1
|
Pandey J, Larson-Casey JL, Patil MH, He C, Pinthong N, Carter AB. The PERK/ATF4 pathway is required for metabolic reprogramming and progressive lung fibrosis. JCI Insight 2025; 10:e189330. [PMID: 40208691 DOI: 10.1172/jci.insight.189330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/04/2025] [Indexed: 04/11/2025] Open
Abstract
Asbestosis is a prototypical type of fibrosis that is progressive and does not resolve. ER stress is increased in multiple cell types that contribute to fibrosis; however, the mechanism(s) by which ER stress in lung macrophages contributes to fibrosis is poorly understood. Here, we show that ER stress resulted in protein kinase RNA-like ER kinase (PERK; Eif2ak3) activation in humans with asbestosis. Similar results were seen in asbestos-injured mice. Mice harboring a conditional deletion of Eif2ak3 were protected from fibrosis. Lung macrophages from asbestosis individuals had evidence of metabolic reprogramming to fatty acid oxidation (FAO). Eif2ak3fl/fl mice had increased oxygen consumption rate (OCR), whereas OCR in Eif2ak3-/- Lyz2-cre mice was reduced to control levels. PERK increased activating transcription factor 4 (Atf4) expression, and ATF4 bound to the Ppargc1a promoter to increase its expression. GSK2656157, a PERK-specific inhibitor, reduced FAO, Ppargc1a, and Aft4 in lung macrophages and reversed established fibrosis in mice. These observations suggest that PERK is a therapeutic target to reverse established fibrosis.
Collapse
Affiliation(s)
- Jyotsana Pandey
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Mallikarjun H Patil
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chao He
- Baylor College of Medicine, Houston, Texas, USA
| | - Nisarat Pinthong
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A Brent Carter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Liu H, Shen J, He C. Advances in idiopathic pulmonary fibrosis diagnosis and treatment. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2025; 3:12-21. [PMID: 40226606 PMCID: PMC11993042 DOI: 10.1016/j.pccm.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Indexed: 04/15/2025]
Abstract
Significant advances have been made in diagnosing and treating idiopathic pulmonary fibrosis (IPF) in the last decade. The incidence and prevalence of IPF are increasing, and morbidity and mortality remain high despite the two Food and Drug Administration (FDA)-approved medications, pirfenidone and nintedanib. Hence, there is an urgent need to develop new diagnostic tools and effective therapeutics to improve early, accurate diagnosis of IPF and halt or reverse the progression of fibrosis with a better safety profile. New diagnostic tools such as transbronchial cryobiopsy and genomic classifier require less tissue and generally have good safety profiles, and they have been increasingly utilized in clinical practice. Advances in artificial intelligence-aided diagnostic software are promising, but challenges remain. Both pirfenidone and nintedanib focus on growth factor-activated pathways to inhibit fibroblast activation. Novel therapies targeting different pathways and cell types (immune and epithelial cells) are being investigated. Biomarker-based personalized medicine approaches are also in clinical trials. This review aims to summarize recent diagnostic and therapeutic development in IPF.
Collapse
Affiliation(s)
- Hongli Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jiaxi Shen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao He
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX 77024, USA
| |
Collapse
|
3
|
Fedotova EI, Berezhnov AV, Popov DY, Shitikova EY, Vinokurov AY. The Role of mtDNA Mutations in Atherosclerosis: The Influence of Mitochondrial Dysfunction on Macrophage Polarization. Int J Mol Sci 2025; 26:1019. [PMID: 39940788 PMCID: PMC11817597 DOI: 10.3390/ijms26031019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Atherosclerosis is a complex inflammatory process associated with high-mortality cardiovascular diseases. Today, there is a growing body of evidence linking atherosclerosis to mutations of mitochondrial DNA (mtDNA). But the mechanism of this link is insufficiently studied. Atherosclerosis progression involves different cell types and macrophages are one of the most important. Due to their high plasticity, macrophages can demonstrate pro-inflammatory and pro-atherogenic (macrophage type M1) or anti-inflammatory and anti-atherogenic (macrophage type M2) effects. These two cell types, formed as a result of external stimuli, differ significantly in their metabolic profile, which suggests the central role of mitochondria in the implementation of the macrophage polarization route. According to this, we assume that mtDNA mutations causing mitochondrial disturbances can play the role of an internal trigger, leading to the formation of macrophage M1 or M2. This review provides a comparative analysis of the characteristics of mitochondrial function in different types of macrophages and their possible associations with mtDNA mutations linked with inflammation-based pathologies including atherosclerosis.
Collapse
Affiliation(s)
- Evgeniya I. Fedotova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia; (E.I.F.); (A.V.B.)
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| | - Alexey V. Berezhnov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia; (E.I.F.); (A.V.B.)
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| | - Daniil Y. Popov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| | - Elena Y. Shitikova
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| | - Andrey Y. Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| |
Collapse
|
4
|
Li Y, Du X, Hu Y, Wang D, Duan L, Zhang H, Zhang R, Xu Y, Zhou R, Zhang X, Zhang M, Liu J, Lv Z, Chen Y, Wang W, Sun Y, Cui Y. Iron-laden macrophage-mediated paracrine profibrotic signaling induces lung fibroblast activation. Am J Physiol Cell Physiol 2024; 327:C979-C993. [PMID: 39183565 DOI: 10.1152/ajpcell.00675.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating condition characterized by progressive lung scarring and uncontrolled fibroblast proliferation, inevitably leading to organ dysfunction and mortality. Although elevated iron levels have been observed in patients and animal models of lung fibrosis, the mechanisms linking iron dysregulation to lung fibrosis pathogenesis, particularly the role of macrophages in orchestrating this process, remain poorly elucidated. Here we evaluate iron metabolism in macrophages during pulmonary fibrosis using both in vivo and in vitro approaches. In murine bleomycin- and amiodarone-induced pulmonary fibrosis models, we observed significant iron deposition and lipid peroxidation in pulmonary macrophages. Intriguingly, the ferroptosis regulator glutathione peroxidase 4 (GPX4) was upregulated in pulmonary macrophages following bleomycin instillation, a finding corroborated by single-cell RNA sequencing analysis. Moreover, macrophages isolated from fibrotic mouse lungs exhibited increased transforming growth factor (TGF)-β1 expression that correlated with lipid peroxidation. In vitro, iron overload in bone marrow-derived macrophages triggered lipid peroxidation and TGF-β1 upregulation, which was effectively suppressed by ferroptosis inhibitors. When cocultured with iron-overloaded macrophages, lung fibroblasts exhibited heightened activation, evidenced by increased α-smooth muscle actin and fibronectin expression. Importantly, this profibrotic effect was attenuated by treating macrophages with a ferroptosis inhibitor or blocking TGF-β receptor signaling in fibroblasts. Collectively, our study elucidates a novel mechanistic paradigm in which the accumulation of iron within macrophages initiates lipid peroxidation, thereby amplifying TGF-β1 production, subsequently instigating fibroblast activation through paracrine signaling. Thus, inhibiting iron overload and lipid peroxidation warrants further exploration as a strategy to suppress fibrotic stimulation by disease-associated macrophages. NEW & NOTEWORTHY This study investigates the role of iron in pulmonary fibrosis, specifically focusing on macrophage-mediated mechanisms. Iron accumulation in fibrotic lung macrophages triggers lipid peroxidation and an upregulation of transforming growth factor (TGF)-β1 expression. Coculturing iron-laden macrophages activates lung fibroblasts in a TGF-β1-dependent manner, which can be mitigated by ferroptosis inhibitors. These findings underscore the potential of targeting iron overload and lipid peroxidation as a promising strategy to alleviate fibrotic stimulation provoked by disease-associated macrophages.
Collapse
Affiliation(s)
- Yunqi Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xinqian Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yue Hu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Dan Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Luo Duan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Hanxiao Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ruoyang Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China
- National Center for Respiratory Medicine, Beijing, People's Republic of China
| | - Yingjie Xu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ruonan Zhou
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xinyu Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Muzhi Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ying Sun
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
5
|
Xu HN, Gonzalves D, Hoffman JH, Baur JA, Li LZ, Jensen EA. Use of Optical Redox Imaging to Quantify Alveolar Macrophage Redox State in Infants: Proof of Concept Experiments in a Murine Model and Human Tracheal Aspirates Samples. Antioxidants (Basel) 2024; 13:546. [PMID: 38790651 PMCID: PMC11117937 DOI: 10.3390/antiox13050546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Emerging data indicate that lung macrophages (LM) may provide a novel biomarker to classify disease endotypes in bronchopulmonary dysplasia (BPD), a form of infant chronic lung disease, and that augmentation of the LM phenotype may be a potential therapeutic target. To contribute to this area of research, we first used Optical Redox Imaging (ORI) to characterize the responses to H2O2-induced oxidative stress and caffeine treatment in an in vitro model of mouse alveolar macrophages (AM). H2O2 caused a dose-dependent decrease in NADH and an increase in FAD-containing flavoproteins (Fp) and the redox ratio Fp/(NADH + Fp). Caffeine treatment did not affect Fp but significantly decreased NADH with doses of ≥50 µM, and 1000 µM caffeine treatment significantly increased the redox ratio and decreased the baseline level of mitochondrial ROS (reactive oxygen species). However, regardless of whether AM were pretreated with caffeine or not, the mitochondrial ROS levels increased to similar levels after H2O2 challenge. We then investigated the feasibility of utilizing ORI to examine macrophage redox status in tracheal aspirate (TA) samples obtained from premature infants receiving invasive ventilation. We observed significant heterogeneity in NADH, Fp, Fp/(NADH + Fp), and mitochondrial ROS of the TA macrophages. We found a possible positive correlation between gestational age and NADH and a negative correlation between mean airway pressure and NADH that provides hypotheses for future testing. Our study demonstrates that ORI is a feasible technique to characterize macrophage redox state in infant TA samples and supports further use of this method to investigate lung macrophage-mediated disease endotypes in BPD.
Collapse
Affiliation(s)
- He N. Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.H.H.); (L.Z.L.)
| | - Diego Gonzalves
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Jonathan H. Hoffman
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.H.H.); (L.Z.L.)
| | - Joseph A. Baur
- Department of Physiology, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Lin Z. Li
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.H.H.); (L.Z.L.)
| | - Erik A. Jensen
- Department of Pediatrics, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
6
|
Hu M, Fan JX, He ZY, Zeng J. The regulatory role of autophagy between TAMs and tumor cells. Cell Biochem Funct 2024; 42:e3984. [PMID: 38494666 DOI: 10.1002/cbf.3984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Cancer has become a global public health problem and its harmful effects have received widespread attention. Conventional treatments such as surgical resection, radiotherapy and other techniques are applicable to clinical practice, but new drugs are constantly being developed and other therapeutic approaches, such as immunotherapy are being applied. In addition to studying the effects on individual tumor cells, it is important to explore the role of tumor microenvironment on tumor cell development since tumor cells do not exist alone but in the tumor microenvironment. In the tumor microenvironment, tumor cells are interconnected with other stromal cells and influence each other, among which tumor-associated macrophages (TAMs) are the most numerous immune cells. At the same time, it was found that cancer cells have different levels of autophagy from normal cells. In cancer therapy, the occurrence of autophagy plays an important role in promoting tumor cell death or inhibiting tumor cell death, and is closely related to the environment. Therefore, elucidating the regulatory role of autophagy between TAMs and tumor cells may be an important breakthrough, providing new perspectives for further research on antitumor immune mechanisms and improving the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Min Hu
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Jiao-Xiu Fan
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zi-Yue He
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Jun Zeng
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
- Animal Biology Key Laboratory of Chongqing Education Commission of China
| |
Collapse
|
7
|
Zhang W, Wan Z, Qu D, Sun W, Zhang L, Liang Y, Pan L, Jiang H, Ye Z, Wei M, Yuan L, Yang G, Jin F. Profibrogenic macrophage-targeted delivery of mitochondrial protector via exosome formula for alleviating pulmonary fibrosis. Bioact Mater 2024; 32:488-501. [PMID: 37965241 PMCID: PMC10641087 DOI: 10.1016/j.bioactmat.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/24/2023] [Accepted: 09/25/2023] [Indexed: 11/16/2023] Open
Abstract
Pulmonary fibrosis (PF) is a devastating lung disease with limited treatment options. During this pathological process, the profibrogenic macrophage subpopulation plays a crucial role, making the characterization of this subpopulation fundamentally important. The present study revealed a positive correlation between pulmonary macrophages with higher mitochondrial mass (Mømitohigh) and fibrosis. Among the Mømitohigh subpopulation of CD206+ M2, characterized by higher expression of dynamin 1-like (Drp1), as determined by flow cytometry and RNA-seq analysis, a therapeutic intervention was developed using an exosome-based formula composed of pathfinder and therapeutics. A pathfinder exosome called "exosomeMMP19 (ExoMMP19)", was constructed to display matrix metalloproteinase-19 (MMP19) on the surface to locally break down the excessive extracellular matrix (ECM) in the fibrotic lung. A therapeutic exosome called "exosome therapeutics (ExoTx)", was engineered to display D-mannose on the surface while encapsulating siDrp1 inside. Prior delivery of ExoMMP19 degraded excessive ECM and thus paved the way for ExoTx to be delivered into Mømitohigh, where ExoTx inhibited mitochondrial fission and alleviated PF. This study has not only identified Mømitohigh as profibrotic macrophages but it has also provided a potent strategy to reverse PF via a combination of formulated exosomes.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Zhuo Wan
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Di Qu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Clinical Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Wenqi Sun
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Liang Zhang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Yuan Liang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Lei Pan
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Hua Jiang
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Zichen Ye
- Department of Health Service, Health Service Training Base, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Mengying Wei
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Guodong Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Faguang Jin
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| |
Collapse
|
8
|
Zheng L, Wu Q, Chen S, Wen J, Dong F, Meng N, Zeng W, Zhao C, Zhong X. Development and validation of a new diagnostic prediction model of ENHO and NOX4 for early diagnosis of systemic sclerosis. Front Immunol 2024; 15:1273559. [PMID: 38348042 PMCID: PMC10859860 DOI: 10.3389/fimmu.2024.1273559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Objective Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by fibrosis. The challenge of early diagnosis, along with the lack of effective treatments for fibrosis, contribute to poor therapeutic outcomes and high mortality of SSc. Therefore, there is an urgent need to identify suitable biomarkers for early diagnosis of SSc. Methods Three skin gene expression datasets of SSc patients and healthy controls were downloaded from Gene Expression Omnibus (GEO) database (GSE130955, GSE58095, and GSE181549). GSE130955 (48 early diffuse cutaneous SSc and 33 controls) were utilized to screen differentially expressed genes (DEGs) between SSc and normal skin samples. Least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination (SVM-RFE) were performed to identify diagnostic genes and construct a diagnostic prediction model. The results were further validated in GSE58095 (61 SSc and 36 controls) and GSE181549 (113 SSc and 44 controls) datasets. Receiver operating characteristic (ROC) curves were applied for assessing the level of diagnostic ability. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to verify the diagnostic genes in skin tissues of out cohort (10 SSc and 5 controls). Immune infiltration analysis were performed using CIBERSORT algorithm. Results A total of 200 DEGs were identified between SSc and normal skin samples. Functional enrichment analysis revealed that these DEGs may be involved in the pathogenesis of SSc, such as extracellular matrix remodeling, cell-cell interactions, and metabolism. Subsequently, two critical genes (ENHO and NOX4) were identified by LASSO and SVM-RFE. ENHO was found down-regulated while NOX4 was up-regulated in skin of SSc patients and their expression levels were validated by above three datasets and our cohort. Notably, these differential expressions were more pronounced in patients with diffuse cutaneous SSc than in those with limited cutaneous SSc. Next, we developed a novel diagnostic model for SSc using ENHO and NOX4, which demonstrated strong predictive power in above three cohorts and in our own cohort. Furthermore, immune infiltration analysis revealed dysregulated levels of various immune cell subtypes within early SSc skin specimens, and a negative correlation was observed between the levels of ENHO and Macrophages M1 and M2, while a positive correlation was observed between the levels of NOX4 and Macrophages M1 and M2. Conclusion This study identified ENHO and NOX4 as novel biomarkers that can be serve as a diagnostic prediction model for early detection of SSc and play a potential role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Leting Zheng
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiulin Wu
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shuyuan Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Wen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fei Dong
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ningqin Meng
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wen Zeng
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cheng Zhao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoning Zhong
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
9
|
Larson-Casey JL, Saleem K, Surolia R, Pandey J, Mack M, Antony VB, Bodduluri S, Bhatt SP, Duncan SR, Carter AB. Myeloid Heterogeneity Mediates Acute Exacerbations of Pulmonary Fibrosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1714-1724. [PMID: 37782053 PMCID: PMC10843506 DOI: 10.4049/jimmunol.2300053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Epidemiological evidence indicates that exposure to particulate matter is linked to the development of idiopathic pulmonary fibrosis (IPF) and increases the incidence of acute exacerbations of IPF. In addition to accelerating the rate of lung function decline, exposure to fine particulate matter (particulate matter smaller than 2.5 μm [PM2.5]) is a risk factor for increased mortality in subjects with IPF. In this article, we show that exposure to PM2.5 mediates monocyte recruitment and fibrotic progression in mice with established fibrosis. In mice with established fibrosis, bronchoalveolar lavage cells showed monocyte/macrophage heterogeneity after exposure to PM2.5. These cells had a significant inflammatory and anti-inflammatory signature. The mixed heterogeneity of cells contributed to the proinflammatory and anti-inflammatory response. Although monocyte-derived macrophages were recruited to the lung in bleomycin-injured mice treated with PM2.5, recruitment of monocytes expressing Ly6Chi to the lung promoted progression of fibrosis, reduced lung aeration on computed tomography, and impacted lung compliance. Ly6Chi monocytes isolated from PM2.5-exposed fibrotic mice showed enhanced expression of proinflammatory markers compared with fibrotic mice exposed to vehicle. Moreover, IPF bronchoalveolar lavage cells treated ex vivo with PM2.5 showed an exaggerated inflammatory response. Targeting Ly6Chi monocyte recruitment inhibited fibrotic progression in mice. Moreover, the adoptive transfer of Ly6Chi monocytes exacerbated established fibrosis. These observations suggest that enhanced recruitment of Ly6Chi monocytes with a proinflammatory phenotype mediates acute exacerbations of pulmonary fibrosis, and targeting these cells may provide a potential novel therapeutic target to protect against acute exacerbations of IPF.
Collapse
Affiliation(s)
- Jennifer L. Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Komal Saleem
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ranu Surolia
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jyotsana Pandey
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthias Mack
- Department of Nephrology, University of Regensburg, Regensburg, Germany
| | - Veena B. Antony
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sandeep Bodduluri
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- UAB Lung Imaging Lab, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Surya P. Bhatt
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- UAB Lung Imaging Lab, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven R. Duncan
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - A. Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Birmingham Veterans Administration Medical Center, Birmingham. AL, USA
| |
Collapse
|
10
|
Cala-Garcia JD, Medina-Rincon GJ, Sierra-Salas PA, Rojano J, Romero F. The Role of Mitochondrial Dysfunction in Idiopathic Pulmonary Fibrosis: New Perspectives for a Challenging Disease. BIOLOGY 2023; 12:1237. [PMID: 37759636 PMCID: PMC10525741 DOI: 10.3390/biology12091237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Mitochondrial biology has always been a relevant field in chronic diseases such as fibrosis or cancer in different organs of the human body, not to mention the strong association between mitochondrial dysfunction and aging. With the development of new technologies and the emergence of new methodologies in the last few years, the role of mitochondria in pulmonary chronic diseases such as idiopathic pulmonary fibrosis (IPF) has taken an important position in the field. With this review, we will highlight the latest advances in mitochondrial research on pulmonary fibrosis, focusing on the role of the mitochondria in the aging lung, new proposals for mechanisms that support mitochondrial dysfunction as an important cause for IPF, mitochondrial dysfunction in different cell populations of the lung, and new proposals for treatment of the disease.
Collapse
Affiliation(s)
- Juan David Cala-Garcia
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | | | | | - Julio Rojano
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92161, USA
| | - Freddy Romero
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
11
|
Liu J, Wang J, Xiong A, Zhang L, Zhang Y, Liu Y, Xiong Y, Li G, He X. Mitochondrial quality control in lung diseases: current research and future directions. Front Physiol 2023; 14:1236651. [PMID: 37538379 PMCID: PMC10395103 DOI: 10.3389/fphys.2023.1236651] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Lung diseases are a major global health problem, affecting millions of people worldwide. Recent research has highlighted the critical role that mitochondrial quality control plays in respiratory-related diseases, including chronic obstructive pulmonary disease (COPD), lung cancer, and idiopathic pulmonary fibrosis (IPF). In this review, we summarize recent findings on the involvement of mitochondrial quality control in these diseases and discuss potential therapeutic strategies. Mitochondria are essential organelles for energy production and other cellular processes, and their dysfunction is associated with various diseases. The quality control of mitochondria involves a complex system of pathways, including mitophagy, mitochondrial biogenesis, fusion/fission dynamics, and regulation of gene expression. In COPD and lung cancer, mitochondrial quality control is often involved in disease development by influencing oxidative stress and apoptosis. In IPF, it appears to be involved in the disease process by participating in the cellular senescence process. Mitochondrial quality control is a promising target for therapeutic interventions in lung diseases. However, there are conflicting reports on different pathological processes, such as the role of mitochondrial autophagy in lung cancer, which pose difficulties in the study of targeted mitochondrial quality control drugs. Additionally, there seems to be a delicate balance between the mitochondrial quality control processes in the physiological state. Emerging evidence suggests that molecules such as PTEN-induced putative kinase 1 (PINK1), parkin RBR E3 ubiquitin protein ligase (PRKN), dynamin-related protein 1 (DRP1), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α), as well as the signaling pathways they affect, play an important role in respiratory-related diseases. Targeting these molecules and pathways could contribute to the development of effective treatments for lung diseases. In conclusion, the involvement of mitochondrial quality control in lung diseases presents a promising new avenue for disease treatment. Further research is needed to better understand the complex mechanisms involved in the pathogenesis of respiratory diseases and to develop targeted therapies that could improve clinical outcomes.
Collapse
Affiliation(s)
- Jiliu Liu
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Anying Xiong
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Yi Zhang
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Yao Liu
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Ying Xiong
- Department of Pulmonary and Critical Care Medicine, Sichuan Friendship Hospital, Chengdu, China
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| |
Collapse
|
12
|
Hu Q, Saleem K, Pandey J, Charania AN, Zhou Y, He C. Cell Adhesion Molecules in Fibrotic Diseases. Biomedicines 2023; 11:1995. [PMID: 37509634 PMCID: PMC10377070 DOI: 10.3390/biomedicines11071995] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Mechanisms underlying the pathogenesis of tissue fibrosis remain incompletely understood. Emerging evidence suggests that cell adhesion molecules (CAMs) are critical in fibrotic progression in many organs, including lung, kidney, skin, and liver. CAMs promote cell-cell and cell-extracellular matrix (ECM) interactions to maintain tissue architecture and normal function in homeostasis. However, dysregulated expression and function of CAMs can lead to chronic inflammation and tissue fibrosis. The major families of CAMs include integrins, cadherins, selectins, and immunoglobulins. Here, we review the role of the CAMs in fibrosis development across various organs with a focus on integrins and cadherins, and discuss their respective roles in the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Qianjiang Hu
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Komal Saleem
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jyotsana Pandey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Arzoo N. Charania
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao He
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
13
|
Pandey J, Larson-Casey JL, Patil MH, Joshi R, Jiang CS, Zhou Y, He C, Carter AB. NOX4-TIM23 interaction regulates NOX4 mitochondrial import and metabolic reprogramming. J Biol Chem 2023; 299:104695. [PMID: 37044213 PMCID: PMC10193017 DOI: 10.1016/j.jbc.2023.104695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Pulmonary fibrosis is a progressive lung disease characterized by macrophage activation. Asbestos-induced expression of nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4 (NOX4) in lung macrophages mediates fibrotic progression by the generation of mitochondrial reactive oxygen species (ROS), modulating mitochondrial biogenesis, and promoting apoptosis resistance; however, the mechanism(s) by which NOX4 localizes to mitochondria during fibrosis is not known. Here, we show that NOX4 localized to the mitochondrial matrix following asbestos exposure in lung macrophages via direct interaction with TIM23. TIM23 and NOX4 interaction was found in lung macrophages from human subjects with asbestosis, while it was absent in mice harboring a conditional deletion of NOX4 in lung macrophages. This interaction was localized to the proximal transmembrane region of NOX4. Mechanistically, TIM23 augmented NOX4-induced mitochondrial ROS and metabolic reprogramming to oxidative phosphorylation. Silencing TIM23 decreased mitochondrial ROS and oxidative phosphorylation. These observations highlight the important role of the mitochondrial translocase TIM23 interaction with NOX4. Moreover, this interaction is required for mitochondrial redox signaling and metabolic reprogramming in lung macrophages.
Collapse
Affiliation(s)
- Jyotsana Pandey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Larson-Casey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mallikarjun H Patil
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rutwij Joshi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chun-Sun Jiang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chao He
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A Brent Carter
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Medicine, Birmingham VAMC, Birmingham, Alabama, USA.
| |
Collapse
|
14
|
Treatment effects of phosphorylated Chrysanthemum indicum polysaccharides on duck virus hepatitis by protecting mitochondrial function from oxidative damage. Vet Microbiol 2022; 275:109600. [DOI: 10.1016/j.vetmic.2022.109600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
|
15
|
Hammers DW. NOX4 inhibition promotes the remodeling of dystrophic muscle. JCI Insight 2022; 7:158316. [PMID: 36278481 PMCID: PMC9714779 DOI: 10.1172/jci.insight.158316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
The muscular dystrophies (MDs) are genetic muscle diseases that result in progressive muscle degeneration followed by the fibrotic replacement of affected muscles as regenerative processes fail. Therapeutics that specifically address the fibrosis and failed regeneration associated with MDs represent a major unmet clinical need for MD patients, particularly those with advanced-stage disease progression. The current study investigated targeting NAD(P)H oxidase 4 (NOX4) as a potential strategy to reduce fibrosis and promote regeneration in disease-burdened muscle that models Duchenne muscular dystrophy (DMD). NOX4 was elevated in the muscles of dystrophic mice and DMD patients, localizing primarily to interstitial cells located between muscle fibers. Genetic and pharmacological targeting of NOX4 significantly reduced fibrosis in dystrophic respiratory and limb muscles. Mechanistically, NOX4 targeting decreased the number of fibrosis-depositing cells (myofibroblasts) and restored the number of muscle-specific stem cells (satellite cells) localized to their physiological niche, thereby rejuvenating muscle regeneration. Furthermore, acute inhibition of NOX4 was sufficient to induce apoptotic clearing of myofibroblasts within dystrophic muscle. These data indicate that targeting NOX4 is an effective strategy to promote the beneficial remodeling of disease-burdened muscle representative of DMD and, potentially, other MDs and muscle pathologies.
Collapse
Affiliation(s)
- David W. Hammers
- Department of Pharmacology & Therapeutics and
- Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
16
|
Sari E, He C, Margaroli C. Plasticity towards Rigidity: A Macrophage Conundrum in Pulmonary Fibrosis. Int J Mol Sci 2022; 23:11443. [PMID: 36232756 PMCID: PMC9570276 DOI: 10.3390/ijms231911443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic, and ultimately fatal diffuse parenchymal lung disease. The molecular mechanisms of fibrosis in IPF patients are not fully understood and there is a lack of effective treatments. For decades, different types of drugs such as immunosuppressants and antioxidants have been tested, usually with unsuccessful results. Although two antifibrotic drugs (Nintedanib and Pirfenidone) are approved and used for the treatment of IPF, side effects are common, and they only slow down disease progression without improving patients' survival. Macrophages are central to lung homeostasis, wound healing, and injury. Depending on the stimulus in the microenvironment, macrophages may contribute to fibrosis, but also, they may play a role in the amelioration of fibrosis. In this review, we explore the role of macrophages in IPF in relation to the fibrotic processes, epithelial-mesenchymal transition (EMT), and their crosstalk with resident and recruited cells and we emphasized the importance of macrophages in finding new treatments.
Collapse
Affiliation(s)
- Ezgi Sari
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao He
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Camilla Margaroli
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
17
|
Nascè A, Gariani K, Jornayvaz FR, Szanto I. NADPH Oxidases Connecting Fatty Liver Disease, Insulin Resistance and Type 2 Diabetes: Current Knowledge and Therapeutic Outlook. Antioxidants (Basel) 2022; 11:antiox11061131. [PMID: 35740032 PMCID: PMC9219746 DOI: 10.3390/antiox11061131] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by ectopic fat accumulation in hepatocytes, is closely linked to insulin resistance and is the most frequent complication of type 2 diabetes mellitus (T2DM). One of the features connecting NAFLD, insulin resistance and T2DM is cellular oxidative stress. Oxidative stress refers to a redox imbalance due to an inequity between the capacity of production and the elimination of reactive oxygen species (ROS). One of the major cellular ROS sources is NADPH oxidase enzymes (NOX-es). In physiological conditions, NOX-es produce ROS purposefully in a timely and spatially regulated manner and are crucial regulators of various cellular events linked to metabolism, receptor signal transmission, proliferation and apoptosis. In contrast, dysregulated NOX-derived ROS production is related to the onset of diverse pathologies. This review provides a synopsis of current knowledge concerning NOX enzymes as connective elements between NAFLD, insulin resistance and T2DM and weighs their potential relevance as pharmacological targets to alleviate fatty liver disease.
Collapse
Affiliation(s)
- Alberto Nascè
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (A.N.); (K.G.)
| | - Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (A.N.); (K.G.)
- Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - François R. Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (A.N.); (K.G.)
- Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, 1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Correspondence: (F.R.J.); (I.S.)
| | - Ildiko Szanto
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (A.N.); (K.G.)
- Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, 1211 Geneva, Switzerland
- Correspondence: (F.R.J.); (I.S.)
| |
Collapse
|
18
|
Harijith A, Basa P, Ha A, Thomas J, Jafri A, Fu P, MacFarlane PM, Raffay TM, Natarajan V, Sudhadevi T. NOX4 Mediates Epithelial Cell Death in Hyperoxic Acute Lung Injury Through Mitochondrial Reactive Oxygen Species. Front Pharmacol 2022; 13:880878. [PMID: 35662702 PMCID: PMC9160661 DOI: 10.3389/fphar.2022.880878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Management of acute respiratory distress involves O2 supplementation, which is lifesaving, but causes severe hyperoxic acute lung injury (HALI). NADPH oxidase (NOX) could be a major source of reactive oxygen species (ROS) in hyperoxia (HO). Epithelial cell death is a crucial step in the development of many lung diseases. Alveolar type II (AT2) cells are the metabolically active epithelial cells of alveoli that serve as a source of AT1 cells following lung injury. The aim of this study was to determine the possible role of AT2 epithelial cell NOX4 in epithelial cell death from HALI. Wild type (WT), Nox4 fl/fl (control), and Nox4 -/- Spc-Cre mice were exposed to room air (NO) or 95% O2 (HO) to investigate the structural and functional changes in the lung. C57BL/6J WT animals subjected to HO showed increased expression of lung NOX4 compared to NO. Significant HALI, increased bronchoalveolar lavage cell counts, increased protein levels, elevated proinflammatory cytokines and increased AT2 cell death seen in hyperoxic Nox4 fl/fl control mice were attenuated in HO-exposed Nox4 -/- Spc-Cre mice. HO-induced expression of NOX4 in MLE cells resulted in increased mitochondrial (mt) superoxide production and cell apoptosis, which was reduced in NOX4 siRNA silenced cells. This study demonstrates a novel role for epithelial cell NOX4 in accelerating lung epithelial cell apoptosis from HALI. Deletion of the Nox4 gene in AT2 cells or silencing NOX4 in lung epithelial cells protected the lungs from severe HALI with reduced apoptosis and decreased mt ROS production in HO. These results suggest NOX4 as a potential target for the treatment of HALI.
Collapse
Affiliation(s)
- Anantha Harijith
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Prathima Basa
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Alison Ha
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jaya Thomas
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Anjum Jafri
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Panfeng Fu
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Peter M. MacFarlane
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas M. Raffay
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Internal Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Tara Sudhadevi
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
19
|
Liu J, Wu Z, Liu Y, Zhan Z, Yang L, Wang C, Jiang Q, Ran H, Li P, Wang Z. ROS-responsive liposomes as an inhaled drug delivery nanoplatform for idiopathic pulmonary fibrosis treatment via Nrf2 signaling. J Nanobiotechnology 2022; 20:213. [PMID: 35524280 PMCID: PMC9074278 DOI: 10.1186/s12951-022-01435-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/23/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic disease with pathophysiological characteristics of transforming growth factor-β (TGF-β), and reactive oxygen species (ROS)-induced excessive fibroblast-to-myofibroblast transition and extracellular matrix deposition. Macrophages are closely involved in the development of fibrosis. Nuclear factor erythroid 2 related factor 2 (Nrf2) is a key molecule regulating ROS and TGF-β expression. Therefore, Nrf2 signaling modulation might be a promising therapy for fibrosis. The inhalation-based drug delivery can reduce systemic side effects and improve therapeutic effects, and is currently receiving increasing attention, but direct inhaled drugs are easily cleared and difficult to exert their efficacy. Therefore, we aimed to design a ROS-responsive liposome for the Nrf2 agonist dimethyl fumarate (DMF) delivery in the fibrotic lung. Moreover, we explored its therapeutic effect on pulmonary fibrosis and macrophage activation. RESULTS We synthesized DMF-loaded ROS-responsive DSPE-TK-PEG@DMF liposomes (DTP@DMF NPs). DTP@DMF NPs had suitable size and negative zeta potential and excellent capability to rapidly release DMF in a high-ROS environment. We found that macrophage accumulation and polarization were closely related to fibrosis development, while DTP@DMF NPs could attenuate macrophage activity and fibrosis in mice. RAW264.7 and NIH-3T3 cells coculture revealed that DTP@DMF NPs could promote Nrf2 and downstream heme oxygenase-1 (HO-1) expression and suppress TGF-β and ROS production in macrophages, thereby reducing fibroblast-to-myofibroblast transition and collagen production by NIH-3T3 cells. In vivo experiments confirmed the above findings. Compared with direct DMF instillation, DTP@DMF NPs treatment presented enhanced antifibrotic effect. DTP@DMF NPs also had a prolonged residence time in the lung as well as excellent biocompatibility. CONCLUSIONS DTP@DMF NPs can reduce macrophage-mediated fibroblast-to-myofibroblast transition and extracellular matrix deposition to attenuate lung fibrosis by upregulating Nrf2 signaling. This ROS-responsive liposome is clinically promising as an ideal delivery system for inhaled drug delivery.
Collapse
Affiliation(s)
- Junzhao Liu
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zuohong Wu
- Department of Respiratory and Critical Care Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yadong Liu
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Zhan
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liping Yang
- Key Laboratory of Laboratory Medical Diagnostics Designated by Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Can Wang
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinqin Jiang
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Ran
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pan Li
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhigang Wang
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
20
|
Wang X, Yin L, Wen Y, Yuan S. Mitochondrial regulation during male germ cell development. Cell Mol Life Sci 2022; 79:91. [PMID: 35072818 PMCID: PMC11072027 DOI: 10.1007/s00018-022-04134-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022]
Abstract
Mitochondria tailor their morphology to execute their specialized functions in different cell types and/or different environments. During spermatogenesis, mitochondria undergo continuous morphological and distributional changes with germ cell development. Deficiencies in these processes lead to mitochondrial dysfunction and abnormal spermatogenesis, thereby causing male infertility. In recent years, mitochondria have attracted considerable attention because of their unique role in the regulation of piRNA biogenesis in male germ cells. In this review, we describe the varied characters of mitochondria and focus on key mitochondrial factors that play pivotal roles in the regulation of spermatogenesis, from primordial germ cells to spermatozoa, especially concerning metabolic shift, stemness and reprogramming, mitochondrial transformation and rearrangement, and mitochondrial defects in human sperm. Further, we discuss the molecular mechanisms underlying these processes.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lisha Yin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
21
|
Estornut C, Milara J, Bayarri MA, Belhadj N, Cortijo J. Targeting Oxidative Stress as a Therapeutic Approach for Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 12:794997. [PMID: 35126133 PMCID: PMC8815729 DOI: 10.3389/fphar.2021.794997] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 01/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease characterized by an abnormal reepithelialisation, an excessive tissue remodelling and a progressive fibrosis within the alveolar wall that are not due to infection or cancer. Oxidative stress has been proposed as a key molecular process in pulmonary fibrosis development and different components of the redox system are altered in the cellular actors participating in lung fibrosis. To this respect, several activators of the antioxidant machinery and inhibitors of the oxidant species and pathways have been assayed in preclinical in vitro and in vivo models and in different clinical trials. This review discusses the role of oxidative stress in the development and progression of IPF and its underlying mechanisms as well as the evidence of oxidative stress in human IPF. Finally, we analyze the mechanism of action, the efficacy and the current status of different drugs developed to inhibit the oxidative stress as anti-fibrotic therapy in IPF.
Collapse
Affiliation(s)
- Cristina Estornut
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- *Correspondence: Cristina Estornut, ; Javier Milara,
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy Unit, University General Hospital Consortium, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
- *Correspondence: Cristina Estornut, ; Javier Milara,
| | - María Amparo Bayarri
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Nada Belhadj
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy Unit, University General Hospital Consortium, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
- Research and Teaching Unit, University General Hospital Consortium, Valencia, Spain
| |
Collapse
|
22
|
Gu L, Surolia R, Larson-Casey JL, He C, Davis D, Kang J, Antony VB, Carter AB. Targeting Cpt1a-Bcl-2 interaction modulates apoptosis resistance and fibrotic remodeling. Cell Death Differ 2022; 29:118-132. [PMID: 34413485 PMCID: PMC8738732 DOI: 10.1038/s41418-021-00840-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial calcium uniporter (MCU) regulates metabolic reprogramming in lung macrophages and the progression of pulmonary fibrosis. Fibrosis progression is associated with apoptosis resistance in lung macrophages; however, the mechanism(s) by which apoptosis resistance occurs is poorly understood. Here, we found a marked increase in mitochondrial B-cell lymphoma-2 (Bcl-2) in lung macrophages from subjects with idiopathic pulmonary fibrosis (IPF). Similar findings were seen in bleomycin-injured wild-type (WT) mice, whereas Bcl-2 was markedly decreased in mice expressing a dominant-negative mitochondrial calcium uniporter (DN-MCU). Carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme for fatty acid β-oxidation, directly interacted with Bcl-2 by binding to its BH3 domain, which anchored Bcl-2 in the mitochondria to attenuate apoptosis. This interaction was dependent on Cpt1a activity. Lung macrophages from IPF subjects had a direct correlation between CPT1A and Bcl-2, whereas the absence of binding induced apoptosis. The deletion of Bcl-2 in macrophages protected mice from developing pulmonary fibrosis. Moreover, mice had resolution when Bcl-2 was deleted or was inhibited with ABT-199 after fibrosis was established. These observations implicate an interplay between macrophage fatty acid β-oxidation, apoptosis resistance, and dysregulated fibrotic remodeling.
Collapse
Affiliation(s)
- Linlin Gu
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Ranu Surolia
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Jennifer L. Larson-Casey
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Chao He
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Dana Davis
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Jungsoon Kang
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Veena B. Antony
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - A. Brent Carter
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,grid.280808.a0000 0004 0419 1326Birmingham VAMC, Birmingham, AL USA
| |
Collapse
|
23
|
Li S, Zhang H, Chang J, Li D, Cao P. Iron overload and mitochondrial dysfunction orchestrate pulmonary fibrosis. Eur J Pharmacol 2021; 912:174613. [PMID: 34740581 DOI: 10.1016/j.ejphar.2021.174613] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/26/2022]
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive heterogeneous disease of lung tissues with poor lung function caused by scar tissue. Due to our limited understanding of its mechanism, there is currently no treatment strategy that can prevent the development of PF. In recent years, iron accumulation and mitochondrial damage have been reported to participate in PF, and drugs that reduce iron content and improve mitochondrial function have shown significant efficacy in animal experimental models. Excessive iron leads to mitochondrial impairment, which may be the key cause that results in the dysfunction of various kinds of pulmonary cells and further promotes PF. As an emerging research hotspot, there are few targeted effective therapeutic strategies at present due to limited mechanistic understanding. In this review, the roles of iron homeostasis imbalance and mitochondrial damage in PF are summarized and discussed, highlighting a promising direction for finding truly effective therapeutics for PF.
Collapse
Affiliation(s)
- Shuxin Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, People's Republic of China
| | - Hongmin Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, People's Republic of China
| | - Jing Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, People's Republic of China
| | - Dongming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, People's Republic of China.
| | - Pengxiu Cao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, People's Republic of China.
| |
Collapse
|
24
|
Melo EM, Oliveira VLS, Boff D, Galvão I. Pulmonary macrophages and their different roles in health and disease. Int J Biochem Cell Biol 2021; 141:106095. [PMID: 34653619 DOI: 10.1016/j.biocel.2021.106095] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 12/20/2022]
Abstract
Macrophages are a heterogeneous population of myeloid cells with phenotype and function modulated according to the microenvironment in which they are found. The lung resident macrophages known as Alveolar Macrophages (AM) and Interstitial Macrophages (IM) are localized in two different compartments. During lung homeostasis, macrophages can remove inhaled particulates, cellular debris and contribute to some metabolic processes. Macrophages may assume a pro-inflammatory phenotype after being classically activated (M1) or anti-inflammatory when being alternatively activated (M2). M1 and M2 have different transcription profiles and act by eliminating bacteria, viruses and fungi from the host or repairing the damage triggered by inflammation, respectively. Nevertheless, macrophages also may contribute to lung damage during persistent inflammation or continuous exposure to antigens. In this review, we discuss the origin and function of pulmonary macrophages in the context of homeostasis, infectious and non-infectious lung diseases.
Collapse
Affiliation(s)
- Eliza Mathias Melo
- Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vivian Louise Soares Oliveira
- Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daiane Boff
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Izabela Galvão
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
25
|
Schiffers C, Reynaert NL, Wouters EFM, van der Vliet A. Redox Dysregulation in Aging and COPD: Role of NOX Enzymes and Implications for Antioxidant Strategies. Antioxidants (Basel) 2021; 10:antiox10111799. [PMID: 34829671 PMCID: PMC8615131 DOI: 10.3390/antiox10111799] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/23/2022] Open
Abstract
With a rapidly growing elderly human population, the incidence of age-related lung diseases such as chronic obstructive pulmonary disease (COPD) continues to rise. It is widely believed that reactive oxygen species (ROS) play an important role in ageing and in age-related disease, and approaches of antioxidant supplementation have been touted as useful strategies to mitigate age-related disease progression, although success of such strategies has been very limited to date. Involvement of ROS in ageing is largely attributed to mitochondrial dysfunction and impaired adaptive antioxidant responses. NADPH oxidase (NOX) enzymes represent an important enzyme family that generates ROS in a regulated fashion for purposes of oxidative host defense and redox-based signalling, however, the associations of NOX enzymes with lung ageing or age-related lung disease have to date only been minimally addressed. The present review will focus on our current understanding of the impact of ageing on NOX biology and its consequences for age-related lung disease, particularly COPD, and will also discuss the implications of altered NOX biology for current and future antioxidant-based strategies aimed at treating these diseases.
Collapse
Affiliation(s)
- Caspar Schiffers
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Niki L. Reynaert
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Emiel F. M. Wouters
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Correspondence:
| |
Collapse
|
26
|
Canton M, Sánchez-Rodríguez R, Spera I, Venegas FC, Favia M, Viola A, Castegna A. Reactive Oxygen Species in Macrophages: Sources and Targets. Front Immunol 2021; 12:734229. [PMID: 34659222 PMCID: PMC8515906 DOI: 10.3389/fimmu.2021.734229] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022] Open
Abstract
Reactive oxygen species (ROS) are fundamental for macrophages to eliminate invasive microorganisms. However, as observed in nonphagocytic cells, ROS play essential roles in processes that are different from pathogen killing, as signal transduction, differentiation, and gene expression. The different outcomes of these events are likely to depend on the specific subcellular site of ROS formation, as well as the duration and extent of ROS production. While excessive accumulation of ROS has long been appreciated for its detrimental effects, there is now a deeper understanding of their roles as signaling molecules. This could explain the failure of the “all or none” pharmacologic approach with global antioxidants to treat several diseases. NADPH oxidase is the first source of ROS that has been identified in macrophages. However, growing evidence highlights mitochondria as a crucial site of ROS formation in these cells, mainly due to electron leakage of the respiratory chain or to enzymes, such as monoamine oxidases. Their role in redox signaling, together with their exact site of formation is only partially elucidated. Hence, it is essential to identify the specific intracellular sources of ROS and how they influence cellular processes in both physiological and pathological conditions to develop therapies targeting oxidative signaling networks. In this review, we will focus on the different sites of ROS formation in macrophages and how they impact on metabolic processes and inflammatory signaling, highlighting the role of mitochondrial as compared to non-mitochondrial ROS sources.
Collapse
Affiliation(s)
- Marcella Canton
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza - IRP, Padova, Italy
| | - Ricardo Sánchez-Rodríguez
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza - IRP, Padova, Italy
| | - Iolanda Spera
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Francisca C Venegas
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza - IRP, Padova, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza - IRP, Padova, Italy
| | - Alessandra Castegna
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza - IRP, Padova, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
27
|
Taylor JP, Tse HM. The role of NADPH oxidases in infectious and inflammatory diseases. Redox Biol 2021; 48:102159. [PMID: 34627721 PMCID: PMC8487856 DOI: 10.1016/j.redox.2021.102159] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) are enzymes that generate superoxide or hydrogen peroxide from molecular oxygen utilizing NADPH as an electron donor. There are seven enzymes in the NOX family: NOX1-5 and dual oxidase (DUOX) 1-2. NOX enzymes in humans play important roles in diverse biological functions and vary in expression from tissue to tissue. Importantly, NOX2 is involved in regulating many aspects of innate and adaptive immunity, including regulation of type I interferons, the inflammasome, phagocytosis, antigen processing and presentation, and cell signaling. DUOX1 and DUOX2 play important roles in innate immune defenses at epithelial barriers. This review discusses the role of NOX enzymes in normal physiological processes as well as in disease. NOX enzymes are important in autoimmune diseases like type 1 diabetes and have also been implicated in acute lung injury caused by infection with SARS-CoV-2. Targeting NOX enzymes directly or through scavenging free radicals may be useful therapies for autoimmunity and acute lung injury where oxidative stress contributes to pathology.
Collapse
Affiliation(s)
- Jared P Taylor
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
28
|
Kuo WT, Chang JM, Chen CC, Tsao N, Chang CP. Autophagy drives plasticity and functional polarization of tumor-associated macrophages. IUBMB Life 2021; 74:157-169. [PMID: 34467634 DOI: 10.1002/iub.2543] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/23/2021] [Accepted: 08/07/2021] [Indexed: 01/11/2023]
Abstract
Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment (TME) and are key cells in regulating tumor development, metastasis, immune responses, inflammation, and chemoresistance. In response to TME stimulation, circulating monocytes are recruited and differentiated as TAMs. Most TAMs are defined as alternatively activated (M2) phenotype to create immunosuppressive TME and support tumor progression. In contrast, classically activated (M1) TAMs can produce pro-inflammatory cytokines and enhance immune responses against tumor development. Autophagy is a conserved catabolic process to control cellular homeostasis and biological function. Emerging evidence reveals crucial contribution of autophagy in modulating TAM plasticity and functional polarization in TME. In this review, we introduce the current understanding of autophagy-regulated TAM function in development of cancer. We focus on how autophagy modulates antigen presentation, LC3-associated phagocytosis, cytokine secretion, inflammasome regulation, recruitment, differentiation, and polarization of TAMs and suggest strategies for potential therapeutics by targeting autophagy in TAMs. We expect this review can provide a new notion of future cancer immunotherapy.
Collapse
Affiliation(s)
- Wan-Ting Kuo
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Ming Chang
- Department of Surgery, Division of Thoracic Surgery, Chia-Yi Christian Hospital, Chiayi, Taiwan.,Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chien-Chin Chen
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Nina Tsao
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Peng Chang
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
29
|
Larson-Casey JL, Gu L, Davis D, Cai GQ, Ding Q, He C, Carter AB. Post-translational regulation of PGC-1α modulates fibrotic repair. FASEB J 2021; 35:e21675. [PMID: 34038004 PMCID: PMC8252570 DOI: 10.1096/fj.202100339r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease associated with mitochondrial oxidative stress. Mitochondrial reactive oxygen species (mtROS) are important for cell homeostasis by regulating mitochondrial dynamics. Here, we show that IPF BAL cells exhibited increased mitochondrial biogenesis that is, in part, due to increased nuclear expression of peroxisome proliferator-activated receptor-ɣ (PPARɣ) coactivator (PGC)-1α. Increased PPARGC1A mRNA expression directly correlated with reduced pulmonary function in IPF subjects. Oxidant-mediated activation of the p38 MAPK via Akt1 regulated PGC-1α activation to increase mitochondrial biogenesis in monocyte-derived macrophages. Demonstrating the importance of PGC-1α in fibrotic repair, mice harboring a conditional deletion of Ppargc1a in monocyte-derived macrophages or mice administered a chemical inhibitor of mitochondrial division had reduced biogenesis and increased apoptosis, and the mice were protected from pulmonary fibrosis. These observations suggest that Akt1-mediated regulation of PGC-1α maintains mitochondrial homeostasis in monocyte-derived macrophages to induce apoptosis resistance, which contributes to the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jennifer L Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Linlin Gu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dana Davis
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guo-Qiang Cai
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Qiang Ding
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chao He
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Birmingham Veterans Administration Medical Center, Birmingham, AL, USA
| |
Collapse
|
30
|
Larson-Casey JL, Gu L, Kang J, Dhyani A, Carter AB. NOX4 regulates macrophage apoptosis resistance to induce fibrotic progression. J Biol Chem 2021; 297:100810. [PMID: 34023385 PMCID: PMC8214193 DOI: 10.1016/j.jbc.2021.100810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/03/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
Pulmonary fibrosis is a progressive lung disease often occurring secondary to environmental exposure. Asbestos exposure is an important environmental mediator of lung fibrosis and remains a significant cause of disease despite strict regulations to limit exposure. Lung macrophages play an integral role in the pathogenesis of fibrosis induced by asbestos (asbestosis), in part by generating reactive oxygen species (ROS) and promoting resistance to apoptosis. However, the mechanism by which macrophages acquire apoptosis resistance is not known. Here, we confirm that macrophages isolated from asbestosis subjects are resistant to apoptosis and show they are associated with enhanced mitochondrial content of NADPH oxidase 4 (NOX4), which generates mitochondrial ROS generation. Similar results were seen in chrysotile-exposed WT mice, while macrophages from Nox4-/- mice showed increased apoptosis. NOX4 regulated apoptosis resistance by activating Akt1-mediated Bcl-2-associated death phosphorylation. Demonstrating the importance of NOX4-mediated apoptosis resistance in fibrotic remodeling, mice harboring a conditional deletion of Nox4 in monocyte-derived macrophages exhibited increased apoptosis and were protected from pulmonary fibrosis. Moreover, resolution occurred when Nox4 was deleted in monocyte-derived macrophages in mice with established fibrosis. These observations suggest that NOX4 regulates apoptosis resistance in monocyte-derived macrophages and contributes to the pathogenesis of pulmonary fibrosis. Targeting NOX4-mediated apoptosis resistance in monocyte-derived macrophages may provide a novel therapeutic target to protect against the development and/or progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jennifer L Larson-Casey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Linlin Gu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jungsoon Kang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ashish Dhyani
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A Brent Carter
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA.
| |
Collapse
|
31
|
Cheresh P, Kim SJ, Jablonski R, Watanabe S, Lu Z, Chi M, Helmin KA, Gius D, Budinger GRS, Kamp DW. SIRT3 Overexpression Ameliorates Asbestos-Induced Pulmonary Fibrosis, mt-DNA Damage, and Lung Fibrogenic Monocyte Recruitment. Int J Mol Sci 2021; 22:6856. [PMID: 34202229 PMCID: PMC8268084 DOI: 10.3390/ijms22136856] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/28/2023] Open
Abstract
Alveolar epithelial cell (AEC) mitochondrial (mt) DNA damage and fibrotic monocyte-derived alveolar macrophages (Mo-AMs) are implicated in the pathobiology of pulmonary fibrosis. We showed that sirtuin 3 (SIRT3), a mitochondrial protein regulating cell fate and aging, is deficient in the AECs of idiopathic pulmonary fibrosis (IPF) patients and that asbestos- and bleomycin-induced lung fibrosis is augmented in Sirt3 knockout (Sirt3-/-) mice associated with AEC mtDNA damage and intrinsic apoptosis. We determined whether whole body transgenic SIRT3 overexpression (Sirt3Tg) protects mice from asbestos-induced pulmonary fibrosis by mitigating lung mtDNA damage and Mo-AM recruitment. Crocidolite asbestos (100 µg/50 µL) or control was instilled intratracheally in C57Bl6 (Wild-Type) mice or Sirt3Tg mice, and at 21 d lung fibrosis (histology, fibrosis score, Sircol assay) and lung Mo-AMs (flow cytometry) were assessed. Compared to controls, Sirt3Tg mice were protected from asbestos-induced pulmonary fibrosis and had diminished lung mtDNA damage and Mo-AM recruitment. Further, pharmacologic SIRT3 inducers (i.e., resveratrol, viniferin, and honokiol) each diminish oxidant-induced AEC mtDNA damage in vitro and, in the case of honokiol, protection occurs in a SIRT3-dependent manner. We reason that SIRT3 preservation of AEC mtDNA is a novel therapeutic focus for managing patients with IPF and other types of pulmonary fibrosis.
Collapse
Affiliation(s)
- Paul Cheresh
- Jesse Brown VA Medical Center, Division of Pulmonary & Critical Care Medicine, Chicago, IL 60612, USA; (P.C.); (S.-J.K.); (Z.L.); (G.R.S.B.)
- Department of Medicine, Feinberg School of Medicine, Pulmonary and Critical Care Medicine, Northwestern University, Simpson & Querrey Biomedical Research Center 5-303, 303 E Superior St., Chicago, IL 60611, USA; (S.W.); (M.C.); (K.A.H.)
| | - Seok-Jo Kim
- Jesse Brown VA Medical Center, Division of Pulmonary & Critical Care Medicine, Chicago, IL 60612, USA; (P.C.); (S.-J.K.); (Z.L.); (G.R.S.B.)
- Department of Medicine, Feinberg School of Medicine, Pulmonary and Critical Care Medicine, Northwestern University, Simpson & Querrey Biomedical Research Center 5-303, 303 E Superior St., Chicago, IL 60611, USA; (S.W.); (M.C.); (K.A.H.)
| | - Renea Jablonski
- Section of Pulmonary and Critical Care, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA;
| | - Satoshi Watanabe
- Department of Medicine, Feinberg School of Medicine, Pulmonary and Critical Care Medicine, Northwestern University, Simpson & Querrey Biomedical Research Center 5-303, 303 E Superior St., Chicago, IL 60611, USA; (S.W.); (M.C.); (K.A.H.)
| | - Ziyan Lu
- Jesse Brown VA Medical Center, Division of Pulmonary & Critical Care Medicine, Chicago, IL 60612, USA; (P.C.); (S.-J.K.); (Z.L.); (G.R.S.B.)
- Department of Medicine, Feinberg School of Medicine, Pulmonary and Critical Care Medicine, Northwestern University, Simpson & Querrey Biomedical Research Center 5-303, 303 E Superior St., Chicago, IL 60611, USA; (S.W.); (M.C.); (K.A.H.)
| | - Monica Chi
- Department of Medicine, Feinberg School of Medicine, Pulmonary and Critical Care Medicine, Northwestern University, Simpson & Querrey Biomedical Research Center 5-303, 303 E Superior St., Chicago, IL 60611, USA; (S.W.); (M.C.); (K.A.H.)
| | - Kathryn A. Helmin
- Department of Medicine, Feinberg School of Medicine, Pulmonary and Critical Care Medicine, Northwestern University, Simpson & Querrey Biomedical Research Center 5-303, 303 E Superior St., Chicago, IL 60611, USA; (S.W.); (M.C.); (K.A.H.)
| | - David Gius
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - G. R. Scott Budinger
- Jesse Brown VA Medical Center, Division of Pulmonary & Critical Care Medicine, Chicago, IL 60612, USA; (P.C.); (S.-J.K.); (Z.L.); (G.R.S.B.)
- Department of Medicine, Feinberg School of Medicine, Pulmonary and Critical Care Medicine, Northwestern University, Simpson & Querrey Biomedical Research Center 5-303, 303 E Superior St., Chicago, IL 60611, USA; (S.W.); (M.C.); (K.A.H.)
| | - David W. Kamp
- Jesse Brown VA Medical Center, Division of Pulmonary & Critical Care Medicine, Chicago, IL 60612, USA; (P.C.); (S.-J.K.); (Z.L.); (G.R.S.B.)
- Department of Medicine, Feinberg School of Medicine, Pulmonary and Critical Care Medicine, Northwestern University, Simpson & Querrey Biomedical Research Center 5-303, 303 E Superior St., Chicago, IL 60611, USA; (S.W.); (M.C.); (K.A.H.)
| |
Collapse
|
32
|
Dumas A, Knaus UG. Raising the 'Good' Oxidants for Immune Protection. Front Immunol 2021; 12:698042. [PMID: 34149739 PMCID: PMC8213335 DOI: 10.3389/fimmu.2021.698042] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Redox medicine is a new therapeutic concept targeting reactive oxygen species (ROS) and secondary reaction products for health benefit. The concomitant function of ROS as intracellular second messengers and extracellular mediators governing physiological redox signaling, and as damaging radicals instigating or perpetuating various pathophysiological conditions will require selective strategies for therapeutic intervention. In addition, the reactivity and quantity of the oxidant species generated, its source and cellular location in a defined disease context need to be considered to achieve the desired outcome. In inflammatory diseases associated with oxidative damage and tissue injury, ROS source specific inhibitors may provide more benefit than generalized removal of ROS. Contemporary approaches in immunity will also include the preservation or even elevation of certain oxygen metabolites to restore or improve ROS driven physiological functions including more effective redox signaling and cell-microenvironment communication, and to induce mucosal barrier integrity, eubiosis and repair processes. Increasing oxidants by host-directed immunomodulation or by exogenous supplementation seems especially promising for improving host defense. Here, we summarize examples of beneficial ROS in immune homeostasis, infection, and acute inflammatory disease, and address emerging therapeutic strategies for ROS augmentation to induce and strengthen protective host immunity.
Collapse
Affiliation(s)
- Alexia Dumas
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
33
|
Spagnolo P, Distler O, Ryerson CJ, Tzouvelekis A, Lee JS, Bonella F, Bouros D, Hoffmann-Vold AM, Crestani B, Matteson EL. Mechanisms of progressive fibrosis in connective tissue disease (CTD)-associated interstitial lung diseases (ILDs). Ann Rheum Dis 2021; 80:143-150. [PMID: 33037004 PMCID: PMC7815631 DOI: 10.1136/annrheumdis-2020-217230] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
Interstitial lung diseases (ILDs), which can arise from a broad spectrum of distinct aetiologies, can manifest as a pulmonary complication of an underlying autoimmune and connective tissue disease (CTD-ILD), such as rheumatoid arthritis-ILD and systemic sclerosis (SSc-ILD). Patients with clinically distinct ILDs, whether CTD-related or not, can exhibit a pattern of common clinical disease behaviour (declining lung function, worsening respiratory symptoms and higher mortality), attributable to progressive fibrosis in the lungs. In recent years, the tyrosine kinase inhibitor nintedanib has demonstrated efficacy and safety in idiopathic pulmonary fibrosis (IPF), SSc-ILD and a broad range of other fibrosing ILDs with a progressive phenotype, including those associated with CTDs. Data from phase II studies also suggest that pirfenidone, which has a different-yet largely unknown-mechanism of action, may also have activity in other fibrosing ILDs with a progressive phenotype, in addition to its known efficacy in IPF. Collectively, these studies add weight to the hypothesis that, irrespective of the original clinical diagnosis of ILD, a progressive fibrosing phenotype may arise from common, underlying pathophysiological mechanisms of fibrosis involving pathways associated with the targets of nintedanib and, potentially, pirfenidone. However, despite the early proof of concept provided by these clinical studies, very little is known about the mechanistic commonalities and differences between ILDs with a progressive phenotype. In this review, we explore the biological and genetic mechanisms that drive fibrosis, and identify the missing evidence needed to provide the rationale for further studies that use the progressive phenotype as a target population.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova School of Medicine and Surgery, Padova, Italy
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Christopher J Ryerson
- Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Argyris Tzouvelekis
- Department of Respiratory and Internal Medicine, University of Patras Faculty of Medicine, Patras, Greece
| | - Joyce S Lee
- School of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Disease Unit, University of Duisburg-Essen, Ruhrlandklinik, Essen, Germany
| | - Demosthenes Bouros
- Department of Pneumonology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Bruno Crestani
- Inserm U1152, Université de Paris, F-75018, Paris, France
- Department of Pneumonology, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris, F-75018, Paris, France
| | - Eric L Matteson
- Division of Rheumatology and Department of Health Sciences Research, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
34
|
Larson-Casey JL, He C, Che P, Wang M, Cai G, Kim YI, El Hamdaoui M, Grytz R, Ding Q, Carter AB. Technical advance: The use of tree shrews as a model of pulmonary fibrosis. PLoS One 2020; 15:e0241323. [PMID: 33141839 PMCID: PMC7608928 DOI: 10.1371/journal.pone.0241323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease with a high morbidity and mortality. Some of the mechanisms of fibrosis development have been described using rodent models; however, the relevance of findings in these animal models is difficult to assess. New innovative models are needed that closely mimic IPF disease pathology. METHODS To overcome this unmet need of investigating IPF with a relevant model, we utilized tree shrews, which are genetically, anatomically, and metabolically similar to primates and humans. Using human antibodies and primers, we investigated the role of macrophage phenotypic switching in normal and IPF subjects and bleomycin-injured tree shrews. RESULTS Bronchoalveolar lavage (BAL) cells from tree shrews expressed human markers, and there was recruitment of monocyte-derived macrophages (MDMs) to the lung in IPF subjects and bleomycin-injured tree shrews. MDMs were polarized to a profibrotic phenotype in IPF and in bleomycin-injured tree shrews. Resident alveolar macrophages (RAMs) expressed proinflammatory markers regardless of bleomycin exposure. Tree shrews developed bleomycin-induced pulmonary fibrosis with architectural distortion in parenchyma and widespread collagen deposition. CONCLUSION The profibrotic polarization of macrophages has been demonstrated to be present in IPF subjects and in fibrotic mice. Although the lung macrophages have long been considered to be homogeneous, recent evidence indicates that these cells are heterogeneous during multiple chronic lung diseases. Here, we show new data that indicate a critical and essential role for macrophage-fibroblast crosstalk promoting fibroblast differentiation and collagen production. in the development and progression of fibrosis. The current data strongly suggest development of therapeutics that attenuate of the profibrotic activation of MDMs may mitigate macrophage-fibroblast interaction. These observations demonstrate that tree shrews are an ideal animal model to investigate the pathogenesis of IPF as they are genetically, anatomically, and metabolically closer to humans than the more commonly used rodent models.
Collapse
Affiliation(s)
- Jennifer L. Larson-Casey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Chao He
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Pulin Che
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Meimei Wang
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Guoqiang Cai
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Young-il Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Mustapha El Hamdaoui
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Rafael Grytz
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Qiang Ding
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - A. Brent Carter
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Birmingham Veteran Affairs Medical Center, Birmingham, AL, United States of America
| |
Collapse
|
35
|
The Sphingosine Kinase 1 Inhibitor, PF543, Mitigates Pulmonary Fibrosis by Reducing Lung Epithelial Cell mtDNA Damage and Recruitment of Fibrogenic Monocytes. Int J Mol Sci 2020; 21:ijms21165595. [PMID: 32764262 PMCID: PMC7460639 DOI: 10.3390/ijms21165595] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease for which novel approaches are urgently required. We reported increased sphingosine kinase 1 (SPHK1) in IPF lungs and that SPHK1 inhibition using genetic and pharmacologic approaches reduces murine bleomycin-induced pulmonary fibrosis. We determined whether PF543, a specific SPHK1 inhibitor post bleomycin or asbestos challenge mitigates lung fibrosis by reducing mitochondrial (mt) DNA damage and pro-fibrotic monocyte recruitment—both are implicated in the pathobiology of pulmonary fibrosis. Bleomycin (1.5 U/kg), crocidolite asbestos (100 µg/50 µL) or controls was intratracheally instilled in Wild-Type (C57Bl6) mice. PF543 (1 mg/kg) or vehicle was intraperitoneally injected once every two days from day 7−21 following bleomycin and day 14−21 or day 30−60 following asbestos. PF543 reduced bleomycin- and asbestos-induced pulmonary fibrosis at both time points as well as lung expression of profibrotic markers, lung mtDNA damage, and fibrogenic monocyte recruitment. In contrast to human lung fibroblasts, asbestos augmented lung epithelial cell (MLE) mtDNA damage and PF543 was protective. Post-exposure PF543 mitigates pulmonary fibrosis in part by reducing lung epithelial cell mtDNA damage and monocyte recruitment. We reason that SPHK1 signaling may be an innovative therapeutic target for managing patients with IPF and other forms of lung fibrosis.
Collapse
|
36
|
Bueno M, Calyeca J, Rojas M, Mora AL. Mitochondria dysfunction and metabolic reprogramming as drivers of idiopathic pulmonary fibrosis. Redox Biol 2020; 33:101509. [PMID: 32234292 PMCID: PMC7251240 DOI: 10.1016/j.redox.2020.101509] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease of unknown etiology. It is characterized by deposition of extracellular matrix proteins, like collagen and fibronectin in the lung interstitium leading to respiratory failure. Our understanding of the pathobiology underlying IPF is still incomplete; however, it is accepted that aging is a major risk factor in the disease while growing evidence suggests that the mitochondria plays an important role in the initiation and progression of pulmonary fibrosis. Mitochondria dysfunction and metabolic reprogramming had been identified in different IPF lung cells (alveolar epithelial cells, fibroblasts, and macrophages) promoting low resilience and increasing susceptibility to activation of profibrotic responses. Here we summarize changes in mitochondrial numbers, biogenesis, turnover and associated metabolic adaptations that promote disrepair and fibrosis in the lung. Finally, we highlight new possible therapeutic approaches focused on ameliorate mitochondrial dysfunction.
Collapse
Affiliation(s)
- Marta Bueno
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jazmin Calyeca
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Dorothy and Richard Simmons Center for Interstitial Lung Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana L Mora
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
37
|
Affiliation(s)
- Chao He
- Department of MedicineUniversity of Alabama at BirminghamBirmingham, Alabamaand
| | - A Brent Carter
- Department of MedicineUniversity of Alabama at BirminghamBirmingham, Alabamaand
- Birmingham VA Medical CenterBirmingham, Alabama
| |
Collapse
|
38
|
NADPH oxidases: Pathophysiology and therapeutic potential in age-associated pulmonary fibrosis. Redox Biol 2020; 33:101541. [PMID: 32360174 PMCID: PMC7251244 DOI: 10.1016/j.redox.2020.101541] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress has been associated with a number of human fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). Although oxidative stress is associated with both fibrosis and aging, the precise cellular sources(s) of reactive oxygen species (ROS) that contribute to the disease pathogenesis remain poorly understood. NADPH oxidase (Nox) enzymes are an evolutionarily conserved family, where their only known function is the production of ROS. A growing body of evidence supports a link between excessive Nox-derived ROS and numerous chronic diseases (including fibrotic disease), which is most prevalent among the elderly population. In this review, we examine the evidence for Nox isoforms in the pathogenesis of IPF, and the potential to target this enzyme family for the treatment of IPF and related fibrotic disorders. A better understanding of the Nox-mediated redox imbalance in aging may be critical to the development of more effective therapeutic strategies for age-associated fibrotic disorders. Strategies aimed at specifically blocking the source(s) of ROS through Nox inhibition may prove to be more effective as anti-fibrotic therapies, as compared to antioxidant approaches. This review also discusses the potential of Nox-targeting therapeutics currently in development.
Collapse
|
39
|
Sphingosine Kinase 1/S1P Signaling Contributes to Pulmonary Fibrosis by Activating Hippo/YAP Pathway and Mitochondrial Reactive Oxygen Species in Lung Fibroblasts. Int J Mol Sci 2020; 21:ijms21062064. [PMID: 32192225 PMCID: PMC7139883 DOI: 10.3390/ijms21062064] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
The sphingosine kinase 1 (SPHK1)/sphingosine–1–phosphate (S1P) signaling axis is emerging as a key player in the development of idiopathic pulmonary fibrosis (IPF) and bleomycin (BLM)-induced lung fibrosis in mice. Recent evidence implicates the involvement of the Hippo/Yes-associated protein (YAP) 1 pathway in lung diseases, including IPF, but its plausible link to the SPHK1/S1P signaling pathway is unclear. Herein, we demonstrate the increased co-localization of YAP1 with the fibroblast marker FSP1 in the lung fibroblasts of BLM-challenged mice, and the genetic deletion of Sphk1 in mouse lung fibroblasts (MLFs) reduced YAP1 localization in fibrotic foci. The PF543 inhibition of SPHK1 activity in mice attenuated YAP1 co-localization with FSP1 in lung fibroblasts. In vitro, TGF-β stimulated YAP1 translocation to the nucleus in primary MLFs, and the deletion of Sphk1 or inhibition with PF543 attenuated TGF-β-mediated YAP1 nuclear localization. Moreover, the PF543 inhibition of SPHK1, or the verteporfin inhibition of YAP1, decreased the TGF-β- or BLM-induced mitochondrial reactive oxygen species (mtROS) in human lung fibroblasts (HLFs) and the expression of fibronectin (FN) and alpha-smooth muscle actin (α-SMA). Furthermore, scavenging mtROS with MitoTEMPO attenuated the TGF-β-induced expression of FN and α-SMA. The addition of the S1P antibody to HLFs reduced TGF-β- or S1P-mediated YAP1 activation, mtROS, and the expression of FN and α-SMA. These results suggest a role for SPHK1/S1P signaling in TGF-β-induced YAP1 activation and mtROS generation, resulting in fibroblast activation, a critical driver of pulmonary fibrosis.
Collapse
|
40
|
Larson-Casey JL, He C, Carter AB. Mitochondrial quality control in pulmonary fibrosis. Redox Biol 2020; 33:101426. [PMID: 31928788 PMCID: PMC7251238 DOI: 10.1016/j.redox.2020.101426] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022] Open
Abstract
Mechanisms underlying the pathogenesis of pulmonary fibrosis remain incompletely understood. Emerging evidence suggests changes in mitochondrial quality control are a critical determinant in many lung diseases, including chronic obstructive pulmonary disease, asthma, pulmonary hypertension, acute lung injury, lung cancer, and in the susceptibility to pulmonary fibrosis. Once thought of as the kidney-bean shaped powerhouses of the cell, mitochondria are now known to form interconnected networks that rapidly and continuously change their size to meet cellular metabolic demands. Mitochondrial quality control modulates cell fate and homeostasis, and diminished mitochondrial quality control results in mitochondrial dysfunction, increased reactive oxygen species (ROS) production, reduced ATP production, and often induces intrinsic apoptosis. Here, we review the role of the mitochondria in alveolar epithelial cells, lung macrophages, and fibroblasts within the context of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jennifer L Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Chao He
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States; Birmingham VAMC, Birmingham, AL, 35294, United States.
| |
Collapse
|