen J. MicroRNAs in Vascular Eye Diseases. Int J Mol Sci 2020; 21:ijms21020649. [PMID: 31963809 PMCID: PMC7014392 DOI: 10.3390/ijms21020649] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of the first microRNA (miRNA) decades ago, studies of miRNA biology have expanded in many biomedical research fields, including eye research. The critical roles of miRNAs in normal development and diseases have made miRNAs useful biomarkers or molecular targets for potential therapeutics. In the eye, ocular neovascularization (NV) is a leading cause of blindness in multiple vascular eye diseases. Current anti-angiogenic therapies, such as anti-vascular endothelial growth factor (VEGF) treatment, have their limitations, indicating the need for investigating new targets. Recent studies established the roles of various miRNAs in the regulation of pathological ocular NV, suggesting miRNAs as both biomarkers and therapeutic targets in vascular eye diseases. This review summarizes the biogenesis of miRNAs, and their functions in the normal development and diseases of the eye, with a focus on clinical and experimental retinopathies in both human and animal models. Discovery of novel targets involving miRNAs in vascular eye diseases will provide insights for developing new treatments to counter ocular NV.
Collapse
Affiliation(s)
| | | | | | - Jing Chen
- Correspondence: ; Tel.: +1-617-919-2525
| |
Collapse
|
32
|
Gui F, You Z, Fu S, Wu H, Zhang Y. Endothelial Dysfunction in Diabetic Retinopathy. Front Endocrinol (Lausanne) 2020; 11:591. [PMID: 33013692 PMCID: PMC7499433 DOI: 10.3389/fendo.2020.00591] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Diabetic retinopathy (DR) is a diabetic complication which affects retinal function and results in severe loss of vision and relevant retinal diseases. Retinal vascular dysfunction caused by multifactors, such as advanced glycosylation end products and receptors, pro-inflammatory cytokines and chemokines, proliferator-activated receptor-γ disruption, growth factors, oxidative stress, and microRNA. These factors promote retinal endothelial dysfunction, which results in the development of DR. In this review, we summarize the contributors in the pathophysiology of DR for a better understanding of the molecular and cellular mechanism in the development of DR with a special emphasis on retinal endothelial dysfunction.
Collapse
|
33
|
Jiang Y, Liu J, Chen L, Jin Y, Zhang G, Lin Z, Du S, Fu Z, Chen T, Qin Y, Sun X. Serum secreted miR-137-containing exosomes affects oxidative stress of neurons by regulating OXR1 in Parkinson’s disease. Brain Res 2019; 1722:146331. [DOI: 10.1016/j.brainres.2019.146331] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/13/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
|
34
|
Martinez B, Peplow PV. MicroRNAs as biomarkers of diabetic retinopathy and disease progression. Neural Regen Res 2019; 14:1858-1869. [PMID: 31290435 PMCID: PMC6676865 DOI: 10.4103/1673-5374.259602] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus, together with its complications, has been increasing in prevalence worldwide. Its complications include cardiovascular disease (e.g., myocardial infarction, stroke), neuropathy, nephropathy, and eye complications (e.g., glaucoma, cataracts, retinopathy, and macular edema). In patients with either type 1 or type 2 diabetes mellitus, diabetic retinopathy is the leading cause of visual impairment or blindness. It is characterized by progressive changes in the retinal microvasculature. The progression from nonproliferative diabetic retinopathy to a more advanced stage of moderate to severe nonproliferative diabetic retinopathy and proliferative diabetic retinopathy occurs very quickly after diagnosis of mild nonproliferative diabetic retinopathy. The etiology of diabetic retinopathy is unclear, and present treatments have limited effectiveness. Currently diabetic retinopathy can only be diagnosed by a trained specialist, which reduces the population that can be examined. A screening biomarker of diabetic retinopathy with high sensitivity and specificity would aid considerably in identifying those individuals in need of clinical assessment and treatment. The majority of the studies reviewed identified specific microRNAs in blood serum/plasma able to distinguish diabetic patients with retinopathy from those without retinopathy and for the progresion of the disease from nonproliferative diabetic retinopathy to proliferative diabetic retinopathy. In addition, certain microRNAs in vitreous humor were dysregulated in proliferative diabetic retinopathy compared to controls. A very high percentage of patients with diabetic retinopathy develop Alzheimer's disease. Thus, identifying diabetic retinopathy by measurement of suitable biomarkers would also enable better screening and treatment of those individuals at risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Molecular & Cellular Biology, University of California, Merced, Merced, California, USA
- Department of Medicine, St. Georges University School of Medicine, Grenada
- Department of Physics and Engineering, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
35
|
Qadir MMF, Klein D, Álvarez-Cubela S, Domínguez-Bendala J, Pastori RL. The Role of MicroRNAs in Diabetes-Related Oxidative Stress. Int J Mol Sci 2019; 20:E5423. [PMID: 31683538 PMCID: PMC6862492 DOI: 10.3390/ijms20215423] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular stress, combined with dysfunctional, inadequate mitochondrial phosphorylation, produces an excessive amount of reactive oxygen species (ROS) and an increased level of ROS in cells, which leads to oxidation and subsequent cellular damage. Because of its cell damaging action, an association between anomalous ROS production and disease such as Type 1 (T1D) and Type 2 (T2D) diabetes, as well as their complications, has been well established. However, there is a lack of understanding about genome-driven responses to ROS-mediated cellular stress. Over the last decade, multiple studies have suggested a link between oxidative stress and microRNAs (miRNAs). The miRNAs are small non-coding RNAs that mostly suppress expression of the target gene by interaction with its 3'untranslated region (3'UTR). In this paper, we review the recent progress in the field, focusing on the association between miRNAs and oxidative stress during the progression of diabetes.
Collapse
Affiliation(s)
- Mirza Muhammad Fahd Qadir
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Dagmar Klein
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Silvia Álvarez-Cubela
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Ricardo Luis Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
36
|
Zhang J, Cui C, Xu H. Downregulation of miR-145-5p elevates retinal ganglion cell survival to delay diabetic retinopathy progress by targeting FGF5. Biosci Biotechnol Biochem 2019; 83:1655-1662. [PMID: 31272285 DOI: 10.1080/09168451.2019.1630251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
ABSTRACT
Diabetic retinopathy (DR) is a leading cause of new-onset blindness. Recent studies showed that protecting retinal ganglion cells (RGCs) from high glucose-induced injury is a promising strategy for delaying DR. This study is to investigate the role of miR-145-5p in high glucose-induced RGC injury. Here, RGCs were randomly divided into low glucose and high glucose groups. PCR assay showed miR-145-5p was significantly upregulated in high glucose group. Transfection of miR-145-5p inhibitor decreased pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) levels, elevated cell viability and proliferation, as well as suppressed cell apoptosis by ELISA, MTT, EdU proliferation, colony formation and flow cytometry assays, respectively. Moreover, dual-luciferase reporter assay confirmed FGF5 as a target gene of miR-145-5p. FGF5 knockdown could partially reverse the protective effects of miR-145-5p on RGC-5 cells. In conclusion, our results demonstrated that inhibition of miR-145-5p might be a neuroprotective target for diabetes mellitus-related DR.
Abbreviations: DR: diabetic retinopathy; RGCs: retinal ganglion cells; miR-145-5p: microRNA-145-5p; TNF-α: tumor necrosis factor-α; IL-6: interleukin-6; FGF: fibroblast growth factor; ATCC: American Type Culture Collection; WT: wild type; MUT: mutant type
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| | - Changlei Cui
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, China
| | - Haiyang Xu
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
37
|
Chen D, Miao Z, Peng M, Xing H, Zhang H, Teng X. The co-expression of circRNA and mRNA in the thymuses of chickens exposed to ammonia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:146-152. [PMID: 30925331 DOI: 10.1016/j.ecoenv.2019.03.076] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Ammonia (NH3) is one of major air pollutants in intensive poultry houses, affecting chicken health. Circular RNA (circRNA) is a novel type of RNA that can regulate gene expression and be associated with various biological activities. However, the changes of circRNA caused by excess NH3 in chickens have not been investigated. We found differentially expressed genes and morphological changes in the thymuses of chickens exposed to NH3 on day 42. We used a combination of RNA deep sequencing, qRT-PCR, and bioinformatic analysis to explore regulatory mechanism of circRNA and mRNA. Transcriptional profiling results showed that 5 circRNA genes and 100 mRNA genes were significantly dyregulated by high NH3. The results from GO items showed that immune response and the regulation of cytokine production were involved in the mechanisms of chickens exposed to NH3. Co-expression analysis found that circRNA-mRNA network was correlated with oxidative stress and inflammation. NH3 exposure decreased mRNA expression of antioxidant-related genes (GPx and GST4) and increased the mRNA expression of inflammation-related genes (IL-1β, IL-6, IL-8, and iNOS) in chicken thymuses. Histopathologic analysis demonstrated that NH3 caused inflammatory injury in chicken thymuses. In conclusion, the co-expression of circRNA and mRNA took part in chicken thymus inflammatory injury caused by NH3. Our study further enriches the mechanism of NH3 toxicity on chickens, which may be valuable for human and animal health protection.
Collapse
Affiliation(s)
- Dechun Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhiying Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Muqiao Peng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
38
|
Zhu XR, Yang FY, Lu J, Zhang HR, Sun R, Zhou JB, Yang JK. Plasma metabolomic profiling of proliferative diabetic retinopathy. Nutr Metab (Lond) 2019; 16:37. [PMID: 31160916 PMCID: PMC6540396 DOI: 10.1186/s12986-019-0358-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/01/2019] [Indexed: 02/08/2023] Open
Abstract
Background Proliferative diabetic retinopathy (PDR), a sight-threatening retinopathy, is the leading cause of irreversible blindness in adults. Despite strict control of systemic risk factors, a fraction of patients with diabetes develop PDR, suggesting the existence of other potential pathogenic factors underlying PDR. This study aimed to investigate the plasma metabotype of patients with PDR and to identify novel metabolite markers for PDR. Biomarkers identified from this study will provide scientific insight and new strategies for the early diagnosis and intervention of diabetic retinopathy. Methods A total of 1024 patients with type 2 diabetes were screened. To match clinical parameters between case and control subjects, patients with PDR (PDR, n = 21) or those with a duration of diabetes of ≥10 years but without diabetic retinopathy (NDR, n = 21) were assigned to the present case-control study. Distinct metabolite profiles of serum were examined using liquid chromatography-mass spectrometry (LC-MS). Results The distinct metabolites between PDR and NDR groups were significantly enriched in 9 KEGG pathways (P < 0.05, impact > 0.1), namely, alanine, aspartate and glutamate metabolism, caffeine metabolism, beta-alanine metabolism, purine metabolism, cysteine and methionine metabolism, sulfur metabolism, sphingosine metabolism, and arginine and proline metabolism. A total of 63 altered metabolites played important roles in these pathways. Finally, 4 metabolites were selected as candidate biomarkers for PDR, namely, fumaric acid, uridine, acetic acid, and cytidine. The area under the curve for these biomarkers were 0.96, 0.95, 1.0, and 0.95, respectively. Conclusions This study suggested that impairment in the metabolism of pyrimidines, arginine and proline were identified as metabolic dysregulation associated with PDR. And fumaric acid, uridine, acetic acid, and cytidine might be potential biomarkers for PDR. Fumaric acid was firstly reported as a novel metabolite marker with no prior reports of association with diabetes or diabetic retinopathy, which might provide insights into potential new pathogenic pathways for diabetic retinopathy.
Collapse
Affiliation(s)
- Xiao-Rong Zhu
- 1Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100073 China
| | - Fang-Yuan Yang
- 1Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100073 China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Jing Lu
- 1Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100073 China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Hui-Rong Zhang
- 1Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100073 China
| | - Ran Sun
- 1Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100073 China
| | - Jian-Bo Zhou
- 1Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100073 China
| | - Jin-Kui Yang
- 1Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100073 China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing, China.,Beijing Diabetes Institute, Beijing, China
| |
Collapse
|
39
|
Shao Y, Dong LJ, Takahashi Y, Chen J, Liu X, Chen Q, Ma JX, Li XR. miRNA-451a regulates RPE function through promoting mitochondrial function in proliferative diabetic retinopathy. Am J Physiol Endocrinol Metab 2019; 316:E443-E452. [PMID: 30576241 PMCID: PMC6459296 DOI: 10.1152/ajpendo.00360.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The purpose of this study was to explore the role of microRNA-451a (miR-451a) in diabetic retinopathy through activating transcription factor 2 (ATF2). The epiretinal membrane samples from patients with proliferative diabetic retinopathy (PDR) were immunolabeled with an antibody for Ki-67 to identify the proliferative cells. The expression of miR-451a was measured by qRT-PCR in the retina of Akita mice and in RPE cells under diabetic conditions. The potential downstream targets of miR-451a were predicted by bioinformatics and confirmed by dual luciferase assay, qRT-PCR, and Western blotting. Mitochondrial function, cell proliferation, and migration assays were used to detect the functional change after transfection of miR-451a mimic and inhibitor. Proliferative RPE cells were identified in the epiretinal membrane from PDR patients. The expression of miR-451a was downregulated both in the retina of Akita mice and 4-hydroxynonenal (4-HNE)-treated RPE cells. Bioinformatic analysis and luciferase assay identified ATF2 as a potential target of miR-451a. miR-451a inhibited proliferation and migration of RPE cells. The mitochondrial function was enhanced by miR-451a mimic, but suppressed by miR-451a inhibitor. In diabetic conditions, miR-451a showed a protective effect on mitochondrial function. The results of qRT-PCR and Western blotting revealed that overexpression of miR-451a downregulated the expression of ATF2 and its downstream target genes CyclinA1, CyclinD1, and MMP2. In conclusion, miR-451a/ATF2 plays a vital role in the regulation of proliferation and migration in RPE cells through regulation of mitochondrial function, which may provide new perspectives for developing effective therapies for PDR.
Collapse
Affiliation(s)
- Yan Shao
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology , Tianjin , China
- Department of Physiology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Li-Jie Dong
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology , Tianjin , China
| | - Yusuke Takahashi
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Department of Medicine, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Jianglei Chen
- Department of Physiology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Xun Liu
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology , Tianjin , China
| | - Qian Chen
- Department of Physiology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Eye Institute of Xiamen University & Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University , Xiamen, Fujian , China
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Xiao-Rong Li
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology , Tianjin , China
| |
Collapse
|
40
|
Satari M, Aghadavod E, Mobini M, Asemi Z. Association between miRNAs expression and signaling pathways of oxidative stress in diabetic retinopathy. J Cell Physiol 2018; 234:8522-8532. [PMID: 30478922 DOI: 10.1002/jcp.27801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/31/2018] [Indexed: 12/12/2022]
Abstract
Diabetic retinopathy (DR) is a major cause of vision reduction in diabetic patients. Hyperglycemia is a known instigator for the development of DR, even though the role of oxidative stress pathways in the pathogenesis of DR is established. The studies indicate that microRNAs (miRNAs) are significant to the etiology of DR; changes in miRNAs expression levels may be associated with onset and progression of DR. In addition, miRNAs have emerged as a useful disease marker due to their availability and stability in detecting the severity of DR. The relationship between miRNAs expression levels and oxidative stress pathways has been investigated in several studies. The aim of this study is the examination of function and expression levels of target miRNAs in oxidative stress pathway and pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- Mahbobeh Satari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Depatrment of Biochemistry, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Depatrment of Biochemistry, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Mobini
- Department of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Depatrment of Biochemistry, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
41
|
Sun L, Li W, Lei F, Li X. The regulatory role of microRNAs in angiogenesis-related diseases. J Cell Mol Med 2018; 22:4568-4587. [PMID: 29956461 PMCID: PMC6156236 DOI: 10.1111/jcmm.13700] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at a post-transcriptional level via either the degradation or translational repression of a target mRNA. They play an irreplaceable role in angiogenesis by regulating the proliferation, differentiation, apoptosis, migration and tube formation of angiogenesis-related cells, which are indispensable for multitudinous physiological and pathological processes, especially for the occurrence and development of vascular diseases. Imbalance between the regulation of miRNAs and angiogenesis may cause many diseases such as cancer, cardiovascular disease, aneurysm, Kawasaki disease, aortic dissection, phlebothrombosis and diabetic microvascular complication. Therefore, it is important to explore the essential role of miRNAs in angiogenesis, which might help to uncover new and effective therapeutic strategies for vascular diseases. This review focuses on the interactions between miRNAs and angiogenesis, and miRNA-based biomarkers in the diagnosis, treatment and prognosis of angiogenesis-related diseases, providing an update on the understanding of the clinical value of miRNAs in targeting angiogenesis.
Collapse
Affiliation(s)
- Li‐Li Sun
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
- Department of Vascular Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wen‐Dong Li
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Feng‐Rui Lei
- Department of Vascular Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiao‐Qiang Li
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| |
Collapse
|
42
|
Homme RP, Singh M, Majumder A, George AK, Nair K, Sandhu HS, Tyagi N, Lominadze D, Tyagi SC. Remodeling of Retinal Architecture in Diabetic Retinopathy: Disruption of Ocular Physiology and Visual Functions by Inflammatory Gene Products and Pyroptosis. Front Physiol 2018; 9:1268. [PMID: 30233418 PMCID: PMC6134046 DOI: 10.3389/fphys.2018.01268] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Diabetic patients suffer from a host of physiological abnormalities beyond just those of glucose metabolism. These abnormalities often lead to systemic inflammation via modulation of several inflammation-related genes, their respective gene products, homocysteine metabolism, and pyroptosis. The very nature of this homeostatic disruption re-sets the overall physiology of diabetics via upregulation of immune responses, enhanced retinal neovascularization, upregulation of epigenetic events, and disturbances in cells' redox regulatory system. This altered pathophysiological milieu can lead to the development of diabetic retinopathy (DR), a debilitating vision-threatening eye condition with microvascular complications. DR is the most prevalent cause of irreversible blindness in the working-age adults throughout the world as it can lead to severe structural and functional remodeling of the retina, decreasing vision and thus diminishing the quality of life. In this manuscript, we attempt to summarize recent developments and new insights to explore the very nature of this intertwined crosstalk between components of the immune system and their metabolic orchestrations to elucidate the pathophysiology of DR. Understanding the multifaceted nature of the cellular and molecular factors that are involved in DR could reveal new targets for effective diagnostics, therapeutics, prognostics, preventive tools, and finally strategies to combat the development and progression of DR in susceptible subjects.
Collapse
Affiliation(s)
- Rubens P. Homme
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Avisek Majumder
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| | - Akash K. George
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Kavya Nair
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Harpal S. Sandhu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, United States
- Kentucky Lions Eye Center, University of Louisville School of Medicine, Louisville, KY, United States
| | - Neetu Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - David Lominadze
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
43
|
Miao C, Chang J, Zhang G, Fang Y. MicroRNAs in type 1 diabetes: new research progress and potential directions. Biochem Cell Biol 2018; 96:498-506. [PMID: 29554441 DOI: 10.1139/bcb-2018-0027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of noncoding single-stranded RNA molecules encoded by endogenous genes of about 22 nucleotides, which are involved in post-transcriptional gene expression regulation in animals and plants. Type 1 diabetes (T1D) is an autoimmune disease that is clinically silent until the majority of β cells are destroyed, and a large number of studies have shown that miRNAs are involved in the pathological mechanism of T1D. In this review, we searched the related research in recent years and summarized the important roles of miRNAs in T1D diagnosis and treatment. Furthermore, we summarized the current understanding of miRNA-mediated regulation mechanisms of gene expression in the T1D pathogenesis as well as related signaling pathways with a focus on the important roles of miRNAs and their antagonists in T1D pathogenesis, and brought insight into the potential therapeutic value of miRNAs for T1D patients. In view of the important roles of miRNAs in T1D pathology, disordered miRNAs may be important diagnostic markers and therapeutic targets for patients with T1D.
Collapse
Affiliation(s)
- Chenggui Miao
- a Department of Pharmacy, College of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Jun Chang
- b Department of Orthopaedics, 4th Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Guoxue Zhang
- c College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yanxi Fang
- a Department of Pharmacy, College of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, China
| |
Collapse
|
44
|
Askou AL, Alsing S, Holmgaard A, Bek T, Corydon TJ. Dissecting microRNA dysregulation in age-related macular degeneration: new targets for eye gene therapy. Acta Ophthalmol 2018; 96:9-23. [PMID: 28271607 DOI: 10.1111/aos.13407] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/02/2017] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression in humans. Overexpression or depletion of individual miRNAs is associated with human disease. Current knowledge suggests that the retina is influenced by miRNAs and that dysregulation of miRNAs as well as alterations in components of the miRNA biogenesis machinery are involved in retinal diseases, including age-related macular degeneration (AMD). Furthermore, recent studies have indicated that the vitreous has a specific panel of circulating miRNAs and that this panel varies according to the specific pathological stress experienced by the retinal cells. MicroRNA (miRNA) profiling indicates subtype-specific miRNA profiles for late-stage AMD highlighting the importance of proper miRNA regulation in AMD. This review will describe the function of important miRNAs involved in inflammation, oxidative stress and pathological neovascularization, the key molecular mechanisms leading to AMD, and focus on dysregulated miRNAs as potential therapeutic targets in AMD.
Collapse
Affiliation(s)
| | - Sidsel Alsing
- Department of Biomedicine; Aarhus University; Aarhus C Denmark
| | | | - Toke Bek
- Department of Ophthalmology; Aarhus University Hospital; Aarhus C Denmark
| | | |
Collapse
|
45
|
Barutta F, Bellini S, Mastrocola R, Bruno G, Gruden G. MicroRNA and Microvascular Complications of Diabetes. Int J Endocrinol 2018; 2018:6890501. [PMID: 29707000 PMCID: PMC5863305 DOI: 10.1155/2018/6890501] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/28/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022] Open
Abstract
In the last decade, miRNAs have received substantial attention as potential players of diabetes microvascular complications, affecting the kidney, the retina, and the peripheral neurons. Compelling evidence indicates that abnormally expressed miRNAs have pivotal roles in key pathogenic processes of microvascular complications, such as fibrosis, apoptosis, inflammation, and angiogenesis. Moreover, clinical research into innovative both diagnostic and prognostic tools suggests circulating miRNAs as possible novel noninvasive markers of diabetes microvascular complications. In this review, we summarize current knowledge and understanding of the role of miRNAs in the injury to the microvascular bed in diabetes and discuss the potential of miRNAs as clinical biomarkers of diabetes microvascular complications.
Collapse
Affiliation(s)
- F. Barutta
- Laboratory of Diabetic Nephropathy, Department of Medical Sciences, University of Turin, Turin, Italy
| | - S. Bellini
- Laboratory of Diabetic Nephropathy, Department of Medical Sciences, University of Turin, Turin, Italy
| | - R. Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - G. Bruno
- Laboratory of Diabetic Nephropathy, Department of Medical Sciences, University of Turin, Turin, Italy
| | - G. Gruden
- Laboratory of Diabetic Nephropathy, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
46
|
Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy. Biosci Rep 2017; 37:BSR20171157. [PMID: 29074557 PMCID: PMC5705777 DOI: 10.1042/bsr20171157] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults across the world. The pathogenesis of DR is multifactorial and the molecular mechanisms are still not fully understood. Accumulating evidence has demonstrated that noncoding RNAs (ncRNAs) may be aberrantly expressed and may play vital roles in the development of DR. Amongst ncRNAs, miRNAs and long ncRNAs (lncRNAs) are known for their regulatory functions. Here, we summarize the functions and mechanisms of known aberrantly expressed miRNAs and lncRNAs in DR. Additionally, a novel lncRNA–mRNA–miRNA network is included in this review. We highlight original studies that provide detailed data about the mechanisms of miRNAs and lncRNAs, their applications as diagnostic or prognostic biomarkers, and their potential therapeutic targets. In conclusion, this review will help us gain a better understanding of the molecular mechanisms by which miRNAs and lncRNAs perform their functions in DR, and provide general strategies and directions for future research.
Collapse
|
47
|
Pearsall EA, Cheng R, Zhou K, Takahashi Y, Matlock HG, Vadvalkar SS, Shin Y, Fredrick TW, Gantner ML, Meng S, Fu Z, Gong Y, Kinter M, Humphries KM, Szweda LI, Smith LEH, Ma JX. PPARα is essential for retinal lipid metabolism and neuronal survival. BMC Biol 2017; 15:113. [PMID: 29183319 PMCID: PMC5706156 DOI: 10.1186/s12915-017-0451-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/06/2017] [Indexed: 11/29/2022] Open
Abstract
Background Peroxisome proliferator activated receptor-alpha (PPARα) is a ubiquitously expressed nuclear receptor. The role of endogenous PPARα in retinal neuronal homeostasis is unknown. Retinal photoreceptors are the highest energy-consuming cells in the body, requiring abundant energy substrates. PPARα is a known regulator of lipid metabolism, and we hypothesized that it may regulate lipid use for oxidative phosphorylation in energetically demanding retinal neurons. Results We found that endogenous PPARα is essential for the maintenance and survival of retinal neurons, with Pparα-/- mice developing retinal degeneration first detected at 8 weeks of age. Using extracellular flux analysis, we identified that PPARα mediates retinal utilization of lipids as an energy substrate, and that ablation of PPARα ultimately results in retinal bioenergetic deficiency and neurodegeneration. This may be due to PPARα regulation of lipid transporters, which facilitate the internalization of fatty acids into cell membranes and mitochondria for oxidation and ATP production. Conclusion We identify an endogenous role for PPARα in retinal neuronal survival and lipid metabolism, and furthermore underscore the importance of fatty acid oxidation in photoreceptor survival. We also suggest PPARα as a putative therapeutic target for age-related macular degeneration, which may be due in part to decreased mitochondrial efficiency and subsequent energetic deficits. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0451-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth A Pearsall
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA
| | - Kelu Zhou
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA
| | - Yusuke Takahashi
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA.,Section of Diabetes and Endocrinology, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - H Greg Matlock
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA
| | - Shraddha S Vadvalkar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Younghwa Shin
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA
| | - Thomas W Fredrick
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Marin L Gantner
- The Lowy Medical Research Institute, La Jolla, CA, 92037, USA
| | - Steven Meng
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yan Gong
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Kenneth M Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Luke I Szweda
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA. .,Section of Diabetes and Endocrinology, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
48
|
Abstract
The novel genome-wide assays of epigenetic marks have resulted in a greater understanding of how genetics and the environment interact in the development and inheritance of diabetes. Chronic hyperglycemia induces epigenetic changes in multiple organs, contributing to diabetic complications. Specific epigenetic-modifying compounds have been developed to erase these modifications, possibly slowing down the onset of diabetes-related complications. The current review is an update of the previously published paper, describing the most recent advances in the epigenetics of diabetes.
Collapse
Affiliation(s)
- Adriana Fodor
- University of Medicine & Pharmacy ‘Iuliu Hatieganu’, Cluj-Napoca, Romania
- County Emergency Clinical Hospital, Department of Diabetes, Nutrition & Metabolic Diseases, Cluj-Napoca, Romania
| | - Angela Cozma
- University of Medicine & Pharmacy ‘Iuliu Hatieganu’, Cluj-Napoca, Romania
- Clinical Hospital CF, Department of Internal Medicine, Cluj-Napoca, Romania
| | - Eddy Karnieli
- The Institute of Endocrinology, Diabetes & Metabolism, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
49
|
Quintero H, Lamas M. microRNA expression in the neural retina: Focus on Müller glia. J Neurosci Res 2017; 96:362-370. [DOI: 10.1002/jnr.24181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Heberto Quintero
- Departamento de Farmacobiología; Cinvestav Sede Sur; Mexico City Mexico
- Department of Neuroscience; University of Montreal Hospital Research Centre (CRCHUM); Montreal Quebec Canada
| | - Mónica Lamas
- Departamento de Farmacobiología; Cinvestav Sede Sur; Mexico City Mexico
| |
Collapse
|
50
|
Ayaz L, Dinç E. Evaluation of microRNA responses in ARPE-19 cells against the oxidative stress. Cutan Ocul Toxicol 2017; 37:121-126. [DOI: 10.1080/15569527.2017.1355314] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lokman Ayaz
- Department of Biochemistry, School of Pharmacy, Trakya University, Edirne, Turkey
| | - Erdem Dinç
- Department of Ophthalmology, School of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|