1
|
Huo J, Yang HQ. Electrophysiological analysis of cardiac K ATP channel. BIOPHYSICS REPORTS 2025; 11:77-86. [PMID: 40308939 PMCID: PMC12035747 DOI: 10.52601/bpr.2024.240023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/23/2024] [Indexed: 05/02/2025] Open
Abstract
ATP-sensitive potassium (KATP) channels are integral components in excitable cells, particularly in cardiomyocytes, serving as critical regulators of cellular metabolism and electrical excitability. In instances of prolonged oxygen deprivation or heightened metabolic requirements, the opening of KATP channels enables potassium efflux by virtue of a diminished ATP/ADP ratio. This process aids in maintaining membrane potential stability, thereby mitigating excessive excitability and cellular contraction, ultimately contributing significantly to cardiac protection. The accurate isolation of intact single cardiomyocytes and the electrophysiological evaluation of KATP channels are pivotal processes in research on KATP channels in cardiomyocytes in vitro. Here, we present a comprehensive protocol not only for the efficient isolation of viable cardiomyocytes from the adult mouse through the Langendorff perfusion method, but also for the recording of KATP channel currents in single cardiomyocytes employing patch clamp technique.
Collapse
Affiliation(s)
- Jianyi Huo
- Cyrus Tang Medical Institute, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hua-Qian Yang
- Cyrus Tang Medical Institute, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
2
|
Bowen RM, York NW, Padawer-Curry J, Bauer AQ, Lee JM, Nichols CG. Control of neurovascular coupling by ATP-sensitive potassium channels. J Cereb Blood Flow Metab 2025:271678X251313906. [PMID: 39819176 PMCID: PMC11748405 DOI: 10.1177/0271678x251313906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025]
Abstract
Regional blood flow within the brain is tightly coupled to regional neuronal activity, a process known as neurovascular coupling (NVC). In this study, we demonstrate the striking role of SUR2- and Kir6.1-dependent ATP-sensitive potassium (KATP) channels in control of NVC in the sensory cortex of conscious mice, in response to mechanical stimuli. We demonstrate that either globally increased (pinacidil-activated) or decreased (glibenclamide-inhibited) KATP activity markedly disrupts NVC; pinacidil-activation is capable of completely abolishing stimulus-evoked cortical hemodynamic responses, while glibenclamide slows and reduces the response. The response is similarly slowed and reduced in SUR2 KO animals, while animals expressing gain-of-function (GOF) mutations in Kir6.1, which underlie Cantú syndrome, exhibit baseline reduction of NVC as well as increased sensitivity to pinacidil. In revealing the dramatic effects of either increasing or decreasing SUR2/Kir6.1-dependent KATP activity on NVC, whether pharmacologically or genetically induced, the study has important implications both for monogenic KATP channel diseases and for more common brain pathologies.
Collapse
Affiliation(s)
- Ryan M Bowen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Nathaniel W York
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA
- Center for the Investigation of Membrane Excitability and Diseases, Washington University in St. Louis, St. Louis, MO, USA
| | - Jonah Padawer-Curry
- Imaging Sciences PhD Program, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Adam Q Bauer
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA
- Center for the Investigation of Membrane Excitability and Diseases, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Hanson A, McClenaghan C, Weng KC, Colijn S, Stratman AN, Halabi CM, Grange DK, Silva JR, Nichols CG. Electrophysiology of Human iPSC-derived Vascular Smooth Muscle Cells and Cell-autonomous Consequences of Cantú Syndrome Mutations. FUNCTION 2024; 5:zqae027. [PMID: 38984978 PMCID: PMC11388097 DOI: 10.1093/function/zqae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
Cantú syndrome (CS), a multisystem disease with a complex cardiovascular phenotype, is caused by gain-of-function (GoF) variants in the Kir6.1/SUR2 subunits of ATP-sensitive potassium (KATP) channels and is characterized by low systemic vascular resistance, as well as tortuous, dilated, vessels, and decreased pulse-wave velocity. Thus, CS vascular dysfunction is multifactorial, with both hypomyotonic and hyperelastic components. To dissect whether such complexities arise cell autonomously within vascular smooth muscle cells (VSMCs) or as secondary responses to the pathophysiological milieu, we assessed electrical properties and gene expression in human induced pluripotent stem cell-derived VSMCs (hiPSC-VSMCs), differentiated from control and CS patient-derived hiPSCs, and in native mouse control and CS VSMCs. Whole-cell voltage clamp of isolated aortic and mesenteric arterial VSMCs isolated from wild-type (WT) and Kir6.1[V65M] (CS) mice revealed no clear differences in voltage-gated K+ (Kv) or Ca2+ currents. Kv and Ca2+ currents were also not different between validated hiPSC-VSMCs differentiated from control and CS patient-derived hiPSCs. While pinacidil-sensitive KATP currents in control hiPSC-VSMCs were similar to those in WT mouse VSMCs, they were considerably larger in CS hiPSC-VSMCs. Under current-clamp conditions, CS hiPSC-VSMCs were also hyperpolarized, consistent with increased basal K conductance and providing an explanation for decreased tone and decreased vascular resistance in CS. Increased compliance was observed in isolated CS mouse aortae and was associated with increased elastin mRNA expression. This was consistent with higher levels of elastin mRNA in CS hiPSC-VSMCs and suggesting that the hyperelastic component of CS vasculopathy is a cell-autonomous consequence of vascular KATP GoF. The results show that hiPSC-VSMCs reiterate expression of the same major ion currents as primary VSMCs, validating the use of these cells to study vascular disease. Results in hiPSC-VSMCs derived from CS patient cells suggest that both the hypomyotonic and hyperelastic components of CS vasculopathy are cell-autonomous phenomena driven by KATP overactivity within VSMCs .
Collapse
Affiliation(s)
- Alex Hanson
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kuo-Chan Weng
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Sarah Colijn
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amber N Stratman
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carmen M Halabi
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Dorothy K Grange
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Metwally E, Sanchez Solano A, Lavanderos B, Yamasaki E, Thakore P, McClenaghan C, Rios N, Radi R, Feng Earley Y, Nichols CG, Earley S. Mitochondrial Ca2+-coupled generation of reactive oxygen species, peroxynitrite formation, and endothelial dysfunction in Cantú syndrome. JCI Insight 2024; 9:e176212. [PMID: 39088268 PMCID: PMC11385080 DOI: 10.1172/jci.insight.176212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Cantú syndrome is a multisystem disorder caused by gain-of-function (GOF) mutations in KCNJ8 and ABCC9, the genes encoding the pore-forming inward rectifier Kir6.1 and regulatory sulfonylurea receptor SUR2B subunits, respectively, of vascular ATP-sensitive K+ (KATP) channels. In this study, we investigated changes in the vascular endothelium in mice in which Cantú syndrome-associated Kcnj8 or Abcc9 mutations were knocked in to the endogenous loci. We found that endothelium-dependent dilation was impaired in small mesenteric arteries from Cantú mice. Loss of endothelium-dependent vasodilation led to increased vasoconstriction in response to intraluminal pressure or treatment with the adrenergic receptor agonist phenylephrine. We also found that either KATP GOF or acute activation of KATP channels with pinacidil increased the amplitude and frequency of wave-like Ca2+ events generated in the endothelium in response to the vasodilator agonist carbachol. Increased cytosolic Ca2+ signaling activity in arterial endothelial cells from Cantú mice was associated with elevated mitochondrial [Ca2+] and enhanced reactive oxygen species (ROS) and peroxynitrite levels. Scavenging intracellular or mitochondrial ROS restored endothelium-dependent vasodilation in the arteries of mice with KATP GOF mutations. We conclude that mitochondrial Ca2+ overload and ROS generation, which subsequently leads to nitric oxide consumption and peroxynitrite formation, cause endothelial dysfunction in mice with Cantú syndrome.
Collapse
Affiliation(s)
- Elsayed Metwally
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Alfredo Sanchez Solano
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Boris Lavanderos
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Evan Yamasaki
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Conor McClenaghan
- Departments of Pharmacology and Medicine, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Natalia Rios
- Departamento de Bioquímica, Facultad de Medicina, and
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, and
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Yumei Feng Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases and Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
5
|
Daas F, Gupta P, Kiblawi F. Multiple vascular anomalies and refractory pericardial effusion in a young patient with Cantu syndrome: a case report and review of the literature. BMC Pediatr 2023; 23:644. [PMID: 38114927 PMCID: PMC10731865 DOI: 10.1186/s12887-023-04446-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Cantu syndrome is a rare and complex multisystem disorder characterized by hypertrichosis, facial dysmorphism, osteochondroplasia and cardiac abnormalities. With only 150 cases reported worldwide, Cantu syndrome is now gaining wider recognition due to molecular testing and a growing body of literature that further characterizes the syndrome and some of its most important features. Cardiovascular pathology previously described in the literature include cardiomegaly, pericardial effusion, vascular dilation and tortuosity, and other congenital heart defects. However, cardiovascular involvement is highly variable amongst individuals with Cantu syndrome. In some instances, it can be extensive and severe requiring surgical management and long term follow up. CASE PRESENTATION Herein we report a case of a fourteen-year-old female who presented with worsening pericardial effusion of unknown etiology, and echocardiographic findings of concentric left ventricular hypertrophy, a mildly dilated aortic root and ascending aorta. Her medical history was notable for hemoptysis and an episode of pulmonary hemorrhage secondary to multiple aortopulmonary collaterals that were subsequently embolized in early childhood. She was initially managed with Ibuprofen and Colchicine but continued to worsen, and ultimately required a pericardial window for the management of refractory pericardial effusion. Imaging studies obtained on subsequent visits revealed multiple dilated and tortuous blood vessels in the head, neck, chest, and pelvis. A cardiomyopathy molecular studies panel was sent, and a pathogenic variant was identified in the ABCC9 gene, confirming the molecular diagnosis of autosomal dominant Cantu syndrome. CONCLUSIONS Vascular anomalies and significant cardiac involvement are often present in Cantu syndrome, however there are currently no established screening recommendations or surveillance protocols in place. The triad of hypertrichosis, facial dysmorphism, and unexplained cardiovascular involvement in any patient should raise suspicion for Cantu syndrome and warrant further investigation. Initial cardiac evaluation and follow up should be indicated in any patient with a clinical and/or molecular diagnosis of Cantu syndrome. Furthermore, whole body imaging should be utilized to evaluate the extent of vascular involvement and dictate long term monitoring and care.
Collapse
Affiliation(s)
- Falastine Daas
- Department of Pediatrics, St. Joseph's University Medical Center, 703 Main Street, Paterson, NJ, 07503, USA.
| | - Punita Gupta
- Department of Pediatrics Division of Genetics, St. Joseph's University Medical Center, 703 Main Street, Paterson, NJ, 07503, USA
| | - Fuad Kiblawi
- Department of Pediatrics Division of Cardiology, St. Joseph's University Medical Center, 703 Main Street, Paterson, NJ, 07503, USA
| |
Collapse
|
6
|
Gao J, McClenaghan C, Matreyek KA, Grange DK, Nichols CG. Rapid Characterization of the Functional and Pharmacological Consequences of Cantú Syndrome K ATP Channel Mutations in Intact Cells. J Pharmacol Exp Ther 2023; 386:298-309. [PMID: 37527933 PMCID: PMC10449099 DOI: 10.1124/jpet.123.001659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 08/03/2023] Open
Abstract
Gain-of-function of KATP channels, resulting from mutations in either KCNJ8 (encoding inward rectifier sub-family 6 [Kir6.1]) or ABCC9 (encoding sulphonylurea receptor [SUR2]), cause Cantú syndrome (CS), a channelopathy characterized by excess hair growth, coarse facial appearance, cardiomegaly, and lymphedema. Here, we established a pipeline for rapid analysis of CS mutation consequences in Landing pad HEK 293 cell lines stably expressing wild type (WT) and mutant human Kir6.1 and SUR2B. Thallium-influx and cell membrane potential, reported by fluorescent Tl-sensitive Fluozin-2 and voltage-sensitive bis-(1,3-dibutylbarbituric acid)trimethine oxonol (DiBAC4(3)) dyes, respectively, were used to assess channel activity. In the Tl-influx assay, CS-associated Kir6.1 mutations increased sensitivity to the ATP-sensitive potassium (KATP) channel activator, pinacidil, but there was strikingly little effect of pinacidil for any SUR2B mutations, reflecting unexpected differences in the molecular mechanisms of Kir6.1 versus SUR2B mutations. Compared with the Tl-influx assay, the DiBAC4(3) assay presents more significant signal changes in response to subtle KATP channel activity changes, and all CS mutants (both Kir6.1 and SUR2B), but not WT channels, caused marked hyperpolarization, demonstrating that all mutants were activated under ambient conditions in intact cells. Most SUR2 CS mutations were markedly inhibited by <100 nM glibenclamide, but sensitivity to inhibition by glibenclamide, repaglinide, and PNU37883A was markedly reduced for Kir6.1 CS mutations. Understanding functional consequences of mutations can help with disease diagnosis and treatment. The analysis pipeline we have developed has the potential to rapidly identify mutational consequences, aiding future CS diagnosis, drug discovery, and individualization of treatment. SIGNIFICANCE STATEMENT: We have developed new fluorescence-based assays of channel activities and drug sensitivities of Cantú syndrome (CS) mutations in human Kir6.1/SUR2B-dependent KATP channels, showing that Kir6.1 mutations increase sensitivity to potassium channel openers, while SUR2B mutations markedly reduce K channel opener (KCO) sensitivity. However, both Kir6.1 and SUR2B CS mutations are both more hyperpolarized than WT cells under basal conditions, confirming pathophysiologically relevant gain-of-function, validating DiBAC4(3) fluorescence to characterize hyperpolarization induced by KATP channel activity under basal, non KCO-activated conditions.
Collapse
Affiliation(s)
- Jian Gao
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| | - Conor McClenaghan
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| | - Kenneth A Matreyek
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| | - Dorothy K Grange
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| | - Colin G Nichols
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| |
Collapse
|
7
|
Hanson A, McClenaghan C, Weng KC, Colijn S, Stratman AN, Halabi CM, Grange DK, Silva JR, Nichols CG. Electrophysiology of human iPSC-derived vascular smooth muscle cells and cell autonomous consequences of Cantu Syndrome mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547088. [PMID: 37425756 PMCID: PMC10327170 DOI: 10.1101/2023.06.29.547088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Objective Cantu Syndrome (CS), a multisystem disease with a complex cardiovascular phenotype, is caused by GoF variants in the Kir6.1/SUR2 subunits of ATP-sensitive potassium (K ATP ) channels, and is characterized by low systemic vascular resistance, as well as tortuous, dilated vessels, and decreased pulse-wave velocity. Thus, CS vascular dysfunction is multifactorial, with distinct hypomyotonic and hyperelastic components. To dissect whether such complexities arise cell-autonomously within vascular smooth muscle cells (VSMCs), or as secondary responses to the pathophysiological milieu, we assessed electrical properties and gene expression in human induced pluripotent stem cell-derived VSMCs (hiPSC-VSMCs), differentiated from control and CS patient-derived hiPSCs, and in native mouse control and CS VSMCs. Approach and Results Whole-cell voltage-clamp of isolated aortic and mesenteric VSMCs isolated from wild type (WT) and Kir6.1[V65M] (CS) mice revealed no difference in voltage-gated K + (K v ) or Ca 2+ currents. K v and Ca 2+ currents were also not different between validated hiPSC-VSMCs differentiated from control and CS patient-derived hiPSCs. Pinacidil-sensitive K ATP currents in control hiPSC-VSMCs were consistent with those in WT mouse VSMCs, and were considerably larger in CS hiPSC-VSMCs. Consistent with lack of any compensatory modulation of other currents, this resulted in membrane hyperpolarization, explaining the hypomyotonic basis of CS vasculopathy. Increased compliance and dilation in isolated CS mouse aortae, was associated with increased elastin mRNA expression. This was consistent with higher levels of elastin mRNA in CS hiPSC-VSMCs, suggesting that the hyperelastic component of CS vasculopathy is a cell-autonomous consequence of vascular K ATP GoF. Conclusions The results show that hiPSC-VSMCs reiterate expression of the same major ion currents as primary VSMCs, validating the use of these cells to study vascular disease. The results further indicate that both the hypomyotonic and hyperelastic components of CS vasculopathy are cell-autonomous phenomena driven by K ATP overactivity within VSMCs.
Collapse
|
8
|
Davis MJ, Castorena-Gonzalez JA, Kim HJ, Li M, Remedi M, Nichols CG. Lymphatic contractile dysfunction in mouse models of Cantú Syndrome with K ATP channel gain-of-function. FUNCTION 2023; 4:zqad017. [PMID: 37214333 PMCID: PMC10194823 DOI: 10.1093/function/zqad017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/24/2023] Open
Abstract
Cantú Syndrome (CS) is an autosomal dominant disorder caused by gain-of-function (GoF) mutations in the Kir6.1 and SUR2 subunits of KATP channels. KATP overactivity results in a chronic reduction in arterial tone and hypotension, leading to other systemic cardiovascular complications. However, the underlying mechanism of lymphedema, developed by >50% of CS patients, is unknown. We investigated whether lymphatic contractile dysfunction occurs in mice expressing CS mutations in Kir6.1 (Kir6.1[V65M]) or SUR2 (SUR2[A478V], SUR2[R1154Q]). Pressure myograph tests of contractile function of popliteal lymphatic vessels over the physiological pressure range revealed significantly impaired contractile strength and reduced frequency of spontaneous contractions at all pressures in heterozygous Kir6.1[V65M] vessels, compared to control littermates. Contractile dysfunction of intact popliteal lymphatics in vivo was confirmed using near-infrared fluorescence microscopy. Homozygous SUR2[A478V] vessels exhibited profound contractile dysfunction ex vivo, but heterozygous SUR2[A478V] vessels showed essentially normal contractile function. However, further investigation of vessels from all three GoF mouse strains revealed significant disruption in contraction wave entrainment, decreased conduction speed and distance, multiple pacemaker sites, and reversing wave direction. Tests of 2-valve lymphatic vessels forced to pump against an adverse pressure gradient revealed that all CS-associated genotypes were essentially incapable of pumping under an imposed outflow load. Our results show that varying degrees of lymphatic contractile dysfunction occur in proportion to the degree of molecular GoF in Kir6.1 or SUR2. This is the first example of lymphatic contractile dysfunction caused by a smooth muscle ion channel mutation and potentially explains the susceptibility of CS patients to lymphedema.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia MO 65212, USA
| | | | - Hae Jin Kim
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia MO 65212, USA
| | - Min Li
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia MO 65212, USA
| | - Maria Remedi
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Scala R, Maqoud F, McClenaghan C, Harter TM, Perrone MG, Scilimati A, Nichols CG, Tricarico D. Zoledronic Acid Blocks Overactive Kir6.1/SUR2-Dependent K ATP Channels in Skeletal Muscle and Osteoblasts in a Murine Model of Cantú Syndrome. Cells 2023; 12:928. [PMID: 36980269 PMCID: PMC10047381 DOI: 10.3390/cells12060928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/24/2023] [Accepted: 03/11/2023] [Indexed: 03/22/2023] Open
Abstract
Cantú syndrome (CS) is caused by the gain of function mutations in the ABCC9 and KCNJ8 genes encoding, respectively, for the sulfonylureas receptor type 2 (SUR2) and the inwardly rectifier potassium channel 6.1 (Kir6.1) of the ATP-sensitive potassium (KATP) channels. CS is a multi-organ condition with a cardiovascular phenotype, neuromuscular symptoms, and skeletal malformations. Glibenclamide has been proposed for use in CS, but even in animals, the drug is incompletely effective against severe mutations, including the Kir6.1wt/V65M. Patch-clamp experiments showed that zoledronic acid (ZOL) fully reduced the whole-cell KATP currents in bone calvaria cells from wild type (WT/WT) and heterozygous Kir6.1wt/V65MCS mice, with IC50 for ZOL block < 1 nM in each case. ZOL fully reduced KATP current in excised patches in skeletal muscle fibers in WT/WT and CS mice, with IC50 of 100 nM in each case. Interestingly, KATP currents in the bone of heterozygous SUR2wt/A478V mice were less sensitive to ZOL inhibition, showing an IC50 of ~500 nM and a slope of ~0.3. In homozygous SUR2A478V/A478V cells, ZOL failed to fully inhibit the KATP currents, causing only ~35% inhibition at 100 μM, but was responsive to glibenclamide. ZOL reduced the KATP currents in Kir6.1wt/VMCS mice in both skeletal muscle and bone cells but was not effective in the SUR2[A478V] mice fibers. These data indicate a subunit specificity of ZOL action that is important for appropriate CS therapies.
Collapse
Affiliation(s)
- Rosa Scala
- Sections of Pharmacology, Medicinal Chemistry, Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Fatima Maqoud
- Sections of Pharmacology, Medicinal Chemistry, Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Theresa M. Harter
- Center for the Investigation of Membrane Excitability Diseases, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Maria Grazia Perrone
- Sections of Pharmacology, Medicinal Chemistry, Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Antonio Scilimati
- Sections of Pharmacology, Medicinal Chemistry, Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Domenico Tricarico
- Sections of Pharmacology, Medicinal Chemistry, Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| |
Collapse
|
10
|
Mattiucci A, Girolomoni G, Cassina M, Zoller T, Antoniazzi F, Schena D. Cantú syndrome: A new case and evolution of clinical conditions during first 2-year follow-up. Clin Case Rep 2023; 11:e6928. [PMID: 36873080 PMCID: PMC9979969 DOI: 10.1002/ccr3.6928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 03/06/2023] Open
Abstract
Cantú syndrome, or hypertrichotic osteochondrodysplasia, is a rare autosomal dominant disease characterized by congenital hypertrichosis, characteristic dysmorphisms, skeletal abnormalities and cardiomegaly. We report on a 7-year-old girl with congenital generalized hypertrichosis, coarse facial appearance and cardiac involvement, with a de novo heterozygous mutation (c.3461G > A) in the ABCC9 gene. During the annual cardiac follow-up at the age of nine the echocardiogram showed mild left ventricular dilatation in consideration of which she started ramipril treatment. The progression of the clinical manifestations of Cantú syndrome highlights the relevance of an early diagnosis, including genetic analysis, and a multidisciplinary approach with long-term follow-up.
Collapse
Affiliation(s)
- Alessandra Mattiucci
- Section of Dermatology and Venereology, Department of MedicineUniversity of VeronaVeronaItaly
| | - Giampiero Girolomoni
- Section of Dermatology and Venereology, Department of MedicineUniversity of VeronaVeronaItaly
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women's and Children's HealthUniversity of PadovaPadovaItaly
| | - Thomas Zoller
- Pediatric Clinic, Department Surgical Sciences, Dentistry, Gynecology and PediatricsUniversity of VeronaVeronaItaly
| | - Franco Antoniazzi
- Pediatric Clinic, Department Surgical Sciences, Dentistry, Gynecology and PediatricsUniversity of VeronaVeronaItaly
| | - Donatella Schena
- Section of Dermatology and Venereology, Department of MedicineUniversity of VeronaVeronaItaly
| |
Collapse
|
11
|
Chou E, Pirruccello JP, Ellinor PT, Lindsay ME. Genetics and mechanisms of thoracic aortic disease. Nat Rev Cardiol 2023; 20:168-180. [PMID: 36131050 DOI: 10.1038/s41569-022-00763-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 11/09/2022]
Abstract
Aortic disease has many forms including aortic aneurysm and dissection, aortic coarctation or abnormalities in aortic function, such as loss of aortic distensibility. Genetic analysis in humans is one of the most important experimental approaches in uncovering disease mechanisms, but the relative infrequency of thoracic aortic disease compared with other cardiovascular conditions such as coronary artery disease has hindered large-scale identification of genetic associations. In the past decade, advances in machine learning technology coupled with large imaging datasets from biobank repositories have facilitated a rapid expansion in our capacity to measure and genotype aortic traits, resulting in the identification of dozens of genetic associations. In this Review, we describe the history of technological advances in genetic discovery and explain how newer technologies such as deep learning can rapidly define aortic traits at scale. Furthermore, we integrate novel genetic observations provided by these advances into our current biological understanding of thoracic aortic disease and describe how these new findings can contribute to strategies to prevent and treat aortic disease.
Collapse
Affiliation(s)
- Elizabeth Chou
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
| | - James P Pirruccello
- Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick T Ellinor
- Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Mark E Lindsay
- Harvard Medical School, Boston, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA.
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
12
|
Abstract
Ubiquitously expressed throughout the body, ATP-sensitive potassium (KATP) channels couple cellular metabolism to electrical activity in multiple tissues; their unique assembly as four Kir6 pore-forming subunits and four sulfonylurea receptor (SUR) subunits has resulted in a large armory of selective channel opener and inhibitor drugs. The spectrum of monogenic pathologies that result from gain- or loss-of-function mutations in these channels, and the potential for therapeutic correction of these pathologies, is now clear. However, while available drugs can be effective treatments for specific pathologies, cross-reactivity with the other Kir6 or SUR subfamily members can result in drug-induced versions of each pathology and may limit therapeutic usefulness. This review discusses the background to KATP channel physiology, pathology, and pharmacology and considers the potential for more specific or effective therapeutic agents.
Collapse
Affiliation(s)
- Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
13
|
Le Ribeuz H, Masson B, Dutheil M, Boët A, Beauvais A, Sabourin J, De Montpreville VT, Capuano V, Mercier O, Humbert M, Montani D, Antigny F. Involvement of SUR2/Kir6.1 channel in the physiopathology of pulmonary arterial hypertension. Front Cardiovasc Med 2023; 9:1066047. [PMID: 36704469 PMCID: PMC9871631 DOI: 10.3389/fcvm.2022.1066047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Aims We hypothesized that the ATP-sensitive K+ channels (KATP) regulatory subunit (ABCC9) contributes to PAH pathogenesis. ABCC9 gene encodes for two regulatory subunits of KATP channels: the SUR2A and SUR2B proteins. In the KATP channel, the SUR2 subunits are associated with the K+ channel Kir6.1. We investigated how the SUR2/Kir6.1 channel contributes to PAH pathogenesis and its potential as a therapeutic target in PAH. Methods and results Using in vitro, ex vivo, and in vivo approaches, we analyzed the localization and expression of SUR2A, SUR2B, and Kir6.1 in the pulmonary vasculature of controls and patients with PAH as in experimental pulmonary hypertension (PH) rat models and its contribution to PAH physiopathology. Finally, we deciphered the consequences of in vivo activation of SUR2/Kir6.1 in the monocrotaline (MCT)-induced PH model. We found that SUR2A, SUR2B, and Kir6.1 were expressed in the lungs of controls and patients with PAH and MCT-induced PH rat models. Organ bath studies showed that SUR2 activation by pinacidil induced relaxation of pulmonary arterial in rats and humans. In vitro experiments on human pulmonary arterial smooth muscle cells and endothelial cells (hPASMCs and hPAECs) in controls and PAH patients showed decreased cell proliferation and migration after SUR2 activation. We demonstrated that SUR2 activation in rat right ventricular (RV) cardiomyocytes reduced RV action potential duration by patch-clamp. Chronic pinacidil administration in control rats increased heart rate without changes in hemodynamic parameters. Finally, in vivo pharmacological activation of SUR2 on MCT and Chronic-hypoxia (CH)-induced-PH rats showed improved PH. Conclusion We showed that SUR2A, SUR2B, and Kir6.1 are presented in hPASMCs and hPAECs of controls and PAH patients. In vivo SUR2 activation reduced the MCT-induced and CH-induced PH phenotype, suggesting that SUR2 activation should be considered for treating PAH.
Collapse
Affiliation(s)
- Hélène Le Ribeuz
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Bastien Masson
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Mary Dutheil
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France
| | - Angèle Boët
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Antoine Beauvais
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Jessica Sabourin
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Orsay, France
| | | | - Véronique Capuano
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France
| | - Olaf Mercier
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Le Plessis Robinson, France
| | - Marc Humbert
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique–Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique–Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
14
|
Singh GK, McClenaghan C, Aggarwal M, Gu H, Remedi MS, Grange DK, Nichols CG. A Unique High-Output Cardiac Hypertrophy Phenotype Arising From Low Systemic Vascular Resistance in Cantu Syndrome. J Am Heart Assoc 2022; 11:e027363. [PMID: 36515236 PMCID: PMC9798820 DOI: 10.1161/jaha.122.027363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/25/2022] [Indexed: 12/15/2022]
Abstract
Background Cardiomegaly caused by left ventricular hypertrophy is a risk factor for development of congestive heart failure, classically associated with decreased systolic and/or diastolic ventricular function. Less attention has been given to the phenotype of left ventricular hypertrophy with enhanced ventricular function and increased cardiac output, which is potentially associated with high-output heart failure. Lack of recognition may pose diagnostic ambiguity and management complexities. Methods and Results We sought to systematically characterize high-output cardiac hypertrophy in subjects with Cantu syndrome (CS), caused by gain-of-function variants in ABCC9, which encodes cardiovascular KATP (ATP-sensitive potassium) channel subunits. We studied the cardiovascular phenotype longitudinally in 31 subjects with CS with confirmed ABCC9 variants (median [interquartile range] age 8 years [3-32 years], body mass index 19.9 [16.5-22.9], 16 male subjects). Subjects with CS presented with significant left ventricular hypertrophy (left ventricular mass index 86.7 [57.7-103.0] g/m2 in CS, n=30; 26.6 [24.1-32.8] g/m2 in controls, n=17; P<0.0001) and low blood pressure (systolic 94.5 [90-103] mm Hg in CS, n=17; 109 [98-115] mm Hg in controls, n=17; P=0.0301; diastolic 60 [56-66] mm Hg in CS, n=17; 69 [65-72] mm Hg in control, n=17; P=0.0063). Most (21/31) subjects with CS exhibited eccentric hypertrophy with normal left ventricular wall thickness. Congestive heart failure symptoms were evident in 4 of the 5 subjects with CS aged >40 years on long-term follow-up. Conclusions The data define the natural history of high-output cardiac hypertrophy resulting from decreased systemic vascular resistance in subjects with CS, a defining population for long-term consequences of high-output hypertrophy caused by low systemic vascular resistance, and the potential for progression to high-output heart failure.
Collapse
Affiliation(s)
- Gautam K. Singh
- Division of Cardiology, Department of PediatricsWashington University School of MedicineSt. LouisMO
- Center for the Investigation of Membrane Excitability Diseases (CIMED)Washington University School of MedicineSt. LouisMO
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases (CIMED)Washington University School of MedicineSt. LouisMO
- Department of Cell Biology and PhysiologyWashington University School of MedicineSt. LouisMO
| | - Manish Aggarwal
- Division of Cardiology, Department of PediatricsWashington University School of MedicineSt. LouisMO
| | - Hongjie Gu
- Division of StatisticsWashington University School of MedicineSt. LouisMO
| | - Maria S. Remedi
- Center for the Investigation of Membrane Excitability Diseases (CIMED)Washington University School of MedicineSt. LouisMO
- Department of Medicine, Division of EndocrinologyWashington University School of MedicineSt. LouisMO
| | - Dorothy K. Grange
- Center for the Investigation of Membrane Excitability Diseases (CIMED)Washington University School of MedicineSt. LouisMO
- Department of Pediatrics, Division of GeneticsWashington University School of MedicineSt. LouisMO
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases (CIMED)Washington University School of MedicineSt. LouisMO
- Department of Cell Biology and PhysiologyWashington University School of MedicineSt. LouisMO
| |
Collapse
|
15
|
Crespo-García T, Rubio-Alarcón M, Cámara-Checa A, Dago M, Rapún J, Nieto-Marín P, Marín M, Cebrián J, Tamargo J, Delpón E, Caballero R. A Cantú syndrome mutation produces dual effects on KATP channels by disrupting ankyrin B regulation. J Gen Physiol 2022; 155:213613. [PMID: 36287534 PMCID: PMC9614705 DOI: 10.1085/jgp.202112995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2022] [Accepted: 10/04/2022] [Indexed: 02/01/2023] Open
Abstract
ATP-sensitive potassium (KATP) channels composed of Kir6.x and sulfonylurea receptor (SURs) subunits couple cellular metabolism to electrical activity. Cantú syndrome (CS) is a rare disease caused by mutations in the genes encoding Kir6.1 (KCNJ8) and SUR2A (ABCC9) that produce KATP channel hyperactivity due to a reduced channel block by physiological ATP concentrations. We functionally characterized the p.S1054Y SUR2A mutation identified in two CS carriers, who exhibited a mild phenotype although the mutation was predicted as highly pathogenic. We recorded macroscopic and single-channel currents in CHO and HEK-293 cells and measured the membrane expression of the channel subunits by biotinylation assays in HEK-293 cells. The mutation increased basal whole-cell current density and at the single-channel level, it augmented opening frequency, slope conductance, and open probability (Po), and promoted the appearance of multiple conductance levels. p.S1054Y also reduced Kir6.2 and SUR2A expression specifically at the membrane. Overexpression of ankyrin B (AnkB) prevented these gain- and loss-of-function effects, as well as the p.S1054Y-induced reduction of ATP inhibition of currents measured in inside-out macropatches. Yeast two-hybrid assays suggested that SUR2A WT and AnkB interact, while p.S1054Y interaction with AnkB is decreased. The p.E322K Kir6.2 mutation, which prevents AnkB binding to Kir6.2, produced similar biophysical alterations than p.S1054Y. Our results are the first demonstration of a CS mutation whose functional consequences involve the disruption of AnkB effects on KATP channels providing a novel mechanism by which CS mutations can reduce ATP block. Furthermore, they may help explain the mild phenotype associated with this mutation.
Collapse
Affiliation(s)
- Teresa Crespo-García
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Marcos Rubio-Alarcón
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Anabel Cámara-Checa
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - María Dago
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Josu Rapún
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Paloma Nieto-Marín
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - María Marín
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Jorge Cebrián
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Eva Delpón
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain,Correspondence to Eva Delpón:
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
16
|
McClenaghan C, Nichols CG. Kir6.1 and SUR2B in Cantú syndrome. Am J Physiol Cell Physiol 2022; 323:C920-C935. [PMID: 35876283 PMCID: PMC9467476 DOI: 10.1152/ajpcell.00154.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/25/2022]
Abstract
Kir6.1 and SUR2 are subunits of ATP-sensitive potassium (KATP) channels expressed in a wide range of tissues. Extensive study has implicated roles of these channel subunits in diverse physiological functions. Together they generate the predominant KATP conductance in vascular smooth muscle and are the target of vasodilatory drugs. Roles for Kir6.1/SUR2 dysfunction in disease have been suggested based on studies of animal models and human genetic discoveries. In recent years, it has become clear that gain-of-function (GoF) mutations in both genes result in Cantú syndrome (CS)-a complex, multisystem disorder. There is currently no targeted therapy for CS, but studies of mouse models of the disease reveal that pharmacological reversibility of cardiovascular and gastrointestinal pathologies can be achieved by administration of the KATP channel inhibitor, glibenclamide. Here we review the function, structure, and physiological and pathological roles of Kir6.1/SUR2B channels, with a focus on CS. Recent studies have led to much improved understanding of the underlying pathologies and the potential for treatment, but important questions remain: Can the study of genetically defined CS reveal new insights into Kir6.1/SUR2 function? Do these reveal new pathophysiological mechanisms that may be important in more common diseases? And is our pharmacological armory adequately stocked?
Collapse
Affiliation(s)
- Conor McClenaghan
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St. Louis, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St. Louis, Missouri
| |
Collapse
|
17
|
Zaytseva A, Tulintseva T, Fomicheva Y, Mikhailova V, Treshkur T, Kostareva A. Case Report: Loss-of-Function ABCC9 Genetic Variant Associated With Ventricular Fibrillation. Front Genet 2022; 13:718853. [PMID: 35495129 PMCID: PMC9044080 DOI: 10.3389/fgene.2022.718853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic variants in the ABCC9 gene, encoding the SUR2 auxiliary subunit from KATP channels, were previously linked with various inherited diseases. This wide range of congenital disorders includes multisystem and cardiovascular pathologies. The gain-of-function mutations result in Cantu syndrome, acromegaloid facial appearance, hypertrichosis, and acromegaloid facial features. The loss-of-function mutations in the ABCC9 gene were associated with the Brugada syndrome, early repolarization syndrome, and dilated cardiomyopathy. Here, we reported a patient with a loss-of-function variant in the ABCC9 gene, identified by target high-throughput sequencing. The female proband presented with several episodes of ventricular fibrillation and hypokalemia upon emotional stress. This case sheds light on the consequences of KATP channel dysfunction in the cardiovascular system and underlines the complexity of the clinical presentation of ABCC9-related diseases.
Collapse
Affiliation(s)
- Anastasia Zaytseva
- Almazov National Medical Research Centre, St Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg, Russia
- *Correspondence: Anastasia Zaytseva,
| | | | - Yulya Fomicheva
- Almazov National Medical Research Centre, St Petersburg, Russia
| | | | | | - Anna Kostareva
- Almazov National Medical Research Centre, St Petersburg, Russia
- Department of Woman and Child Health, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
18
|
Scala R, Maqoud F, Antonacci M, Dibenedetto JR, Perrone MG, Scilimati A, Castillo K, Latorre R, Conte D, Bendahhou S, Tricarico D. Bisphosphonates Targeting Ion Channels and Musculoskeletal Effects. Front Pharmacol 2022; 13:837534. [PMID: 35370739 PMCID: PMC8965324 DOI: 10.3389/fphar.2022.837534] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/25/2022] [Indexed: 12/25/2022] Open
Abstract
Bisphosphonates (BPs) are the most used bone-specific anti-resorptive agents, often chosen as first-line therapy in several bone diseases characterized by an imbalance between osteoblast-mediated bone production and osteoclast-mediated bone resorption. BPs target the farnesyl pyrophosphate synthase (FPPS) in osteoclasts, reducing bone resorption. Lately, there has been an increasing interest in BPs direct pro-survival/pro-mineralizing properties in osteoblasts and their pain-relieving effects. Even so, molecular targets involved in these effects appear now largely elusive. Ion channels are emerging players in bone homeostasis. Nevertheless, the effects of BPs on these proteins have been poorly described. Here we reviewed the actions of BPs on ion channels in musculoskeletal cells. In particular, the TRPV1 channel is essential for osteoblastogenesis. Since it is involved in bone pain sensation, TRPV1 is a possible alternative target of BPs. Ion channels are emerging targets and anti-target for bisphosphonates. Zoledronic acid can be the first selective musculoskeletal and vascular KATP channel blocker targeting with high affinity the inward rectifier channels Kir6.1-SUR2B and Kir6.2-SUR2A. The action of this drug against the overactive mutants of KCNJ9-ABCC9 genes observed in the Cantu’ Syndrome (CS) may improve the appropriate prescription in those CS patients affected by musculoskeletal disorders such as bone fracture and bone frailty.
Collapse
Affiliation(s)
- Rosa Scala
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Fatima Maqoud
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Marina Antonacci
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | | | - Maria Grazia Perrone
- Medicinal Chemistry Section, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Antonio Scilimati
- Medicinal Chemistry Section, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigación de Estudios Avanzados, Universidad Católica del Maule, Talca, Chile
| | - Ramón Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Diana Conte
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Saïd Bendahhou
- UMR7370 CNRS, Laboratoire de Physiomédecine Moléculaire (LP2M), Labex ICST, Nice, France
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| |
Collapse
|
19
|
Le Ribeuz H, Masson B, Capuano V, Dutheil M, Gooroochurn H, Boët A, Ghigna MR, De Montpreville V, Girerd B, Lambert M, Mercier O, Chung WK, Humbert M, Montani D, Antigny F. SUR1 as a New Therapeutic Target for Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2022; 66:539-554. [PMID: 35175177 DOI: 10.1165/rcmb.2021-0180oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mutations in ABCC8 have been identified in pulmonary arterial hypertension (PAH). ABCC8 encodes SUR1, a regulatory subunit of the ATP-sensitive-potassium channel Kir6.2. However, the pathophysiological role of the SUR1/Kir6.2 channel in PAH is unknown. We hypothesized that activation of SUR1 could be a novel potential target for PAH. We analysed the expression of SUR1/Kir6.2 in the lungs and pulmonary artery (PA) in human PAH or experimental pulmonary hypertension (PH). The contribution of SUR1 in human or rat PA tone was evaluated, and we measured the consequences of in vivo activation of SUR1 in control and PH rats. SUR1 and Kir6.2 protein expression was not reduced in the lungs or human pulmonary arterial endothelial cells and smooth muscle cells (hPAECs and hPASMCs) from PAH or experimentally induced PH. We showed that pharmacological activation of SUR1 by 3 different SUR1 activators (diazoxide, VU0071063, and NN414) leads to PA relaxation. Conversely, the inhibition of SUR1/Kir6.2 channels causes PA constriction. In vivo, long- and short-term activation of SUR1 with diazoxide reversed monocrotaline-induced PH in rats. Additionally, in vivo diazoxide application (short protocol) reduced the severity of PH in chronic-hypoxia rats. Moreover, 3 weeks of diazoxide exposure in control rats had no cardiovascular effects. Finally, in vivo, activation of SUR1 with NN414 reduced monocrotaline-induced PH in rats. In PAH and experimental PH, the expression of SUR1/Kir6.2 was still presented. In vivo pharmacological SUR1 activation by two different molecules alleviated experimental PH, providing proof-of-concept that SUR1 activation should be considered for PAH and evaluated more thoroughly.
Collapse
Affiliation(s)
| | | | | | - Mary Dutheil
- INSERM U999, 130034, Le Plessis Robinson, France
| | | | - Angèle Boët
- INSERM U999, 130034, Le Plessis Robinson, France
| | - Maria-Rosa Ghigna
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,School of Medicine, Université Paris-Sud / Université Paris Saclay, Le Kremlin-Bicêtre, France
| | | | - Barbara Girerd
- INSERM U999, 130034, pneumolgie, Le Plessis Robinson, France
| | - Mélanie Lambert
- INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Olaf Mercier
- INSERM U999, 130034, Thoracic Surgery , Le Plessis Robinson, France
| | - Wendy K Chung
- Departments of Pediatrics and Medicine Columbia University, New York, New York, United States
| | - Marc Humbert
- INSERM U999, 130034, Le Plessis Robinson, France
| | - David Montani
- CHU de Bicetre, Service de Pneumologie, Le Kremlin Bicetre, France.,INSERM UMRS 999, Hôpital Marie Lannelongue, Le plessis robinson, France
| | | |
Collapse
|
20
|
Singareddy SS, Roessler HI, McClenaghan C, Ikle JM, Tryon RC, van Haaften G, Nichols CG. ATP-sensitive potassium channels in zebrafish cardiac and vascular smooth muscle. J Physiol 2021; 600:299-312. [PMID: 34820842 DOI: 10.1113/jp282157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
ATP-sensitive potassium channels (KATP channels) are hetero-octameric nucleotide-gated ion channels that couple cellular metabolism to excitability in various tissues. In the heart, KATP channels are activated during ischaemia and potentially during adrenergic stimulation. In the vasculature, they are normally active at a low level, reducing vascular tone, but the ubiquitous nature of these channels leads to complex and poorly understood channelopathies as a result of gain- or loss-of-function mutations. Zebrafish (ZF) models of these channelopathies may provide insights to the link between molecular dysfunction and complex pathophysiology, but this requires understanding the tissue dependence of channel activity and subunit specificity. Thus far, direct analysis of ZF KATP expression and functional properties has only been performed in pancreatic β-cells. Using a comprehensive combination of genetically modified fish, electrophysiology and gene expression analysis, we demonstrate that ZF cardiac myocytes (CM) and vascular smooth muscle (VSM) express functional KATP channels of similar subunit composition, structure and metabolic sensitivity to their mammalian counterparts. However, in contrast to mammalian cardiovascular KATP channels, ZF channels are insensitive to potassium channel opener drugs (pinacidil, minoxidil) in both chambers of the heart and in VSM. The results provide a first characterization of the molecular properties of fish KATP channels and validate the use of such genetically modified fish as models of human Cantú syndrome and ABCC9-related Intellectual Disability and Myopathy syndrome. KEY POINTS: Zebrafish cardiac myocytes (CM) and vascular smooth muscle (VSM) express functional KATP channels of similar subunit composition, structure and metabolic sensitivity to their mammalian counterparts. In contrast to mammalian cardiovascular KATP channels, zebrafish channels are insensitive to potassium channel opener drugs (pinacidil, minoxidil) in both chambers of the heart and in VSM. We provide a first characterization of the molecular properties of fish KATP channels and validate the use of such genetically modified fish as models of human Cantú syndrome and ABCC9-related Intellectual Disability and Myopathy syndrome.
Collapse
Affiliation(s)
- Soma S Singareddy
- Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Helen I Roessler
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Conor McClenaghan
- Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Jennifer M Ikle
- Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Robert C Tryon
- Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Colin G Nichols
- Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
21
|
Kim HJ, Li M, Nichols CG, Davis MJ. Large-conductance calcium-activated K + channels, rather than K ATP channels, mediate the inhibitory effects of nitric oxide on mouse lymphatic pumping. Br J Pharmacol 2021; 178:4119-4136. [PMID: 34213021 PMCID: PMC9793343 DOI: 10.1111/bph.15602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 05/19/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE KATP channels are negative regulators of lymphatic vessel excitability and contractility and are proposed to be targets for immune cell products that inhibit lymph transport. Previous studies in rat and guinea pig mesenteric lymphatics found that NO-mediated inhibition of lymphatic contraction was prevented or reversed by the KATP channel inhibitor, glibenclamide. We revisited this hypothesis using mouse lymphatic vessels and KATP channel knockout mice. EXPERIMENTAL APPROACH Mouse popliteal lymphatics were isolated, and contractility was assessed using pressure myography. K+ channel expression was determined by PCR analysis of FACS-purified lymphatic smooth muscle cells. KEY RESULTS The NO-producing agonist, ACh, and the NO donor, NONOate, both produced dose-dependent inhibition of spontaneous lymphatic contractions that were blocked by the soluble GC inhibitor, ODQ, or the PKG inhibitor, Rp-8-Br-PET-cGMPS. Surprisingly, the inhibitory effects of both were preserved in Kir 6.1-/- vessels, suggesting that KATP channels did not mediate NO-induced responses. We hypothesized a role for BK channels, given their prominence in arterial smooth muscle. Indeed, BK channels were expressed in mouse lymphatic smooth muscle and NS11021 (a BK channel activator) caused dilation and reduced contraction frequency, whereas iberiotoxin and penitrem A (BK channel inhibitors) produced right-ward shifts in NONOate concentration-response curves. CONCLUSION AND IMPLICATIONS Inhibition of mouse lymphatic contractions by NO primarily involves activation of BK channels, rather than KATP channels. Thus, BK channels are a potential target for therapeutic reversal of lymph pump inhibition by NO generated by immune cell activation of iNOS in chronic lymphoedema.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO
| | - Min Li
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO
| | - Colin G. Nichols
- Department of Cell Biology & Physiology, Washington University, St. Louis, MO
| | - Michael J. Davis
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO
| |
Collapse
|
22
|
Tran TNA, Phan HN, Vu HA, Nguyen HT. Diverse clinical manifestations of Cantú syndrome: The first case series in Vietnam. Am J Med Genet A 2021; 188:377-381. [PMID: 34453476 DOI: 10.1002/ajmg.a.62477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/02/2021] [Accepted: 08/13/2021] [Indexed: 11/08/2022]
Abstract
Cantú syndrome (CS) is an extremely rare autosomal dominant hereditary disease characterized by congenital hypertrichosis, distinct coarse facial features, cardiac defects, and other abnormalities in the skeletal and neurological systems. At present, cases with pathognomonic clinical manifestations are increasingly confirmed by genetic analysis. Two causative genes for CS are the well-known ABCC9 and the more rarely reported KCNJ8. Here, we report three Vietnamese children with CS, confirmed through genetic testing, presenting de novo ABCC9 mutations. The patients shared some common clinical manifestations, including congenital hypertrichosis, distinctive facial features, and a history of polyhydramnios during pregnancy. Concerning the various cardiac and neurological problems in the lifetime of patients with CS, an accurate diagnosis and appropriate management, especially genetic counseling, should be clinically applied in CS. Thus, our findings might modestly contribute to the global CS data, providing practical insights into CS manifestations.
Collapse
Affiliation(s)
- Tu Nguyen Anh Tran
- Ho Chi Minh City Hospital of Dermato-Venereology, Ho Chi Minh City, Vietnam
| | - Huy Ngoc Phan
- Ho Chi Minh City Hospital of Dermato-Venereology, Ho Chi Minh City, Vietnam
| | - Hoang Anh Vu
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hao Trong Nguyen
- Ho Chi Minh City Hospital of Dermato-Venereology, Ho Chi Minh City, Vietnam
| |
Collapse
|
23
|
Scala R, Maqoud F, Zizzo N, Passantino G, Mele A, Camerino GM, McClenaghan C, Harter TM, Nichols CG, Tricarico D. Consequences of SUR2[A478V] Mutation in Skeletal Muscle of Murine Model of Cantu Syndrome. Cells 2021; 10:cells10071791. [PMID: 34359961 PMCID: PMC8307364 DOI: 10.3390/cells10071791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Cantu syndrome (CS) arises from gain-of-function (GOF) mutations in the ABCC9 and KCNJ8 genes, which encode ATP-sensitive K+ (KATP) channel subunits SUR2 and Kir6.1, respectively. Most CS patients have mutations in SUR2, the major component of skeletal muscle KATP, but the consequences of SUR2 GOF in skeletal muscle are unknown. (2) Methods: We performed in vivo and ex vivo characterization of skeletal muscle in heterozygous SUR2[A478V] (SUR2wt/AV) and homozygous SUR2[A478V] (SUR2AV/AV) CS mice. (3) Results: In SUR2wt/AV and SUR2AV/AV mice, forelimb strength and diaphragm amplitude movement were reduced; muscle echodensity was enhanced. KATP channel currents recorded in Flexor digitorum brevis fibers showed reduced MgATP-sensitivity in SUR2wt/AV, dramatically so in SUR2AV/AV mice; IC50 for MgATP inhibition of KATP currents were 1.9 ± 0.5 × 10−5 M in SUR2wt/AV and 8.6 ± 0.4 × 10−6 M in WT mice and was not measurable in SUR2AV/AV. A slight rightward shift of sensitivity to inhibition by glibenclamide was detected in SUR2AV/AV mice. Histopathological and qPCR analysis revealed atrophy of soleus and tibialis anterior muscles and up-regulation of atrogin-1 and MuRF1 mRNA in CS mice. (4) Conclusions: SUR2[A478V] “knock-in” mutation in mice impairs KATP channel modulation by MgATP, markedly so in SUR2AV/AV, with atrophy and non-inflammatory edema in different skeletal muscle phenotypes.
Collapse
Affiliation(s)
- Rosa Scala
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.S.); (F.M.); (A.M.); (G.M.C.)
| | - Fatima Maqoud
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.S.); (F.M.); (A.M.); (G.M.C.)
| | - Nicola Zizzo
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (N.Z.); (G.P.)
| | - Giuseppe Passantino
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (N.Z.); (G.P.)
| | - Antonietta Mele
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.S.); (F.M.); (A.M.); (G.M.C.)
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.S.); (F.M.); (A.M.); (G.M.C.)
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; (C.M.); (T.M.H.); (C.G.N.)
| | - Theresa M. Harter
- Center for the Investigation of Membrane Excitability Diseases, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; (C.M.); (T.M.H.); (C.G.N.)
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; (C.M.); (T.M.H.); (C.G.N.)
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.S.); (F.M.); (A.M.); (G.M.C.)
- Correspondence:
| |
Collapse
|
24
|
Zhang H, Hanson A, de Almeida TS, Emfinger C, McClenaghan C, Harter T, Yan Z, Cooper PE, Brown GS, Arakel EC, Mecham RP, Kovacs A, Halabi CM, Schwappach B, Remedi MS, Nichols CG. Complex consequences of Cantu syndrome SUR2 variant R1154Q in genetically modified mice. JCI Insight 2021; 6:145934. [PMID: 33529173 PMCID: PMC8021106 DOI: 10.1172/jci.insight.145934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Cantu syndrome (CS) is caused by gain-of-function (GOF) mutations in pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunits, the most common mutations being SUR2[R1154Q] and SUR2[R1154W], carried by approximately 30% of patients. We used CRISPR/Cas9 genome engineering to introduce the equivalent of the human SUR2[R1154Q] mutation into the mouse ABCC9 gene. Along with minimal CS disease features, R1154Q cardiomyocytes and vascular smooth muscle showed much lower KATP current density and pinacidil activation than WT cells. Almost complete loss of SUR2-dependent protein and KATP in homozygous R1154Q ventricles revealed underlying diazoxide-sensitive SUR1-dependent KATP channel activity. Surprisingly, sequencing of SUR2 cDNA revealed 2 distinct transcripts, one encoding full-length SUR2 protein; and the other with an in-frame deletion of 93 bases (corresponding to 31 amino acids encoded by exon 28) that was present in approximately 40% and approximately 90% of transcripts from hetero- and homozygous R1154Q tissues, respectively. Recombinant expression of SUR2A protein lacking exon 28 resulted in nonfunctional channels. CS tissue from SUR2[R1154Q] mice and human induced pluripotent stem cell-derived (hiPSC-derived) cardiomyocytes showed only full-length SUR2 transcripts, although further studies will be required in order to fully test whether SUR2[R1154Q] or other CS mutations might result in aberrant splicing and variable expressivity of disease features in human CS.
Collapse
Affiliation(s)
- Haixia Zhang
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Alex Hanson
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Tobias Scherf de Almeida
- Department of Molecular Biology, Center for Biochemistry and Molecular Cell Biology, Heart Research Center Göttingen, University Medicine Göttingen, Göttingen, Germany
| | - Christopher Emfinger
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Theresa Harter
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Zihan Yan
- Center for the Investigation of Membrane Excitability Diseases and.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.,Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research
| | - Paige E Cooper
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - G Schuyler Brown
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Eric C Arakel
- Department of Molecular Biology, Center for Biochemistry and Molecular Cell Biology, Heart Research Center Göttingen, University Medicine Göttingen, Göttingen, Germany
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | | - Carmen M Halabi
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Blanche Schwappach
- Department of Molecular Biology, Center for Biochemistry and Molecular Cell Biology, Heart Research Center Göttingen, University Medicine Göttingen, Göttingen, Germany
| | - Maria S Remedi
- Center for the Investigation of Membrane Excitability Diseases and.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
25
|
Mani I. Genome editing in cardiovascular diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:289-308. [PMID: 34127197 DOI: 10.1016/bs.pmbts.2021.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic modification at the molecular level in somatic cells, germline, and animal models requires for different purposes, such as introducing desired mutation, deletion of alleles, and insertion of novel genes in the genome. Various genome-editing tools are available to accomplish these alterations, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated (Cas) system. CRISPR-Cas system is an emerging technology, which is being used in biological and medical sciences, including in the cardiovascular field. It assists to identify the mechanism of various cardiovascular disease occurrence, such as hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and arrhythmogenic cardiomyopathy (ACM). Furthermore, it has been advantages to edit various genes simultaneously and can also be used to treat and prevent several human diseases. This chapter explores the use of the scientific and therapeutic potential of a CRISPR-Cas system to edit the various cardiovascular disease-associated genes to understand the pathways involved in disease progression and treatment.
Collapse
Affiliation(s)
- Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
26
|
Maqoud F, Scala R, Hoxha M, Zappacosta B, Tricarico D. ATP-sensitive potassium channel subunits in the neuroinflammation: novel drug targets in neurodegenerative disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:130-149. [PMID: 33463481 DOI: 10.2174/1871527320666210119095626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022]
Abstract
Arachidonic acids and its metabolites modulate plenty of ligand-gated, voltage-dependent ion channels, and metabolically regulated potassium channels including ATP-sensitive potassium channels (KATP). KATP channels are hetero-multimeric complexes of sulfonylureas receptors (SUR1, SUR2A or SUR2B) and the pore-forming subunits (Kir6.1 and Kir6.2) likewise expressed in the pre-post synapsis of neurons and inflammatory cells, thereby affecting their proliferation and activity. KATP channels are involved in amyloid-β (Aβ)-induced pathology, therefore emerging as therapeutic targets against Alzheimer's and related diseases. The modulation of these channels can represent an innovative strategy for the treatment of neurodegenerative disorders; nevertheless, the currently available drugs are not selective for brain KATP channels and show contrasting effects. This phenomenon can be a consequence of the multiple physiological roles of the different varieties of KATP channels. Openings of cardiac and muscular KATP channel subunits, is protective against caspase-dependent atrophy in these tissues and some neurodegenerative disorders, whereas in some neuroinflammatory diseases benefits can be obtained through the inhibition of neuronal KATP channel subunits. For example, glibenclamide exerts an anti-inflammatory effect in respiratory, digestive, urological, and central nervous system (CNS) diseases, as well as in ischemia-reperfusion injury associated with abnormal SUR1-Trpm4/TNF-α or SUR1-Trpm4/ Nos2/ROS signaling. Despite this strategy is promising, glibenclamide may have limited clinical efficacy due to its unselective blocking action of SUR2A/B subunits also expressed in cardiovascular apparatus with pro-arrhythmic effects and SUR1 expressed in pancreatic beta cells with hypoglycemic risk. Alternatively, neuronal selective dual modulators showing agonist/antagonist actions on KATP channels can be an option.
Collapse
Affiliation(s)
- Fatima Maqoud
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| | - Rosa Scala
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| | - Malvina Hoxha
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, "Catholic University Our Lady of Good Counsel", Tirana. Albania
| | - Bruno Zappacosta
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, "Catholic University Our Lady of Good Counsel", Tirana. Albania
| | - Domenico Tricarico
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| |
Collapse
|
27
|
Geiger R, Fatima N, Schooley JF, Smyth JT, Haigney MC, Flagg TP. Novel cholesterol-dependent regulation of cardiac K ATP subunit expression revealed using histone deacetylase inhibitors. Physiol Rep 2021; 8:e14675. [PMID: 33356020 PMCID: PMC7757372 DOI: 10.14814/phy2.14675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
We recently discovered that the histone deacetylase inhibitor, trichostatin A (TSA), increases expression of the sulfonylurea receptor 2 (SUR2; Abcc9) subunit of the ATP-sensitive K+ (KATP ) channel in HL-1 cardiomyocytes. Interestingly, the increase in SUR2 was abolished with exogenous cholesterol, suggesting that cholesterol may regulate channel expression. In the present study, we tested the hypothesis that TSA increases SUR2 by depleting cholesterol and activating the sterol response element binding protein (SREBP) family of transcription factors. Treatment of HL-1 cardiomyocytes with TSA (30 ng/ml) caused a time-dependent increase in SUR2 mRNA expression that correlates with the time course of cholesterol depletion assessed by filipin staining. Consistent with the cholesterol-dependent regulation of SREBP increasing SUR2 mRNA expression, we observe a significant increase in SREBP cleavage and translocation to the nucleus following TSA treatment that is inhibited by exogenous cholesterol. Further supporting the role of SREBP in mediating the effect of TSA on KATP subunit expression, SREBP1 significantly increased luciferase reporter gene expression driven by the upstream SUR2 promoter. Lastly, HL-1 cardiomyocytes treated with the SREBP inhibitor PF429242 significantly suppresses the effect of TSA on SUR2 gene expression. These results demonstrate that SREBP is an important regulator of KATP channel expression and suggest a novel method by which hypercholesterolemia may exert negative effects on the cardiovascular system, namely, by suppressing expression of the KATP channel.
Collapse
Affiliation(s)
- Robert Geiger
- Department of Anatomy, Physiology, and GeneticsUniformed Services University for the Health SciencesBethesdaMDUSA
| | - Naheed Fatima
- Department of Anatomy, Physiology, and GeneticsUniformed Services University for the Health SciencesBethesdaMDUSA
| | - James F. Schooley
- Department of Anatomy, Physiology, and GeneticsUniformed Services University for the Health SciencesBethesdaMDUSA
| | - Jeremy T. Smyth
- Department of Anatomy, Physiology, and GeneticsUniformed Services University for the Health SciencesBethesdaMDUSA
| | - Mark C. Haigney
- Department of MedicineUniformed Services University for the Health SciencesBethesdaMDUSA
| | - Thomas P. Flagg
- Department of Anatomy, Physiology, and GeneticsUniformed Services University for the Health SciencesBethesdaMDUSA
| |
Collapse
|
28
|
Aguayo‐Orozco TA, Ríos‐González BE, Castro‐Martínez AG, Ruiz‐Ramírez AV, Figuera LE. Generalized hypertrichosis syndromes in Mexico. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:1014-1022. [DOI: 10.1002/ajmg.c.31864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Thania Alejandra Aguayo‐Orozco
- División de Genética, Centro de Investigación Biomédica de Occidente Instituto Mexicano del Seguro Social Guadalajara Jalisco Mexico
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud Universidad de Guadalajara Guadalajara Jalisco Mexico
| | | | | | - Andrea Virginia Ruiz‐Ramírez
- División de Genética, Centro de Investigación Biomédica de Occidente Instituto Mexicano del Seguro Social Guadalajara Jalisco Mexico
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud Universidad de Guadalajara Guadalajara Jalisco Mexico
| | - Luis E. Figuera
- División de Genética, Centro de Investigación Biomédica de Occidente Instituto Mexicano del Seguro Social Guadalajara Jalisco Mexico
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud Universidad de Guadalajara Guadalajara Jalisco Mexico
| |
Collapse
|
29
|
Brar PC, Heksch R, Cossen K, De Leon DD, Kamboj MK, Marks SD, Marshall BA, Miller R, Page L, Stanley T, Mitchell D, Thornton P. Management and Appropriate Use of Diazoxide in Infants and Children with Hyperinsulinism. J Clin Endocrinol Metab 2020; 105:5894029. [PMID: 32810255 DOI: 10.1210/clinem/dgaa543] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The diagnosis of hypoglycemia and the use of diazoxide have risen in the last decade. Diazoxide is the only Food and Drug Agency-approved pharmacologic treatment for neonatal hypoglycemia caused by hyperinsulinism (HI). Recent publications have highlighted that diazoxide has serious adverse effects (AEs) such as pulmonary hypertension (2-3%) and neutropenia (15%). Despite its increasing use, there is little information regarding dosing of diazoxide and/or monitoring for AEs. METHODS We convened a working group of pediatric endocrinologists who were members of the Drug and Therapeutics Committee of the Pediatric Endocrine Society (PES) to review the available literature. Our committee sent a survey to its PES members regarding the use of diazoxide in their endocrine practices. Our review of the results concluded that there was substantial heterogeneity in usage and monitoring for AEs for diazoxide among pediatric endocrinologists. CONCLUSIONS Based on our extensive literature review and on the lack of consensus regarding use of diazoxide noted in our PES survey, our group graded the evidence using the framework of the Grading of Recommendations, Assessment, Development and Evaluation Working Group, and has proposed expert consensus practice guidelines for the appropriate use of diazoxide in infants and children with HI. We summarized the information on AEs reported to date and have provided practical ideas for dosing and monitoring for AEs in infants treated with diazoxide.
Collapse
Affiliation(s)
- Preneet Cheema Brar
- Division of Endocrinology and Diabetes, Department of Pediatrics, New York University Grossman School of Medicine, New York City, New York
| | - Ryan Heksch
- Center for Diabetes and Endocrinology, Department of Pediatrics, Akron Children's Hospital, Akron, Ohio
| | - Kristina Cossen
- Division of Pediatric Endocrinology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Diva D De Leon
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Manmohan K Kamboj
- Division of Endocrinology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| | - Seth D Marks
- Division of Pediatric Endocrinology and Metabolism, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Bess A Marshall
- Division of Endocrinology and Diabetes, Department or Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Ryan Miller
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Laura Page
- Division of Pediatric Endocrinology, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Takara Stanley
- Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Deborah Mitchell
- Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Paul Thornton
- Congenital Hyperinsulinism Center, Cook Children's Medical Center, Fort Worth, Texas
| |
Collapse
|
30
|
Scala R, Maqoud F, Zizzo N, Mele A, Camerino GM, Zito FA, Ranieri G, McClenaghan C, Harter TM, Nichols CG, Tricarico D. Pathophysiological Consequences of KATP Channel Overactivity and Pharmacological Response to Glibenclamide in Skeletal Muscle of a Murine Model of Cantù Syndrome. Front Pharmacol 2020; 11:604885. [PMID: 33329006 PMCID: PMC7734337 DOI: 10.3389/fphar.2020.604885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Cantù syndrome (CS) arises from mutations in ABCC9 and KCNJ8 genes that lead to gain of function (GOF) of ATP-sensitive potassium (KATP) channels containing SUR2A and Kir6.1 subunits, respectively, of KATP channels. Pathological consequences of CS have been reported for cardiac and smooth muscle cells but consequences in skeletal muscle are unknown. Children with CS show muscle hypotonia and adult manifest fatigability. We analyzed muscle properties of Kir6.1[V65M] CS mice, by measurements of forelimb strength and ultrasonography of hind-limb muscles, as well as assessing KATP channel properties in native Flexor digitorum brevis (FDB) and Soleus (SOL) fibers by the patch-clamp technique in parallel with histopathological, immunohistochemical and Polymerase Chain Reaction (PCR) analysis. Forelimb strength was lower in Kir6.1wt/VM mice than in WT mice. Also, a significant enhancement of echodensity was observed in hind-limb muscles of Kir6.1wt/VM mice relative to WT, suggesting the presence of fibrous tissue. There was a higher KATP channel current amplitude in Kir6.1wt/VM FDB fibers relative to WT and a reduced response to glibenclamide. The IC50 of glibenclamide to block KATP channels in FDB fibers was 1.3 ± 0.2 × 10−7 M in WT and 1.2 ± 0.1 × 10−6 M in Kir6.1wt/VM mice, respectively; and it was 1.2 ± 0.4 × 10−7 M in SOL WT fibers but not measurable in Kir6.1wt/VM fibers. The sensitivity of the KATP channel to MgATP was not modified in Kir6.1wt/VM fibers. Histopathological/immunohistochemical analysis of SOL revealed degeneration plus regressive-necrotic lesions with regeneration, and up-regulation of Atrogin-1, MuRF1, and BNIP3 mRNA/proteins in Kir6.1wt/VM mice. Kir6.1wt/VM mutation in skeletal muscle leads to changes of the KATP channel response to glibenclamide in FDB and SOL fibers, and it is associated with histopathological and gene expression changes in slow-twitch muscle, suggesting marked atrophy and autophagy.
Collapse
Affiliation(s)
- Rosa Scala
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Fatima Maqoud
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Nicola Zizzo
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Antonietta Mele
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Alfredo Zito
- Interventional and Medical Oncology Unit, Department of Pathology National Cancer Research Centre, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Girolamo Ranieri
- Interventional and Medical Oncology Unit, Department of Pathology National Cancer Research Centre, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Conor McClenaghan
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Theresa M Harter
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Colin G Nichols
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
31
|
York NW, Parker H, Xie Z, Tyus D, Waheed MA, Yan Z, Grange DK, Remedi MS, England SK, Hu H, Nichols CG. Kir6.1- and SUR2-dependent KATP over-activity disrupts intestinal motility in murine models of Cantu Syndrome. JCI Insight 2020; 5:141443. [PMID: 33170808 PMCID: PMC7714409 DOI: 10.1172/jci.insight.141443] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
Cantύ Syndrome (CS), caused by gain-of-function (GOF) mutations in pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunit genes, is frequently accompanied by gastrointestinal (GI) dysmotility, and we describe one CS patient who required an implanted intestinal irrigation system for successful stooling. We used gene-modified mice to assess the underlying KATP channel subunits in gut smooth muscle, and to model the consequences of altered KATP channels in CS gut. We show that Kir6.1/SUR2 subunits underlie smooth muscle KATP channels throughout the small intestine and colon. Knock-in mice, carrying human KCNJ8 and ABCC9 CS mutations in the endogenous loci, exhibit reduced intrinsic contractility throughout the intestine, resulting in death when weaned onto solid food in the most severely affected animals. Death is avoided by weaning onto a liquid gel diet, implicating intestinal insufficiency and bowel impaction as the underlying cause, and GI transit is normalized by treatment with the KATP inhibitor glibenclamide. We thus define the molecular basis of intestinal KATP channel activity, the mechanism by which overactivity results in GI insufficiency, and a viable approach to therapy.
Collapse
Affiliation(s)
- Nathaniel W York
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States of America
| | - Helen Parker
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States of America
| | - Zili Xie
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States of America
| | - David Tyus
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States of America
| | - Maham A Waheed
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States of America
| | - Zihan Yan
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States of America
| | - Dorothy K Grange
- Divison of Clinical Genetics, Washington University School of Medicine, St. Louis, United States of America
| | - Maria S Remedi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States of America
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, United States of America
| | - Hongzhen Hu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States of America
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States of America
| |
Collapse
|
32
|
Le Ribeuz H, Capuano V, Girerd B, Humbert M, Montani D, Antigny F. Implication of Potassium Channels in the Pathophysiology of Pulmonary Arterial Hypertension. Biomolecules 2020; 10:biom10091261. [PMID: 32882918 PMCID: PMC7564204 DOI: 10.3390/biom10091261] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare and severe cardiopulmonary disease without curative treatments. PAH is a multifactorial disease that involves genetic predisposition, epigenetic factors, and environmental factors (drugs, toxins, viruses, hypoxia, and inflammation), which contribute to the initiation or development of irreversible remodeling of the pulmonary vessels. The recent identification of loss-of-function mutations in KCNK3 (KCNK3 or TASK-1) and ABCC8 (SUR1), or gain-of-function mutations in ABCC9 (SUR2), as well as polymorphisms in KCNA5 (Kv1.5), which encode two potassium (K+) channels and two K+ channel regulatory subunits, has revived the interest of ion channels in PAH. This review focuses on KCNK3, SUR1, SUR2, and Kv1.5 channels in pulmonary vasculature and discusses their pathophysiological contribution to and therapeutic potential in PAH.
Collapse
Affiliation(s)
- Hélène Le Ribeuz
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Véronique Capuano
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Barbara Girerd
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
- Correspondence: or ; Tel.: +33-1-40-94-22-99
| |
Collapse
|
33
|
Kortüm F, Niceta M, Magliozzi M, Dumic Kubat K, Robertson SP, Moresco A, Dentici ML, Baban A, Leoni C, Onesimo R, Obregon MG, Digilio MC, Zampino G, Novelli A, Tartaglia M, Kutsche K. Cantú syndrome versus Zimmermann-Laband syndrome: Report of nine individuals with ABCC9 variants. Eur J Med Genet 2020; 63:103996. [PMID: 32622958 DOI: 10.1016/j.ejmg.2020.103996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 11/17/2022]
Abstract
Cantú syndrome (CS) is a rare developmental disorder characterized by a coarse facial appearance, macrocephaly, hypertrichosis, skeletal and cardiovascular anomalies and caused by heterozygous gain-of-function variants in ABCC9 and KCNJ8, encoding subunits of heterooctameric ATP-sensitive potassium (KATP) channels. CS shows considerable clinical overlap with Zimmermann-Laband syndrome (ZLS), a rare condition with coarse facial features, hypertrichosis, gingival overgrowth, intellectual disability of variable degree, and hypoplasia or aplasia of terminal phalanges and/or nails. ZLS is caused by heterozygous gain-of-function variants in KCNH1 or KCNN3, and gain-of-function KCNK4 variants underlie the clinically similar FHEIG (facial dysmorphism, hypertrichosis, epilepsy, intellectual disability/developmental delay, and gingival overgrowth) syndrome; KCNH1, KCNN3 and KCNK4 encode potassium channels. Within our research project on ZLS, we performed targeted Sanger sequencing of ABCC9 in 15 individuals tested negative for a mutation in the ZLS-associated genes and found two individuals harboring a heterozygous pathogenic ABCC9 missense variant. Through a collaborative effort, we identified a total of nine individuals carrying a monoallelic ABCC9 variant: five sporadic patients and four members of two unrelated families. Among the six detected ABCC9 missense variants, four [p.(Pro252Leu), p.(Thr259Lys), p.(Ala1064Pro), and p.(Arg1197His)] were novel. Systematic assessment of the clinical features in the nine cases with an ABCC9 variant highlights the significant clinical overlap between ZLS and CS that includes early developmental delay, hypertrichosis, gingival overgrowth, joint laxity, and hypoplasia of terminal phalanges and nails. Gain of K+ channel activity possibly accounts for significant clinical similarities of CS, ZLS and FHEIG syndrome and defines a new subgroup of potassium channelopathies.
Collapse
Affiliation(s)
- Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Monia Magliozzi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Angelica Moresco
- Paediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Maria Lisa Dentici
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anwar Baban
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart - ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Chiara Leoni
- Center of Rare Diseases and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Roberta Onesimo
- Center of Rare Diseases and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Zampino
- Center of Rare Diseases and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Antonio Novelli
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
34
|
McClenaghan C, Huang Y, Matkovich SJ, Kovacs A, Weinheimer CJ, Perez R, Broekelmann TJ, Harter TM, Lee JM, Remedi MS, Nichols CG. The Mechanism of High-Output Cardiac Hypertrophy Arising From Potassium Channel Gain-of-Function in Cantú Syndrome. FUNCTION 2020; 1:zqaa004. [PMID: 32865539 PMCID: PMC7446247 DOI: 10.1093/function/zqaa004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 01/06/2023] Open
Abstract
Dramatic cardiomegaly arising from gain-of-function (GoF) mutations in the ATP-sensitive potassium (KATP) channels genes, ABCC9 and KCNJ8, is a characteristic feature of Cantú syndrome (CS). How potassium channel over-activity results in cardiac hypertrophy, as well as the long-term consequences of cardiovascular remodeling in CS, is unknown. Using genome-edited mouse models of CS, we therefore sought to dissect the pathophysiological mechanisms linking KATP channel GoF to cardiac remodeling. We demonstrate that chronic reduction of systemic vascular resistance in CS is accompanied by elevated renin-angiotensin signaling, which drives cardiac enlargement and blood volume expansion. Cardiac enlargement in CS results in elevation of basal cardiac output, which is preserved in aging. However, the cardiac remodeling includes altered gene expression patterns that are associated with pathological hypertrophy and are accompanied by decreased exercise tolerance, suggestive of reduced cardiac reserve. Our results identify a high-output cardiac hypertrophy phenotype in CS which is etiologically and mechanistically distinct from other myocardial hypertrophies, and which exhibits key features of high-output heart failure (HOHF). We propose that CS is a genetically-defined HOHF disorder and that decreased vascular smooth muscle excitability is a novel mechanism for HOHF pathogenesis.
Collapse
Affiliation(s)
- Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yan Huang
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scot J Matkovich
- Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Attila Kovacs
- Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla J Weinheimer
- Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ron Perez
- Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas J Broekelmann
- Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Theresa M Harter
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jin-Moo Lee
- Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maria S Remedi
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
35
|
Maqoud F, Zizzo N, Mele A, Denora N, Passantino G, Scala R, Cutrignelli A, Tinelli A, Laquintana V, la Forgia F, Fontana S, Franco M, Lopedota AA, Tricarico D. The hydroxypropyl-β-cyclodextrin-minoxidil inclusion complex improves the cardiovascular and proliferative adverse effects of minoxidil in male rats: Implications in the treatment of alopecia. Pharmacol Res Perspect 2020; 8:e00585. [PMID: 32378360 PMCID: PMC7203570 DOI: 10.1002/prp2.585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 12/22/2022] Open
Abstract
The efficacy of minoxidil (MXD) ethanolic solutions (1%-5% w/v) in the treatment of androgenetic alopecia is limited by adverse reactions. The toxicological effects of repeated topical applications of escalating dose (0.035%-3.5% w/v) and of single and twice daily doses (3.5% w/v) of a novel hydroxypropyl-β-cyclodextrin MXD GEL formulation (MXD/HP-β-CD) and a MXD solution were investigated in male rats. The cardiovascular effects were evaluated by telemetric monitoring of ECG and arterial pressure in free-moving rats. Ultrasonographic evaluation of cardiac morphology and function, and histopathological and biochemical analysis of the tissues, were performed. A pharmacovigilance investigation was undertaken using the EudraVigilance database for the evaluation of the potential cancer-related effects of topical MXD. Following the application of repeated escalating doses of MXD solution, cardiac hypertrophy, hypotension, enhanced serum natriuretic peptides and K+ -ion levels, serum liver biomarkers, and histological lesions including renal cancer were observed. In addition, the administration of a twice daily dose of MXD solution, at SF rat vs human = 311, caused reductions in the systolic, diastolic, and mean blood pressure of the rats (-30.76 ± 3%, -28.84 ± 4%, and -30.66 ± 5%, respectively, vs the baseline; t test P < .05). These effects were not reversible following washout of the MXD solution. Retrospective investigation showed 32 cases of cancer associated with the use of topical MXD in humans. The rats treated with MXD HP-β-CD were less severely affected. MXD causes proliferative adverse effects. The MXD HP-β-CD inclusion complex reduces these adverse effects.
Collapse
Affiliation(s)
- Fatima Maqoud
- Section of PharmacologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Nicola Zizzo
- Anatomy PathologyDepartment of Veterinary MedicineUniversity of BariBariItaly
| | - Antonietta Mele
- Section of PharmacologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Nunzio Denora
- Pharmaceutical TechnologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Giuseppe Passantino
- Anatomy PathologyDepartment of Veterinary MedicineUniversity of BariBariItaly
| | - Rosa Scala
- Section of PharmacologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Annalisa Cutrignelli
- Pharmaceutical TechnologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Antonella Tinelli
- Anatomy PathologyDepartment of Veterinary MedicineUniversity of BariBariItaly
| | - Valentino Laquintana
- Pharmaceutical TechnologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Flavia la Forgia
- Farmalabor s.r.I.Centro di Ricerca “Dr. Sergio Fontana 1900‐1982”Canosa di PugliaItaly
| | - Sergio Fontana
- Farmalabor s.r.I.Centro di Ricerca “Dr. Sergio Fontana 1900‐1982”Canosa di PugliaItaly
| | - Massimo Franco
- Pharmaceutical TechnologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Angela Assunta Lopedota
- Pharmaceutical TechnologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Domenico Tricarico
- Section of PharmacologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| |
Collapse
|
36
|
Davis MJ, Kim HJ, Zawieja SD, Castorena-Gonzalez JA, Gui P, Li M, Saunders BT, Zinselmeyer BH, Randolph GJ, Remedi MS, Nichols CG. Kir6.1-dependent K ATP channels in lymphatic smooth muscle and vessel dysfunction in mice with Kir6.1 gain-of-function. J Physiol 2020; 598:3107-3127. [PMID: 32372450 DOI: 10.1113/jp279612] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Spontaneous contractions are essential for normal lymph transport and these contractions are exquisitely sensitive to the KATP channel activator pinacidil. KATP channel Kir6.1 and SUR2B subunits are expressed in mouse lymphatic smooth muscle (LSM) and form functional KATP channels as verified by electrophysiological techniques. Global deletion of Kir6.1 or SUR2 subunits results in severely impaired lymphatic contractile responses to pinacidil. Smooth muscle-specific expression of Kir6.1 gain-of-function mutant (GoF) subunits results in profound lymphatic contractile dysfunction and LSM hyperpolarization that is partially rescued by the KATP inhibitor glibenclamide. In contrast, lymphatic endothelial-specific expression of Kir6.1 GoF has essentially no effect on lymphatic contractile function. The high sensitivity of LSM to KATP channel GoF offers an explanation for the lymphoedema observed in patients with Cantú syndrome, a disorder caused by gain-of-function mutations in genes encoding Kir6.1 or SUR2, and suggests that glibenclamide may be an appropriate therapeutic agent. ABSTRACT This study aimed to understand the functional expression of KATP channel subunits in distinct lymphatic cell types, and assess the consequences of altered KATP channel activity on lymphatic pump function. KATP channel subunits Kir6.1 and SUR2B were expressed in mouse lymphatic muscle by PCR, but only Kir6.1 was expressed in lymphatic endothelium. Spontaneous contractions of popliteal lymphatics from wild-type (WT) (C57BL/6J) mice, assessed by pressure myography, were very sensitive to inhibition by the SUR2-specific KATP channel activator pinacidil, which hyperpolarized both mouse and human lymphatic smooth muscle (LSM). In vessels from mice with deletion of Kir6.1 (Kir6.1-/- ) or SUR2 (SUR2[STOP]) subunits, contractile parameters were not significantly different from those of WT vessels, suggesting that basal KATP channel activity in LSM is not an essential component of the lymphatic pacemaker, and does not exert a strong influence over contractile strength. However, these vessels were >100-fold less sensitive than WT vessels to pinacidil. Smooth muscle-specific expression of a Kir6.1 gain-of-function (GoF) subunit resulted in severely impaired lymphatic contractions and hyperpolarized LSM. Membrane potential and contractile activity was partially restored by the KATP channel inhibitor glibenclamide. In contrast, lymphatic endothelium-specific expression of Kir6.1 GoF subunits had negligible effects on lymphatic contraction frequency or amplitude. Our results demonstrate a high sensitivity of lymphatic contractility to KATP channel activators through activation of Kir6.1/SUR2-dependent channels in LSM. In addition, they offer an explanation for the lymphoedema observed in patients with Cantú syndrome, a disorder caused by gain-of-function mutations in genes encoding Kir6.1/SUR2.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Hae Jin Kim
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Jorge A Castorena-Gonzalez
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Peichun Gui
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Min Li
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Brian T Saunders
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Maria S Remedi
- Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| |
Collapse
|
37
|
Grange DK, Roessler HI, McClenaghan C, Duran K, Shields K, Remedi MS, Knoers NVAM, Lee JM, Kirk EP, Scurr I, Smithson SF, Singh GK, van Haelst MM, Nichols CG, van Haaften G. Cantú syndrome: Findings from 74 patients in the International Cantú Syndrome Registry. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 181:658-681. [PMID: 31828977 DOI: 10.1002/ajmg.c.31753] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 11/11/2022]
Abstract
Cantú syndrome (CS), first described in 1982, is caused by pathogenic variants in ABCC9 and KCNJ8, which encode the regulatory and pore forming subunits of ATP-sensitive potassium (KATP ) channels, respectively. Multiple case reports of affected individuals have described the various clinical features of CS, but systematic studies are lacking. To define the effects of genetic variants on CS phenotypes and clinical outcomes, we have developed a standardized REDCap-based registry for CS. We report phenotypic features and associated genotypes on 74 CS subjects, with confirmed ABCC9 variants in 72 of the individuals. Hypertrichosis and a characteristic facial appearance are present in all individuals. Polyhydramnios during fetal life, hyperflexibility, edema, patent ductus arteriosus (PDA), cardiomegaly, dilated aortic root, vascular tortuosity of cerebral arteries, and migraine headaches are common features, although even with this large group of subjects, there is incomplete penetrance of CS-associated features, without clear correlation to genotype.
Collapse
Affiliation(s)
- Dorothy K Grange
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.,Center for the Investigation of Membrane Excitability Diseases (CIMED)
| | - Helen I Roessler
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases (CIMED).,Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri
| | - Karen Duran
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kathleen Shields
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Maria S Remedi
- Center for the Investigation of Membrane Excitability Diseases (CIMED).,Department of Medicine, Division of Endocrinology, Washington University School of Medicine, St. Louis, Missouri
| | - Nine V A M Knoers
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Jin-Moo Lee
- Department of Neurology and Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Edwin P Kirk
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Randwick, New South Wales, Australia
| | - Ingrid Scurr
- Department of Clinical Genetics, University Hospitals, Bristol, UK
| | - Sarah F Smithson
- Department of Clinical Genetics, University Hospitals, Bristol, UK
| | - Gautam K Singh
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.,Center for the Investigation of Membrane Excitability Diseases (CIMED)
| | - Mieke M van Haelst
- Department of Clinical Genetics, VU Medical Center, VU University Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Genetics, Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases (CIMED).,Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
38
|
McClenaghan C, Huang Y, Yan Z, Harter TM, Halabi CM, Chalk R, Kovacs A, van Haaften G, Remedi MS, Nichols CG. Glibenclamide reverses cardiovascular abnormalities of Cantu syndrome driven by KATP channel overactivity. J Clin Invest 2020; 130:1116-1121. [PMID: 31821173 PMCID: PMC7269588 DOI: 10.1172/jci130571] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Cantu syndrome (CS) is a complex disorder caused by gain-of-function (GoF) mutations in ABCC9 and KCNJ8, which encode the SUR2 and Kir6.1 subunits, respectively, of vascular smooth muscle (VSM) KATP channels. CS includes dilated vasculature, marked cardiac hypertrophy, and other cardiovascular abnormalities. There is currently no targeted therapy, and it is unknown whether cardiovascular features can be reversed once manifest. Using combined transgenic and pharmacological approaches in a knockin mouse model of CS, we have shown that reversal of vascular and cardiac phenotypes can be achieved by genetic downregulation of KATP channel activity specifically in VSM, and by chronic administration of the clinically used KATP channel inhibitor, glibenclamide. These findings demonstrate that VSM KATP channel GoF underlies CS cardiac enlargement and that CS-associated abnormalities are reversible, and provide evidence of in vivo efficacy of glibenclamide as a therapeutic agent in CS.
Collapse
Affiliation(s)
- Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases
- Department of Cell Biology
- Department of Physiology
| | - Yan Huang
- Center for the Investigation of Membrane Excitability Diseases
- Department of Cell Biology
- Department of Physiology
| | - Zihan Yan
- Center for the Investigation of Membrane Excitability Diseases
- Division of Endocrinology, Department of Medicine, and
| | - Theresa M. Harter
- Center for the Investigation of Membrane Excitability Diseases
- Department of Cell Biology
- Department of Physiology
| | - Carmen M. Halabi
- Center for the Investigation of Membrane Excitability Diseases
- Division of Nephrology, Department of Pediatrics, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Rod Chalk
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
| | - Attila Kovacs
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Gijs van Haaften
- Center for Molecular Medicine, Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Maria S. Remedi
- Center for the Investigation of Membrane Excitability Diseases
- Division of Endocrinology, Department of Medicine, and
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases
- Department of Cell Biology
- Department of Physiology
| |
Collapse
|
39
|
Parrott A, Lombardo R, Brown N, Tretter JT, Riley L, Weaver KN. Cantu syndrome: A longitudinal review of vascular findings in three individuals. Am J Med Genet A 2020; 182:1243-1248. [PMID: 32065455 DOI: 10.1002/ajmg.a.61521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 11/10/2022]
Abstract
Cantu syndrome is a rare autosomal dominant disorder caused by missense variants in ABCC9 and KCNJ8. It is characterized by hypertrichosis, neonatal macrosomia, coarse facial features, and skeletal anomalies. Reported cardiovascular anomalies include cardiomegaly, structural defects, collateral vessels, and rare report of arteriovenous malformation (AVM). Arterial dilation is reported in a few individuals including one with surgical intervention for a thoracic aortic aneurysm. The natural history of this aortopathy including the rate of progression or risk for dissection is unknown and longitudinal patient data is unavailable. We present data from vascular imaging in three individuals with genetically confirmed Cantu syndrome over 3 to 14 years of follow-up. All patients had generally stable aortic dilation, which did not reach the surgical threshold, including one individual followed closely through pregnancy. In adulthood, one individual had a maximum ascending aortic measurement of 4.2 cm. Two pediatric patients had aortic root or ascending z-scores of approximately +3. A large asymptomatic pelvic AVM was identified in one individual on head-pelvis MRI. While the data reported in these individuals is reassuring regarding the risk for progressive disease, further data from additional individuals with Cantu syndrome is needed to best inform screening recommendations, improve understanding of dissection risk, and guide management.
Collapse
Affiliation(s)
- Ashley Parrott
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rachel Lombardo
- Department of Medical Genetics, UT Southwestern Medical Center, Dallas, Texas
| | - Nicole Brown
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Justin T Tretter
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Laura Riley
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kathryn Nicole Weaver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
40
|
Smeland MF, McClenaghan C, Roessler HI, Savelberg S, Hansen GÅM, Hjellnes H, Arntzen KA, Müller KI, Dybesland AR, Harter T, Sala-Rabanal M, Emfinger CH, Huang Y, Singareddy SS, Gunn J, Wozniak DF, Kovacs A, Massink M, Tessadori F, Kamel SM, Bakkers J, Remedi MS, Van Ghelue M, Nichols CG, van Haaften G. ABCC9-related Intellectual disability Myopathy Syndrome is a K ATP channelopathy with loss-of-function mutations in ABCC9. Nat Commun 2019; 10:4457. [PMID: 31575858 PMCID: PMC6773855 DOI: 10.1038/s41467-019-12428-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/30/2019] [Indexed: 11/30/2022] Open
Abstract
Mutations in genes encoding KATP channel subunits have been reported for pancreatic disorders and Cantú syndrome. Here, we report a syndrome in six patients from two families with a consistent phenotype of mild intellectual disability, similar facies, myopathy, and cerebral white matter hyperintensities, with cardiac systolic dysfunction present in the two oldest patients. Patients are homozygous for a splice-site mutation in ABCC9 (c.1320 + 1 G > A), which encodes the sulfonylurea receptor 2 (SUR2) subunit of KATP channels. This mutation results in an in-frame deletion of exon 8, which results in non-functional KATP channels in recombinant assays. SUR2 loss-of-function causes fatigability and cardiac dysfunction in mice, and reduced activity, cardiac dysfunction and ventricular enlargement in zebrafish. We term this channelopathy resulting from loss-of-function of SUR2-containing KATP channels ABCC9-related Intellectual disability Myopathy Syndrome (AIMS). The phenotype differs from Cantú syndrome, which is caused by gain-of-function ABCC9 mutations, reflecting the opposing consequences of KATP loss- versus gain-of-function.
Collapse
Affiliation(s)
- Marie F Smeland
- Department of Medical Genetics, University Hospital of North Norway, 9019, Tromsø, Norway.
| | - Conor McClenaghan
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Helen I Roessler
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Sanne Savelberg
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | | | - Helene Hjellnes
- Department of Medical Genetics, University Hospital of North Norway, 9019, Tromsø, Norway
| | - Kjell Arne Arntzen
- Department of Neurology, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019, Tromsø, Norway
- The National Neuromuscular Centre of Norway, University Hospital of North Norway, 9019, Tromsø, Norway
| | - Kai Ivar Müller
- Department of Neurology, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019, Tromsø, Norway
| | - Andreas Rosenberger Dybesland
- The National Neuromuscular Centre of Norway, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Physiotherapy, University Hospital of North Norway, 9019, Tromsø, Norway
| | - Theresa Harter
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Monica Sala-Rabanal
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University, St Louis, MO, 63110, USA
| | - Chris H Emfinger
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Yan Huang
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Soma S Singareddy
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Jamie Gunn
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David F Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Attila Kovacs
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Maarten Massink
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Federico Tessadori
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT, Utrecht, the Netherlands
| | - Sarah M Kamel
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT, Utrecht, the Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT, Utrecht, the Netherlands
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Maria S Remedi
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University, St Louis, MO, 63110, USA
| | - Marijke Van Ghelue
- Department of Medical Genetics, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Medical Genetics, the Arctic University of Norway, 9019, Tromsø, Norway
| | - Colin G Nichols
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
41
|
Ma A, Gurnasinghani S, Kirk EP, McClenaghan C, Singh GK, Grange DK, Pandit C, Zhu Y, Roscioli T, Elakis G, Buckley M, Mehta B, Roberts P, Mervis J, Biggin A, Nichols CG. Glibenclamide treatment in a Cantú syndrome patient with a pathogenic ABCC9 gain-of-function variant: Initial experience. Am J Med Genet A 2019; 179:1585-1590. [PMID: 31175705 PMCID: PMC6899598 DOI: 10.1002/ajmg.a.61200] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022]
Abstract
Cantú syndrome (CS), characterized by hypertrichosis, distinctive facial features, and complex cardiovascular abnormalities, is caused by pathogenic variants in ABCC9 and KCNJ8 genes. These genes encode gain-of-function mutations in the regulatory (SUR2) and pore-forming (Kir6.1) subunits of KATP channels, respectively, suggesting that channel-blocking sulfonylureas could be a viable therapy. Here we report a neonate with CS, carrying a heterozygous ABCC9 variant (c.3347G>A, p.Arg1116His), born prematurely at 32 weeks gestation. Initial echocardiogram revealed a large patent ductus arteriosus (PDA), and high pulmonary pressures with enlarged right ventricle. He initially received surfactant and continuous positive airway pressure ventilation and was invasively ventilated for 4 weeks, until PDA ligation. After surgery, he still had ongoing bilevel positive airway pressure (BiPAP) requirement, but was subsequently weaned to nocturnal BiPAP. He was treated for pulmonary hypertension with Sildenafil, but failed to make further clinical improvement. A therapeutic glibenclamide trial was commenced in week 11 (initial dose of 0.05 mg-1 kg-1 day-1 in two divided doses). After 1 week of treatment, he began to tolerate time off BiPAP when awake, and edema improved. Glibenclamide was well tolerated, and the dose was slowly increased to 0.15 mg-1 kg-1 day-1 over the next 12 weeks. Mild transient hypoglycemia was observed, but there was no cardiovascular dysfunction. Confirmation of therapeutic benefit will require studies of more CS patients but, based on this limited experience, consideration should be given to glibenclamide as CS therapy, although problems associated with prematurity, and complications of hypoglycemia, might limit outcome in critically ill neonates with CS.
Collapse
Affiliation(s)
- Alan Ma
- Department of Clinical GeneticsChildren's Hospital at Westmead, Sydney Children's Hospital NetworkSydneyNew South WalesAustralia
- Discipline of Genomic MedicineSydney Medical School, University of SydneySydneyNew South WalesAustralia
| | - Sunita Gurnasinghani
- Department of Clinical GeneticsChildren's Hospital at Westmead, Sydney Children's Hospital NetworkSydneyNew South WalesAustralia
| | - Edwin P. Kirk
- Centre for Clinical GeneticsSydney Children's Hospital, Sydney Children's Hospital NetworkSydneyNew South WalesAustralia
- NSW Health Pathology East Genomics LaboratorySydneyNew South WalesAustralia
- School of Women's and Children's Health, University of NSWSydneyNew South WalesAustralia
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of MedicineSt. LouisMissouri
- Department of Cell Biology and PhysiologyWashington University School of MedicineSt. LouisMissouri
| | - Gautam K. Singh
- Department of PediatricsWashington University School of MedicineSt. LouisMissouri
| | - Dorothy K. Grange
- Department of PediatricsWashington University School of MedicineSt. LouisMissouri
| | - Chetan Pandit
- Department of Respiratory and Sleep MedicineThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Yung Zhu
- NSW Health Pathology East Genomics LaboratorySydneyNew South WalesAustralia
| | - Tony Roscioli
- Centre for Clinical GeneticsSydney Children's Hospital, Sydney Children's Hospital NetworkSydneyNew South WalesAustralia
- NSW Health Pathology East Genomics LaboratorySydneyNew South WalesAustralia
| | - George Elakis
- NSW Health Pathology East Genomics LaboratorySydneyNew South WalesAustralia
| | - Michael Buckley
- NSW Health Pathology East Genomics LaboratorySydneyNew South WalesAustralia
| | - Bhavesh Mehta
- Grace Centre for Newborn Intensive CareThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Philip Roberts
- Department of CardiologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Jonathan Mervis
- Department of CardiologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Andrew Biggin
- Children's Hospital Westmead Clinical School, University of SydneyNew South WalesAustralia
- Institute of Endocrinology and Diabetes, The Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of MedicineSt. LouisMissouri
- Department of Cell Biology and PhysiologyWashington University School of MedicineSt. LouisMissouri
| |
Collapse
|
42
|
McClenaghan C, Woo KV, Nichols CG. Pulmonary Hypertension and ATP-Sensitive Potassium Channels. Hypertension 2019; 74:14-22. [PMID: 31132951 DOI: 10.1161/hypertensionaha.119.12992] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Conor McClenaghan
- From the Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO (C.M., C.G.N.)
| | - Kel Vin Woo
- Department of Pediatrics, Division of Cardiology, Washington University School of Medicine, St Louis, MO (K.V.W.)
| | - Colin G Nichols
- From the Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO (C.M., C.G.N.)
| |
Collapse
|
43
|
Huang Y, Hu D, Huang C, Nichols CG. Genetic Discovery of ATP-Sensitive K + Channels in Cardiovascular Diseases. Circ Arrhythm Electrophysiol 2019; 12:e007322. [PMID: 31030551 PMCID: PMC6494091 DOI: 10.1161/circep.119.007322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ATP-sensitive K+ (KATP) channels are hetero-octameric protein complexes comprising 4 pore-forming (Kir6.x) subunits and 4 regulatory sulfonylurea receptor (SURx) subunits. They are prominent in myocytes, pancreatic β cells, and neurons and link cellular metabolism with membrane excitability. Using genetically modified animals and genomic analysis in patients, recent studies have implicated certain ATP-sensitive K+ channel subtypes in physiological and pathological processes in a variety of cardiovascular diseases. In this review, we focus on the causal relationship between ATP-sensitive K+ channel activity and pathophysiology in the cardiovascular system, particularly from the perspective of genetic changes in human and animal models.
Collapse
Affiliation(s)
- Yan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases, and Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
44
|
Subbotina E, Yang HQ, Gando I, Williams N, Sampson BA, Tang Y, Coetzee WA. Functional characterization of ABCC9 variants identified in sudden unexpected natural death. Forensic Sci Int 2019; 298:80-87. [PMID: 30878466 DOI: 10.1016/j.forsciint.2019.02.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Genetic variation in ion channel genes ('channelopathies') are often associated with inherited arrhythmias and sudden death. Genetic testing ('molecular autopsies') of channelopathy genes can be used to assist in determining the likely causes of sudden unexpected death. However, different in silico approaches can yield conflicting pathogenicity predictions and assessing their impact on ion channel function can assist in this regard. METHODS AND RESULTS We performed genetic testing of cases of sudden expected death in the New York City metropolitan area and found four rare or novel variants in ABCC9, which codes for the regulatory SUR2 subunit of KATP channels. All were missense variants, causing amino acid changes in the protein. Three of the variants (A355S, M941V, and K1379Q) were in cases of infants less than six-months old and one (H1305Y) was in an adult. The predicted pathogenicities of the variants were conflicting. We have introduced these variants into a human SUR2A cDNA, which we coexpressed with the Kir6.2 pore-forming subunit in HEK-293 cells and subjected to patch clamp and biochemical assays. Each of the four variants led to gain-of-function phenotypes. The A355S and M941V variants increased in the overall patch current. The sensitivity of the KATP channels to inhibitory 'cytosolic' ATP was repressed for the M941V, H1305Y and K1379Q variants. None of the variants had any effect on the unitary KATP channel current or the surface expression of KATP channels, as determined with biotinylation assays, suggesting that all of the variants led to an enhanced open state. CONCLUSIONS All four variants caused a gain-of-function phenotype. Given the expression of SUR2-containing KATP channels in the heart and specialized cardiac conduction, vascular smooth muscle and respiratory neurons, it is conceivable that electrical silencing of these cells may contribute to the vulnerability element, which is a component of the triple risk model of sudden explained death in infants. The gain-of-function phenotype of these ABCC9 variants should be considered when assessing their potential pathogenicity.
Collapse
Affiliation(s)
| | - Hua-Qian Yang
- Departments of Pediatrics, NYU School of Medicine, New York, NY 10016 USA
| | - Ivan Gando
- Departments of Pediatrics, NYU School of Medicine, New York, NY 10016 USA
| | - Nori Williams
- Molecular Genetics Laboratory, Office of Chief Medical Examiner, New York, NY USA
| | - Barbara A Sampson
- Molecular Genetics Laboratory, Office of Chief Medical Examiner, New York, NY USA
| | - Yingying Tang
- Molecular Genetics Laboratory, Office of Chief Medical Examiner, New York, NY USA
| | - William A Coetzee
- Departments of Pediatrics, NYU School of Medicine, New York, NY 10016 USA; Departments of Physiology & Neuroscience NYU School of Medicine, New York, NY 10016 USA; Departments of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 USA.
| |
Collapse
|