1
|
Rani P, Koulmane Laxminarayana SL, Swaminathan SM, Nagaraju SP, Bhojaraja MV, Shetty S, Kanakalakshmi ST. TGF-β: elusive target in diabetic kidney disease. Ren Fail 2025; 47:2483990. [PMID: 40180324 PMCID: PMC11980245 DOI: 10.1080/0886022x.2025.2483990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/17/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
Transforming growth factor-beta (TGF-β), a cytokine with near omnipresence, is an integral part of many vital cellular processes across the human body. The family includes three isoforms: Transforming growth factor-beta 1, 2, and 3. These cytokines play a significant role in the fibrosis cascade. Diabetic kidney disease (DKD), a major complication of diabetes, is increasing in prevalence daily, and the classical diagnosis of diabetes is based on the presence of albuminuria. The occurrence of nonalbuminuric DKD has provided new insight into the pathogenesis of this disease. The emphasis on multifactorial pathways involved in developing DKD has highlighted some markers associated with tissue fibrosis. In diabetic nephropathy, TGF-β is significantly involved in its pathology. Its presence in serum and urine means that it could be a diagnostic tool while its regulation provides potential therapeutic targets. Completely blocking TGF-β signaling could reach untargeted regions and cause unanticipated effects. This paper reviews the basic details of TGF-β as a cytokine, its role in DKD, and updates on research carried out to validate its candidacy.
Collapse
Affiliation(s)
- Priya Rani
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | | | - Shilna Muttickal Swaminathan
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | | | - Sahana Shetty
- Department of Endocrinology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | | |
Collapse
|
2
|
Mavlyutov T, Bilal SE, Myrah JJ, Mathers KM, Lee TY, McDowell CM. TGFβ2 alters segmental outflow and ECM ultrastructure in the trabecular meshwork. Exp Eye Res 2025; 255:110377. [PMID: 40216065 PMCID: PMC12058392 DOI: 10.1016/j.exer.2025.110377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
TGFβ2 is a well-known contributor to extracellular matrix (ECM) changes in the trabecular meshwork (TM). TGFβ2 is increased in the aqueous humor (AH) of primary open angle glaucoma patients and the addition of TGFβ2 to primary human TM cells in culture induces pathogenic changes similar to what is seen in the TM of ocular hypertensive and glaucomatous eyes. Overexpression of a bioactivated form of TGFβ2 using adenovirus 5 (Ad5.TGFβ2) in the TM has previously been described as an inducible mouse model of ocular hypertension and has been utilized for multiple studies to help understand the pathogenies of TGFβ2-induced TM damage and elevated intraocular pressure (IOP). Ad5.TGFβ2 is known to elevate IOP, decrease outflow facility, and increase expression of ECM proteins in the TM. Here, we further analyze the effects of overexpression of TGFβ2 by Ad5 in the TM. We found Ad5.TGFβ2 increases expression of macrophage marker Iba1 and increases expression of ECM proteins fibronectin and collagen 1 compared to Ad5.Null injected controls. In addition, overexpression of TGFβ2 by Ad5 led to a decrease in segmental AH flow regions compared to Ad5.Null control eyes. Ultrastructure analysis of the Ad5.TGFβ2 injected eyes also show significantly more areas occupied by ECM material as well as the development of more smaller giant vacuoles compared to Ad5.Null injected eyes. These data in combination with prior research using Ad5.TGFβ2, establish the use of intraocular injection of Ad5.TGFβ2 as an appropriate mouse model of ocular hypertension to study aqueous humor outflow and its mechanisms.
Collapse
Affiliation(s)
- Timur Mavlyutov
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA
| | - Samer E Bilal
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA
| | - Justin J Myrah
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA
| | - Kelsey M Mathers
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA
| | - Taylor Y Lee
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA
| | - Colleen M McDowell
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA.
| |
Collapse
|
3
|
Yang YF, Holden P, Sun YY, Faralli JA, Peters DM, Keller KE. Fibrosis-Related Gene and Protein Expression in Normal and Glaucomatous Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 2025; 66:48. [PMID: 40126508 PMCID: PMC11951066 DOI: 10.1167/iovs.66.3.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Purpose Glaucomatous trabecular meshwork (GTM) tissue is characterized by excess fibrotic-like extracellular matrices, which negatively impacts aqueous humor outflow. Endothelial-to-mesenchymal transition (EndMT) is the process by which tissues develop fibrosis. In this study, we investigated fibrotic-related gene and protein profiles of non-glaucomatous trabecular meshwork (NTM) and GTM cells. Methods Primary cells were cultured from NTM (n = 6) and GTM (n = 5) age-matched cadaver eyes. RNA was harvested and mRNA profiling of 750 genes was performed using the human fibrosis panel (NanoString). Quantitative PCR (qPCR), Western blotting, and immunofluorescence microscopy were performed. A matrix metalloproteinase (MMP) fluorogenic assay was used to quantitate enzyme activity. Results Classic EndMT biomarkers, α-SMA, SNAI2, TWIST1, TWIST2, and VIM, were upregulated in GTM cells, whereas increased phosphorylated SMAD2-3 indicated increased TGFβ signaling. GTM cells had increased deposition of FN-EDA fibronectin fibrils, but reduced amounts of FN-EDB fibrils, and altered immunostaining of active α5β1 and αvβ3 integrins. NanoString analysis showed that 2 genes were upregulated and 28 genes were downregulated in GTM cells compared with NTM cells. Western immunoblotting confirmed increased protein levels of N-cadherin and decreased MMP2, CHI3L1, COL6A3, and SERPINF1 proteins in GTM cells. Whereas MMP2 gene and protein levels were reduced, there was increased MMP activity. Conclusions Increased expression of α-SMA, FN-EDA, N-cadherin, SNAI2, TWISTs, VIM, TGFβ signaling, and MMP activity are consistent with GTM cells acquiring an EndMT phenotype. In combination with tissue studies, cultured GTM cells are a useful in vitro model for studying the fibrotic process in glaucoma.
Collapse
Affiliation(s)
- Yong-Feng Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Paul Holden
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Ying Ying Sun
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Jennifer A. Faralli
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States
| | - Donna M. Peters
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States
- Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, United States
| | - Kate E. Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
4
|
Li H, Harvey DH, Dai J, Swingle SP, Compton AM, Sugali CK, Dhamodaran K, Yao J, Lin TY, Sulchek T, Kim T, Ethier CR, Mao W. Characterization, Enrichment, and Computational Modeling of Cross-Linked Actin Networks in Transformed Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 2025; 66:65. [PMID: 40009371 PMCID: PMC11878246 DOI: 10.1167/iovs.66.2.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Purpose Cross-linked actin networks (CLANs) are prevalent in the glaucomatous trabecular meshwork (TM). We previously developed the GTM3L cell line, which spontaneously forms fluorescently labeled CLANs, by transducing GTM3, a transformed glaucomatous TM cell line, with a lentivirus expressing the LifeAct-GFP fusion protein. Here, we determined if LifeAct-GFP viral copy numbers are associated with CLANs, developed approaches to increase CLAN incidence, and computationally studied the biomechanical properties of CLAN-containing GTM3L cells. Methods GTM3L cells were fluorescently sorted for viral copy number analysis to determine whether increased CLAN incidence was associated with copy number. CLAN incidence was increased by combining (1) differential adhesion sorting, (2) cell deswelling, and (3) cell stiffness selection. GTM3L cells were cultured on glass or soft hydrogels for stiffness measurement by atomic force microscopy. Computational models studied the biomechanical properties of CLANs. Results GTM3L cells had one LifeAct-GFP viral copy/cell on average, and viral copy number or LifeAct-GFP expression level did not associate with CLAN incidence rate. However, CLAN rate was increased from -0.28% to -50% by combining the three enrichment methods noted above. Further, GTM3L cells formed more CLANs on a stiff versus a soft substrate. Computational modeling predicted that CLANs contribute to higher cell stiffness, including increased resistance of the nucleus to tensile stress when CLANs are physically linked to the nucleus. Conclusions It is possible to greatly enhance CLAN incidence in GTM3L cells. CLANs are mechanosensitive structures that affect cell biomechanical properties. Further research is needed to determine the biomechanics, mechanobiology, and etiology of CLANs in the TM.
Collapse
Affiliation(s)
- Haiyan Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, United States
| | - Devon H. Harvey
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, United States
| | - Jiannong Dai
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, United States
| | - Steven P. Swingle
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Anthony M. Compton
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, United States
| | - Chenna Kesavulu Sugali
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, United States
| | - Kamesh Dhamodaran
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, United States
| | - Jing Yao
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana, United States
| | - Tsai-Yu Lin
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana, United States
| | - Todd Sulchek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, United States
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States
| | - C. Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, United States
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Weiming Mao
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, United States
- Department of Biochemistry & Molecular Biology, Indiana University, Indianapolis, Indiana, United States
| |
Collapse
|
5
|
Patel PD, Clark AF. Evaluation of Cross-Linked Actin Networks (CLANs) in Human Trabecular Meshwork Cells and Tissues. Methods Mol Biol 2025; 2858:1-15. [PMID: 39433662 DOI: 10.1007/978-1-0716-4140-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Elevated intraocular pressure (IOP) is a major risk factor for the development and progression of glaucoma, the leading cause of irreversible vision loss and blindness. An overall increase in resistance to aqueous humor outflow causes sustained elevation in IOP. Glaucomatous insults in the aqueous humor outflow pathway, including the trabecular meshwork (TM), precede such chronic physiological changes in IOP. These insults include ultrastructural changes with excessive extracellular matrix deposition and actin cytoskeletal reorganization that leads to pathological stiffening of the ocular tissues. One of the most common cytoskeletal changes associated with TM tissue stiffness in glaucoma is the increased prevalence of cross-linked actin networks (CLANs) in cells of the trabecular meshwork (TM) and lamina cribrosa (LC). In glaucomatous cells, rearrangement of linear actin stress fibers leads to formation of polygonal arrays within the cytoplasm, resembling a geodesic dome-like structure, that we identified as CLANs. In addition to increased amounts of CLANs in POAG TM cells and tissues, we also discovered that glucocorticoid (GC) and TGFβ2 signaling pathways associated with the development of ocular hypertension (OHT) and glaucoma also induced CLANs in the TM. Despite a clear association, we are yet to completely understand the mechanisms involved in CLAN formation and their direct relevance to disease pathology. In this chapter, we will describe methods to identify and characterize CLANs using fluorescent microscopy in primary TM cell cultures, ex vivo perfusion cultured human anterior segments, and in situ in human donor eyes.
Collapse
Affiliation(s)
- Pinkal D Patel
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Abbot F Clark
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
6
|
Rudzitis CN, Lakk M, Singh A, Redmon SN, Kirdajova D, Tseng YT, De Ieso ML, Stamer WD, Herberg S, Križaj D. TRPV4 overactivation enhances cellular contractility and drives ocular hypertension in TGFβ2 overexpressing eyes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622187. [PMID: 39574569 PMCID: PMC11580928 DOI: 10.1101/2024.11.05.622187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The risk for developing primary open-angle glaucoma (POAG) correlates with the magnitude of ocular hypertension (OHT) and the concentration of transforming growth factor-β2 (TGFβ2) in the aqueous humor. Effective treatment of POAG requires detailed understanding of interaction between pressure sensing mechanisms in the trabecular meshwork (TM) and biochemical risk factors. Here, we employed molecular, optical, electrophysiological and tonometric strategies to establish the role of TGFβ2 in transcription and functional expression of mechanosensitive channel isoforms alongside studies of TM contractility in biomimetic hydrogels, and intraocular pressure (IOP) regulation in a mouse model of TGFβ2 -induced OHT. TGFβ2 upregulated expression of TRPV4 and PIEZO1 transcripts and time-dependently augmented functional TRPV4 activation. TRPV4 activation induced TM contractility whereas pharmacological inhibition suppressed TGFβ2-induced hypercontractility and abrogated OHT in eyes overexpressing TGFβ2. Trpv4-deficient mice resisted TGFβ2-driven increases in IOP. Nocturnal OHT was not additive to TGFβ-evoked OHT. Our study establishes the fundamental role of TGFβ as a modulator of mechanosensing in nonexcitable cells, identifies TRPV4 channel as the final common mechanism for TM contractility and circadian and pathological OHT and offers insights future treatments that can lower IOP in the sizeable cohort of hypertensive glaucoma patients that resist current treatments.
Collapse
Affiliation(s)
- Christopher N. Rudzitis
- Department of Ophthalmology and Visual Sciences
- Department of Neurobiology, University of Utah, Salt Lake City, UT
| | - Monika Lakk
- Department of Ophthalmology and Visual Sciences
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | | | | | | | - Michael L. De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - David Križaj
- Department of Ophthalmology and Visual Sciences
- Department of Neurobiology, University of Utah, Salt Lake City, UT
- Department of Bioengineering, University of Utah, Salt Lake City, UT
| |
Collapse
|
7
|
Ghosh R, Herberg S. The role of YAP/TAZ mechanosignaling in trabecular meshwork and Schlemm's canal cell dysfunction. Vision Res 2024; 224:108477. [PMID: 39208753 PMCID: PMC11470804 DOI: 10.1016/j.visres.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
This focused review highlights the importance of yes-associated protein (YAP)/transcriptional coactivator with PDZ binding motif (TAZ) mechanosignaling in human trabecular meshwork and Schlemm's canal cells in response to glaucoma-associated extracellular matrix stiffening and cyclic mechanical stretch, as well as biochemical pathway modulators (with signaling crosstalk) including transforming growth factor beta 2, glucocorticoids, Wnt, lysophosphatidic acid, vascular endothelial growth factor, and oxidative stress. We provide a comprehensive overview of relevant literature from the last decade, highlight intriguing research avenues with translational potential, and close with an outlook on future directions.
Collapse
Affiliation(s)
- Rajanya Ghosh
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
8
|
Erjavec E, Angée C, Hadjadj D, Passet B, David P, Kostic C, Dodé E, Zanlonghi X, Cagnard N, Nedelec B, Crippa SV, Bole-Feysot C, Zarhrate M, Creuzet S, Castille J, Vilotte JL, Calvas P, Plaisancié J, Chassaing N, Kaplan J, Rozet JM, Fares Taie L. Congenital microcoria deletion in mouse links Sox21 dysregulation to disease and suggests a role for TGFB2 in glaucoma and myopia. Am J Hum Genet 2024; 111:2265-2282. [PMID: 39293448 PMCID: PMC11480854 DOI: 10.1016/j.ajhg.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/20/2024] Open
Abstract
Congenital microcoria (MCOR) is a rare hereditary developmental defect of the iris dilator muscle frequently associated with high axial myopia and high intraocular pressure (IOP) glaucoma. The condition is caused by submicroscopic rearrangements of chromosome 13q32.1. However, the mechanisms underlying the failure of iris development and the origin of associated features remain elusive. Here, we present a 3D architecture model of the 13q32.1 region, demonstrating that MCOR-related deletions consistently disrupt the boundary between two topologically associating domains (TADs). Deleting the critical MCOR-causing region in mice reveals ectopic Sox21 expression precisely aligning with Dct, each located in one of the two neighbor TADs. This observation is consistent with the TADs' boundary alteration and adoption of Dct regulatory elements by the Sox21 promoter. Additionally, we identify Tgfb2 as a target gene of SOX21 and show TGFΒ2 accumulation in the aqueous humor of an MCOR-affected subject. Accumulation of TGFB2 is recognized for its role in glaucoma and potential impact on axial myopia. Our results highlight the importance of SOX21-TGFB2 signaling in iris development and control of eye growth and IOP. Insights from MCOR studies may provide therapeutic avenues for this condition but also for glaucoma and high myopia conditions, affecting millions of people.
Collapse
Affiliation(s)
- Elisa Erjavec
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Clémentine Angée
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Djihad Hadjadj
- Institut Cochin, Inserm U1016, CNRS UMR8104, UFR de Pharmacie de Paris, Université Paris Cité, CARPEM, Paris, France
| | - Bruno Passet
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, Jouy-en-Josas, France
| | - Pierre David
- Transgenesis Platform, Laboratoire d'Expérimentation Animale et Transgenèse (LEAT), Imagine Institute, Structure Fédérative de Recherche Necker INSERM US24/CNRS UMS3633, Paris, France
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Emmanuel Dodé
- Institut Ophtalmologique de L'Ouest-Clinique Jules VERNE, Nantes, France
| | - Xavier Zanlonghi
- Institut Ophtalmologique de L'Ouest-Clinique Jules VERNE, Nantes, France
| | - Nicolas Cagnard
- Université Paris Cité, Bioinformatics Core Facility, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Brigitte Nedelec
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Sylvain V Crippa
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Christine Bole-Feysot
- Université Paris Cité, Genomics Platform, Imagine Institute, INSERM UMR 1163, INSERM US24/CNRS UAR3633, Paris, France
| | - Mohammed Zarhrate
- Université Paris Cité, Genomics Platform, Imagine Institute, INSERM UMR 1163, INSERM US24/CNRS UAR3633, Paris, France
| | - Sophie Creuzet
- Paris-Saclay Institute of Neuroscience, NeuroPSI, CNRS, Paris-Saclay University, Campus CEA Saclay, Bât 151, 151 Route de la Rotonde, 91400 Saclay, France
| | - Johan Castille
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, Jouy-en-Josas, France
| | - Patrick Calvas
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Julie Plaisancié
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Nicolas Chassaing
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France.
| | - L Fares Taie
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France.
| |
Collapse
|
9
|
Li H, Harvey DH, Dai J, Swingle SP, Compton AM, Sugali CK, Dhamodaran K, Yao J, Lin TY, Sulchek T, Kim T, Ethier CR, Mao W. Characterization, enrichment, and computational modeling of cross-linked actin networks in trabecular meshwork cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608970. [PMID: 39229235 PMCID: PMC11370370 DOI: 10.1101/2024.08.21.608970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Purpose Cross-linked actin networks (CLANs) are prevalent in the glaucomatous trabecular meshwork (TM), yet their role in ocular hypertension remains unclear. We used a human TM cell line that spontaneously forms fluorescently-labeled CLANs (GTM3L) to explore the origin of CLANs, developed techniques to increase CLAN incidence in GMT3L cells, and computationally studied the biomechanical properties of CLAN-containing cells. Methods GTM3L cells were fluorescently sorted for viral copy number analysis. CLAN incidence was increased by (i) differential sorting of cells by adhesion, (ii) cell deswelling, and (iii) cell selection based on cell stiffness. GTM3L cells were also cultured on glass or soft hydrogel to determine substrate stiffness effects on CLAN incidence. Computational models were constructed to mimic and study the biomechanical properties of CLANs. Results All GTM3L cells had an average of 1 viral copy per cell. LifeAct-GFP expression level did not affect CLAN incidence rate, but CLAN rate was increased from ~0.28% to ~50% by a combination of adhesion selection, cell deswelling, and cell stiffness-based sorting. Further, GTM3L cells formed more CLANs on a stiff vs. a soft substrate. Computational modeling predicted that CLANs contribute to higher cell stiffness, including increased resistance of the nucleus to tensile stress when CLANs are physically linked to the nucleus. Conclusions It is possible to greatly enhance CLAN incidence in GTM3L cells. CLANs are mechanosensitive structures that affect cell biomechanical properties. Further research is needed to determine the effect of CLANs on TM biomechanics and mechanobiology as well as the etiology of CLAN formation in the TM.
Collapse
Affiliation(s)
- Haiyan Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
| | - Devon H Harvey
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
| | - Jiannong Dai
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
| | - Steven P Swingle
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Anthony M Compton
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
| | - Chenna Kesavulu Sugali
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
| | - Kamesh Dhamodaran
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
| | - Jing Yao
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana
| | - Tsai-Yu Lin
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana
| | - Todd Sulchek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Weiming Mao
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
- Department of Biochemistry & Molecular Biology, Indiana University, Indianapolis, Indiana
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana
| |
Collapse
|
10
|
Gowda DAA, Birappa G, Rajkumar S, Ajaykumar CB, Srikanth B, Kim SL, Singh V, Jayachandran A, Lee J, Ramakrishna S. Recent progress in CRISPR/Cas9 system for eye disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:21-46. [PMID: 39824582 DOI: 10.1016/bs.pmbts.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Ocular disorders encompass a broad spectrum of phenotypic and clinical symptoms resulting from several genetic variants and environmental factors. The unique anatomy and physiology of the eye facilitate validation of cutting-edge gene editing treatments. Genome editing developments have allowed researchers to treat a variety of diseases, including ocular disorders. The clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system holds considerable promise for therapeutic applications in the field of ophthalmology, including repair of aberrant genes and treatment of retinal illnesses related to the genome or epigenome. Application of CRISPR/Cas9 systems to the study of ocular disease and visual sciences have yielded innovations including correction of harmful mutations in patient-derived cells and gene modifications in several mammalian models of eye development and disease. In this study, we discuss the generation of several ocular disease models in mammalian cell lines and in vivo systems using a CRISPR/Cas9 system. We also provide an overview of current uses of CRISPR/Cas9 technologies for the treatment of ocular pathologies, as well as future challenges.
Collapse
Affiliation(s)
- D A Ayush Gowda
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Girish Birappa
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Sripriya Rajkumar
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - C Bindu Ajaykumar
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | | | - Sammy L Kim
- Department of Biological Science, College of Sang-Huh Life Science, Department of Biological Science, Konkuk University, Seoul, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Aparna Jayachandran
- Fiona Elsey Cancer Research Institute, VIC, Australia; Federation University, VIC, Australia.
| | - Junwon Lee
- Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
11
|
Sugali CK, Rayana NP, Dai J, Harvey DH, Dhamodaran K, Mao W. GSK3β Inhibitors Inhibit TGFβ Signaling in the Human Trabecular Meshwork. Invest Ophthalmol Vis Sci 2024; 65:3. [PMID: 39087933 PMCID: PMC11305430 DOI: 10.1167/iovs.65.10.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Purpose Primary open-angle glaucoma (POAG) is a leading cause of blindness, and its primary risk factor is elevated intraocular pressure (IOP) due to pathologic changes in the trabecular meshwork (TM). We previously showed that there is a cross-inhibition between TGFβ and Wnt signaling pathways in the TM. In this study, we determined if activation of the Wnt signaling pathway using small-molecule Wnt activators can inhibit TGFβ2-induced TM changes and ocular hypertension (OHT). Methods Primary human TM (pHTM) cells and transduced SBE-GTM3 cells were treated with or without Wnt and/or TGFβ signaling activators and used for luciferase assays; for the extraction of whole-cell lysate, conditioned medium, cytosolic proteins, and nuclear proteins for Western immunoblotting (WB); or for immunofluorescent staining. Human donor eyes were perfusion cultured to study the effect of Wnt activators on IOP. Results We found that the small-molecule Wnt activators (GSK3β inhibitors) (BIO, SB216763, and CHIR99021) activated canonical Wnt signaling in pHTM cells without toxicity at tested concentrations. This activation inhibited TGFβ signaling as well as TGFβ2-induced extracellular matrix deposition and formation of cross-linked actin networks in pHTM cells or SBE-GTM3 cells. We also observed nuclear translocation of both Smad4 and β-catenin in pHTM cells, which suggested that the cross-inhibition between the TGFβ and Wnt signaling pathways may occur in the nucleus. Using our ex vivo model, we found that CHIR99021 inhibited TGFβ2-induced OHT in perfusion-cultured human eyes. Conclusions Our results showed that small-molecule Wnt activators have the potential for treating TGFβ signaling-induced OHT in patients with POAG.
Collapse
Affiliation(s)
- Chenna Kesavulu Sugali
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Naga Pradeep Rayana
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Jiannong Dai
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Devon H. Harvey
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Kamesh Dhamodaran
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Weiming Mao
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- STARK Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
12
|
Rejas-González R, Montero-Calle A, Valverde A, Salvador NP, Carballés MJC, Ausín-González E, Sánchez-Naves J, Campuzano S, Barderas R, Guzman-Aranguez A. Proteomics Analyses of Small Extracellular Vesicles of Aqueous Humor: Identification and Validation of GAS6 and SPP1 as Glaucoma Markers. Int J Mol Sci 2024; 25:6995. [PMID: 39000104 PMCID: PMC11241616 DOI: 10.3390/ijms25136995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Cataracts and glaucoma account for a high percentage of vision loss and blindness worldwide. Small extracellular vesicles (sEVs) are released into different body fluids, including the eye's aqueous humor. Information about their proteome content and characterization in ocular pathologies is not yet well established. In this study, aqueous humor sEVs from healthy individuals, cataracts, and glaucoma patients were studied, and their specific protein profiles were characterized. Moreover, the potential of identified proteins as diagnostic glaucoma biomarkers was evaluated. The protein content of sEVs from patients' aqueous humor with cataracts and glaucoma compared to healthy individuals was analyzed by quantitative proteomics. Validation was performed by western blot (WB) and ELISA. A total of 828 peptides and 192 proteins were identified and quantified. After data analysis with the R program, 8 significantly dysregulated proteins from aqueous humor sEVs in cataracts and 16 in glaucoma showed an expression ratio ≥ 1.5. By WB and ELISA using directly aqueous humor samples, the dysregulation of 9 proteins was mostly confirmed. Importantly, GAS6 and SPP1 showed high diagnostic ability of glaucoma, which in combination allowed for discriminating glaucoma patients from control individuals with an area under the curve of 76.1% and a sensitivity of 65.6% and a specificity of 87.7%.
Collapse
Affiliation(s)
- Raquel Rejas-González
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; (R.R.-G.); (A.M.-C.)
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; (R.R.-G.); (A.M.-C.)
| | - Alejandro Valverde
- Analytical Chemistry Department, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain; (A.V.); (S.C.)
| | - Natalia Pastora Salvador
- Opthalmology Service, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (N.P.S.); (M.J.C.C.); (E.A.-G.)
| | - María José Crespo Carballés
- Opthalmology Service, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (N.P.S.); (M.J.C.C.); (E.A.-G.)
| | - Emma Ausín-González
- Opthalmology Service, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (N.P.S.); (M.J.C.C.); (E.A.-G.)
| | | | - Susana Campuzano
- Analytical Chemistry Department, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain; (A.V.); (S.C.)
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; (R.R.-G.); (A.M.-C.)
- CIBER of Frailty and Healthy Aging (CIBERFES), 28029 Madrid, Spain
| | - Ana Guzman-Aranguez
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037 Madrid, Spain
| |
Collapse
|
13
|
Harvey DH, Sugali CK, Mao W. Glucocorticoid-Induced Ocular Hypertension and Glaucoma. Clin Ophthalmol 2024; 18:481-505. [PMID: 38379915 PMCID: PMC10878139 DOI: 10.2147/opth.s442749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Glucocorticoid (GC) therapy is indicated in many diseases, including ocular diseases. An important side-effect of GC therapy is GC-induced ocular hypertension (GIOHT), which may cause irreversible blindness known as GC-induced glaucoma (GIG). Here, we reviewed the pathological changes that contribute to GIOHT including in the trabecular meshwork and Schlemm's canal at cellular and molecular levels. We also discussed the clinical aspects of GIOHT/GIG including disease prevalence, risk factors, the type of GCs, the route of GC administration, and management strategies.
Collapse
Affiliation(s)
- Devon Hori Harvey
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chenna Kesavulu Sugali
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Weiming Mao
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
14
|
Chen HY, Ko ML, Chan HL. Effects of hyperglycemia on the TGF-β pathway in trabecular meshwork cells. Biochim Biophys Acta Gen Subj 2024; 1868:130538. [PMID: 38072209 DOI: 10.1016/j.bbagen.2023.130538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Hyperglycemia, which can lead to apoptosis, hypertrophy, fibrosis, and induces hyperinflammation in diabetic vascular complications due to oxidative stress. In order to elucidate the potential dual roles and regulatory signal transduction of TGF-β1 and TGF-β2 in human trabecular meshwork cells (HTMCs), we established an oxidative cell model in HTMCs using 5.5, 25, 50, and 100 mM d-glucose-supplemented media and characterized the TGF-β-related oxidative stress pathway. METHODS Further analysis was conducted to investigate oxidative damage and protein alterations in the HTMC caused by the signal transduction. This was done through a series of qualitative cell function studies, such as cell viability/apoptosis analysis, intracellular reactive oxygen species (ROS) detection, analysis of calcium release concentration, immunoblot analysis to detect the related protein expression alteration, and analysis of cell fibrosis to study the effect of different severities of hyperglycemia. Also, we illustrated the role of TGF-β1/2 in oxidative stress-induced injury by shRNA-mediated knockdown or stimulation with recombinant human TGF-β1 protein (rhTGF-β1). RESULTS Results from the protein expression analysis showed that p-JNK, p-p38, p-AKT, and related SMAD family members were upregulated in HTMCs under hyperglycemia. In the cell functional assays, HTMCs treated with rhTGFβ-1 (1 ng/mL) under hyperglycemic conditions showed higher proliferation rates and lower ROS and calcium levels. CONCLUSIONS To summarize, mechanistic analyses in HTMCs showed that hyperglycemia-induced oxidative stress activated TGF-β1 along with its associated pathway. GENERAL SIGNIFICANCE While at low concentrations, TGF-β1 protects cells from antioxidation, whereas at high concentrations, it accumulates in the extracellular matrix, causing further HTMC dysfunction.
Collapse
Affiliation(s)
- Hsin-Yi Chen
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Mei-Lan Ko
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300, Taiwan.
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
15
|
Agarwal R, Iezhitsa I. Genetic rodent models of glaucoma in representing disease phenotype and insights into the pathogenesis. Mol Aspects Med 2023; 94:101228. [PMID: 38016252 DOI: 10.1016/j.mam.2023.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023]
Abstract
Genetic rodent models are widely used in glaucoma related research. With vast amount of information revealed by human studies about genetic correlations with glaucoma, use of these models is relevant and required. In this review, we discuss the glaucoma endophenotypes and importance of their representation in an experimental animal model. Mice and rats are the most popular animal species used as genetic models due to ease of genetic manipulations in these animal species as well as the availability of their genomic information. With technological advances, induction of glaucoma related genetic mutations commonly observed in human is possible to achieve in rodents in a desirable manner. This approach helps to study the pathobiology of the disease process with the background of genetic abnormalities, reveals potential therapeutic targets and gives an opportunity to test newer therapeutic options. Various genetic manipulation leading to appearance of human relevant endophenotypes in rodents indicate their relevance in glaucoma pathology and the utility of these rodent models for exploring various aspects of the disease related to targeted mutation. The molecular pathways involved in the pathophysiology of glaucoma leading to elevated intraocular pressure and the disease hallmark, apoptosis of retinal ganglion cells and optic nerve degeneration, have been extensively explored in genetic rodent models. In this review, we discuss the consequences of various genetic manipulations based on the primary site of pathology in the anterior or the posterior segment. We discuss how these genetic manipulations produce features in rodents that can be considered a close representation of disease phenotype in human. We also highlight several molecular mechanisms revealed by using genetic rodent models of glaucoma including those involved in increased aqueous outflow resistance, loss of retinal ganglion cells and optic neuropathy. Lastly, we discuss the limitations of the use of genetic rodent models in glaucoma related research.
Collapse
Affiliation(s)
- Renu Agarwal
- School of Medicine, International Medical University, Malaysia.
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Malaysia
| |
Collapse
|
16
|
Sundaresan Y, Yacoub S, Kodati B, Amankwa CE, Raola A, Zode G. Therapeutic applications of CRISPR/Cas9 gene editing technology for the treatment of ocular diseases. FEBS J 2023; 290:5248-5269. [PMID: 36877952 PMCID: PMC10480348 DOI: 10.1111/febs.16771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/04/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Ocular diseases are a highly heterogeneous group of phenotypes, caused by a spectrum of genetic variants and environmental factors that exhibit diverse clinical symptoms. As a result of its anatomical location, structure and immune privilege, the eye is an ideal system to assess and validate novel genetic therapies. Advances in genome editing have revolutionized the field of biomedical science, enabling researchers to understand the biology behind disease mechanisms and allow the treatment of several health conditions, including ocular pathologies. The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing facilitates efficient and specific genetic modifications in the nucleic acid sequence, resulting in permanent changes at the genomic level. This approach has advantages over other treatment strategies and is promising for the treatment of various genetic and non-genetic ocular conditions. This review provides an overview of the CRISPR/CRISPR-associated protein 9 (Cas9) system and summarizes recent advances in the therapeutic application of CRISPR/Cas9 for the treatment of various ocular pathologies, as well as future challenges.
Collapse
Affiliation(s)
| | | | - Bindu Kodati
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Charles E. Amankwa
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Akash Raola
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Gulab Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| |
Collapse
|
17
|
Oikawa K, Torne O, Sun D, Moon AKB, Kiland JA, Trane RM, McLellan GJ. Aqueous Humor TGF-β2 and Its Association With Intraocular Pressure in a Naturally Occurring Large Animal Model of Glaucoma. Invest Ophthalmol Vis Sci 2023; 64:18. [PMID: 37459065 PMCID: PMC10362923 DOI: 10.1167/iovs.64.10.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Purpose Transforming growth factor (TGF)-β2 has been widely implicated in human glaucoma pathology. The purpose of this study was to determine the source of TGF-β2 in aqueous humor (AH) and its relationship with intraocular pressure (IOP) in an inherited large animal model of glaucoma. Methods Sixty-six glaucomatous cats homozygous for LTBP2 mutation, and 42 normal cats were studied. IOP was measured weekly by rebound tonometry. AH was collected by anterior chamber paracentesis from each eye under general anesthesia, and serum samples collected from venous blood concurrently. Concentrations of total, active and latent TGF-β2 in AH and serum samples were measured by quantitative sandwich immunoassay. For comparisons between groups, unpaired t-test or Mann Whitney test were used, with P < 0.05 considered significant. The relationships between TGF-β2 concentrations and IOP values were examined by Pearson's correlation coefficient and generalized estimating equation. Results IOP and AH TGF-β2 concentrations were significantly higher in glaucomatous than in normal cats. AH TGF-β2 showed a significant, robust positive correlation with IOP in glaucomatous cats (r = 0.83, R2 = 0.70, P < 0.0001). Serum TGF-β2 did not correlate with AH TGF-β2 and was not significantly different between groups. TGF-β2 mRNA and protein expression were significantly increased in local ocular tissues in glaucomatous cats. Conclusions Enhanced, local ocular production of TGF-β2 with a robust positive association with IOP was identified in this spontaneous feline glaucoma model, providing a foundation for preclinical testing of novel therapeutics to limit disease-associated AH TGF-β2 elevation and signaling in glaucoma.
Collapse
Affiliation(s)
- Kazuya Oikawa
- Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
- McPherson Eye Research Institute, Madison, Wisconsin, United States
| | - Odalys Torne
- Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
- McPherson Eye Research Institute, Madison, Wisconsin, United States
| | - David Sun
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Alaina K. B. Moon
- Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Julie A. Kiland
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ralph Møller Trane
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Gillian J. McLellan
- Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
- McPherson Eye Research Institute, Madison, Wisconsin, United States
| |
Collapse
|
18
|
Sung MS, Kim SY, Eom GH, Park SW. High VEGF Concentrations Accelerate Human Trabecular Meshwork Fibrosis in a TAZ-Dependent Manner. Int J Mol Sci 2023; 24:ijms24119625. [PMID: 37298577 DOI: 10.3390/ijms24119625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
We aimed to investigate the effects of different concentrations of vascular endothelial growth factor (VEGF) on the extracellular matrix (ECM) and fibrotic proteins in human trabecular meshwork (TM) cells. We also explored how the Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) signaling pathway modulates VEGF-induced fibrosis. We determined cross-linked actin network (CLAN) formation using TM cells. Changes in fibrotic and ECM protein expression were determined. High VEGF concentrations (10 and 30 ng/mL) increased TAZ and decreased p-TAZ/TAZ expression in TM cells. Western blotting and real-time PCR revealed no YAP expression changes. Fibrotic and ECM protein expression decreased at low VEGF concentrations (1 and 10 ρg/mL) and significantly increased at high VEGF concentrations (10 and 30 ng/mL). CLAN formation increased in TM cells treated with high VEGF concentrations. Moreover, TAZ inhibition by verteporfin (1 μM) rescued TM cells from high-VEGF-concentration-induced fibrosis. Low VEGF concentrations reduced fibrotic changes, whereas high VEGF concentrations accelerated fibrosis and CLAN formations in TM cells in a TAZ-dependent manner. These findings reflect the dose-dependent influences of VEGF on TM cells. Moreover, TAZ inhibition might be a therapeutic target for VEGF-induced TM dysfunction.
Collapse
Affiliation(s)
- Mi Sun Sung
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - So Young Kim
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Sang Woo Park
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| |
Collapse
|
19
|
Pezzino S, Sofia M, Greco LP, Litrico G, Filippello G, Sarvà I, La Greca G, Latteri S. Microbiome Dysbiosis: A Pathological Mechanism at the Intersection of Obesity and Glaucoma. Int J Mol Sci 2023; 24:ijms24021166. [PMID: 36674680 PMCID: PMC9862076 DOI: 10.3390/ijms24021166] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The rate at which obesity is becoming an epidemic in many countries is alarming. Obese individuals have a high risk of developing elevated intraocular pressure and glaucoma. Additionally, glaucoma is a disease of epidemic proportions. It is characterized by neurodegeneration and neuroinflammation with optic neuropathy and the death of retinal ganglion cells (RGC). On the other hand, there is growing interest in microbiome dysbiosis, particularly in the gut, which has been widely acknowledged to play a prominent role in the etiology of metabolic illnesses such as obesity. Recently, studies have begun to highlight the fact that microbiome dysbiosis could play a critical role in the onset and progression of several neurodegenerative diseases, as well as in the development and progression of several ocular disorders. In obese individuals, gut microbiome dysbiosis can induce endotoxemia and systemic inflammation by causing intestinal barrier malfunction. As a result, bacteria and their metabolites could be delivered via the bloodstream or mesenteric lymphatic vessels to ocular regions at the level of the retina and optic nerve, causing tissue degeneration and neuroinflammation. Nowadays, there is preliminary evidence for the existence of brain and intraocular microbiomes. The altered microbiome of the gut could perturb the resident brain-ocular microbiome ecosystem which, in turn, could exacerbate the local inflammation. All these processes, finally, could lead to the death of RGC and neurodegeneration. The purpose of this literature review is to explore the recent evidence on the role of gut microbiome dysbiosis and related inflammation as common mechanisms underlying obesity and glaucoma.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Maria Sofia
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Luigi Piero Greco
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Giorgia Litrico
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Giulia Filippello
- Complex Operative Unit of Ophtalmology, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Iacopo Sarvà
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Gaetano La Greca
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
- Correspondence: ; Tel.: +39-0957263584
| |
Collapse
|
20
|
Kopecny LR, Lee BWH, Coroneo MT. A systematic review on the effects of ROCK inhibitors on proliferation and/or differentiation in human somatic stem cells: A hypothesis that ROCK inhibitors support corneal endothelial healing via acting on the limbal stem cell niche. Ocul Surf 2023; 27:16-29. [PMID: 36586668 DOI: 10.1016/j.jtos.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Rho kinase inhibitors (ROCKi) have attracted growing multidisciplinary interest, particularly in Ophthalmology where the question as to how they promote corneal endothelial healing remains unresolved. Concurrently, stem cell biology has rapidly progressed in unravelling drivers of stem cell (SC) proliferation and differentiation, where mechanical niche factors and the actin cytoskeleton are increasingly recognized as key players. There is mounting evidence from the study of the peripheral corneal endothelium that supports the likelihood of an internal limbal stem cell niche. The possibility that ROCKi stimulate the endothelial SC niche has not been addressed. Furthermore, there is currently a paucity of data that directly evaluates whether ROCKi promotes corneal endothelial healing by acting on this limbal SC niche located near the transition zone. Therefore, we performed a systematic review examining the effects ROCKi on the proliferation and differentiation of human somatic SC, to provide insight into its effects on various human SC populations. An appraisal of electronic searches of four databases identified 1 in vivo and 58 in vitro studies (36 evaluated proliferation while 53 examined differentiation). Types of SC studied included mesenchymal (n = 32), epithelial (n = 11), epidermal (n = 8), hematopoietic and other (n = 8). The ROCK 1/2 selective inhibitor Y-27632 was used in almost all studies (n = 58), while several studies evaluated ≥2 ROCKi (n = 4) including fasudil, H-1152, and KD025. ROCKi significantly influenced human somatic SC proliferation in 81% of studies (29/36) and SC differentiation in 94% of studies (50/53). The present systemic review highlights that ROCKi are influential in regulating human SC proliferation and differentiation, and provides evidence to support the hypothesis that ROCKi promotes corneal endothelial division and maintenance via acting on the inner limbal SC niche.
Collapse
Affiliation(s)
- Lloyd R Kopecny
- School of Clinical Medicine, University of New South Wales, Sydney, Australia.
| | - Brendon W H Lee
- Department of Ophthalmology, School of Clinical Medicine, University of New South Wales, Level 2 South Wing, Edmund Blacket Building, Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Minas T Coroneo
- Department of Ophthalmology, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
21
|
Li H, Singh A, Perkumas KM, Stamer WD, Ganapathy PS, Herberg S. YAP/TAZ Mediate TGFβ2-Induced Schlemm's Canal Cell Dysfunction. Invest Ophthalmol Vis Sci 2022; 63:15. [PMID: 36350617 PMCID: PMC9652721 DOI: 10.1167/iovs.63.12.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose Elevated transforming growth factor beta2 (TGFβ2) levels in the aqueous humor have been linked to glaucomatous outflow tissue dysfunction. Potential mediators of dysfunction are the transcriptional coactivators, Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ). However, the molecular underpinnings of YAP/TAZ modulation in Schlemm's canal (SC) cells under glaucomatous conditions are not well understood. Here, we investigate how TGFβ2 regulates YAP/TAZ activity in human SC (HSC) cells using biomimetic extracellular matrix hydrogels, and examine whether pharmacological YAP/TAZ inhibition would attenuate TGFβ2-induced HSC cell dysfunction. Methods Primary HSC cells were seeded atop photo-cross-linked extracellular matrix hydrogels, made of collagen type I, elastin-like polypeptide and hyaluronic acid, or encapsulated within the hydrogels. HSC cells were induced with TGFβ2 in the absence or presence of concurrent actin destabilization or pharmacological YAP/TAZ inhibition. Changes in actin cytoskeletal organization, YAP/TAZ activity, extracellular matrix production, phospho-myosin light chain levels, and hydrogel contraction were assessed. Results TGFβ2 significantly increased YAP/TAZ nuclear localization in HSC cells, which was prevented by either filamentous-actin relaxation or depolymerization. Pharmacological YAP/TAZ inhibition using verteporfin without light stimulation decreased fibronectin expression and actomyosin cytoskeletal rearrangement in HSC cells induced by TGFβ2. Similarly, verteporfin significantly attenuated TGFβ2-induced HSC cell-encapsulated hydrogel contraction. Conclusions Our data provide evidence for a pathologic role of aberrant YAP/TAZ signaling in HSC cells under simulated glaucomatous conditions and suggest that pharmacological YAP/TAZ inhibition has promising potential to improve outflow tissue dysfunction.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Kristin M. Perkumas
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States
| |
Collapse
|
22
|
Fibrotic Response of Human Trabecular Meshwork Cells to Transforming Growth Factor-Beta 3 and Autotaxin in Aqueous Humor. Biomolecules 2022; 12:biom12091231. [PMID: 36139071 PMCID: PMC9496180 DOI: 10.3390/biom12091231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
This study examines the potential role of transforming growth factor-beta 3 (TGF-β3) on the fibrotic response of cultured human trabecular meshwork (HTM) cells. The relationships and trans-signaling interactions between TGF-β3 and autotaxin (ATX) in HTM cells were also examined. The levels of TGF-β and ATX in the aqueous humor (AH) of patients were measured by an immunoenzymetric assay. The TGF-β3-induced expression of the fibrogenic markers, fibronectin, collagen type I alpha 1 chain, and alpha-smooth muscle actin, and ATX were examined by quantitative real-time PCR, Western blotting, and immunocytochemistry, and the trans-signaling regulatory effect of TGF-β3 on ATX expression was also evaluated. In HTM cells, the significant upregulation of ATX was induced by TGF-β3 at a concentration of 0.1 ng/mL, corresponding to the physiological concentration in the AH of patients with exfoliative glaucoma (XFG). However, higher concentrations of TGF-β3 significantly suppressed ATX expression. TGF-β3 regulated ATX transcription and signaling in HTM cells, inducing the upregulation of fibrogenic proteins in a dose-dependent manner. Trans-signaling of TGF-β3 regulated ATX transcription, protein expression, and signaling, and was thereby suggested to induce fibrosis of the trabecular meshwork. Modulation of trans-signaling between TGF-β3 and ATX may be key to elucidate the pathology of XFG, and for the development of novel treatment modalities.
Collapse
|
23
|
Li H, Henty-Ridilla JL, Bernstein AM, Ganapathy PS, Herberg S. TGFβ2 Regulates Human Trabecular Meshwork Cell Contractility via ERK and ROCK Pathways with Distinct Signaling Crosstalk Dependent on the Culture Substrate. Curr Eye Res 2022; 47:1165-1178. [PMID: 35481448 PMCID: PMC9782738 DOI: 10.1080/02713683.2022.2071943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Transforming growth factor-beta 2 (TGFβ2) is a major contributor to the pathologic changes occurring in human trabecular meshwork (HTM) cells in primary open-angle glaucoma (POAG). TGFβ2 activates extracellular-signal-regulated kinase (ERK) and Rho-associated kinase (ROCK) signaling pathways, both affecting HTM cell behavior. However, exactly how these signaling pathways converge to regulate HTM cell contractility is unclear. Here, we investigated the molecular mechanism underlying TGFβ2-induced pathologic HTM cell contractility, and the crosstalk between ERK and ROCK signaling pathways with different culture substrates. METHODS Hydrogels were engineered by mixing collagen type I, elastin-like polypeptide, and hyaluronic acid, each containing photoactive functional groups, followed by UV crosslinking. Primary HTM cells were seeded atop pre-formed hydrogels for comparisons with glass, or encapsulated within the hydrogels. Changes in actin cytoskeleton, extracellular matrix (ECM) production, phospho-myosin light chain (p-MLC) levels, and hydrogel contraction were assessed. RESULTS HTM cell morphology and filamentous (F)-actin organization were affected by the underlying culture substrates. TGFβ2 increased HTM cell contractility via ERK and ROCK signaling pathways by differentially regulating F-actin, α-smooth muscle actin (αSMA), fibronectin (FN), and p-MLC in HTM cells. ERK inhibition, even as short as 4 h, further increased TGFβ2-induced p-MLC in HTM cells on hydrogels, but not on glass. This translated into hypercontractility of HTM cell-laden hydrogels. ROCK inhibition had precisely the opposite effects and potently relaxed the TGFβ2-induced hydrogels. CONCLUSIONS Our data suggest that ERK signaling negatively regulates ROCK-mediated HTM cell contractility. These findings emphasize the critical importance of using tissue-mimetic ECM substrates for investigating HTM cell physiology and glaucomatous pathophysiology in vitro.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Jessica L. Henty-Ridilla
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Audrey M. Bernstein
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA,Syracuse VA Medical Center, New York VA Health Care, Syracuse, NY 13210, USA
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA,Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA,To whom correspondence should be addressed: Samuel Herberg, PhD, Assistant Professor; Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, 505 Irving Avenue, Neuroscience Research Building Room 4609, Syracuse, NY 13210, USA,
| |
Collapse
|
24
|
Peng M, Margetts TJ, Rayana NP, Sugali CK, Dai J, Mao W. The application of lentiviral vectors for the establishment of TGFβ2-induced ocular hypertension in C57BL/6J mice. Exp Eye Res 2022; 221:109137. [PMID: 35691374 PMCID: PMC10953626 DOI: 10.1016/j.exer.2022.109137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022]
Abstract
Elevated levels of TGFβ2 in the aqueous humor is associated with the pathological changes in the trabecular meshwork (TM). These changes lead to ocular hypertension (OHT), the most important risk factor for the development and progression of primary open angle glaucoma (POAG), a leading cause of blindness worldwide. Therefore, TGFβ2 is frequently used to develop OHT models including in perfusion cultured eyes and in mouse eyes. Adenovirus-mediated overexpression of human mutant TGFβ2 has demonstrated great success in increasing intraocular pressure (IOP) in mouse eyes. However, adenoviruses have limited capacity for a foreign gene, induce transient expression, and may cause ocular inflammation. Here, we explored the potential of using lentiviral vectors carrying the mutant human TGFβ2C226S/C228S (ΔhTGFβ2C226S/C228S) gene expression cassette for the induction of OHT in C57BL/6J mice. Lentiviral vectors using CMV or EF1α promoter to drive the expression of ΔhTGFβ2C226S/C228S were injected into one of the mouse eyes and the fellow eye was injected with the same vector but expressing GFP/mCherry as controls. Both intravitreal and intracameral injection routes were tested in male and female mice. We did not observe significant IOP changes using either promoter or injection route at the dose of 8 × 105 PFU/eye. Immunostaining showed normal anterior chamber angle structures and a slight increase in TGFβ2 expression in the TM of the eyes receiving intracameral viral injection but not in those receiving intravitreal viral injection. At the dose of 2 × 106 PFU/eye, intracameral injection of the lentiviral vector with the CMV-ΔhTGFβ2C226S/C228S cassette induced significant IOP elevation and increased the expression of TGFβ2 and fibronectin isoform EDA in the TM. Our data suggest that lentiviral doses are important for establishing the TGFβ2-induced OHT model in the C57BL/6J strain.
Collapse
Affiliation(s)
- Michael Peng
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, USA
| | - Tyler J Margetts
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, USA
| | - Naga Pradeep Rayana
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, USA
| | - Chenna Kesavulu Sugali
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, USA
| | - Jiannong Dai
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, USA
| | - Weiming Mao
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, USA.
| |
Collapse
|
25
|
Peng M, Rayana NP, Dai J, Sugali CK, Baidouri H, Suresh A, Raghunathan VK, Mao W. Cross-linked actin networks (CLANs) affect stiffness and/or actin dynamics in transgenic transformed and primary human trabecular meshwork cells. Exp Eye Res 2022; 220:109097. [PMID: 35569518 PMCID: PMC11029344 DOI: 10.1016/j.exer.2022.109097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 01/14/2023]
Abstract
Cross-linked actin networks (CLANs) in trabecular meshwork (TM) cells may contribute to increased IOP by altering TM cell function and stiffness. However, there is a lack of direct evidence. Here, we developed transformed TM cells that form spontaneous fluorescently labelled CLANs. The stable cells were constructed by transducing transformed glaucomatous TM (GTM3) cells with the pLenti-LifeAct-EGFP-BlastR lentiviral vector and selection with blasticidin. The stiffness of the GTM3-LifeAct-GFP cells were studied using atomic force microscopy. Elastic moduli of CLANs in primary human TM cells treated with/without dexamethasone/TGFβ2 were also measured to validate findings in GTM3-LifeAct-GFP cells. Live-cell imaging was performed on GTM3-LifeAct-GFP cells treated with 1 μM latrunculin B or pHrodo bioparticles to determine actin stability and phagocytosis, respectively. The GTM3-LifeAct-GFP cells formed spontaneous CLANs without the induction of TGFβ2 or dexamethasone. The CLAN containing cells showed elevated cell stiffness, resistance to latrunculin B-induced actin depolymerization, as well as compromised phagocytosis, compared to the cells without CLANs. Primary human TM cells with dexamethasone or TGFβ2-induced CLANs were also stiffer and less phagocytic. The GTM3-LifeAct-GFP cells are a novel tool for studying the mechanobiology and pathology of CLANs in the TM. Initial characterization of these cells showed that CLANs contribute to at least some glaucomatous phenotypes of TM cells.
Collapse
Affiliation(s)
- Michael Peng
- Department of Ophthalmology, Eugene & Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Naga Pradeep Rayana
- Department of Ophthalmology, Eugene & Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jiannong Dai
- Department of Ophthalmology, Eugene & Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chenna Kesavulu Sugali
- Department of Ophthalmology, Eugene & Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hasna Baidouri
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Ayush Suresh
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA; St. John's School, Houston, TX, USA
| | - Vijay Krishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA; Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA
| | - Weiming Mao
- Department of Ophthalmology, Eugene & Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
26
|
Patil SV, Kasetti RB, Millar JC, Zode GS. A Novel Mouse Model of TGFβ2-Induced Ocular Hypertension Using Lentiviral Gene Delivery. Int J Mol Sci 2022; 23:6883. [PMID: 35805889 PMCID: PMC9266301 DOI: 10.3390/ijms23136883] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Glaucoma is a multifactorial disease leading to irreversible blindness. Primary open-angle glaucoma (POAG) is the most common form and is associated with the elevation of intraocular pressure (IOP). Reduced aqueous humor (AH) outflow due to trabecular meshwork (TM) dysfunction is responsible for IOP elevation in POAG. Extracellular matrix (ECM) accumulation, actin cytoskeletal reorganization, and stiffening of the TM are associated with increased outflow resistance. Transforming growth factor (TGF) β2, a profibrotic cytokine, is known to play an important role in the development of ocular hypertension (OHT) in POAG. An appropriate mouse model is critical in understanding the underlying molecular mechanism of TGFβ2-induced OHT. To achieve this, TM can be targeted with recombinant viral vectors to express a gene of interest. Lentiviruses (LV) are known for their tropism towards TM with stable transgene expression and low immunogenicity. We, therefore, developed a novel mouse model of IOP elevation using LV gene transfer of active human TGFβ2 in the TM. We developed an LV vector-encoding active hTGFβ2C226,228S under the control of a cytomegalovirus (CMV) promoter. Adult C57BL/6J mice were injected intravitreally with LV expressing null or hTGFβ2C226,228S. We observed a significant increase in IOP 3 weeks post-injection compared to control eyes with an average delta change of 3.3 mmHg. IOP stayed elevated up to 7 weeks post-injection, which correlated with a significant drop in the AH outflow facility (40.36%). Increased expression of active TGFβ2 was observed in both AH and anterior segment samples of injected mice. The morphological assessment of the mouse TM region via hematoxylin and eosin (H&E) staining and direct ophthalmoscopy examination revealed no visible signs of inflammation or other ocular abnormalities in the injected eyes. Furthermore, transduction of primary human TM cells with LV_hTGFβ2C226,228S exhibited alterations in actin cytoskeleton structures, including the formation of F-actin stress fibers and crossed-linked actin networks (CLANs), which are signature arrangements of actin cytoskeleton observed in the stiffer fibrotic-like TM. Our study demonstrated a mouse model of sustained IOP elevation via lentiviral gene delivery of active hTGFβ2C226,228S that induces TM dysfunction and outflow resistance.
Collapse
Affiliation(s)
| | | | | | - Gulab S. Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (S.V.P.); (R.B.K.); (J.C.M.)
| |
Collapse
|
27
|
Sugali CK, Rayana NP, Dai J, Peng M, Mao W. Age and sex affect TGFβ2-induced ocular hypertension in C57BL/6J mice. Exp Eye Res 2022; 219:109055. [DOI: 10.1016/j.exer.2022.109055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022]
|
28
|
Li H, Raghunathan V, Stamer WD, Ganapathy PS, Herberg S. Extracellular Matrix Stiffness and TGFβ2 Regulate YAP/TAZ Activity in Human Trabecular Meshwork Cells. Front Cell Dev Biol 2022; 10:844342. [PMID: 35300422 PMCID: PMC8923257 DOI: 10.3389/fcell.2022.844342] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Primary open-angle glaucoma progression is associated with increased human trabecular meshwork (HTM) stiffness and elevated transforming growth factor beta 2 (TGFβ2) levels in the aqueous humor. Increased transcriptional activity of Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), central players in mechanotransduction, are implicated in glaucomatous HTM cell dysfunction. Yet, the detailed mechanisms underlying YAP/TAZ modulation in HTM cells in response to alterations in extracellular matrix (ECM) stiffness and TGFβ2 levels are not well understood. Using biomimetic ECM hydrogels with tunable stiffness, here we show that increased ECM stiffness elevates YAP/TAZ nuclear localization potentially through modulating focal adhesions and cytoskeletal rearrangement. Furthermore, TGFβ2 increased nuclear YAP/TAZ in both normal and glaucomatous HTM cells, which was prevented by inhibiting extracellular-signal-regulated kinase and Rho-associated kinase signaling pathways. Filamentous (F)-actin depolymerization reversed TGFβ2-induced YAP/TAZ nuclear localization. YAP/TAZ depletion using siRNA or verteporfin decreased focal adhesions, ECM remodeling and cell contractile properties. Similarly, YAP/TAZ inactivation with verteporfin partially blocked TGFβ2-induced hydrogel contraction and stiffening. Collectively, our data provide evidence for a pathologic role of aberrant YAP/TAZ signaling in glaucomatous HTM cell dysfunction, and may help inform strategies for the development of novel multifactorial approaches to prevent progressive ocular hypertension in glaucoma.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
- BioInspired Institute, Syracuse University, Syracuse, NY, United States
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, The Ocular Surface Institute, University of Houston, Houston, TX, United States
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, United States
- BioInspired Institute, Syracuse University, Syracuse, NY, United States
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
- BioInspired Institute, Syracuse University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
29
|
Lamont HC, Masood I, Grover LM, El Haj AJ, Hill LJ. Fundamental Biomaterial Considerations in the Development of a 3D Model Representative of Primary Open Angle Glaucoma. Bioengineering (Basel) 2021; 8:bioengineering8110147. [PMID: 34821713 PMCID: PMC8615171 DOI: 10.3390/bioengineering8110147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022] Open
Abstract
Glaucoma is a leading cause of irreversible blindness globally, with primary open angle glaucoma (POAG) being the most common subset. Raised intraocular pressure is an important risk factor for POAG and is caused by a reduction in aqueous humour (AqH) outflow due to dysfunctional cellular and matrix dynamics in the eye’s main drainage site, the trabecular meshwork (TM) and Schlemm’s canal (SC). The TM/SC are highly specialised tissues that regulate AqH outflow; however, their exact mechanisms of AqH outflow control are still not fully understood. Emulating physiologically relevant 3D TM/S in vitro models poses challenges to accurately mimic the complex biophysical and biochemical cues that take place in healthy and glaucomatous TM/SC in vivo. With development of such models still in its infancy, there is a clear need for more well-defined approaches that will accurately contrast the two central regions that become dysfunctional in POAG; the juxtacanalicular tissue (JCT) region of the TM and inner wall endothelia of the Schlemm’s canal (eSC). This review will discuss the unique biological and biomechanical characteristics that are thought to influence AqH outflow and POAG progression. Further consideration into fundamental biomaterial attributes for the formation of a biomimetic POAG/AqH outflow model will also be explored for future success in pre-clinical drug discovery and disease translation.
Collapse
Affiliation(s)
- Hannah C. Lamont
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (H.C.L.); (I.M.)
- School of Chemical Engineering, Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (L.M.G.); (A.J.E.H.)
| | - Imran Masood
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (H.C.L.); (I.M.)
| | - Liam M. Grover
- School of Chemical Engineering, Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (L.M.G.); (A.J.E.H.)
| | - Alicia J. El Haj
- School of Chemical Engineering, Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (L.M.G.); (A.J.E.H.)
| | - Lisa J. Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (H.C.L.); (I.M.)
- Correspondence:
| |
Collapse
|
30
|
Kirschner A, Strat AN, Yablonski J, Yoo H, Bagué T, Li H, Zhao J, Bollinger KE, Herberg S, Ganapathy PS. Mechanosensitive channel inhibition attenuates TGFβ2-induced actin cytoskeletal remodeling and reactivity in mouse optic nerve head astrocytes. Exp Eye Res 2021; 212:108791. [PMID: 34656548 DOI: 10.1016/j.exer.2021.108791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 11/27/2022]
Abstract
Astrocytes within the optic nerve head undergo actin cytoskeletal rearrangement early in glaucoma, which coincides with astrocyte reactivity and extracellular matrix (ECM) deposition. Elevated transforming growth factor beta 2 (TGFβ2) levels within astrocytes have been described in glaucoma, and TGFβ signaling induces actin cytoskeletal remodeling and ECM deposition in many tissues. A key mechanism by which astrocytes sense and respond to external stimuli is via mechanosensitive ion channels. Here, we tested the hypothesis that inhibition of mechanosensitive channels will attenuate TGFβ2-mediated optic nerve head astrocyte actin cytoskeletal remodeling, reactivity, and ECM deposition. Primary optic nerve head astrocytes were isolated from C57BL/6J mice and cell purity was confirmed by immunostaining. Astrocytes were treated with vehicle control, TGFβ2 (5 ng/ml), GsMTx4 (a mechanosensitive channel inhibitor; 500 nM), or TGFβ2 (5 ng/ml) + GsMTx4 (500 nM) for 48 h. FITC-phalloidin staining was used to assess the formation of f-actin stress fibers and to quantify the presence of crosslinked actin networks (CLANs). Cell reactivity was determined by immunostaining and immunoblotting for GFAP. Levels of fibronectin and collagen IV deposition were also quantified. Primary optic nerve head astrocytes were positive for the astrocyte marker GFAP and negative for markers for microglia (F4/80) and oligodendrocytes (OSP1). Significantly increased %CLAN-positive cells were observed after 48-h treatment with TGFβ2 vs. control in a dose-dependent manner. Co-treatment with GsMTx4 significantly decreased %CLAN-positive cells vs. TGFβ2 treatment and the presence of f-actin stress fibers. TGFβ2 treatment significantly increased GFAP, fibronectin, and collagen IV levels, and GsMTx4 co-treatment ameliorated GFAP immunoreactivity. Our data suggest inhibition of mechanosensitive channel activity as a potential therapeutic strategy to modulate actin cytoskeletal remodeling within the optic nerve head in glaucoma.
Collapse
Affiliation(s)
- Alexander Kirschner
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Ana N Strat
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - John Yablonski
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Hannah Yoo
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Tyler Bagué
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Haiyan Li
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Jing Zhao
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA; Culver Vision Discovery Institute, Augusta, GA, 30912, USA
| | - Kathryn E Bollinger
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA; Culver Vision Discovery Institute, Augusta, GA, 30912, USA
| | - Samuel Herberg
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA
| | - Preethi S Ganapathy
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
31
|
Rayana NP, Sugali CK, Dai J, Peng M, Liu S, Zhang Y, Wan J, Mao W. Using CRISPR Interference as a Therapeutic Approach to Treat TGFβ2-Induced Ocular Hypertension and Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:7. [PMID: 34499703 PMCID: PMC8434756 DOI: 10.1167/iovs.62.12.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose Primary open angle glaucoma (POAG) is a leading cause of blindness worldwide with elevated intraocular pressure (IOP) as the most important risk factor. POAG IOP elevation is due to pathological changes in the trabecular meshwork (TM). Elevated TGFβ2 contributes to these changes and increases IOP. We have shown that histone hyperacetylation is associated with TGFβ2 elevation in the TM. In this study, we determined if clustered regularly interspaced short palindromic repeats (CRISPR) interference could specifically deacetylate histones and decrease TGFβ2 in the TM. Methods We tested the efficiency of different promoters in driving KRAB-dCAS9 expression in human TM cells. We also screened and determined the optimal sgRNA sequence in the inhibition of TGFβ2. Chromatin immunoprecipitation-qPCR was used to determine the binding of KRAB-dCAS9. An adenovirus-mediated TGFβ2-induced ocular hypertension (OHT) mouse model was used to determine the effect of the CRISPR interference system in vivo. Results We found that the CRISPR interference system inhibited TGFβ2 expression in human TM cells, and properly designed sgRNA targeted the promoter of the TGFβ2 gene. Using sgRNA targeting the CMV promoter of the Ad5-CMV-TGFβ2 viral vector, we found that lentivirus-mediated KRAB-dCAS9 and sgRNA expression was able to inhibit Ad5-CMV-TGFβ2-induced OHT in C57BL/6J female and male mice eyes. This inhibition of OHT was associated with decreased levels of TGFβ2 and extracellular matrix proteins in the mouse eye. Conclusions Our results indicate that CRISPR interference is a useful tool for gene inhibition and may be a therapeutic approach to treat TGFβ2-induced OHT.
Collapse
Affiliation(s)
- Naga Pradeep Rayana
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Chenna Kesavulu Sugali
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Jiannong Dai
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Michael Peng
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Shaohui Liu
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Yucheng Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana, United States
| | - Weiming Mao
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
32
|
Choi JA, Ju HH, Kim JE, Lee J, Jee D, Park CK, Paik SY. Cytokine profile and cytoskeletal changes after herpes simplex virus type 1 infection in human trabecular meshwork cells. J Cell Mol Med 2021; 25:9295-9305. [PMID: 34469037 PMCID: PMC8500954 DOI: 10.1111/jcmm.16862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/13/2021] [Accepted: 07/22/2021] [Indexed: 01/20/2023] Open
Abstract
Uveitis caused by herpes simplex virus (HSV)‐1 is characterized by increased intraocular pressure (IOP) in the presence of anterior chamber inflammation. Despite their clinical significance, the pathogenic changes associated with HSV‐1 infection in trabecular meshwork (TM) cells, the key cell type regulating IOP, have not been completely elucidated. In this study, cytokine array analyses showed a significant stepwise increase in monocyte chemoattractant protein (MCP)‐1 expression upon HSV‐1 infection in TM cells (p < 0.05). HSV‐1 infection led to downregulation of fibrogenic molecules (fibronectin, α‐smooth muscle actin, connective tissue growth factor and TGF‐β1). Notably, HSV‐1 infection caused a significant increase in actin stress fibres, with a twofold increase in active RhoA, which was enhanced by treatment with TGF‐β1 and inhibited by treatment with the Rho‐kinase inhibitor, Y‐27632. TM cells treated with MCP‐1 exhibited a dose‐dependent increase in actin stress fibres compared to untreated TM cells. Our study suggests that HSV‐1 infection in TM cells increases cell contractile activity rather than fibrotic changes in the extracellular matrix (ECM) components. Taken together, these observations demonstrate the enhanced expression of MCP‐1 and TM cell contractile activity upon HSV‐1 infection and events with potential implications for the pathobiology of abrupt IOP elevation in HSV‐1 anterior uveitis.
Collapse
Affiliation(s)
- Jin A Choi
- Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Hyun-Hee Ju
- Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Ju-Eun Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jiyoung Lee
- Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Donghyun Jee
- Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Chan Kee Park
- Department of Ophthalmology, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Soon-Young Paik
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
33
|
Fujimoto T, Inoue-Mochita M, Iraha S, Tanihara H, Inoue T. Suberoylanilide hydroxamic acid (SAHA) inhibits transforming growth factor-beta 2-induced increases in aqueous humor outflow resistance. J Biol Chem 2021; 297:101070. [PMID: 34389355 PMCID: PMC8406002 DOI: 10.1016/j.jbc.2021.101070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 01/19/2023] Open
Abstract
Transforming growth factor-beta 2 (TGF-β2) is highly concentrated in the aqueous humor of primary open-angle glaucoma patients. TGF-β2 causes fibrosis of outflow tissues, such as the trabecular meshwork (TM), and increases intraocular pressure by increasing resistance to aqueous humor outflow. Recently, histone deacetylase (HDAC) activity was investigated in fibrosis in various tissues, revealing that HDAC inhibitors suppress tissue fibrosis. However, the effect of HDAC inhibitors on fibrosis in the eye was not determined. Here, we investigated the effect of suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor, on TGF-β2-induced increased resistance to aqueous humor outflow. We found that SAHA suppressed TGF-β2-induced outflow resistance in perfused porcine eyes. Moreover, SAHA cotreatment suppressed TGF-β2-induced ocular hypertension in rabbits. The permeability of monkey TM (MTM) and Schlemm’s canal (MSC) cell monolayers was decreased by TGF-β2 treatment. SAHA inhibited the effects of TGF-β2 on the permeability of these cells. TGF-β2 also increased the expression of extracellular matrix proteins (fibronectin and collagen type I or IV) in MTM, MSC, and human TM (HTM) cells, while SAHA inhibited TGF-β2-induced extracellular matrix protein expression in these cells. SAHA also inhibited TGF-β2-induced phosphorylation of Akt and ERK, but did not inhibit Smad2/3 phosphorylation, the canonical pathway of TGF-β signaling. Moreover, SAHA induced the expression of phosphatase and tensin homolog, a PI3K/Akt signaling factor, as well as bone morphogenetic protein 7, an endogenous antagonist of TGF-β. These results imply that SAHA prevents TGF-β2-induced increases in outflow resistance and regulates the non-Smad pathway of TGF-β signaling in TM and MSC cells.
Collapse
Affiliation(s)
- Tomokazu Fujimoto
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Miyuki Inoue-Mochita
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Satoshi Iraha
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Toshihiro Inoue
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
34
|
Nakamura N, Honjo M, Yamagishi R, Igarashi N, Sakata R, Aihara M. Effects of selective EP2 receptor agonist, omidenepag, on trabecular meshwork cells, Schlemm's canal endothelial cells and ciliary muscle contraction. Sci Rep 2021; 11:16257. [PMID: 34376747 PMCID: PMC8355290 DOI: 10.1038/s41598-021-95768-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
This study investigated the effects of omidenepag (OMD), a novel selective EP2 receptor agonist, on human trabecular meshwork (HTM) cells, monkey Schlemm’s canal endothelial (SCE) cells, and porcine ciliary muscle (CM) to clarify the mechanism of intraocular pressure (IOP) reduction involving conventional outflow pathway. In HTM and SCE cells, the effects of OMD on transforming growth factor-β2 (TGF-β2)-induced changes were examined. The expression of actin cytoskeleton and extracellular matrix (ECM) proteins, myosin light chain (MLC) phosphorylation in HTM cells were evaluated using real-time quantitative PCR, immunocytochemistry, and western blotting. The expression of barrier-related proteins, ZO-1 and β-catenin, and permeability of SCE cells were evaluated using immunocytochemistry and transendothelial electrical resistance. The CM contraction was determined by contractibility assay. OMD significantly inhibited expression of TGF-β2 induced mRNA, protein, and MLC-phosphorylation on cytoskeletal and ECM remodeling in the HTM dose dependently. In SCE cells, OMD suppressed TGF-β2-induced expression of the barrier-related proteins and decreased SCE monolayer permeability. OMD at 3 µM significantly inhibited CM contraction, however, the effect was not significant at lower concentrations. IOP lowering effect of OMD through conventional outflow pathway is exerted by increasing outflow facilities with the modulation of TM cell fibrosis and SCE cell permeability.
Collapse
Affiliation(s)
- Natsuko Nakamura
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 1138655, Japan.,Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 1138655, Japan.
| | - Reiko Yamagishi
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 1138655, Japan
| | - Nozomi Igarashi
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 1138655, Japan
| | - Rei Sakata
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 1138655, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 1138655, Japan
| |
Collapse
|
35
|
Kowal TJ, Prosseda PP, Ning K, Wang B, Alvarado J, Sendayen BE, Jabbehdari S, Stamer WD, Hu Y, Sun Y. Optogenetic Modulation of Intraocular Pressure in a Glucocorticoid-Induced Ocular Hypertension Mouse Model. Transl Vis Sci Technol 2021; 10:10. [PMID: 34111256 PMCID: PMC8107493 DOI: 10.1167/tvst.10.6.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/22/2021] [Indexed: 01/03/2023] Open
Abstract
Purpose Steroid-induced glaucoma is a common form of secondary open angle glaucoma characterized by ocular hypertension (elevated intraocular pressure [IOP]) in response to prolonged glucocorticoid exposure. Elevated IOP occurs with increased outflow resistance and altered trabecular meshwork (TM) function. Recently, we used an optogenetic approach in TM to regulate the 5-phosphatase, OCRL, which contributes to regulating PI(4,5)P2 levels. Here, we applied this system with the aim of reversing compromised outflow function in a steroid-induced ocular hypertension mouse model. Methods Elevated IOP was induced by chronic subconjunctival dexamethasone injections in wild-type C57Bl/6j mice. AAV2 viruses containing optogenetic modules of cryptochrome 2 (Cry2)-OCRL-5ptase and CIBN-GFP were injected into the anterior chamber. Four weeks after viral expression and dexamethasone exposure, IOP was measured by tonometer and outflow facility was measured by perfusion apparatus. Human TM cells were treated with dexamethasone, stimulated by light and treated with rhodamine-phalloidin to analyze actin structure. Results Dexamethasone treatment elevated IOP and decreased outflow facility in wild-type mice. Optogenetic constructs were expressed in the TM of mouse eyes. Light stimulation caused CRY2-OCRL-5ptase to translocate to plasma membrane (CIBN-CAAX-GFP) and cilia (CIBN-SSTR3-GFP) in TM cells, which rescued the IOP and outflow facility. In addition, aberrant actin structures formed by dexamethasone treatment were reduced by optogenetic stimulation in human TM cells in culture. Conclusions Subcellular targeting of inositol phosphatases to remove PIP2 represents a promising strategy to reverse defective TM function in steroid-induced ocular hypertension. Translational Relevance Targeted modulation of OCRL may be used to decrease steroid-induced elevated IOP.
Collapse
Affiliation(s)
- Tia J. Kowal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Philipp P. Prosseda
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Biao Wang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jorge Alvarado
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Brent E. Sendayen
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sayena Jabbehdari
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - W. Daniel Stamer
- Duke Eye Center, Department of Ophthalmology, Duke University, Durham, NC, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Palo Alto Veterans Administration, Palo Alto, CA, USA
| |
Collapse
|
36
|
Wan P, Long E, Li Z, Zhu Y, Su W, Zhuo Y. TET-dependent GDF7 hypomethylation impairs aqueous humor outflow and serves as a potential therapeutic target in glaucoma. Mol Ther 2021; 29:1639-1657. [PMID: 33388417 PMCID: PMC8058441 DOI: 10.1016/j.ymthe.2020.12.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/15/2020] [Accepted: 12/18/2020] [Indexed: 01/03/2023] Open
Abstract
Glaucoma is the leading cause of irreversible vision loss, affecting more than 70 million individuals worldwide. Circulatory disturbances of aqueous humor (AH) have long been central pathological contributors to glaucomatous lesions. Thus, targeting the AH outflow is a promising approach to treat glaucoma. However, the epigenetic mechanisms initiating AH outflow disorders and the targeted treatments remain to be developed. Studying glaucoma patients, we identified GDF7 (growth differentiation factor 7) hypomethylation as a crucial event in the onset of AH outflow disorders. Regarding the underlying mechanism, the hypomethylated GDF7 promoter was responsible for the increased GDF7 production and secretion in primary open-angle glaucoma (POAG). Excessive GDF7 protein promoted trabecular meshwork (TM) fibrosis through bone morphogenetic protein receptor type 2 (BMPR2)/Smad signaling and upregulated pro-fibrotic genes, α-smooth muscle actin (α-SMA) and fibronectin (FN). GDF7 protein expression formed a positive feedback loop in glaucomatous TM (GTM). This positive feedback loop was dependent on the activated TET (ten-eleven translocation) enzyme, which kept the GDF7 promoter region hypomethylated. The phenotypic transition in TM fortified the AH outflow resistance, thus elevating the intraocular pressure (IOP) and attenuating the nerve fiber layer. This methylation-dependent mechanism is also confirmed by a machine-learning model in silico with a specificity of 84.38% and a sensitivity of 89.38%. In rhesus monkeys, we developed GDF7 neutralization therapy to inhibit TM fibrosis and consequent AH outflow resistance that contributes to glaucoma. The neutralization therapy achieved high-efficiency control of the IOP (from 21.3 ± 0.3 to 17.6 ± 0.2 mmHg), a three-fold improvement in the outflow facility (from 0.1 to 0.3 μL/min · mmHg), and protection of nerve fibers. This study provides new insights into the epigenetic mechanism of glaucoma and proposes an innovative GDF7 neutralization therapy as a promising intervention.
Collapse
Affiliation(s)
- Peixing Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erping Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhidong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
37
|
Lakk M, Križaj D. TRPV4-Rho signaling drives cytoskeletal and focal adhesion remodeling in trabecular meshwork cells. Am J Physiol Cell Physiol 2021; 320:C1013-C1030. [PMID: 33788628 PMCID: PMC8285634 DOI: 10.1152/ajpcell.00599.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intraocular pressure (IOP) is dynamically regulated by the trabecular meshwork (TM), a mechanosensitive tissue that protects the eye from injury through dynamic regulation of aqueous humor flow. TM compensates for mechanical stress impelled by chronic IOP elevations through increased actin polymerization, tissue stiffness, and contractility. This process has been associated with open angle glaucoma; however, the mechanisms that link mechanical stress to pathological cytoskeletal remodeling downstream from the mechanotransducers remain poorly understood. We used fluorescence imaging and biochemical analyses to investigate cytoskeletal and focal adhesion remodeling in human TM cells stimulated with physiological strains. Mechanical stretch promoted F-actin polymerization, increased the number and size of focal adhesions, and stimulated the activation of the Rho-associated protein kinase (ROCK). Stretch-induced activation of the small GTPase Ras homolog family member A (RhoA), and tyrosine phosphorylations of focal adhesion proteins paxillin, focal adhesion kinase (FAK), vinculin, and zyxin were time dependently inhibited by ROCK inhibitor trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride (Y-27632), and by HC-067047, an antagonist of transient receptor potential vanilloid 4 (TRPV4) channels. Both TRPV4 and ROCK activation were required for zyxin translocation and increase in the number/size of focal adhesions in stretched cells. Y-27632 blocked actin polymerization without affecting calcium influx induced by membrane stretch and the TRPV4 agonist GSK1016790A. These results reveal that mechanical tuning of TM cells requires parallel activation of TRPV4, integrins, and ROCK, with chronic stress leading to sustained remodeling of the cytoskeleton and focal complexes.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah.,Department of Bioengineering, University of Utah, Salt Lake City, Utah.,Department of Neurobiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
38
|
Li G, Lee C, Read AT, Wang K, Ha J, Kuhn M, Navarro I, Cui J, Young K, Gorijavolu R, Sulchek T, Kopczynski C, Farsiu S, Samples J, Challa P, Ethier CR, Stamer WD. Anti-fibrotic activity of a rho-kinase inhibitor restores outflow function and intraocular pressure homeostasis. eLife 2021; 10:60831. [PMID: 33783352 PMCID: PMC8009676 DOI: 10.7554/elife.60831] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/12/2021] [Indexed: 12/22/2022] Open
Abstract
Glucocorticoids are widely used as an ophthalmic medication. A common, sight-threatening adverse event of glucocorticoid usage is ocular hypertension, caused by dysfunction of the conventional outflow pathway. We report that netarsudil, a rho-kinase inhibitor, decreased glucocorticoid-induced ocular hypertension in patients whose intraocular pressures were poorly controlled by standard medications. Mechanistic studies in our established mouse model of glucocorticoid-induced ocular hypertension show that netarsudil both prevented and reduced intraocular pressure elevation. Further, netarsudil attenuated characteristic steroid-induced pathologies as assessed by quantification of outflow function and tissue stiffness, and morphological and immunohistochemical indicators of tissue fibrosis. Thus, rho-kinase inhibitors act directly on conventional outflow cells to prevent or attenuate fibrotic disease processes in glucocorticoid-induced ocular hypertension in an immune-privileged environment. Moreover, these data motivate the need for a randomized prospective clinical study to determine whether netarsudil is indeed superior to first-line anti-glaucoma drugs in lowering steroid-induced ocular hypertension.
Collapse
Affiliation(s)
- Guorong Li
- Department of Ophthalmology, Duke University, Durham, United States
| | - Chanyoung Lee
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, United States
| | - A Thomas Read
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, United States
| | - Ke Wang
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, United States
| | - Jungmin Ha
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, United States
| | - Megan Kuhn
- Department of Ophthalmology, Duke University, Durham, United States
| | - Iris Navarro
- Department of Ophthalmology, Duke University, Durham, United States
| | - Jenny Cui
- Department of Ophthalmology, Duke University, Durham, United States
| | - Katherine Young
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, United States
| | - Rahul Gorijavolu
- Department of Ophthalmology, Duke University, Durham, United States
| | - Todd Sulchek
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, United States
| | | | - Sina Farsiu
- Department of Ophthalmology, Duke University, Durham, United States.,Department of Biomedical Engineering, Duke University, Durham, United States
| | - John Samples
- Washington State University Floyd Elson School of Medicine, Spokane, United States
| | - Pratap Challa
- Department of Ophthalmology, Duke University, Durham, United States
| | - C Ross Ethier
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, United States.,Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, United States
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, United States.,Department of Biomedical Engineering, Duke University, Durham, United States
| |
Collapse
|
39
|
Beutgen VM, Pfeiffer N, Grus FH. Serological Levels of Anti-clathrin Antibodies Are Decreased in Patients With Pseudoexfoliation Glaucoma. Front Immunol 2021; 12:616421. [PMID: 33679756 PMCID: PMC7933590 DOI: 10.3389/fimmu.2021.616421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Evidence for immunologic contribution to glaucoma pathophysiology is steadily increasing in ophthalmic research. Particularly, an altered abundance of circulating autoantibodies to ocular antigens is frequently observed. Here, we report an analysis of autoantibody abundancies to selected antigens in sera of open-angle glaucoma patients, subdivided into normal-tension glaucoma (N = 31), primary open-angle glaucoma (N = 43) and pseudoexfoliation glaucoma (N = 45), vs. a non-glaucomatous control group (N = 46). Serum samples were analyzed by protein microarray, including 38 antigens. Differences in antibody levels were assessed by ANOVA. Five serological antibodies showed significantly altered levels among the four groups (P < 0.05), which can be used to cluster the subjects in groups consisting mainly of PEXG or POAG/NTG samples. Among the altered autoantibodies, anti-Clathrin antibodies were identified as most important subgroup predictors, enhancing prospective glaucoma subtype prediction. As a second aim, we wanted to gain further insights into the characteristics of previously identified glaucoma-related antigens and their role in glaucoma pathogenesis. To this end, we used the bioinformatics toolset of Metascape to construct protein-protein interaction networks and GO enrichment analysis. Glaucoma-related antigens were significantly enriched in 13 biological processes, including mRNA metabolism, protein folding, blood coagulation and apoptosis, proposing a link of glaucoma-associated pathways to changes in the autoantibody repertoire. In conclusion, our study provides new aspects of the involvement of natural autoimmunity in glaucoma pathomechanisms and promotes advanced opportunities toward new diagnostic approaches.
Collapse
Affiliation(s)
- Vanessa M Beutgen
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Franz H Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
40
|
Yemanyi F, Vranka J, Raghunathan VK. Glucocorticoid-induced cell-derived matrix modulates transforming growth factor β2 signaling in human trabecular meshwork cells. Sci Rep 2020; 10:15641. [PMID: 32973273 PMCID: PMC7518434 DOI: 10.1038/s41598-020-72779-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/28/2020] [Indexed: 01/11/2023] Open
Abstract
Aberrant remodeling of trabecular meshwork (TM) extracellular matrix (ECM) may induce ocular hypertensive phenotypes in human TM (hTM) cells to cause ocular hypertension, via a yet unknown mechanism. Here, we show that, in the absence of exogenous transforming growth factor-beta2 (TGFβ2), compared with control matrices (VehMs), glucocorticoid-induced cell-derived matrices (GIMs) trigger non-Smad TGFβ2 signaling in hTM cells, correlated with overexpression/activity of structural ECM genes (fibronectin, collagen IV, collagen VI, myocilin), matricellular genes (connective tissue growth factor [CTGF], secreted protein, acidic and rich in cysteine), crosslinking genes/enzymes (lysyl oxidase, lysyl oxidase-like 2–4, tissue transglutaminase-2), and ECM turnover genes/enzymes (matrix metalloproteinases-MMP2,14 and their inhibitors-TIMP2). However, in the presence of exogenous TGFβ2, VehMs and GIMs activate Smad and non-Smad TGFβ2 signaling in hTM cells, associated with overexpression of α-smooth muscle actin (α-SMA), and differential upregulation of aforementioned ECM genes/proteins with new ones emerging (collagen-I, thrombospondin-I, plasminogen activator inhibitor, MMP1, 9, ADAMTS4, TIMP1); with GIM-TGFβ2-induced changes being mostly more pronounced. This suggests dual glaucomatous insults potentiate profibrotic signaling/phenotypes. Lastly, we demonstrate type I TGFβ receptor kinase inhibition abrogates VehM-/GIM- and/or TGFβ2-induced upregulation of α-SMA and CTGF. Collectively, pathological TM microenvironments are sufficient to elicit adverse cellular responses that may be ameliorated by targeting TGFβ2 pathway.
Collapse
Affiliation(s)
- Felix Yemanyi
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Janice Vranka
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Vijay Krishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA. .,Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
41
|
Singh N, Chaudhary S, Ashok A, Lindner E. Prions and prion diseases: Insights from the eye. Exp Eye Res 2020; 199:108200. [PMID: 32858007 DOI: 10.1016/j.exer.2020.108200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/24/2020] [Accepted: 08/21/2020] [Indexed: 12/30/2022]
Abstract
Prion diseases are invariably fatal neurodegenerative disorders that have gained much publicity due to their transmissible nature. Sporadic Creutzfeldt-Jakob disease (sCJD) is the most common human prion disorder, with an incidence of 1 in a million. Inherited prion disorders are relatively rare, and associated with mutations in the prion protein gene. More than 50 different point mutations, deletions, and insertions have been identified so far. Most are autosomal dominant and fully penetrant. Prion disorders also occur in animals, and are of major concern because of the potential for spreading to humans. The principal pathogenic event underlying all prion disorders is a change in the conformation of prion protein (PrPC) from a mainly α-helical to a β-sheet rich isoform, PrP-scrapie (PrPSc). Accumulation of PrPSc in the brain parenchyma is the major cause of neuronal degeneration. The mechanism by which PrPSc is transmitted, propagates, and causes neurodegenerative changes has been investigated over the years, and several clues have emerged. Efforts are also ongoing for identifying specific and sensitive diagnostic tests for sCJD and animal prion disorders, but success has been limited. The eye is suitable for these evaluations because it shares several anatomical and physiological features with the brain, and can be observed in vivo during disease progression. The retina, considered an extension of the central nervous system, is involved extensively in prion disorders. Accordingly, Optical Coherence Tomography and electroretinogram have shown some promise as pre-mortem diagnostic tests for human and animal prion disorders. However, a complete understanding of the physiology of PrPC and pathobiology of PrPSc in the eye is essential for developing specific and sensitive tests. Below, we summarize recent progress in ocular physiology and pathology in prion disorders, and the eye as an anatomically accessible site to diagnose, monitor disease progression, and test therapeutic options.
Collapse
Affiliation(s)
- Neena Singh
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Suman Chaudhary
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ajay Ashok
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ewald Lindner
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria
| |
Collapse
|
42
|
Busetto V, Barbosa I, Basquin J, Marquenet É, Hocq R, Hennion M, Paternina JA, Namane A, Conti E, Bensaude O, Le Hir H. Structural and functional insights into CWC27/CWC22 heterodimer linking the exon junction complex to spliceosomes. Nucleic Acids Res 2020; 48:5670-5683. [PMID: 32329775 PMCID: PMC7261170 DOI: 10.1093/nar/gkaa267] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 11/22/2022] Open
Abstract
Human CWC27 is an uncharacterized splicing factor and mutations in its gene are linked to retinal degeneration and other developmental defects. We identify the splicing factor CWC22 as the major CWC27 partner. Both CWC27 and CWC22 are present in published Bact spliceosome structures, but no interacting domains are visible. Here, the structure of a CWC27/CWC22 heterodimer bound to the exon junction complex (EJC) core component eIF4A3 is solved at 3Å-resolution. According to spliceosomal structures, the EJC is recruited in the C complex, once CWC27 has left. Our 3D structure of the eIF4A3/CWC22/CWC27 complex is compatible with the Bact spliceosome structure but not with that of the C complex, where a CWC27 loop would clash with the EJC core subunit Y14. A CWC27/CWC22 building block might thus form an intermediate landing platform for eIF4A3 onto the Bact complex prior to its conversion into C complex. Knock-down of either CWC27 or CWC22 in immortalized retinal pigment epithelial cells affects numerous common genes, indicating that these proteins cooperate, targeting the same pathways. As the most up-regulated genes encode factors involved in inflammation, our findings suggest a possible link to the retinal degeneration associated with CWC27 deficiencies.
Collapse
Affiliation(s)
- Virginia Busetto
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005 Paris, France
| | - Isabelle Barbosa
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005 Paris, France
| | - Jérôme Basquin
- Department of Structural Cell Biology, MPI of Biochemistry, Munich, Germany
| | - Émelie Marquenet
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005 Paris, France
| | - Rémi Hocq
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005 Paris, France
| | - Magali Hennion
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005 Paris, France
| | - Janio Antonio Paternina
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005 Paris, France
| | - Abdelkader Namane
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, 25-28 rue du docteur Roux 75015 Paris, France
| | - Elena Conti
- Department of Structural Cell Biology, MPI of Biochemistry, Munich, Germany
| | - Olivier Bensaude
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005 Paris, France
| | - Hervé Le Hir
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005 Paris, France
| |
Collapse
|
43
|
Kaufman PL. Deconstructing aqueous humor outflow - The last 50 years. Exp Eye Res 2020; 197:108105. [PMID: 32590004 PMCID: PMC7990028 DOI: 10.1016/j.exer.2020.108105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022]
Abstract
Herein partially summarizes one scientist-clinician's wanderings through the jungles of primate aqueous humor outflow over the past ~45 years. Totally removing the iris has no effect on outflow facility or its response to pilocarpine, whereas disinserting the ciliary muscle (CM) from the scleral spur/trabecular meshwork (TM) completely abolishes pilocarpine's effect. Epinephrine increases facility in CM disinserted eyes. Cytochalasins and latrunculins increase outflow facility, subthreshold doses of cytochalasins and epinephrine given together increase facility, and phalloidin, which has no effect on facility, partially blocks the effect of both cytochalasins and epinephrine. H-7, ML7, Y27632 and nitric oxide - donating compounds all increase facility, consistent with a mechanosensitive TM/SC. Adenosine A1 agonists increase and angiotensin II decrease facility. OCT and optical imaging techniques now permit visualization and digital recording of the distal outflow pathways in real time. Prostaglandin (PG) F2α analogues increase the synthesis and release of matrix metalloproteinases by the CM cells, causing remodeling and thinning of the interbundle extracellular matrix (ECM), thereby increasing uveoscleral outflow and reducing IOP. Combination molecules (one molecule, two or more effects) and fixed combination products (two molecules in one bottle) simplify drug regimens for patients. Gene and stem cell therapies to enhance aqueous outflow have been successful in laboratory models and may fill an unmet need in terms of patient compliance, taking the patient out of the delivery system. Functional transfer of genes inhibiting the rho cascade or decoupling actin from myosin increase facility, while genes preferentially expressed in the glaucomatous TM decrease facility. In live NHP, reporter genes are expressed for 2+ years in the TM after a single intracameral injection, with no adverse reaction. However, except for one recent report, injection of facility-effective genes in monkey organ cultured anterior segments (MOCAS) have no effect in live NHP. While intracameral injection of an FIV. BOVPGFS-myc.GFP PGF synthase vector construct reproducibly induces an ~2 mmHg reduction in IOP, the effect is much less than that of topical PGF2⍺ analogue eyedrops, and dissipates after 5 months. The turnoff mechanism has yet to be defeated, although proteasome inhibition enhances reporter gene expression in MOCAS. Intracanalicular injection might minimize off-target effects that activate turn-off mechanisms. An AD-P21 vector injected sub-tenon is effective in 'right-timing' wound healing after trabeculectomy in live laser-induced glaucomatous monkeys. In human (H)OCAS, depletion of TM cells by saponification eliminates the aqueous flow response to pressure elevation, which can be restored by either cultured TM cells or by IPSC-derived TM cells. There were many other steps along the way, but much was accomplished, biologically and therapeutically over the past half century of research and development focused on one very small but complex ocular apparatus. I am deeply grateful for this award, named for a giant in our field that none of us can live up to.
Collapse
Affiliation(s)
- Paul L Kaufman
- University of Wisconsin - Madison, School of Medicine & Public Health, Dept of Ophthalmology & Visual Sciences, United States.
| |
Collapse
|
44
|
Ashok A, Chaudhary S, Kritikos AE, Kang MH, McDonald D, Rhee DJ, Singh N. TGFβ2-Hepcidin Feed-Forward Loop in the Trabecular Meshwork Implicates Iron in Glaucomatous Pathology. Invest Ophthalmol Vis Sci 2020; 61:24. [PMID: 32182331 PMCID: PMC7401420 DOI: 10.1167/iovs.61.3.24] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose Elevated levels of transforming-growth-factor (TGF)-β2 in the trabecular meshwork (TM) and aqueous humor are associated with primary open-angle glaucoma (POAG). The underlying mechanism includes alteration of extracellular matrix homeostasis through Smad-dependent and independent signaling. Smad4, an essential co-Smad, upregulates hepcidin, the master regulator of iron homeostasis. Here, we explored whether TGF-β2 upregulates hepcidin, implicating iron in the pathogenesis of POAG. Methods Primary human TM cells and human and bovine ex vivo anterior segment organ cultures were exposed to bioactive TGF-β2, hepcidin, heparin (a hepcidin antagonist), or N-acetyl carnosine (an antioxidant), and the change in the expression of hepcidin, ferroportin, ferritin, and TGF-β2 was evaluated by semiquantitative RT-PCR, Western blotting, and immunohistochemistry. Increase in reactive oxygen species (ROS) was quantified with dihydroethidium, an ROS-sensitive dye. Results Primary human TM cells and bovine TM tissue synthesize hepcidin locally, which is upregulated by bioactive TGF-β2. Hepcidin downregulates ferroportin, its downstream target, increasing ferritin and iron-catalyzed ROS. This causes reciprocal upregulation of TGF-β2 at the transcriptional and translational levels. Heparin downregulates hepcidin, and reduces TGF-β2-mediated increase in ferritin and ROS. Notably, both heparin and N-acetyl carnosine reduce TGF-β2-mediated reciprocal upregulation of TGF-β2. Conclusions The above observations suggest that TGF-β2 and hepcidin form a self-sustained feed-forward loop through iron-catalyzed ROS. This loop is partially disrupted by a hepcidin antagonist and an anti-oxidant, implicating iron and ROS in TGF-β2-mediated POAG. We propose that modification of currently available hepcidin antagonists for ocular use may prove beneficial for the therapeutic management of TGF-β2-associated POAG.
Collapse
|
45
|
Dhamodaran K, Baidouri H, Sandoval L, Raghunathan V. Wnt Activation After Inhibition Restores Trabecular Meshwork Cells Toward a Normal Phenotype. Invest Ophthalmol Vis Sci 2020; 61:30. [PMID: 32539133 PMCID: PMC7415288 DOI: 10.1167/iovs.61.6.30] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Wnt is a spatiotemporally regulated signaling pathway whose inhibition is associated with glaucoma, elevated intraocular pressure (IOP), and cell stiffening. Whether such changes are permanent or may be reversed is unclear. Here, we determine if activation of Wnt pathway after inhibition reverses the pathologic phenotype. Methods Primary human trabecular meshwork (hTM) cells from nonglaucomatous donors were cultured for 12 days in the absence or presence of Wnt modulators: (i) LGK974 (Porcn inhibitor, 10 µM); (ii) LY2090314 (pGSK3β inhibitor, 250 nM); or (iii) 9 days of LGK974 followed by 3 days of LY2090314. Wnt modulation were determined by Western blotting and extracellular matrix (ECM) related genes were evaluated by quantitative PCR. Cytoskeletal morphology was determined by immunofluorescence and cell stiffness by atomic force microscopy. Results Wnt activation was confirmed by downregulation of pGSK3β (0.3-fold; P < 0.01), overexpression of AXIN2 (6.7-fold; P < 0.001), and LEF1 (3.8-fold; P < 0.001). Wnt inhibition resulted in dramatic changes in F-actin, which were resolved with subsequent Wnt activation. Concurrently, cell stiffness that was elevated with Wnt inhibition (11.86 kPa; P < 0.01) decreased with subsequent Wnt activation (4.195 kPa; P < 0.01) accompanied by significant overexpression of phosphorylated YAP (1.8-fold; P < 0.001) and TAZ (1.4-fold; P < 0.001). Additionally, Wnt activation after inhibition significantly repressed ECM genes (SPARC and CTGF, P < 0.01), cross-linking genes (LOX and TGM2, P < 0.05), inhibitors of matrix metalloproteinases (TIMP1 and PAI1, P < 0.001), and overexpressed MMP 1/9/14 (P < 0.01). Conclusions These data strongly demonstrate that, in normal hTM cells, activation of the Wnt pathway reverses the pathological phenotype caused by Wnt inhibition and may thus be a viable therapeutic for lowering IOP.
Collapse
Affiliation(s)
- Kamesh Dhamodaran
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, Texas, United States
| | - Hasna Baidouri
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, Texas, United States
| | - Lyndsey Sandoval
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, Texas, United States
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, Texas, United States
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States
| |
Collapse
|
46
|
Prosseda PP, Alvarado JA, Wang B, Kowal TJ, Ning K, Stamer WD, Hu Y, Sun Y. Optogenetic stimulation of phosphoinositides reveals a critical role of primary cilia in eye pressure regulation. SCIENCE ADVANCES 2020; 6:eaay8699. [PMID: 32494665 PMCID: PMC7190330 DOI: 10.1126/sciadv.aay8699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/11/2020] [Indexed: 05/10/2023]
Abstract
Glaucoma is a group of progressive optic neuropathies that cause irreversible vision loss. Although elevated intraocular pressure (IOP) is associated with the development and progression of glaucoma, the mechanisms for its regulation are not well understood. Here, we have designed CIBN/CRY2-based optogenetic constructs to study phosphoinositide regulation within distinct subcellular compartments. We show that stimulation of CRY2-OCRL, an inositol 5-phosphatase, increases aqueous humor outflow and lowers IOP in vivo, which is caused by a calcium-dependent actin rearrangement of the trabecular meshwork cells. Phosphoinositide stimulation also rescues defective aqueous outflow and IOP in a Lowe syndrome mouse model but not in IFT88fl/fl mice that lack functional cilia. Thus, our study is the first to use optogenetics to regulate eye pressure and demonstrate that tight regulation of phosphoinositides is critical for aqueous humor homeostasis in both normal and diseased eyes.
Collapse
Affiliation(s)
- Philipp P. Prosseda
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94305, USA
| | - Jorge A. Alvarado
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94305, USA
| | - Biao Wang
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94305, USA
| | - Tia J. Kowal
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94305, USA
| | - Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94305, USA
| | - W. Daniel Stamer
- Duke Eye Center, Department of Ophthalmology, Duke University, Durham, NC 27710, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94305, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94305, USA
- Palo Alto Veterans Administration, Palo Alto, CA 94304, USA
- Corresponding author.
| |
Collapse
|
47
|
Sun YY, Bradley JM, Keller KE. Phenotypic and Functional Alterations in Tunneling Nanotubes Formed by Glaucomatous Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 2020; 60:4583-4595. [PMID: 31675075 PMCID: PMC6827425 DOI: 10.1167/iovs.19-28084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Purpose Trabecular meshwork (TM) cells detect and coordinate responses to intraocular pressure (IOP) in the eye. TM cells become dysfunctional in glaucoma where IOP is often elevated. Recently, we showed that normal TM (NTM) cells communicate by forming tubular connections called tunneling nanotubes (TNTs). Here, we investigated TNTs in glaucomatous TM (GTM) cells. Methods Primary GTM and NTM cells were established from cadaver eyes. Transfer of Vybrant DiO and DiD-labeled vesicles via TNT connections was measured. Imaris software measured the number and length of cell protrusions from immunofluorescent confocal images. Live-cell imaging of the actin cytoskeleton was performed. The distribution of myosin-X, a regulator of TNTs/filopodia, was investigated in TM cells and tissue. Results GTM cells contained significantly more transferred fluorescent vesicles than NTM cells (49.6% vs. 35%). Although NTM cells had more protrusions at the cell surface than GTM cells (7.61 vs. 4.65 protrusions/cell), GTM protrusions were significantly longer (12.1 μm vs. 9.76 μm). Live-cell imaging demonstrated that the GTM actin cytoskeleton was less dynamic, and vesicle transfer between cells was significantly slower than NTM cells. Furthermore, rearrangement of the actin cortex adjacent to the TNT may influence TNT formation. Myosin-X immunostaining was punctate and disorganized in GTM cells and tissue compared to age-matched NTM controls. Conclusions Together, our data demonstrate that GTM cells have phenotypic and functional differences in their TNTs. Significantly slower vesicle transfer via TNTs in GTM cells may delay the timely propagation of cellular signals when pressures become elevated in glaucoma.
Collapse
Affiliation(s)
- Ying Ying Sun
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - John M Bradley
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Kate E Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
48
|
Patel GC, Millar JC, Clark AF. Glucocorticoid Receptor Transactivation Is Required for Glucocorticoid-Induced Ocular Hypertension and Glaucoma. Invest Ophthalmol Vis Sci 2019; 60:1967-1978. [PMID: 31050723 PMCID: PMC6890434 DOI: 10.1167/iovs.18-26383] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose Glucocorticoid (GC)–induced ocular hypertension (GC-OHT) is a serious side effect of prolonged GC therapy that can lead to glaucoma and permanent vision loss. GCs cause a plethora of changes in the trabecular meshwork (TM), an ocular tissue that regulates intraocular pressure (IOP). GCs act through the glucocorticoid receptor (GR), and the GR regulates transcription both through transactivation and transrepression. Many of the anti-inflammatory properties of GCs are mediated by GR transrepression, while GR transactivation largely accounts for GC metabolic effects and side effects of GC therapy. There is no evidence showing which of the two mechanisms plays a role in GC-OHT. Methods GRdim transgenic mice (which have active transrepression and impaired transactivation) and wild-type (WT) C57BL/6J mice received weekly periocular dexamethasone acetate (DEX-Ac) injections. IOP, outflow facilities, and biochemical changes to the TM were determined. Results GRdim mice did not develop GC-OHT after continued DEX treatment, while WT mice had significantly increased IOP and decreased outflow facilities. Both TM tissue in eyes of DEX-treated GRdim mice and cultured TM cells isolated from GRdim mice had reduced or no change in the expression of fibronectin, myocilin, collagen type I, and α-smooth muscle actin (α-SMA). GRdim mouse TM (MTM) cells also had a significant reduction in DEX-induced cytoskeletal changes, which was clearly seen in WT MTM cells. Conclusions We provide the first evidence for the role of GR transactivation in regulating GC-mediated gene expression in the TM and in the development of GC-OHT. This discovery suggests a novel therapeutic approach for treating ocular inflammation without causing GC-OHT and glaucoma.
Collapse
Affiliation(s)
- Gaurang C Patel
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - J Cameron Millar
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
49
|
Ashok A, Kang MH, Wise AS, Pattabiraman P, Johnson WM, Lonigro M, Ravikumar R, Rhee DJ, Singh N. Prion protein modulates endothelial to mesenchyme-like transition in trabecular meshwork cells: Implications for primary open angle glaucoma. Sci Rep 2019; 9:13090. [PMID: 31511544 PMCID: PMC6739364 DOI: 10.1038/s41598-019-49482-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
Endothelial-to-mesenchyme-like transition (Endo-MT) of trabecular meshwork (TM) cells is known to be associated with primary open angle glaucoma (POAG). Here, we investigated whether the prion protein (PrPC), a neuronal protein known to modulate epithelial-to-mesenchymal transition in a variety of cell types, is expressed in the TM, and plays a similar role at this site. Using a combination of primary human TM cells and human, bovine, and PrP-knock-out (PrP−/−) mouse models, we demonstrate that PrPC is expressed in the TM of all three species, including endothelial cells lining the Schlemm’s canal. Silencing of PrPC in primary human TM cells induces aggregation of β1-integrin and upregulation of α-smooth muscle actin, fibronectin, collagen 1A, vimentin, and laminin, suggestive of transition to a mesenchyme-like phenotype. Remarkably, intraocular pressure is significantly elevated in PrP−/− mice relative to wild-type controls, suggesting reduced pliability of the extracellular matrix and increased resistance to aqueous outflow in the absence of PrPC. Since PrPC is cleaved by members of the disintegrin and matrix-metalloprotease family that are increased in the aqueous humor of POAG arising from a variety of conditions, it is likely that concomitant cleavage of PrPC exaggerates and confounds the pathology by inducing Endo-MT-like changes in the TM.
Collapse
Affiliation(s)
- Ajay Ashok
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Min H Kang
- Department of Ophthalmology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Aaron S Wise
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - P Pattabiraman
- Department of Ophthalmology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | | | - Michael Lonigro
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Ranjana Ravikumar
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Douglas J Rhee
- Department of Ophthalmology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Neena Singh
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA.
| |
Collapse
|
50
|
Poyomtip T. Roles of Toll-Like Receptor 4 for Cellular Pathogenesis in Primary Open-Angle Glaucoma: A potential therapeutic strategy. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:201-206. [DOI: 10.1016/j.jmii.2018.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
|