1
|
Wang K, Zhan F, Yang X, Jiao M, Wang P, Zhang H, Shang W, Deng J, Wang L. KMT2D: A key emerging epigenetic regulator in head and neck diseases and tumors. Life Sci 2025; 369:123523. [PMID: 40044030 DOI: 10.1016/j.lfs.2025.123523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 03/12/2025]
Abstract
Histone modifications are critical determinants of chromatin accessibility and gene expression, both of which are intrinsically linked to human development and disease. Lysine methyltransferase 2D (KMT2D), a prominent member of the H3K4 methyltransferase family, is ubiquitously expressed across human tissues. Recent studies have found that it can regulate gene expression and signal pathway opening and closing in more than one way, playing an important role in cell proliferation and cell cycle homeostasis. Although previous studies have identified KMT2D as a potentially pivotal factor in the development and pathology of head and neck tissues, the regulatory networks associated with KMT2D in various complex head and neck diseases remain incompletely elucidated. This review seeks to consolidate recent findings on KMT2D's involvement in head and neck diseases, thereby laying the groundwork for future research into its mechanistic role in disease progression. A deeper understanding of KMT2D's functions and regulatory mechanisms is essential for advancing our comprehension of histone modifications and for the development of diagnostic tools and targeted therapeutic strategies for head and neck diseases.
Collapse
Affiliation(s)
- Kexin Wang
- Department of Oral Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Fang Zhan
- Department of Oral Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xiaochen Yang
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Mengyu Jiao
- Department of Oral Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China; School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Peiyan Wang
- Department of Oral Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China; School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Hui Zhang
- Department of Oral Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China; School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Wei Shang
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China; School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Jing Deng
- Department of Oral Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China; School of Stomatology, Qingdao University, Qingdao 266023, China; Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao 266003, Shandong, China
| | - Lin Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China; School of Stomatology, Qingdao University, Qingdao 266023, China.
| |
Collapse
|
2
|
Lee JM, Jung H, Pasqua BDPM, Park Y, Tang Q, Jeon S, Lee SK, Lee JW, Kwon HJE. MLL4 regulates postnatal palate growth and midpalatal suture development. Front Cell Dev Biol 2025; 13:1466948. [PMID: 39925741 PMCID: PMC11803150 DOI: 10.3389/fcell.2025.1466948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
MLL4, also known as KMT2D, is a histone methyltransferase that acts as an important epigenetic regulator in various organogenesis programs. Mutations in the MLL4 gene are the major cause of Kabuki syndrome, a human developmental disorder that involves craniofacial birth defects, including anomalies in the palate. This study aimed to investigate the role of MLL4 and the underlying mechanisms in the development and growth of the palate. We generated a novel conditional knockout (cKO) mouse model with tissue-specific deletion of Mll4 in the palatal mesenchyme. Using micro-computed tomography (CT), histological analysis, cell mechanism assays, and gene expression profiling, we examined palate development and growth in the Mll4-cKO mice. Gross craniofacial examination at adult stages revealed mild midfacial hypoplasia and midline defects of the palate in Mll4-cKO mice, including a widened midpalatal suture and disrupted midline rugae pattern. Micro-CT-based time-course skeletal analysis during postnatal palatogenesis through adulthood demonstrated a transverse growth deficit in overall palate width in Mll4-cKO mice. Whole-mount and histological staining at perinatal stages identified that the midline defects in the Mll4-cKO mice emerged as early as 1 day prior to birth, presenting as a widened midpalatal suture, accompanied by increased cell apoptosis in the suture mesenchyme. Genome-wide mRNA expression analysis of the midpalatal suture tissue revealed that MLL4 is essential for the timely expression of major cartilage development genes, such as Col2a1 and Acan, at birth. Immunofluorescence staining for osteochondral differentiation markers demonstrated a marked decrease in the chondrogenic marker COL2A1, while the expression of the osteogenic marker RUNX2 remained unchanged, in the Mll4-cKO midpalatal suture. Additionally, SOX9, a master regulator of chondrogenesis, exhibited a significant decrease in protein expression. Indeed, time-course histological analysis during postnatal palate growth revealed retardation in the development of the suture cartilage in Mll4-cKO mice. Taken together, our results demonstrate that MLL4 is essential for orchestrating key cellular and molecular events that ensure proper midpalatal suture development and palate growth.
Collapse
Affiliation(s)
- Jung-Mi Lee
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Hunmin Jung
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Bruno de Paula Machado Pasqua
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Yungki Park
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Qinghuang Tang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Shin Jeon
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Immunology, University of Pennsylvania, Philadelphia, PA, United States
| | - Soo-Kyung Lee
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Jae W. Lee
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Hyuk-Jae Edward Kwon
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
3
|
Lee JM, Jung H, de Paula Machado Pasqua B, Park Y, Tang Q, Jeon S, Lee SK, Lee JW, Kwon HJE. MLL4 regulates postnatal palate growth and midpalatal suture development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603832. [PMID: 39372750 PMCID: PMC11451598 DOI: 10.1101/2024.07.16.603832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
MLL4, also known as KMT2D, is a histone methyltransferase that acts as an important epigenetic regulator in various organogenesis programs. Mutations in the MLL4 gene are the major cause of Kabuki syndrome, a human developmental disorder that involves craniofacial birth defects, including anomalies in the palate. This study aimed to investigate the role of MLL4 and the underlying mechanisms in the development and growth of the palate. We generated a novel conditional knockout (cKO) mouse model with tissue-specific deletion of Mll4 in the palatal mesenchyme. Using micro-computed tomography (CT), histological analysis, cell mechanism assays, and gene expression profiling, we examined palate development and growth in the Mll4-cKO mice. Gross craniofacial examination at adult stages revealed mild midfacial hypoplasia and midline defects of the palate in Mll4-cKO mice, including a widened midpalatal suture and disrupted midline rugae pattern. Micro-CT-based time-course skeletal analysis during postnatal palatogenesis through adulthood demonstrated a transverse growth deficit in overall palate width in Mll4-cKO mice. Whole-mount and histological staining at perinatal stages identified that the midline defects in the Mll4-cKO mice emerged as early as one day prior to birth, presenting as a widened midpalatal suture, accompanied by increased cell apoptosis in the suture mesenchyme. Genome-wide mRNA expression analysis of the midpalatal suture tissue revealed that MLL4 is essential for the timely expression of major cartilage development genes, such as Col2a1 and Acan, at birth.Immunofluorescence staining for osteochondral differentiation markers demonstrated a marked decrease in the chondrogenic marker COL2A1, while the expression of the osteogenic marker RUNX2 remained unchanged, in the Mll4-cKO midpalatal suture. Additionally, SOX9, a master regulator of chondrogenesis, exhibited a significant decrease in protein expression. Indeed, time-course histological analysis during postnatal palate growth revealed retardation in the development of the suture cartilage in Mll4-cKO mice. Taken together, our results demonstrate that MLL4 is essential for orchestrating key cellular and molecular events that ensure proper midpalatal suture development and palate growth.
Collapse
Affiliation(s)
- Jung-Mi Lee
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, U.S.A
| | - Hunmin Jung
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, U.S.A
| | - Bruno de Paula Machado Pasqua
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, U.S.A
| | - Yungki Park
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, University at Buffalo, The State University of New York, Buffalo, NY 14203, U.S.A
| | - Qinghuang Tang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, U.S.A
| | - Shin Jeon
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14260, U.S.A
- Department of Systems Pharmacology & Translational Therapeutics, Institute for Immunology, University of Pennsylvania, PA 19104, U.S.A
| | - Soo-Kyung Lee
- Department of Systems Pharmacology & Translational Therapeutics, Institute for Immunology, University of Pennsylvania, PA 19104, U.S.A
| | - Jae W. Lee
- Department of Systems Pharmacology & Translational Therapeutics, Institute for Immunology, University of Pennsylvania, PA 19104, U.S.A
| | - Hyuk-Jae Edward Kwon
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, U.S.A
| |
Collapse
|
4
|
Boukas L, Luperchio TR, Razi A, Hansen KD, Bjornsson HT. Neuron-specific chromatin disruption at CpG islands and aging-related regions in Kabuki syndrome mice. Genome Res 2024; 34:696-710. [PMID: 38702196 PMCID: PMC11216309 DOI: 10.1101/gr.278416.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
Many Mendelian developmental disorders caused by coding variants in epigenetic regulators have now been discovered. Epigenetic regulators are broadly expressed, and each of these disorders typically shows phenotypic manifestations from many different organ systems. An open question is whether the chromatin disruption-the root of the pathogenesis-is similar in the different disease-relevant cell types. This is possible in principle, because all these cell types are subject to effects from the same causative gene, which has the same kind of function (e.g., methylates histones) and is disrupted by the same germline variant. We focus on mouse models for Kabuki syndrome types 1 and 2 and find that the chromatin accessibility changes in neurons are mostly distinct from changes in B or T cells. This is not because the neuronal accessibility changes occur at regulatory elements that are only active in neurons. Neurons, but not B or T cells, show preferential chromatin disruption at CpG islands and at regulatory elements linked to aging. A sensitive analysis reveals that regulatory elements disrupted in B/T cells do show chromatin accessibility changes in neurons, but these are very subtle and of uncertain functional significance. Finally, we are able to identify a small set of regulatory elements disrupted in all three cell types. Our findings reveal the cellular-context-specific effect of variants in epigenetic regulators and suggest that blood-derived episignatures, although useful diagnostically, may not be well suited for understanding the mechanistic basis of neurodevelopment in Mendelian disorders of the epigenetic machinery.
Collapse
Affiliation(s)
- Leandros Boukas
- Department of Pediatrics, Children's National Hospital, Washington, DC 20010, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Teresa Romeo Luperchio
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Afrooz Razi
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kasper D Hansen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, USA
| | - Hans T Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland
- Landspitali University Hospital, 101 Reykjavík, Iceland
| |
Collapse
|
5
|
Zhang Z, Guo Y, Gao X, Wang X, Jin C. Role of histone methyltransferase KMT2D in BMSC osteogenesis via AKT signaling. Regen Ther 2024; 26:775-782. [PMID: 39309396 PMCID: PMC11414574 DOI: 10.1016/j.reth.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Understanding the precise mechanism of BMSC (bone marrow mesenchymal stem cell) osteogenesis is critical for metabolic bone diseases and bone reconstruction. The histone-lysine N-methyltransferase 2D (KMT2D) acts as an important methyltransferase related with congenital skeletal disorders, yet the function of KMT2D in osteogenesis was unclear. Here we found that KMT2D expression was decreased in BMSCs collected from ovariectomized mice. Moreover, during human BMSC differentiation under mineralization induction, the mRNA level of KMT2D was gradually elevated. After KMT2D knockdown, the in vitro osteogenic differentiation of BMSCs was inhibited, while the in vivo bone formation potential of BMSCs was attenuated. Further, in BMSCs, KMT2D knockdown reduced the level of phosphorylated protein kinase B (p-AKT). SC-79, a common activator of AKT signaling, reversed the suppressing influence of KMT2D knockdown on BMSCs differentiation towards osteoblast. These results indicate that the KMT2D-AKT pathway plays an essential role in the osteogenesis process of human BMSCs (hBMSCs), which might provide new avenues for the molecular medicine of bone diseases and regeneration.
Collapse
Affiliation(s)
- Zhichun Zhang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Yanyan Guo
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100101, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Xuejun Gao
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Chanyuan Jin
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100101, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| |
Collapse
|
6
|
Gao CW, Lin W, Riddle RC, Chopra S, Kim J, Boukas L, Hansen KD, Björnsson HT, Fahrner JA. Growth deficiency in a mouse model of Kabuki syndrome 2 bears mechanistic similarities to Kabuki syndrome 1. PLoS Genet 2024; 20:e1011310. [PMID: 38857303 PMCID: PMC11192384 DOI: 10.1371/journal.pgen.1011310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/21/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
Growth deficiency is a characteristic feature of both Kabuki syndrome 1 (KS1) and Kabuki syndrome 2 (KS2), Mendelian disorders of the epigenetic machinery with similar phenotypes but distinct genetic etiologies. We previously described skeletal growth deficiency in a mouse model of KS1 and further established that a Kmt2d-/- chondrocyte model of KS1 exhibits precocious differentiation. Here we characterized growth deficiency in a mouse model of KS2, Kdm6atm1d/+. We show that Kdm6atm1d/+ mice have decreased femur and tibia length compared to controls and exhibit abnormalities in cortical and trabecular bone structure. Kdm6atm1d/+ growth plates are also shorter, due to decreases in hypertrophic chondrocyte size and hypertrophic zone height. Given these disturbances in the growth plate, we generated Kdm6a-/- chondrogenic cell lines. Similar to our prior in vitro model of KS1, we found that Kdm6a-/- cells undergo premature, enhanced differentiation towards chondrocytes compared to Kdm6a+/+ controls. RNA-seq showed that Kdm6a-/- cells have a distinct transcriptomic profile that indicates dysregulation of cartilage development. Finally, we performed RNA-seq simultaneously on Kmt2d-/-, Kdm6a-/-, and control lines at Days 7 and 14 of differentiation. This revealed surprising resemblance in gene expression between Kmt2d-/- and Kdm6a-/- at both time points and indicates that the similarity in phenotype between KS1 and KS2 also exists at the transcriptional level.
Collapse
Affiliation(s)
- Christine W. Gao
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - WanYing Lin
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, United States of America
| | - Sheetal Chopra
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jiyoung Kim
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Leandros Boukas
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, United States of America
| | - Kasper D. Hansen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hans T. Björnsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspítali University Hospital, Reykjavík, Iceland
| | - Jill A. Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
7
|
Harris JR, Gao CW, Britton JF, Applegate CD, Bjornsson HT, Fahrner JA. Five years of experience in the Epigenetics and Chromatin Clinic: what have we learned and where do we go from here? Hum Genet 2024; 143:607-624. [PMID: 36952035 PMCID: PMC10034257 DOI: 10.1007/s00439-023-02537-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023]
Abstract
The multidisciplinary Epigenetics and Chromatin Clinic at Johns Hopkins provides comprehensive medical care for individuals with rare disorders that involve disrupted epigenetics. Initially centered on classical imprinting disorders, the focus shifted to the rapidly emerging group of genetic disorders resulting from pathogenic germline variants in epigenetic machinery genes. These are collectively called the Mendelian disorders of the epigenetic machinery (MDEMs), or more broadly, Chromatinopathies. In five years, 741 clinic visits have been completed for 432 individual patients, with 153 having confirmed epigenetic diagnoses. Of these, 115 individuals have one of 26 MDEMs with every single one exhibiting global developmental delay and/or intellectual disability. This supports prior observations that intellectual disability is the most common phenotypic feature of MDEMs. Additional common phenotypes in our clinic include growth abnormalities and neurodevelopmental issues, particularly hypotonia, attention-deficit/hyperactivity disorder (ADHD), and anxiety, with seizures and autism being less common. Overall, our patient population is representative of the broader group of MDEMs and includes mostly autosomal dominant disorders impacting writers more so than erasers, readers, and remodelers of chromatin marks. There is an increased representation of dual function components with a reader and an enzymatic domain. As expected, diagnoses were made mostly by sequencing but were aided in some cases by DNA methylation profiling. Our clinic has helped to facilitate the discovery of two new disorders, and our providers are actively developing and implementing novel therapeutic strategies for MDEMs. These data and our high follow-up rate of over 60% suggest that we are achieving our mission to diagnose, learn from, and provide optimal care for our patients with disrupted epigenetics.
Collapse
Affiliation(s)
- Jacqueline R Harris
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Christine W Gao
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacquelyn F Britton
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carolyn D Applegate
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hans T Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Shangguan H, Huang X, Lin J, Chen R. Knockdown of Kmt2d leads to growth impairment by activating the Akt/β-catenin signaling pathway. G3 (BETHESDA, MD.) 2024; 14:jkad298. [PMID: 38263533 PMCID: PMC10917512 DOI: 10.1093/g3journal/jkad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
The KMT2D variant-caused Kabuki syndrome (KS) is characterized by short stature as a prominent clinical characteristic. The initiation and progression of body growth are fundamentally influenced by chondrocyte proliferation. Uncertainty persists regarding the possibility that KMT2D deficiency affects growth by impairing chondrocyte proliferation. In this study, we used the CRISPR/Cas13d technique to knockdown kmt2d in zebrafish embryos and lentivirus to create a stable Kmt2d gene knockdown cell line in chondrocytes (ATDC5 cells). We also used CCK8 and flow cytometric studies, respectively, to determine proliferation and cell cycle state. The relative concentrations of phosphorylated Akt (ser473), phosphorylated β-catenin (ser552), and cyclin D1 proteins in chondrocytes and zebrafish embryos were determined by using western blots. In addition, Akt inhibition was used to rescue the phenotypes caused by kmt2d deficiency in chondrocytes, as well as a zebrafish model that was generated. The results showed that a knockdown of kmt2d significantly decreased body length and resulted in aberrant cartilage development in zebrafish embryos. Furthermore, the knockdown of Kmt2d in ATDC5 cells markedly increased proliferation and accelerated the G1/S transition. In addition, the knockdown of Kmt2d resulted in the activation of the Akt/β-catenin signaling pathway in ATDC5 cells. Finally, Akt inhibition could partly rescue body length and chondrocyte development in the zebrafish model. Our study demonstrated that KMT2D modulates bone growth conceivably via regulation of the Akt/β-catenin pathway.
Collapse
Affiliation(s)
- Huakun Shangguan
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Xiaozhen Huang
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Jinduan Lin
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Ruimin Chen
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| |
Collapse
|
9
|
Lui JC. Growth disorders caused by variants in epigenetic regulators: progress and prospects. Front Endocrinol (Lausanne) 2024; 15:1327378. [PMID: 38370361 PMCID: PMC10870149 DOI: 10.3389/fendo.2024.1327378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Epigenetic modifications play an important role in regulation of transcription and gene expression. The molecular machinery governing epigenetic modifications, also known as epigenetic regulators, include non-coding RNA, chromatin remodelers, and enzymes or proteins responsible for binding, reading, writing and erasing DNA and histone modifications. Recent advancement in human genetics and high throughput sequencing technology have allowed the identification of causative variants, many of which are epigenetic regulators, for a wide variety of childhood growth disorders that include skeletal dysplasias, idiopathic short stature, and generalized overgrowth syndromes. In this review, we highlight the connection between epigenetic modifications, genetic variants in epigenetic regulators and childhood growth disorders being established over the past decade, discuss their insights into skeletal biology, and the potential of epidrugs as a new type of therapeutic intervention.
Collapse
Affiliation(s)
- Julian C. Lui
- Section on Growth and Development, National Institute of Child Health and Human Development, Bethesda, MD, United States
| |
Collapse
|
10
|
Gao CW, Lin W, Riddle RC, Kushwaha P, Boukas L, Björnsson HT, Hansen KD, Fahrner JA. A mouse model of Weaver syndrome displays overgrowth and excess osteogenesis reversible with KDM6A/6B inhibition. JCI Insight 2024; 9:e173392. [PMID: 38015625 PMCID: PMC10906465 DOI: 10.1172/jci.insight.173392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Weaver syndrome is a Mendelian disorder of the epigenetic machinery (MDEM) caused by germline pathogenic variants in EZH2, which encodes the predominant H3K27 methyltransferase and key enzymatic component of Polycomb repressive complex 2 (PRC2). Weaver syndrome is characterized by striking overgrowth and advanced bone age, intellectual disability, and distinctive facies. We generated a mouse model for the most common Weaver syndrome missense variant, EZH2 p.R684C. Ezh2R684C/R684C mouse embryonic fibroblasts (MEFs) showed global depletion of H3K27me3. Ezh2R684C/+ mice had abnormal bone parameters, indicative of skeletal overgrowth, and Ezh2R684C/+ osteoblasts showed increased osteogenic activity. RNA-Seq comparing osteoblasts differentiated from Ezh2R684C/+, and Ezh2+/+ BM-mesenchymal stem cells (BM-MSCs) indicated collective dysregulation of the BMP pathway and osteoblast differentiation. Inhibition of the opposing H3K27 demethylases KDM6A and KDM6B substantially reversed the excessive osteogenesis in Ezh2R684C/+ cells both at the transcriptional and phenotypic levels. This supports both the ideas that writers and erasers of histone marks exist in a fine balance to maintain epigenome state and that epigenetic modulating agents have therapeutic potential for the treatment of MDEMs.
Collapse
Affiliation(s)
- Christine W. Gao
- Department of Genetic Medicine
- Department of Molecular Biology and Genetics, and
| | | | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| | - Priyanka Kushwaha
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leandros Boukas
- Department of Genetic Medicine
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
| | - Hans T. Björnsson
- Department of Genetic Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspítali University Hospital, Reykjavík, Iceland
| | - Kasper D. Hansen
- Department of Genetic Medicine
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jill A. Fahrner
- Department of Genetic Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Kalinousky AJ, Luperchio TR, Schrode KM, Harris JR, Zhang L, DeLeon VB, Fahrner JA, Lauer AM, Bjornsson HT. KMT2D Deficiency Causes Sensorineural Hearing Loss in Mice and Humans. Genes (Basel) 2023; 15:48. [PMID: 38254937 PMCID: PMC10815913 DOI: 10.3390/genes15010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Individuals with Kabuki syndrome type 1 (KS1) often have hearing loss recognized in middle childhood. Current clinical dogma suggests that this phenotype is caused by frequent infections due to the immune deficiency in KS1 and/or secondary to structural abnormalities of the ear. To clarify some aspects of hearing loss, we collected information on hearing status from 21 individuals with KS1 and found that individuals have both sensorineural and conductive hearing loss, with the average age of presentation being 7 years. Our data suggest that while ear infections and structural abnormalities contribute to the observed hearing loss, these factors do not explain all loss. Using a KS1 mouse model, we found hearing abnormalities from hearing onset, as indicated by auditory brainstem response measurements. In contrast to mouse and human data for CHARGE syndrome, a disorder possessing overlapping clinical features with KS and a well-known cause of hearing loss and structural inner ear abnormalities, there are no apparent structural abnormalities of the cochlea in KS1 mice. The KS1 mice also display diminished distortion product otoacoustic emission levels, which suggests outer hair cell dysfunction. Combining these findings, our data suggests that KMT2D dysfunction causes sensorineural hearing loss compounded with external factors, such as infection.
Collapse
Affiliation(s)
- Allison J. Kalinousky
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (A.J.K.); (T.R.L.); (J.R.H.); (L.Z.); (J.A.F.)
| | - Teresa R. Luperchio
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (A.J.K.); (T.R.L.); (J.R.H.); (L.Z.); (J.A.F.)
| | - Katrina M. Schrode
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (K.M.S.); (A.M.L.)
| | - Jacqueline R. Harris
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (A.J.K.); (T.R.L.); (J.R.H.); (L.Z.); (J.A.F.)
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Li Zhang
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (A.J.K.); (T.R.L.); (J.R.H.); (L.Z.); (J.A.F.)
| | - Valerie B. DeLeon
- Department of Anthropology, University of Florida, Gainesville, FL 32610, USA;
| | - Jill A. Fahrner
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (A.J.K.); (T.R.L.); (J.R.H.); (L.Z.); (J.A.F.)
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Amanda M. Lauer
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (K.M.S.); (A.M.L.)
| | - Hans T. Bjornsson
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (A.J.K.); (T.R.L.); (J.R.H.); (L.Z.); (J.A.F.)
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Landspitali University Hospital, 102 Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
12
|
Shpargel KB, Quickstad G. SETting up the genome: KMT2D and KDM6A genomic function in the Kabuki syndrome craniofacial developmental disorder. Birth Defects Res 2023; 115:1885-1898. [PMID: 37800171 PMCID: PMC11190966 DOI: 10.1002/bdr2.2253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Kabuki syndrome is a congenital developmental disorder that is characterized by distinctive facial gestalt and skeletal abnormalities. Although rare, the disorder shares clinical features with several related craniofacial syndromes that manifest from mutations in chromatin-modifying enzymes. Collectively, these clinical studies underscore the crucial, concerted functions of chromatin factors in shaping developmental genome structure and driving cellular transcriptional states. Kabuki syndrome predominantly results from mutations in KMT2D, a histone H3 lysine 4 methylase, or KDM6A, a histone H3 lysine 27 demethylase. AIMS In this review, we summarize the research efforts to model Kabuki syndrome in vivo to understand the cellular and molecular mechanisms that lead to the craniofacial and skeletal pathogenesis that defines the disorder. DISCUSSION As several studies have indicated the importance of KMT2D and KDM6A function through catalytic-independent mechanisms, we highlight noncanonical roles for these enzymes as recruitment centers for alternative chromatin and transcriptional machinery.
Collapse
Affiliation(s)
- Karl B. Shpargel
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Gabrielle Quickstad
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
13
|
Yi S, Zhang X, Yang Q, Huang J, Zhou X, Qian J, Pan P, Yi S, Zhang S, Zhang Q, Tang X, Huang L, Zhang Q, Qin Z, Luo J. Clinical and molecular analysis of Guangxi patients with Kabuki syndrome and KMT2D mutations. Heliyon 2023; 9:e20223. [PMID: 37810849 PMCID: PMC10550629 DOI: 10.1016/j.heliyon.2023.e20223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/10/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Kabuki syndrome (KS) is a multiple congenital anomaly syndrome that is characterized by postnatal growth deficiency, hypotonia, short stature, mild-to-moderate intellectual disability, skeletal abnormalities, persistence of fetal fingertip pads, and distinct facial appearance. It is mainly caused by pathogenic/likely pathogenic variants in the KMT2D or KDM6A genes. Here, we described the clinical features of nine sporadic KS patients with considerable phenotypic heterogeneity. In addition to intellectual disability and short stature, our patients presented with a high prevalence of motor retardation and recurrent otitis media. We recommended that KS should be strongly considered in patients with motor delay, short stature, intellectual disability, language disorder and facial deformities. Nine KMT2D variants, four of which were novel, were identified by whole-exome sequencing. The variants included five nonsense variants, two frameshift variants, one missense variant, and one non-canonical splice site variant. In addition, we reviewed the mutation types of the pathogenic KMT2D variants in the ClinVar database. We also indicated that effective mRNA analysis, using biological materials from patients, is helpful in classifying the pathogenicity of atypical splice site variants. Pedigree segregation analysis may also provide valuable information for pathogenicity classification of novel missense variants. These findings extended the mutation spectrum of KMT2D and provided new insights into the understanding of genotype-phenotype correlations, which are helpful for accurate genetic counseling and treatment optimization.
Collapse
Affiliation(s)
- Sheng Yi
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaofei Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Pediatrics Department, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qi Yang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingjing Huang
- Department of Surgery, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xunzhao Zhou
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jiale Qian
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Pediatrics Department, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Pingshan Pan
- Department of Obstetrics, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Yi
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shujie Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xianglian Tang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Limei Huang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qinle Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zailong Qin
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
14
|
Deng Z, Rong S, Gan L, Wang F, Bao L, Cai F, Liao Z, Jin Y, Feng S, Feng Z, Wei Y, Chen R, Jin Y, Zhou Y, Zheng X, Huang L, Zhao L. Temporal transcriptome features identify early skeletal commitment during human epiphysis development at single-cell resolution. iScience 2023; 26:107200. [PMID: 37554462 PMCID: PMC10405011 DOI: 10.1016/j.isci.2023.107200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/18/2023] [Accepted: 06/20/2023] [Indexed: 08/10/2023] Open
Abstract
Human epiphyseal development has been mainly investigated through radiological and histological approaches, uncovering few details of cellular temporal genetic alternations. Using single-cell RNA sequencing, we investigated the dynamic transcriptome changes during post-conception weeks (PCWs) 15-25 of human distal femoral epiphysis cells. We find epiphyseal cells contain multiple subtypes distinguished by specific markers, gene signatures, Gene Ontology (GO) enrichment analysis, and gene set variation analysis (GSVA). We identify the populations committed to cartilage or ossification at this time, although the secondary ossification centers (SOCs) have not formed. We describe the temporal alternation in transcriptional expression utilizing trajectories, transcriptional regulatory networks, and intercellular communication analyses. Moreover, we find the emergence of the ossification-committed population is correlated with the COL2A1-(ITGA2/11+ITGB1) signaling. NOTCH signaling may contribute to the formation of cartilage canals and ossification via NOTCH signaling. Our findings will advance the understanding of single-cell genetic changes underlying fetal epiphysis development.
Collapse
Affiliation(s)
- Zhonghao Deng
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shengwei Rong
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lu Gan
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fuhua Wang
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Liangxiao Bao
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fang Cai
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital Taihe Branch, Guangzhou, Guangdong 510515, China
| | - Zheting Liao
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yu Jin
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shuhao Feng
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zihang Feng
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yiran Wei
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ruge Chen
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yangchen Jin
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yanli Zhou
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong 510515, China
| | - Xiaoyong Zheng
- Orthopaedic Department, The 8th medical center of Chinese PLA General Hospital, Beijing 100091, China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong 510515, China
| | - Liang Zhao
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Orthopaedic Surgery, Shunde First People Hospital, Foshan, Guangdong 528300, China
| |
Collapse
|
15
|
Boukas L, Luperchio TR, Razi A, Hansen KD, Bjornsson HT. Neuron-specific chromatin disruption at CpG islands and aging-related regions in Kabuki syndrome mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551456. [PMID: 37577516 PMCID: PMC10418197 DOI: 10.1101/2023.08.01.551456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Many Mendelian developmental disorders caused by coding variants in epigenetic regulators have now been discovered. Epigenetic regulators are broadly expressed, and each of these disorders typically exhibits phenotypic manifestations from many different organ systems. An open question is whether the chromatin disruption - the root of the pathogenesis - is similar in the different disease-relevant cell types. This is possible in principle, since all these cell-types are subject to effects from the same causative gene, that has the same kind of function (e.g. methylates histones) and is disrupted by the same germline variant. We focus on mouse models for Kabuki syndrome types 1 and 2, and find that the chromatin accessibility abnormalities in neurons are mostly distinct from those in B or T cells. This is not because the neuronal abnormalities occur at regulatory elements that are only active in neurons. Neurons, but not B or T cells, show preferential chromatin disruption at CpG islands and at regulatory elements linked to aging. A sensitive analysis reveals that the regions disrupted in B/T cells do exhibit chromatin accessibility changes in neurons, but these are very subtle and of uncertain functional significance. Finally, we are able to identify a small set of regulatory elements disrupted in all three cell types. Our findings reveal the cellular-context-specific effect of variants in epigenetic regulators, and suggest that blood-derived "episignatures" may not be well-suited for understanding the mechanistic basis of neurodevelopment in Mendelian disorders of the epigenetic machinery.
Collapse
Affiliation(s)
- Leandros Boukas
- Department of Pediatrics, Children’s National Hospital
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
| | | | - Afrooz Razi
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
| | - Kasper D. Hansen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
- Department of Biomedical Engineering, Johns Hopkins School of Medicine
| | - Hans T. Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine
- Faculty of Medicine, University of Iceland
- Landspitali University Hospital
| |
Collapse
|
16
|
Gao CW, Lin W, Riddle RC, Kushwaha P, Boukas L, Björnsson HT, Hansen KD, Fahrner JA. Novel mouse model of Weaver syndrome displays overgrowth and excess osteogenesis reversible with KDM6A/6B inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546270. [PMID: 37425751 PMCID: PMC10327066 DOI: 10.1101/2023.06.23.546270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Weaver syndrome is a Mendelian disorder of the epigenetic machinery (MDEM) caused by germline pathogenic variants in EZH2, which encodes the predominant H3K27 methyltransferase and key enzymatic component of Polycomb repressive complex 2 (PRC2). Weaver syndrome is characterized by striking overgrowth and advanced bone age, intellectual disability, and distinctive facies. We generated a mouse model for the most common Weaver syndrome missense variant, EZH2 p.R684C. Ezh2R684C/R684C mouse embryonic fibroblasts (MEFs) showed global depletion of H3K27me3. Ezh2R684C/+ mice had abnormal bone parameters indicative of skeletal overgrowth, and Ezh2R684C/+ osteoblasts showed increased osteogenic activity. RNA-seq comparing osteoblasts differentiated from Ezh2R684C/+ and Ezh2+/+ bone marrow mesenchymal stem cells (BM-MSCs) indicated collective dysregulation of the BMP pathway and osteoblast differentiation. Inhibition of the opposing H3K27 demethylases Kdm6a/6b substantially reversed the excessive osteogenesis in Ezh2R684C/+ cells both at the transcriptional and phenotypic levels. This supports both the ideas that writers and erasers of histone marks exist in a fine balance to maintain epigenome state, and that epigenetic modulating agents have therapeutic potential for the treatment of MDEMs.
Collapse
Affiliation(s)
- Christine W Gao
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - WanYing Lin
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, MD
| | - Priyanka Kushwaha
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Leandros Boukas
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD
| | - Hans T Björnsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspítali University Hospital, Reykjavík, Iceland
| | - Kasper D Hansen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
17
|
Identification of unique DNA methylation sites in Kabuki syndrome using whole genome bisulfite sequencing and targeted hybridization capture followed by enzymatic methylation sequencing. J Hum Genet 2022; 67:711-720. [PMID: 36167771 DOI: 10.1038/s10038-022-01083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Kabuki syndrome (KS) is a congenital malformation syndrome caused by mutations in the KMT2D and KDM6A genes that encode histone modification enzymes. Although KS is considered a single gene disorder, its symptoms vary widely. Recently, disease-specific DNA methylation patterns, or episignatures, have been recognized and used as a diagnostic tool for KS. Because of various crosstalk mechanisms between histone modifications and DNA methylation, DNA methylation analysis may have high potential for investigations into the pathogenesis of KS. RESULTS In this study, we investigated altered CpG-methylation sites that were specific to KS to find important genes associated with the various phenotypes or pathogenesis of KS. Whole genome bisulfite sequencing (WGBS) was performed to select target CpG islands, and enzymatic conversion technology was applied after hybridization capture to confirm KS-specific episignatures of 130 selected differently methylated target regions (DMTRs) in DNA samples from the 65 participants, 31 patients with KS and 34 unaffected individuals, in this study. We identified 26 candidate genes in 22 DMTRs that may be associated with KS. Our results indicate that disease-specific methylation sites can be identified from a small number of WGBS samples, and hybridization capture followed by enzymatic methylation sequencing can simultaneously test the sites. CONCLUSIONS Although DNA methylation can be tissue-specific, our results suggest that methylation profiling of DNA extracted from peripheral blood may be a powerful approach to study the pathogenesis of diseases.
Collapse
|
18
|
Enkhmandakh B, Robson P, Joshi P, Vijaykumar A, Shin DG, Mina M, Bayarsaihan D. Single-Cell Transcriptome Analysis Defines Expression of Kabuki Syndrome-Associated KMT2D Targets and Interacting Partners. Stem Cells Int 2022; 2022:4969441. [PMID: 35992033 PMCID: PMC9391158 DOI: 10.1155/2022/4969441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022] Open
Abstract
Objectives. Kabuki syndrome (KS) is a rare genetic disorder characterized by developmental delay, retarded growth, and cardiac, gastrointestinal, neurocognitive, renal, craniofacial, dental, and skeletal defects. KS is caused by mutations in the genes encoding histone H3 lysine 4 methyltransferase (KMT2D) and histone H3 lysine 27 demethylase (KDM6A), which are core components of the complex of proteins associated with histone H3 lysine 4 methyltransferase SET1 (SET1/COMPASS). Using single-cell RNA data, we examined the expression profiles of Kmt2d and Kdm6a in the mouse dental pulp. In the incisor pulp, Kmt2d and Kdm6a colocalize with other genes of the SET1/COMPASS complex comprised of the WD-repeat protein 5 gene (Wdr5), the retinoblastoma-binding protein 5 gene (Rbbp5), absent, small, and homeotic 2-like protein-encoding gene (Ash2l), nuclear receptor cofactor 6 gene (Ncoa6), and Pax-interacting protein 1 gene (Ptip1). In addition, we found that Kmt2d and Kdm6a coexpress with the downstream target genes of the Wingless and Integrated (WNT) and sonic hedgehog signaling pathways in mesenchymal stem/stromal cells (MSCs) at different stages of osteogenic differentiation. Taken together, our results suggest an essential role of KMT2D and KDK6A in directing lineage-specific gene expression during differentiation of MSCs.
Collapse
Affiliation(s)
- Badam Enkhmandakh
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Pujan Joshi
- Computer Science and Engineering Department, University of Connecticut, 371 Fairfield Way, Unit 4155, Storrs, CT 06269, USA
| | - Anushree Vijaykumar
- Department of Craniofacial Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Dong-Guk Shin
- Computer Science and Engineering Department, University of Connecticut, 371 Fairfield Way, Unit 4155, Storrs, CT 06269, USA
| | - Mina Mina
- Department of Craniofacial Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Dashzeveg Bayarsaihan
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
- Institute for System Genomics, University of Connecticut, Engineering Science Building Rm. 305, 67 North Eagleville Road, Storrs, CT 06269, USA
| |
Collapse
|
19
|
Are Copy Number Variations within the FecB Gene Significantly Associated with Morphometric Traits in Goats? Animals (Basel) 2022; 12:ani12121547. [PMID: 35739883 PMCID: PMC9219420 DOI: 10.3390/ani12121547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 12/02/2022] Open
Abstract
The Booroola fecundity (FecB) gene is a major fertility-related gene first identified in Booroola sheep. Numerous studies have investigated whether the FecB gene is a major fecundity gene in goats or whether there are other genes that play a critical role in goat fertility. Nevertheless, little attention has been paid to the role of the FecB gene in the body morphometric traits of goats, despite the positive relationship discerned between litter size and growth. We identified five copy number variations (CNVs) within the FecB gene in 641 goats, including 318 Shaanbei white cashmere (SBWC) goats, 203 Guizhou Heima (GZHM) goats, and 120 Nubian goats, which exhibited different distributions among these populations. Our results revealed that these five CNVs were significantly associated with goat morphometric traits (p < 0.05). The normal type of CNV3 was the dominant type and displayed superior phenotypes in both litter size and morphometric traits, making it an effective marker for goat breeding. Consequently, LD blocks in the region of 10 Mb upstream and downstream from FecB and potential transcription factors (TFs) that could bind with the CNVs were analyzed via bioinformatics. Although no significant LD block was detected, our results illustrated that these CNVs could bind to growth-related TFs and indirectly affect the growth development of the goats. We identified potential markers to promote litter size and growth, and we offer a theoretical foundation for further breeding work.
Collapse
|
20
|
Ma Q, Song C, Yin B, Shi Y, Ye L. The role of Trithorax family regulating osteogenic and Chondrogenic differentiation in mesenchymal stem cells. Cell Prolif 2022; 55:e13233. [PMID: 35481717 PMCID: PMC9136489 DOI: 10.1111/cpr.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) hold great promise and clinical efficacy in bone/cartilage regeneration. With a deeper understanding of stem cell biology over the past decade, epigenetics stands out as one of the most promising ways to control MSCs differentiation. Trithorax group (TrxG) proteins, including the COMPASS family, ASH1L, CBP/p300 as histone modifying factors, and the SWI/SNF complexes as chromatin remodelers, play an important role in gene expression regulation during the process of stem cell differentiation. This review summarises the components and functions of TrxG complexes. We provide an overview of the regulation mechanisms of TrxG in MSCs osteogenic and chondrogenic differentiation, and discuss the prospects of epigenetic regulation mediated by TrxG in bone and cartilage regeneration.
Collapse
Affiliation(s)
- Qingge Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenghao Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bei Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Wright A, Hall A, Daly T, Fontelonga T, Potter S, Schafer C, Lindsley A, Hung C, Bodamer O, Gussoni E. Lysine methyltransferase 2D regulates muscle fiber size and muscle cell differentiation. FASEB J 2021; 35:e21955. [PMID: 34613626 PMCID: PMC8500524 DOI: 10.1096/fj.202100823r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Kabuki syndrome (KS) is a rare genetic disorder caused primarily by mutations in the histone modifier genes KMT2D and KDM6A. The genes have broad temporal and spatial expression in many organs, resulting in complex phenotypes observed in KS patients. Hypotonia is one of the clinical presentations associated with KS, yet detailed examination of skeletal muscle samples from KS patients has not been reported. We studied the consequences of loss of KMT2D function in both mouse and human muscles. In mice, heterozygous loss of Kmt2d resulted in reduced neuromuscular junction (NMJ) perimeter, decreased muscle cell differentiation in vitro and impaired myofiber regeneration in vivo. Muscle samples from KS patients of different ages showed presence of increased fibrotic tissue interspersed between myofiber fascicles, which was not seen in mouse muscles. Importantly, when Kmt2d‐deficient muscle stem cells were transplanted in vivo in a physiologic non‐Kabuki environment, their differentiation potential is restored to levels undistinguishable from control cells. Thus, the epigenetic changes due to loss of function of KMT2D appear reversible through a change in milieu, opening a potential therapeutic avenue.
Collapse
Affiliation(s)
- Alec Wright
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Arielle Hall
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tara Daly
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Roya Kabuki Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tatiana Fontelonga
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sarah Potter
- Division of Allergy and Immunology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Caitlin Schafer
- Division of Allergy and Immunology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Andrew Lindsley
- Division of Allergy and Immunology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA.,Amgen, Thousand Oaks, California, USA
| | - Christina Hung
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Roya Kabuki Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Olaf Bodamer
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Roya Kabuki Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Genetics and Genomics, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Roya Kabuki Program, Boston Children's Hospital, Boston, Massachusetts, USA.,The Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Luperchio TR, Boukas L, Zhang L, Pilarowski G, Jiang J, Kalinousky A, Hansen KD, Bjornsson HT. Leveraging the Mendelian disorders of the epigenetic machinery to systematically map functional epigenetic variation. eLife 2021; 10:65884. [PMID: 34463256 PMCID: PMC8443249 DOI: 10.7554/elife.65884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Although each Mendelian Disorder of the Epigenetic Machinery (MDEM) has a different causative gene, there are shared disease manifestations. We hypothesize that this phenotypic convergence is a consequence of shared epigenetic alterations. To identify such shared alterations, we interrogate chromatin (ATAC-seq) and expression (RNA-seq) states in B cells from three MDEM mouse models (Kabuki [KS] type 1 and 2 and Rubinstein-Taybi type 1 [RT1] syndromes). We develop a new approach for the overlap analysis and find extensive overlap primarily localized in gene promoters. We show that disruption of chromatin accessibility at promoters often disrupts downstream gene expression, and identify 587 loci and 264 genes with shared disruption across all three MDEMs. Subtle expression alterations of multiple, IgA-relevant genes, collectively contribute to IgA deficiency in KS1 and RT1, but not in KS2. We propose that the joint study of MDEMs offers a principled approach for systematically mapping functional epigenetic variation in mammals.
Collapse
Affiliation(s)
- Teresa Romeo Luperchio
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Leandros Boukas
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Li Zhang
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Genay Pilarowski
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jenny Jiang
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Allison Kalinousky
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Kasper D Hansen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Hans T Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
23
|
Wan C, Zhang F, Yao H, Li H, Tuan RS. Histone Modifications and Chondrocyte Fate: Regulation and Therapeutic Implications. Front Cell Dev Biol 2021; 9:626708. [PMID: 33937229 PMCID: PMC8085601 DOI: 10.3389/fcell.2021.626708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
The involvement of histone modifications in cartilage development, pathology and regeneration is becoming increasingly evident. Understanding the molecular mechanisms and consequences of histone modification enzymes in cartilage development, homeostasis and pathology provides fundamental and precise perspectives to interpret the biological behavior of chondrocytes during skeletal development and the pathogenesis of various cartilage related diseases. Candidate molecules or drugs that target histone modifying proteins have shown promising therapeutic potential in the treatment of cartilage lesions associated with joint degeneration and other chondropathies. In this review, we summarized the advances in the understanding of histone modifications in the regulation of chondrocyte fate, cartilage development and pathology, particularly the molecular writers, erasers and readers involved. In addition, we have highlighted recent studies on the use of small molecules and drugs to manipulate histone signals to regulate chondrocyte functions or treat cartilage lesions, in particular osteoarthritis (OA), and discussed their potential therapeutic benefits and limitations in preventing articular cartilage degeneration or promoting its repair or regeneration.
Collapse
Affiliation(s)
- Chao Wan
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fengjie Zhang
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hanyu Yao
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Rocky S Tuan
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
24
|
Sheppard SE, Campbell IM, Harr MH, Gold N, Li D, Bjornsson HT, Cohen JS, Fahrner JA, Fatemi A, Harris JR, Nowak C, Stevens CA, Grand K, Au M, Graham JM, Sanchez-Lara PA, Campo MD, Jones MC, Abdul-Rahman O, Alkuraya FS, Bassetti JA, Bergstrom K, Bhoj E, Dugan S, Kaplan JD, Derar N, Gripp KW, Hauser N, Innes AM, Keena B, Kodra N, Miller R, Nelson B, Nowaczyk MJ, Rahbeeni Z, Ben-Shachar S, Shieh JT, Slavotinek A, Sobering AK, Abbott MA, Allain DC, Amlie-Wolf L, Au PYB, Bedoukian E, Beek G, Barry J, Berg J, Bernstein JA, Cytrynbaum C, Chung BHY, Donoghue S, Dorrani N, Eaton A, Flores-Daboub JA, Dubbs H, Felix CA, Fong CT, Fung JLF, Gangaram B, Goldstein A, Greenberg R, Ha TK, Hersh J, Izumi K, Kallish S, Kravets E, Kwok PY, Jobling RK, Knight Johnson AE, Kushner J, Lee BH, Levin B, Lindstrom K, Manickam K, Mardach R, McCormick E, McLeod DR, Mentch FD, Minks K, Muraresku C, Nelson SF, Porazzi P, Pichurin PN, Powell-Hamilton NN, Powis Z, Ritter A, Rogers C, Rohena L, Ronspies C, Schroeder A, Stark Z, Starr L, Stoler J, Suwannarat P, Velinov M, Weksberg R, Wilnai Y, Zadeh N, Zand DJ, Falk MJ, et alSheppard SE, Campbell IM, Harr MH, Gold N, Li D, Bjornsson HT, Cohen JS, Fahrner JA, Fatemi A, Harris JR, Nowak C, Stevens CA, Grand K, Au M, Graham JM, Sanchez-Lara PA, Campo MD, Jones MC, Abdul-Rahman O, Alkuraya FS, Bassetti JA, Bergstrom K, Bhoj E, Dugan S, Kaplan JD, Derar N, Gripp KW, Hauser N, Innes AM, Keena B, Kodra N, Miller R, Nelson B, Nowaczyk MJ, Rahbeeni Z, Ben-Shachar S, Shieh JT, Slavotinek A, Sobering AK, Abbott MA, Allain DC, Amlie-Wolf L, Au PYB, Bedoukian E, Beek G, Barry J, Berg J, Bernstein JA, Cytrynbaum C, Chung BHY, Donoghue S, Dorrani N, Eaton A, Flores-Daboub JA, Dubbs H, Felix CA, Fong CT, Fung JLF, Gangaram B, Goldstein A, Greenberg R, Ha TK, Hersh J, Izumi K, Kallish S, Kravets E, Kwok PY, Jobling RK, Knight Johnson AE, Kushner J, Lee BH, Levin B, Lindstrom K, Manickam K, Mardach R, McCormick E, McLeod DR, Mentch FD, Minks K, Muraresku C, Nelson SF, Porazzi P, Pichurin PN, Powell-Hamilton NN, Powis Z, Ritter A, Rogers C, Rohena L, Ronspies C, Schroeder A, Stark Z, Starr L, Stoler J, Suwannarat P, Velinov M, Weksberg R, Wilnai Y, Zadeh N, Zand DJ, Falk MJ, Hakonarson H, Zackai EH, Quintero-Rivera F. Expanding the genotypic and phenotypic spectrum in a diverse cohort of 104 individuals with Wiedemann-Steiner syndrome. Am J Med Genet A 2021; 185:1649-1665. [PMID: 33783954 DOI: 10.1002/ajmg.a.62124] [Show More Authors] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/19/2022]
Abstract
Wiedemann-Steiner syndrome (WSS) is an autosomal dominant disorder caused by monoallelic variants in KMT2A and characterized by intellectual disability and hypertrichosis. We performed a retrospective, multicenter, observational study of 104 individuals with WSS from five continents to characterize the clinical and molecular spectrum of WSS in diverse populations, to identify physical features that may be more prevalent in White versus Black Indigenous People of Color individuals, to delineate genotype-phenotype correlations, to define developmental milestones, to describe the syndrome through adulthood, and to examine clinicians' differential diagnoses. Sixty-nine of the 82 variants (84%) observed in the study were not previously reported in the literature. Common clinical features identified in the cohort included: developmental delay or intellectual disability (97%), constipation (63.8%), failure to thrive (67.7%), feeding difficulties (66.3%), hypertrichosis cubiti (57%), short stature (57.8%), and vertebral anomalies (46.9%). The median ages at walking and first words were 20 months and 18 months, respectively. Hypotonia was associated with loss of function (LoF) variants, and seizures were associated with non-LoF variants. This study identifies genotype-phenotype correlations as well as race-facial feature associations in an ethnically diverse cohort, and accurately defines developmental trajectories, medical comorbidities, and long-term outcomes in individuals with WSS.
Collapse
Affiliation(s)
- Sarah E Sheppard
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ian M Campbell
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Margaret H Harr
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nina Gold
- Mass General Hospital for Children, Division of Medical Genetics and Metabolism and Harvard Medical School, Boston, Massachusetts, USA
| | - Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hans T Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Landspitali University Hospital, Iceland
| | - Julie S Cohen
- Division of Neurogenetics and Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ali Fatemi
- Division of Neurogenetics and Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jacqueline R Harris
- Division of Neurogenetics and Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Catherine Nowak
- Division of Genetics and Genomics, Boston Children's Hospital, The Feingold Center for Children, Boston, Massachusetts, USA
| | - Cathy A Stevens
- Department of Pediatrics, University of Tennessee College of Medicine, Chattanooga, Tennessee, USA
| | - Katheryn Grand
- Division of Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, and David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Margaret Au
- Division of Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, and David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - John M Graham
- Division of Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, and David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Pedro A Sanchez-Lara
- Division of Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, and David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Miguel Del Campo
- Division of Medical Genetics, Department of Pediatrics, University of California, and Rady Children's Hospital, San Diego, California, USA
| | - Marilyn C Jones
- Division of Medical Genetics, Department of Pediatrics, University of California, and Rady Children's Hospital, San Diego, California, USA
| | - Omar Abdul-Rahman
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Jennifer A Bassetti
- Division of Medical Genetics, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Katherine Bergstrom
- Division of Medical Genetics, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Elizabeth Bhoj
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sarah Dugan
- Division of Medical Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Julie D Kaplan
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Nada Derar
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Karen W Gripp
- Division of Medical Genetics, Alfred I duPont Hospital for Children, Wilmington, Delaware, USA
| | - Natalie Hauser
- Division of Medical Genomics, Inova Translational Medicine Institute, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - A Micheil Innes
- Department of Medical Genetics, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Beth Keena
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Neslida Kodra
- Division of Medical Genomics, Inova Translational Medicine Institute, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Rebecca Miller
- Division of Medical Genomics, Inova Translational Medicine Institute, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Beverly Nelson
- Department of Clinical Skills, St. George's University, True Blue, Grenada
| | | | - Zuhair Rahbeeni
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Shay Ben-Shachar
- Genetic Institute, Tel-Aviv Medical Center, affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joseph T Shieh
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Anne Slavotinek
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Andrew K Sobering
- Department of Biochemistry, St. George's University, True Blue, Grenada
| | - Mary-Alice Abbott
- Medical Genetics, Department of Pediatrics, University of Massachusetts Medical School - Baystate, Springfield, Massachusetts, USA
| | - Dawn C Allain
- Division of Human Genetics, Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Louise Amlie-Wolf
- Division of Medical Genetics, Alfred I duPont Hospital for Children, Wilmington, Delaware, USA
| | - Ping Yee Billie Au
- Department of Medical Genetics, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Emma Bedoukian
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Geoffrey Beek
- Children's Hospital of Minnesota, Minneapolis, Minnesota, USA
| | - James Barry
- Division of Medical Genetics, Department of Pediatrics, San Antonio Military Medical Center, San Antonio, Texas, USA.,Department of Pediatrics, Long School of Medicine-UT Health San Antonio, San Antonio, Texas, USA
| | - Janet Berg
- Division of Medical Genetics, Department of Pediatrics, San Antonio Military Medical Center, San Antonio, Texas, USA.,Department of Pediatrics, Long School of Medicine-UT Health San Antonio, San Antonio, Texas, USA
| | - Jonathan A Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Cheryl Cytrynbaum
- Division of Clinical and Metabolic Genetics and Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Brian Hon-Yin Chung
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - Sarah Donoghue
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Naghmeh Dorrani
- Department of Pediatrics, University of California Los Angeles, California, Los Angeles, USA.,UCLA Clinical Genomics Center, University of California Los Angeles, California, Los Angeles, USA
| | - Alison Eaton
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | | | - Holly Dubbs
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Carolyn A Felix
- Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Chin-To Fong
- Department of Pediatrics, Division of Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jasmine Lee Fong Fung
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - Balram Gangaram
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Amy Goldstein
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rotem Greenberg
- Genetic Institute, Tel-Aviv Medical Center, affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Thoa K Ha
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Joseph Hersh
- Weisskopf Child Evaluation Center, Department of Pediatrics, University of Louisville, Louisville, Kentucky, USA
| | - Kosuke Izumi
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Staci Kallish
- Division of Translational Medicine and Human Genetics Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elijah Kravets
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Pui-Yan Kwok
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Rebekah K Jobling
- Division of Clinical and Metabolic Genetics and Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | - Jessica Kushner
- Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - Bo Hoon Lee
- Department of Neurology, Division of Child Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Brooke Levin
- MD Anderson Cancer Center at Cooper, Cooper University Health Care, Camden, New Jersey, USA
| | | | - Kandamurugu Manickam
- Division of Human Genetics, Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Rebecca Mardach
- Division of Medical Genetics, Department of Pediatrics, University of California, and Rady Children's Hospital, San Diego, California, USA
| | - Elizabeth McCormick
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - D Ross McLeod
- Department of Medical Genetics, University of Calgary, Calgary, Canada
| | - Frank D Mentch
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kelly Minks
- Department of Neurology, Division of Child Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Colleen Muraresku
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Stanley F Nelson
- UCLA Clinical Genomics Center, University of California Los Angeles, California, Los Angeles, USA.,Department of Human Genetics, Center for Duchenne Muscular Dystrophy University of California Los Angeles, California, Los Angeles, USA
| | - Patrizia Porazzi
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Pavel N Pichurin
- Clinical Genomics Center, University of California Los Angeles, Los Angeles, California, USA
| | - Nina N Powell-Hamilton
- Division of Medical Genetics, Alfred I duPont Hospital for Children, Wilmington, Delaware, USA
| | - Zoe Powis
- Quest Diagnostics Kalamzoo, Kalamzoo, Michigan, USA
| | - Alyssa Ritter
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Caleb Rogers
- Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - Luis Rohena
- Division of Medical Genetics, Department of Pediatrics, San Antonio Military Medical Center, San Antonio, Texas, USA.,Department of Pediatrics, Long School of Medicine-UT Health San Antonio, San Antonio, Texas, USA
| | - Carey Ronspies
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Audrey Schroeder
- Department of Pediatrics, Division of Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Lois Starr
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Joan Stoler
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Pim Suwannarat
- Mid-Atlantic Permanente Medical Group, Rockville, Maryland, USA
| | - Milen Velinov
- NYS Institute for Basic Research in developmental Disabilities, Staten Island, New York, USA
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics and Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Yael Wilnai
- Genetic Institute, Sourasky Medical Center, Te-Aviv, Tel Aviv, Israel
| | - Neda Zadeh
- Genetics Center and CHOC Children's Hospital, Orange, California, USA
| | - Dina J Zand
- Rare Disease Institute, Children's National Medical Center, Washington, District of Columbia, USA
| | - Marni J Falk
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Elaine H Zackai
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Fabiola Quintero-Rivera
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR.,Department of Pathology and Laboratory Medicine, University of California Los Angeles, California, Los Angeles, USA
| |
Collapse
|
25
|
Boniel S, Szymańska K, Śmigiel R, Szczałuba K. Kabuki Syndrome-Clinical Review with Molecular Aspects. Genes (Basel) 2021; 12:468. [PMID: 33805950 PMCID: PMC8064399 DOI: 10.3390/genes12040468] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Kabuki syndrome (KS) is a rare developmental disorder principally comprised of developmental delay, hypotonia and a clearly defined dysmorphism: elongation of the structures surrounding the eyes, a shortened and depressed nose, thinning of the upper lip and thickening of the lower lip, large and prominent ears, hypertrichosis and scoliosis. Other characteristics include poor physical growth, cardiac, gastrointestinal and renal anomalies as well as variable behavioral issues, including autistic features. De novo or inherited pathogenic/likely pathogenic variants in the KMT2D gene are the most common cause of KS and account for up to 75% of patients. Variants in KDM6A cause up to 5% of cases (X-linked dominant inheritance), while the etiology of about 20% of cases remains unknown. Current KS diagnostic criteria include hypotonia during infancy, developmental delay and/or intellectual disability, typical dysmorphism and confirmed pathogenic/likely pathogenic variant in KMT2D or KDM6A. Care for KS patients includes the control of physical and psychomotor development during childhood, rehabilitation and multi-specialist care. This paper reviews the current clinical knowledge, provides molecular and scientific links and sheds light on the treatment of Kabuki syndrome individuals.
Collapse
Affiliation(s)
- Snir Boniel
- Department of Medical Genetics, Medical University, Pawinskiego 3c, 02-106 Warsaw, Poland;
| | - Krystyna Szymańska
- Mossakowski Medical Research Center, Department of Experimental and Clinical Neuropathology, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Robert Śmigiel
- Department of Paediatrics, Division of Propaedeutic of Paediatrics and Rare Disorders, Medical University, 51-618 Wroclaw, Poland;
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University, Pawinskiego 3c, 02-106 Warsaw, Poland;
| |
Collapse
|
26
|
Shpargel KB, Mangini CL, Xie G, Ge K, Magnuson T. The KMT2D Kabuki syndrome histone methylase controls neural crest cell differentiation and facial morphology. Development 2020; 147:dev.187997. [PMID: 32541010 DOI: 10.1242/dev.187997] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022]
Abstract
Kabuki syndrome (KS) is a congenital craniofacial disorder resulting from mutations in the KMT2D histone methylase (KS1) or the UTX histone demethylase (KS2). With small cohorts of KS2 patients, it is not clear whether differences exist in clinical manifestations relative to KS1. We mutated KMT2D in neural crest cells (NCCs) to study cellular and molecular functions in craniofacial development with respect to UTX. Similar to UTX, KMT2D NCC knockout mice demonstrate hypoplasia with reductions in frontonasal bone lengths. We have traced the onset of KMT2D and UTX mutant NCC frontal dysfunction to a stage of altered osteochondral progenitor differentiation. KMT2D NCC loss-of-function does exhibit unique phenotypes distinct from UTX mutation, including fully penetrant cleft palate, mandible hypoplasia and deficits in cranial base ossification. KMT2D mutant NCCs lead to defective secondary palatal shelf elevation with reduced expression of extracellular matrix components. KMT2D mutant chondrocytes in the cranial base fail to properly differentiate, leading to defective endochondral ossification. We conclude that KMT2D is required for appropriate cranial NCC differentiation and KMT2D-specific phenotypes may underlie differences between Kabuki syndrome subtypes.
Collapse
Affiliation(s)
- Karl B Shpargel
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Cassidy L Mangini
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Guojia Xie
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Terry Magnuson
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| |
Collapse
|
27
|
Fahrner JA, Bjornsson HT. Mendelian disorders of the epigenetic machinery: postnatal malleability and therapeutic prospects. Hum Mol Genet 2020; 28:R254-R264. [PMID: 31595951 DOI: 10.1093/hmg/ddz174] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
The epigenetic machinery in conjunction with the transcriptional machinery is responsible for maintaining genome-wide chromatin states and dynamically regulating gene expression. Mendelian disorders of the epigenetic machinery (MDEMs) are genetic disorders resulting from mutations in components of the epigenetic apparatus. Though individually rare, MDEMs have emerged as a collectively common etiology for intellectual disability (ID) and growth disruption. Studies in model organisms and humans have demonstrated dosage sensitivity of this gene group with haploinsufficiency as a predominant disease mechanism. The epigenetic machinery consists of three enzymatic components (writers, erasers and chromatin remodelers) as well as one non-enzymatic group (readers). A tally of the entire census of such factors revealed that although multiple enzymatic activities never coexist within a single component, individual enzymatic activities often coexist with a reader domain. This group of disorders disrupts both the chromatin and transcription states of target genes downstream of the given component but also DNA methylation on a global scale. Elucidation of these global epigenetic changes may inform our understanding of disease pathogenesis and have diagnostic utility. Moreover, many therapies targeting epigenetic marks already exist, and some have proven successful in treating cancer. This, along with the recent observation that neurological dysfunction in these disorders may in fact be treatable in postnatal life, suggests that the scientific community should prioritize this group as a potentially treatable cause of ID. Here we summarize the recent expansion and major characteristics of MDEMs, as well as the unique therapeutic prospects for this group of disorders.
Collapse
Affiliation(s)
- Jill A Fahrner
- McKusick-Nathans Institute of Genetic Medicine, 21205.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hans T Bjornsson
- McKusick-Nathans Institute of Genetic Medicine, 21205.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Landspitali University Hospital, Reykjavik 101, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik 101, Iceland
| |
Collapse
|
28
|
Pilarowski GO, Cazares T, Zhang L, Benjamin JS, Liu K, Jagannathan S, Mousa N, Kasten J, Barski A, Lindsley AW, Bjornsson HT. Abnormal Peyer patch development and B-cell gut homing drive IgA deficiency in Kabuki syndrome. J Allergy Clin Immunol 2020; 145:982-992. [DOI: 10.1016/j.jaci.2019.11.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 01/17/2023]
|
29
|
Lavery WJ, Barski A, Wiley S, Schorry EK, Lindsley AW. KMT2C/D COMPASS complex-associated diseases [K CDCOM-ADs]: an emerging class of congenital regulopathies. Clin Epigenetics 2020; 12:10. [PMID: 31924266 PMCID: PMC6954584 DOI: 10.1186/s13148-019-0802-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022] Open
Abstract
The type 2 lysine methyltransferases KMT2C and KMT2D are large, enzymatically active scaffold proteins that form the core of nuclear regulatory structures known as KMT2C/D COMPASS complexes (complex of proteins associating with Set1). These evolutionarily conserved proteins regulate DNA promoter and enhancer elements, modulating the activity of diverse cell types critical for embryonic morphogenesis, central nervous system development, and post-natal survival. KMT2C/D COMPASS complexes and their binding partners enhance active gene expression of specific loci via the targeted modification of histone-3 tail residues, in general promoting active euchromatic conformations. Over the last 20 years, mutations in five key COMPASS complex genes have been linked to three human congenital syndromes: Kabuki syndrome (type 1 [KMT2D] and 2 [KDM6A]), Rubinstein-Taybi syndrome (type 1 [CBP] and 2 [EP300]), and Kleefstra syndrome type 2 (KMT2C). Here, we review the composition and biochemical function of the KMT2 complexes. The specific cellular and embryonic roles of the KMT2C/D COMPASS complex are highlight with a focus on clinically relevant mechanisms sensitive to haploinsufficiency. The phenotypic similarities and differences between the members of this new family of disorders are outlined and emerging therapeutic strategies are detailed.
Collapse
Affiliation(s)
- William J Lavery
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
- Division of Human Genetics, CCHMC, Cincinnati, OH, USA
| | - Susan Wiley
- Division of Developmental and Behavioral Pediatrics, CCHMC, Cincinnati, OH, USA
| | | | - Andrew W Lindsley
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA.
| |
Collapse
|