1
|
Lusthaus JA. Imaging of aqueous outflow in health and glaucoma. Justifying the re-direction of aqueous. Eye (Lond) 2025; 39:651-657. [PMID: 38429503 PMCID: PMC11885811 DOI: 10.1038/s41433-024-02968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/17/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024] Open
Abstract
A wave of less invasive surgical options that target or bypass the conventional aqueous outflow system has been incorporated into routine clinical practice to mitigate surgical risks associated with traditional glaucoma drainage surgery. A blanket surgical approach for open-angle glaucoma is unlikely to achieve the desired IOP reduction in an efficient or economical way. Developing a precise approach to selecting the most appropriate surgical tool for each patient is dependent upon understanding the complexities of the aqueous outflow system and how devices influence aqueous drainage. However, homoeostatic control of aqueous outflow in health and glaucoma remains poorly understood. Emerging imaging techniques have provided an opportunity to study aqueous outflow responses non-invasively in clinic settings. Haemoglobin Video Imaging (HVI) studies have demonstrated different patterns of aqueous outflow within the episcleral venous system in normal and glaucomatous eyes, as well as perioperatively after trabecular bypass surgery. Explanations for aqueous outflow patterns remain speculative until direct correlation with findings from Schlemm's canal and the trabecular meshwork are possible. The redirection of aqueous via targeted stent placement may only be justifiable once the role of the aqueous outflow system in IOP homoeostasis has been defined.
Collapse
Affiliation(s)
- Jed A Lusthaus
- Department of Ophthalmology, Sydney Eye Hospital, Sydney, NSW, Australia.
- Discipline of Ophthalmology, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Zhou Y, Liu Z, Gao W, Yang Y, Peng Q, Tan H. Pathological Mechanism and Clinical Therapy Progress of Schlemm's Canal. J Ophthalmol 2024; 2024:9978312. [PMID: 39492954 PMCID: PMC11531356 DOI: 10.1155/2024/9978312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 11/05/2024] Open
Abstract
Schlemm's canal (SC) is a small circular canal in the deep part of the sclera at the junction of the sclera and cornea. As an integral component of the aqueous humor outflow, its structure and function are essential in regulating intraocular pressure (IOP). If SC develops lesions, the drainage of aqueous humor would be obstructed, leading to increased intraocular pressure and injury to the optic nerve. With the rapid development of minimally invasive glaucoma surgery, an increasing number of surgeons became familiar with SC, and the area generated substantial academic attention. The pathological mechanism and the therapy for SC that had been studied in recent years are summarized in this article, hoping to provide ideas for the treatment of glaucoma in the future.
Collapse
Affiliation(s)
- Yasha Zhou
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Zhenxin Liu
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Wenyong Gao
- Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani 34190, Thailand
| | - Yijing Yang
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Qinghua Peng
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Hanyu Tan
- Yueyang Hospital Afiliated to Hunan University of Chinese Medicine, Yueyang 414000, Hunan, China
| |
Collapse
|
3
|
Safa BN, Fraticelli Guzmán NS, Li G, Stamer WD, Feola AJ, Ethier CR. A Histomorphometric and Computational Investigation of the Stabilizing Role of Pectinate Ligaments in the Aqueous Outflow Pathway. J Biomech Eng 2024; 146:081011. [PMID: 38529724 DOI: 10.1115/1.4065164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Murine models are commonly used to study glaucoma, the leading cause of irreversible blindness. Glaucoma is associated with elevated intra-ocular pressure (IOP), which is regulated by the tissues of the aqueous outflow pathway. In particular, pectinate ligaments (PLs) connect the iris and trabecular meshwork (TM) at the anterior chamber angle, with an unknown role in maintenance of the biomechanical stability of the aqueous outflow pathway, thus motivating this study. We conducted histomorphometric analysis and optical coherence tomography-based finite element (FE) modeling on three cohorts of C57BL/6 mice: "young" (2-6 months), "middle-aged" (11-16 months), and "elderly" (25-32 months). We evaluated the age-specific morphology of the outflow pathway tissues. Further, because of the known pressure-dependent Schlemm's canal (SC) narrowing, we assessed the dependence of the SC lumen area on varying IOPs in age-specific FE models over a physiological range of TM/PL stiffness values. We found age-dependent changes in morphology of outflow tissues; notably, the PLs were more developed in older mice compared to younger ones. In addition, FE modeling demonstrated that murine SC patency is highly dependent on the presence of PLs and that increased IOP caused SC collapse only with sufficiently low TM/PL stiffness values. Moreover, the elderly model showed more susceptibility to SC collapse compared to the younger models. In conclusion, our study elucidated the previously unexplored role of PLs in the aqueous outflow pathway, indicating their function in supporting TM and SC under elevated IOP.
Collapse
Affiliation(s)
- Babak N Safa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332
| | - Nina Sara Fraticelli Guzmán
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30318; Department of Ophthalmology, Emory University, Atlanta, GA 30332
- Georgia Institute of Technology
| | - Guorong Li
- Department of Ophthalmology, Duke University, Durham, NC 27705
- Duke University
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC 27705
- Duke University
| | - Andrew J Feola
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332; Department of Ophthalmology, Emory University, Atlanta, GA 30322; Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Healthcare System, Decatur, GA 30033
- Emory University
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30318; Department of Ophthalmology, Emory University, Atlanta, GA 30332
| |
Collapse
|
4
|
Benagiano V, Rizzi A, Sannace C, Alessio G, Ribatti D, Dammacco R. Aqueous humor as eye lymph: A crossroad between venous and lymphatic system. Exp Eye Res 2024; 243:109904. [PMID: 38642600 DOI: 10.1016/j.exer.2024.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Aqueous humor (AQH) is a transparent fluid with characteristics similar to those of the interstitial fluid, which fills the eyeball posterior and anterior chambers and circulates in them from the sites of production to those of drainage. The AQH volume and pressure homeostasis is essential for the trophism of the ocular avascular tissues and their normal structure and function. Different AQH outflow pathways exist, including a main pathway, quite well defined anatomically and referred to as the conventional pathway, and some accessory pathways, more recently described and still not fully morphofunctionally understood, generically referred to as unconventional pathways. The conventional pathway is based on the existence of a series of conduits starting with the trabecular meshwork and Schlemm's Canal and continuing with a system of intrascleral and episcleral venules, which are tributaries to veins of the anterior segment of the eyeball. The unconventional pathways are mainly represented by the uveoscleral pathway, in which AQH flows through clefts, interstitial conduits located in the ciliary body and sclera, and then merges into the aforementioned intrascleral and episcleral venules. A further unconventional pathway, the lymphatic pathway, has been supported by the demonstration of lymphatic microvessels in the limbal sclera and, possibly, in the uvea (ciliary body, choroid) as well as by the ocular glymphatic channels, present in the neural retina and optic nerve. It follows that AQH may be drained from the eyeball through blood vessels (TM-SC pathway, US pathway) or lymphatic vessels (lymphatic pathway), and the different pathways may integrate or compensate for each other, optimizing the AQH drainage. The present review aims to define the state-of-the-art concerning the structural organization and the functional anatomy of all the AQH outflow pathways. Particular attention is paid to examining the regulatory mechanisms active in each of them. The new data on the anatomy and physiology of AQH outflow pathways is the key to understanding the pathophysiology of AQH outflow disorders and could open the way for novel approaches to their treatment.
Collapse
Affiliation(s)
- Vincenzo Benagiano
- Department of Translational Biomedicine and Neuroscience, University of Bari 'Aldo Moro', Bari, Italy.
| | - Anna Rizzi
- Department of Translational Biomedicine and Neuroscience, University of Bari 'Aldo Moro', Bari, Italy
| | - Carmela Sannace
- Azienda Sanitaria Locale Bari, Ophthalmology Day Service Triggiano-Gioia del Colle, Bari, Italy
| | - Giovanni Alessio
- Department of Translational Biomedicine and Neuroscience, University of Bari 'Aldo Moro', Bari, Italy
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari 'Aldo Moro', Bari, Italy
| | - Rosanna Dammacco
- Department of Translational Biomedicine and Neuroscience, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
5
|
Safa BN, Guzmán NSF, Li G, Daniel Stamer W, Feola AJ, Ross Ethier C. A Histomorphometric and Computational Investigation of the Stabilizing Role of Pectinate Ligaments in the Aqueous Outflow Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.17.562754. [PMID: 37905127 PMCID: PMC10614930 DOI: 10.1101/2023.10.17.562754] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Murine models are commonly used to study glaucoma, the leading cause of irreversible blindness. Glaucoma is associated with elevated intraocular pressure (IOP), which is regulated by the tissues of the aqueous outflow pathway. In particular, pectinate ligaments (PLs) connect the iris and trabecular meshwork (TM) at the anterior chamber angle, with an unknown role in maintenance of the biomechanical stability of the aqueous outflow pathway, thus motivating this study. We conducted histomorphometric analysis and optical coherence tomography-based finite element (FE) modeling on three cohorts of C57BL/6 mice: 'young' (2-6 months), 'middle-aged' (11-16 months), and 'elderly' (25-32 months). We evaluated the age-specific morphology of the outflow pathway tissues. Further, because of the known pressure-dependent Schlemm's canal (SC) narrowing, we assessed the dependence of the SC lumen area to varying IOPs in age-specific FE models over a physiological range of TM/PL stiffness values. We found age-dependent changes in morphology of outflow tissues; notably, the PLs were more developed in older mice compared to younger ones. In addition, FE modeling demonstrated that murine SC patency is highly dependent on the presence of PLs, and that increased IOP caused SC collapse only with sufficiently low TM/PL stiffness values. Moreover, the elderly model showed more susceptibility to SC collapse compared to the younger models. In conclusion, our study elucidated the previously unexplored role of PLs in the aqueous outflow pathway, indicating their function in supporting TM and SC under elevated IOP.
Collapse
Affiliation(s)
- Babak N. Safa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Nina Sara Fraticelli Guzmán
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Ophthalmology, Emory University, Atlanta, GA, USA
| | - Guorong Li
- Department of Ophthalmology, Duke University, Durham, NC, USA
| | | | - Andrew J. Feola
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
- Department of Ophthalmology, Emory University, Atlanta, GA, USA
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Healthcare System, Decatur, GA, USA
| | - C. Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Ophthalmology, Emory University, Atlanta, GA, USA
| |
Collapse
|
6
|
Orejudo de Rivas M, Martínez Morales J, Pardina Claver E, Pérez García D, Pérez Navarro I, Ascaso Puyuelo FJ, Aramburu Clavería J, Ibáñez Alperte J. Descemet's Membrane Detachment during Phacocanaloplasty: Case Series and In-Depth Literature Review. J Clin Med 2023; 12:5461. [PMID: 37685527 PMCID: PMC10488042 DOI: 10.3390/jcm12175461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
This article presents three cases of Descemet's membrane detachment (DMD) occurring during 'ab externo' phacocanaloplasty procedures in three patients with uncontrolled primary open-angle glaucoma (OAG) and discusses the management of this condition by reviewing the available literature. Following a successful 360° cannulation of Schlemm's canal (SC), the microcatheter was withdrawn while an ophthalmic viscosurgical device (OVD) was injected into the canal. During passage through the inferonasal quadrant, a spontaneous separation of the posterior layer of the cornea was observed. Each case was managed differently after diagnosis, with the third case being drained intraoperatively based on experience gained from the previous cases. On the first postoperative day, slit-lamp biomicroscopy (BMC) revealed multiple DMDs in case one and a hyphema in the lower third of a deep anterior chamber. In the other two cases, a single DMD was observed. The second case developed hemorrhagic Descemet membrane detachment (HDMD), while the other two were non-hemorrhagic. In all three cases, anterior segment optical coherence tomography (AS-OCT) revealed the presence of retrocorneal hyperreflective membranes indicative of DMDs. These membranes were located in the periphery of the cornea and did not impact the visual axis. After evaluation, a small incision was made in the inferotemporal DMD of the first case. However, for the two remaining cases, a strategy of watchful waiting was deemed appropriate due to the location and size of the DMDs, as they did not affect the best-corrected visual acuity (BCVA). Over time, the patients demonstrated progressive improvement with a gradual reduction in the size of the DMDs.
Collapse
Affiliation(s)
- Marta Orejudo de Rivas
- Department of Ophthalmology, Lozano Blesa University Clinic Hospital, 50009 Zaragoza, Spain (F.J.A.P.); (J.I.A.)
| | - Juana Martínez Morales
- Department of Ophthalmology, Lozano Blesa University Clinic Hospital, 50009 Zaragoza, Spain (F.J.A.P.); (J.I.A.)
| | - Elena Pardina Claver
- Department of Ophthalmology, Lozano Blesa University Clinic Hospital, 50009 Zaragoza, Spain (F.J.A.P.); (J.I.A.)
| | - Diana Pérez García
- Department of Ophthalmology, Lozano Blesa University Clinic Hospital, 50009 Zaragoza, Spain (F.J.A.P.); (J.I.A.)
| | - Itziar Pérez Navarro
- Department of Ophthalmology, Lozano Blesa University Clinic Hospital, 50009 Zaragoza, Spain (F.J.A.P.); (J.I.A.)
| | - Francisco J. Ascaso Puyuelo
- Department of Ophthalmology, Lozano Blesa University Clinic Hospital, 50009 Zaragoza, Spain (F.J.A.P.); (J.I.A.)
- Aragon Health Research Institute (IIS Aragon), 50018 Zaragoza, Spain
- Department of Surgery, School of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Julia Aramburu Clavería
- Department of Ophthalmology, Lozano Blesa University Clinic Hospital, 50009 Zaragoza, Spain (F.J.A.P.); (J.I.A.)
| | - Juan Ibáñez Alperte
- Department of Ophthalmology, Lozano Blesa University Clinic Hospital, 50009 Zaragoza, Spain (F.J.A.P.); (J.I.A.)
- Aragon Health Research Institute (IIS Aragon), 50018 Zaragoza, Spain
| |
Collapse
|
7
|
Kelly RA, McDonnell FS, De Ieso ML, Overby DR, Stamer WD. Pressure Clamping During Ocular Perfusions Drives Nitric Oxide-Mediated Washout. Invest Ophthalmol Vis Sci 2023; 64:36. [PMID: 37358489 PMCID: PMC10297780 DOI: 10.1167/iovs.64.7.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/30/2023] [Indexed: 06/27/2023] Open
Abstract
Purpose The aim of this study was to test the hypothesis that nitric oxide (NO) mediates a pressure-dependent, negative feedback loop that maintains conventional outflow homeostasis and thus IOP. If true, holding pressure during ocular perfusions will result in uncontrolled production of NO, hyper-relaxation of the trabecular meshwork, and washout. Methods Paired porcine eyes were perfused at constant pressure of 15 mm Hg. After 1 hour acclimatization, one eye was exchanged with N5-[imino(nitroamino)methyl]-L-ornithine, methyl ester, monohydrochloride (L-NAME) (50 µm) and the contralateral eye with DBG, and perfused for 3 hours. In a separate group, one eye was exchanged with DETA-NO (100 nM) and the other with DBG and perfused for 30 minutes. Changes in conventional outflow tissue function and morphology were monitored. Results Control eyes exhibited a washout rate of 15% (P = 0.0026), whereas eyes perfused with L-NAME showed a 10% decrease in outflow facility from baseline over 3 hours (P < 0.01); with nitrite levels in effluent positively correlating with time and facility. Compared with L-NAME-treated eyes, significant morphological changes in control eyes included increased distal vessel size, number of giant vacuoles, and juxtacanalicular tissue separation from the angular aqueous plexi (P < 0.05). For 30-minute perfusions, control eyes showed a washout rate of 11% (P = 0.075), whereas DETA-NO-treated eyes showed an increased washout rate of 33% from baseline (P < 0.005). Compared with control eyes, significant morphological changes in DETA-NO-treated eyes also included increased distal vessel size, number of giant vacuoles and juxtacanalicular tissue separation (P < 0.05). Conclusions Uncontrolled NO production is responsible for washout during perfusions of nonhuman eyes where pressure is clamped.
Collapse
Affiliation(s)
- Ruth A. Kelly
- Ophthalmology Department, Duke University, Durham, North Carolina, United States
| | - Fiona S. McDonnell
- Ophthalmology Department, Duke University, Durham, North Carolina, United States
- Ophthalmology Department, University of Utah, Utah, United States
| | - Michael L. De Ieso
- Ophthalmology Department, Duke University, Durham, North Carolina, United States
| | - Darryl R. Overby
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - W. Daniel Stamer
- Ophthalmology Department, Duke University, Durham, North Carolina, United States
| |
Collapse
|
8
|
Schornack MM, Vincent SJ, Walker MK. Anatomical and physiological considerations in scleral lens wear: Intraocular pressure. Cont Lens Anterior Eye 2023; 46:101535. [PMID: 34824016 DOI: 10.1016/j.clae.2021.101535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023]
Abstract
Intraocular pressure (IOP) is maintained through complex and interrelated systems which control aqueous production and drainage, and it has been suggested that scleral lens (SL) wear may disrupt these vital homeostatic processes. This review provides an overview of anatomical and physiological processes that control IOP, identifies potential effects of SLs on these regulatory mechanisms, and examines studies that have attempted to quantify the effect of SLs on IOP. Lack of access to the cornea during SL wear makes accurate assessment of IOP challenging; therefore, a range of different assessment techniques and instruments have been employed to quantify IOP during and following SL wear. Some studies have evaluated IOP using standard techniques prior to lens application and following lens removal, or through a large central fenestration. Other studies have utilised instruments that facilitate assessment of IOP on the peripheral cornea or conjunctiva overlying the sclera (e.g. Schiotz, transpalpebral, and pneumatonometry). Two studies have recently evaluated changes in optic nerve structure during SL wear. Conflicting results have been reported on this topic, much of which examines changes in IOP in healthy subjects over limited periods of time. Currently, only a few studies have reported on long-term effects of SL wear on IOP in habitual SL wearers (after lens removal). Future research in this area must not only consider the fact that ocular conditions treated with SLs may potentially alter corneal biomechanical properties which can influence IOP, but also that these properties may be further altered by SL wear. Monitoring other risk factors for glaucoma (permanent alterations in optic nerve physiology, visual field defects) could provide a more comprehensive assessment of potentially increased risk of glaucomatous optic neuropathy due to SL wear. Ongoing clinical assessment of optic nerve structure and function is advisable in patients at risk for glaucoma who require SLs.
Collapse
Affiliation(s)
| | - Stephen J Vincent
- Queensland University of Technology (QUT), Centre for Vision and Eye Research, School of Optometry and Vision Science, Contact Lens and Visual Optics Laboratory, Queensland, Australia.
| | - Maria K Walker
- University of Houston College of Optometry, The Ocular Surface Institute, Houston, TX, USA.
| |
Collapse
|
9
|
Hann CR, Bentley MD, Vercnocke A, Roy Chowdhury U, Fautsch MP. Evaluation of neural innervation in the human conventional outflow pathway distal to Schlemm's canal. Exp Eye Res 2022; 221:109132. [PMID: 35636488 PMCID: PMC10493174 DOI: 10.1016/j.exer.2022.109132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022]
Abstract
The distal outflow pathway of the human eye consists of the outer wall of Schlemm's canal, collector channels, and the deep-scleral, mid-scleral and episcleral vessels. It is the last region of transit for aqueous humor before returning to the venous system. While the trabecular meshwork, scleral spur, and inner wall of Schlemm's canal have been extensively analyzed to define their contributions to aqueous outflow, the role of the distal outflow pathway is not completely understood. Collector channels, emanating from Schlemm's canal were previously thought to be passive conduits for aqueous humor. However, recent studies have shown many collector channels contain flap-like appendages which move with changes in pressure. These findings, along with studies demonstrating innervation of episcleral vessels, have led to questions regarding whether other structures in the distal outflow pathway are under neural regulation and how this may influence aqueous humor outflow. This study evaluates the innervation of the outer wall of Schlemm's canal and collector channels, along with the deep-scleral, mid-scleral and episcleral vasculature with microcomputed tomography and 3-dimensional reconstruction, correlative light microscopy, immunohistochemistry, and transmission electron microscopy. Peripheral, autonomic, and sensory nerve fibers were found to be present adjacent to Schlemm's canal outer wall endothelium, collector channel endothelium, and in the different regions of the distal outflow vasculature. Nerves were more commonly identified in regions that contained collector channels when compared to regions without collector channels. These findings regarding the neural anatomy suggest an active neural regulation of aqueous humor outflow throughout the proximal and distal regions of the conventional outflow pathway.
Collapse
Affiliation(s)
- Cheryl R Hann
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA.
| | | | - Andrew Vercnocke
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| | | | | |
Collapse
|
10
|
Johnstone M, Xin C, Acott T, Vranka J, Wen J, Martin E, Wang RK. Valve-Like Outflow System Behavior With Motion Slowing in Glaucoma Eyes: Findings Using a Minimally Invasive Glaucoma Surgery–MIGS-Like Platform and Optical Coherence Tomography Imaging. Front Med (Lausanne) 2022; 9:815866. [PMID: 35572956 PMCID: PMC9099151 DOI: 10.3389/fmed.2022.815866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/31/2022] [Indexed: 01/01/2023] Open
Abstract
PurposeThis study aimed to investigate anatomic relationships and biomechanics of pressure-dependent trabecular meshwork and distal valve-like structure deformation in normal and glaucoma eyes using high-resolution optical coherence tomography (HR-OCT).MethodsWe controlled Schlemm’s canal (SC) pressure during imaging with HR-OCT in segments of three normal (NL) and five glaucomatous (GL) ex vivo eyes. The dissected limbal wedges were studied from 15 locations (5 NL and 10 GL). A minimally invasive glaucoma surgery (MIGS)-like cannula was inserted into the SC lumen, whereas the other end was attached to a switch between two reservoirs, one at 0, the other at 30 mm Hg. A steady-state pressure of 30 mm Hg was maintained to dilate SC and collector channels (CC) during 3D volume imaging. The resulting 3D lumen surface relationships were correlated with internal structural features using an image mask that excluded tissues surrounding SC and CC. While imaging with HR-OCT, real-time motion responses in SC and CC areas were captured by switching pressure from 0 to 30 or 30 to 0 mm Hg. NL vs. GL motion differences were compared.ResultsLumen surface and internal relationships were successfully imaged. We identified SC inlet and outlet valve-like structures. In NL and GL, the mean SC areas measured at the steady-state of 0 and 30 mm Hg were each significantly different (p < 0.0001). Synchronous changes in SC and CC lumen areas occurred in <200 ms. Measured SC area differences at the steady-state 0 and 30 mmHg, respectively, were larger in NL than GL eyes (p < 0.0001). The SC motion curves rose significantly more slowly in GL than NL (p < 0.001). Pressure waves traveled from the cannula end along the SC lumen to CC and deep intrascleral channels.ConclusionHR-OCT provided simultaneous measurements of outflow pathway lumen surfaces, internal structures, and biomechanics of real-time pressure-dependent dimension changes. We identified SC inlet and outlet valve-like structures. GL tissues underwent less motion and responded more slowly than NL, consistent with increased tissue stiffness. A MIGS-like shunt to SC permitted pulse waves to travel distally along SC lumen and into CC.
Collapse
Affiliation(s)
- Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, WA, United States
- *Correspondence: Murray Johnstone,
| | - Chen Xin
- Department of Ophthalmology, Tongren Hospital, Beijing, China
| | - Ted Acott
- Department of Ophthalmology, Casey Eye Institute, Portland, OR, United States
| | - Janice Vranka
- Department of Ophthalmology, Casey Eye Institute, Portland, OR, United States
| | - Joanne Wen
- Department of Ophthalmology, Duke Eye Center, Durham, NC, United States
| | - Elizabeth Martin
- Department of Ophthalmology, Indiana University, Indianapolis, IN, United States
| | - Ruikang K. Wang
- Department of Ophthalmology, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
11
|
Johnstone M, Xin C, Tan J, Martin E, Wen J, Wang RK. Aqueous outflow regulation - 21st century concepts. Prog Retin Eye Res 2021; 83:100917. [PMID: 33217556 PMCID: PMC8126645 DOI: 10.1016/j.preteyeres.2020.100917] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022]
Abstract
We propose an integrated model of aqueous outflow control that employs a pump-conduit system in this article. Our model exploits accepted physiologic regulatory mechanisms such as those of the arterial, venous, and lymphatic systems. Here, we also provide a framework for developing novel diagnostic and therapeutic strategies to improve glaucoma patient care. In the model, the trabecular meshwork distends and recoils in response to continuous physiologic IOP transients like the ocular pulse, blinking, and eye movement. The elasticity of the trabecular meshwork determines cyclic volume changes in Schlemm's canal (SC). Tube-like SC inlet valves provide aqueous entry into the canal, and outlet valve leaflets at collector channels control aqueous exit from SC. Connections between the pressure-sensing trabecular meshwork and the outlet valve leaflets dynamically control flow from SC. Normal function requires regulation of the trabecular meshwork properties that determine distention and recoil. The aqueous pump-conduit provides short-term pressure control by varying stroke volume in response to pressure changes. Modulating TM constituents that regulate stroke volume provides long-term control. The aqueous outflow pump fails in glaucoma due to the loss of trabecular tissue elastance, as well as alterations in ciliary body tension. These processes lead to SC wall apposition and loss of motion. Visible evidence of pump failure includes a lack of pulsatile aqueous discharge into aqueous veins and reduced ability to reflux blood into SC. These alterations in the functional properties are challenging to monitor clinically. Phase-sensitive OCT now permits noninvasive, quantitative measurement of pulse-dependent TM motion in humans. This proposed conceptual model and related techniques offer a novel framework for understanding mechanisms, improving management, and development of therapeutic options for glaucoma.
Collapse
Affiliation(s)
| | - Chen Xin
- Department of Ophthalmology, Beijing Anzhen Hospital, Capital Medical University, China.
| | - James Tan
- Doheny Eye Institute and UCLA Department of Ophthalmology, USA.
| | | | | | - Ruikang K Wang
- Department of Ophthalmology, University of Washington, USA; Department of Bioengineering, University of Washington, USA.
| |
Collapse
|
12
|
Farrar N, Yan DB, Johnson M. Modeling the effects of glaucoma surgery on intraocular pressure. Exp Eye Res 2021; 209:108620. [PMID: 34048778 DOI: 10.1016/j.exer.2021.108620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022]
Abstract
Minimally invasive glaucoma surgeries (MIGS) offer an effective way to lower intraocular pressure without inducing extensive trauma to the anterior segment. In order to predict their efficacy, an analytical model of the conventional aqueous humor outflow pathway is developed using a resistor network. The model describes outflow through the normal eye and allows for the effects of geometric changes in the outflow pathway as IOP changes. By selectively removing these resistors, the model can be used to examine and predict the outcomes of several surgical procedures currently used to treat glaucoma. Treatments examined include traditional trabeculectomy, several ab interno methods for trabeculotomy and trabeculectomy, as well as recently developed trabecular stents that bypass the trabecular meshwork and dilate Schlemm canal. The model's predictions for the efficacy of these procedures generally matched well with the efficacy determined in experimental studies, although it tended to somewhat overestimate the efficacy of these procedures. Matching the model to experimental data indicated that a partial trabeculotomy substantially increases flow to collector channels within that region and approximately 1.5 clock hours past the ends of the trabeculotomized region. Similarly, trabecular bypass stents substantially increase flow to collector channels up to 1.5 clock hours past the open ends of the stent. The resistor model we have developed can be used to predict the efficacy of a variety of MIGS procedures. Circumferential flow in Schlemm canal extends the efficacy of MIGS, but this effect is limited to a few clock hours.
Collapse
Affiliation(s)
- Nicholas Farrar
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, E310, Evanston, IL 60208, USA
| | - David B Yan
- Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College Street, Suite 400, Toronto, ON. M5T 3A9, Canada
| | - Mark Johnson
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, E310, Evanston, IL 60208, USA; Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Room B224, Evanston, IL 60208, USA; Department of Ophthalmology, Northwestern University, 645 N. Michigan Ave. Suite 440, Chicago, IL 60611, USA.
| |
Collapse
|
13
|
Xin C, Song S, Wang N, Wang R, Johnstone M. Effects of Schlemm's Canal Expansion: Biomechanics and MIGS Implications. Life (Basel) 2021; 11:life11020176. [PMID: 33672433 PMCID: PMC7926642 DOI: 10.3390/life11020176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Objective: To evaluate the change of biomechanical properties of the trabecular meshwork (TM) and configuration of collector channels (CC) by high-resolution optical coherence tomography (HR-OCT) induced by Schlemm’s canal (SC) dilation. Methods: The anterior segments of two human eyes were divided into four quadrants. One end of a specially designed cannula was placed in SC and the other end connected to a perfusion reservoir. HR-OCT provided three-dimensional (3D) volumetric and two-dimensional (2D) cross-sectional imaging permitting assessment of the biomechanical properties of the TM. A large fluid bolus was introduced into SC. Same-sample, pre and post deformation and disruption of SC and CC lumen areas were analyzed. Results: Morphologic 3D reconstructions documented pressure-dependent changes in lumen dimension of SC, CC, and circumferential intrascleral channels. 2D imaging established volumetric stress-strain curves (elastance curves) of the TM in quadrants. The curves of TM elastance shift to the right with an increase in pressure-dependent steady-state SC area. After a bolus disruption, the SC area increased, while the CC area decreased. Conclusion: Our experimental setup permits the study of the biomechanical properties of TM by examining elastance, which differs segmentally and is altered by mechanical expansion of SC by a fluid bolus. The study may shed light on mechanisms of intraocular pressure control of some glaucoma surgery.
Collapse
Affiliation(s)
- Chen Xin
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China or (C.X.); or (N.W.)
| | - Shaozhen Song
- Department of Bioengineering, University of Washington, Seattle, Washington, WA 98195, USA; (S.S.); (R.W.)
| | - Ningli Wang
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China or (C.X.); or (N.W.)
| | - Ruikang Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, WA 98195, USA; (S.S.); (R.W.)
| | - Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, Washington, WA 98195, USA
- Correspondence: or
| |
Collapse
|
14
|
Evaluation of Blood-filling Patterns in Schlemm Canal for Trabectome Surgery. J Glaucoma 2020; 29:1101-1105. [PMID: 32890107 DOI: 10.1097/ijg.0000000000001646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PRéCIS:: Regardless of the blood-filling patterns in Schlemm canal (SC) before the trabecular meshwork (TM) ablation, the trabectome surgery, combined with phacoemulsification, is effective for mild to moderate primary open-angle glaucoma patients. PURPOSE The purpose of this study was to evaluate the association between trabectome surgery outcomes and the blood filling patterns in SC before TM ablation. MATERIALS AND METHODS This retrospective cohort study included 105 eyes of 84 Japanese primary open-angle glaucoma patients who had undergone trabectome surgery in combination with cataract surgery. Provocative gonioscopy was performed before TM ablation to classify the blood filling patterns in SC into 3 groups: no filling (group 1); patchy/irregular filling (group 2); and complete filling (group 3). The subjects were divided into 3 groups according to the blood filling patterns and the trabectome surgery outcomes were compared, including intraocular pressure (IOP), the percentage reduction in IOP, surgical success rate, and the number of glaucoma medications. Success was defined by IOP ≤15 mm Hg and a >20% reduction in IOP with/without glaucoma medication, and without additional glaucoma surgery after trabectome surgery combined with cataract surgery. RESULTS Twenty-four eyes were assigned to group 1, 48 to group 2, and 33 to group 3. Between-group analyses showed no significant intergroup differences in age (P=0.213), preoperative mean deviation (P=0.505), preoperative and postoperative IOP (P=0.941 and 0.458, respectively), preoperative and postoperative number of glaucoma medications (P=0.805 and 0.077, respectively), percentage IOP reduction (P=0.256), and success rates (P=0.540). CONCLUSION Trabectome surgery is effective for mild to moderate primary open-angle glaucoma patients, independent of the blood-filling patterns in SC before the TM ablation.
Collapse
|
15
|
Aqueous outflow imaging techniques and what they tell us about intraocular pressure regulation. Eye (Lond) 2020; 35:216-235. [PMID: 32826996 DOI: 10.1038/s41433-020-01136-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/19/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the medical and surgical management of open-angle glaucoma have increased the number of treatment options available. Several new intraocular pressure (IOP)-lowering treatments target the conventional aqueous outflow (AO) system. However, success rates are variable and outcomes in individual patients are often difficult to predict. Variable treatment responses remain unexplained and highlight deficiencies in our current understanding of AO regulation and IOP homeostasis. Imaging is often relied upon to confirm diagnoses and monitor treatment responses in other ocular and systemic pathologies. As yet no suitable AO imaging tool has been developed to fulfil this role in glaucoma. A variety of imaging techniques have been used to study the AO tracts of humans and animals in ex vivo and in vivo eyes. In this review, results from novel imaging techniques that assess aqueous drainage through the episcleral venous system are considered and we argue these provide new insights into AO regulation. We suggest that the ability to objectively measure AO responses to interventions would be a significant clinical advance, and we have demonstrated that this can be achieved with direct visualisation of aqueous drainage. We predict that the evolution of AO imaging technology will continue to reveal critical components of AO and IOP regulation, and that personalised IOP-lowering treatment in glaucoma care may well become a reality in the near future.
Collapse
|
16
|
Lu R, Soden PA, Lee E. Tissue-Engineered Models for Glaucoma Research. MICROMACHINES 2020; 11:mi11060612. [PMID: 32599818 PMCID: PMC7345325 DOI: 10.3390/mi11060612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Glaucoma is a group of optic neuropathies characterized by the progressive degeneration of retinal ganglion cells (RGCs). Patients with glaucoma generally experience elevations in intraocular pressure (IOP), followed by RGC death, peripheral vision loss and eventually blindness. However, despite the substantial economic and health-related impact of glaucoma-related morbidity worldwide, the surgical and pharmacological management of glaucoma is still limited to maintaining IOP within a normal range. This is in large part because the underlying molecular and biophysical mechanisms by which glaucomatous changes occur are still unclear. In the present review article, we describe current tissue-engineered models of the intraocular space that aim to advance the state of glaucoma research. Specifically, we critically evaluate and compare both 2D and 3D-culture models of the trabecular meshwork and nerve fiber layer, both of which are key players in glaucoma pathophysiology. Finally, we point out the need for novel organ-on-a-chip models of glaucoma that functionally integrate currently available 3D models of the retina and the trabecular outflow pathway.
Collapse
Affiliation(s)
- Renhao Lu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Paul A. Soden
- College of Human Ecology, Cornell University, Ithaca, NY 14853, USA;
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
- Correspondence: ; Tel.: +1-607-255-8491
| |
Collapse
|
17
|
Saraswathy S, Bogarin T, Barron E, Francis BA, Tan JCH, Weinreb RN, Huang AS. Segmental differences found in aqueous angiographic-determined high - and low-flow regions of human trabecular meshwork. Exp Eye Res 2020; 196:108064. [PMID: 32439396 DOI: 10.1016/j.exer.2020.108064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/28/2023]
Abstract
This work sought to compare aqueous angiographic segmental patterns with bead-based methods which directly visualize segmental trabecular meshwork (TM) tracer trapping. Additionally, segmental protein expression differences between aqueous angiographic-derived low- and high-outflow human TM regions were evaluated. Post-mortem human eyes (One Legacy and San Diego eye banks; n = 15) were perfused with fluorescent tracers (fluorescein [2.5%], indocyanine green [0.4%], and/or fluorescent microspheres). After angiographic imaging (Spectralis HRA+OCT; Heidelberg Engineering), peri-limbal low- and high-angiographic flow regions were marked. Aqueous angiographic segmental outflow patterns were similar to fluorescent microsphere TM trapping segmental patterns. TM was dissected from low- and high-flow areas and processed for immunofluorescence or Western blot and compared. Versican expression was relatively elevated in low-flow regions while MMP3 and collagen VI were relatively elevated in high-flow regions. TGF-β2, thrombospondin-1, TGF-β receptor1, and TGF-β downstream proteins such as α-smooth muscle actin were relatively elevated in low-flow regions. Additionally, fibronectin (FN) levels were unchanged, but the EDA isoform (FN-EDA) that is associated with fibrosis was relatively elevated in low-flow regions. These results show that segmental aqueous angiographic patterns are reflective of underlying TM molecular characteristics and demonstrate increased pro-fibrotic activation in low-flow regions. Thus, we provide evidence that aqueous angiography outflow visualization, the only tracer outflow imaging method available to clinicians, is in part representative of TM biology.
Collapse
Affiliation(s)
- Sindhu Saraswathy
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Thania Bogarin
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ernesto Barron
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Brian A Francis
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - James C H Tan
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Robert N Weinreb
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology University of California, San Diego, CA, USA
| | - Alex S Huang
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Wang LY, Su GY, Wei ZY, Zhang ZJ, Liang QF. Progress in the basic and clinical research on the Schlemm's canal. Int J Ophthalmol 2020; 13:816-821. [PMID: 32420231 DOI: 10.18240/ijo.2020.05.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/07/2020] [Indexed: 11/23/2022] Open
Abstract
Glaucoma is a leading cause of irreversible blindness in the world. Intraocular pressure (IOP) plays a key role in glaucoma development and progression. Schlemm's canal (SC), an important structure of the anterior chamber angle, regulates the flow of aqueous humor and maintains IOP. Because of its special function of aqueous outflow, the SC has been intensive investigated recently. Several characteristics of SC in anatomy, physiology and pathophysiology have been revealed. Compare to normal, glaucomatous SC cells are more sensitive to substrate stiffness, have higher stiffness and and lower porosity leading to higher outflow resistance. And SC collapse caused by acute IOP increase is partially or totally reversal. With advanced inspection techniques, high-quality images of the SC can be obtained in vivo, which facilitates SC quantitative measurements clinically and allows us to investigate a new therapy paradigm for glaucoma. In this review, we summarize the basic and clinical research that focused on mechanisms of aqueous outflow resistance and SC changes in physiological, pathological, and post-treatment states.
Collapse
Affiliation(s)
- Le-Ying Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Guan-Yu Su
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Zhen-Yu Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Zi-Jun Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Qing-Feng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| |
Collapse
|
19
|
Loewen RT, Waxman S, Wang C, Atta S, Chen S, Watkins SC, Watson AM, Loewen NA. 3D-Reconstruction of the human conventional outflow system by ribbon scanning confocal microscopy. PLoS One 2020; 15:e0232833. [PMID: 32421732 PMCID: PMC7233539 DOI: 10.1371/journal.pone.0232833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/22/2020] [Indexed: 11/19/2022] Open
Abstract
PURPOSE The risk for glaucoma is driven by the microanatomy and function of the anterior segment. We performed a computation-intense, high-resolution, full-thickness ribbon-scanning confocal microscopy (RSCM) of the outflow tract of two human eyes. We hypothesized this would reveal important species differences when compared to existing data of porcine eyes, an animal that does not spontaneously develop glaucoma. METHODS After perfusing two human octogenarian eyes with lectin-fluorophore conjugate and optical clearance with benzyl alcohol benzyl benzoate (BABB), anterior segments were scanned by RSCM and reconstructed in 3D for whole-specimen rendering. Morphometric analyses of the outflow tract were performed for the trabecular meshwork (TM), limbal, and perilimbal outflow structures and compared to existing porcine data. RESULTS RSCM provided high-resolution data for IMARIS-based surface reconstruction of outflow tract structures in 3D. Different from porcine eyes with an abundance of highly interconnected, narrow, and short collector channels (CCs), human eyes demonstrated fewer CCs which had a 1.5x greater cross-sectional area (CSA) and 2.6x greater length. Proximal CC openings at the level of Schlemm's canal (SC) had a 1.3x larger CSA than distal openings into the scleral vascular plexus (SVP). CCs were 10.2x smaller in volume than the receiving SVP vessels. Axenfeld loops, projections of the long ciliary nerve, were also visualized. CONCLUSION In this high-resolution, volumetric RSCM analysis, human eyes had far fewer outflow tract vessels than porcine eyes. Human CCs spanned several clock-hours and were larger than in porcine eyes. These species differences may point to factors downstream of the TM that increase our vulnerability to glaucoma.
Collapse
Affiliation(s)
- Ralitsa T. Loewen
- Department of Ophthalmology, University of Würzburg, Würzburg, Germany
| | - Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chao Wang
- Department of Ophthalmology, University of Würzburg, Würzburg, Germany
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Cellular Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sarah Atta
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Si Chen
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Simon C. Watkins
- Department of Cellular Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alan M. Watson
- Department of Cellular Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nils A. Loewen
- Department of Ophthalmology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Shear Stress in Schlemm's Canal as a Sensor of Intraocular Pressure. Sci Rep 2020; 10:5804. [PMID: 32242066 PMCID: PMC7118084 DOI: 10.1038/s41598-020-62730-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/13/2020] [Indexed: 11/23/2022] Open
Abstract
Elevated intraocular pressure (IOP) narrows Schlemm’s canal (SC), theoretically increasing luminal shear stress. Using engineered adenoviruses containing a functional fragment of the shear-responsive endothelial nitric oxide synthase (eNOS) promoter, we tested effects of shear stress and elevated flow rate on reporter expression in vitro and ex vivo. Cultured human umbilical vein endothelial cells (HUVECs) and SC cells were transduced with adenovirus containing eNOS promoter driving secreted alkaline phosphatase (SEAP) or green fluorescent protein (GFP) and subjected to shear stress. In parallel, human anterior segments were perfused under controlled flow. After delivering adenoviruses to the SC lumen by retroperfusion, the flow rate in one anterior segment of pair was increased to double pressure. In response to high shear stress, HUVECs and SC cells expressed more SEAP and GFP than control. Similarly, human anterior segments perfused at higher flow rates released significantly more nitrites and SEAP into perfusion effluent, and SC cells expressed increased GFP near collector channel ostia compared to control. These data establish that engineered adenoviruses have the capacity to quantify and localize shear stress experienced by endothelial cells. This is the first in situ demonstration of shear-mediated SC mechanobiology as a key IOP-sensing mechanism necessary for IOP homeostasis.
Collapse
|
21
|
Y Lin K, Mosaed S. Ab Externo Imaging of Human Episcleral Vessels Using Fiberoptic Confocal Laser Endomicroscopy. J Ophthalmic Vis Res 2019; 14:275-284. [PMID: 31660106 PMCID: PMC6815344 DOI: 10.18502/jovr.v14i3.4783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/18/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose There is a growing interest in targeting minimally invasive surgery devices to the aqueous outflow system to optimize treatment outcomes. However, methods to visualize functioning, large-caliber aqueous and episcleral veins in-vivo are lacking. This pilot study establishes an ex-vivo system to evaluate the use of a confocal laser microendoscope to noninvasively image episcleral vessels and quantify regional flow variation along the limbal circumference. Methods A fiber-optic confocal laser endomicroscopy (CLE) system with lateral and axial resolution of 3.5 μm and 15 μm, respectively, was used on three porcine and four human eyes. Diluted fluorescein (0.04%) was injected into eyes kept under constant infusion. The microprobe was applied to the sclera 1 mm behind the limbus to acquire real-time video. Image acquisition was performed at 15-degree intervals along the limbal circumference to quantify regional flow variation in human eyes. Results Vascular structures were visualized in whole human eyes without processing. Schlemm's canal was visualized only after a scleral flap was created. Fluorescent signal intensity and vessel diameter variation were observed along the limbal circumference, with the inferior quadrant having a statistically higher fluorescein signal compared to the other quadrants in human eyes (P < 0.05). Conclusion This study demonstrates for the first time that the fiber-optic CLE platform can visualize the episcleral vasculature with high resolution ex-vivo with minimal tissue manipulation. Intravascular signal intensities and vessel diameters were acquired in real-time; such information can help select target areas for minimally invasive glaucoma surgery (MIGS) to achieve greater intraocular pressure reduction.
Collapse
Affiliation(s)
- Ken Y Lin
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, USA
| | - Sameh Mosaed
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, USA
| |
Collapse
|
22
|
Huang AS, Penteado RC, Saha SK, Do JL, Ngai P, Hu Z, Weinreb RN. Fluorescein Aqueous Angiography in Live Normal Human Eyes. J Glaucoma 2018; 27:957-964. [PMID: 30095604 PMCID: PMC6218293 DOI: 10.1097/ijg.0000000000001042] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate aqueous humor outflow (AHO) in intact eyes of live human subjects during cataract surgery using fluorescein aqueous angiography. METHODS Aqueous angiography was performed in 8 live human subjects (56 to 86 y old; 2 men and 6 women). After anesthesia, fluorescein (2%) was introduced into the eye [either alone or after indocyanine green (ICG; 0.4%)] from a sterile, gravity-driven constant-pressure reservoir. Aqueous angiographic images were obtained with a Spectralis HRA+OCT and FLEX module (Heidelberg Engineering). Using the same device, anterior-segment optical coherence tomography (OCT) and infrared images were also concurrently taken with aqueous angiography. RESULTS Fluorescein aqueous angiography in the live human eye showed segmental AHO patterns. Initial angiographic signal was seen on average by 14.0±3.0 seconds (mean±SE). Using multimodal imaging, angiographically positive signal colocalized with episcleral veins (infrared imaging) and intrascleral lumens (anterior-segment OCT). Sequential aqueous angiography with ICG followed by fluorescein showed similar segmental angiographic patterns. DISCUSSION Fluorescein aqueous angiography in live humans was similar to that reported in nonhuman primates and to ICG aqueous angiography in live humans. As segmental patterns with sequential angiography using ICG followed by fluorescein were similar, these tracers can now be used sequentially, before and after trabecular outflow interventions, to assess their effects on AHO in live human subjects.
Collapse
Affiliation(s)
- Alex S Huang
- Department of Ophthalmology, Doheny Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles
| | - Rafaella C Penteado
- Department of Ophthalmology, Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, CA
| | - Sajib K Saha
- Department of Ophthalmology, Doheny Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles
| | - Jiun L Do
- Department of Ophthalmology, Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, CA
| | - Philip Ngai
- Department of Ophthalmology, Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, CA
| | - Zhihong Hu
- Department of Ophthalmology, Doheny Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles
| | - Robert N Weinreb
- Department of Ophthalmology, Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, CA
| |
Collapse
|
23
|
Grüntzig J, Hollmann F. Lymphatic vessels of the eye - old questions - new insights. Ann Anat 2018; 221:1-16. [PMID: 30240907 DOI: 10.1016/j.aanat.2018.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/16/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Due to its accessible position and tissue heterogeneity, the eye is ideally suited for studying the lymphatic system. As early as the 19th century, questions about the origin and function of this system were discussed. For example, whether Schlemm's canal, which is of particular importance in the pathogenesis of glaucoma, is a lymphatic vessel, or does this vascular system begin with finger-shaped protuberances? Despite the discovery of lymphatic endothelial molecules and the use of molecular imaging technologies, these questions are still discussed controversially today. Leber demonstrated in 1873 with a solution consisting of two dyes of different particle size that only the smaller particles from the anterior chamber of the eye filled the episcleral and conjunctival veins around the corneal margin. He believed to have proven - to be read in the historical review of our article - that the Canalis Schlemmii in humans is a venous circular vessel and not a lymphatic vessel. In our own investigations, we reduced the rather contradictory and complex question of whether there are lymphatic vessels in the eye to the question of whether there are drainage connections between the different sections of the eye and the lymphatic system or not. With different radioactive tracers and combined with unilateral ligation of cervical lymph vessels, we observed outflow from the subconjunctival and retrobulbar space, from the anterior chamber and the vitreous body. The rate of discharge of the radioactive tracer was determined by the radiopharmaceutical and injection site. In analogy to the lymphatic drainage of the head we found a segmental drainage of lymphatic substances on the eye. Vitreous humour and retrobulbar space were drained by lymphatic vessels, predominantly to the deep cervical lymph nodes, while anterior chamber and subconjunctival space drains predominated over the superficial cervical lymph nodes. Eyeball tattoos - as loved by some fan communities - should therefore cause a coloured staining of the superficial cervical lymph nodes. The boundary of the drained segments would be in the area of the eyeball's equator. According to the textbooks, the lymph is actively removed from finger-shaped initial segments via pre-collectors and collectors with properly functioning intraluminal valves and smooth muscle cells in the vessels' media. In patients with spontaneous conjunctival bleeding, however, we observed phenomena in the conjunctival lymph vessels, which ca not be explained with old familiar ideas. At nozzle-shaped vessel constrictions separation of blood components occurred. The erythrocytes formed partially a so-called fluidic "resting bulk layer". Parallel vessel parts caused a retrograde filling of already emptied segments. These observations led our experimental investigations. In the literature, there are different scanning electron microscopy (SEM) images of lymphatic endothelial surfaces; nevertheless they are unassigned to a particular vessel segment. In the conjunctiva, we studied the question whether there is a dependence between vessel diameter and the surface characteristics of endothelial cells (after unfolding by lymphography). A constantly applied photo-mathematical procedure for all specimens allowed determining the size of the cross sections. The specimens were randomized into seven groups with diameters of 0.1-1.0mm and above and examined by SEM. In the smallest vessels (diameter=0.11mm), the impressions of the occasionally occurring nuclei in the lumen were clearly impressive. With increasing diameter, these impressions were lost and the individual endothelial nuclei could no longer be identified. Rather, one recognized only wall-like structures. In vessels of intermediate diameter (0.3-0.4mm), structures could be seen on the surface similar to reticular fibres. With increasing diameters, their prominent character weakened. In the group with diameters above 0.5mm, wavy surface structures were shown. Finally, in vessels of diameters over 1.0mm, a uniform, flat surface was observed. Regardless of the collection site of the specimens, we found certain surface characteristics related to the vessels' calibre. In further investigations by means of interstitial dye lymphography, we were able to demonstrate in the conjunctiva that under increasing injection pressure, additional vessels stained from finger-shaped processes. At least in the conjunctiva, the existence of so-called "blind-ending initial segments" seems doubtful (despite the fact that initial segments or "initial lymphatics" would begin in periphery, not end). Rather, these are likely to be temporary filling states. SEM investigations were carried out on the internal structure of these dome-shaped vessel parts by means of a specially developed preparation technique. Despite numerous variants in the lymphographic design of the blind bags - in the form of finger, balloon, dome, piston, pyramidal, double-humped and spearhead-like endings - slot-shaped, lip-shaped and saw blade-like structures were repeatedly found, similar to a zipper. These findings suggest preformed connections to the next segment and may control lymphatic flow. To clarify the retrograde fluid movements, we examined the lymph vessels' valves or those structures that were previously interpreted as valves. The different structures found could be subdivided into three groups. The lack of common bicuspid structures provides an explanation for retrograde fluid movement. That nevertheless a directional flow is possible, is explained by the flow model developed by Gerhart Liebau. Conjunctival lymphatics show intraluminal structures by double contrast injection, which we divided into four groups due to anatomical differences: An accurate statement about the occurrence of certain intraluminal vascular structures in certain vascular calibres was possible only conditionally. However, complex and extended structures (group d) were found almost exclusively in larger vessel calibres (diameter>0.9mm). The structures are reminiscent of published findings in the "collector channel orifices of Schlemm's canal". They should play an important role in the regulation of the intraocular pressure, or the balance between production and outflow of the aqueous humour. The influence of such structures on the function of the lymphatic vessels is not yet known. As an approach models could be used, which for instance are applied in the water industry for the drainage, the degradation of introduced substances, or the detention pond. The latter serves for the retention and purification of drainage water (storage, treatment and reuse of drainage water). Dead zones, barriers, short-circuit currents and swirling are further hydraulic terms. Can intraluminal vascular structures, for example, affect the lymphatic flow and thus the mechano-sensitivity of lymphatic endothelial cells? Whatever interpretation model we use, the warning of the Swiss anatomist His from 1862 is still true today that all theories about the formation and movement of lymph should be based on precise anatomical basics. This review article therefore tries to make a contribution therefore. Despite knowing of lymphatic endothelial molecules, despite the discovery of the role of lymphangiogenic growth factors in diseases and the use of molecular imaging technologies, we still know too little about the anatomy and function of the lymphatic system.
Collapse
Affiliation(s)
- Johannes Grüntzig
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Heinrich Heine Universität Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| | - Frank Hollmann
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Heinrich Heine Universität Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| |
Collapse
|
24
|
McDonnell F, Dismuke WM, Overby DR, Stamer WD. Pharmacological regulation of outflow resistance distal to Schlemm's canal. Am J Physiol Cell Physiol 2018; 315:C44-C51. [PMID: 29631366 DOI: 10.1152/ajpcell.00024.2018] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The trabecular meshwork (TM) and Schlemm's canal generate the majority of outflow resistance; however, the distal regions of the conventional outflow pathway account for 25-50% of total resistance. Sections of distal vessels are surrounded by α-smooth muscle actin-containing cells, indicating that they may be vasoregulated. This study examined the effect of a potent vasodilator, nitric oxide (NO), and its physiological antagonist, endothelin-1 (ET-1), on the regulation of outflow resistance in the distal regions of the conventional outflow pathway. Using a physiological model of the conventional outflow pathway, human and porcine anterior segments were perfused in organ culture under constant flow conditions, while intrachamber pressure was continually monitored. For porcine anterior segments, a stable baseline outflow facility with TM intact was first achieved before anterior segments were removed and a trabeculotomy was performed. For human anterior segments, a trabeculotomy was immediately performed. In human anterior segments, 100 nM ET-1 significantly decreased distal outflow facility from 0.49 ± 0.26 to 0.31 ± 0.18 (mean ± SD) µl·min-1·mmHg, P < 0.01. Perfusion with 100 µM diethylenetriamine-NO in the presence of 1 nM ET-1 immediately reversed ET-1 effects, significantly increasing distal outflow facility to 0.54 ± 0.35 µl·min-1·mmHg, P = 0.01. Similar results were obtained in porcine anterior segment experiments. Therefore, data show a dynamic range of resistance generation by distal vessels in both the human and the porcine conventional outflow pathways. Interestingly, maximal contraction of vessels in the distal outflow tract of trabeculotomized eyes generated resistance very near physiological levels for both species having an intact TM.
Collapse
Affiliation(s)
- Fiona McDonnell
- Department of Ophthalmology, Duke University , Durham, North Carolina
| | - W Michael Dismuke
- Department of Ophthalmology, Duke University , Durham, North Carolina
| | - Darryl R Overby
- Department of Bioengineering, Imperial College London , London , United Kingdom
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University , Durham, North Carolina.,Department of Biomedical Engineering, Duke University , Durham, North Carolina
| |
Collapse
|
25
|
Huang AS, Francis BA, Weinreb RN. Structural and functional imaging of aqueous humour outflow: a review. Clin Exp Ophthalmol 2017; 46:158-168. [PMID: 28898516 DOI: 10.1111/ceo.13064] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 01/15/2023]
Abstract
Maintaining healthy aqueous humour outflow (AHO) is important for intraocular cellular health and stable vision. Impairment of AHO can lead to increased intraocular pressure, optic nerve damage and concomitant glaucoma. An improved understanding of AHO will lead to improved glaucoma surgeries that enhance native AHO as well as facilitate the development of AHO-targeted pharmaceuticals. Recent AHO imaging has evolved to live human assessment and has focused on the structural evaluation of AHO pathways and the functional documentation of fluid flow. Structural AHO evaluation is predominantly driven by optical coherence tomography, and functional evaluation of flow is performed using various methods, including aqueous angiography. Advances in structural and functional evaluation of AHO are reviewed with discussion of strengths, weaknesses and potential future directions.
Collapse
Affiliation(s)
- Alex S Huang
- Doheny Eye Institute, Los Angeles, California, USA.,Doheny Eye Centers, Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| | - Brian A Francis
- Doheny Eye Institute, Los Angeles, California, USA.,Doheny Eye Centers, Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| | - Robert N Weinreb
- Shiley Eye Institute and Hamilton Glaucoma Center, Department of Ophthalmology, University of California, San Diego, California, USA
| |
Collapse
|
26
|
Huang AS, Belghith A, Dastiridou A, Chopra V, Zangwill LM, Weinreb RN. Automated circumferential construction of first-order aqueous humor outflow pathways using spectral-domain optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:66010. [PMID: 28617922 PMCID: PMC5472236 DOI: 10.1117/1.jbo.22.6.066010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/30/2017] [Indexed: 05/28/2023]
Abstract
The purpose was to create a three-dimensional (3-D) model of circumferential aqueous humor outflow (AHO) in a living human eye with an automated detection algorithm for Schlemm’s canal (SC) and first-order collector channels (CC) applied to spectral-domain optical coherence tomography (SD-OCT). Anterior segment SD-OCT scans from a subject were acquired circumferentially around the limbus. A Bayesian Ridge method was used to approximate the location of the SC on infrared confocal laser scanning ophthalmoscopic images with a cross multiplication tool developed to initiate SC/CC detection automated through a fuzzy hidden Markov Chain approach. Automatic segmentation of SC and initial CC’s was manually confirmed by two masked graders. Outflow pathways detected by the segmentation algorithm were reconstructed into a 3-D representation of AHO. Overall, only <1% of images (5114 total B-scans) were ungradable. Automatic segmentation algorithm performed well with SC detection 98.3% of the time and <0.1% false positive detection compared to expert grader consensus. CC was detected 84.2% of the time with 1.4% false positive detection. 3-D representation of AHO pathways demonstrated variably thicker and thinner SC with some clear CC roots. Circumferential (360 deg), automated, and validated AHO detection of angle structures in the living human eye with reconstruction was possible.
Collapse
Affiliation(s)
- Alex S. Huang
- Doheny Eye Institute, Los Angeles, California, United States
- Doheny Eye Centers, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Akram Belghith
- Shiley Eye Institute and Hamilton Glaucoma Center, Department of Ophthalmology University of California, San Diego, California, United States
| | - Anna Dastiridou
- Doheny Eye Centers, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Vikas Chopra
- Doheny Eye Institute, Los Angeles, California, United States
- Doheny Eye Centers, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Linda M. Zangwill
- Shiley Eye Institute and Hamilton Glaucoma Center, Department of Ophthalmology University of California, San Diego, California, United States
| | - Robert N. Weinreb
- Shiley Eye Institute and Hamilton Glaucoma Center, Department of Ophthalmology University of California, San Diego, California, United States
| |
Collapse
|
27
|
Carreon T, van der Merwe E, Fellman RL, Johnstone M, Bhattacharya SK. Aqueous outflow - A continuum from trabecular meshwork to episcleral veins. Prog Retin Eye Res 2017; 57:108-133. [PMID: 28028002 PMCID: PMC5350024 DOI: 10.1016/j.preteyeres.2016.12.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 11/14/2016] [Accepted: 12/22/2016] [Indexed: 12/22/2022]
Abstract
In glaucoma, lowered intraocular pressure (IOP) confers neuroprotection. Elevated IOP characterizes glaucoma and arises from impaired aqueous humor (AH) outflow. Increased resistance in the trabecular meshwork (TM), a filter-like structure essential to regulate AH outflow, may result in the impaired outflow. Flow through the 360° circumference of TM structures may be non-uniform, divided into high and low flow regions, termed as segmental. After flowing through the TM, AH enters Schlemm's canal (SC), which expresses both blood and lymphatic markers; AH then passes into collector channel entrances (CCE) along the SC external well. From the CCE, AH enters a deep scleral plexus (DSP) of vessels that typically run parallel to SC. From the DSP, intrascleral collector vessels run radially to the scleral surface to connect with AH containing vessels called aqueous veins to discharge AH to blood-containing episcleral veins. However, the molecular mechanisms that maintain homeostatic properties of endothelial cells along the pathways are not well understood. How these molecular events change during aging and in glaucoma pathology remain unresolved. In this review, we propose mechanistic possibilities to explain the continuum of AH outflow control, which originates at the TM and extends through collector channels to the episcleral veins.
Collapse
Affiliation(s)
- Teresia Carreon
- Department of Ophthalmology & Bascom Palmer Eye Institute, University of Miami, Miami, USA; Department of Biochemistry and Molecular Biology, University of Miami, Miami, USA
| | - Elizabeth van der Merwe
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925 Cape Town, South Africa
| | | | - Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Sanjoy K Bhattacharya
- Department of Ophthalmology & Bascom Palmer Eye Institute, University of Miami, Miami, USA; Department of Biochemistry and Molecular Biology, University of Miami, Miami, USA.
| |
Collapse
|
28
|
Xin C, Johnstone M, Wang N, Wang RK. OCT Study of Mechanical Properties Associated with Trabecular Meshwork and Collector Channel Motion in Human Eyes. PLoS One 2016; 11:e0162048. [PMID: 27598990 PMCID: PMC5012558 DOI: 10.1371/journal.pone.0162048] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 08/16/2016] [Indexed: 11/25/2022] Open
Abstract
We report the use of a high-resolution optical coherence tomography (OCT) imaging platform to identify and quantify pressure-dependent aqueous outflow system (AOS) tissue relationships and to infer mechanical stiffness through examination of tissue properties in ex vivo human eyes. Five enucleated human eyes are included in this study, with each eye prepared with four equal-sized quadrants, each encompassing 90 degrees of the limbal circumference. In radial limbal segments perfusion pressure within Schlemm’s canal (SC) is controlled by means of a perfusion cannula inserted into the canal lumen, while the other end of the cannula leads to a reservoir at a height that can control the pressure in the cannula. The OCT system images the sample with a spatial resolution of about 5 μm from the trabecular meshwork (TM) surface. Geometric parameters are quantified from the 2D OCT images acquired from the sample subjected to controlled changes in perfusion pressures; parameters include area and height of the lumen of SC, collector channel entrances (CCE) and intrascleral collector channels (ISCC). We show that 3D OCT imaging permits the identification of 3-D relationships of the SC, CCE and ISCC lumen dimensions. Collagen flaps or leaflets are found at CCE that are attached or hinged at only one end, whilst the flaps are connected to the TM by cylindrical structures spanning SC. Increasing static SC pressures resulted in SC lumen enlargement with corresponding enlargement of the CCE and ISCC lumen. Pressure-dependent SC lumen area and height changes are significant at the 0.01 levels for ANOVA, and at the 0.05 for both polynomial curves and Tukey paired comparisons. Dynamic measurements demonstrate a synchronous increase in SC, CCE and ISCC lumen height in response to pressure changes from 0 to 10, 30 or 50 mm Hg, respectively, and the response time is within the 50-millisecond range. From the measured SC volume and corresponding IOP values, we demonstrate that an elastance curve can be developed to infer the mechanical stiffness of the TM by means of quantifying pressure-dependent SC volume changes over a 2 mm radial region of SC. Our study finds pressure-dependent motion of the TM that corresponds to collagen leaflet configuration motion at CCE; the synchronous tissue motion also corresponds with synchrony of SC and CCE lumen dimension changes.
Collapse
Affiliation(s)
- Chen Xin
- Departments of Bioengineering, University of Washington, Seattle, Washington, 98195, United States of America
- Beijing TongRen Eye Center, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
- Department of Ophthalmology, Beijing AnZhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, Washington, 98104, United States of America
| | - Ningli Wang
- Beijing TongRen Eye Center, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
| | - Ruikang K. Wang
- Departments of Bioengineering, University of Washington, Seattle, Washington, 98195, United States of America
- Department of Ophthalmology, University of Washington, Seattle, Washington, 98104, United States of America
- * E-mail:
| |
Collapse
|
29
|
In Vivo Near-Infrared Fluorescence Imaging of Aqueous Humor Outflow Structures. J Ophthalmol 2016; 2016:8706564. [PMID: 27313871 PMCID: PMC4895040 DOI: 10.1155/2016/8706564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/12/2016] [Indexed: 11/17/2022] Open
Abstract
The aim of this study has been to visualize the aqueous outflow system in patients affected by primary open angle glaucoma. A solution of indocyanine green (ICG) plus high viscosity viscoelastic solution was injected into the Schlemm canal during surgery in 10 glaucomatous patients undergoing canaloplasty. Soon after injection of the dye the borders of the scleral flap were completely stained due to partial reflux caused by the intrachannel resistance; progression of the dye along the Schlemm canal starting from the site of injection was then visualized. The filling of the collector channels was observed only in the patent portions of the Schlemm canal. The only noticeable aqueous veins were located in correspondence of the quadrant in which both the Schlemm canal and the collectors were patent. Lastly, a retrograde filling, of glomerular-shaped structures, deepest to the Schlemm canal was observed in the quadrants where the pathway was functioning. Our findings show that injection of a mixture composed of ICG and viscoelastic solution into the Schlemm canal allows a clear visualization of the functioning portions of the conventional outflow pathway. In addition, a retrograde filling of structures presumably located into the iris was also recorded. Clinical Trial Registration. Our study is registered in ISRCTN registry, number 54005880, DOI 10.1186/ISRCTN54005880.
Collapse
|