1
|
Klimek L, Becker S, Haxel B, Cuevas M, Huber P, Chaker A, Pfaar O, Laudien M, Beutner C, Hagemann J, Förster-Ruhrmann U, Olze H, Ernst BP, Beule A, Rudack C, Hoffmann AS, Betz C, Gröger M. [Different immunological types of CRSwNP in the context of the new European EAACI nomenclature : Part 1: Hypersensitivity reactions of type IVa-c as a correlate to T1, T2, and T3 endotypes]. HNO 2025:10.1007/s00106-025-01600-9. [PMID: 40198352 DOI: 10.1007/s00106-025-01600-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) affects up to 11% of the population in Europe and the USA, making it one of the most common chronic diseases. The classification of immunological endotypes, particularly the T2 endotype, is gaining increasing importance. This classification is based on the Coombs and Gell hypersensitivity model, which categorizes cell-mediated type IV reactions into T1, T2, and T3 endotypes. In chronic rhinosinusitis with nasal polyps (CRSwNP), genetic and epigenetic alterations in the mucosal immune system play a key role. Identifying specific endotypes helps to better understand the heterogeneity of the disease and develop tailored treatment approaches. This paper aims to systematize the underlying immunological mechanisms and highlight their relevance for diagnosis and therapy. METHODS The European Academy of Allergy and Clinical Immunology (EAACI) recently published an updated nomenclature for immunological hypersensitivity reactions. The original Coombs and Gell classification of antibody-mediated reactions (type I-III) has been expanded. Cell-mediated reactions now include: type IVa (T1) → Th1-dominated reactions; type IVb (T2) → Th2-dominated reactions; type IVc (T3) → Th17-dominated reactions. These new insights into T1, T2, and T3 signaling pathways form the basis of this study. Additional mechanisms such as epithelial barrier defects (type V), chemical reactions (type VI), and metabolism-related immune dysregulations (type VII) are addressed separately. RESULTS Endotyping reveals distinct regional differences: The T2 (Th2-high) endotype, predominant in Europe, North and South America, and Australia, is characterized by elevated Th2 cytokines (IL‑4, IL‑5, IL-13) and eosinophilic inflammation. The T1 (Th1-high) endotype shows dominant interferon-gamma activity and non-eosinophilic, mainly neutrophilic inflammation. The T3 (Th17-high) endotype is defined by increased IL-17 presence and can occur in both eosinophilic and non-eosinophilic CRSwNP. CONCLUSION In CRSwNP patients, all three hyperreactivity endotypes (T1, T2, T3) can occur individually or in combination. The T2 endotype is the most common in Europe. Targeted endotyping enables differentiated treatment approaches and novel therapeutic options.
Collapse
Affiliation(s)
- L Klimek
- Zentrum für Rhinologie und Allergologie, Wiesbaden, Deutschland
| | - S Becker
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsmedizin Tübingen, Tübingen, Deutschland
| | - B Haxel
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsmedizin Mainz, Mainz, Deutschland
| | - M Cuevas
- Klinik und Poliklinik für HNO-Heilkunde, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Deutschland
| | - P Huber
- Klinik und Poliklinik für Hals-Nasen- Ohrenheilkunde, Klinikum der Ludwig-Maximilians-Universität, München, Deutschland
| | - A Chaker
- TUM School of Medicine and Health, Klinikum rechts der Isar, HNO-Klinik und Zentrum für Allergie und Umwelt, Technische Universität München, München, Deutschland
| | - O Pfaar
- Klinik für Hals‑, Nasen-und Ohrenheilkunde, Universitätsklinikum Gießen und Marburg GmbH, Standort Marburg, Marburg, Deutschland
| | - M Laudien
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsklinikum Kiel, Kiel, Deutschland
| | - C Beutner
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Göttingen, Göttingen, Deutschland
| | - J Hagemann
- Zentrum für Rhinologie und Allergologie, Wiesbaden, Deutschland
| | - U Förster-Ruhrmann
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsklinikum Charité, Berlin, Deutschland
| | - H Olze
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsklinikum Charité, Berlin, Deutschland
| | - B P Ernst
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsmedizin Frankfurt/M, Frankfurt/M, Deutschland
| | - A Beule
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsklinikum Münster, Münster, Deutschland
| | - C Rudack
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsklinikum Münster, Münster, Deutschland
| | - A S Hoffmann
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsklinikum UKE, Hamburg, Deutschland
| | - C Betz
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsklinikum UKE, Hamburg, Deutschland
| | - M Gröger
- Klinik und Poliklinik für Hals-Nasen- Ohrenheilkunde, Klinikum der Ludwig-Maximilians-Universität, München, Deutschland.
| |
Collapse
|
2
|
Staudt S, Nikolka F, Perl M, Franz J, Leblay N, Yuan XK, Larrayoz M, Lozano T, Warmuth L, Fante MA, Skorpskaite A, Fei T, Bromberg M, San Martin-Uriz P, Rodriguez-Madoz JR, Ziegler-Martin K, Adil-Gholam N, Benz P, Tran Huu P, Freitag F, Riester Z, Stein-Thoeringer C, Schmitt M, Kleigrewe K, Weber J, Mangold K, Ho P, Einsele H, Prosper F, Ellmeier W, Busch D, Visekruna A, Slingerland J, Shouval R, Hiller K, Lasarte JJ, Martinez-Climent JA, Pausch P, Neri P, van den Brink M, Poeck H, Hudecek M, Luu M. Metabolization of microbial postbiotic pentanoate drives anti-cancer CAR T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.19.608538. [PMID: 39314273 PMCID: PMC11418944 DOI: 10.1101/2024.08.19.608538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The microbiome is a complex host factor and key determinant of the outcome of antibody-based and cellular immunotherapy. Its postbiotics are a blend of soluble commensal byproducts that are released into the host environment and have been associated with the regulation of immune homeostasis, particularly through impacts on epigenetics and cell signaling. In this study, we show that the postbiotic pentanoate is metabolized to citrate within the TCA cycle via both the acetyl- and succinyl-CoA entry points, a feature uniquely enabled by the chemical structure of the C5 aliphatic chain. We identified ATP-citrate lyase as the crucial factor that redirects pentanoate-derived citrate from the succinyl-CoA route to the nucleus, thereby linking metabolic output and histone acetylation. This epigenetic-metabolic crosstalk mitigated T cell exhaustion and promoted naive-like differentiation in pentanoate-programmed chimeric antigen receptor (CAR) T cells. The predictive and therapeutic potential of pentanoate was corroborated in two independent patient cohorts and three syngeneic models of CAR T adoptive therapy. Our data demonstrate that postbiotics are integrated into mitochondrial metabolism and subsequently incorporated as epigenetic imprints. This bridge between microbial and mammalian interspecies communication can ultimately impact T cell differentiation and efficacy.
Collapse
Affiliation(s)
- Sarah Staudt
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Fabian Nikolka
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Markus Perl
- University Hospital Regensburg, Department of Internal Medicine III, Hematology & Internal Oncology, Regensburg, Germany
| | - Julia Franz
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Noemie Leblay
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Xiaoli-Kat Yuan
- Precision Oncology Hub, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Marta Larrayoz
- Hemato-Oncology Program, Cima Universidad de Navarra, Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Cancer Center Clinica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Teresa Lozano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Linda Warmuth
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Matthias A. Fante
- University Hospital Regensburg, Department of Internal Medicine III, Hematology & Internal Oncology, Regensburg, Germany
| | - Aiste Skorpskaite
- Life Sciences Center - European Molecular Biology Laboratory (LSC-EMBL) Partnership for Genome Editing Technologies, Vilnius University - Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Teng Fei
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria Bromberg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patxi San Martin-Uriz
- Hemato-Oncology Program, Cima Universidad de Navarra, Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Cancer Center Clinica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Juan Roberto Rodriguez-Madoz
- Hemato-Oncology Program, Cima Universidad de Navarra, Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Cancer Center Clinica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Kai Ziegler-Martin
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nazdar Adil-Gholam
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Pascal Benz
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Phuc Tran Huu
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Fabian Freitag
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Zeno Riester
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | | | - Michael Schmitt
- Department of Hematology, Oncology and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Justus Weber
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kira Mangold
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Patrick Ho
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- National Center for Tumor Therapy (NCT WERA), Würzburg, Germany
| | - Felipe Prosper
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra (CUN), Hemato-Oncology Program, Cima Universidad de Navarra. Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Cancer Center Clinica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Wilfried Ellmeier
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Dirk Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | | | - Roni Shouval
- Adult Bone Marrow Transplantation Service and Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Juan Jose Lasarte
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Jose Angel Martinez-Climent
- Hemato-Oncology Program, Cima Universidad de Navarra, Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Cancer Center Clinica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Patrick Pausch
- Life Sciences Center - European Molecular Biology Laboratory (LSC-EMBL) Partnership for Genome Editing Technologies, Vilnius University - Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | | | - Hendrik Poeck
- University Hospital Regensburg, Department of Internal Medicine III, Hematology & Internal Oncology, Regensburg, Germany
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg & Würzburg, Germany
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- National Center for Tumor Therapy (NCT WERA), Würzburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg & Würzburg, Germany
| | - Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- National Center for Tumor Therapy (NCT WERA), Würzburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg & Würzburg, Germany
| |
Collapse
|
3
|
Zheng J, Wang Q, Xu K, Ma M, Wang Z, Sun Z, Yang S, Wang X, Yan N, Duan X. Fluoride induces immune-inflammatory disorder in the kidneys via histone lysine crotonylation in vivo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117385. [PMID: 39581112 DOI: 10.1016/j.ecoenv.2024.117385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Fluoride is an essential trace element for human. Adequate levels of fluoride are crucial for maintaining skeletal growth, but excessive fluoride exposure entering the body can cause renal damage, including damaged renal tubules and impaired renal function. However, the mechanism on fluoride-induced kidney injury remains unclear. This study aimed to explore the immune-inflammatory imbalance induced by fluoride and its possible mechanism in the kidneys. Mice were exposed to sodium fluoride (NaF) (0, 25, 50 and 100 mg/L) for five months. The results showed that NaF increased the renal weight and renal index. The NaF-treated groups exhibited higher serum creatinine (Cre), blood urea nitrogen (BUN), albumin (ALB) total protein (TP) levels. Further, NaF increased reactive oxygen species (ROS) levels, lipid peroxidation (LPO) levels and malondialdehyde (MDA) level. Superoxide dismutase (SOD) activity was reduced and glutathione (GSH) activities were reduced in fluoride-treated group. NaF treatment also downregulated the nuclear factor E2-related factor (Nrf2) protein and its downstream enzymes heme oxygenase-1 (HO-1) and NAD(P)H: Quinone Oxidoreductase 1(NQO1) in the kidneys. Further, NaF shifted Th1/Th2 balance toward Th1 bias. Similarly, NaF exhibited increased macrophages and augmented M1 differentiation but suppressed M2 differentiation. The renal inflammatory response was also induced by fluoride via activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and increase of the pro-inflammatory factors tumour necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), interleukin-6 (IL-6) and interleukin-18 (IL-18). In addition, NaF treatment reduced the expression of the histone 2B lysine 12 crotonylation (H2BK12cr) and H4K8cr proteins as well as decreased the histone acetyltransferase P300 protein. NaF incresed the protein expression of histone decrotonylation enzyme sirtuin1 (sirt1) and histone deacetylase 3 (HDAC3) and upregulated HDAC2 protein. These findings demonstrate that fluoride exposure induces renal dysfunction and oxidative injury, affects M1/M2 polarization and Th1/Th2 differentiation, and promotes the inflammatory response via histone lysine crotonylation, ultimately resulting in nephrotoxicity.
Collapse
Affiliation(s)
- Jingwen Zheng
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Qian Wang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Kangjie Xu
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Mingyue Ma
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Zhengdong Wang
- Department of Human Anatomy, Shenyang Medical College, Shenyang 110034, PR China
| | - Zhenxiang Sun
- Department of Human Anatomy, Shenyang Medical College, Shenyang 110034, PR China
| | - Shuang Yang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Xinyue Wang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Nan Yan
- Department of Medical Applied Technology, Shenyang Medical College, Shenyang 110034, PR China.
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China.
| |
Collapse
|
4
|
Zhu M, Han Y, Gu T, Wang R, Si X, Kong D, Zhao P, Wang X, Li J, Zhai X, Yu Z, Lu H, Li J, Huang H, Qian P. Class I HDAC inhibitors enhance antitumor efficacy and persistence of CAR-T cells by activation of the Wnt pathway. Cell Rep 2024; 43:114065. [PMID: 38578828 DOI: 10.1016/j.celrep.2024.114065] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/18/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
Epigenetic modification shapes differentiation trajectory and regulates the exhaustion state of chimeric antigen receptor T (CAR-T) cells. Limited efficacy induced by terminal exhaustion closely ties with intrinsic transcriptional regulation. However, the comprehensive regulatory mechanisms remain largely elusive. Here, we identify class I histone deacetylase inhibitors (HDACi) as boosters of CAR-T cell function by high-throughput screening of chromatin-modifying drugs, in which M344 and chidamide enhance memory maintenance and resistance to exhaustion of CAR-T cells that induce sustained antitumor efficacy both in vitro and in vivo. Mechanistically, HDACi decrease HDAC1 expression and enhance H3K27ac activity. Multi-omics analyses from RNA-seq, ATAC-seq, and H3K27ac CUT&Tag-seq show that HDACi upregulate expression of TCF4, LEF1, and CTNNB1, which subsequently activate the canonical Wnt/β-catenin pathway. Collectively, our findings elucidate the functional roles of class I HDACi in enhancing CAR-T cell function, which provides the basis and therapeutic targets for synergic combination of CAR-T cell therapy and HDACi treatment.
Collapse
Affiliation(s)
- Meng Zhu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Tianning Gu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Xiaohui Si
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Delin Kong
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Zhao
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Xiujian Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxin Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Xingyuan Zhai
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zebin Yu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Huan Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Jingyi Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - He Huang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China.
| |
Collapse
|
5
|
Peng S, Lin A, Jiang A, Zhang C, Zhang J, Cheng Q, Luo P, Bai Y. CTLs heterogeneity and plasticity: implications for cancer immunotherapy. Mol Cancer 2024; 23:58. [PMID: 38515134 PMCID: PMC10956324 DOI: 10.1186/s12943-024-01972-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play critical antitumor roles, encompassing diverse subsets including CD4+, NK, and γδ T cells beyond conventional CD8+ CTLs. However, definitive CTLs biomarkers remain elusive, as cytotoxicity-molecule expression does not necessarily confer cytotoxic capacity. CTLs differentiation involves transcriptional regulation by factors such as T-bet and Blimp-1, although epigenetic regulation of CTLs is less clear. CTLs promote tumor killing through cytotoxic granules and death receptor pathways, but may also stimulate tumorigenesis in some contexts. Given that CTLs cytotoxicity varies across tumors, enhancing this function is critical. This review summarizes current knowledge on CTLs subsets, biomarkers, differentiation mechanisms, cancer-related functions, and strategies for improving cytotoxicity. Key outstanding questions include refining the CTLs definition, characterizing subtype diversity, elucidating differentiation and senescence pathways, delineating CTL-microbe relationships, and enabling multi-omics profiling. A more comprehensive understanding of CTLs biology will facilitate optimization of their immunotherapy applications. Overall, this review synthesizes the heterogeneity, regulation, functional roles, and enhancement strategies of CTLs in antitumor immunity, highlighting gaps in our knowledge of subtype diversity, definitive biomarkers, epigenetic control, microbial interactions, and multi-omics characterization. Addressing these questions will refine our understanding of CTLs immunology to better leverage cytotoxic functions against cancer.
Collapse
Affiliation(s)
- Shengkun Peng
- Department of Radiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Aimin Jiang
- Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and ImmunologySchool of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South University, Hunan, China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Yifeng Bai
- Department of Oncology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
6
|
Zhang Y, Tang N, Zhou H, Zhu Y. The role of microbial metabolites in endocrine tumorigenesis: From the mechanistic insights to potential therapeutic biomarkers. Biomed Pharmacother 2024; 172:116218. [PMID: 38308969 DOI: 10.1016/j.biopha.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Microbial metabolites have been indicated to communicate with the host's endocrine system, regulating hormone production, immune-endocrine communications, and interactions along the gut-brain axis, eventually affecting the occurrence of endocrine cancer. Furthermore, microbiota metabolites such as short-chain fatty acids (SCFAs) have been found to affect the tumor microenvironment and boost immunity against tumors. SCFAs, including butyrate and acetate, have been demonstrated to exert anti-proliferative and anti-protective activity on pancreatic cancer cells. The employing of microbial metabolic products in conjunction with radiation and chemotherapy has shown promising outcomes in terms of reducing treatment side effects and boosting effectiveness. Certain metabolites, such as valerate and butyrate, have been made known to improve the efficiency of CAR T-cell treatment, whilst others, such as indole-derived tryptophan metabolites, have been shown to inhibit tumor immunity. This review explores the intricate interplay between microbial metabolites and endocrine tumorigenesis, spanning mechanistic insights to the discovery of potential therapeutic biomarkers.
Collapse
Affiliation(s)
- Yiyi Zhang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Nie Tang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Hui Zhou
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Ying Zhu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
7
|
Jutel M, Agache I, Zemelka-Wiacek M, Akdis M, Chivato T, Del Giacco S, Gajdanowicz P, Gracia IE, Klimek L, Lauerma A, Ollert M, O'Mahony L, Schwarze J, Shamji MH, Skypala I, Palomares O, Pfaar O, Torres MJ, Bernstein JA, Cruz AA, Durham SR, Galli SJ, Gómez RM, Guttman-Yassky E, Haahtela T, Holgate ST, Izuhara K, Kabashima K, Larenas-Linnemann DE, von Mutius E, Nadeau KC, Pawankar R, Platts-Mills TAE, Sicherer SH, Park HS, Vieths S, Wong G, Zhang L, Bilò MB, Akdis CA. Nomenclature of allergic diseases and hypersensitivity reactions: Adapted to modern needs: An EAACI position paper. Allergy 2023; 78:2851-2874. [PMID: 37814905 DOI: 10.1111/all.15889] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023]
Abstract
The exponential growth of precision diagnostic tools, including omic technologies, molecular diagnostics, sophisticated genetic and epigenetic editing, imaging and nano-technologies and patient access to extensive health care, has resulted in vast amounts of unbiased data enabling in-depth disease characterization. New disease endotypes have been identified for various allergic diseases and triggered the gradual transition from a disease description focused on symptoms to identifying biomarkers and intricate pathogenetic and metabolic pathways. Consequently, the current disease taxonomy has to be revised for better categorization. This European Academy of Allergy and Clinical Immunology Position Paper responds to this challenge and provides a modern nomenclature for allergic diseases, which respects the earlier classifications back to the early 20th century. Hypersensitivity reactions originally described by Gell and Coombs have been extended into nine different types comprising antibody- (I-III), cell-mediated (IVa-c), tissue-driven mechanisms (V-VI) and direct response to chemicals (VII). Types I-III are linked to classical and newly described clinical conditions. Type IVa-c are specified and detailed according to the current understanding of T1, T2 and T3 responses. Types V-VI involve epithelial barrier defects and metabolic-induced immune dysregulation, while direct cellular and inflammatory responses to chemicals are covered in type VII. It is notable that several combinations of mixed types may appear in the clinical setting. The clinical relevance of the current approach for allergy practice will be conferred in another article that will follow this year, aiming at showing the relevance in clinical practice where various endotypes can overlap and evolve over the lifetime.
Collapse
Affiliation(s)
- Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Tomás Chivato
- School of Medicine, University CEU San Pablo, Madrid, Spain
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Allergy and Clinical Immunology, University Hospital "Duilio Casula", Monserrato, Italy
| | - Pawel Gajdanowicz
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Ibon Eguiluz Gracia
- Allergy Unit, UMA-Regional University Hospital of Malaga, IBIMA-BIONAND, Malaga, Spain
| | - Ludger Klimek
- Department of Otolaryngology, Head and Neck Surgery, Universitätsmedizin Mainz, Mainz, Germany
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Antti Lauerma
- Department of Dermatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense Research Center for Anaphylaxis (ORCA), Odense, Denmark
| | - Liam O'Mahony
- Departments of Medicine and Microbiology, APC Microbiome Ireland, National University of Ireland, Cork, Ireland
| | - Jürgen Schwarze
- Child Life and Health, Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Imperial Biomedical Research Centre, London, UK
| | - Isabel Skypala
- Department of Inflammation and Repair, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Part of Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Maria Jose Torres
- Allergy Unit, UMA-Regional University Hospital of Malaga, IBIMA-BIONAND, Malaga, Spain
| | - Jonathan A Bernstein
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Alvaro A Cruz
- Fundaçao ProAR, Federal University of Bahia and GARD/WHO Planning Group, Salvador, Bahia, Brazil
| | - Stephen R Durham
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Stephen J Galli
- Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Emma Guttman-Yassky
- Department of Dermatology and the Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Stephen T Holgate
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Kenji Izuhara
- Department of Biomolecular Sciences, Division of Medical Biochemistry, Saga Medical School, Saga, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Désirée E Larenas-Linnemann
- Center of Excellence in Asthma and Allergy, Médica Sur Clinical Foundation and Hospital, Mexico City, Mexico
| | - Erica von Mutius
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, Munich, Germany
- Institute of Asthma and Allergy Prevention, Helmholtz Centre Munich, Munich, Germany
- German Center for Lung Research (DZL), Giesen, Germany
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ruby Pawankar
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Tomas A E Platts-Mills
- Department of Medicine, Division of Allergy and Clinical Immunology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Scott H Sicherer
- Division of Pediatric Allergy and Immunology, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | | | - Gary Wong
- Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - M Beatrice Bilò
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona and Allergy Unit, Department of Internal Medicine, University Hospital of Marche, Ancona, Italy
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
8
|
Pandey RV, Strobl J, Redl A, Unterluggauer L, Gail L, Kleissl L, Müller S, Atzmüller D, Fife-Gernedl V, Krausgruber T, Knaus H, Mitterbauer M, Wohlfarth P, Rabitsch W, Bock C, Stary G. Epigenetic regulation of T cell lineages in skin and blood following hematopoietic stem cell transplantation. Clin Immunol 2023; 248:109245. [PMID: 36702179 DOI: 10.1016/j.clim.2023.109245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Allogeneic hematopoietic stem-cell transplantation (HSCT) seeks to reconstitute the host's immune system from donor stem cells. The success of HSCT is threatened by complications including leukemia relapse or graft-versus-host-disease (GvHD). To investigate the underlying regulatory processes in central and peripheral T cell recovery, we performed sequential multi-omics analysis of T cells of the skin and blood during HSCT. We detected rapid effector T cell reconstitution, while emergence of regulatory T cells was delayed. Epigenetic and gene-regulatory programs were associated with recovering T cells and diverged greatly between skin and blood T cells. The BRG1/BRM-associated factor chromatin remodeling complex and histone deacetylases (HDACs) were epigenetic regulators involved in restoration of T cell homeostasis after transplantation. In isolated T cells of patients after HSCT, we observed class I HDAC-inhibitors to modulate their dysbalance. The present study highlights the importance of epigenetic regulation in the recovery of T cells following HSCT.
Collapse
Affiliation(s)
- Ram Vinay Pandey
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Anna Redl
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Luisa Unterluggauer
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Laura Gail
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
| | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
| | - Sophie Müller
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Denise Atzmüller
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
| | - Victoria Fife-Gernedl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Hanna Knaus
- Department of Internal Medicine I, Bone Marrow Transplantation Unit, Medical University of Vienna, Vienna 1090, Austria
| | - Margit Mitterbauer
- Department of Internal Medicine I, Bone Marrow Transplantation Unit, Medical University of Vienna, Vienna 1090, Austria
| | - Philipp Wohlfarth
- Department of Internal Medicine I, Bone Marrow Transplantation Unit, Medical University of Vienna, Vienna 1090, Austria
| | - Werner Rabitsch
- Department of Internal Medicine I, Bone Marrow Transplantation Unit, Medical University of Vienna, Vienna 1090, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria; Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria.
| |
Collapse
|
9
|
Epigenetic Perspective of Immunotherapy for Cancers. Cells 2023; 12:cells12030365. [PMID: 36766706 PMCID: PMC9913322 DOI: 10.3390/cells12030365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Immunotherapy has brought new hope for cancer patients in recent times. However, despite the promising success of immunotherapy, there is still a need to address major challenges including heterogeneity in response among patients, the reoccurrence of the disease, and iRAEs (immune-related adverse effects). The first critical step towards solving these issues is understanding the epigenomic events that play a significant role in the regulation of specific biomolecules in the context of the immune population present in the tumor immune microenvironment (TIME) during various treatments and responses. A prominent advantage of this step is that it would enable researchers to harness the reversibility of epigenetic modifications for their druggability. Therefore, we reviewed the crucial studies in which varying epigenomic events were captured with immuno-oncology set-ups. Finally, we discuss the therapeutic possibilities of their utilization for the betterment of immunotherapy in terms of diagnosis, progression, and cure for cancer patients.
Collapse
|
10
|
Jotereau F, Alameddine J, Teusan R, Pédron A, Jouand N, Altare F, Godefroy E. Human gut microbiota-reactive DP8α regulatory T cells, signature and related emerging functions. Front Immunol 2022; 13:1026994. [PMID: 36479125 PMCID: PMC9720269 DOI: 10.3389/fimmu.2022.1026994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
In mice, microbiota-induced Tregs both maintain intestinal homeostasis and provide resistance to immuno-pathologies in the adult. Identifying their human functional counterpart therefore represents an important goal. We discovered, in the human colonic lamina propria and blood, a FoxP3-negative IL-10-secreting Treg subset, which co-expresses CD4 and CD8α (hence named DP8α) and displays a TCR-reactivity against Faecalibacterium prausnitzii, indicating a role for this symbiotic bacterium in their induction. Moreover, supporting their role in intestinal homeostasis, we previously reported both their drastic decrease in IBD patients and their protective role in vivo against intestinal inflammation, in mice. Here, we aimed at identifying the genomic, phenotypic and functional signatures of these microbiota-induced Tregs, towards delineating their physiological role(s) and clinical potential. Human F. prausnitzii-reactive DP8α Treg clones were derived from both the colonic lamina propria and blood. RNA-sequencing, flow cytometry and functional assays were performed to characterize their response upon activation and compare them to donor- and tissue-matched FoxP3+ Treg clones. DP8α Tregs exhibited a unique mixed Tr1-like/cytotoxic CD4+ T cell-profile and shared the RORγt and MAF master genes with mouse gut microbiota-induced FoxP3+ Tregs. We revealed their potent cytotoxic, chemotactic and IgA-promoting abilities, which were confirmed using in vitro assays. Therefore, besides their induction by a Clostridium bacterium, DP8α Tregs also partake master genes with mouse microbiota-induced Tregs. The present identification of their complete signature and novel functional properties, should be key in delineating the in vivo roles and therapeutic applications of these unique human microbiota-induced Tregs through their study in pathological contexts, particularly in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Francine Jotereau
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France,*Correspondence: Emmanuelle Godefroy, ; Francine Jotereau, ; Frédéric Altare,
| | - Joudy Alameddine
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France
| | - Raluca Teusan
- Nantes Université, CHU Nantes, INSERM, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Annabelle Pédron
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France
| | - Nicolas Jouand
- Cytocell, BioCore, Nantes Université UMS 3556, Inserm US016, CNRS UAR 3556, CHU Nantes, SFR Santé François BONAMY, Nantes, France
| | - Frédéric Altare
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France,*Correspondence: Emmanuelle Godefroy, ; Francine Jotereau, ; Frédéric Altare,
| | - Emmanuelle Godefroy
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France,*Correspondence: Emmanuelle Godefroy, ; Francine Jotereau, ; Frédéric Altare,
| |
Collapse
|
11
|
Role of Histone Deacetylases in T-Cell Development and Function. Int J Mol Sci 2022; 23:ijms23147828. [PMID: 35887172 PMCID: PMC9320103 DOI: 10.3390/ijms23147828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Histone deacetylases (HDACs) are a group of enzymes called “epigenetic erasers”. They remove the acetyl group from histones changing the condensation state of chromatin, leading to epigenetic modification of gene expression and various downstream effects. Eighteen HDACs have been identified and grouped into four classes. The role of HDACs in T-cells has been extensively studied, and it has been proven that many of them are important players in T-cell development and function. In this review, we present the current state of knowledge on the role of HDACs in the early stages of T-cell development but also in the functioning of mature lymphocytes on the periphery, including activation, cytokine production, and metabolism regulation.
Collapse
|
12
|
Cenerenti M, Saillard M, Romero P, Jandus C. The Era of Cytotoxic CD4 T Cells. Front Immunol 2022; 13:867189. [PMID: 35572552 PMCID: PMC9094409 DOI: 10.3389/fimmu.2022.867189] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
In 1986, Mosmann and Coffman identified 2 functionally distinct subsets of activated CD4 T cells, Th1 and Th2 cells, being key in distinct T cell mediated responses. Over the past three decades, our understanding of CD4 T cell differentiation has expanded and the initial paradigm of a dichotomic CD4 T cell family has been revisited to accommodate a constantly growing number of functionally distinct CD4 T helper and regulatory subpopulations. Of note, CD4 T cells with cytotoxic functions have also been described, initially in viral infections, autoimmune disorders and more recently also in cancer settings. Here, we provide an historical overview on the discovery and characterization of cytotoxic CD4 T cells, followed by a description of their mechanisms of cytotoxicity. We emphasize the relevance of these cells in disease conditions, particularly in cancer, and we provide insights on how to exploit these cells in immunotherapy.
Collapse
Affiliation(s)
- Mara Cenerenti
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Margaux Saillard
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.,Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Pedro Romero
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.,Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| |
Collapse
|
13
|
Preglej T, Ellmeier W. CD4 + Cytotoxic T cells - Phenotype, Function and Transcriptional Networks Controlling Their Differentiation Pathways. Immunol Lett 2022; 247:27-42. [PMID: 35568324 DOI: 10.1016/j.imlet.2022.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
The two major subsets of peripheral T cells are classically divided into the CD4+ T helper cells and the cytotoxic CD8+ T cell lineage. However, the appearance of some effector CD4+ T cell populations displaying cytotoxic activity, in particular during viral infections, has been observed, thus breaking the functional dichotomy of CD4+ and CD8+ T lymphocytes. The strong association of the appearance of CD4+ cytotoxic T lymphocytes (CD4 CTLs) with viral infections suggests an important role of this subset in antiviral immunity by controlling viral replication and infection. Moreover, CD4 CTLs have been linked with anti-tumor activity and might also cause immunopathology in autoimmune diseases. This raises interest into the molecular mechanisms regulating CD4 CTL differentiation, which are poorly understood in comparison to differentiation pathways of other Th subsets. In this review, we provide a brief overview about key features of CD4 CTLs, including their role in viral infections and cancer immunity, and about the link between CD4 CTLs and immune-mediated diseases. Subsequently, we will discuss the current knowledge about transcriptional and epigenetic networks controlling CD4 CTL differentiation and highlight recent data suggesting a role for histone deacetylases in the generation of CD4 CTLs.
Collapse
Affiliation(s)
- Teresa Preglej
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna.
| |
Collapse
|
14
|
Li Y, Ye Z, Zhu J, Fang S, Meng L, Zhou C. Effects of Gut Microbiota on Host Adaptive Immunity Under Immune Homeostasis and Tumor Pathology State. Front Immunol 2022; 13:844335. [PMID: 35355998 PMCID: PMC8960063 DOI: 10.3389/fimmu.2022.844335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota stimulate and shape the body’s adaptive immune response through bacterial components and its active metabolites, which orchestrates the formation and maintenance of the body’s immune homeostasis. In addition, the imbalances in microbiota-adaptive immunity contribute to the development of tumor and the antitumor efficiency of a series of antitumor therapies at the preclinical and clinical levels. Regardless of significant results, the regulation of gut microbiota on adaptive immunity in immune homeostasis and tumors needs a more thorough understanding. Herein, we highlighted the comprehensive knowledge, status, and limitations in the mechanism of microbiome interaction with adaptive immunity and put forward the prospect of how to translate these insights in inhibiting tumor progression and enhancing the efficacy of antitumor interventions.
Collapse
Affiliation(s)
- Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zixuan Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jianguo Zhu
- Research and Development Department,Wecare-bio Probiotics Co., Ltd., Suzhou, China
| | - Shuguang Fang
- Research and Development Department,Wecare-bio Probiotics Co., Ltd., Suzhou, China
| | - Lijuan Meng
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Chen Zhou, ; Lijuan Meng,
| | - Chen Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Chen Zhou, ; Lijuan Meng,
| |
Collapse
|
15
|
Inhibition of HDAC1 alleviates monocrotaline-induced pulmonary arterial remodeling through up-regulation of miR-34a. Respir Res 2021; 22:239. [PMID: 34465322 PMCID: PMC8408973 DOI: 10.1186/s12931-021-01832-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/24/2021] [Indexed: 11/20/2022] Open
Abstract
Background It has been found that up-regulation of histone deacetylases 1 (HDAC1) is involved in the development of pulmonary arterial hypertension (PAH). However, it is still unclear whether inhibition of HDAC1 suppresses the development of PAH via restoring miR-34a level in monocrotaline (MCT)-induced PAH rats. Methods PAH rat models were induced by intraperitoneal injection of MCT. HDAC1 was suppressed by intraperitoneal injection of the class I HDAC inhibitor MS-275, and miR-34a was over-expressed via tail vein injection of miR-34a agomiR. Results HDAC1 protein was significantly increased in MCT-induced PAH rats; this was accompanied with down-regulation of miR-34a and subsequent up-regulation of matrix metalloproteinase 9 (MMP-9)/tissue inhibitor of metalloproteinase 1 (TIMP-1) and MMP-2/TIMP-2. Administration of PAH rats with MS-275 or miR-34a agomiR dramatically abolished MCT-induced reduction of miR-34a and subsequent up-regulation of MMP-9/TIMP-1 and MMP-2/TIMP-2, finally reduced extracellular matrix (ECM) accumulation, pulmonary arterial remodeling, right ventricular systolic pressure (RVSP) and right ventricle hypertrophy index (RVHI) in PAH rats. Conclusions HDAC1 contributes to the development of MCT-induced rat PAH by suppressing miR-34a level and subsequently up-regulating the ratio of MMP-9/TIMP-1 and MMP-2/TIMP-2. Inhibition of HDAC1 alleviates pulmonary arterial remodeling and PAH through up-regulation of miR-34a level and subsequent reduction of MMP-9/TIMP-1 and MMP-2/TIMP-2, suggesting that inhibition of HDAC1 might have potential value in the management of PAH.
Collapse
|
16
|
Akbari B, Ghahri-Saremi N, Soltantoyeh T, Hadjati J, Ghassemi S, Mirzaei HR. Epigenetic strategies to boost CAR T cell therapy. Mol Ther 2021; 29:2640-2659. [PMID: 34365035 DOI: 10.1016/j.ymthe.2021.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/19/2021] [Accepted: 07/31/2021] [Indexed: 02/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has led to a paradigm shift in cancer immunotherapy, but still several obstacles limit CAR T cell efficacy in cancers. Advances in high-throughput technologies revealed new insights into the role that epigenetic reprogramming plays in T cells. Mechanistic studies as well as comprehensive epigenome maps revealed an important role for epigenetic remodeling in T cell differentiation. These modifications shape the overall immune response through alterations in T cell phenotype and function. Here, we outline how epigenetic modifications in CAR T cells can overcome barriers limiting CAR T cell effectiveness, particularly in immunosuppressive tumor microenvironments. We also offer our perspective on how selected epigenetic modifications can boost CAR T cells to ultimately improve the efficacy of CAR T cell therapy.
Collapse
Affiliation(s)
- Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Navid Ghahri-Saremi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran.
| |
Collapse
|
17
|
Luu M, Riester Z, Baldrich A, Reichardt N, Yuille S, Busetti A, Klein M, Wempe A, Leister H, Raifer H, Picard F, Muhammad K, Ohl K, Romero R, Fischer F, Bauer CA, Huber M, Gress TM, Lauth M, Danhof S, Bopp T, Nerreter T, Mulder IE, Steinhoff U, Hudecek M, Visekruna A. Microbial short-chain fatty acids modulate CD8 + T cell responses and improve adoptive immunotherapy for cancer. Nat Commun 2021; 12:4077. [PMID: 34210970 PMCID: PMC8249424 DOI: 10.1038/s41467-021-24331-1] [Citation(s) in RCA: 364] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
Emerging data demonstrate that the activity of immune cells can be modulated by microbial molecules. Here, we show that the short-chain fatty acids (SCFAs) pentanoate and butyrate enhance the anti-tumor activity of cytotoxic T lymphocytes (CTLs) and chimeric antigen receptor (CAR) T cells through metabolic and epigenetic reprograming. We show that in vitro treatment of CTLs and CAR T cells with pentanoate and butyrate increases the function of mTOR as a central cellular metabolic sensor, and inhibits class I histone deacetylase activity. This reprogramming results in elevated production of effector molecules such as CD25, IFN-γ and TNF-α, and significantly enhances the anti-tumor activity of antigen-specific CTLs and ROR1-targeting CAR T cells in syngeneic murine melanoma and pancreatic cancer models. Our data shed light onto microbial molecules that may be used for enhancing cellular anti-tumor immunity. Collectively, we identify pentanoate and butyrate as two SCFAs with therapeutic utility in the context of cellular cancer immunotherapy. The activity of immune cells can be regulated by the microbiome. Here, the authors show that the fatty acids pentanoate and butyrate—normally released by the microbiome—increase the anti-tumour activity of cytotoxic T lymphocytes and chimeric antigen receptor T cells through metabolic and epigenetic reprogramming.
Collapse
Affiliation(s)
- Maik Luu
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany.,Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Zeno Riester
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Adrian Baldrich
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | | | | | | | - Matthias Klein
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anne Wempe
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Hanna Leister
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Hartmann Raifer
- Flow Cytometry Core Facility, Philipps University Marburg, Marburg, Germany
| | - Felix Picard
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Khalid Muhammad
- Department of Biology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kim Ohl
- Department of Pediatrics, RWTH Aachen University, Aachen, Germany
| | - Rossana Romero
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Florence Fischer
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Christian A Bauer
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg, UKGM, Philipps University Marburg, Marburg, Germany
| | - Magdalena Huber
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg, UKGM, Philipps University Marburg, Marburg, Germany
| | - Matthias Lauth
- Institute of Molecular Biology and Tumor Research, Center for Tumor- and Immunobiology, Philipps-University Marburg, Marburg, Germany
| | - Sophia Danhof
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Nerreter
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | | | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany.
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
18
|
Impact of Immunotherapy on CD4 T Cell Phenotypes and Function in Cancer. Vaccines (Basel) 2021; 9:vaccines9050454. [PMID: 34064410 PMCID: PMC8147771 DOI: 10.3390/vaccines9050454] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/29/2022] Open
Abstract
Immunotherapy has become a standard treatment in many cancers and it is based on three main therapeutic axes: immune checkpoint blockade (ICB), vaccination and adoptive cell transfer (ACT). If originally these therapies mainly focused on exploiting CD8 T cells given their role in the direct elimination of tumor cells, increasing evidence highlights the crucial role CD4 T cells play in the antitumor immune response. Indeed, these cells can profoundly modulate the tumor microenvironment (TME) by secreting different types of cytokine or by directly eliminating cancer cells. In this review, we describe how different CD4 T cell subsets can contribute to tumor immune responses during immunotherapy and the novel high-throughput immune monitoring tools that are expected to facilitate the study of CD4 T cells, at antigen-specific and single cell level, thus accelerating bench-to-bed translational research in cancer.
Collapse
|
19
|
Hamminger P, Marchetti L, Preglej T, Platzer R, Zhu C, Kamnev A, Rica R, Stolz V, Sandner L, Alteneder M, Kaba E, Waltenberger D, Huppa JB, Trauner M, Bock C, Lyck R, Bauer J, Dupré L, Seiser C, Boucheron N, Engelhardt B, Ellmeier W. Histone deacetylase 1 controls CD4 + T cell trafficking in autoinflammatory diseases. J Autoimmun 2021; 119:102610. [PMID: 33621930 DOI: 10.1016/j.jaut.2021.102610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/13/2023]
Abstract
CD4+ T cell trafficking is a fundamental property of adaptive immunity. In this study, we uncover a novel role for histone deacetylase 1 (HDAC1) in controlling effector CD4+ T cell migration, thereby providing mechanistic insight into why a T cell-specific deletion of HDAC1 protects against experimental autoimmune encephalomyelitis (EAE). HDAC1-deficient CD4+ T cells downregulated genes associated with leukocyte extravasation. In vitro, HDAC1-deficient CD4+ T cells displayed aberrant morphology and migration on surfaces coated with integrin LFA-1 ligand ICAM-1 and showed an impaired ability to arrest on and to migrate across a monolayer of primary mouse brain microvascular endothelial cells under physiological flow. Moreover, HDAC1 deficiency reduced homing of CD4+ T cells into the intestinal epithelium and lamina propria preventing weight-loss, crypt damage and intestinal inflammation in adoptive CD4+ T cell transfer colitis. This correlated with reduced expression levels of LFA-1 integrin chains CD11a and CD18 as well as of selectin ligands CD43, CD44 and CD162 on transferred circulating HDAC1-deficient CD4+ T cells. Our data reveal that HDAC1 controls T cell-mediated autoimmunity via the regulation of CD4+ T cell trafficking into the CNS and intestinal tissues.
Collapse
MESH Headings
- Animals
- Autoimmunity
- Biomarkers
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Adhesion
- Chemotaxis, Leukocyte/genetics
- Chemotaxis, Leukocyte/immunology
- Disease Models, Animal
- Disease Susceptibility
- Encephalomyelitis, Autoimmune, Experimental/diagnosis
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Endothelial Cells
- Gene Expression Profiling
- Gene Expression Regulation
- Histone Deacetylase 1/genetics
- Histone Deacetylase 1/metabolism
- Immunohistochemistry
- Inflammation/diagnosis
- Inflammation/etiology
- Inflammation/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Knockout
Collapse
Affiliation(s)
- Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Luca Marchetti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| | - Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; Current Address: Division of Rheumatology, Medical University of Vienna, Vienna, Austria.
| | - René Platzer
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Ci Zhu
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Anton Kamnev
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Ramona Rica
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Valentina Stolz
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Lisa Sandner
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Marlis Alteneder
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Elisa Kaba
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| | - Darina Waltenberger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Johannes B Huppa
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria.
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Austria.
| | - Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria; Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, CNRS UMR5051, Toulouse III Paul Sabatier University, Toulouse, France.
| | - Christian Seiser
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria.
| | - Nicole Boucheron
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | | | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Cachot A, Bilous M, Liu YC, Li X, Saillard M, Cenerenti M, Rockinger GA, Wyss T, Guillaume P, Schmidt J, Genolet R, Ercolano G, Protti MP, Reith W, Ioannidou K, de Leval L, Trapani JA, Coukos G, Harari A, Speiser DE, Mathis A, Gfeller D, Altug H, Romero P, Jandus C. Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. SCIENCE ADVANCES 2021; 7:7/9/eabe3348. [PMID: 33637530 PMCID: PMC7909889 DOI: 10.1126/sciadv.abe3348] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/14/2021] [Indexed: 05/04/2023]
Abstract
CD4 T cells have been implicated in cancer immunity for their helper functions. Moreover, their direct cytotoxic potential has been shown in some patients with cancer. Here, by mining single-cell RNA-seq datasets, we identified CD4 T cell clusters displaying cytotoxic phenotypes in different human cancers, resembling CD8 T cell profiles. Using the peptide-MHCII-multimer technology, we confirmed ex vivo the presence of cytolytic tumor-specific CD4 T cells. We performed an integrated phenotypic and functional characterization of these cells, down to the single-cell level, through a high-throughput nanobiochip consisting of massive arrays of picowells and machine learning. We demonstrated a direct, contact-, and granzyme-dependent cytotoxic activity against tumors, with delayed kinetics compared to classical cytotoxic lymphocytes. Last, we found that this cytotoxic activity was in part dependent on SLAMF7. Agonistic engagement of SLAMF7 enhanced cytotoxicity of tumor-specific CD4 T cells, suggesting that targeting these cells might prove synergistic with other cancer immunotherapies.
Collapse
Affiliation(s)
- Amélie Cachot
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
| | - Mariia Bilous
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, CH-1015, Switzerland
| | - Yen-Cheng Liu
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Xiaokang Li
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Margaux Saillard
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
| | - Mara Cenerenti
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, CH-1211, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, CH-1066, Switzerland
| | - Georg Alexander Rockinger
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
| | - Tania Wyss
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, CH-1015, Switzerland
| | - Philippe Guillaume
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
| | - Julien Schmidt
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
| | - Raphaël Genolet
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
| | - Giuseppe Ercolano
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, CH-1211, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, CH-1066, Switzerland
| | - Maria Pia Protti
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, CH-1211, Switzerland
| | - Kalliopi Ioannidou
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Joseph A Trapani
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne 3000, Australia
| | - George Coukos
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
| | - Alexandre Harari
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
| | - Daniel E Speiser
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
| | - Alexander Mathis
- Harvard University, Cambridge, MA, USA
- Center for Neuroprosthetics, Center for Intelligent Systems, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, CH-1015, Switzerland
| | - David Gfeller
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, CH-1015, Switzerland
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Pedro Romero
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, CH-1211, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, CH-1066, Switzerland
| |
Collapse
|
21
|
Li G, Tian Y, Zhu WG. The Roles of Histone Deacetylases and Their Inhibitors in Cancer Therapy. Front Cell Dev Biol 2020; 8:576946. [PMID: 33117804 PMCID: PMC7552186 DOI: 10.3389/fcell.2020.576946] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Genetic mutations and abnormal gene regulation are key mechanisms underlying tumorigenesis. Nucleosomes, which consist of DNA wrapped around histone cores, represent the basic units of chromatin. The fifth amino group (Nε) of histone lysine residues is a common site for post-translational modifications (PTMs), and of these, acetylation is the second most common. Histone acetylation is modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), and is involved in the regulation of gene expression. Over the past two decades, numerous studies characterizing HDACs and HDAC inhibitors (HDACi) have provided novel and exciting insights concerning their underlying biological mechanisms and potential anti-cancer treatments. In this review, we detail the diverse structures of HDACs and their underlying biological functions, including transcriptional regulation, metabolism, angiogenesis, DNA damage response, cell cycle, apoptosis, protein degradation, immunity and other several physiological processes. We also highlight potential avenues to use HDACi as novel, precision cancer treatments.
Collapse
Affiliation(s)
- Guo Li
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Yuan Tian
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
22
|
Chen IC, Sethy B, Liou JP. Recent Update of HDAC Inhibitors in Lymphoma. Front Cell Dev Biol 2020; 8:576391. [PMID: 33015069 PMCID: PMC7494784 DOI: 10.3389/fcell.2020.576391] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Modulating epigenetic modification has been recognized for over a decade as an effective therapeutic approach to cancer and many studies of histone deacetylase (HDAC), one of the best known epigenetic modulators, have been published. HDAC modulates cell proliferation and angiogenesis and plays an essential role in cell growth. Research shows that up-regulated HDACs are present in many cancer types and synthetic or natural HDAC inhibitors have been used to silence overregulated HDACs. Inhibiting HDACs may cause arrest of cell proliferation, angiogenesis reduction and cell apoptosis. Recent studies indicate that HDAC inhibitors can provide a therapeutic effect in various cancers, such as B-cell lymphoma, leukemia, multiple myeloma and some virus-associated cancers. Some evidence has demonstrated that HDAC inhibitors can increase the expression of immune-related molecules leading to accumulation of CD8 + T cells and causing unresponsive tumor cells to be recognized by the immune system, reducing tumor immunity. This may be a solution for the blockade of PD-1. Here, we review the emerging development of HDAC inhibitors in various cancer treatments and reduction of tumor immunity.
Collapse
Affiliation(s)
- I-Chung Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Bidyadhar Sethy
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
23
|
Daams R, Sime W, Leandersson K, Sitnicka E, Massoumi R. Deletion of Nemo-like Kinase in T Cells Reduces Single-Positive CD8 + Thymocyte Population. THE JOURNAL OF IMMUNOLOGY 2020; 205:1830-1841. [PMID: 32839237 DOI: 10.4049/jimmunol.2000109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022]
Abstract
The β-catenin/Wnt signaling pathway plays an important role in all stages of T cell development. Nemo-like kinase (NLK) is an evolutionary conserved serine/threonine kinase and a negative regulator of the Wnt signaling pathway. NLK can directly phosphorylate histone deacetylase 1 (HDAC1), as well as T cell factor/lymphoid enhancer-binding factor (TCF/LEF), causing subsequent repression of target gene transcription. By engineering mice lacking NLK in early stages of T cell development, we set out to characterize the role NLK plays in T cell development and found that deletion of NLK does not affect mouse health or lymphoid tissue development. Instead, these mice harbored a reduced number of single-positive (SP) CD8+ thymocytes without any defects in the SP CD4+ thymocyte population. The decrease in SP CD8+ thymocytes was not caused by a block in differentiation from double-positive CD4+CD8+ cells. Neither TCR signaling nor activation was altered in the absence of NLK. Instead, we observed a significant increase in cell death and reduced phosphorylation of LEF1 as well as HDAC1 among NLK-deleted SP CD8+ cells. Thus, NLK seems to play an important role in the survival of CD8+ thymocytes. Our data provide evidence for a new function for NLK with regard to its involvement in T cell development and supporting survival of SP CD8+ thymocytes.
Collapse
Affiliation(s)
- Renée Daams
- Molecular Tumor Pathology, Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Wondossen Sime
- Molecular Tumor Pathology, Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department of Translational Medicine, Lund University, 214 28 Malmö, Sweden; and
| | - Ewa Sitnicka
- Lymphoid Development and Regulation, Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Ramin Massoumi
- Molecular Tumor Pathology, Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden;
| |
Collapse
|
24
|
Kim S, Santhanam S, Lim S, Choi J. Targeting Histone Deacetylases to Modulate Graft-Versus-Host Disease and Graft-Versus-Leukemia. Int J Mol Sci 2020; 21:ijms21124281. [PMID: 32560120 PMCID: PMC7349873 DOI: 10.3390/ijms21124281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the main therapeutic strategy for patients with both malignant and nonmalignant disorders. The therapeutic benefits of allo-HSCT in malignant disorders are primarily derived from the graft-versus-leukemia (GvL) effect, in which T cells in the donor graft recognize and eradicate residual malignant cells. However, the same donor T cells can also recognize normal host tissues as foreign, leading to the development of graft-versus-host disease (GvHD), which is difficult to separate from GvL and is the most frequent and serious complication following allo-HSCT. Inhibition of donor T cell toxicity helps in reducing GvHD but also restricts GvL activity. Therefore, developing a novel therapeutic strategy that selectively suppresses GvHD without affecting GvL is essential. Recent studies have shown that inhibition of histone deacetylases (HDACs) not only inhibits the growth of tumor cells but also regulates the cytotoxic activity of T cells. Here, we compile the known therapeutic potential of HDAC inhibitors in preventing several stages of GvHD pathogenesis. Furthermore, we will also review the current clinical features of HDAC inhibitors in preventing and treating GvHD as well as maintaining GvL.
Collapse
Affiliation(s)
- Sena Kim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Correspondence: (S.K.); (J.C.)
| | | | - Sora Lim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Jaebok Choi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Correspondence: (S.K.); (J.C.)
| |
Collapse
|
25
|
Annona muricata L.-Derived Polysaccharides as a Potential Adjuvant to a Dendritic Cell-Based Vaccine in a Thymoma-Bearing Model. Nutrients 2020; 12:nu12061602. [PMID: 32486094 PMCID: PMC7352220 DOI: 10.3390/nu12061602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022] Open
Abstract
Dendritic cells (DCs) are powerful antigen-presenting cells that are often used to evaluate adjuvants, particularly for adjuvant selection for various vaccines. Here, polysaccharides (named ALP) isolated from leaves of Annona muricata L., which are used in traditional medicine such as for bacterial infections and inflammatory diseases, were evaluated as an adjuvant candidate that can induce anti-tumor activity. We first confirmed the phenotypic (surface molecules, cytokines, antigen uptake, and antigen-presenting ability) and functional alterations (T cell proliferation/activation) of DCs in vitro. We also confirmed the adjuvant effect by evaluating anti-tumor activity and immunity using an ALP-treated DC-immunized mouse model. ALP functionally induced DC maturation by up-regulating the secretion of Th1-polarizing pro-inflammatory cytokines, the expression of surface molecules, and antigen-presenting ability. ALP triggered DC maturation, which is dependent on the activation of the MAPK and NF-κB signaling pathways. ALP-activated DCs showed an ample capacity to differentiate naive T cells to Th1 and activated CD8+ T cells effectively. The systemic administration of DCs that pulse ALP and ovalbumin peptides strongly increased cytotoxic T lymphocyte (CTL) activity (by 9.5% compared to that in the control vaccine groups), the generation of CD107a-producing multifunctional T cells, and Th1-mediated humoral immunity, and caused a significant reduction (increased protection by 29% over that in control vaccine groups) in tumor growth. ALP, which triggers the Th1 and CTL response, provides a basis for a new adjuvant for various vaccines.
Collapse
|