1
|
Jajosky RP, Covington ML, Liu J, Chai L, Zerra PE, Chonat S, Stowell SR, Arthur CM. CD47 regulates antigen modulation and red blood cell clearance following an incompatible transfusion. Front Immunol 2025; 16:1548548. [PMID: 40255405 PMCID: PMC12006802 DOI: 10.3389/fimmu.2025.1548548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/21/2025] [Indexed: 04/22/2025] Open
Abstract
Red blood cell (RBC) alloantibodies can result in the rapid removal of incompatible RBCs following transfusion. However, antibody-mediated clearance of RBCs is not the inevitable outcome of an incompatible transfusion. Antibody engagement can also result in the modulation of the target antigen, often rendering RBCs resistant to antibody-mediated removal. Despite this, the factors that regulate antibody-induced RBC removal or antigen modulation remain incompletely understood. Given the ability of CD47 to regulate RBC survival in general, we examined the possible role of CD47 in governing antibody-mediated RBC clearance and antigen modulation. This was achieved by crossing the well-established HEL-OVA-Duffy (HOD) mouse model with CD47 knockout (KO) mice to generate offspring that express the HOD antigen and either WT (HOD CD47 WT), heterozygote (HOD CD47 HET) or KO (HOD CD47 KO) levels of CD47. Using the commonly employed anti-HEL immunization model, our results demonstrate that while antibody engagement of HOD CD47 WT RBCs resulted in rapid antigen modulation in the absence of detectable RBC clearance, antibody binding to HOD CD47 HET RBCs did result in detectable RBC removal despite similar rates and overall levels of antigen modulation. In contrast, despite accelerated clearance of HOD CD47 KO RBCs in the absence of anti-HEL antibodies, the rate of RBC removal and antigen modulation was enhanced in the presence of anti-HEL antibodies. Taken together, these results suggest a role for CD47 in regulating the overall consequence of an incompatible RBC transfusion.
Collapse
Affiliation(s)
- Ryan P. Jajosky
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, United States
| | - Mischa L. Covington
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, United States
| | - Jun Liu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, United States
| | - Li Chai
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Patricia E. Zerra
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, United States
| | - Connie M. Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Jajosky RP, Zerra PE, Chonat S, Stowell SR, Arthur CM. Harnessing the potential of red blood cells in immunotherapy. Hum Immunol 2024; 85:111084. [PMID: 39255557 PMCID: PMC11808826 DOI: 10.1016/j.humimm.2024.111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/12/2024]
Abstract
Red blood cell (RBC) transfusion represents one of the earliest and most widespread forms of cellular therapy. While the primary purpose of RBC transfusions is to enhance the oxygen-carrying capacity of the recipient, RBCs also possess unique properties that make them attractive vehicles for inducing antigen-specific immune tolerance. Preclinical studies have demonstrated that RBC transfusion alone, in the absence of inflammatory stimuli, often fails to elicit detectable alloantibody formation against model RBC antigens. Several studies also suggest that RBC transfusion without inflammation may not only fail to generate a detectable alloantibody response but can also induce a state of antigen-specific non-responsiveness, a phenomenon potentially influenced by the density of the corresponding RBC alloantigen. The unique properties of RBCs, including their inability to divide and their stable surface antigen expression, make them attractive platforms for displaying exogenous antigens with the goal of leveraging their ability to induce antigen-specific non-responsiveness. This could facilitate antigen presentation to the host's immune system without triggering innate immune activation, potentially enabling the induction of antigen-specific tolerance for therapeutic applications in autoimmune disorders, preventing immune responses against protein therapeutics, or reducing alloreactivity in the setting of transfusion and transplantation.
Collapse
Affiliation(s)
- Ryan P Jajosky
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Patricia E Zerra
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Satheesh Chonat
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
3
|
Arthur CM, Hollenhorst M, Wu SC, Jajosky R, Nakahara H, Jan HM, Zheng L, Covington M, Rakoff-Nahoum S, Yeung M, Lane W, Josephson C, Cummings RD, Stowell SR. ABO blood groups and galectins: Implications in transfusion medicine and innate immunity. Semin Immunol 2024; 74-75:101892. [PMID: 39405833 PMCID: PMC11808837 DOI: 10.1016/j.smim.2024.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 11/18/2024]
Abstract
ABO blood group antigens, which are complex carbohydrate moieties, and the first human polymorphisms identified, are critical in transfusion medicine and transplantation. Despite their discovery over a century ago, significant questions remain about the development of anti-ABO antibodies and the structural features of ABO antigens that cause hemolytic transfusion reactions. Anti-ABO antibodies develop naturally during the first few months of life, in contrast to other red blood cell (RBC) alloantibodies which form after allogeneic RBC exposure. Anti-ABO antibodies are the most common immune barrier to transfusion and transplantation, but the factors driving their formation are incompletely understood. Some studies suggest that microbes that express glycans similar in structure to the blood group antigens could play a role in anti-blood group antibody formation. While the role of these microbes in clinically relevant anti-blood group antibody formation remains to be defined, the presence of these microbes raises questions about how blood group-positive individuals protect themselves against blood group molecular mimicry. Recent studies suggest that galectins can bind and kill microbes that mimic blood group antigens, suggesting a unique host defense mechanism against microbial molecular mimicry. However, new models are needed to fully define the impact of microbes, galectins, or other factors on the development of clinically relevant naturally occurring anti-blood group antibodies.
Collapse
Affiliation(s)
- Connie M Arthur
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Medical School Center for Glycosciences, USA
| | - Marie Hollenhorst
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryan Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hirotomo Nakahara
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hau-Ming Jan
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leon Zheng
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mischa Covington
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Melissa Yeung
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - William Lane
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Richard D Cummings
- Harvard Medical School Center for Glycosciences, USA; Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Medical School Center for Glycosciences, USA.
| |
Collapse
|
4
|
Jan HM, Wu SC, Stowell CJ, Vallecillo-Zúniga ML, Paul A, Patel KR, Muthusamy S, Lin HY, Ayona D, Jajosky RP, Varadkar SP, Nakahara H, Chan R, Bhave D, Lane WJ, Yeung MY, Hollenhorst MA, Rakoff-Nahoum S, Cummings RD, Arthur CM, Stowell SR. Galectin-4 Antimicrobial Activity Primarily Occurs Through its C-Terminal Domain. Mol Cell Proteomics 2024; 23:100747. [PMID: 38490531 PMCID: PMC11097083 DOI: 10.1016/j.mcpro.2024.100747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/03/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024] Open
Abstract
Although immune tolerance evolved to reduce reactivity with self, it creates a gap in the adaptive immune response against microbes that decorate themselves in self-like antigens. This is particularly apparent with carbohydrate-based blood group antigens, wherein microbes can envelope themselves in blood group structures similar to human cells. In this study, we demonstrate that the innate immune lectin, galectin-4 (Gal-4), exhibits strain-specific binding and killing behavior towards microbes that display blood group-like antigens. Examination of binding preferences using a combination of microarrays populated with ABO(H) glycans and a variety of microbial strains, including those that express blood group-like antigens, demonstrated that Gal-4 binds mammalian and microbial antigens that have features of blood group and mammalian-like structures. Although Gal-4 was thought to exist as a monomer that achieves functional bivalency through its two linked carbohydrate recognition domains, our data demonstrate that Gal-4 forms dimers and that differences in the intrinsic ability of each domain to dimerize likely influences binding affinity. While each Gal-4 domain exhibited blood group-binding activity, the C-terminal domain (Gal-4C) exhibited dimeric properties, while the N-terminal domain (Gal-4N) failed to similarly display dimeric activity. Gal-4C not only exhibited the ability to dimerize but also possessed higher affinity toward ABO(H) blood group antigens and microbes expressing glycans with blood group-like features. Furthermore, when compared to Gal-4N, Gal-4C exhibited more potent antimicrobial activity. Even in the context of the full-length protein, where Gal-4N is functionally bivalent by virtue of Gal-4C dimerization, Gal-4C continued to display higher antimicrobial activity. These results demonstrate that Gal-4 exists as a dimer and exhibits its antimicrobial activity primarily through its C-terminal domain. In doing so, these data provide important insight into key features of Gal-4 responsible for its innate immune activity against molecular mimicry.
Collapse
Affiliation(s)
- Hau-Ming Jan
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carter J Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary L Vallecillo-Zúniga
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anu Paul
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kashyap R Patel
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sasikala Muthusamy
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hsien-Ya Lin
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diyoly Ayona
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ryan Philip Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Samata P Varadkar
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hirotomo Nakahara
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rita Chan
- Infectious Disease Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Devika Bhave
- Infectious Disease Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - William J Lane
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Melissa Y Yeung
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marie A Hollenhorst
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Seth Rakoff-Nahoum
- Infectious Disease Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard D Cummings
- Harvard Glycomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
5
|
Yee MEM, Zerra PE, McCoy JW, Covington ML, Stowell SR, Joiner CH, Lough CM, Delvadia BB, Josephson CD, Roback JD, Fasano RM. Post-transfusion biotin-labeled red blood cell survival studies in pediatric sickle cell disease with antibodies of uncertain significance. Transfusion 2024; 64:800-807. [PMID: 38506450 PMCID: PMC11088511 DOI: 10.1111/trf.17800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Red blood cell (RBC) antibodies are common in multiply transfused patients with sickle cell disease (SCD). Unlike RBC alloantibodies, the potential of autoantibodies to cause post-transfusion hemolysis may be uncertain. Biotin-labeling provides a direct measurement of red cell survival (RCS) over time, thus can be used to assess the clinical significance of RBC antibodies. Antibodies to biotinylated RBC (B-RBC) occasionally are detected after exposure, which may impact B-RBC survival in subsequent RCS studies. STUDY DESIGN AND METHODS Pediatric patients with SCD receiving monthly chronic transfusions underwent RCS studies, receiving aliquots of allogeneic RBC labeled at distinct densities of biotin (2-18 μg/mL). B-RBC survival was followed for 4 months post-transfusion, and B-RBC antibody screening for 6 months. Patients with warm autoantibodies (WAA) or B-RBC antibodies are reported here. RESULTS RBC antibodies were detected during RCS in four patients: one with WAA, one with WAA followed by B-RBC-specific antibodies, and two with transient B-RBC antibodies within the first 5 weeks of exposure. B-RBC half-lives (T50) ranged 37.6-61.7 days (mean 47.8 days). There was no evidence of increased hemolysis or accelerated B-RBC clearance in the presence of WAA or B-RBC antibodies. DISCUSSION Biotinylation of allogenic RBC can be used to assess the possible effects of RBC antibodies on transfusion survival in individual cases, particularly when it is uncertain if the detected antibodies may result in hemolysis. In the cases presented here, neither WAA nor B-RBC antibodies were associated with significant shortening of B-RBC survival in individuals with SCD.
Collapse
Affiliation(s)
- Marianne E M Yee
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Patricia E Zerra
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - James W McCoy
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mischa L Covington
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Clinton H Joiner
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christopher M Lough
- Medical Services, Lifesouth Community Blood Centers, Gainesville, Florida, USA
| | | | - Cassandra D Josephson
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John D Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ross M Fasano
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Jash A, Pridmore T, Collins JB, Hay AM, Hudson KE, Luckey CJ, Zimring JC. Complement C3 and marginal zone B cells promote IgG-mediated enhancement of RBC alloimmunization in mice. J Clin Invest 2024; 134:e167665. [PMID: 38618959 PMCID: PMC11014669 DOI: 10.1172/jci167665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/27/2024] [Indexed: 04/16/2024] Open
Abstract
Administration of anti-RhD immunoglobulin (Ig) to decrease maternal alloimmunization (antibody-mediated immune suppression [AMIS]) was a landmark clinical development. However, IgG has potent immune-stimulatory effects in other settings (antibody-mediated immune enhancement [AMIE]). The dominant thinking has been that IgG causes AMIS for antigens on RBCs but AMIE for soluble antigens. However, we have recently reported that IgG against RBC antigens can cause either AMIS or AMIE as a function of an IgG subclass. Recent advances in mechanistic understanding have demonstrated that RBC alloimmunization requires the IFN-α/-β receptor (IFNAR) and is inhibited by the complement C3 protein. Here, we demonstrate the opposite for AMIE of an RBC alloantigen (IFNAR is not required and C3 enhances). RBC clearance, C3 deposition, and antigen modulation all preceded AMIE, and both CD4+ T cells and marginal zone B cells were required. We detected no significant increase in antigen-specific germinal center B cells, consistent with other studies of RBC alloimmunization that show extrafollicular-like responses. To the best of our knowledge, these findings provide the first evidence of an RBC alloimmunization pathway which is IFNAR independent and C3 dependent, thus further advancing our understanding of RBCs as an immunogen and AMIE as a phenomenon.
Collapse
Affiliation(s)
- Arijita Jash
- University of Virginia School of Medicine, Charlottesville Virginia, USA
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas Pridmore
- University of Virginia School of Medicine, Charlottesville Virginia, USA
| | - James B. Collins
- University of Virginia School of Medicine, Charlottesville Virginia, USA
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, USA
| | - Ariel M. Hay
- University of Virginia School of Medicine, Charlottesville Virginia, USA
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, USA
| | - Krystalyn E. Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Chance John Luckey
- University of Virginia School of Medicine, Charlottesville Virginia, USA
| | - James C. Zimring
- University of Virginia School of Medicine, Charlottesville Virginia, USA
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
7
|
Hale RC, Morais D, Chou J, Stowell SR. The role of glycosylation in clinical allergy and immunology. J Allergy Clin Immunol 2024; 153:55-66. [PMID: 37717626 PMCID: PMC10872775 DOI: 10.1016/j.jaci.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
While glycans are among the most abundant macromolecules on the cell with widespread functions, their role in immunity has historically been challenging to study. This is in part due to difficulties assimilating glycan analysis into routine approaches used to interrogate immune cell function. Despite this, recent developments have illuminated fundamental roles for glycans in host immunity. The growing field of glycoimmunology continues to leverage new tools and approaches to uncover the function of glycans and glycan-binding proteins in immunity. Here we utilize clinical vignettes to examine key roles of glycosylation in allergy, inborn errors of immunity, and autoimmunity. We will discuss the diverse functions of glycans as epitopes, as modulators of antibody function, and as regulators of immune cell function. Finally, we will highlight immune modulatory therapies that harness the critical role of glycans in the immune system.
Collapse
Affiliation(s)
- Rebecca C Hale
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass; Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Dominique Morais
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| | - Sean R Stowell
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Harvard Glycomics Center, Harvard Medical School, Boston, Mass.
| |
Collapse
|
8
|
Chang DY, Wankier Z, Arthur CM, Stowell SR. The ongoing challenge of RBC alloimmunization in the management of patients with sickle cell disease. Presse Med 2023; 52:104211. [PMID: 37981194 DOI: 10.1016/j.lpm.2023.104211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
RBC transfusion remains a cornerstone in the treatment of sickle cell disease (SCD). However, as with many interventions, transfusion of RBCs is not without risk. Allogeneic RBC exposure can result in the development of alloantibodies, which can make it difficult to find compatible RBCs for future transfusion and increases the likelihood of life-threatening complications. The development of RBC alloantibodies occurs when a patient's immune system produces alloantibodies against foreign alloantigens present on RBCs. Despite its longstanding recognition, RBC alloimmunization has increasingly become a challenge when caring for patients with SCD. The growing prominence of alloimmunization can be attributed to several factors, including expanded indications for transfusions, increased lifespan of patients with SCD, and inadequate approaches to prevent alloimmunization. Recognizing these challenges, recent observational studies and preclinical models have begun to elucidate the immune pathways that underpin RBC alloimmunization. These emerging data hold promise in paving the way for innovative prevention strategies, with the goal of increasing the safety and efficacy of RBC transfusion in patients with SCD who are most vulnerable to alloimmunization.
Collapse
Affiliation(s)
- Daniel Y Chang
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Zakary Wankier
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
9
|
Jajosky RP, Wu SC, Jajosky PG, Stowell SR. Plasmodium knowlesi ( Pk) Malaria: A Review & Proposal of Therapeutically Rational Exchange (T-REX) of Pk-Resistant Red Blood Cells. Trop Med Infect Dis 2023; 8:478. [PMID: 37888606 PMCID: PMC10610852 DOI: 10.3390/tropicalmed8100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Plasmodium knowlesi (Pk) causes zoonotic malaria and is known as the "fifth human malaria parasite". Pk malaria is an emerging threat because infections are increasing and can be fatal. While most infections are in Southeast Asia (SEA), especially Malaysia, travelers frequently visit this region and can present with Pk malaria around the world. So, clinicians need to know (1) patients who present with fever after recent travel to SEA might be infected with Pk and (2) Pk is often misdiagnosed as P. malariae (which typically causes less severe malaria). Here we review the history, pathophysiology, clinical features, diagnosis, and treatment of Pk malaria. Severe disease is most common in adults. Signs and symptoms can include fever, abdominal pain, jaundice, acute kidney injury, acute respiratory distress syndrome, hyponatremia, hyperparasitemia, and thrombocytopenia. Dengue is one of the diseases to be considered in the differential. Regarding pathophysiologic mechanisms, when Pk parasites invade mature red blood cells (RBCs, i.e., normocytes) and reticulocytes, changes in the red blood cell (RBC) surface can result in life-threatening cytoadherence, sequestration, and reduced RBC deformability. Since molecular mechanisms involving the erythrocytic stage are responsible for onset of severe disease and lethal outcomes, it is biologically plausible that manual exchange transfusion (ET) or automated RBC exchange (RBCX) could be highly beneficial by replacing "sticky" parasitized RBCs with uninfected, deformable, healthy donor RBCs. Here we suggest use of special Pk-resistant donor RBCs to optimize adjunctive manual ET/RBCX for malaria. "Therapeutically-rational exchange transfusion" (T-REX) is proposed in which Pk-resistant RBCs are transfused (instead of disease-promoting RBCs). Because expression of the Duffy antigen on the surface of human RBCs is essential for parasite invasion, T-REX of Duffy-negative RBCs-also known as Fy(a-b-) RBCs-could replace the majority of the patient's circulating normocytes with Pk invasion-resistant RBCs (in a single procedure lasting about 2 h). When sequestered or non-sequestered iRBCs rupture-in a 24 h Pk asexual life cycle-the released merozoites cannot invade Fy(a-b-) RBCs. When Fy(a-b-) RBC units are scarce (e.g., in Malaysia), clinicians can consider the risks and benefits of transfusing plausibly Pk-resistant RBCs, such as glucose-6-phosphate dehydrogenase deficient (G6PDd) RBCs and Southeast Asian ovalocytes (SAO). Patients typically require a very short recovery time (<1 h) after the procedure. Fy(a-b-) RBCs should have a normal lifespan, while SAO and G6PDd RBCs may have mildly reduced half-lives. Because SAO and G6PDd RBCs come from screened blood donors who are healthy and not anemic, these RBCs have a low-risk for hemolysis and do not need to be removed after the patient recovers from malaria. T-REX could be especially useful if (1) antimalarial medications are not readily available, (2) patients are likely to progress to severe disease, or (3) drug-resistant strains emerge. In conclusion, T-REX is a proposed optimization of manual ET/RBCX that has not yet been utilized but can be considered by physicians to treat Pk malaria patients.
Collapse
Affiliation(s)
- Ryan Philip Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; (S.-C.W.)
- Biconcavity Inc., Lilburn, GA 30047, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; (S.-C.W.)
| | | | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; (S.-C.W.)
| |
Collapse
|
10
|
Fasano RM, Doctor A, Stowell SR, Spinella PC, Carson JL, Maier CL, Josephson CD, Triulzi DJ. Optimizing RBC Transfusion Outcomes in Patients with Acute Illness and in the Chronic Transfusion Setting. Transfus Med Rev 2023; 37:150758. [PMID: 37743191 DOI: 10.1016/j.tmrv.2023.150758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023]
Abstract
Red blood cell (RBC) transfusion is a common clinical intervention used to treat patients with acute and chronic anemia. The decision to transfuse RBCs in the acute setting is based on several factors but current clinical studies informing optimal RBC transfusion decision making (TDM) are largely based upon hemoglobin (Hb) level. In contrast to transfusion in acute settings, chronic RBC transfusion therapy has several different purposes and is associated with distinct transfusion risks such as iron overload and RBC alloimmunization. Consequently, RBC TDM in the chronic setting requires optimizing the survival of transfused RBCs in order to reduce transfusion exposure over the lifespan of an individual and the associated transfusion complications mentioned. This review summarizes the current medical literature addressing optimal RBC-TDM in the acute and chronic transfusion settings and discusses the current gaps in knowledge which need to be prioritized in future national and international research initiatives.
Collapse
Affiliation(s)
- Ross M Fasano
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA.
| | - Allan Doctor
- Division of Pediatric Critical Care Medicine and Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip C Spinella
- Departments of Surgery and Critical Care Medicine, Pittsburgh University, Pittsburgh, PA, USA
| | - Jeffrey L Carson
- Division of General Internal Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Cheryl L Maier
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Cassandra D Josephson
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Darrell J Triulzi
- Vitalant and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Jajosky RP, Patel KR, Allen JWL, Zerra PE, Chonat S, Ayona D, Maier CL, Morais D, Wu SC, Luckey CJ, Eisenbarth SC, Roback JD, Fasano RM, Josephson CD, Manis JP, Chai L, Hendrickson JE, Hudson KE, Arthur CM, Stowell SR. Antibody-mediated antigen loss switches augmented immunity to antibody-mediated immunosuppression. Blood 2023; 142:1082-1098. [PMID: 37363865 PMCID: PMC10541552 DOI: 10.1182/blood.2022018591] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Antibodies against fetal red blood cell (RBC) antigens can cause hemolytic disease of the fetus and newborn (HDFN). Reductions in HDFN due to anti-RhD antibodies have been achieved through use of Rh immune globulin (RhIg), a polyclonal antibody preparation that causes antibody-mediated immunosuppression (AMIS), thereby preventing maternal immune responses against fetal RBCs. Despite the success of RhIg, it is only effective against 1 alloantigen. The lack of similar interventions that mitigate immune responses toward other RBC alloantigens reflects an incomplete understanding of AMIS mechanisms. AMIS has been previously attributed to rapid antibody-mediated RBC removal, resulting in B-cell ignorance of the RBC alloantigen. However, our data demonstrate that antibody-mediated RBC removal can enhance de novo alloimmunization. In contrast, inclusion of antibodies that possess the ability to rapidly remove the target antigen in the absence of detectable RBC clearance can convert an augmented antibody response to AMIS. These results suggest that the ability of antibodies to remove target antigens from the RBC surface can trigger AMIS in situations in which enhanced immunity may otherwise occur. In doing so, these results hold promise in identifying key antibody characteristics that can drive AMIS, thereby facilitating the design of AMIS approaches toward other RBC antigens to eliminate all forms of HDFN.
Collapse
Affiliation(s)
- Ryan P. Jajosky
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA
| | - Kashyap R. Patel
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Jerry William L. Allen
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Patricia E. Zerra
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Satheesh Chonat
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Diyoly Ayona
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Cheryl L. Maier
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Dominique Morais
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Shang-Chuen Wu
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
| | - C. John Luckey
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Stephanie C. Eisenbarth
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - John D. Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Ross M. Fasano
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Cassandra D. Josephson
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Department of Hematology and Oncology, Johns Hopkins University All Children's Hospital, St. Petersburg, FL
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - John P. Manis
- Department of Laboratory Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Li Chai
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Jeanne E. Hendrickson
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
| | - Krystalyn E. Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY
| | - Connie M. Arthur
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA
| | - Sean R. Stowell
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Jajosky R, Patel SR, Wu SC, Patel K, Covington M, Vallecillo-Zúniga M, Ayona D, Bennett A, Luckey CJ, Hudson KE, Hendrickson JE, Eisenbarth SC, Josephson CD, Zerra PE, Stowell SR, Arthur CM. Prior immunization against an intracellular antigen enhances subsequent red blood cell alloimmunization in mice. Blood 2023; 141:2642-2653. [PMID: 36638335 PMCID: PMC10356576 DOI: 10.1182/blood.2022016588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Antibodies against red blood cell (RBC) alloantigens can increase morbidity and mortality among transfusion recipients. However, alloimmunization rates can vary dramatically, as some patients never generate alloantibodies after transfusion, whereas others not only become alloimmunized but may also be prone to generating additional alloantibodies after subsequent transfusion. Previous studies suggested that CD4 T-cell responses that drive alloantibody formation recognize the same alloantigen engaged by B cells. However, because RBCs express numerous antigens, both internally and externally, it is possible that CD4 T-cell responses directed against intracellular antigens may facilitate subsequent alloimmunization against a surface RBC antigen. Here, we show that B cells can acquire intracellular antigens from RBCs. Using a mouse model of donor RBCs expressing 2 distinct alloantigens, we demonstrate that immune priming to an intracellular antigen, which would not be detected by any currently used RBC compatibility assays, can directly influence alloantibody formation after exposure to a subsequent distinct surface RBC alloantigen. These findings suggest a previously underappreciated mechanism whereby transfusion recipient responders may exhibit an increased rate of alloimmunization because of prior immune priming toward intracellular antigens.
Collapse
Affiliation(s)
- Ryan Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| | - Seema R. Patel
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| | - Kashyap Patel
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| | - Mischa Covington
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| | - Mary Vallecillo-Zúniga
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| | - Diyoly Ayona
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| | - Ashley Bennett
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - C. John Luckey
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Krystalyn E. Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY
| | | | - Stephanie C. Eisenbarth
- Center for Human Immunology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL
| | - Cassandra D. Josephson
- Cancer and Blood Disorders Institute and Blood Bank/Transfusion Medicine Division, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Patricia E. Zerra
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Connie M. Arthur
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| |
Collapse
|
13
|
Wu SC, Jan HM, Vallecillo-Zúniga ML, Rathgeber MF, Stowell CS, Murdock KL, Patel KR, Nakahara H, Stowell CJ, Nahm MH, Arthur CM, Cummings RD, Stowell SR. Whole microbe arrays accurately predict interactions and overall antimicrobial activity of galectin-8 toward distinct strains of Streptococcus pneumoniae. Sci Rep 2023; 13:5324. [PMID: 37005394 PMCID: PMC10067959 DOI: 10.1038/s41598-023-27964-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/10/2023] [Indexed: 04/04/2023] Open
Abstract
Microbial glycan microarrays (MGMs) populated with purified microbial glycans have been used to define the specificity of host immune factors toward microbes in a high throughput manner. However, a limitation of such arrays is that glycan presentation may not fully recapitulate the natural presentation that exists on microbes. This raises the possibility that interactions observed on the array, while often helpful in predicting actual interactions with intact microbes, may not always accurately ascertain the overall affinity of a host immune factor for a given microbe. Using galectin-8 (Gal-8) as a probe, we compared the specificity and overall affinity observed using a MGM populated with glycans harvested from various strains of Streptococcus pneumoniae to an intact microbe microarray (MMA). Our results demonstrate that while similarities in binding specificity between the MGM and MMA are apparent, Gal-8 binding toward the MMA more accurately predicted interactions with strains of S. pneumoniae, including the overall specificity of Gal-8 antimicrobial activity. Taken together, these results not only demonstrate that Gal-8 possesses antimicrobial activity against distinct strains of S. pneumoniae that utilize molecular mimicry, but that microarray platforms populated with intact microbes present an advantageous strategy when exploring host interactions with microbes.
Collapse
Affiliation(s)
- Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Hau-Ming Jan
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Mary L Vallecillo-Zúniga
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Matthew F Rathgeber
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Caleb S Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Kaleb L Murdock
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Kashyap R Patel
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Hirotomo Nakahara
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Carter J Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Moon H Nahm
- Department of Medicine, University of Alabama at Birmingham, 1720 2nd Ave South Birmingham, Alabama, 35294, USA
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Richard D Cummings
- Harvard Glycomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Maier CL, Jajosky RP, Patel SR, Verkerke HP, Fuller MD, Allen JW, Zerra PE, Fasano RM, Chonat S, Josephson CD, Gibb DR, Eisenbarth SC, Luckey CJ, Hudson KE, Hendrickson JE, Arthur CM, Stowell SR. Storage differentially impacts alloimmunization to distinct red cell antigens following transfusion in mice. Transfusion 2023; 63:457-462. [PMID: 36708051 PMCID: PMC10414794 DOI: 10.1111/trf.17251] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The impact of blood storage on red blood cell (RBC) alloimmunization remains controversial, with some studies suggesting enhancement of RBC-induced alloantibody production and others failing to observe any impact of storage on alloantibody formation. Since evaluation of storage on RBC alloimmunization in patients has examined antibody formation against a broad range of alloantigens, it remains possible that different clinical outcomes reflect a variable impact of storage on alloimmunization to specific antigens. METHODS RBCs expressing two distinct model antigens, HEL-OVA-Duffy (HOD) and KEL, separately or together (HOD × KEL), were stored for 0, 8, or 14 days, followed by detection of antigen levels prior to transfusion. Transfused donor RBC survival was assessed within 24 h of transfusion, while IgM and IgG antibody production were assessed 5 and 14 days after transfusion. RESULTS Stored HOD or KEL RBCs retained similar HEL or KEL antigen levels, respectively, as fresh RBCs, but did exhibit enhanced RBC clearance with increased storage age. Storage enhanced IgG antibody formation against HOD, while the oppositive outcome occurred following transfusion of stored KEL RBCs. The distinct impact of storage on HOD or KEL alloimmunization did not appear to reflect intrinsic differences between HOD or KEL RBCs, as transfusion of stored HOD × KEL RBCs resulted in increased IgG anti-HOD antibody development and reduced IgG anti-KEL antibody formation. CONCLUSIONS These data demonstrate a dichotomous impact of storage on immunization to distinct RBC antigens, offering a possible explanation for inconsistent clinical experience and the need for additional studies on the relationship between RBC storage and alloimmunization.
Collapse
Affiliation(s)
- Cheryl L. Maier
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ryan P. Jajosky
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Seema R. Patel
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hans P. Verkerke
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Megan D. Fuller
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jerry William Allen
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Patricia E. Zerra
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ross M. Fasano
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Satheesh Chonat
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cassandra D. Josephson
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David R. Gibb
- Cedars-Sinai Medical Center, Department of Pathology and Laboratory Medicine, Los Angeles, California, USA
| | | | - C. John Luckey
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Krystalyn E. Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Jeanne E. Hendrickson
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Connie M. Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Glycomics Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Glycomics Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Wabnitz H, Cruz-Leal Y, Lazarus AH. Antigen-specific IgG subclass composition in recipient mice can indicate the degree of red blood cell alloimmunization as well as discern between primary and secondary immunization. Transfusion 2023; 63:619-628. [PMID: 36591986 DOI: 10.1111/trf.17232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Despite the vast antigen disparity between donor and recipient red blood cells (RBCs), only 2%-6% of transfusion patients mount an alloantibody response. Recently, RBC antigen density has been proposed as one of the factors that can influence alloimmunization, however, there has been no characterization of the role of antigen density along with RBC dose in primary and secondary immunization. STUDY DESIGN AND METHODS To generate RBCs that express distinct antigen copy numbers, different quantities of hen egg lysozyme (HEL) were coupled to murine RBCs. The HEL-RBCs were subsequently transfused into recipient mice at different RBC doses and their HEL-specific IgM, IgG, and IgG subclass response was evaluated. RESULTS Productive immune responses could be generated through a high copy number antigen transfused at low RBC doses or a low copy number transfused at high RBC doses. Further, primary but submaximal humoral immunization predominantly induced the IgG2b and IgG3 subclasses. In contrast, a maximal primary immunization or a secondary immunization induced all four IgG subclasses. DISCUSSION Our results confirm the existence of an antigen threshold for productive immune responses but indicate that a high antigen copy number alone might not be enough to induce a response, but rather a combination of both antigen copy number and cell dosage may determine the outcome of immunization. Further, this study provides a proof of concept that the IgG subclass composition can be an indicator of the level of RBC alloimmunization as well as discern between primary and secondary immunization at least in this murine model.
Collapse
Affiliation(s)
- Hanna Wabnitz
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Yoelys Cruz-Leal
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Alan H Lazarus
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Arthur CM, Stowell SR. The Development and Consequences of Red Blood Cell Alloimmunization. ANNUAL REVIEW OF PATHOLOGY 2023; 18:537-564. [PMID: 36351365 PMCID: PMC10414795 DOI: 10.1146/annurev-pathol-042320-110411] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
While red blood cell (RBC) transfusion is the most common medical intervention in hospitalized patients, as with any therapeutic, it is not without risk. Allogeneic RBC exposure can result in recipient alloimmunization, which can limit the availability of compatible RBCs for future transfusions and increase the risk of transfusion complications. Despite these challenges and the discovery of RBC alloantigens more than a century ago, relatively little has historically been known regarding the immune factors that regulate RBC alloantibody formation. Through recent epidemiological approaches, in vitro-based translational studies, and newly developed preclinical models, the processes that govern RBC alloimmunization have emerged as more complex and intriguing than previously appreciated. Although common alloimmunization mechanisms exist, distinct immune pathways can be engaged, depending on the target alloantigen involved. Despite this complexity, key themes are beginning to emerge that may provide promising approaches to not only actively prevent but also possibly alleviate the most severe complications of RBC alloimmunization.
Collapse
Affiliation(s)
- Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, ,
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, ,
| |
Collapse
|
17
|
Jajosky RP, Wu SC, Zheng L, Jajosky AN, Jajosky PG, Josephson CD, Hollenhorst MA, Sackstein R, Cummings RD, Arthur CM, Stowell SR. ABO blood group antigens and differential glycan expression: Perspective on the evolution of common human enzyme deficiencies. iScience 2023; 26:105798. [PMID: 36691627 PMCID: PMC9860303 DOI: 10.1016/j.isci.2022.105798] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enzymes catalyze biochemical reactions and play critical roles in human health and disease. Enzyme variants and deficiencies can lead to variable expression of glycans, which can affect physiology, influence predilection for disease, and/or directly contribute to disease pathogenesis. Although certain well-characterized enzyme deficiencies result in overt disease, some of the most common enzyme deficiencies in humans form the basis of blood groups. These carbohydrate blood groups impact fundamental areas of clinical medicine, including the risk of infection and severity of infectious disease, bleeding risk, transfusion medicine, and tissue/organ transplantation. In this review, we examine the enzymes responsible for carbohydrate-based blood group antigen biosynthesis and their expression within the human population. We also consider the evolutionary selective pressures, e.g. malaria, that may account for the variation in carbohydrate structures and the implications of this biology for human disease.
Collapse
Affiliation(s)
- Ryan Philip Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Biconcavity Inc, Lilburn, GA, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Leon Zheng
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Audrey N. Jajosky
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine, West Henrietta, NY, USA
| | | | - Cassandra D. Josephson
- Cancer and Blood Disorders Institute and Blood Bank/Transfusion Medicine Division, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marie A. Hollenhorst
- Department of Pathology and Department of Medicine, Stanford University, Stanford, CA, USA
| | - Robert Sackstein
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Connie M. Arthur
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
18
|
Patel SR, Maier CL, Zimring JC. Alloantigen Copy Number as a Critical Factor in RBC Alloimmunization. Transfus Med Rev 2023; 37:21-26. [PMID: 36725483 PMCID: PMC10023450 DOI: 10.1016/j.tmrv.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
RBC alloimmunization remains a significant barrier to ongoing transfusion therapy leading to morbidity, and in extreme cases mortality, due to delayed or insufficient units of compatible RBCs. In addition, the monitoring and characterization of alloantibodies, often with multiple specificities in a single patient, consumes substantial health care resources. Extended phenotypic matching has mitigated, but not eliminated, RBC alloimmunization and is only logistically available for specialized populations. Thus, RBC alloimmunization remains a substantial problem. In recent decades it has become clear that mechanisms of RBC alloimmunization are distinct from other antigens and lack of mechanistic understanding likely contributes to the fact that there are no approved interventions to prevent RBC alloimmunization from transfusion. The combination of human studies and murine modeling have identified several key factors in RBC alloimmunization. In both humans and mice, immunogenicity is a function of alloantigen copy number on RBCs. Murine studies have further shown that copy number not only changes rates of immunization but the mechanisms of antibody formation. This review summarizes the current understanding of quantitative and qualitative effects of alloantigen copy number on RBC alloimmunization.
Collapse
Affiliation(s)
- Seema R Patel
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, USA
| | - Cheryl L Maier
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - James C Zimring
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA; Carter Immunology Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
19
|
Zerra PE, Parker ET, Baldwin WH, Healey JF, Patel SR, McCoy JW, Cox C, Stowell SR, Meeks SL. Engineering a Therapeutic Protein to Enhance the Study of Anti-Drug Immunity. Biomedicines 2022; 10:1724. [PMID: 35885029 PMCID: PMC9313379 DOI: 10.3390/biomedicines10071724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
The development of anti-drug antibodies represents a significant barrier to the utilization of protein-based therapies for a wide variety of diseases. While the rate of antibody formation can vary depending on the therapeutic employed and the target patient population receiving the drug, the antigen-specific immune response underlying the development of anti-drug antibodies often remains difficult to define. This is especially true for patients with hemophilia A who, following exposure, develop antibodies against the coagulation factor, factor VIII (FVIII). Models capable of studying this response in an antigen-specific manner have been lacking. To overcome this challenge, we engineered FVIII to contain a peptide (323-339) from the model antigen ovalbumin (OVA), a very common tool used to study antigen-specific immunity. FVIII with an OVA peptide (FVIII-OVA) retained clotting activity and possessed the ability to activate CD4 T cells specific to OVA323-339 in vitro. When compared to FVIII alone, FVIII-OVA also exhibited a similar level of immunogenicity, suggesting that the presence of OVA323-339 does not substantially alter the anti-FVIII immune response. Intriguingly, while little CD4 T cell response could be observed following exposure to FVIII-OVA alone, inclusion of anti-FVIII antibodies, recently shown to favorably modulate anti-FVIII immune responses, significantly enhanced CD4 T cell activation following FVIII-OVA exposure. These results demonstrate that model antigens can be incorporated into a therapeutic protein to study antigen-specific responses and more specifically that the CD4 T cell response to FVIII-OVA can be augmented by pre-existing anti-FVIII antibodies.
Collapse
Affiliation(s)
- Patricia E. Zerra
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University, Atlanta, GA 30322, USA; (P.E.Z.); (J.W.M.)
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - Ernest T. Parker
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - Wallace Hunter Baldwin
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - John F. Healey
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - Seema R. Patel
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - James W. McCoy
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University, Atlanta, GA 30322, USA; (P.E.Z.); (J.W.M.)
| | - Courtney Cox
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Shannon L. Meeks
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| |
Collapse
|
20
|
Covington ML, Cone-Sullivan JK, Andrzejewski C, Lu W, Thomasson RR, O'Brien K, Brunker PAR, Stowell SR. Unmasking delayed hemolytic transfusion reactions in patients with sickle-cell disease: Challenges and opportunities for improvement. Transfusion 2022; 62:1662-1670. [PMID: 35778994 DOI: 10.1111/trf.16967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Mischa L Covington
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jensyn K Cone-Sullivan
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Chester Andrzejewski
- Transfusion Medicine Service, Baystate Medical Center, Baystate Health, Springfield, Massachusetts, USA
| | - Wen Lu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Reggie R Thomasson
- Department of Pathology and Laboratory Medicine, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts, USA
| | - Kerry O'Brien
- Department of Pathology, Beth Israel Deaconess, Harvard Medical School, Boston, Massachusetts, USA
| | - Patricia A R Brunker
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sean R Stowell
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Rizzuto G, Erlebacher A. Trophoblast antigens, fetal blood cell antigens, and the paradox of fetomaternal tolerance. J Exp Med 2022; 219:e20211515. [PMID: 35416936 PMCID: PMC9011327 DOI: 10.1084/jem.20211515] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
The paradox of fetomaternal tolerance has puzzled immunologists and reproductive biologists alike for almost 70 yr. Even the idea that the conceptus evokes a uniformly tolerogenic immune response in the mother is contradicted by the long-appreciated ability of pregnant women to mount robust antibody responses to paternal HLA molecules and RBC alloantigens such as Rh(D). Synthesizing these older observations with more recent work in mice, we discuss how the decision between tolerance or immunity to a given fetoplacental antigen appears to be a function of whether the antigen is trophoblast derived-and thus decorated with immunosuppressive glycans-or fetal blood cell derived.
Collapse
Affiliation(s)
- Gabrielle Rizzuto
- Department of Pathology, University of California San Francisco, San Francisco, CA
| | - Adrian Erlebacher
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA
- Biomedical Sciences Program, University of California San Francisco, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA
| |
Collapse
|
22
|
Soldatenko A, Hoyt LR, Xu L, Calabro S, Lewis SM, Gallman AE, Hudson KE, Stowell SR, Luckey CJ, Zimring JC, Liu D, Santhanakrishnan M, Hendrickson JE, Eisenbarth SC. Innate and Adaptive Immunity to Transfused Allogeneic RBCs in Mice Requires MyD88. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:991-997. [PMID: 35039331 PMCID: PMC10107373 DOI: 10.4049/jimmunol.2100784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023]
Abstract
RBC transfusion therapy is essential for the treatment of anemia. A serious complication of transfusion is the development of non-ABO alloantibodies to polymorphic RBC Ags; yet, mechanisms of alloantibody formation remain unclear. Storage of mouse RBCs before transfusion increases RBC immunogenicity through an unknown mechanism. We previously reported that sterile, stored mouse RBCs activate splenic dendritic cells (DCs), which are required for alloimmunization. Here we transfused mice with allogeneic RBCs to test whether stored RBCs activate pattern recognition receptors (PRRs) on recipient DCs to induce adaptive immunity. TLRs are a class of PRRs that regulate DC activation, which signal through two adapter molecules: MyD88 and TRIF. We show that the inflammatory cytokine response, DC activation and migration, and the subsequent alloantibody response to transfused RBCs require MyD88 but not TRIF, suggesting that a restricted set of PRRs are responsible for sensing RBCs and triggering alloimmunization.
Collapse
Affiliation(s)
- Arielle Soldatenko
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Laura R Hoyt
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Lan Xu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Samuele Calabro
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Steven M Lewis
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Antonia E Gallman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Sean R Stowell
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Chance J Luckey
- Department of Pathology, University of Virginia, Charlottesville, VA; and
| | - James C Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA; and
| | - Dong Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Manjula Santhanakrishnan
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT.,Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT.,Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT; .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
23
|
Kamili NA, Paul A, Wu SC, Dias-Baruffi M, Cummings RD, Arthur CM, Stowell SR. Evaluation of the Bactericidal Activity of Galectins. Methods Mol Biol 2022; 2442:517-531. [PMID: 35320543 DOI: 10.1007/978-1-0716-2055-7_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over a century ago, Karl Landsteiner discovered that blood group antigens could predict the immunological outcome of red blood cell transfusion. While the discovery of ABO(H) blood group antigens revolutionized transfusion medicine, many questions remain regarding the development and regulation of naturally occurring anti-blood group antibody formation. Early studies suggested that blood group antibodies develop following stimulation by bacteria that express blood group antigens. While this may explain the development of anti-blood group antibodies in blood group-negative individuals, how blood group-positive individuals protect themselves against blood group-positive microbes remained unknown. Recent studies suggest that several members of the galectin family specifically target blood group-positive microbes, thereby providing innate immune protection against blood group antigen-positive microbes regardless of the blood group status of an individual. Importantly, subsequent studies suggest that this unique form of immunity may not be limited to blood group expressing microbes, but may reflect a more generalized form of innate immunity against molecular mimicry. As this form of antimicrobial activity represents a unique and unprecedented form of immunity, we will examine important considerations and methodological approaches that can be used when seeking to ascertain the potential antimicrobial activity of various members of the galectin family.
Collapse
Affiliation(s)
- Nourine A Kamili
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anu Paul
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analysis, Toxicological and Bromatological, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Stowell SR, Dias-Baruffi M, Cummings RD, Arthur CM. Detection of Phosphatidylserine Exposure on Leukocytes Following Treatment with Human Galectins. Methods Mol Biol 2022; 2442:533-548. [PMID: 35320544 DOI: 10.1007/978-1-0716-2055-7_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cellular turnover represents a fundamental aspect of immunological homeostasis. While many factors appear to regulate leukocyte removal during inflammatory resolution, recent studies suggest that members of the galectin family play a unique role in orchestrating this process. Unlike cellular removal through apoptotic cell death, several members of the galectin family induce surface expression of phosphatidylserine (PS), a phagocytic marker on cells undergoing apoptosis, in the absence of cell death. However, similar to PS on cells undergoing apoptosis, galectin-induced PS exposure sensitizes cells to phagocytic removal. As galectins appear to prepare cells for phagocytic removal without actually inducing apoptotic cell death, this process has recently been coined preaparesis. Given the unique characteristics of galectin-induced PS exposure in the context of preaparesis, we will examine unique considerations when evaluating the potential impact of different galectin family members on PS exposure and cell viability.
Collapse
Affiliation(s)
- Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analysis, Toxicological and Bromatological, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Leppänen A, Arthur CM, Stowell SR, Cummings RD. Examination of Whole-Cell Galectin Binding by Solid Phase and Flow Cytometric Analysis. Methods Mol Biol 2022; 2442:187-203. [PMID: 35320527 DOI: 10.1007/978-1-0716-2055-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We have utilized simple flow cytometric and fluorescence-based solid phase assays to study the interaction of glycan binding proteins (GBP) to cell surface glycoconjugates. These methods utilize commonly employed flow cytometry techniques and commercially available streptavidin-coated microplates to immobilize various biotinylated ligands, such as glycopeptides, oligosaccharides, and whole cells. Using this approach, fluorescently labeled GBPs, in particular, members of the galectin family, can be interrogated for potential interactions with cell surface carbohydrates, including elucidation of the potential impact of alterations in glycosylation on carbohydrate recognition. Using these approaches, we present examples of flow cytometric and fluorescence-based solid phase assays to study galectin-carbohydrate interactions.
Collapse
Affiliation(s)
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
26
|
Lee ES, Hendrickson JE, Tormey CA. RBC alloimmunization and daratumumab: Are efforts to eliminate interferences and prevent new antibodies necessary? Transfusion 2021; 61:3283-3285. [PMID: 34767268 DOI: 10.1111/trf.16736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Edward S Lee
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Christopher A Tormey
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
27
|
Wu SC, Ho AD, Kamili NA, Wang J, Murdock KL, Cummings RD, Arthur CM, Stowell SR. Full-Length Galectin-3 Is Required for High Affinity Microbial Interactions and Antimicrobial Activity. Front Microbiol 2021; 12:731026. [PMID: 34690972 PMCID: PMC8531552 DOI: 10.3389/fmicb.2021.731026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
While adaptive immunity enables the recognition of a wide range of microbial antigens, immunological tolerance limits reactively toward self to reduce autoimmunity. Some bacteria decorate themselves with self-like antigens as a form of molecular mimicry to limit recognition by adaptive immunity. Recent studies suggest that galectin-4 (Gal-4) and galectin-8 (Gal-8) may provide a unique form of innate immunity against molecular mimicry by specifically targeting microbes that decorate themselves in self-like antigens. However, the binding specificity and antimicrobial activity of many human galectins remain incompletely explored. In this study, we defined the binding specificity of galectin-3 (Gal-3), the first galectin shown to engage microbial glycans. Gal-3 exhibited high binding toward mammalian blood group A, B, and αGal antigens in a glycan microarray format. In the absence of the N-terminal domain, the C-terminal domain of Gal-3 (Gal-3C) alone exhibited a similar overall binding pattern, but failed to display the same level of binding for glycans over a range of concentrations. Similar to the recognition of mammalian glycans, Gal-3 and Gal-3C also specifically engaged distinct microbial glycans isolated and printed in a microarray format, with Gal-3 exhibiting higher binding at lower concentrations toward microbial glycans than Gal-3C. Importantly, Gal-3 and Gal-3C interactions on the microbial microarray accurately predicted actual interactions toward intact microbes, with Gal-3 and Gal-3C displaying carbohydrate-dependent binding toward distinct strains of Providentia alcalifaciens and Klebsiella pneumoniae that express mammalian-like antigens, while failing to recognize similar strains that express unrelated antigens. While both Gal-3 and Gal-3C recognized specific strains of P. alcalifaciens and K. pneumoniae, only Gal-3 was able to exhibit antimicrobial activity even when evaluated at higher concentrations. These results demonstrate that while Gal-3 and Gal-3C specifically engage distinct mammalian and microbial glycans, Gal-3C alone does not possess antimicrobial activity.
Collapse
Affiliation(s)
- Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Alex D Ho
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nourine A Kamili
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Jianmei Wang
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Kaleb L Murdock
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
28
|
Zerra PE, Patel SR, Jajosky RP, Arthur CM, McCoy JW, Allen JWL, Chonat S, Fasano RM, Roback JD, Josephson CD, Hendrickson JE, Stowell SR. Marginal zone B cells mediate a CD4 T-cell-dependent extrafollicular antibody response following RBC transfusion in mice. Blood 2021; 138:706-721. [PMID: 33876205 PMCID: PMC8394907 DOI: 10.1182/blood.2020009376] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/30/2021] [Indexed: 01/07/2023] Open
Abstract
Red blood cell (RBC) transfusions can result in alloimmunization toward RBC alloantigens that can increase the probability of complications following subsequent transfusion. An improved understanding of the immune mechanisms that underlie RBC alloimmunization is critical if future strategies capable of preventing or even reducing this process are to be realized. Using the HOD (hen egg lysozyme [HEL] and ovalbumin [OVA] fused with the human RBC antigen Duffy) model system, we aimed to identify initiating immune factors that may govern early anti-HOD alloantibody formation. Our findings demonstrate that HOD RBCs continuously localize to the marginal sinus following transfusion, where they colocalize with marginal zone (MZ) B cells. Depletion of MZ B cells inhibited immunoglobulin M (IgM) and IgG anti-HOD antibody formation, whereas CD4 T-cell depletion only prevented IgG anti-HOD antibody development. HOD-specific CD4 T cells displayed similar proliferation and activation following transfusion of HOD RBCs into wild-type or MZ B-cell-deficient recipients, suggesting that IgG formation is not dependent on MZ B-cell-mediated CD4 T-cell activation. Moreover, depletion of follicular B cells failed to substantially impact the anti-HOD antibody response, and no increase in antigen-specific germinal center B cells was detected following HOD RBC transfusion, suggesting that antibody formation is not dependent on the splenic follicle. Despite this, anti-HOD antibodies persisted for several months following HOD RBC transfusion. Overall, these data suggest that MZ B cells can initiate and then contribute to RBC alloantibody formation, highlighting a unique immune pathway that can be engaged following RBC transfusion.
Collapse
Affiliation(s)
- Patricia E Zerra
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | - Seema R Patel
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | - Ryan Philip Jajosky
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
| | - James W McCoy
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
| | - Jerry William Lynn Allen
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | - Ross M Fasano
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | - John D Roback
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
| | - Cassandra D Josephson
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | | | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| |
Collapse
|
29
|
"Allo" from the (marginal) zone. Blood 2021; 138:595-596. [PMID: 34436531 DOI: 10.1182/blood.2021011973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 11/20/2022] Open
|
30
|
Ejaz K, Roback JD, Stowell SR, Sullivan HC. Daratumumab: Beyond Multiple Myeloma. Transfus Med Rev 2021; 35:36-43. [PMID: 34312046 DOI: 10.1016/j.tmrv.2021.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/01/2022]
Abstract
Daratumumab (DARA) is the biological name of an Immunoglobulin G1k human monoclonal antibody. DARA the first-in-class therapy targeting CD38 expressing- plasma cells (PC) and plasma blasts. It has been approved for the treatment of multiple myeloma. It is also being examined in the setting of other hematologic malignancies. As DARA targets PCs, it could potentially be used to treat many other disease processes that are antibody mediated. In fact, several case reports and case series report experiences of using DARA to treat a variety of antibody-mediated disorderss. The aim of this review is to present a summary of the literature thus far regarding the application of DARA beyond its uses in multiple myeloma and other hematologic diseases. Specifically, we address uses of DARA as an immunologic modulator in various antibody mediated processes.
Collapse
Affiliation(s)
- Kiran Ejaz
- Department of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - John D Roback
- Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sean R Stowell
- Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Harold C Sullivan
- Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
31
|
Escamilla-Rivera V, Santhanakrishnan M, Liu J, Gibb DR, Forsmo JE, Foxman EF, Eisenbarth SC, Luckey CJ, Zimring JC, Hudson KE, Stowell SR, Hendrickson JE. Complement Plays a Critical Role in Inflammation-Induced Immunoprophylaxis Failure in Mice. Front Immunol 2021; 12:704072. [PMID: 34249009 PMCID: PMC8270673 DOI: 10.3389/fimmu.2021.704072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Complement impacts innate and adaptive immunity. Using a model in which the human KEL glycoprotein is expressed on murine red blood cells (RBCs), we have shown that polyclonal immunoprophylaxis (KELIg) prevents alloimmunization to transfused RBCs when a recipient is in their baseline state of heath but with immunoprophylaxis failure occurring in the presence of a viral-like stimulus. As complement can be detected on antibody coated KEL RBCs following transfusion, we hypothesized that recipient complement synergizes with viral-like inflammation to reduce immunoprophylaxis efficacy. Indeed, we found recipient C3 and C1q were critical to immunoprophylaxis failure in the setting of a viral-like stimulus, with no anti-KEL IgG alloantibodies generated in C3-/- or C1q-/- mice following KELIg treatment and KEL RBC transfusion. Differences in RBC uptake were noted in mice lacking C3, with lower consumption by splenic and peripheral blood inflammatory monocytes. Finally, no alloantibodies were detected in the setting of a viral-like stimulus following KELIg treatment and KEL RBC transfusion in mice lacking complement receptors (CR1/2-/-), narrowing key cells for immunoprophylaxis failure to those expressing these complement receptors. In-vitro studies showed complement fixed opsonized RBCs were significantly less likely to bind to B-cells from CR1/2-/- than wild type mice, potentially implicating lowered B-cell activation threshold in the presence of complement as being responsible for these findings. We thus propose a two-hit model for inflammation-induced immunoprophylaxis failure, where the first “hit” is recipient inflammation and the second “hit” is complement production/sensing. These results may have translational relevance to antigen-antibody interactions in humans.
Collapse
Affiliation(s)
- Vicente Escamilla-Rivera
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Manjula Santhanakrishnan
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Jingchun Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - David R Gibb
- Department of Pathology & Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - James E Forsmo
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States.,Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ellen F Foxman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - C John Luckey
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - James C Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Sean R Stowell
- Department of Pathology, Brigham and Women's Hospital, Joint Program in Transfusion Medicine, Harvard Medical School, Boston, MA, United States.,Beth Israel Deaconess Medical Center, Harvard Glycomics Center, Harvard Medical School, Boston, MA, United States
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States.,Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
32
|
Antigen density dictates RBC clearance, but not antigen modulation, following incompatible RBC transfusion in mice. Blood Adv 2021; 5:527-538. [PMID: 33496748 DOI: 10.1182/bloodadvances.2020002695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Incompatible red blood cell (RBC) transfusion can result in life-threatening transfusion complications that can be challenging to manage in patients with transfusion-dependent anemia. However, not all incompatible RBC transfusions result in significant RBC removal. One factor that may regulate the outcome of incompatible RBC transfusion is the density of the incompatible antigen. Despite the potential influence of target antigen levels during incompatible RBC transfusion, a model system capable of defining the role of antigen density in this process has not been developed. In this study, we describe a novel model system of incompatible transfusion using donor mice that express different levels of the KEL antigen and recipients with varying anti-KEL antibody concentrations. Transfusion of KEL+ RBCs that express high or moderate KEL antigen levels results in rapid antibody-mediated RBC clearance. In contrast, relatively little RBC clearance was observed following the transfusion of KEL RBCs that express low KEL antigen levels. Intriguingly, unlike RBC clearance, loss of the KEL antigen from the transfused RBCs occurred at a similar rate regardless of the KEL antigen density following an incompatible transfusion. In addition to antigen density, anti-KEL antibody levels also regulated RBC removal and KEL antigen loss, suggesting that antigen density and antibody levels dictate incompatible RBC transfusion outcomes. These results demonstrate that antibody-induced antigen loss and RBC clearance can occur at distinct antigen density thresholds, providing important insight into factors that may dictate the outcome of an incompatible RBC transfusion.
Collapse
|
33
|
Radice E, Ameti R, Melgrati S, Foglierini M, Antonello P, Stahl RAK, Thelen S, Jarrossay D, Thelen M. Marginal Zone Formation Requires ACKR3 Expression on B Cells. Cell Rep 2021; 32:107951. [PMID: 32755592 DOI: 10.1016/j.celrep.2020.107951] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/12/2020] [Accepted: 07/02/2020] [Indexed: 12/27/2022] Open
Abstract
The marginal zone (MZ) contributes to the highly organized spleen microarchitecture. We show that expression of atypical chemokine receptor 3 (ACKR3) defines two equal-sized populations of mouse MZ B cells (MZBs). ACKR3 is required for development of a functional MZ and for positioning of MZBs. Deletion of ACKR3 on B cells distorts the MZ, and MZBs fail to deliver antigens to follicles, reducing humoral responses. Reconstitution of MZ-deficient CD19ko mice shows that ACKR3- MZBs can differentiate into ACKR3+ MZBs, but not vice versa. The lack of a MZ is rescued by adoptive transfer of ACKR3-sufficient, and less by ACKR3-deficient, follicular B cells (FoBs); hence, ACKR3 expression is crucial for establishment of the MZ. The inability of CD19ko mice to respond to T-independent antigen is rescued when ACKR3-proficient, but not ACKR3-deficient, FoBs are transferred. Accordingly, ACKR3-deficient FoBs are able to reconstitute the MZ if the niche is pre-established by ACKR3-proficient MZBs.
Collapse
Affiliation(s)
- Egle Radice
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland; Graduate School of Cellular and Molecular Sciences, University of Bern, 3012 Bern, Switzerland
| | - Rafet Ameti
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland; Graduate School of Cellular and Molecular Sciences, University of Bern, 3012 Bern, Switzerland
| | - Serena Melgrati
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland; Graduate School of Cellular and Molecular Sciences, University of Bern, 3012 Bern, Switzerland
| | - Mathilde Foglierini
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Paola Antonello
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland; Graduate School of Cellular and Molecular Sciences, University of Bern, 3012 Bern, Switzerland
| | - Rolf A K Stahl
- III Medizinische Klinik, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sylvia Thelen
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - David Jarrossay
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Marcus Thelen
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland.
| |
Collapse
|
34
|
Hendrickson JE. Red blood cell alloimmunization and sickle cell disease: a narrative review on antibody induction. ANNALS OF BLOOD 2020; 5:33. [PMID: 33554044 PMCID: PMC7861514 DOI: 10.21037/aob-2020-scd-01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The high prevalence of red blood cell (RBC) alloantibodies in people with sickle cell disease (SCD) cannot be debated. Why people with SCD are so likely to form RBC alloantibodies, however, remains poorly understood. Over the past decade, a better understanding of non-ABO blood group antigen variants has emerged; RH genetic diversity and the role this diversity plays in RBC alloimmunization is discussed elsewhere. Outside of antigen variants, the immune systems of people with SCD are known to be different than those of people without SCD. Some of these differences are due to effects of free heme, whereas others are impacted by hyposplenism. Descriptive studies of differences in white blood cell (WBC) subsets, platelet counts and function, and complement activation between people with SCD and race-matched controls exist. Studies comparing the immune systems of alloimmunized people with SCD to non-alloimmunized people with SCD to race-matched controls without SCD have uncovered differences in T-cell subsets, monocytes, Fcγ receptor polymorphisms, and responses to free heme. Studies in murine models have documented the role that recipient inflammation plays in RBC alloantibody formation, with human studies reporting a similar association. Murine studies have also reported the importance of type 1 interferon (IFNα/β), known to play a pivotal role in autoimmunity, in RBC alloantibody formation. The goal of this manuscript is to review existing data on factors influencing RBC alloantibody induction in people with SCD with a focus on inflammation and other immune system considerations, from the bench to the bedside.
Collapse
Affiliation(s)
- Jeanne E. Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the role of complement in regulating the removal of a target alloantigen following an incompatible red blood cell (RBC) transfusion, the formation of alloantibodies following RBC alloantigen exposure, and the development of hyperhemolysis in patients with sickle cell disease (SCD). RECENT FINDINGS Recent studies demonstrate that complement can accelerate alloantibody-mediated removal of target alloantigens from the RBC surface following incompatible transfusion. Complement also influences alloantigen availability during developing alloimmune responses and serves as a unique mediator of CD4 T-cell-independent alloantibody formation following RBC alloantigen exposure. Finally, alternative complement pathway activation appears to play a key role in the development of acute hemolytic episodes in patients with SCD, providing a potential druggable target to prevent acute complications in patients with this disease. SUMMARY Recent studies suggest that complement can regulate a wide variety of processes germane to hematology, from transfusion complications to baseline hemolysis in patients with SCD. As the role of complement in various disease processes becomes more fully understood, the ability to leverage recently developed complement modulating drugs will only continue to enhance providers' ability to favorably intervene in many hematological diseases.
Collapse
Affiliation(s)
- Satheesh Chonat
- Department of Pediatrics, Emory University School of Medicine, and Aflac Canter and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Amanda Mener
- Center for Transfusion Medicine and Cellular Therapies
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Hans Verkerke
- Center for Transfusion Medicine and Cellular Therapies
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Sean R. Stowell
- Center for Transfusion Medicine and Cellular Therapies
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
36
|
Moosavi MM, Duncan A, Stowell SR, Roback JD, Sullivan HC. Passenger Lymphocyte Syndrome; a Review of the Diagnosis, Treatment, and Proposed Detection Protocol. Transfus Med Rev 2020; 34:178-187. [PMID: 32826130 DOI: 10.1016/j.tmrv.2020.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
Passenger lymphocyte syndrome (PLS) is caused by the transfer of B-lymphocytes present in the donor graft into the recipient circulation following solid organ or hematopoietic stem cell transplantation. These cells may produce antibodies against the recipient's red blood cells, thereby triggering antibody dependent cytotoxicity and erythroid clearance, with potential resulting hemolysis and jaundice. Although uncommon, the true incidence is unknown because many cases are subclinical, with only serologic findings or with non significant levels of hemolysis detectable clinically or by laboratory monitoring. Thus, these cases may not be detected in the immediate perioperative period. No standardized consensus exists on screening for PLS in patients. Through a review of the literature from 2009 to 2019, we aim to approximate the incidence of this condition in different solid organ transplant settings, as well as to streamline recognition, detection, and management of PLS early in the disease course to prevent adverse outcomes and minimize invasive therapy. The resultant literature review yielded 22 case reports and 8 case series comprising 71 solid organ transplant patients. Hematopoietic stem cell transplant cases were excluded, as PLS cases related to solid organ transplant were the primary focus of this review. Our institution has traditionally handled PLS on a case-by-case basis, although we hope to improve this process through an introduction of an algorithm based on review of the literature and formalized communication with primary caregivers.
Collapse
Affiliation(s)
- Mitchell M Moosavi
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Alexander Duncan
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Sean R Stowell
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - John D Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Harold Clifford Sullivan
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA.
| |
Collapse
|
37
|
Zerra PE, Arthur CM, Chonat S, Maier CL, Mener A, Shin S, Allen JWL, Baldwin WH, Cox C, Verkerke H, Jajosky RP, Tormey CA, Meeks SL, Stowell SR. Fc Gamma Receptors and Complement Component 3 Facilitate Anti-fVIII Antibody Formation. Front Immunol 2020; 11:905. [PMID: 32582142 PMCID: PMC7295897 DOI: 10.3389/fimmu.2020.00905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/20/2020] [Indexed: 01/02/2023] Open
Abstract
Anti-factor VIII (fVIII) alloantibodies, which can develop in patients with hemophilia A, limit the therapeutic options and increase morbidity and mortality of these patients. However, the factors that influence anti-fVIII antibody development remain incompletely understood. Recent studies suggest that Fc gamma receptors (FcγRs) may facilitate recognition and uptake of fVIII by recently developed or pre-existing naturally occurring anti-fVIII antibodies, providing a mechanism whereby the immune system may recognize fVIII following infusion. However, the role of FcγRs in anti-fVIII antibody formation remains unknown. In order to define the influence of FcγRs on the development of anti-fVIII antibodies, fVIII was injected into WT or FcγR knockout recipients, followed by evaluation of anti-fVIII antibodies. Anti-fVIII antibodies were readily observed following fVIII injection into FcγR knockouts, with similar anti-fVIII antibody levels occurring in FcγR knockouts as detected in WT mice injected in parallel. As antibodies can also fix complement, providing a potential mechanism whereby anti-fVIII antibodies may influence anti-fVIII antibody formation independent of FcγRs, fVIII was also injected into complement component 3 (C3) knockout recipients in parallel. Similar to FcγR knockouts, C3 knockout recipients developed a robust response to fVIII, which was likewise similar to that observed in WT recipients. As FcγRs or C3 may compensate for each other in recipients only deficient in FcγRs or C3 alone, we generated mice deficient in both FcγRs and C3 to test for potential antibody effector redundancy in anti-fVIII antibody formation. Infusion of fVIII into FcγRs and C3 (FcγR × C3) double knockouts likewise induced anti-fVIII antibodies. However, unlike individual knockouts, anti-fVIII antibodies in FcγRs × C3 knockouts were initially lower than WT recipients, although anti-fVIII antibodies increased to WT levels following additional fVIII exposure. In contrast, infusion of RBCs expressing distinct alloantigens into FcγRs, C3 or FcγR × C3 knockout recipients either failed to change anti-RBC levels when compared to WT recipients or actually increased antibody responses, depending on the target antigen. Taken together, these results suggest FcγRs and C3 can differentially impact antibody formation following exposure to distinct alloantigens and that FcγRs and C3 work in concert to facilitate early anti-fVIII antibody formation.
Collapse
Affiliation(s)
- Patricia E Zerra
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States.,Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Connie M Arthur
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Cheryl L Maier
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Amanda Mener
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Sooncheon Shin
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Jerry William L Allen
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - W Hunter Baldwin
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Courtney Cox
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Hans Verkerke
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Ryan P Jajosky
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher A Tormey
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States.,Pathology and Laboratory Medicine Service, VA Conneciticut Healthcare System, West Haven, CT, United States
| | - Shannon L Meeks
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
38
|
Escamilla-Rivera V, Liu J, Gibb DR, Santhanakrishnan M, Liu D, Forsmo JE, Eisenbarth SC, Foxman EF, Stowell SR, Luckey CJ, Zimring JC, Hudson KE, Hendrickson JE. Poly(I:C) causes failure of immunoprophylaxis to red blood cells expressing the KEL glycoprotein in mice. Blood 2020; 135:1983-1993. [PMID: 32266378 PMCID: PMC7256361 DOI: 10.1182/blood.2020005018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022] Open
Abstract
Polyclonal anti-D (Rh immune globulin [RhIg]) therapy has mitigated hemolytic disease of the newborn over the past half century, although breakthrough anti-D alloimmunization still occurs in some treated females. We hypothesized that antiviral responses may impact the efficacy of immunoprophylaxis therapy in a type 1 interferon (IFN)-dependent manner and tested this hypothesis in a murine model of KEL alloimmunization. Polyclonal anti-KEL immunoprophylaxis (KELIg) was administered to wild-type or knockout mice in the presence or absence of polyinosinic-polycytidilic acid (poly[I:C]), followed by the transfusion of murine red blood cells (RBCs) expressing the human KEL glycoprotein. Anti-KEL alloimmunization, serum cytokines, and consumption of the transfused RBCs were evaluated longitudinally. In some experiments, recipients were treated with type 1 IFN (IFN-α/β). Recipient treatment with poly(I:C) led to breakthrough anti-KEL alloimmunization despite KELIg administration. Recipient CD4+ T cells were not required for immunoprophylaxis efficacy at baseline, and modulation of the KEL glycoprotein antigen occurred to the same extent in the presence or absence of recipient inflammation. Under conditions where breakthrough anti-KEL alloimmunization occurred, KEL RBC consumption by inflammatory monocytes and serum monocyte chemoattractant protein-1 and interleukin-6 were significantly increased. Poly(I:C) or type I IFN administration was sufficient to cause breakthrough alloimmunization, with poly(I:C) inducing alloimmunization even in the absence of recipient type I IFN receptors. A better understanding of how recipient antiviral responses lead to breakthrough alloimmunization despite immunoprophylaxis may have translational relevance to instances of RhIg failure that occur in humans.
Collapse
Affiliation(s)
| | - Jingchun Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT
| | - David R Gibb
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Dong Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT
| | - James E Forsmo
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Ellen F Foxman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | | | - James C Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY; and
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
39
|
Robinson BS, Saeedi B, Arthur CM, Owens J, Naudin C, Ahmed N, Luo L, Jones R, Neish A, Stowell SR. Galectin-9 Is a Novel Regulator of Epithelial Restitution. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1657-1666. [PMID: 32380082 DOI: 10.1016/j.ajpath.2020.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022]
Abstract
Increasingly, the ß-galactoside binding lectins, termed galectins, are being recognized as critical regulators of cell function and organismal homeostasis. Within the context of the mucosal surface, galectins are established regulators of innate and adaptive immune responses, microbial populations, and several critical epithelial functions, including cell migration, proliferation, and response to injury. However, given their complex tissue distribution and expression patterns, their role within specific processes remains poorly understood. We took a genetic approach to understand the role of endogenous galectin-9 (Gal-9), a mucosal galectin that has been linked to inflammatory bowel disease, within the context of the murine intestine. Gal-9-deficient (Gal9-/-, also known as Lgals9-/-) animals show increased sensitivity to chemically induced colitis and impaired proliferation in the setting of acute injury. Moreover, Gal9-/--derived enteroids showed impaired growth ex vivo. Consistent with a model in which endogenous Gal-9 controls epithelial growth and repair, Gal9-/- animals showed increased sensitivity to intestinal challenge in multiple models of epithelial injury, including acute irradiation injury and ectopic wound biopsies. Finally, regenerating crypts from patient biopsies showed increased expression of Gal-9, indicating these processes may be conserved in humans. Taken together, these studies implicate Gal-9 in the regulation of cellular proliferation and epithelial restitution after intestinal epithelial injury.
Collapse
Affiliation(s)
- Brian S Robinson
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Bejan Saeedi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Connie M Arthur
- Center for Transfusion and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia
| | - Josh Owens
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Crystal Naudin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Nourine Ahmed
- Center for Transfusion and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia
| | - Liping Luo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Rheinallt Jones
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Andrew Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia.
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; Center for Transfusion and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
40
|
Arthur CM, Chonat S, Fasano R, Yee MEM, Josephson CD, Roback JD, Stowell SR. Examining the Role of Complement in Predicting, Preventing, and Treating Hemolytic Transfusion Reactions. Transfus Med Rev 2019; 33:217-224. [PMID: 31679762 PMCID: PMC7147990 DOI: 10.1016/j.tmrv.2019.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022]
Abstract
Red blood cell (RBC) transfusion is a critical component of optimal management for a broad range of conditions. Regardless of the indication, pretransfusion testing is required to appropriately match RBC donors and recipients to provide immunologically compatible blood. Although this approach is effective in the vast majority of situations, occasionally, patients will inadvertently receive an incompatible RBC transfusion, which can result in a hemolytic transfusion reaction (HTR). In addition, patients with life-threatening anemia and a complex alloantibody profile, which precludes rapid procurement of compatible RBCs, may also receive incompatible RBCs, placing them at risk for an HTR. Despite the rarity of these clinical situations, when incompatible blood transfusion results in an HTR, the consequences can be devastating. In this review, we will explore the challenges associated with actively preventing and treating acute HTRs following incompatible RBC transfusion. In doing so, we will focus primarily on the role of complement, not only as a key player in HTRs, but also as a potential target for the prevention and treatment of HTRs.
Collapse
Affiliation(s)
- Connie M Arthur
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Satheesh Chonat
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA
| | - Ross Fasano
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA; Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA
| | - Marianne E M Yee
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA; Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA
| | - Cassandra D Josephson
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA; Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA
| | - John D Roback
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA
| | - Sean R Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA.
| |
Collapse
|
41
|
Chonat S, Arthur CM, Zerra PE, Maier CL, Jajosky RP, Yee MEM, Miller MJ, Josephson CD, Roback JD, Fasano R, Stowell SR. Challenges in preventing and treating hemolytic complications associated with red blood cell transfusion. Transfus Clin Biol 2019; 26:130-134. [PMID: 30979566 PMCID: PMC11710916 DOI: 10.1016/j.tracli.2019.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Red blood cell (RBC) transfusion support represents a critical component of sickle cell disease (SCD) management. However, as with any therapeutic intervention, RBC transfusion is not without risk. Repeat exposure to allogeneic RBCs can result in the development of RBC alloantibodies that can make it difficult to find compatible RBCs for future transfusions and can directly increase the risk of developing acute or delayed hemolytic transfusion reactions, which can be further complicated by hyperhemolysis. Several prophylactic and treatment strategies have been employed in an effort to reduce or prevent hemolytic transfusion reactions. However, conflicting data exist regarding the efficacy of many of these approaches. We will explore the challenges associated with predicting, preventing and treating different types of hemolytic transfusion reactions in patients with SCD in addition to describing future strategies that may aid in the management of the complex transfusion requirements of SCD patients.
Collapse
Affiliation(s)
- Satheesh Chonat
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, 101, Woodruff Circle, 30322 Atlanta, GA, USA
| | - Patricia E Zerra
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, 101, Woodruff Circle, 30322 Atlanta, GA, USA
| | - Cheryl L Maier
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, 101, Woodruff Circle, 30322 Atlanta, GA, USA
| | - Ryan P Jajosky
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, 101, Woodruff Circle, 30322 Atlanta, GA, USA
| | - Marianne E M Yee
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Maureen J Miller
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, 101, Woodruff Circle, 30322 Atlanta, GA, USA
| | - Cassandra D Josephson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, 101, Woodruff Circle, 30322 Atlanta, GA, USA
| | - John D Roback
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, 101, Woodruff Circle, 30322 Atlanta, GA, USA
| | - Ross Fasano
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, 101, Woodruff Circle, 30322 Atlanta, GA, USA.
| | - Sean R Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, 101, Woodruff Circle, 30322 Atlanta, GA, USA.
| |
Collapse
|