1
|
Gallardo FS, Cruz-Soca M, Bock-Pereda A, Faundez-Contreras J, Gutiérrez-Rojas C, Gandin A, Torresan V, Casar JC, Ravasio A, Brandan E. Role of TGF-β/SMAD/YAP/TAZ signaling in skeletal muscle fibrosis. Am J Physiol Cell Physiol 2025; 328:C1015-C1028. [PMID: 39925133 DOI: 10.1152/ajpcell.00541.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Skeletal muscle fibrosis is strongly associated with the differentiation of its resident multipotent fibro/adipogenic progenitors (FAPs) toward the myofibroblast phenotype. Although transforming growth factor type β (TGF-β) signaling is well-known for driving FAPs differentiation and fibrosis, due to its pleiotropic functions its complete inhibition is not suitable for treating fibrotic disorders such as muscular dystrophies. Here, we describe that TGF-β operates through the mechanosensitive transcriptional regulators Yes-associated protein (YAP)/ transcriptional coactivator with PDZ-binding motif (TAZ) to determine the myofibroblast fate of FAPs and skeletal muscle fibrosis. Spatial transcriptomics analyses of dystrophic and acute injured muscles showed that areas with active fibrosis and TGF-β signaling displayed high YAP/TAZ activity. Using a TGF-β-driven fibrotic mouse model, we found that activation of YAP/TAZ in activated FAPs is associated with the fibrotic process. Mechanistically, primary culture of FAPs reveals the remarkable ability of TGF-β1 to activate YAP/TAZ through its canonical SMAD3 pathway. Moreover, inhibition of YAP/TAZ, either by disrupting its activity (with Verteporfin) or cellular mechanotransduction (with the Rho inhibitor C3 or soft matrices), decreased TGF-β1-dependent FAPs differentiation into myofibroblasts. In vivo, administration of Verteporfin in mice limits the deposition of collagen and fibronectin, and the activation of FAPs during the development of fibrosis. Overall, our work provides robust evidence for considering YAP/TAZ as a potential target in muscular fibroproliferative disorders.NEW & NOTEWORTHY The understanding of the nuclear factors governing the differentiation of muscular fibro/adipogenic progenitors (FAPs) into myofibroblasts is in its infancy. Here, we comprehensively elucidate the status, regulation, and role of the mechanotransducers Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) in the muscular fibrotic process. Our findings reveal that inhibiting cellular mechanotransduction limits FAP differentiation and the extent of muscular fibrosis exerted by transforming growth factor type β (TGF-β). This research shed new lights on the molecular mechanisms dictating the cell fate of FAPs and the muscular fibrosis.
Collapse
Affiliation(s)
- Felipe S Gallardo
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Meilyn Cruz-Soca
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Alexia Bock-Pereda
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Jennifer Faundez-Contreras
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
- Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Cristian Gutiérrez-Rojas
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
- Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alessandro Gandin
- Department of Industrial Engineering, University of Padova and INSTM, Padova, Italy
| | - Veronica Torresan
- Department of Industrial Engineering, University of Padova and INSTM, Padova, Italy
| | - Juan Carlos Casar
- Department of Neurology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Ravasio
- Institute for Biological and Medical Engineering, School of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Brandan
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
- Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
2
|
Santorelli M, Bhamidipati PS, Courte J, Swedlund B, Jain N, Poon K, Schildknecht D, Kavanagh A, MacKrell VA, Sondkar T, Malaguti M, Quadrato G, Lowell S, Thomson M, Morsut L. Control of spatio-temporal patterning via cell growth in a multicellular synthetic gene circuit. Nat Commun 2024; 15:9867. [PMID: 39562554 DOI: 10.1038/s41467-024-53078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 10/01/2024] [Indexed: 11/21/2024] Open
Abstract
A major goal in synthetic development is to build gene regulatory circuits that control patterning. In natural development, an interplay between mechanical and chemical communication shapes the dynamics of multicellular gene regulatory circuits. For synthetic circuits, how non-genetic properties of the growth environment impact circuit behavior remains poorly explored. Here, we first describe an occurrence of mechano-chemical coupling in synthetic Notch (synNotch) patterning circuits: high cell density decreases synNotch-gated gene expression in different cellular systems in vitro. We then construct, both in vitro and in silico, a synNotch-based signal propagation circuit whose outcome can be regulated by cell density. Spatial and temporal patterning outcomes of this circuit can be predicted and controlled via modulation of cell proliferation, initial cell density, and/or spatial distribution of cell density. Our work demonstrates that synthetic patterning circuit outcome can be controlled via cellular growth, providing a means for programming multicellular circuit patterning outcomes.
Collapse
Affiliation(s)
- Marco Santorelli
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pranav S Bhamidipati
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Josquin Courte
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin Swedlund
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Naisargee Jain
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kyle Poon
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dominik Schildknecht
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Andriu Kavanagh
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Victoria A MacKrell
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Trusha Sondkar
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mattias Malaguti
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
- Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Giorgia Quadrato
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sally Lowell
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
- Beckman Center for Single-Cell Profiling and Engineering, Pasadena, CA, USA.
| | - Leonardo Morsut
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Quillen SE, Kimball EC, Ritter-Gordy KA, Du L, Yuan Z, Pease ME, Madhoun S, Nguyen TD, Johnson TV, Quigley HA, Pitha IF. The Mechanisms of Neuroprotection by Topical Rho Kinase Inhibition in Experimental Mouse Glaucoma and Optic Neuropathy. Invest Ophthalmol Vis Sci 2024; 65:43. [PMID: 39565302 PMCID: PMC11583991 DOI: 10.1167/iovs.65.13.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Purpose The purpose of this study was to delineate the neuroprotective mechanisms of topical 2% ripasudil (Rip), a Rho kinase (ROCK) inhibitor. Methods In 340 mice, scheduled 2% Rip or balanced salt solution (BSS) saline drops were intermittently, unilaterally delivered. Intracameral microbead glaucoma (GL) injection increased intraocular pressure (IOP) from 1 day to 6 weeks (6W), whereas other mice underwent optic nerve (ON) crush. Retinal ganglion cell (RGC) loss was assessed using retinal wholemount anti-RNA Binding Protein with Multiple Splicing (RBPMS) labeling and ON axon counts. Axonal transport was quantified with β-amyloid precursor protein (APP) immunolocalization. Micro-Western (Wes) analysis quantified protein expression. Immunofluorescent expression of ROCK pathway molecules, quantitative astrocyte structural changes, and ON biomechanical strains (explanted eyes) were evaluated. ROCK activity assays were conducted in separate ON regions. Results At 6W GL, mean RGC axon loss was 6.6 ± 13.3% in Rip and 36.3 ± 30.9% in BSS (P = 0.04, n = 10/group). RGC soma loss after crush was lower with Rip (68.6 ± 8.2%) than BSS (80.5 ± 5.7%, P = 0.006, n = 10/group). After 6W GL, RGC soma loss was lower with Rip (34 ± 5.0%) than BSS (51 ± 8.1%, P = 0.03, n = 10/group). Axonal transport of APP within the unmyelinated ON (UON) was unaffected by Rip. Maximum principal mechanical strains increased similarly in Rip and BSS-treated mice. Retinal ROCK 1 and 2 activity was reduced by Rip in GL eyes. The pROCK2/ROCK2 protein ratio rose in the retina of BSS GL eyes, but not in Rip GL eyes. Conclusions Topical Rip reduced RGC loss in GL and ON crush, with suppression of ROCK signaling in the retina and ON. The neuroprotection mechanisms appear to involve effects on both RGC and astrocyte responses to IOP elevation.
Collapse
Affiliation(s)
- Sarah E Quillen
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Elizabeth C Kimball
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Kelsey A Ritter-Gordy
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Liya Du
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Zhuochen Yuan
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Mary E Pease
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Salaheddine Madhoun
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Thao D Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Thomas V Johnson
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Harry A Quigley
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Ian F Pitha
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
4
|
Muhlisah A, Hirooka K, Nurtania A, Onoe H, Okumichi H, Nitta E, Baba T, Tanito M, Matsuoka Y, Nakakura S, Kiuchi Y. Effect of ripasudil after trabeculectomy with mitomycin C: a multicentre, randomised, prospective clinical study. BMJ Open Ophthalmol 2024; 9:e001449. [PMID: 38960415 PMCID: PMC11227813 DOI: 10.1136/bmjophth-2023-001449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/20/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND To investigate if there are improvements in trabeculectomy outcomes supporting filtration bleb formation caused by Rho-associated protein kinase (ROCK) inhibitors. METHODS This prospective, multicentre, randomised, open-label clinical study examined open-angle glaucoma patients who underwent trabeculectomy or trabeculectomy combined with cataract surgery followed by 3-month postoperative ripasudil treatments. After randomly allocating patients to ripasudil-ROCK inhibitor (ripasudil) or without ripasudil (non-ripasudil) groups. Mean intraocular pressure (IOP) changes, success rate, and number of eyedrops were compared for both groups. RESULTS A total of 17 and 15 subjects dropped out in the ripasudil group and non-ripasudil group, respectively. At baseline, the mean IOP was 16.8±5.0 mm Hg in the ripasudil group (38 patients) and 16.2±4.4 in the non-ripasudil group (52 patients). The IOP decreased to 11.4±3.2 mm Hg, 10.9±3.9 mm Hg and 10.6±3.5 mm Hg at 12, 24 and 36 months in the ripasudil group, while it decreased to 11.2±4.1 mm Hg, 10.5±3.1 mm Hg and 10.9±3.2 mm Hg at 12, 24 and 36 months in the non-ripasudil group, respectively. There was a significant decrease in the number of IOP-lowering medications after trabeculectomy in the ripasudil group versus the non-ripasudil group at 24 (p=0.010) and 36 months (p=0.016). There was no statistically significant difference between the groups for the 3-year cumulative probability of success. CONCLUSION Although ripasudil application did not increase the primary trabeculectomy success rate, it did reduce IOP-lowering medications after trabeculectomy with mitomycin C.
Collapse
Affiliation(s)
- Aisyah Muhlisah
- Department of Ophthalmology and Visual Science, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Hiroshima, Japan
| | - Kazuyuki Hirooka
- Department of Ophthalmology and Visual Science, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Hiroshima, Japan
| | - Ariyanie Nurtania
- Department of Ophthalmology and Visual Science, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Hiroshima, Japan
| | - Hiromitsu Onoe
- Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Hiroshima, Japan
| | - Hideaki Okumichi
- Ophthalmology, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Hiroshima, Japan
| | - Eri Nitta
- Department of Ophthalmology, Kagawa University Faculty of Medicine Graduate School of Medicine, Kita-gun, Kagawa, Japan
| | - Tetsuya Baba
- Department of Ophthalmology, Shirai Eye Hospital, Mitoyo, Japan
| | - Masaki Tanito
- Shimane University Faculty of Medicine Graduate School of Medicine Department of Ophthalmology, Izumo, Shimane, Japan
| | - Yotaro Matsuoka
- Department of Ophthalmology, Matsue Red Cross Hospital, Matsue, Japan
| | | | - Yoshiaki Kiuchi
- Ophthalmology, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Hiroshima, Japan
| |
Collapse
|
5
|
Mozzer A, Pitha I. Cyclic strain alters the transcriptional and migratory response of scleral fibroblasts to TGFβ. Exp Eye Res 2024; 244:109917. [PMID: 38697276 DOI: 10.1016/j.exer.2024.109917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
In glaucoma, scleral fibroblasts are exposed to IOP-associated mechanical strain and elevated TGFβ levels. These stimuli, in turn, lead to scleral remodeling. Here, we examine the scleral fibroblast migratory and transcriptional response to these stimuli to better understand mechanisms of glaucomatous scleral remodeling. Human peripapillary scleral (PPS) fibroblasts were cultured on parallel grooves, treated with TGFβ (2 ng/ml) in the presence of vehicle or TGFβ signaling inhibitors, and exposed to uniaxial strain (1 Hz, 5%, 12-24 h). Axis of cellular orientation was determined at baseline, immediately following strain, and 24 h after strain cessation with 0° being completely aligned with grooves and 90° being perpendicular. Fibroblasts migration in-line and across grooves was assessed using a scratch assay. Transcriptional profiling of TGFβ-treated fibroblasts with or without strain was performed by RT-qPCR and pERK, pSMAD2, and pSMAD3 levels were measured by immunoblot. Pre-strain alignment of TGFβ-treated cells with grooves (6.2 ± 1.5°) was reduced after strain (21.7 ± 5.3°, p < 0.0001) and restored 24 h after strain cessation (9.5 ± 2.6°). ERK, FAK, and ALK5 inhibition prevented this reduction; however, ROCK, YAP, or SMAD3 inhibition did not. TGFβ-induced myofibroblast markers were reduced by strain (αSMA, POSTN, ASPN, MLCK1). While TGFβ-induced phosphorylation of ERK and SMAD2 was unaffected by cyclic strain, SMAD3 phosphorylation was reduced (p = 0.0004). Wound healing across grooves was enhanced by ROCK and SMAD3 inhibition but not ERK or ALK5 inhibition. These results provide insight into the mechanisms by which mechanical strain alters the cellular response to TGFβ and the potential signaling pathways that underlie scleral remodeling.
Collapse
Affiliation(s)
- Ann Mozzer
- Department of Ophthalmology, USA; Center for Nanomedicine, USA
| | - Ian Pitha
- Department of Ophthalmology, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
6
|
Pitha I, Du L, Nguyen TD, Quigley H. IOP and glaucoma damage: The essential role of optic nerve head and retinal mechanosensors. Prog Retin Eye Res 2024; 99:101232. [PMID: 38110030 PMCID: PMC10960268 DOI: 10.1016/j.preteyeres.2023.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
There are many unanswered questions on the relation of intraocular pressure to glaucoma development and progression. IOP itself cannot be distilled to a single, unifying value, because IOP level varies over time, differs depending on ocular location, and can be affected by method of measurement. Ultimately, IOP level creates mechanical strain that affects axonal function at the optic nerve head which causes local extracellular matrix remodeling and retinal ganglion cell death - hallmarks of glaucoma and the cause of glaucomatous vision loss. Extracellular tissue strain at the ONH and lamina cribrosa is regionally variable and differs in magnitude and location between healthy and glaucomatous eyes. The ultimate targets of IOP-induced tissue strain in glaucoma are retinal ganglion cell axons at the optic nerve head and the cells that support axonal function (astrocytes, the neurovascular unit, microglia, and fibroblasts). These cells sense tissue strain through a series of signals that originate at the cell membrane and alter cytoskeletal organization, migration, differentiation, gene transcription, and proliferation. The proteins that translate mechanical stimuli into molecular signals act as band-pass filters - sensing some stimuli while ignoring others - and cellular responses to stimuli can differ based on cell type and differentiation state. Therefore, to fully understand the IOP signals that are relevant to glaucoma, it is necessary to understand the ultimate cellular targets of IOP-induced mechanical stimuli and their ability to sense, ignore, and translate these signals into cellular actions.
Collapse
Affiliation(s)
- Ian Pitha
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liya Du
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thao D Nguyen
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Harry Quigley
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Roda VMDP, da Silva RA, Siqueira PV, Lustoza-Costa GJ, Moraes GM, Matsuda M, Hamassaki DE, Santos MF. Inhibition of Rho kinase (ROCK) impairs cytoskeletal contractility in human Müller glial cells without effects on cell viability, migration, and extracellular matrix production. Exp Eye Res 2024; 238:109745. [PMID: 38043763 DOI: 10.1016/j.exer.2023.109745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
The epiretinal membrane is a fibrocontractile tissue that forms on the inner surface of the retina, causing visual impairment ranging from mild to severe, and even retinal detachment. Müller glial cells actively participate in the formation of this membrane. Current research is constantly seeking for new therapeutic approaches that aim to prevent or treat cellular dysfunctions involved in the progression of this common fibrosis condition. The Rho GTPases signaling pathway regulates several processes associated with the epiretinal membrane, such as cell proliferation, migration, and contraction. Rho kinase (ROCK), an effector of the RhoA GTPase, is an interesting potential therapeutic target. This study aimed to evaluate the effects of a ROCK inhibitor (Y27632) on human Müller cells viability, growth, cytoskeletal organization, expression of extracellular matrix components, myofibroblast differentiation, migration, and contractility. Müller cells of the MIO-M1 lineage were cultured and treated for different periods with the inhibitor. Viability was evaluated by MTT assay and trypan blue exclusion method, and growth was evaluated by growth curve and BrdU incorporation assay. The actin cytoskeleton was stained with fluorescent phalloidin, intermediate filaments and microtubules were analyzed with immunofluorescence for vimentin and α-tubulin. Gene and protein expression of collagens I and V, laminin and fibronectin were evaluated by rt-PCR and immunofluorescence. Chemotactic and spontaneous cell migration were studied by transwell assay and time-lapse observation of live cells, respectively. Cell contractility was assessed by collagen gel contraction assay. The results showed that ROCK inhibition by Y27632 did not affect cell viability, but decreased cell growth and proliferation after 72 h. There was a change in cell morphology and organization of F-actin, with a reduction in the cell body, disappearance of stress fibers and formation of long, branched cell extensions. Microtubules and vimentin filaments were also affected, possibly because of F-actin alterations. The inhibitor also reduced gene expression and immunoreactivity of smooth muscle α-actin, a marker of myofibroblasts. The expression of extracellular matrix components was not affected by the inhibitor. Chemotactic cell migration showed no significant changes, while cell contractility was substantially reduced. No spontaneous migration of MIO-M1 cells was observed. In conclusion, pharmacological inhibition of ROCK in Müller cells could be a potentially promising approach to treat epiretinal membranes by preventing cell proliferation, contractility and transdifferentiation, without affecting cell viability.
Collapse
Affiliation(s)
- Vinicius Moraes de Paiva Roda
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Rafael André da Silva
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Veloso Siqueira
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gabriela Jesus Lustoza-Costa
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gabriélla Malheiros Moraes
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Monique Matsuda
- Laboratory of Investigation in Ophthalmology (LIM-33), Division of Ophthalmology, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil
| | - Dânia Emi Hamassaki
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marinilce Fagundes Santos
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Qin M, Yu-Wai-Man C. Glaucoma: Novel antifibrotic therapeutics for the trabecular meshwork. Eur J Pharmacol 2023; 954:175882. [PMID: 37391006 PMCID: PMC10804937 DOI: 10.1016/j.ejphar.2023.175882] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Glaucoma is a chronic and progressive neurodegenerative disease characterized by the loss of retinal ganglion cells and visual field defects, and currently affects around 1% of the world's population. Elevated intraocular pressure (IOP) is the best-known modifiable risk factor and a key therapeutic target in hypertensive glaucoma. The trabecular meshwork (TM) is the main site of aqueous humor outflow resistance and therefore a critical regulator of IOP. Fibrosis, a reparative process characterized by the excessive deposition of extracellular matrix components and contractile myofibroblasts, can impair TM function and contribute to the pathogenesis of primary open-angle glaucoma (POAG) as well as the failure of minimally invasive glaucoma surgery (MIGS) devices. This paper provides a detailed overview of the current anti-fibrotic therapeutics targeting the TM in glaucoma, along with their anti-fibrotic mechanisms, efficacy as well as the current research progress from pre-clinical to clinical studies.
Collapse
Affiliation(s)
- Mengqi Qin
- King's College London, London, SE1 7EH, UK
| | | |
Collapse
|
9
|
Sapudom J, Karaman S, Quartey BC, Mohamed WKE, Mahtani N, Garcia-Sabaté A, Teo J. Collagen Fibril Orientation Instructs Fibroblast Differentiation Via Cell Contractility. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301353. [PMID: 37249413 PMCID: PMC10401101 DOI: 10.1002/advs.202301353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Indexed: 05/31/2023]
Abstract
Collagen alignment is one of the key microarchitectural signatures of many pathological conditions, including scarring and fibrosis. Investigating how collagen alignment modulates cellular functions will pave the way for understanding tissue scarring and regeneration and new therapeutic strategies. However, current approaches for the fabrication of three-dimensional (3D) aligned collagen matrices are low-throughput and require special devices. To overcome these limitations, a simple approach to reconstitute homogeneous 3D collagen matrices with adjustable degree of fibril alignment using 3D printed inclined surfaces is developed. By characterizing the mechanical properties of reconstituted matrices, it is found that the elastic modulus of collagen matrices is enhanced with an increase in the alignment degree. The reconstituted matrices are used to study fibroblast behavior to reveal the progression of scar formation where a gradual enhancement of collagen alignment can be observed. It is found that matrices with aligned fibrils trigger fibroblast differentiation into myofibroblasts via cell contractility, while collagen stiffening through a crosslinker does not. The results suggest the impact of collagen fibril organization on the regulation of fibroblast differentiation. Overall, this approach to reconstitute 3D collagen matrices with fibril alignment opens opportunities for biomimetic pathological-relevant tissue in vitro, which can be applied for other biomedical research.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Shaza Karaman
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Brian Chesney Quartey
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Walaa Kamal Eldin Mohamed
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Nick Mahtani
- School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Department of Mechanical and Biomedical Engineering, Tandon School of Engineering, New York University, New York, 11201, USA
| |
Collapse
|
10
|
Josyula A, Mozzer A, Szeto J, Ha Y, Richmond N, Chung SW, Rompicharla SVK, Narayan J, Ramesh S, Hanes J, Ensign L, Parikh K, Pitha I. Nanofiber-based glaucoma drainage implant improves surgical outcomes by modulating fibroblast behavior. Bioeng Transl Med 2023; 8:e10487. [PMID: 37206200 PMCID: PMC10189467 DOI: 10.1002/btm2.10487] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 11/02/2023] Open
Abstract
Biomaterials are implanted in millions of individuals worldwide each year. Both naturally derived and synthetic biomaterials induce a foreign body reaction that often culminates in fibrotic encapsulation and reduced functional lifespan. In ophthalmology, glaucoma drainage implants (GDIs) are implanted in the eye to reduce intraocular pressure (IOP) in order to prevent glaucoma progression and vision loss. Despite recent efforts towards miniaturization and surface chemistry modification, clinically available GDIs are susceptible to high rates of fibrosis and surgical failure. Here, we describe the development of synthetic, nanofiber-based GDIs with partially degradable inner cores. We evaluated GDIs with nanofiber or smooth surfaces to investigate the effect of surface topography on implant performance. We observed in vitro that nanofiber surfaces supported fibroblast integration and quiescence, even in the presence of pro-fibrotic signals, compared to smooth surfaces. In rabbit eyes, GDIs with a nanofiber architecture were biocompatible, prevented hypotony, and provided a volumetric aqueous outflow comparable to commercially available GDIs, though with significantly reduced fibrotic encapsulation and expression of key fibrotic markers in the surrounding tissue. We propose that the physical cues provided by the surface of the nanofiber-based GDIs mimic healthy extracellular matrix structure, mitigating fibroblast activation and potentially extending functional GDI lifespan.
Collapse
Affiliation(s)
- Aditya Josyula
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ann Mozzer
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Julia Szeto
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Youlim Ha
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Nicole Richmond
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Seung Woo Chung
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Sri Vishnu Kiran Rompicharla
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Janani Narayan
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Samiksha Ramesh
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Justin Hanes
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of Pharmacology and Molecular Sciences, Environmental Health Sciences, Oncology, and NeurosurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Laura Ensign
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of Pharmacology and Molecular Sciences, Infectious Diseases, Oncology, and Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kunal Parikh
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Center for Bioengineering Innovation & DesignJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ian Pitha
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Glaucoma Center of Excellence, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
11
|
Shao CG, Sinha NR, Mohan RR, Webel AD. Novel Therapies for the Prevention of Fibrosis in Glaucoma Filtration Surgery. Biomedicines 2023; 11:657. [PMID: 36979636 PMCID: PMC10045591 DOI: 10.3390/biomedicines11030657] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Conjunctival fibrosis remains the major impediment to the success of glaucoma filtration surgery. Anti-metabolites remain the gold standard for mitigating post-surgical fibrosis, but they are associated with high complication rates and surgical failure rates. Establishing a more targeted approach to attenuate conjunctival fibrosis may revolutionize the surgical approach to glaucoma. A new strategy is needed to prevent progressive tissue remodeling and formation of a fibrotic scar, subsequently increasing surgical success and reducing the prevalence of glaucoma-related vision loss. Advancements in our understanding of molecular signaling and biomechanical cues in the conjunctival tissue architecture are broadening the horizon for new therapies and biomaterials for the mitigation of fibrosis. This review aims to highlight the strategies and current state of promising future approaches for targeting fibrosis in glaucoma filtration surgery.
Collapse
Affiliation(s)
| | - Nishant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65212, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65212, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Aaron D. Webel
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
12
|
Sayah DN, Lesk MR. Ocular Rigidity and Current Therapy. Curr Eye Res 2023; 48:105-113. [PMID: 35763027 DOI: 10.1080/02713683.2022.2093380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose: Ocular rigidity (OR) is an important biomechanical parameter of the eye accounting for the material and geometrical properties of the corneoscleral shell.Methods: This study used a literature search to review the role of ocular rigidity and the application of potential therapies targeting this parameter in glaucoma and myopia.Conclusion: Biomechanical modeling and improved understanding of the biochemistry, and molecular arrangement of sclera and its constituents have yielded important insights. Recent developments, including that of a non-invasive and direct OR measurement method and improved ocular imaging techniques are helping to elucidate the role of OR in healthy and diseased eyes by facilitating large scale and longitudinal clinical studies. Improved understanding of OR at the initial stages of disease processes and its alterations with disease progression will undoubtedly propel research in the field. Furthermore, a better understanding of the determinants of OR is helping to refine novel therapeutic approaches which target and alter the biomechanical properties of the sclera in sight-threatening conditions such as glaucoma and myopia.
Collapse
Affiliation(s)
- Diane N Sayah
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada.,School of Optometry, Université de Montréal, Montreal, Canada
| | - Mark R Lesk
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada.,Department of Ophthalmology, Faculty of Medicine, Université de Montréal, Montreal, Canada.,Centre Universitaire d'ophtalmologie de l'Université de Montréal de l'Hôpital Maisonneuve-Rosemont, CIUSSS-E, Montreal, Canada
| |
Collapse
|
13
|
Czerpak CA, Kashaf MS, Zimmerman BK, Quigley HA, Nguyen TD. The Strain Response to Intraocular Pressure Decrease in the Lamina Cribrosa of Patients with Glaucoma. Ophthalmol Glaucoma 2023; 6:11-22. [PMID: 35863747 PMCID: PMC9849479 DOI: 10.1016/j.ogla.2022.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To measure biomechanical strains in the lamina cribrosa (LC) of living human eyes with intraocular pressure (IOP) lowering. DESIGN Cohort study. PARTICIPANTS Patients with glaucoma underwent imaging before and after laser suturelysis after trabeculectomy surgery (29 image pairs; 26 persons). INTERVENTION Noninvasive imaging of the eye. MAIN OUTCOME MEASURES Strains in optic nerve head tissue and changes in depths of the anterior border of the LC. RESULTS Intraocular pressure decreases caused the LC to expand in thickness in the anterior-posterior strain (Ezz = 0.94 ± 1.2%; P = 0.00020) and contract in radius in the radial strain (Err = - 0.19 ± 0.33%; P = 0.0043). The mean LC depth did not significantly change with IOP lowering (1.33 ± 6.26 μm; P = 0.26). A larger IOP decrease produced a larger, more tensile Ezz (P < 0.0001), greater maximum principal strain (Emax; P < 0.0001), and greater maximum shear strain (Γmax; P < 0.0001). The average LC depth change was associated with the Γmax and radial-circumferential shear strain (Erθ; P < 0.02) but was not significantly related to tensile or compressive strains. An analysis by clock hour showed that in temporal clock hours 3 to 6, a more anterior LC movement was associated with a more positive Emax, and in clock hours 3, 5, and 6, it was associated with a more positive Γmax. At 10 o'clock, a more posterior LC movement was related to a more positive Emax (P < 0.004). Greater compliance (strain/ΔIOP) of Emax (P = 0.044), Γmax (P = 0.052), and Erθ (P = 0.018) was associated with a thinner retinal nerve fiber layer. Greater compliance of Emax (P = 0.041), Γmax (P = 0.021), Erθ (P = 0.024), and in-plane shear strain (Erz; P = 0.0069) was associated with more negative mean deviations. Greater compliance of Γmax (P = 0.055), Erθ (P = 0.040), and Erz (P = 0.015) was associated with lower visual field indices. CONCLUSIONS With IOP lowering, the LC moves either into or out of the eye but, on average, expands in thickness and contracts in radius. Shear strains are nearly as substantial as in-plane strains. Biomechanical strains are more compliant in eyes with greater glaucoma damage. This work was registered at ClinicalTrials.gov as NCT03267849.
Collapse
Affiliation(s)
- Cameron A Czerpak
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland.
| | - Michael Saheb Kashaf
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Brandon K Zimmerman
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Harry A Quigley
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Thao D Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland; Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
14
|
Singh K, Singh A. Rho-kinase Inhibitors in Ocular Diseases: A Translational Research Journey. J Curr Glaucoma Pract 2023; 17:44-48. [PMID: 37228304 PMCID: PMC10203326 DOI: 10.5005/jp-journals-10078-1396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/23/2023] [Indexed: 05/27/2023] Open
Abstract
Aim This review summarizes current data on Rho-kinase (ROCK) inhibitors use in ocular diseases, primarily glaucoma. Background Translational research over the last decade culminating in the development of ROCK inhibitors has provided a much-needed shot in the arm to glaucoma pharmacopeia. ROCK pathway is intricately involved in cytoskeletal modulation with action on cell morphology, cell motility, cell adhesion, cell apoptosis, and smooth muscle contraction. This cytoskeletal modulation property has been utilized to modify trabecular meshwork (TM) resistance, resulting in the discovery of ROCK inhibitors to increase trabecular outflow. Review results Multicentric trials on ROCK inhibitors for antiglaucoma medications are summarized. The focus is on linking pharmacological action to the clinical utility of these drugs. While the Rho Kinase Elevated intraocular Pressure (IOP) Treatment (ROCKET) trials compared monotherapy with ROCK inhibitor netarsudil vs timolol, MERCURY trials compared a fixed dose combination of latanoprost and ROCK inhibitor netarsudil [fixed combination netarsudil-latanoprost (FCNL)] vs monotherapy with either and bimatoprost-timolol combination. While ROCKET trials showed ROCK inhibitors to be non-inferior to timolol, MERCURY trials showed FCNL achieving a much greater IOP reduction than monotherapy with either. Conjunctival hyperemia was the most common side effect reported with ROCK inhibitor use. Conclusion Moderate efficacy of ROCK inhibitors with a common side effect of conjunctival hyperemia, makes it an adjunctive antiglaucoma drug of choice and not a first-line therapy. Clinical significance ROCK inhibitors' action on diseased TM is more physiological compared to available antiglaucoma medications that either reduce aqueous secretion or enhance uveoscleral outflow. The property of ROCK inhibition to stabilize the endothelium of both retinal vasculature and cornea has opened a new chapter in the treatment of diabetic retinopathy and corneal decompensation. How to cite this article Singh K, Singh A. Rho-kinase Inhibitors in Ocular Diseases: A Translational Research Journey. J Curr Glaucoma Pract 2023;17(1):44-48.
Collapse
Affiliation(s)
- Kirti Singh
- Guru Nanak Eye Centre, Maulana Azad Medical College, New Delhi, India
| | - Arshi Singh
- Guru Nanak Eye Centre, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
15
|
Radwan SES, El-Moslemany RM, Mehanna RA, Thabet EH, Abdelfattah EZA, El-Kamel A. Chitosan-coated bovine serum albumin nanoparticles for topical tetrandrine delivery in glaucoma: in vitro and in vivo assessment. Drug Deliv 2022; 29:1150-1163. [PMID: 35384774 PMCID: PMC9004496 DOI: 10.1080/10717544.2022.2058648] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/08/2023] Open
Abstract
Glaucoma is one of the leading causes of blindness. Therapies available suffer from several drawbacks including low bioavailability, repeated administration and poor patient compliance with adverse effects thereafter. In this study, bovine serum albumin nanoparticles (BSA-NPs) coated with chitosan(CS) were developed for the topical delivery of tetrandrine (TET) for glaucoma management. Optimized nanoparticles were prepared by desolvation. pH, BSA, CS and cross-linking agent concentrations effects on BSA-NPs colloidal properties were investigated. CS-BSA-NPs with particle size 237.9 nm and zeta potential 24 mV was selected for further evaluation. EE% exceeded 95% with sustained release profile. In vitro mucoadhesion was evaluated based on changes in viscosity and zeta potential upon incubation with mucin. Ex vivo transcorneal permeation was significantly enhanced for CS coated formulation. In vitro cell culture studies on corneal stromal fibroblasts revealed NPs biocompatibility with enhanced cellular uptake and improved antioxidant and anti-proliferative properties for the CS-coated formulation. Moreover, BSA-NPs were nonirritant as shown by HET-CAM test. Also, bioavailability in rabbit aqueous humor showed 2-fold increase for CS-TET-BSA-NPs compared to TET with a sustained reduction in intraocular pressure in a rabbit glaucoma model. Overall, results suggest CS-BSA-NPs as a promising platform for topical ocular TET delivery in the management of glaucoma.
Collapse
Affiliation(s)
- Salma El-Sayed Radwan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Riham M. El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Radwa A. Mehanna
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman H. Thabet
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Amal El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
16
|
Guan C, Pease ME, Quillen S, Ling YTT, Li X, Kimball E, Johnson TV, Nguyen TD, Quigley HA. Quantitative Microstructural Analysis of Cellular and Tissue Remodeling in Human Glaucoma Optic Nerve Head. Invest Ophthalmol Vis Sci 2022; 63:18. [PMID: 36269186 PMCID: PMC9617510 DOI: 10.1167/iovs.63.11.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose To measure quantitatively changes in lamina cribrosa (LC) cell and connective tissue structure in human glaucoma eyes. Methods We studied 27 glaucoma and 19 age-matched non-glaucoma postmortem eyes. In 25 eyes, LC cross-sections were examined by confocal and multiphoton microscopy to quantify structures identified by anti-glial fibrillary acidic protein (GFAP), phalloidin-labeled F-actin, nuclear 4',6-diamidino-2-phenylindole (DAPI), and by second harmonic generation imaging of LC beams. Additional light and transmission electron microscopy were performed in 21 eyes to confirm features of LC remodeling, including immunolabeling by anti-SOX9 and anti-collagen IV. All glaucoma eyes had detailed clinical histories of open-angle glaucoma status, and degree of axon loss was quantified in retrolaminar optic nerve cross-sections. Results Within LC pores, the proportionate area of both GFAP and F-actin processes was significantly lower in glaucoma eyes than in controls (P = 0.01). Nuclei were rounder (lower median aspect ratio) in glaucoma specimens (P = 0.02). In models assessing degree of glaucoma damage, F-actin process width was significantly wider in glaucoma eyes with more damage (P = 0.024), average LC beam width decreased with worse glaucoma damage (P = 0.042), and nuclear count per square millimeter rose with worse damage (P = 0.019). The greater cell count in LC pores represented 92.3% astrocytes by SOX9 labeling. The results are consistent with replacement of axons in LC pores by basement membrane labeled by anti-collagen IV and in-migrating astrocytes. Conclusions Alteration in LC structure in glaucoma involves migration of astrocytes into axonal bundles, change in astrocyte orientation and processes, production of basement membrane material, and thinning of connective tissue beams.
Collapse
Affiliation(s)
- Carolyn Guan
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Mary Ellen Pease
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Sarah Quillen
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Yik Tung Tracy Ling
- Departments of Mechanical Engineering and Materials Science & Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Ximin Li
- Department of Biostatistics, The Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Elizabeth Kimball
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Thomas V. Johnson
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Thao D. Nguyen
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
- Departments of Mechanical Engineering and Materials Science & Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Harry A. Quigley
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
17
|
Simonelli F, Sodi A, Falsini B, Bacci G, Iarossi G, Di Iorio V, Giorgio D, Placidi G, Andrao A, Reale L, Fiorencis A, Aoun M. Narrative medicine to investigate the quality of life and emotional impact of inherited retinal disorders through the perspectives of patients, caregivers and clinicians: an Italian multicentre project. BMJ Open 2022; 12:e061080. [PMID: 36123082 PMCID: PMC9486281 DOI: 10.1136/bmjopen-2022-061080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES Although inherited retinal disorders (IRDs) related to the gene encoding the retinal pigment epithelium 65kD protein (RPE65) significantly impact the vision-related quality of life (VRQoL), their emotional and social aspects remain poorly investigated in Italy. Narrative Medicine (NM) reveals the more intimate aspects of the illness experience, providing insights into clinical practice. DESIGN AND SETTING This NM project was conducted in Italy between July and December 2020 and involved five eye clinics specialised in IRDs. Illness plots and parallel charts, together with a sociodemographic survey, were collected through the project's website; remote in-depth interviews were also conducted. Narratives and interviews were analysed through NVivo software and interpretive coding. PARTICIPANTS 3 paediatric and 5 adult patients and eight caregivers participated in the project; 11 retinologists globally wrote 27 parallel charts; 5 professionals from hospital-based multidisciplinary teams and one patient association member were interviewed. RESULTS Findings confirmed that RPE65-related IRDs impact VRQoL in terms of activities and mobility limitations. The emotional aspects emerged as crucial in the clinical encounter and as informative on IRD management challenges and real-life experiences, while psychological support was addressed as critical from clinical diagnosis throughout the care pathway for both patients and caregivers; the need for an IRDs 'culture' emerged to acknowledge these conditions, and therefore, promoting diversity within society. CONCLUSIONS The project was the first effort to investigate the impact of RPE65-related IRDs on the illness experience through NM, concomitantly addressing the perspectives of paediatric and adult patients, caregivers and healthcare professionals and provided preliminary insights for the knowledge of RPE65-related IRDs and the clinical practice.
Collapse
Affiliation(s)
- Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "L. Vanvitelli, Naples, Italy
| | - Andrea Sodi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Firenze, Italy
| | - Benedetto Falsini
- UOC Oftalmologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Giacomo Bacci
- Pediatric Ophthalmology Unit, Children's Hospital A. Meyer, University of Florence, Florence, Italy
| | - Giancarlo Iarossi
- Ophthalmology Department, Bambino Gesù IRCCS Pediatric Hospital, Rome, Italy
| | - Valentina Di Iorio
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "L. Vanvitelli, Naples, Italy
| | - Dario Giorgio
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Firenze, Italy
| | - Giorgio Placidi
- UOC Oftalmologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | | | | | | | | |
Collapse
|
18
|
Mimura T, Noma H, Inoue Y, Kawashima M, Kitsu K, Mizota A. Early Postoperative Effect of Ripasudil Hydrochloride After Trabeculectomy on Secondary Glaucoma: A Randomized Controlled Trial. Open Ophthalmol J 2022. [DOI: 10.2174/18743641-v16-e2206201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purpose:
To evaluate the effect of Rho-associated kinase inhibitor (ripasudil hydrochloride hydrate; ripasudil) eye drops on postoperative intraocular pressure (IOP) after trabeculectomy in eyes with uveitic glaucoma.
Design:
This was a prospective, observational, controlled, and randomized study.
Methods:
Sixteen eyes of 16 patients with uveitic glaucoma who underwent trabeculectomy without mitomycin C were randomly treated without ripasudil (8 eyes) and with ripasudil (8 eyes). Postoperative IOP and surgical outcomes 3 months after surgery were compared between the two groups.
Results:
No patient discontinued treatment due to the lack of efficacy or adverse effects of ripasudil during the 3-month study period in the ripasudil group. The mean IOP (mmHg) in the control and ripasudil groups were 42.5 ± 9.8 mmHg /43.9 ± 11.7 mmHg (p = 0.82) at baseline, 14.3 ± 4.9 mmHg /9.0 ± 3.7 mmHg (p = 0.04) at 1 week, 16.3 ± 4.2 mmHg /10.6 ± 3.0 mmHg (p = 0.01) at 1 month, and 16.0 ± 3.4 mmHg /12.5 ± 2.3 mmHg (p = 0.04) at 3 months. The number of laser suture lysis procedures (2.0 ± 0.5 vs 0.4 ± 0.7), the rate of bleb revision by needling (50.0% vs 0.0%), and the mean number of antiglaucoma medications (1.6 ± 1.5 vs. 0.1 ± 0.3) after trabeculectomy were higher in the control group than in the ripasudil group (all p < 0.05). A multivariate analysis showed that the IOP reduction rate at 3 months after surgery was associated with the use of ripasudil and baseline IOP (all p < 0.05).
Conclusion:
This study demonstrated the therapeutic efficacy, safety, and tolerability of ripasudil for 3 months postoperatively. Ripasudil may effectively reduce postoperative IOP and increase the success rate of trabeculectomy in patients with uveitic glaucoma.
Collapse
|
19
|
Tanner A, Chan HW, Schiff E, Mahroo OM, Pulido JS. Exploring the mutational landscape of genes associated with inherited retinal disease using large genomic datasets: identifying loss of function intolerance and outlying propensities for missense changes. BMJ Open Ophthalmol 2022; 7:bmjophth-2022-001079. [PMID: 36161854 PMCID: PMC9422814 DOI: 10.1136/bmjophth-2022-001079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/18/2022] [Indexed: 11/11/2022] Open
Abstract
Background Large databases permit quantitative description of genes in terms of intolerance to loss of function (‘haploinsufficiency’) and prevalence of missense variants. We explored these parameters in inherited retinal disease (IRD) genes. Methods IRD genes (from the ‘RetNet’ resource) were classified by probability of loss of function intolerance (pLI) using online Genome Aggregation Database (gnomAD) and DatabasE of genomiC varIation and Phenotype in Humans using Ensembl Resources (DECIPHER) databases. Genes were identified having pLI ≥0.9 together with one or both of the following: upper bound of CI <0.35 for observed to expected (o/e) ratio of loss of function variants in the gnomAD resource; haploinsufficiency score <10 in the DECIPHER resource. IRD genes in which missense variants appeared under-represented or over-represented (Z score for o/e ratio of <−2.99 or >2.99, respectively) were also identified. The genes were evaluated in the gene ontology Protein Analysis THrough Evolutionary Relationships (PANTHER) resource. Results Of 280 analysed genes, 39 (13.9%) were predicted loss of function intolerant. A greater proportion of X-linked than autosomal IRD genes fulfilled these criteria, as expected. Most autosomal genes were associated with dominant disease. PANTHER analysis showed >100 fold enrichment of spliceosome tri-snRNP complex assembly. Most encoded proteins were longer than the median length in the UniProt database. Fourteen genes (11 of which were in the ‘haploinsufficient’ group) showed under-representation of missense variants. Six genes (SAMD11, ALMS1, WFS1, RP1L1, KCNV2, ADAMTS18) showed over-representation of missense variants. Conclusion A minority of IRD-associated genes appear to be ‘haploinsufficient’. Over-representation of spliceosome pathways was observed. When interpreting genetic tests, variants found in genes with over-representation of missense variants should be interpreted with caution.
Collapse
|
20
|
Strickland RG, Garner MA, Gross AK, Girkin CA. Remodeling of the Lamina Cribrosa: Mechanisms and Potential Therapeutic Approaches for Glaucoma. Int J Mol Sci 2022; 23:8068. [PMID: 35897642 PMCID: PMC9329908 DOI: 10.3390/ijms23158068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022] Open
Abstract
Glaucomatous optic neuropathy is the leading cause of irreversible blindness in the world. The chronic disease is characterized by optic nerve degeneration and vision field loss. The reduction of intraocular pressure remains the only proven glaucoma treatment, but it does not prevent further neurodegeneration. There are three major classes of cells in the human optic nerve head (ONH): lamina cribrosa (LC) cells, glial cells, and scleral fibroblasts. These cells provide support for the LC which is essential to maintain healthy retinal ganglion cell (RGC) axons. All these cells demonstrate responses to glaucomatous conditions through extracellular matrix remodeling. Therefore, investigations into alternative therapies that alter the characteristic remodeling response of the ONH to enhance the survival of RGC axons are prevalent. Understanding major remodeling pathways in the ONH may be key to developing targeted therapies that reduce deleterious remodeling.
Collapse
Affiliation(s)
- Ryan G. Strickland
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.S.); (M.A.G.); (A.K.G.)
| | - Mary Anne Garner
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.S.); (M.A.G.); (A.K.G.)
| | - Alecia K. Gross
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.S.); (M.A.G.); (A.K.G.)
| | - Christopher A. Girkin
- Department of Ophthalmology and Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
21
|
Ultrastructural analysis of explanted CyPass microstents and correlation with clinical findings. Graefes Arch Clin Exp Ophthalmol 2022; 260:2663-2673. [PMID: 35262764 PMCID: PMC9325823 DOI: 10.1007/s00417-022-05620-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 11/27/2022] Open
Abstract
Purpose The purpose of this study was to obtain insight into cellular processes after CyPass microstent implantation into the supraciliary space. With this knowledge, we expected to find some reason for surgical failure. Methods Nine CyPass microstents of 8 patients with primary open-angle glaucoma (n = 1), pseudoexfoliation glaucoma (n = 5), uveitic glaucoma (n = 1), and posttraumatic open-angle glaucoma (n = 1) were explanted due to recurrence of IOP elevation, corneal decompensation, or persistent hypotony. The explants were processed for light and transmission electron microscopy. Results Fibrotic material, consisting of collagen fibrils, microfibrils, pseudoexfoliation fibrils produced by activated fibroblasts, was detected in the stent lumen of 4/5 pseudoexfoliation glaucoma patients and also in posttraumatic open-angle glaucoma. Fibrotic material was also present on the outer surface and within fenestrations of the majority of stents. Complete absence of fibrotic reaction was noticed in 3 of 9 microstents. Conclusion Although MIGS is known to be less invasive than conventional surgery, implants placed in the suprachoroidal space may be adversely affected by a fibrotic tissue reaction resulting in implant failure. Understanding mechanisms and risk factors leading to fibrotic scarring following antiglaucomatous surgery may help to develop novel strategies that improve surgical outcome.
Collapse
|
22
|
Fujiya T, Asanuma K, Koike T, Okata T, Saito M, Asano N, Imatani A, Masamune A. Nitric oxide could promote development of Barrett's esophagus by S-nitrosylation-induced inhibition of Rho-ROCK signaling in esophageal fibroblasts. Am J Physiol Gastrointest Liver Physiol 2022; 322:G107-G116. [PMID: 34786954 DOI: 10.1152/ajpgi.00124.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/21/2021] [Indexed: 01/31/2023]
Abstract
Barrett's esophagus arises in the process of wound healing in distal esophageal epithelium damaged by gastroesophageal reflux disease. Differentiation of fibroblast into myofibroblasts, a smooth muscle cell-like phenotype and tissue contraction are crucial processes in wound healing. No study has evaluated mechanism by which luminal esophageal nitric oxide (NO) affect Rho-associated coiled coil-forming protein kinase (Rho-ROCK) signaling pathway, a key factor of tissue contraction, in stromal fibroblasts to develop Barrett's esophagus. Using esophageal fibroblasts, we performed collagen-based cell contraction assays and evaluated influence of Rho-ROCK signaling in the exposure to acidic bile salts and NOC-9, which is an NO donor. We found that enhanced cell contraction induced by acidic bile salts was inhibited by NO, accompanied by decrease in phosphorylated myosin light chain expression and stress fiber formation. NO directly S-nitrosylated GTP-RhoA and consequently blocked Rho-ROCK signaling. Moreover, exposure to NO and Y27632, a Rho-ROCK signaling inhibitor, decreased α-SMA expression and increased bone morphogenetic protein-4 (BMP4) expression and secretion. These findings could account for the increased expression of BMP4 in the columnar epithelial cells and stromal fibroblasts in human Barrett's esophagus. NO could impair wound contraction by blocking the Rho-ROCK signaling pathway and promote the development of Barrett's esophagus.NEW & NOTEWORTHY Barrett's esophagus is the condition where esophageal epithelium damaged by gastroesophageal reflux disease (GERD) is abnormally healed via replacing of metaplastic columnar epithelium, but very few studies have conducted focusing wound healing in the development of Barrett's esophagus. Esophageal luminal nitric oxide inhibits Rho-ROCK signaling pathway in esophageal fibroblasts, which leads to delay tissue contraction, a pivotal step in proper wound healing. Moreover, this inhibition increases tissue BMP4 expression. Impaired wound healing could be related to Barrett's esophagus.
Collapse
Affiliation(s)
- Taku Fujiya
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiyotaka Asanuma
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoki Okata
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiro Saito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoki Asano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Imatani
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
23
|
Exogenous extracellular matrix proteins decrease cardiac fibroblast activation in stiffening microenvironment through CAPG. J Mol Cell Cardiol 2021; 159:105-119. [PMID: 34118218 PMCID: PMC10066715 DOI: 10.1016/j.yjmcc.2021.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022]
Abstract
Controlling fibrosis is an essential part of regenerating the post-ischemic heart. In the post-ischemic heart, fibroblasts differentiate to myofibroblasts that produce collagen-rich matrix to physically stabilize the infarct area. Infarct models in adult mice result in permanent scarring unlike newborn animals which fully regenerate. Decellularized extracellular matrix (dECM) hydrogels derived from early-aged hearts have been shown to be a transplantable therapy that preserves heart function and stimulates cardiomyocyte proliferation and vascularization. In this study, we investigate the anti-fibrotic effects of injectable dECM hydrogels in a cardiac explant model in the context of age-associated tissue compliance. Treatments with adult and fetal dECM hydrogels were tested for molecular effects on cardiac fibroblast activation and fibrosis. Altered sensitivity of fibroblasts to the mechanosignaling of the remodeling microenvironment was evaluated by manipulating the native extracellular matrix in explants and also with elastomeric substrates in the presence of dECM hydrogels. The injectable fetal dECM hydrogel treatment decreases fibroblast activation and contractility and lowers the stiffness-mediated increases in fibroblast activation observed in stiffened explants. The anti-fibrotic effect of dECM hydrogel is most observable at highest stiffness. Experiments with primary cells on elastomeric substrates with dECM treatment support this phenomenon. Transcriptome analysis indicated that dECM hydrogels affect cytoskeleton related signaling including Macrophage capping protein (CAPG) and Leupaxin (LPXN). CAPG was down-regulated by the fetal dECM hydrogel. LPXN expression was decreased by stiffening the explants; however, this effect was reversed by dECM hydrogel treatment. Pharmacological disruption of cytoskeleton polymerization lowered fibroblast activation and CAPG levels. Knocking down CAPG expression with siRNA inhibited fibroblast activation and collagen deposition. Collectively, fibroblast activation is dependent on cooperative action of extracellular molecular signals and mechanosignaling by cytoskeletal integrity.
Collapse
|
24
|
Jiménez-Uribe AP, Gómez-Sierra T, Aparicio-Trejo OE, Orozco-Ibarra M, Pedraza-Chaverri J. Backstage players of fibrosis: NOX4, mTOR, HDAC, and S1P; companions of TGF-β. Cell Signal 2021; 87:110123. [PMID: 34438016 DOI: 10.1016/j.cellsig.2021.110123] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022]
Abstract
The fibrotic process could be easily defined as a pathological excess of extracellular matrix deposition, leading to disruption of tissue architecture and eventually loss of function; however, this process involves a complex network of several signal transduction pathways. Virtually almost all organs could be affected by fibrosis, the most affected are the liver, lung, skin, kidney, heart, and eyes; in all of them, the transforming growth factor-beta (TGF-β) has a central role. The canonical and non-canonical signal pathways of TGF-β impact the fibrotic process at the cellular and molecular levels, inducing the epithelial-mesenchymal transition (EMT) and the induction of profibrotic gene expression with the consequent increase in proteins such as alpha-smooth actin (α-SMA), fibronectin, collagen, and other extracellular matrix proteins. Recently, it has been reported that some molecules that have not been typically associated with the fibrotic process, such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), mammalian target of rapamycin (mTOR), histone deacetylases (HDAC), and sphingosine-1 phosphate (S1P); are critical in its development. In this review, we describe and discuss the role of these new players of fibrosis and the convergence with TGF-β signaling pathways, unveiling new insights into the panorama of fibrosis that could be useful for future therapeutic targets.
Collapse
Affiliation(s)
| | - Tania Gómez-Sierra
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico
| | - Marisol Orozco-Ibarra
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269 Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico.
| |
Collapse
|
25
|
Josyula A, Parikh KS, Pitha I, Ensign LM. Engineering biomaterials to prevent post-operative infection and fibrosis. Drug Deliv Transl Res 2021; 11:1675-1688. [PMID: 33710589 PMCID: PMC8238864 DOI: 10.1007/s13346-021-00955-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/19/2022]
Abstract
Implantable biomaterials are essential surgical devices, extending and improving the quality of life of millions of people globally. Advances in materials science, manufacturing, and in our understanding of the biological response to medical device implantation over several decades have resulted in improved safety and functionality of biomaterials. However, post-operative infection and immune responses remain significant challenges that interfere with biomaterial functionality and host healing processes. The objectives of this review is to provide an overview of the biology of post-operative infection and the physiological response to implanted biomaterials and to discuss emerging strategies utilizing local drug delivery and surface modification to improve the long-term safety and efficacy of biomaterials.
Collapse
Affiliation(s)
- Aditya Josyula
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kunal S Parikh
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Center for Bioengineering Innovation and Design, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ian Pitha
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, 21287, USA.
- Departments Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
26
|
Al-Humimat G, Marashdeh I, Daradkeh D, Kooner K. Investigational Rho Kinase Inhibitors for the Treatment of Glaucoma. J Exp Pharmacol 2021; 13:197-212. [PMID: 33664600 PMCID: PMC7921633 DOI: 10.2147/jep.s259297] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/07/2021] [Indexed: 01/27/2023] Open
Abstract
This review provides a comprehensive update on emerging ROCK inhibitors as an innovative treatment option for lowering intraocular pressure (IOP) in glaucoma and aims to describe the structure, mechanism of action, pharmaceutical characteristics, desirable ocular effects, including side effects for each agent. A literature review was conducted using PubMed, Scopus, clinicaltrials.gov, ARVO journals, Cochrane library and Selleckchem. Databases were searched using "investigational Rho kinase inhibitors," and "glaucoma" as keywords. In addition to this building block strategy, successive fractions were employed to further refine the results. Of the several ROCK inhibitors discovered, only two drugs are currently approved for glaucoma treatment; Netarsudil in the USA and Ripasudil in Japan and China. We identified and reviewed 15 agents currently in laboratory or clinical trials. These agents lower IOP mainly by decreasing outflow resistance through pharmacologic relaxation of the trabecular meshwork (TM) cells and reducing episcleral venous pressure. They have an optimistic safety profile; however, conjunctival hyperemia, conjunctival hemorrhage, pain on instillation, and corneal verticillata are common. Other properties such as neuroprotection (enhancing optic nerve blood flow and promoting axonal regeneration), anti-fibrotic activity, and endothelial cell proliferation may improve the visual prognosis and surgical outcomes in glaucoma. In addition, these agents have the potential to work synergistically with other topical glaucoma medications.
Collapse
Affiliation(s)
- Ghadeer Al-Humimat
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Ophthalmology, King Hussein Medical Center, Amman, Jordan
| | - Ibtisam Marashdeh
- Department of Ophthalmology, King Hussein Medical Center, Amman, Jordan
| | - Duaa Daradkeh
- Department of Ophthalmology, King Hussein Medical Center, Amman, Jordan
| | - Karanjit Kooner
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Ophthalmology, Veteran Affairs North Texas Health Care System Medical Center Dallas, Dallas, TX, USA
| |
Collapse
|
27
|
Erb C, Konieczka K. [Rho kinase inhibitors as new local therapy option in primary open angle glaucoma]. Ophthalmologe 2021; 118:449-460. [PMID: 33403458 DOI: 10.1007/s00347-020-01303-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND In 2014 in Japan and 2017 in the USA, the Rho-kinase inhibitors were approved as a new antiglaucomatous substance group and will now be launched in Europe. OBJECTIVE On this occasion the current state of knowledge on Rho-kinase inhibitors is presented. METHODS In intensive search in PubMed the relevant experimental and clinical literature on the Rho-kinase inhibitors ripasudil and netarsudil and the combination of netarsudil and latanoprost were selected and compiled for this review. RESULTS The intraocular pressure lowering efficacy of ripasudil and netarsudil is in the range of the beta blocker timolol and the prostaglandin analogue latanoprost. In the fixed combination netarsudil/latanoprost the intraocular pressure reduction is greater than that of the single components and reaches a target pressure of below 15 mm Hg in 32%. Conjunctival hyperemia with 53-65% is the most common local side effect. Systemic side effects are very rare and so far there are no contraindications. CONCLUSION The Rho-kinase inhibitors are an interesting new introduction for glaucoma therapy, as each new pressure-lowering therapy represents an additional chance to reach the individually defined target pressure level in a glaucoma patient with local therapy; however, many of the pleiotropic effects associated with Rho-kinase inhibitors have so far only been found experimentally and will require clinical confirmation in the future.
Collapse
Affiliation(s)
- C Erb
- Augenklinik am Wittenbergplatz, Kleiststr. 23-26, 10787, Berlin, Deutschland.
| | - K Konieczka
- Augenklinik, Universitätsspital, Mittlere Straße 91, 4056, Basel, Schweiz
| |
Collapse
|
28
|
Szeto J, Chow A, McCrea L, Mozzer A, Nguyen TD, Quigley HA, Pitha I. Regional Differences and Physiologic Behaviors in Peripapillary Scleral Fibroblasts. Invest Ophthalmol Vis Sci 2021; 62:27. [PMID: 33502460 PMCID: PMC7846956 DOI: 10.1167/iovs.62.1.27] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose The purpose of this study was to describe the cellular architecture of normal human peripapillary sclera (PPS) and evaluate surface topography's role in fibroblast behavior. Methods PPS cryosections from nonglaucomatous eyes were labelled for nuclei, fibrillar actin (FA), and alpha smooth muscle actin (αSMA) and imaged. Collagen fibrils were imaged using second harmonic generation. Nuclear density and aspect ratio of the internal PPS (iPPS), outer PPS (oPPS), and peripheral sclera were determined. FA and αSMA fibril alignment with collagen extracellular matrix (ECM) was determined. PPS fibroblasts were cultured on smooth or patterned membranes under mechanical strain and in the presence of TGFβ1 and 2. Results The iPPS (7.1 ± 2.0 × 10−4, P < 0.0001) and oPPS (5.3 ± 1.4 × 10−4, P = 0.0013) had greater nuclei density (nuclei/µm2) than peripheral sclera (2.5 ± 0.8 × 10−4). The iPPS (2.0 ± 0.3, P = 0.002) but not oPPS (2.4 ± 0.4, P = 0.45) nuclei had smaller aspect ratios than peripheral (2.7 ± 0.5) nuclei. FA was present throughout the scleral stroma and was more aligned with oPPS collagen (9.6 ± 1.9 degrees) than in the peripheral sclera (15.9 ± 3.9 degrees, P =0.002). The αSMA fibers in the peripheral sclera were less aligned with collagen fibrils (26.4 ± 4.8 degrees) than were FA (15.9 ± 3.9 degrees, P = 0.0002). PPS fibroblasts cultured on smooth membranes shifted to an orientation perpendicular to the direction of cyclic uniaxial strain (1 Hz, 5% strain, 42.2 ± 7.1 degrees versus 62.0 ± 8.5 degrees, P < 0.0001), whereas aligned fibroblasts on patterned membranes were resistant to strain-induced reorientation (5.9 ± 1.4 degrees versus 10 ± 3.3 degrees, P = 0.21). Resistance to re-orientation was reduced by TGFβ treatment (10 ± 3.3 degrees without TGFβ1 compared to 23.1 ± 4.5 degrees with TGFβ1, P < 0.0001). Conclusions Regions of the posterior sclera differ in cellular density and nuclear morphology. Topography alters the cellular response to mechanical strain.
Collapse
Affiliation(s)
- Julia Szeto
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Amanda Chow
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Liam McCrea
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Ann Mozzer
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Thao D Nguyen
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Harry A Quigley
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Ian Pitha
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
29
|
Hu D, Jiang J, Lin Z, Zhang C, Moonasar N, Qian S. Identification of key genes and pathways in scleral extracellular matrix remodeling in glaucoma: Potential therapeutic agents discovered using bioinformatics analysis. Int J Med Sci 2021; 18:1554-1565. [PMID: 33746571 PMCID: PMC7976561 DOI: 10.7150/ijms.52846] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Glaucoma is a leading cause of irreversible blindness. Remodeling of the scleral extracellular matrix (ECM) plays an important role in the development of glaucoma. The aim of this study was to identify the key genes and pathways for the ECM remodeling of sclera in glaucoma by bioinformatics analysis and to explore potential therapeutic agents for glaucoma management. Methods: Genes associated with glaucoma, sclera and ECM remodeling were detected using the text mining tool pubmed2ensembl, and assigned Gene Ontology (GO) biological process terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways using the GeneCodis program. A protein-protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape, module analysis was performed using the Molecular Complex Detection (MCODE) plugin, and GO and KEGG analyses of the gene modules were performed using the Database of Annotation, Visualization and Integrated Discovery (DAVID) platform. The genes that clustered in the significant module were selected as core genes, and functions and pathways of the core genes were visualized using ClueGO and CluePedia. Lastly, the drug-gene interaction database was used to explore drug-gene interactions of the core genes to find drug candidates for glaucoma. Results: We identified 125 genes common to "Glaucoma", "Sclera", and "ECM remodeling" by text mining. Gene functional enrichment analysis yielded 30 enriched GO terms and 20 associated KEGG pathways. A PPI network that included 60 nodes with 249 edges was constructed, and three gene modules were obtained using the MCODE. We selected 13 genes that clustered in module 1 as core candidate genes that were associated mainly with ECM degradation and cell proliferation and division. The HIF-1 signaling pathway, FOXO signaling pathway, PI3K-Akt signaling pathway and TGFB signaling pathway were found to be enriched. We found that 11 of the 13 selected genes could be targeted by 26 existing drugs. Conclusions: The results showed that VEGFA, TGFB1, TGFB2, TGFB3, IGF2, IGF1, EGF, FN1, KNG1, TIMP1, SERPINE1, THBS1, and VWF were potential key genes involved to scleral ECM remodeling. Furthermore, 26 drugs were identified as potential therapeutic agents for glaucoma treatment and management.
Collapse
Affiliation(s)
- Di Hu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junhong Jiang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhong Lin
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cong Zhang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | - Shaohong Qian
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
30
|
AR12286 Alleviates TGF-β-Related Myofibroblast Transdifferentiation and Reduces Fibrosis after Glaucoma Filtration Surgery. Molecules 2020; 25:molecules25194422. [PMID: 32993110 PMCID: PMC7583051 DOI: 10.3390/molecules25194422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/27/2020] [Accepted: 09/24/2020] [Indexed: 11/29/2022] Open
Abstract
Scar formation can cause the failure of glaucoma filtration surgery. We investigated the effect of AR12286, a selective Rho-associated kinase inhibitor, on myofibroblast transdifferentiation and intraocular pressure assessment in rabbit glaucoma filtration surgery models. Cell migration and collagen contraction were used to demonstrate the functionality of AR12286-modulated human conjunctival fibroblasts (HConFs). Polymerase chain reaction quantitative analysis was used to determine the effect of AR12286 on the production of collagen Type 1A1 and fibronectin 1. Cell migration and collagen contraction in HConFs were activated by TGF-β1. However, compared with the control group, rabbit models treated with AR12286 exhibited higher reduction in intraocular pressure after filtration surgery, and decreased collagen levels at the wound site in vivo. Therefore, increased α-SMA expression in HConFs induced by TGF-β1 could be inhibited by AR12286, and the production of Type 1A1 collagen and fibronectin 1 in TGF-β1-treated HConFs was inhibited by AR12286. Overall, the stimulation of HConFs by TGF-β1 was alleviated by AR12286, and this effect was mediated by the downregulation of TGF-β receptor-related SMAD signaling pathways. In vivo results indicated that AR12286 thus improves the outcome of filtration surgery as a result of its antifibrotic action in the bleb tissue because AR12286 inhibited the TGF-β receptor-related signaling pathway, suppressing several downstream reactions in myofibroblast transdifferentiation.
Collapse
|
31
|
Mietzner R, Kade C, Froemel F, Pauly D, Stamer WD, Ohlmann A, Wegener J, Fuchshofer R, Breunig M. Fasudil Loaded PLGA Microspheres as Potential Intravitreal Depot Formulation for Glaucoma Therapy. Pharmaceutics 2020; 12:pharmaceutics12080706. [PMID: 32727014 PMCID: PMC7464914 DOI: 10.3390/pharmaceutics12080706] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Rho-associated protein kinase (ROCK) inhibitors allow for causative glaucoma therapy. Unfortunately, topically applied ROCK inhibitors suffer from high incidence of hyperemia and low intraocular bioavailability. Therefore, we propose the use of poly (lactide-co-glycolide) (PLGA) microspheres as a depot formulation for intravitreal injection to supply outflow tissues with the ROCK inhibitor fasudil over a prolonged time. Fasudil-loaded microspheres were prepared by double emulsion solvent evaporation technique. The chemical integrity of released fasudil was confirmed by mass spectrometry. The biological activity was measured in cell-based assays using trabecular meshwork cells (TM cells), Schlemm’s canal cells (SC cells), fibroblasts and adult retinal pigment epithelium cells (ARPE-19). Cellular response to fasudil after its diffusion through vitreous humor was investigated by electric cell-substrate impedance sensing. Microspheres ranged in size from 3 to 67 µm. The release of fasudil from microspheres was controllable and sustained for up to 45 days. Released fasudil reduced actin stress fibers in TM cells, SC cells and fibroblasts. Decreased collagen gel contraction provoked by fasudil was detected in TM cells (~2.4-fold), SC cells (~1.4-fold) and fibroblasts (~1.3-fold). In addition, fasudil readily diffused through vitreous humor reaching its target compartment and eliciting effects on TM cells. No negative effects on ARPE-19 cells were observed. Since fasudil readily diffuses through the vitreous humor, we suggest that an intravitreal drug depot of ROCK inhibitors could significantly improve current glaucoma therapy particularly for patients with comorbid retinal diseases.
Collapse
Affiliation(s)
- Raphael Mietzner
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany;
| | - Christian Kade
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany; (C.K.); (J.W.)
| | - Franziska Froemel
- Department of Human Anatomy and Embryology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany; (F.F.); (R.F.)
| | - Diana Pauly
- Experimental Ophthalmology, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany;
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA;
| | - Andreas Ohlmann
- Department of Ophthalmology, Ludwig-Maximilians-University Munich, Mathildenstrasse 8, 80336 Munich, Germany;
| | - Joachim Wegener
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany; (C.K.); (J.W.)
- Fraunhofer Research Institution for Microsystems and Solid State Technologies EMFT, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - Rudolf Fuchshofer
- Department of Human Anatomy and Embryology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany; (F.F.); (R.F.)
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany;
- Correspondence: ; Tel.: +49-(0)-941-943-4828
| |
Collapse
|
32
|
Akiyama G, Saraswathy S, Bogarin T, Pan X, Barron E, Wong TT, Kaneko MK, Kato Y, Hong Y, Huang AS. Functional, structural, and molecular identification of lymphatic outflow from subconjunctival blebs. Exp Eye Res 2020; 196:108049. [PMID: 32387381 PMCID: PMC7328765 DOI: 10.1016/j.exer.2020.108049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/05/2020] [Accepted: 04/27/2020] [Indexed: 01/26/2023]
Abstract
The purpose of this study is to evaluate outflow pathways from subconjunctival blebs and to identify their identity. Post-mortem porcine (n = 20), human (n = 1), and bovine (n = 1) eyes were acquired, and tracers (fluorescein, indocyanine green, or fixable/fluorescent dextrans) were injected into the subconjunctival space to create raised blebs where outflow pathways were visualized qualitatively and quantitatively. Rodents with fluorescent reporter transgenes were imaged for structural comparison. Concurrent optical coherence tomography (OCT) was obtained to study the structural nature of these pathways. Using fixable/fluorescent dextrans, tracers were trapped to the bleb outflow pathway lumen walls for histological visualization and molecular identification using immunofluorescence against lymphatic and blood vessel markers. Bleb outflow pathways could be observed using all tracers in all species. Quantitative analysis showed that the nasal quadrant had more bleb-related outflow pathways compared to the temporal quadrant (nasal: 1.9±0.3 pathways vs. temporal: 0.7±0.2 pathways; p = 0.003). However, not all blebs resulted in an outflow pathway (0-pathways = 18.2%; 1-pathway = 36.4%; 2-pathways = 38.6%; and 3-pathways = 6.8%). Outflow signal was validated as true luminal pathways using optical coherence tomography and histology. Bicuspid valves were identified in the direction of flow in porcine eyes. Immunofluorescence of labeled pathways demonstrated a lymphatic (Prox-1 and podoplanin) but not a blood vessel (CD31) identity. Therefore, subconjunctival bleb outflow occurs in discrete luminal pathways. They are lymphatic as assessed by structural identification of valves and molecular identification of lymphatic markers. Better understanding of lymphatic outflow may lead to improved eye care for glaucoma surgery and ocular drug delivery.
Collapse
Affiliation(s)
- Goichi Akiyama
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Jikei School of Medicine, Tokyo, Japan
| | - Sindhu Saraswathy
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Thania Bogarin
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xiaojing Pan
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong First Medical University, Qingdao, China
| | - Ernesto Barron
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tina T Wong
- Singapore National Eye Center and Singapore Research Institute, Singapore, Singapore
| | - Mika K Kaneko
- Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yukinari Kato
- Tohoku University Graduate School of Medicine, Miyagi, Japan; New Industry Creation Hatchery Center, Tohoku University, Miyagi, Japan
| | - Young Hong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alex S Huang
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
33
|
de Oliveira CM, Ferreira JDLM. Overview of cicatricial modulators in glaucoma fistulizing surgery. Int Ophthalmol 2020; 40:2789-2796. [DOI: 10.1007/s10792-020-01454-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
|
34
|
Xie Y, Ouyang X, Wang G. Mechanical strain affects collagen metabolism-related gene expression in scleral fibroblasts. Biomed Pharmacother 2020; 126:110095. [PMID: 32217440 DOI: 10.1016/j.biopha.2020.110095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022] Open
Abstract
We previously demonstrated that collagen metabolism affects scleral mechanical properties and scleral remodeling. Scleral remodeling changes the mechanical strain on sclera and scleral fibroblasts. We postulated that mechanical strain changes affect collagen metabolism in scleral fibroblasts. To understand the differences in collagen metabolism in scleral fibroblasts related to mechanical strain changes, scleral fibroblasts were isolated and cultured under different mechanical strains using the FX-4000 system or were treated with the TGF-β1 and TGFBR1 inhibitor LY364947. The collagen metabolism-related gene expression levels were detected. The results showed that the appropriate (lower) mechanical strain improved collagen synthesis and reduced collagen decomposition. In contrast, higher mechanical strain reduced collagen synthesis and enhanced collagen decomposition, especially a sustained higher strain. Furthermore, the effect of a transitory higher strain was recoverable, and collagen metabolism in scleral fibroblasts was regulated by TGF-β1. These results suggested that mechanical strain mediates TGF-β1 expression to regulate collagen metabolism in scleral fibroblasts, thereby affect scleral tissue remodeling.
Collapse
Affiliation(s)
- Yongfang Xie
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Xinli Ouyang
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Guohui Wang
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
35
|
Chen W, Yang X, Fang J, Zhang Y, Zhu W, Yang X. Rho-Associated Protein Kinase Inhibitor Treatment Promotes Proliferation and Phagocytosis in Trabecular Meshwork Cells. Front Pharmacol 2020; 11:302. [PMID: 32256367 PMCID: PMC7090161 DOI: 10.3389/fphar.2020.00302] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/28/2020] [Indexed: 02/02/2023] Open
Abstract
Purpose Continuous reductions in trabecular meshwork (TM) cellularity inhibit aqueous humor (AH) outflow, which is the main cause of primary open-angle glaucoma. Rho-associated protein kinase inhibitor (ROCKi) targets the TM to reduce intraocular pressure (IOP) and increase AH outflow facility. However, the underlying mechanisms are not entirely clear. Here, we aimed to investigate the effect of a ROCKi (Y-27632) on TM cell proliferation and phagocytosis. Methods Immortalized human TM (iHTM) cells, glaucomatous TM (GTM3) cells, and primary human TM (pTM) cells were cultured and identified. The effects of various concentrations of Y-27632 on F-actin cytoskeleton were assessed using immunofluorescence. Cell proliferation effects were evaluated using a cell counting kit-8 (CCK8), cell counting, and Ki67 immunostaining. Cell phagocytosis was evaluated using immunofluorescence and flow cytometry in immortalized TM cells. C57BL/6J and Tg-MYOCY437H mice were used to investigate the proliferative effects of Y-27632 on TM cells in vivo. The effect of Y-27632 on IOP was monitored for 2 weeks, and the outflow facility was detected 2 weeks after IOP measurement. TM cells in mice were counted using immunohistochemistry. Results Y-27632 (100 μM) significantly promoted the proliferation of both immortal TM cells and pTM cells. In GTM3 cells, phagocytosis was significantly greater in the Y-27632 group than in the control group, nearly reaching the level of phagocytosis in iHTM, as determined using immunofluorescence and flow cytometry. In Tg-MYOCY437H mice, treatment with Y-27632 significantly decreased IOP and increased outflow facility, which greatly influenced the long-term IOP-lowering effect. The number of TM cells in Tg-MYOCY437H mice was significantly improved after Y-27632 administration. Conclusion Y-27632 promoted cell proliferation and phagocytosis of TM cells, and its proliferative effect was demonstrated in a transgenic mouse model. These results revealed a new IOP-lowering mechanism of Y-27632 through effects on TM cells, suggesting the potential for a correlation between TM cellularity and long-term recovery of IOP.
Collapse
Affiliation(s)
- Wenshi Chen
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuejiao Yang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingwang Fang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yuqing Zhang
- Department of Ophthalmology, Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xian Yang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
36
|
Chow A, McCrea L, Kimball E, Schaub J, Quigley H, Pitha I. Dasatinib inhibits peripapillary scleral myofibroblast differentiation. Exp Eye Res 2020; 194:107999. [PMID: 32179077 DOI: 10.1016/j.exer.2020.107999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/11/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Scleral fibroblast activation occurs in glaucomatous and myopic eyes. Here we perform an unbiased screen to identify kinase inhibitors that reduce fibroblast activation to diverse stimuli in vitro and to in vivo intraocular pressure (IOP) elevation. Primary cultures of peripapillary scleral (PPS) fibroblasts from two human donors were screened using a library of 80 kinase inhibitors to identify compounds that inhibit TGFβ-induced extracellular matrix (ECM) synthesis. Inhibition of myofibroblast differentiation was verified by alpha smooth muscle actin (αSMA) immunoblot and collagen contraction assay. Inhibition of IOP-induced scleral fibroblast proliferation was assessed by ELISA assay for proliferating cell nuclear antigen (PCNA). The initial screen identified 7 inhibitors as showing>80% reduction in ECM binding. Three kinase inhibitors were verified to reduce TGFβ-induced αSMA expression and cellular contractility (rottlerin, PP2, tyrphostin 9). The effect of three Src inhibitors, bosutinib, dasatinib, and SU-6656, on myofibroblast differentiation was evaluated, with only dasatinib significantly inhibiting TGFβ-induced ECM synthesis, αSMA expression, and cellular contractility at nanomolar dosages. Subconjunctival injection of dasatinib reduced IOP-induced scleral fibroblast proliferation compared to control (4.9 ± 11.1 ng/sclera with 0.1 μM versus 88.7 ± 38.6 ng/sclera in control, P < 0.0001). Dasatinib inhibits scleral myofibroblast differentiation and there is pharmacologic evidence that this inhibition is not solely due to Src-kinase inhibition.
Collapse
Affiliation(s)
- Amanda Chow
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Liam McCrea
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Elizabeth Kimball
- Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Julie Schaub
- Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Harry Quigley
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ian Pitha
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
37
|
Boote C, Sigal IA, Grytz R, Hua Y, Nguyen TD, Girard MJA. Scleral structure and biomechanics. Prog Retin Eye Res 2019; 74:100773. [PMID: 31412277 DOI: 10.1016/j.preteyeres.2019.100773] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
Abstract
As the eye's main load-bearing connective tissue, the sclera is centrally important to vision. In addition to cooperatively maintaining refractive status with the cornea, the sclera must also provide stable mechanical support to vulnerable internal ocular structures such as the retina and optic nerve head. Moreover, it must achieve this under complex, dynamic loading conditions imposed by eye movements and fluid pressures. Recent years have seen significant advances in our knowledge of scleral biomechanics, its modulation with ageing and disease, and their relationship to the hierarchical structure of the collagen-rich scleral extracellular matrix (ECM) and its resident cells. This review focuses on notable recent structural and biomechanical studies, setting their findings in the context of the wider scleral literature. It reviews recent progress in the development of scattering and bioimaging methods to resolve scleral ECM structure at multiple scales. In vivo and ex vivo experimental methods to characterise scleral biomechanics are explored, along with computational techniques that combine structural and biomechanical data to simulate ocular behaviour and extract tissue material properties. Studies into alterations of scleral structure and biomechanics in myopia and glaucoma are presented, and their results reconciled with associated findings on changes in the ageing eye. Finally, new developments in scleral surgery and emerging minimally invasive therapies are highlighted that could offer new hope in the fight against escalating scleral-related vision disorder worldwide.
Collapse
Affiliation(s)
- Craig Boote
- Structural Biophysics Research Group, School of Optometry & Vision Sciences, Cardiff University, UK; Ophthalmic Engineering & Innovation Laboratory (OEIL), Department of Biomedical Engineering, National University of Singapore, Singapore; Newcastle Research & Innovation Institute Singapore (NewRIIS), Singapore.
| | - Ian A Sigal
- Laboratory of Ocular Biomechanics, Department of Ophthalmology, University of Pittsburgh, USA
| | - Rafael Grytz
- Department of Ophthalmology & Visual Sciences, University of Alabama at Birmingham, USA
| | - Yi Hua
- Laboratory of Ocular Biomechanics, Department of Ophthalmology, University of Pittsburgh, USA
| | - Thao D Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, USA
| | - Michael J A Girard
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Department of Biomedical Engineering, National University of Singapore, Singapore; Singapore Eye Research Institute (SERI), Singapore National Eye Centre, Singapore
| |
Collapse
|
38
|
Rago F, Melo EM, Kraemer L, Galvão I, Cassali GD, Santos RAS, Russo RC, Teixeira MM. Effect of preventive or therapeutic treatment with angiotensin 1–7 in a model of bleomycin‐induced lung fibrosis in mice. J Leukoc Biol 2019; 106:677-686. [DOI: 10.1002/jlb.ma1218-490rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Flávia Rago
- Laboratório de ImunofarmacologiaDepartamento de Bioquímica e ImunologiaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Eliza Mathias Melo
- Laboratório de ImunofarmacologiaDepartamento de Bioquímica e ImunologiaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Lucas Kraemer
- Laboratorio de Imunologia e Mecânica PulmonarDepartamento de Fisiologia e BiofísicaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Izabela Galvão
- Laboratório de ImunofarmacologiaDepartamento de Bioquímica e ImunologiaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Geovanni D. Cassali
- Departamento de Patologia GeralUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Robson A. S. Santos
- Departamento de Fisiologia e BiofísicaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Remo C. Russo
- Laboratorio de Imunologia e Mecânica PulmonarDepartamento de Fisiologia e BiofísicaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Mauro Martins Teixeira
- Laboratório de ImunofarmacologiaDepartamento de Bioquímica e ImunologiaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
- Centro de Desenvolvimento de FármacosInstituto de Ciências BiológicasUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| |
Collapse
|
39
|
Abbasgholizadeh R, Zhang H, Craft JW, Bryan RM, Bark SJ, Briggs JM, Fox RO, Agarkov A, Zimmer WE, Gilbertson SR, Schwartz RJ. Discovery of vascular Rho kinase (ROCK) inhibitory peptides. Exp Biol Med (Maywood) 2019; 244:940-951. [PMID: 31132884 DOI: 10.1177/1535370219849581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Reza Abbasgholizadeh
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA.,2 Texas Medical Center, Texas Heart Institute, Houston, TX 77024, USA
| | - Hua Zhang
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA
| | - John W Craft
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA.,2 Texas Medical Center, Texas Heart Institute, Houston, TX 77024, USA
| | - Robert M Bryan
- 3 Department of Anesthesiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven J Bark
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA
| | - James M Briggs
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA
| | - Robert O Fox
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA
| | - Anton Agarkov
- 4 Department of Chemistry, University of Houston, Houston, TX 77024, USA
| | - Warren E Zimmer
- 5 Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Scott R Gilbertson
- 4 Department of Chemistry, University of Houston, Houston, TX 77024, USA
| | - Robert J Schwartz
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA.,2 Texas Medical Center, Texas Heart Institute, Houston, TX 77024, USA
| |
Collapse
|