1
|
Li L, Pu H, Zhang X, Guo X, Li G, Zhang M. Resistance to PD-1/PD-L1 immune checkpoint blockade in advanced non-small cell lung cancer. Crit Rev Oncol Hematol 2025; 209:104683. [PMID: 40024354 DOI: 10.1016/j.critrevonc.2025.104683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025] Open
Abstract
Lung cancer is one of the most common malignant tumors, of which non-small cell lung cancer (NSCLC) accounts for about 85 %. Although immune checkpoint inhibitors (ICIs), particularly PD-1/PD-L1 inhibitors, have significantly improved the prognosis of patients with NSCLC. There are still many patients do not benefit from ICIs. Primary resistance remains a major challenge in advanced NSCLC. The cancer-immunity cycle describes the process from antigen release to T cell recognition and killing of the tumor, which provides a framework for understanding anti-tumor immunity. The classical cycle consists of seven steps, and alterations at each stage can result in resistance. This review examines the current status of PD-1/PD-L1 blockade in the treatment of advanced NSCLC and explores potential mechanisms of resistance. We summarize the latest clinical trials of PD-1/PD-L1 inhibitors combined with other therapies and explore potential targets for overcoming primary resistance to PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Lijun Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Haihong Pu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Xiaoxin Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Xiaotian Guo
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Guangrui Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Minghui Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
2
|
Long-Mira E, Bontoux C, Rignol G, Hofman V, Lassalle S, Benzaquen J, Boutros J, Lalvée-Moret S, Zahaf K, Lespinet-Fabre V, Bordone O, Maistre S, Bonnetaud C, Cohen C, Berthet JP, Marquette CH, Vouret-Craviari V, Ilié M, Hofman P. Exploring the Expression of CD73 in Lung Adenocarcinoma with EGFR Genomic Alterations. Cancers (Basel) 2025; 17:1034. [PMID: 40149368 PMCID: PMC11941413 DOI: 10.3390/cancers17061034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Immune checkpoint inhibitors (ICIs) benefit some lung cancer patients, but their efficacy is limited in advanced lung adenocarcinoma (LUAD) with EGFR mutations (EGFRm), largely due to a non-immunogenic tumour microenvironment (TME). Furthermore, EGFRm LUAD patients often experience increased toxicity with ICIs. CD73, an ectonucleotidase involved in adenosine production, promotes tumour immune evasion and could represent a novel therapeutic target. This study investigates CD73 expression in LUAD with EGFR alterations and its clinico-pathological correlations. METHODS CD73 expression in tumour (CD73TC) and stromal (CD73SC) cells was assessed in 76 treatment-naive LUAD patients using immunohistochemistry (IHC) (D7F9A clone) alongside IHC PD-L1 (22C3 clone). EGFR alterations were identified by molecular sequencing and FISH. Event-free survival (EFS) was analysed based on CD73TC expression. RESULTS CD73TC expression was observed in 66% of cases, with high expression (Tumour Proportion Score > 50%) correlating with improved EFS (p = 0.045). CD73TC and PD-L1 expression were not significantly correlated (p = 0.44), although a weak inverse trend was observed. CD73SC expression was detected in 18% of cases, predominantly in early-stage (p = 0.037), PD-L1-negative (p = 0.030), and non-EGFR-amplified (p = 0.0018) tumours. No significant associations were found with disease stage, histological subtype, EGFR mutation type, and amplification. CONCLUSIONS CD73 expression in EGFRm LUAD is heterogeneous and associated with diverse TME profiles. These findings support the potential of CD73 as a predictive biomarker and therapeutic target, highlighting its clinical relevance in EGFRm LUAD.
Collapse
Affiliation(s)
- Elodie Long-Mira
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
- Institute for Research on Cancer and Aging, Team 4, Inserm U1081, CNRS UMR 7413, Université Côte d’Azur, 06000 Nice, France;
| | - Christophe Bontoux
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Guylène Rignol
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
- Institute for Research on Cancer and Aging, Team 4, Inserm U1081, CNRS UMR 7413, Université Côte d’Azur, 06000 Nice, France;
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
- Institute for Research on Cancer and Aging, Team 4, Inserm U1081, CNRS UMR 7413, Université Côte d’Azur, 06000 Nice, France;
| | - Sandra Lassalle
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Jonathan Benzaquen
- Department of Thoracic Oncology, IHU RespirERA Hôpital Pasteur, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France; (J.B.); (J.B.); (C.-H.M.)
| | - Jacques Boutros
- Department of Thoracic Oncology, IHU RespirERA Hôpital Pasteur, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France; (J.B.); (J.B.); (C.-H.M.)
| | - Salomé Lalvée-Moret
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Katia Zahaf
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Virginie Lespinet-Fabre
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Olivier Bordone
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Sophia Maistre
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Christelle Bonnetaud
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Charlotte Cohen
- Department of Thoracic Surgery, Hôpital Pasteur, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France; (C.C.); (J.-P.B.)
| | - Jean-Philippe Berthet
- Department of Thoracic Surgery, Hôpital Pasteur, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France; (C.C.); (J.-P.B.)
| | - Charles-Hugo Marquette
- Department of Thoracic Oncology, IHU RespirERA Hôpital Pasteur, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France; (J.B.); (J.B.); (C.-H.M.)
| | - Valerie Vouret-Craviari
- Institute for Research on Cancer and Aging, Team 4, Inserm U1081, CNRS UMR 7413, Université Côte d’Azur, 06000 Nice, France;
| | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
- Institute for Research on Cancer and Aging, Team 4, Inserm U1081, CNRS UMR 7413, Université Côte d’Azur, 06000 Nice, France;
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
- Institute for Research on Cancer and Aging, Team 4, Inserm U1081, CNRS UMR 7413, Université Côte d’Azur, 06000 Nice, France;
| |
Collapse
|
3
|
Metoikidou C, Karnaukhov V, Boeckx B, Timperi E, Bonté PE, Wang L, Espenel M, Albaud B, Loirat D, Wang X, Sotiriou C, Aftimos P, Punie K, Wildiers H, Labroska V, Wang MW, Waterfall JJ, Piccart-Gebhart M, Mora T, Walczak A, Lantz O, Buisseret L, Lambrechts D, Amigorena S, Romano E. Continuous replenishment of the dysfunctional CD8 T cell axis is associated with response to chemoimmunotherapy in advanced breast cancer. Cell Rep Med 2025; 6:101973. [PMID: 39983715 PMCID: PMC11970331 DOI: 10.1016/j.xcrm.2025.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/18/2024] [Accepted: 01/22/2025] [Indexed: 02/23/2025]
Abstract
Chemotherapy combined with immune checkpoint blockade has shown clinical activity in breast cancer. Response, however, occurs in only a low proportion of patients. How the immune landscape of the tumor determines the immune and clinical responses to chemoimmunotherapy is not well understood. Here, using a combination of single-cell RNA sequencing (scRNA-seq) and single-cell T cell receptor sequencing (scTCR-seq), we profile 40 biopsies from 27 patients with metastatic triple-negative breast cancer (TNBC), receiving chemotherapy and anti-PD-L1 alone or in combination with anti-CD73, in a phase 2 randomized clinical trial. Our results show an enrichment of late-dysfunctional, clonally expanded CD8+ T cells in responder (R) patients. On treatment, R display an influx of newly emerging clonotypes, as well as expansion of the CD8+ precursors. Collectively, our data suggest that baseline clonal expansion could be a potential predictor of response and that both clonal reinvigoration of pre-existing tumor-reactive T cells and clonal replacement on-treatment are important for a protective response to chemoimmunotherapy.
Collapse
Affiliation(s)
- Christina Metoikidou
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France; Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Vadim Karnaukhov
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France; Laboratoire de Physique de l'École Normale Supérieure, Paris Sciences & Lettres University, CNRS, Sorbonne Université and Université Paris Cité, 75005 Paris, France
| | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - Eleonora Timperi
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Pierre-Emmanuel Bonté
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Ling Wang
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - Marion Espenel
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, 75005 Paris, France
| | - Benoit Albaud
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, 75005 Paris, France
| | - Delphine Loirat
- Department of Medical Oncology, Center for Cancer Immunotherapy, Institut Curie, Paris, France
| | - Xiaoxiao Wang
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Christos Sotiriou
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Aftimos
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Kevin Punie
- Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute, Leuven, Belgium; University Hospitals Leuven, Leuven, Belgium
| | - Hans Wildiers
- Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute, Leuven, Belgium; University Hospitals Leuven, Leuven, Belgium
| | - Viktorija Labroska
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Wei Wang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joshua J Waterfall
- Translational Research Department, Institut Curie, 75005 Paris, France; INSERM U830, Institut Curie, 75005 Paris, France
| | | | - Thierry Mora
- Laboratoire de Physique de l'École Normale Supérieure, Paris Sciences & Lettres University, CNRS, Sorbonne Université and Université Paris Cité, 75005 Paris, France
| | - Aleksandra Walczak
- Laboratoire de Physique de l'École Normale Supérieure, Paris Sciences & Lettres University, CNRS, Sorbonne Université and Université Paris Cité, 75005 Paris, France
| | - Olivier Lantz
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France; Laboratoire d'immunologie clinique, Institut Curie, 75005 Paris, France; Centre d'investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | | | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - Sebastian Amigorena
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Emanuela Romano
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France; Department of Medical Oncology, Center for Cancer Immunotherapy, Institut Curie, Paris, France.
| |
Collapse
|
4
|
Gao H, Zhang T, Li K, Li X. CD73: a new immune checkpoint for leukemia treatment. Front Immunol 2025; 16:1486868. [PMID: 40114928 PMCID: PMC11922907 DOI: 10.3389/fimmu.2025.1486868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Recent studies on the pathogenesis of leukemia have led to remarkable advances in disease treatment. Numerous studies have shown the potential and viability of immune responses against leukemia. In the classical pathway, this process is often initiated by the upstream activity of CD39, which hydrolyzes extracellular adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to AMP. Subsequently, CD73 acts on AMP to generate adenosine, contributing to an immunosuppressive microenvironment. However, CD73 can also utilize substrates derived from other molecules through the non-canonical NAD+ pathway, specifically via the CD38/CD203a/CD73 axis, further enhancing adenosine production and facilitating immune escape. Targeting CD73 has shown potential in disrupting these immunosuppressive pathways, thereby enhancing anti-leukemic immune responses and improving patient outcomes. Inhibiting CD73 not only reduces the levels of immunosuppressive adenosine but also increases the efficacy of existing immunotherapies, such as PD-1/PD-L1 inhibitors, making it a versatile therapeutic target in leukemia treatment. This review discusses the potential of CD73 as a therapeutic target and emphasizes its unique position in the immune escape mechanism of leukemia. Moreover, this review provides an overview of the current research progress and future trends, emphasizing the clinical significance of targeting CD73 and other potential therapeutic strategies in leukemia.
Collapse
Affiliation(s)
- Huan Gao
- Marine College, Shandong University, Weihai, China
| | - Tingting Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
| |
Collapse
|
5
|
Lim JU, Jung J, Kim YW, Kim CY, Lee SH, Park DW, Choi SI, Ji W, Yeo CD, Lee SH. Targeting the Tumor Microenvironment in EGFR-Mutant Lung Cancer: Opportunities and Challenges. Biomedicines 2025; 13:470. [PMID: 40002883 PMCID: PMC11852785 DOI: 10.3390/biomedicines13020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have transformed the treatment of epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer. However, treatment resistance remains a major challenge in clinical practice. The tumor microenvironment (TME) is a complex system composed of tumor cells, immune and non-immune cells, and non-cellular components. Evidence indicates that dynamic changes in TME during TKI treatment are associated with the development of resistance. Research has focused on identifying how each component of the TME interacts with tumors and TKIs to understand therapeutic targets that could address TKI resistance. In this review, we describe how TME components, such as immune cells, fibroblasts, blood vessels, immune checkpoint proteins, and cytokines, interact with EGFR-mutant tumors and how they can promote resistance to TKIs. Furthermore, we discuss potential strategies targeting TME as a novel therapeutic approach.
Collapse
Affiliation(s)
- Jeong Uk Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeon Wook Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Chi Young Kim
- Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dong Won Park
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Republic of Korea;
| | - Sue In Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Wonjun Ji
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 44610, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03083, Republic of Korea
| | - Seung Hyeun Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Yu ZH, Ma WQ, Ren JW, Zhang XT, Chu L. Role of Computed Tomography in Predicting Programmed Death Ligand-1 Positivity in Gastric Adenocarcinoma. J Multidiscip Healthc 2025; 18:609-621. [PMID: 39935434 PMCID: PMC11812451 DOI: 10.2147/jmdh.s495962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Objective To examine the association between computed tomography (CT) imaging characteristics and programmed death ligand-1 (PD-L1) expression in patients with gastric adenocarcinoma (GAC), and to develop a nomogram model for prediction. Methods The patients were randomly allocated into a training set and a validation set at a ratio of 7:3. The training set was further divided into a PD-L1 positive group and a PD-L1 negative group, based on the combined positive score (CPS). Univariate and multivariate logistic regression analyses were performed to identify independent predictors of PD-L1 positivity. A nomogram was developed to assess the model's predictive performance, which was evaluated using the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). It was also compared with the model established by previous study. Results Patients with PD-L1-positive gastric adenocarcinoma exhibited a higher prevalence of larger short diameters of lymph nodes (LNs) (≥ 1 cm), and lower CT attenuation values in the venous and delayed phases compared to those in the PD-L1-negative group. Short diameter of LNs, and CT attenuation values in the delayed phase were identified as independent predictors of PD-L1 positivity. The nomogram analysis indicated that CT attenuation values in the delayed phase were the most significant predictor of PD-L1 positivity, followed by short diameter of LNs. Conclusion The GAC prediction model based on the CT imaging features is effective in predicting PD-L1 expression levels and demonstrates strong clinical applicability.
Collapse
Affiliation(s)
- Zhi-Hong Yu
- Department of Ultrasound, Shanxi Provincial People’s Hospital, The Fifth Hospital of Shanxi Medical University, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, 030012, People’s Republic of China
| | - Wei-Qin Ma
- Department of CT/MRI, Lvliang People’s Hospital, Shanxi Province, Lvliang, Shanxi, 033000, People’s Republic of China
| | - Ji-Wei Ren
- Department of Radiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030013, People’s Republic of China
| | - Xu-Ting Zhang
- Department of Radiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030013, People’s Republic of China
| | - Lin Chu
- Department of Radiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030013, People’s Republic of China
| |
Collapse
|
7
|
Liu P, Guo J, Xie Z, Pan Y, Wei B, Peng Y, Hu S, Ding J, Chen X, Su J, Liu H, Zhou W. Co-Delivery of aPD-L1 and CD73 Inhibitor Using Calcium Phosphate Nanoparticles for Enhanced Melanoma Immunotherapy with Reduced Toxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410545. [PMID: 39716993 PMCID: PMC11831434 DOI: 10.1002/advs.202410545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/18/2024] [Indexed: 12/25/2024]
Abstract
Melanoma, a malignant skin tumor, presents significant treatment challenges, particularly in unresectable and metastatic cases. While immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 have brought new hope, their efficacy is limited by low response rates and significant immune-mediated adverse events (irAEs). Through multi-omics data analysis, it is discovered that the spatial co-localization of CD73 and PD-L1 in melanoma correlates with improved progression-free survival (PFS), suggesting a synergistic potential of their inhibitors. Building on these insights, a novel therapeutic strategy using calcium phosphate (CaP) nanoparticles is developed for the co-delivery of aPD-L1 and APCP, a CD73 inhibitor. These nanoparticles, constructed via a biomineralization method, exhibit high drug-loading capacity and pH-responsive drug release. Compared to free aPD-L1, the CaP-delivered aPD-L1 effectively avoids systemic side effects while significantly enhancing anti-tumor efficacy, surpassing even a 20-fold dose of free aPD-L1. Furthermore, the co-delivery of aPD-L1 and APCP via CaP nanoparticles demonstrates a synergistic anti-tumor effect, with substantial immune activation and prevention of tumor recurrence through immune memory effects. These findings suggest that the co-delivery of aPD-L1 and APCP using CaP nanoparticles is a promising approach for improving melanoma immunotherapy, achieving enhanced efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Peng Liu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
- Department of Nuclear MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Biological NanotechnologyChangshaHunan410008China
| | - Jia Guo
- Department of Dermatology, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaHunan410008China
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunan410008China
| | - Zuozhong Xie
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
| | - Yusheng Pan
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Benliang Wei
- Big Data InstituteCentral South UniversityChangshaHunan410083China
| | - Ying Peng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Shuo Hu
- Department of Nuclear MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Biological NanotechnologyChangshaHunan410008China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Xiang Chen
- Department of Dermatology, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaHunan410008China
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunan410008China
| | - Juan Su
- Department of Dermatology, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaHunan410008China
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunan410008China
| | - Hong Liu
- Department of Dermatology, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaHunan410008China
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunan410008China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
- Key Laboratory of Biological NanotechnologyChangshaHunan410008China
| |
Collapse
|
8
|
Xie YQ, Yan FN, Yu LH, Yan HW, Kong YX, Yang ZY. Mechanism of Shashen-Maidong herb pair in treating hepatocellular carcinoma using network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118954. [PMID: 39419302 DOI: 10.1016/j.jep.2024.118954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatocellular carcinoma (HCC) is among the most prevalent malignant tumors globally and represents a significant public health issue worldwide. Immune cell dysfunction is the crucial factor for the formation of immunosuppression microenvironment of HCC. Glehnia littoralis (A.Gray) F.Schmidt ex Miq. (Shashen) and Ophiopogon japonicus (Thunb.) Ker Gawl. (Maidong) are classic herb pair in traditional Chinese medicine (TCM) of nourishing Yin, and is widely applied in the treatment of HCC and possesses multiple immunomodulatory functions. However, the role of the Shashen-Maidong herb pair (SS-MD) for the management of HCC and the potential mechanisms has not been explicated. AIM OF THE STUDY The purpose of the research is to investigate the potential mechanism of the SS-MD herb pair for the management of HCC. MATERIALS AND METHODS The known components of the SS-MD herb pair were preliminarily identified using UPLC-Q-Orbitrap-MS/MS. The active ingredients of SS-MD herb pair in treating HCC were screened by constructing herb-component-target network, and the key therapeutic targets were explored by constructing a protein-protein interaction (PPI) network. The binding affinity of the key targets and components were validated through molecular docking and molecular dynamics simulations. GO biological function and KEGG pathway analyses were operated to elucidate the potential mechanisms of the SS-MD herb pair for the management of HCC. And the mechanism was verified in the tumor bearing mice model and cell co-culture experiments. RESULTS Network pharmacology prediction revealed 39 active components and 138 targets of the SS-MD herb pair for the treatment of HCC. KEGG analysis mainly focused on Notch signaling pathway and Apoptosis signaling pathway. The targets were enriched in biological functions of lymphocyte effector function and lymphocyte apoptosis. In vivo and in vitro experiments proved that the SS-MD herb pair can improve the proportion of CD8+T cells in the HCC immune microenvironment, regulate its subgroup distribution. SS-MD herb pair promoted CD8+T cells to secrete IL-2, TNF-α, IFN-γ, Granzyme B and Perforin, and inhibited apoptosis by regulating Notch signaling pathway. CONCLUSIONS This study identified the key components, targets, and signaling pathways of the SS-MD herb pair, confirm that SS-MD herb pair play an immunomodulatory role in treating HCC, provides theoretical support for the collaborative treatment of HCC with TCM.
Collapse
Affiliation(s)
- Yu-Qing Xie
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Feng-Na Yan
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Li-Hua Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Hui-Wen Yan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Ya-Xian Kong
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Zhi-Yun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
9
|
Sang M, Ge J, Ge J, Tang G, Wang Q, Wu J, Mao L, Ding X, Zhou X. Immune regulatory genes impact the hot/cold tumor microenvironment, affecting cancer treatment and patient outcomes. Front Immunol 2025; 15:1382842. [PMID: 39911580 PMCID: PMC11794490 DOI: 10.3389/fimmu.2024.1382842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
Background and aims Immunologically hot tumors, characterized by an inflamed tumor microenvironment (TME), contrast significantly with immunologically cold tumors. The identification of these tumor immune subtypes holds clinical significance, as hot tumors may exhibit improved prognoses and heightened responsiveness to checkpoint blockade therapy. Nevertheless, as yet there is no consensus regarding the clinically relevant definition of hot/cold tumors, and the influence of immune genes on the formation of hot/cold tumors remains poorly understood. Methods Data for 33 different types of cancer were obtained from The Cancer Genome Atlas database, and their immune composition was assessed using the CIBERSORT algorithm. Tumors were categorized as either hot or cold based on their distinct immune composition, ongoing immune response, and overall survival. A customized immunogram was created to identify important immunological characteristics. Kyoto Encyclopedia of Genes and Genomes and Hallmark pathway enrichment were evaluated through gene set variation analysis. Additionally, hub genes that regulate the tumor microenvironment were identified, and their expression patterns were analyzed using single-cell RNA sequencing. Furthermore, drug sensitivity and molecular docking analyses were performed to identify potential drug candidates capable of transforming cold tumors into hot tumors. For validation, a clinical cohort of patients diagnosed with pancreatic adenocarcinoma was examined using multiplex immunohistochemistry. Results We were able to differentiate between hot and cold tumors in various types of cancer (bladder urothelial carcinoma, pancreatic adenocarcinoma, and cervical squamous cell carcinoma) by analyzing the presence of CD8+ T cells, activated natural killer cells, and M2-type macrophages, as well as the cytolytic activity and T cell proliferation. Hub genes that regulate the TME, including PDCD1, CD276, and NT5E, were discovered. The increased expression of NT5E and its prognostic significance were confirmed through multiplex immunohistochemistry in pancreatic adenocarcinoma. Finally, dasatinib and tozasertib were identified as drug candidates capable of converting cold pancreatic adenocarcinoma tumors into hot tumors. Conclusion In this study, we developed a framework for discerning clinically significant immune subtypes across various cancer types, further identifying several potential targets for converting cold tumors into hot tumors to enhance anticancer treatment efficacy.
Collapse
Affiliation(s)
- Mengmeng Sang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Jia Ge
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Juan Ge
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- Department of Respiratory Medicine, Affiliated Nantong Hospital of Shanghai University, Nantong, China
| | - Gu Tang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Qiwen Wang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiarun Wu
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| | - Xiaoling Ding
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
10
|
Foffano L, Bertoli E, Bortolot M, Torresan S, De Carlo E, Stanzione B, Del Conte A, Puglisi F, Spina M, Bearz A. Immunotherapy in Oncogene-Addicted NSCLC: Evidence and Therapeutic Approaches. Int J Mol Sci 2025; 26:583. [PMID: 39859299 PMCID: PMC11765476 DOI: 10.3390/ijms26020583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality worldwide. The discovery of specific driver mutations has revolutionized the treatment landscape of oncogene-addicted NSCLC through targeted therapies, significantly improving patient outcomes. However, immune checkpoint inhibitors (ICIs) have demonstrated limited effectiveness in this context. Emerging evidence, though, reveals significant heterogeneity among different driver mutation subgroups, suggesting that certain patient subsets may benefit from ICIs, particularly when combined with other therapeutic modalities. In this review, we comprehensively examine the current evidence on the efficacy of immunotherapy in oncogene-addicted NSCLC. By analyzing recent clinical trials and preclinical studies, along with an overview of mechanisms that may reduce immunotherapy efficacy, we explored potential strategies to address these challenges, to provide insights that could optimize immunotherapy approaches and integrate them effectively into the treatment algorithm for oncogene-addicted NSCLC.
Collapse
Affiliation(s)
- Lorenzo Foffano
- Department of Medical Oncology, CRO di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (M.B.); (E.D.C.); (B.S.); (A.D.C.); (F.P.); (M.S.); (A.B.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Elisa Bertoli
- Department of Medical Oncology, CRO di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (M.B.); (E.D.C.); (B.S.); (A.D.C.); (F.P.); (M.S.); (A.B.)
| | - Martina Bortolot
- Department of Medical Oncology, CRO di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (M.B.); (E.D.C.); (B.S.); (A.D.C.); (F.P.); (M.S.); (A.B.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Sara Torresan
- Department of Medical Oncology, CRO di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (M.B.); (E.D.C.); (B.S.); (A.D.C.); (F.P.); (M.S.); (A.B.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Elisa De Carlo
- Department of Medical Oncology, CRO di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (M.B.); (E.D.C.); (B.S.); (A.D.C.); (F.P.); (M.S.); (A.B.)
| | - Brigida Stanzione
- Department of Medical Oncology, CRO di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (M.B.); (E.D.C.); (B.S.); (A.D.C.); (F.P.); (M.S.); (A.B.)
| | - Alessandro Del Conte
- Department of Medical Oncology, CRO di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (M.B.); (E.D.C.); (B.S.); (A.D.C.); (F.P.); (M.S.); (A.B.)
| | - Fabio Puglisi
- Department of Medical Oncology, CRO di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (M.B.); (E.D.C.); (B.S.); (A.D.C.); (F.P.); (M.S.); (A.B.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Michele Spina
- Department of Medical Oncology, CRO di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (M.B.); (E.D.C.); (B.S.); (A.D.C.); (F.P.); (M.S.); (A.B.)
| | - Alessandra Bearz
- Department of Medical Oncology, CRO di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (M.B.); (E.D.C.); (B.S.); (A.D.C.); (F.P.); (M.S.); (A.B.)
| |
Collapse
|
11
|
Xu JG, Chen S, He Y, Zhu X, Wang Y, Ye Z, Zhou JC, Wu X, Zhang L, Ren X, Jia H, Yu H, Wei X, Feng Y, Chen X, Cui X, Pan X, Wang S, Xia S, Shang H, Pu Y, Xu W, Li H, Chen Q, Chen Z, Wang M, Yan X, Shi H, Li M, Xia Y, Bellelli R, Dong S, He J, Huang J, Cai CL, Zhu X, Zhan Y, Wan L. An antibody cocktail targeting two different CD73 epitopes enhances enzyme inhibition and tumor control. Nat Commun 2024; 15:10872. [PMID: 39738003 DOI: 10.1038/s41467-024-55207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
CD73, an ectoenzyme responsible for adenosine production, is often elevated in immuno-suppressive tumor environments. Inhibition of CD73 activity holds great promise as a therapeutic strategy for CD73-expressing cancers. In this study, we have developed a therapeutic anti-human CD73 antibody cocktail, HB0045. HB0045 is a 1:1 mixture of two humanized monoclonal IgG1 antibodies (mAbs), HB0038 and HB0039. The cocktail not only harnesses the advantages of its parental mAbs in enzyme inhibition but also shows a significantly greater capability of promoting T cell proliferation in vitro. Structural analyses show that HB0045 effectively locks the CD73 dimer in a "partially open" non-active conformation through a double lock mechanism. In various animal models of syngeneic and xenograft tumors, HB0045 inhibits tumor growth more potently than the single mAbs. Collectively, our findings provide functional and structural insights into the mechanism of a CD73-targeting antibody cocktail.
Collapse
MESH Headings
- 5'-Nucleotidase/immunology
- 5'-Nucleotidase/antagonists & inhibitors
- Animals
- Humans
- Mice
- GPI-Linked Proteins/immunology
- GPI-Linked Proteins/antagonists & inhibitors
- GPI-Linked Proteins/metabolism
- Epitopes/immunology
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Cell Proliferation/drug effects
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/chemistry
- Neoplasms/immunology
- Neoplasms/drug therapy
- Female
- T-Lymphocytes/immunology
- T-Lymphocytes/drug effects
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/chemistry
- Mice, Inbred BALB C
- Combined Antibody Therapeutics
Collapse
Affiliation(s)
- Jin-Gen Xu
- Key Laboratory of Immune Response and Immunotherapy, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Scienes, Guangzhou, China
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Shi Chen
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Yang He
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Xi Zhu
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Yanting Wang
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Zhifeng Ye
- Key Laboratory of Immune Response and Immunotherapy, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Scienes, Guangzhou, China
| | - Jin Chuan Zhou
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Xuanhui Wu
- Key Laboratory of Immune Response and Immunotherapy, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Scienes, Guangzhou, China
| | - Lei Zhang
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Xiaochen Ren
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Huifeng Jia
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Haijia Yu
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Xiaoyue Wei
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Yujie Feng
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Xiaofang Chen
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Xiaopei Cui
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Xianfei Pan
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Shaojie Wang
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Simin Xia
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Hongjie Shang
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Yueqing Pu
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Wei Xu
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Haidong Li
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
| | - Qian Chen
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Zeyu Chen
- Biortus Biosciences Co. Ltd, Jiangyin, China
| | - Manfu Wang
- Biortus Biosciences Co. Ltd, Jiangyin, China
| | | | - Hui Shi
- Biortus Biosciences Co. Ltd, Jiangyin, China
| | - Mingwei Li
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Yisui Xia
- Medical School, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University, Shenzhen, China
| | - Roberto Bellelli
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Charterhouse Square, Barbican, London, UK
| | - Shunli Dong
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, China
| | - Jun He
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen-Leng Cai
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiangyang Zhu
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China.
| | - Yifan Zhan
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China.
| | - Li Wan
- Key Laboratory of Immune Response and Immunotherapy, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Scienes, Guangzhou, China.
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
12
|
Dai Y, Tian X, Ye X, Gong Y, Xu L, Jiao L. Role of the TME in immune checkpoint blockade resistance of non-small cell lung cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:52. [PMID: 39802954 PMCID: PMC11724356 DOI: 10.20517/cdr.2024.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Primary and secondary resistance to immune checkpoint blockade (ICB) reduces its efficacy. The mechanisms underlying immunotherapy resistance are highly complex. In non-small cell lung cancer (NSCLC), these mechanisms are primarily associated with the loss of programmed cell death-ligand 1 (PD-L1) expression, genetic mutations, circular RNA axis and transcription factor regulation, antigen presentation disorders, and dysregulation of signaling pathways. Additionally, alterations in the tumor microenvironment (TME) play a pivotal role in driving immunotherapy resistance. Primary resistance is mainly attributed to TME alterations, including mutations and co-mutations, modulation of T cell infiltration, enrichment of M2 tumor-associated macrophages (M2-TAMs) and mucosal-associated invariant T (MAIT) cells, vascular endothelial growth factor (VEGF), and pulmonary fibrosis. Acquired resistance mainly stems from changes in cellular infiltration patterns leading to "cold" or "hot" tumors, altered interferon (IFN) signaling pathway expression, involvement of extracellular vesicles (EVs), and oxidative stress responses, as well as post-treatment gene mutations and circadian rhythm disruption (CRD). This review presents an overview of various mechanisms underlying resistance to ICB, elucidates the alterations in the TME during primary, adaptive, and acquired resistance, and discusses existing strategies for overcoming ICB resistance.
Collapse
Affiliation(s)
- Yuening Dai
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xueqi Tian
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xuanting Ye
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yabin Gong
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ling Xu
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Translational Cancer Research for Integrated Chinese and Western Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Lijing Jiao
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Translational Cancer Research for Integrated Chinese and Western Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
13
|
Dong Y, Khan L, Yao Y. Immunological features of EGFR-mutant non-small cell lung cancer and clinical practice: a narrative review. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:289-298. [PMID: 39735443 PMCID: PMC11674437 DOI: 10.1016/j.jncc.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/02/2024] [Accepted: 06/15/2024] [Indexed: 12/31/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have significantly improved outcomes for patients with advanced driver-negative non-small cell lung cancer (NSCLC). However, targeted therapy remains the preferred treatment for advanced driver-positive NSCLC, including cases with epidermal growth factor receptor (EGFR) mutations. Considering the variability in EGFR-mutant NSCLC, including expression levels of programmed cell death ligand 1 (PD-L1), tumor mutation burden (TMB), and other immunological features, the application of immunotherapy in this group is still a subject of investigation. Therefore, we have summarized and analyzed the immunological characteristics and regulatory mechanisms of different EGFR mutations in NSCLC, as well as the current clinical application of immunotherapy in the EGFR-mutant population, to provide a reference for future research.
Collapse
Affiliation(s)
- Yi Dong
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liaqat Khan
- Research Center, Benazir Bhutto Hospital of Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Zhang A, Fan T, Liu Y, Yu G, Li C, Jiang Z. Regulatory T cells in immune checkpoint blockade antitumor therapy. Mol Cancer 2024; 23:251. [PMID: 39516941 PMCID: PMC11545879 DOI: 10.1186/s12943-024-02156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Regulatory T cells (Tregs), an essential component of the human immune system, are a heterogeneous group of T lymphocytes with the ability to suppress immune responses and maintain immune homeostasis. Recent evidence indicates that Tregs may impair antitumor immunity and facilitate cancer progression by weakening functions of effector T cells (Teffs). Consequently, targeting Tregs to eliminate them from tumor microenvironments to improve Teffs' activity could emerge as an effective strategy for cancer immunotherapy. This review outlines the biology of Tregs, detailing their origins, classification, and crucial markers. Our focus lies on the complex role of Tregs in cancer's development, progression and treatment, particularly on their suppressive role upon antitumor responses via multiple mechanisms. We delve into Tregs' involvement in immune checkpoint blockade (ICB) therapy, their dual effect on cancer immunotherapy and their potential biomarkers for ICB therapy effectiveness. We also summarize advances in the therapies that adjust Tregs to optimize ICB therapy, which may be crucial for devising innovative cancer treatment strategies.
Collapse
Affiliation(s)
- An Zhang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guanhua Yu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
15
|
Xie X, Yang M, Wei X, Chu H, Zhao W, Shen N. Dual immunostimulatory CD73 antibody-polymeric cytotoxic drug complex for triple negative breast cancer therapy. Acta Biomater 2024; 189:532-544. [PMID: 39341438 DOI: 10.1016/j.actbio.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Treatment of triple-negative breast cancer (TNBC) poses significant challenges due to its propensity for metastasis. A key impediment lies in the suppressive immune microenvironment, which fosters tumor progression. This study introduces an approach employing a dual immune-stimulatory CD73 antibody-polymeric cytotoxic drug complex (αCD73-PLG-MMAE). This complex is designed for targeted eradication of TNBC while modulating tumor immunity through mechanisms such as immunogenic cell death (ICD) and interference with the adenosine signaling pathway. By enhancing antitumor immune responses, this strategy offers a highly effective means of treating TNBC and mitigating metastasis. The complex is synthesized by combining αCD73 with poly(L-glutamic acid) (PLG) grafted Fc binding peptides (Fc-III-4C) and Val-Cit-PAB-monomethyl auristatin E (MMAE), exploiting the affinity between αCD73 and Fc-III-4C. αCD73 selectively targets CD73 molecules on both tumor and immune suppressive cells, thereby inhibiting the adenosine pathway. Meanwhile, Val-Cit-PAB-MMAE, activated by cathepsin B, triggers selective release of MMAE, inducing ICD in tumor cells. In a 4T1 tumor model, αCD73-PLG-MMAE significantly enhances drug accumulation in tumors by 4.13-fold compared to IgG-PLG-MMAE, leading to suppression of tumor growth and metastasis. Furthermore, it synergistically augments the antitumor effects of αPD-1, resulting in a tumor inhibition rate of 92 % as compared to 21 % with αPD-1 alone. This study thus presents a pioneering therapeutic strategy for TNBC, emphasizing the potential of targeted immunomodulation in cancer treatment. STATEMENT OF SIGNIFICANCE: Antibody-drug conjugate (ADC) therapy holds promise for treating triple-negative breast cancer (TNBC). However, the current ADC, sacituzumab govitecan, fails to overcome the crucial role of adenosine in the suppressive immune microenvironment characteristic of this "cold tumor". Here, we present a dual immune-stimulatory complex, αCD73-PLG-MMAE, which targets TNBC specifically and modulates tumor immunity through mechanisms such as immunogenic cell death (ICD) and interference with the adenosine signaling pathway. Thus, it kills tumor cells with cytotoxic drugs, comprehensively regulates immunosuppression, and restores a durable immune response. This study proposes an antibody-polymeric drug complex with immunomodulatory and immunoagonist roles, offering new insights into TNBC treatment.
Collapse
Affiliation(s)
- Xiao Xie
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Ming Yang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130061, China.
| | - Xue Wei
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Hongyu Chu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Weidong Zhao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Na Shen
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| |
Collapse
|
16
|
Berthe J, Poudel P, Segerer FJ, Jennings EC, Ng F, Surace M, Andoni A, Testori M, Saraiya M, Vuko M, Hessel H, Heininen-Brown M, Blando J, Jones EV, Willis SE, Galon J, van de Ven R, de Gruijl TD, Angell HK. Exploring the impact of tertiary lymphoid structures maturity in NSCLC: insights from TLS scoring. Front Immunol 2024; 15:1422206. [PMID: 39376565 PMCID: PMC11457083 DOI: 10.3389/fimmu.2024.1422206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Tertiary Lymphoid Structures (TLS) are lymphoid structures commonly associated with improved survival of cancer patients and response to immunotherapies. However, conflicting reports underscore the need to consider TLS heterogeneity and multiple features such as TLS size, composition, and maturation status, when assessing their functional impact. With the aim of gaining insights into TLS biology and evaluating the prognostic impact of TLS maturity in Non-Small Cell Lung Carcinoma (NSCLC), we developed a multiplex immunofluorescent (mIF) panel including T cell (CD3, CD8), B cell (CD20), Follicular Dendritic cell (FDC) (CD21, CD23) and mature dendritic cell (DC-LAMP) markers. We deployed this panel across a cohort of primary tumor resections from NSCLC patients (N=406) and established a mIF image analysis workstream to specifically detect TLS structures and evaluate the density of each cell phenotype. We assessed the prognostic significance of TLS size, number, and composition, to develop a TLS scoring system representative of TLS biology within a tumor. TLS relative area, (total TLS area divided by the total tumor area), was the most prognostic TLS feature (C-index: 0.54, p = 0.04). CD21 positivity was a marker driving the favorable prognostic impact, where CD21+ CD23- B cells (C-index: 0.57, p = 0.04) and CD21+ CD23- FDC (C-index: 0.58, p = 0.01) were the only prognostic cell phenotypes in TLS. Combining the three most robust prognostic TLS features: TLS relative area, the density of B cells, and FDC CD21+ CD23- we generated a TLS scoring system that demonstrated strong prognostic value in NSCLC when considering the effect of age, sex, histology, and smoking status. This TLS Score also demonstrated significant association with Immunoscore, EGFR mutational status and gene expression-based B-cell and TLS signature scores. It was not correlated with PD-L1 status in tumor cells or immune cells. In conclusion, we generated a prognostic TLS Score representative of the TLS heterogeneity and maturity undergoing within NSCLC tissues. This score could be used as a tool to explore how TLS presence and maturity impact the organization of the tumor microenvironment and support the discovery of spatial biomarker surrogates of TLS maturity, that could be used in the clinic.
Collapse
Affiliation(s)
- Julie Berthe
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Pawan Poudel
- Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Felix J. Segerer
- Computational Pathology, Oncology R&D, AstraZeneca, Munich, Germany
| | - Emily C. Jennings
- Oncology Data Science, Oncology R&D, AstraZeneca, Waltham, MA, United States
| | - Felicia Ng
- Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Michael Surace
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Alma Andoni
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Marco Testori
- Computational Pathology, Oncology R&D, AstraZeneca, Munich, Germany
| | - Megha Saraiya
- Computational Pathology, Oncology R&D, AstraZeneca, Munich, Germany
| | - Miljenka Vuko
- Computational Pathology, Oncology R&D, AstraZeneca, Munich, Germany
| | - Harald Hessel
- Computational Pathology, Oncology R&D, AstraZeneca, Munich, Germany
| | | | - Jorge Blando
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Emma V. Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sophie E. Willis
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Sorbonne Université, Université Paris Cité, Centre de Recherche des Cordeliers, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Rieneke van de Ven
- Department of Otolaryngology, Head and Neck Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology Theme, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Tanja D. de Gruijl
- Cancer Center Amsterdam, Cancer Biology and Immunology Theme, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Helen K. Angell
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
17
|
Jing H, Cao X, Li K, Liu Y, Meng M, Liu S, Ye M, Zhang J, Wu Y. PLA2G2D promotes immune escape in non-small cell lung cancer by regulating T cell immune function through PD-L1-expressing extracellular vesicles. Scand J Immunol 2024; 100:e13393. [PMID: 38922971 DOI: 10.1111/sji.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024]
Abstract
It is urgent to explore factors affecting immunotherapy efficacy to benefit non-small cell lung cancer (NSCLC) patient survival. Bioinformatics predicted genes associated with programmed cell death ligand 1 (PD-L1) expression and analysed phospholipase A2 group IID (PLA2G2D) expression in NSCLC. BODIPY 493/503 dye staining and kits detected lipids, triglycerides, and phospholipids in H1299 cells, respectively. Extracellular vesicles (EVs) were extracted for morphology and size assessment using electron microscopy. Western blot assayed CD9, CD63, HSP90, EVs-PD-L1, PD-L1, and PLA2G2D expression. CCK-8, LDH, and ELISA tested proliferation and toxicity of CD8+ T cells, interleukin-2, and interferon-gamma secretion, respectively. PLA2G2D, PD-L1, and Ki67 expression was detected by immunohistochemistry. Immunofluorescence assayed PLA2G2D localisation and CD8+ T cell content. Flow cytometry assessed PD-L1 and CD8 expression. In NSCLC, upregulated EVs-PD-L1 and clinical characteristics showed a strong correlation. H1299 cells with overexpression PD-L1 significantly reduced proliferation, toxicity of CD8+ T cells, and interleukin-2 and interferon-gamma levels. Bioinformatics revealed positive correlations between PLA2G2D and overexpressed PD-L1. PLA2G2D was expressed in macrophages and dendritic cells in NSCLC tissue. Overexpression PLA2G2D (oe-PLA2G2D) increased lipids, triglycerides, and phospholipids contents in H1299 cells. oe-PLA2G2D significantly reduced proliferation, toxicity of CD8+ T cells, and interleukin-2 and interferon-gamma levels. si-PD-L1 restored inhibition of oe-PLA2G2D on CD8+ T cells. oe-PLA2G2D significantly increased mice tumour volume and weight, upregulated expression of blood EVs-PD-L1 and tissue PD-L1, PLA2G2D, Ki67, and decreased CD8+ T cell content. PLA2G2D facilitated immune escape in NSCLC by regulating CD8+ T cell immune function by upregulating EVs-PD-L1.
Collapse
Affiliation(s)
- Hui Jing
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
- Department of Respiratory and Critical Care Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, China
| | - Xubo Cao
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Ke Li
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Yuanyuan Liu
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Meng Meng
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Shuan Liu
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Mengjie Ye
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Jinghao Zhang
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Yanmin Wu
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
18
|
Fan G, Xie T, Tang L, Li L, Han X, Shi Y. The co-location of CD14+APOE+ cells and MMP7+ tumour cells contributed to worse immunotherapy response in non-small cell lung cancer. Clin Transl Med 2024; 14:e70009. [PMID: 39187937 PMCID: PMC11347392 DOI: 10.1002/ctm2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
Intra-tumour immune infiltration is a crucial determinant affecting immunotherapy response in non-small cell lung cancer (NSCLC). However, its phenotype and related spatial structure have remained elusive. To overcome these restrictions, we undertook a comprehensive study comprising spatial transcriptomic (ST) data (28 712 spots from six samples). We identified two distinct intra-tumour infiltration patterns: immune exclusion (characterised by myeloid cells) and immune activation (characterised by plasma cells). The immune exclusion and immune activation signatures showed adverse and favourable roles in NSCLC patients' survival, respectively. Notably, CD14+APOE+ cells were recognised as the main cell type in immune exclusion samples, with increased epithelial‒mesenchymal transition and decreased immune activities. The co-location of CD14+APOE+ cells and MMP7+ tumour cells was observed in both ST and bulk transcriptomics data, validated by multiplex immunofluorescence performed on 20 NSCLC samples. The co-location area exhibited the upregulation of proliferation-related pathways and hypoxia activities. This co-localisation inhibited T-cell infiltration and the formation of tertiary lymphoid structures. Both CD14+APOE+ cells and MMP7+ tumour cells were associated with worse survival. In an immunotherapy cohort from the ORIENT-3 clinical trial, NSCLC patients who responded unfavourably exhibited higher infiltration of CD14+APOE+ cells and MMP7+ tumour cells. Within the co-location area, the MK, SEMA3 and Macrophage migration inhibitory factor (MIF) signalling pathway was most active in cell‒cell communication. This study identified immune exclusion and activation patterns in NSCLC and the co-location of CD14+APOE+ cells and MMP7+ tumour cells as contributors to immune resistance.
Collapse
Affiliation(s)
- Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted DrugsBeijingChina
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted DrugsBeijingChina
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted DrugsBeijingChina
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative DrugsChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted DrugsBeijingChina
| |
Collapse
|
19
|
Zhang C, Sun YX, Yi DC, Jiang BY, Yan LX, Liu ZD, Peng LS, Zhang WJ, Sun H, Chen ZY, Wang DH, Peng D, Chen SA, Li SQ, Zhang Z, Tan XY, Yang J, Zhao ZY, Zhang WT, Su J, Li YS, Liao RQ, Dong S, Xu CR, Zhou Q, Yang XN, Wu YL, Zhang ZM, Zhong WZ. Neoadjuvant sintilimab plus chemotherapy in EGFR-mutant NSCLC: Phase 2 trial interim results (NEOTIDE/CTONG2104). Cell Rep Med 2024; 5:101615. [PMID: 38897205 PMCID: PMC11293361 DOI: 10.1016/j.xcrm.2024.101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
The clinical efficacy of neoadjuvant immunotherapy plus chemotherapy remains elusive in localized epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC). Here, we report interim results of a Simon's two-stage design, phase 2 trial using neoadjuvant sintilimab with carboplatin and nab-paclitaxel in resectable EGFR-mutant NSCLC. All 18 patients undergo radical surgery, with one patient experiencing surgery delay. Fourteen patients exhibit confirmed radiological response, with 44% achieving major pathological response (MPR) and no pathological complete response (pCR). Similar genomic alterations are observed before and after treatment without influencing the efficacy of subsequent EGFR-tyrosine kinase inhibitors (TKIs) in vitro. Infiltration and T cell receptor (TCR) clonal expansion of CCR8+ regulatory T (Treg)hi/CXCL13+ exhausted T (Tex)lo cells define a subtype of EGFR-mutant NSCLC highly resistant to immunotherapy, with the phenotype potentially serving as a promising signature to predict immunotherapy efficacy. Informed circulating tumor DNA (ctDNA) detection in EGFR-mutant NSCLC could help identify patients nonresponsive to neoadjuvant immunochemotherapy. These findings provide supportive data for the utilization of neoadjuvant immunochemotherapy and insight into immune resistance in EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Pulmonary Surgery, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Yu-Xuan Sun
- School of Life Sciences, Peking University, Beijing, China
| | - Ding-Cheng Yi
- School of Life Sciences, Peking University, Beijing, China
| | - Ben-Yuan Jiang
- Department of Pulmonary Surgery, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Li-Xu Yan
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ze-Dao Liu
- School of Life Sciences, Peking University, Beijing, China
| | - Li-Shan Peng
- Department of Pulmonary Surgery, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wen-Jie Zhang
- School of Life Sciences, Peking University, Beijing, China
| | - Hao Sun
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhi-Yong Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Department of Radiation Therapy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | | | - Di Peng
- Burning Rock Biotech, Guangzhou, China
| | | | - Si-Qi Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ze Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Xiao-Yue Tan
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jie Yang
- Department of Pulmonary Surgery, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhang-Yi Zhao
- School of Life Sciences, Peking University, Beijing, China
| | - Wan-Ting Zhang
- School of Life Sciences, Peking University, Beijing, China
| | - Jian Su
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yang-Si Li
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ri-Qiang Liao
- Department of Pulmonary Surgery, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Song Dong
- Department of Pulmonary Surgery, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chong-Rui Xu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xue-Ning Yang
- Department of Pulmonary Surgery, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ze-Min Zhang
- School of Life Sciences, Peking University, Beijing, China; BIOPIC, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Wen-Zhao Zhong
- Department of Pulmonary Surgery, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Huang H, Zhu X, Yu Y, Li Z, Yang Y, Xia L, Lu S. EGFR mutations induce the suppression of CD8 + T cell and anti-PD-1 resistance via ERK1/2-p90RSK-TGF-β axis in non-small cell lung cancer. J Transl Med 2024; 22:653. [PMID: 39004699 PMCID: PMC11246587 DOI: 10.1186/s12967-024-05456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) patients with EGFR mutations exhibit an unfavorable response to immune checkpoint inhibitor (ICI) monotherapy, and their tumor microenvironment (TME) is usually immunosuppressed. TGF-β plays an important role in immunosuppression; however, the effects of TGF-β on the TME and the efficacy of anti-PD-1 immunotherapy against EGFR-mutated tumors remain unclear. METHODS Corresponding in vitro studies used the TCGA database, clinical specimens, and self-constructed mouse cell lines with EGFR mutations. We utilized C57BL/6N and humanized M-NSG mouse models bearing EGFR-mutated NSCLC to investigate the effects of TGF-β on the TME and the combined efficacy of TGF-β blockade and anti-PD-1 therapy. The changes in immune cells were monitored by flow cytometry. The correlation between TGF-β and immunotherapy outcomes of EGFR-mutated NSCLC was verified by clinical samples. RESULTS We identified that TGF-β was upregulated in EGFR-mutated NSCLC by EGFR activation and subsequent ERK1/2-p90RSK phosphorylation. TGF-β directly inhibited CD8+ T cell infiltration, proliferation, and cytotoxicity both in vitro and in vivo, but blocking TGF-β did not suppress the growth of EGFR-mutated tumors in vivo. Anti-TGF-β antibody combined with anti-PD-1 antibody significantly inhibited the proliferation of recombinant EGFR-mutated tumors in C57BL/6N mice, which was superior to their monotherapy. Mechanistically, the combination of anti-TGF-β and anti-PD-1 antibodies significantly increased the infiltration of CD8+ T cells and enhanced the anti-tumor function of CD8+ T cells. Moreover, we found that the expression of TGF-β1 in EGFR-TKI resistant cell lines was significantly higher than that in parental cell lines. The combination of anti-TGF-β and nivolumab significantly inhibited the proliferation of EGFR-TKI resistant tumors in humanized M-NSG mice and prolonged their survival. CONCLUSIONS Our results reveal that TGF-β expression is upregulated in NSCLC with EGFR mutations through the EGFR-ERK1/2-p90RSK signaling pathway. High TGF-β expression inhibits the infiltration and anti-tumor function of CD8+ T cells, contributing to the "cold" TME of EGFR-mutated tumors. Blocking TGF-β can reshape the TME and enhance the therapeutic efficacy of anti-PD-1 in EGFR-mutated tumors, which provides a potential combination immunotherapy strategy for advanced NSCLC patients with EGFR mutations.
Collapse
Affiliation(s)
- Huayan Huang
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, West Huaihai Road 241, Shanghai, 200030, China
| | - Xiaokuan Zhu
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, West Huaihai Road 241, Shanghai, 200030, China
| | - Yongfeng Yu
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, West Huaihai Road 241, Shanghai, 200030, China
| | - Ziming Li
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, West Huaihai Road 241, Shanghai, 200030, China
| | - Yi Yang
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, West Huaihai Road 241, Shanghai, 200030, China
| | - Liliang Xia
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, West Huaihai Road 241, Shanghai, 200030, China.
| | - Shun Lu
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, West Huaihai Road 241, Shanghai, 200030, China.
| |
Collapse
|
21
|
Wu Y, Yu G, Jin K, Qian J. Advancing non-small cell lung cancer treatment: the power of combination immunotherapies. Front Immunol 2024; 15:1349502. [PMID: 39015563 PMCID: PMC11250065 DOI: 10.3389/fimmu.2024.1349502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) remains an unsolved challenge in oncology, signifying a substantial global health burden. While considerable progress has been made in recent years through the emergence of immunotherapy modalities, such as immune checkpoint inhibitors (ICIs), monotherapies often yield limited clinical outcomes. The rationale behind combining various immunotherapeutic or other anticancer agents, the mechanistic underpinnings, and the clinical evidence supporting their utilization is crucial in NSCLC therapy. Regarding the synergistic potential of combination immunotherapies, this study aims to provide insights to help the landscape of NSCLC treatment and improve clinical outcomes. In addition, this review article discusses the challenges and considerations of combination regimens, including toxicity management and patient selection.
Collapse
Affiliation(s)
- Yuanlin Wu
- Department of Thoracic Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, China
| |
Collapse
|
22
|
Wang S, Kong Z, Shi Y, Shao C, Wang W, Su Z, Liu J, Zhou Y, Fei X, Cheng B, Chen J, Lu Y, Xiao J. Discovery of Small and Bifunctional Molecules Targeting PD-L1/CD73 for Cancer Dual Immunotherapy. J Med Chem 2024; 67:9447-9464. [PMID: 38748913 DOI: 10.1021/acs.jmedchem.4c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In this work, a series of bifunctional PD-L1/CD73 (cluster of differentiation 73) small-molecule inhibitors were designed and synthesized. Among them, CC-5 showed the strongest PD-L1 inhibitory effects with an IC50 of 6 nM and potent anti-CD73 activity with an IC50 of 0.773 μM. The high PD-L1/CD73 inhibitory activity of CC-5 was further confirmed by SPR assays with KD of 182 nM for human PD-L1 and 101 nM for CD73, respectively. Importantly, CC-5 significantly suppressed tumor growth in a CT26 and B16-F10 tumor model with TGI of 64.3% and 39.6%, respectively. Immunohistochemical (IHC) and flow cytometry analysis of tumor-infiltrating lymphocytes (TILs) indicated that CC-5 exerted anticancer effects via activating the tumor immune microenvironment. Collectively, CC-5 represents the first dual PD-L1/CD73 inhibitor worthy of further research as a bifunctional immunotherapeutic agent.
Collapse
Affiliation(s)
- Shuanghu Wang
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhihua Kong
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou 528200, China
| | - Yaru Shi
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Chuxiao Shao
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Wei Wang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhenhong Su
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Department of Pharmacy, School of Medicine, Hubei Polytechnic University, Huangshi, Hubei 435003, China
| | - Jin Liu
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Department of Pharmacy, School of Medicine, Hubei Polytechnic University, Huangshi, Hubei 435003, China
| | - Yingxing Zhou
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Department of Pharmacy, School of Medicine, Hubei Polytechnic University, Huangshi, Hubei 435003, China
| | - Xiaoting Fei
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Department of Pharmacy, School of Medicine, Hubei Polytechnic University, Huangshi, Hubei 435003, China
| | - Binbin Cheng
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Department of Pharmacy, School of Medicine, Hubei Polytechnic University, Huangshi, Hubei 435003, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yiyu Lu
- Oncology Department, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
23
|
Bell HN, Zou W. Beyond the Barrier: Unraveling the Mechanisms of Immunotherapy Resistance. Annu Rev Immunol 2024; 42:521-550. [PMID: 38382538 PMCID: PMC11213679 DOI: 10.1146/annurev-immunol-101819-024752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Immune checkpoint blockade (ICB) induces a remarkable and durable response in a subset of cancer patients. However, most patients exhibit either primary or acquired resistance to ICB. This resistance arises from a complex interplay of diverse dynamic mechanisms within the tumor microenvironment (TME). These mechanisms include genetic, epigenetic, and metabolic alterations that prevent T cell trafficking to the tumor site, induce immune cell dysfunction, interfere with antigen presentation, drive heightened expression of coinhibitory molecules, and promote tumor survival after immune attack. The TME worsens ICB resistance through the formation of immunosuppressive networks via immune inhibition, regulatory metabolites, and abnormal resource consumption. Finally, patient lifestyle factors, including obesity and microbiome composition, influence ICB resistance. Understanding the heterogeneity of cellular, molecular, and environmental factors contributing to ICB resistance is crucial to develop targeted therapeutic interventions that enhance the clinical response. This comprehensive overview highlights key mechanisms of ICB resistance that may be clinically translatable.
Collapse
Affiliation(s)
- Hannah N Bell
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Medical School, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Graduate Programs in Cancer Biology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA; ,
| | - Weiping Zou
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Medical School, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA; ,
- Graduate Programs in Cancer Biology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
24
|
Wang Y, Zhang Y, Ren N, Li F, Lu L, Zhao X, Zhou Z, Gao M, Wang M. Repeat biopsy versus initial biopsy in terms of complication risk factors and clinical outcomes for patients with non-small cell lung cancer: a comparative study of 113 CT-guided needle biopsy of lung lesions. Front Oncol 2024; 14:1367603. [PMID: 38803532 PMCID: PMC11129557 DOI: 10.3389/fonc.2024.1367603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Objectives The safety and feasibility of repeat biopsy after systemic treatment for non-small cell lung cancer have received extensive attention in recent years. The purpose of this research was to compare complication rates between initial biopsy and rebiopsy in non-small cell lung cancer patients with progressive disease and to assess complication risk factors and clinical results after rebiopsy. Methods The study included 113 patients initially diagnosed with non-small cell lung cancer who underwent lung biopsy at initial biopsy and rebiopsy after progression while on epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) and/or chemotherapy from January 2018 to December 2021. We compared the incidence of complications between the initial biopsy and rebiopsy and analyzed the predictors factors that influenced complications in patients who underwent rebiopsy. Results The successful rate of rebiopsy was 88.5% (100/113). With the exception of two cases where lung adenocarcinoma changed into small cell lung cancer with gefitinib treatment, 98 individuals retained their initial pathological type. The secondary EGFR T790M mutation accounts for 55.6% of acquired resistance. The total number of patients with complications in initial biopsy was 25 (22.1%) and 37 (32.7%) in the rebiopsy. The incidence of pulmonary hemorrhage increased from 7.1% at the initial biopsy to 10.6% at rebiopsy, while the incidence of pneumothorax increased from 14.2% to 20.4%. Compared with the initial biopsy, the incidence of overall complications, parenchymal hemorrhage, and pneumothorax increased by 10.6%, 3.5%, and 6.2%, respectively. In all four evaluations (pneumorrhagia, pneumothorax, pleural reaction, and overall complication), there were no significant differences between the rebiopsy and initial biopsy (all p > 0.05). The multivariate logistic regression analysis suggested that male sex (odds ratio [OR] = 5.064, p = 0.001), tumor size ≤ 2 cm (OR = 3.367, p = 0.013), EGFR-TKIs with chemotherapy (OR = 3.633, p =0.023), and transfissural approach (OR = 7.583, p = 0.026) were independent risk factors for overall complication after rebiopsy. Conclusion Compared with the initial biopsy, the complication rates displayed a slight, but not significant, elevation in rebiopsy. Male sex, tumor size ≤ 2 cm, transfissural approach, and EGFR-TKIs combined with chemotherapy were independent risk factors for rebiopsy complications.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Medical Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongyuan Zhang
- Department of Medical Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nana Ren
- Department of Medical Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangting Li
- Department of Medical Imaging, Zhengzhou People’s Hospital, Zhengzhou, China
| | - Lin Lu
- Department of Medical Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Zhao
- Department of Medical Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Zhou
- Department of Medical Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengyu Gao
- Department of Medical Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Wang
- Department of Medical Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Qian X, Chen Z, Ji XM, Ji YL, Wang J, Liu YC, Zhou XC, Li QL, Li CY, Zhang AQ. Qingfei mixture modulates the immune responses in lung cancer through modulating mTOR signaling and gut microbiota-derived short-chain fatty acids. Heliyon 2024; 10:e29404. [PMID: 38660245 PMCID: PMC11041045 DOI: 10.1016/j.heliyon.2024.e29404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Lung cancer ranks among the primary contributors to cancer-related fatalities on a global scale. Multiple research investigations have demonstrated that there exists a dysbiosis within the intestinal bacteria and short-chain fatty acids (SCFAs) is linked with immune responses in lung cancer. Qingfei mixture (QFM) has been widely used in treating lung cancer, yet the active ingredients and roles of the QFM on immune responses by targeting gut microbiota remain to be elucidated. The chemical constituents of QFM were qualitatively examined by UPLC/Q-TOF-MS. Additionally, we evaluated the therapeutic impact of the organic substance QFM on lung cancer, aiming to elucidate its mechanisms for improving the tumor-immune microenvironment. Herein, we constructed a Lewis lung carcinoma (LLC)-bearing mice model with QFM treatment to observe tumor growth and immune cell changes. Then, the feces were collected and a combinatory study using metagenomes, non-targeted metabonomics, and targeted metabonomics of SCFAs was performed. In vitro experiments have been conducted to estimate the roles of acetate and sodium propionate in CD8+ T cells. Furthermore, we treated tumor-bearing mice with QFM, QFM + MHY1485 (an mTOR activator), and QFM + an antibiotic mixture (ABX) to explore the potential therapeutic benefit of regulation of the tumor microenvironment. A total of 96 compounds were obtained from QFM by UPLC/Q-TOF-MS. Besides, the findings demonstrated that QFM exhibited significant efficacy against lung cancer, manifesting in reduced tumor growth and improved immune responses. In investigating its mechanisms, we integrated gut microbiota sequencing and fecal metabolomics, revealing that QFM effectively restored disruptions in gut microbiota and SCFAs in mice with lung cancer. QFM, acetate, or sodium propionate contributed to the up-regulation of IFN-γ, Gzms-B, perforin, IL-17, IL-6, IL-12, TNF-α expressions and decreased HDAC and IL-10 levels in vitro and in vivo. Moreover, MHY1485 and ABX weakened the effects of QFM on immunomodulation. Collectively, these results suggest that QFM may facilitate immune responses in the LLC-bearing mice via regulating the gut microbiota-derived SCFAs at least partially through targeting the mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiang Qian
- Zhejiang Cancer Hospital, Zhejiang, China
| | - Zhuo Chen
- Zhejiang Cancer Hospital, Zhejiang, China
| | - Xu-Ming Ji
- Zhejiang Chinese Medical University, Zhejiang, China
| | | | - Jin Wang
- Zhejiang Cancer Hospital, Zhejiang, China
| | - Yuan-Cai Liu
- Zhejiang Chinese Medical University, Zhejiang, China
| | | | | | - Chang-Yu Li
- Zhejiang Chinese Medical University, Zhejiang, China
| | | |
Collapse
|
26
|
Sunaga N, Miura Y, Masuda T, Sakurai R. Role of Epiregulin in Lung Tumorigenesis and Therapeutic Resistance. Cancers (Basel) 2024; 16:710. [PMID: 38398101 PMCID: PMC10886815 DOI: 10.3390/cancers16040710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Epidermal growth factor (EGF) signaling regulates multiple cellular processes and plays an essential role in tumorigenesis. Epiregulin (EREG), a member of the EGF family, binds to the epidermal growth factor receptor (EGFR) and ErbB4, and it stimulates EGFR-related downstream pathways. Increasing evidence indicates that both the aberrant expression and oncogenic function of EREG play pivotal roles in tumor development in many human cancers, including non-small cell lung cancer (NSCLC). EREG overexpression is induced by activating mutations in the EGFR, KRAS, and BRAF and contributes to the aggressive phenotypes of NSCLC with oncogenic drivers. Recent studies have elucidated the roles of EREG in a tumor microenvironment, including the epithelial-mesenchymal transition, angiogenesis, immune evasion, and resistance to anticancer therapy. In this review, we summarized the current understanding of EREG as an oncogene and discussed its oncogenic role in lung tumorigenesis and therapeutic resistance.
Collapse
Affiliation(s)
- Noriaki Sunaga
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Yosuke Miura
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Tomomi Masuda
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Reiko Sakurai
- Oncology Center, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| |
Collapse
|
27
|
Wang R, Liu Z, Wang T, Zhang J, Liu J, Zhou Q. Landscape of adenosine pathway and immune checkpoint dual blockade in NSCLC: progress in basic research and clinical application. Front Immunol 2024; 15:1320244. [PMID: 38348050 PMCID: PMC10859755 DOI: 10.3389/fimmu.2024.1320244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Lung cancer poses a global threat to human health, while common cancer treatments (chemotherapy and targeted therapies) have limited efficacy. Immunotherapy offers hope of sustained remission for many patients with lung cancer, but a significant proportion of patients fail to respond to treatment owing to immune resistance. There is extensive evidence to suggest the immunosuppressive microenvironment as the cause of this treatment failure. Numerous studies have suggested that the adenosine (ADO) pathway plays an important role in the formation of an immunosuppressive microenvironment and may be a key factor in the development of immune resistance in EGFR-mutant cell lung cancer. Inhibition of this pathway may therefore be a potential target to achieve effective reversal of ADO pathway-mediated immune resistance. Recently, an increasing number of clinical trials have begun to address the broad prospects of using the ADO pathway as an immunotherapeutic strategy. However, few researchers have summarized the theoretical basis and clinical rationale of the ADO pathway and immune checkpoint dual blockade in a systematic and detailed manner, particularly in lung cancer. As such, a timely review of the potential value of the ADO pathway in combination with immunotherapy strategies for lung cancer is warranted. This comprehensive review first describes the role of ADO in the formation of a lung tumor-induced immunosuppressive microenvironment, discusses the key mechanisms of ADO inhibitors in reversing lung immunosuppression, and highlights recent evidence from preclinical and clinical studies of ADO inhibitors combined with immune checkpoint blockers to improve the lung cancer immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Rulan Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenkun Liu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiabi Zhang
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| | - Jiewei Liu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Guo H, Zhang J, Qin C, Yan H, Luo X, Zhou H. Advances and challenges of first-line immunotherapy for non-small cell lung cancer: A review. Medicine (Baltimore) 2024; 103:e36861. [PMID: 38241591 PMCID: PMC10798763 DOI: 10.1097/md.0000000000036861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/14/2023] [Indexed: 01/21/2024] Open
Abstract
The current use of immune checkpoint inhibitors (ICIs) for the treatment of lung cancer has dramatically changed the clinical strategy for metastatic non-small cell lung cancer (mNSCLC). As a result of great achievements in clinical trials, 6 programmed death-1 inhibitors (sintilimab, camrelizumab, tislelizumab, pembrolizumab, cemiplimab, and nivolumab), 2 programmed death-ligand 1 inhibitors (sugemalimab and atezolizumab), and 1 cytotoxic T lymphocyte-associated antigen-4 inhibitor (ipilimumab) have been approved as first-line treatment for mNSCLC by the US Food and Drug Administration. Recently, research on ICIs has shifted from a large number of second-line to first-line settings in clinical trials. Results from first-line trials have shown that almost all driver-negative mNSCLC are treated with ICIs and significantly prolong patient survival; however, the low response rate and adverse reactions to immunotherapy remain to be addressed. Here, we summarize the use of ICIs, including monotherapy and combination therapy, in the first-line treatment of mNSCLC in recent years and discuss the low response rate and adverse reactions of ICIs as well as the challenges and expectations for the first-line treatment of mNSCLC in the future.
Collapse
Affiliation(s)
- Haiyang Guo
- Institute of Surgery, School of Medicine and Life Sciences, Chengdu University of TCM, Chengdu, China
- Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Jun Zhang
- Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Chao Qin
- Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Hang Yan
- Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Xinyue Luo
- Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Haining Zhou
- Institute of Surgery, School of Medicine and Life Sciences, Chengdu University of TCM, Chengdu, China
- Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| |
Collapse
|
29
|
Vaishnavi A, Kinsey CG, McMahon M. Preclinical Modeling of Pathway-Targeted Therapy of Human Lung Cancer in the Mouse. Cold Spring Harb Perspect Med 2024; 14:a041385. [PMID: 37788883 PMCID: PMC10760064 DOI: 10.1101/cshperspect.a041385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Animal models, particularly genetically engineered mouse models (GEMMs), continue to have a transformative impact on our understanding of the initiation and progression of hematological malignancies and solid tumors. Furthermore, GEMMs have been employed in the design and optimization of potent anticancer therapies. Increasingly, drug responses are assessed in mouse models either prior, or in parallel, to the implementation of precision medical oncology, in which groups of patients with genetically stratified cancers are treated with drugs that target the relevant oncoprotein such that mechanisms of drug sensitivity or resistance may be identified. Subsequently, this has led to the design and preclinical testing of combination therapies designed to forestall the onset of drug resistance. Indeed, mouse models of human lung cancer represent a paradigm for how a wide variety of GEMMs, driven by a variety of oncogenic drivers, have been generated to study initiation, progression, and maintenance of this disease as well as response to drugs. These studies have now expanded beyond targeted therapy to include immunotherapy. We highlight key aspects of the relationship between mouse models and the evolution of therapeutic approaches, including oncogene-targeted therapies, immunotherapies, acquired drug resistance, and ways in which successful antitumor strategies improve on efficiently translating preclinical approaches into successful antitumor strategies in patients.
Collapse
Affiliation(s)
- Aria Vaishnavi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Conan G Kinsey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84112, USA
| | - Martin McMahon
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Dermatology, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
30
|
LIU Y, MIAO J. [Progress of Immunotherapy in EGFR-mutated Advanced Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 26:934-942. [PMID: 38163979 PMCID: PMC10767652 DOI: 10.3779/j.issn.1009-3419.2023.106.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Indexed: 01/03/2024]
Abstract
Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are currently the first-line standard of care for patients with non-small cell lung cancer (NSCLC) that harbor EGFR mutations. Nevertheless, resistance to EGFR-TKIs is inevitable. In recent years, although immune checkpoint inhibitors (ICIs) have significantly shifted the treatment paradigm in advanced NSCLC without driver mutation, clinical benefits of these agents are limited in patients with EGFR-mutated NSCLC. Compared with wild-type tumors, tumors with EGFR mutations show more heterogeneity in the expression level of programmed cell death ligand 1 (PD-L1), tumor mutational burden (TMB), and other tumor microenvironment (TME) characteristics. Whether ICIs are suitable for NSCLC patients with EGFR mutations is still worth exploring. In this review, we summarized the clinical data with regard to the efficacy of ICIs in patients with EGFR-mutated NSCLC and deciphered the unique TME in EGFR-mutated NSCLC.
.
Collapse
|
31
|
Tang R, Wang H, Tang M. Roles of tissue-resident immune cells in immunotherapy of non-small cell lung cancer. Front Immunol 2023; 14:1332814. [PMID: 38130725 PMCID: PMC10733439 DOI: 10.3389/fimmu.2023.1332814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common and lethal type of lung cancer, with limited treatment options and poor prognosis. Immunotherapy offers hope for improving the survival and quality of life of NSCLC patients, but its efficacy depends on the tumor immune microenvironment (TME). Tissue-resident immune cells are a subset of immune cells that reside in various tissues and organs, and play an important role in fighting tumors. In NSCLC, tissue-resident immune cells are heterogeneous in their distribution, phenotype, and function, and can either promote or inhibit tumor progression and response to immunotherapy. In this review, we summarize the current understanding on the characteristics, interactions, and roles of tissue-resident immune cells in NSCLC. We also discuss the potential applications of tissue-resident immune cells in NSCLC immunotherapy, including immune checkpoint inhibitors (ICIs), other immunomodulatory agents, and personalized cell-based therapies. We highlight the challenges and opportunities for developing targeted therapies for tissue-resident immune cells and optimizing existing immunotherapeutic approaches for NSCLC patients. We propose that tissue-resident immune cells are a key determinant of NSCLC outcome and immunotherapy response, and warrant further investigation in future research.
Collapse
Affiliation(s)
- Rui Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Haitao Wang
- The School of Clinical Medical Sciences, Southwest Medical University, Sichuan, Luzhou, China
| | - Mingxi Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Yaan People’s Hospital (Yaan Hospital of West China Hospital of Sichuan University), Yaan, Sichuan, China
| |
Collapse
|
32
|
Kou L, Xie X, Chen X, Li B, Li J, Li Y. The progress of research on immune checkpoint inhibitor resistance and reversal strategies for hepatocellular carcinoma. Cancer Immunol Immunother 2023; 72:3953-3969. [PMID: 37917364 PMCID: PMC10992589 DOI: 10.1007/s00262-023-03568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in humans, which is prone to recurrence and metastasis and has a poor prognosis. The occurrence and progression of HCC are closely related to immune elimination, immune homeostasis, and immune escape of the immune system. In recent years, immunotherapy, represented by immune checkpoint inhibitors (ICIs), has shown powerful anti-tumor capabilities in HCC patients. However, there are still some HCC patients who cannot benefit from ICIs treatment due to their innate or acquired drug resistance. Therefore, it is of great practical significance to explore the possible mechanisms of resistance to ICIs in HCC and to use them as a target to design strategies to reverse resistance, to overcome drug resistance in HCC and to improve the prognosis of patients. This article summarizes the possible primary (tumor microenvironment alteration, and signaling pathways, etc.) and acquired (immune checkpoint upregulation) resistance mechanisms in patients with HCC treated with ICIs, and based on this, discusses the status and effectiveness of combination drug strategy to reverse drug resistance, to provide a reference for subsequent related studies and decisions.
Collapse
Affiliation(s)
- Liqiu Kou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaolu Xie
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiu Chen
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Bo Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Li
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
33
|
Shi B, Ge F, Cai L, Yang Y, Guo X, Wu R, Fan Z, Cao B, Wang N, Si Y, Lin X, Dong W, Sun H. Significance of NotchScore and JAG1 in predicting prognosis and immune response of low-grade glioma. Front Immunol 2023; 14:1247288. [PMID: 38022677 PMCID: PMC10679421 DOI: 10.3389/fimmu.2023.1247288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Low-grade glioma (LGG) is a prevalent malignant tumor in the intracranial region. Despite the advancements in treatment methods for this malignancy over the past decade, significant challenges still persist in the form of drug resistance and tumor recurrence. The Notch signaling pathway plays essential roles in many physiological processes as well as in cancer development. However, the significance of the pathway and family genes in LGG are poorly understood. Methods We conducted gene expression profiling analysis using the TCGA dataset to investigate the gene set associated with the Notch signaling pathway. we have proposed a metric called "NotchScore" that quantifies the strength of the Notch signaling pathway and enables us to assess its significance in predicting prognosis and immune response in LGG. We downregulated JAG1 in low-grade gliomas to assess its influence on the proliferation and migration of these tumors. Ultimately, we determined the impact of the transcription factor VDR on the transcription of PDL1 through chip-seq data analysis. Results Our findings indicate that tumors with a higher NotchScore, exhibit poorer prognosis, potentially due to their ability to evade the anti-tumor effects of immune cells by expressing immune checkpoints. Among the genes involved in the Notch signaling pathway, JAG1 has emerged as the most representative in terms of capturing the characteristics of both NotchScore and Notch pathways. The experimental results demonstrate that silencing JAG1 yielded a significant decrease in tumor cell proliferation in LGG cell lines. Our study revealed mechanisms by which tumors evade the immune system through the modulation of PDL1 transcription levels via the PI3K-Akt signaling pathway. Additionally, JAG1 potentially influences PDL1 in LGG by regulating the PI3K-Akt signaling pathway and the expression of the transcription factor VDR. Discussion These findings contribute to our understanding of immune evasion by tumors in LGG. The insights gained from this research may have implications for the development of therapeutic interventions for LGG.
Collapse
Affiliation(s)
- Bo Shi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- School of Life Science, Liaoning Normal University, Dalian, Liaoning, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, Jiangsu, China
| | - Fei Ge
- Department of Gastroenterology, Haian Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nantong, Jiangsu, China
| | - Liangliang Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, Jiangsu, China
| | - Yi Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, Jiangsu, China
| | - Xiaohui Guo
- School of Life Science, Liaoning Normal University, Dalian, Liaoning, China
| | - Rui Wu
- School of Life Science, Liaoning Normal University, Dalian, Liaoning, China
| | - Zhehao Fan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, Jiangsu, China
| | - Binjie Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, Jiangsu, China
| | - Ning Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, Jiangsu, China
| | - Yue Si
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, Jiangsu, China
| | - Xinyue Lin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, Jiangsu, China
| | - Weibing Dong
- School of Life Science, Liaoning Normal University, Dalian, Liaoning, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, Jiangsu, China
| |
Collapse
|
34
|
Chen Q, Yin H, He J, Xie Y, Wang W, Xu H, Zhang L, Shi C, Yu J, Wu W, Liu L, Pu N, Lou W. Tumor Microenvironment Responsive CD8 + T Cells and Myeloid-Derived Suppressor Cells to Trigger CD73 Inhibitor AB680-Based Synergistic Therapy for Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302498. [PMID: 37867243 PMCID: PMC10667825 DOI: 10.1002/advs.202302498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/20/2023] [Indexed: 10/24/2023]
Abstract
CD73 plays a critical role in the pathogenesis and immune escape in pancreatic ductal adenocarcinoma (PDAC). AB680, an exceptionally potent and selective inhibitor of CD73, is administered in an early clinical trial, in conjunction with gemcitabine and anti-PD-1 therapy, for the treatment of PDAC. Nevertheless, the specific therapeutic efficacy and immunoregulation within the microenvironment of AB680 monotherapy in PDAC have yet to be fully elucidated. In this study, AB680 exhibits a significant effect in augmenting the infiltration of responsive CD8+ T cells and prolongs the survival in both subcutaneous and orthotopic murine PDAC models. In parallel, it also facilitates chemotaxis of myeloid-derived suppressor cells (MDSCs) by tumor-derived CXCL5 in an AMP-dependent manner, which may potentially contribute to enhanced immunosuppression. The concurrent administration of AB680 and PD-1 blockade, rather than gemcitabine, synergistically restrain tumor growth. Notably, gemcitabine weakened the efficacy of AB680, which is dependent on CD8+ T cells. Finally, the supplementation of a CXCR2 inhibitor is validated to further enhance the therapeutic efficacy when combined with AB680 plus PD-1 inhibitor. These findings systematically demonstrate the efficacy and immunoregulatory mechanism of AB680, providing a novel, efficient, and promising immunotherapeutic combination strategy for PDAC.
Collapse
Affiliation(s)
- Qiangda Chen
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Hanlin Yin
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Junyi He
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Yuqi Xie
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Wenquan Wang
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Huaxiang Xu
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Lei Zhang
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Chenye Shi
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Jun Yu
- Departments of Medicine and OncologyJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | - Wenchuan Wu
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Liang Liu
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Ning Pu
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Wenhui Lou
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
35
|
Attili I, Passaro A, Corvaja C, Trillo Aliaga P, Del Signore E, Spitaleri G, de Marinis F. Immune checkpoint inhibitors in EGFR-mutant non-small cell lung cancer: A systematic review. Cancer Treat Rev 2023; 119:102602. [PMID: 37481836 DOI: 10.1016/j.ctrv.2023.102602] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Since their first introduction in clinical practice, immune checkpoint inhibitors showed limited benefit in patients with NSCLC harboring EGFR mutations. With the rationale of increasing immune activation, combinatorial ICI strategies have been evaluated also in this subgroup of patients. METHODS We performed a systematic review on efficacy of ICI-based strategies in EGFR-mutant NSCLC according to most updated evidence. RESULTS Overall, ICI monotherapy and ICI plus chemotherapy confirm to be ineffective in EGFR-mutant NSCLC, whereas the combination of ICI with antiangiogenic and chemotherapy showed promising results. Limited data are available with alternative ICI combination strategies, driven by strong biological rationale of modulating the tumor immune microenvironment. CONCLUSIONS To date, the available evidence do not support the use of ICI in patients with NSCLC harboring EGFR mutations. Clinical trials are ongoing to define which is the best timing and exploring novel combinations with ICI in this specific disease.
Collapse
Affiliation(s)
- Ilaria Attili
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti 435, 20141 Milan, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti 435, 20141 Milan, Italy.
| | - Carla Corvaja
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti 435, 20141 Milan, Italy
| | - Pamela Trillo Aliaga
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti 435, 20141 Milan, Italy
| | - Ester Del Signore
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti 435, 20141 Milan, Italy
| | - Gianluca Spitaleri
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti 435, 20141 Milan, Italy
| | - Filippo de Marinis
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti 435, 20141 Milan, Italy
| |
Collapse
|
36
|
Ploeg EM, Samplonius DF, Xiong X, Ke X, Hendriks MAJM, Britsch I, van Wijngaarden AP, Zhang H, Helfrich W. Bispecific antibody CD73xEGFR more selectively inhibits the CD73/adenosine immune checkpoint on cancer cells and concurrently counteracts pro-oncogenic activities of CD73 and EGFR. J Immunother Cancer 2023; 11:e006837. [PMID: 37734877 PMCID: PMC10514638 DOI: 10.1136/jitc-2023-006837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND CD73 is an ecto-enzyme that is involved in the conversion of pro-inflammatory extracellular ATP (eATP) excreted by cancer cells under stress to anti-inflammatory adenosine (ADO). A broad variety of solid cancer types was shown to exploit CD73 overexpression as a suppressive immune checkpoint. Consequently, CD73-antagonistic antibodies, most notably oleclumab, are currently evaluated in several multicenter trials for clinical applicability. However, the efficacy of conventional monospecific CD73-inhibiting antibodies may be limited due to on-target/off-tumor binding to CD73 on normal cells. Therefore, a novel approach that more selectively directs CD73 immune checkpoint inhibition towards cancer cells is warranted. METHODS To address this issue, we constructed a novel tetravalent bispecific antibody (bsAb), designated bsAb CD73xEGFR. Subsequently, the anticancer activities of bsAb CD73xEGFR were evaluated using in vitro and in vivo tumor models. RESULTS In vitro treatment of various carcinoma cell types with bsAb CD73xEGFR potently inhibited the enzyme activity of CD73 (~71%) in an EGFR-directed manner. In this process, bsAb CD73xEGFR induced rapid internalization of antigen/antibody complexes, which resulted in a prolonged concurrent displacement of both CD73 and EGFR from the cancer cell surface. In addition, bsAb CD73xEGFR sensitized cancer to the cytotoxic activity of various chemotherapeutic agents and potently inhibited the proliferative/migratory capacity (~40%) of cancer cells. Unexpectedly, we uncovered that treatment of carcinoma cells with oleclumab appeared to enhance several pro-oncogenic features, including upregulation and phosphorylation of EGFR, tumor cell proliferation (~20%), and resistance towards cytotoxic agents and ionizing radiation (~39%). Importantly, in a tumor model using immunocompetent BALB/c mice inoculated with syngeneic CD73pos/EGFRpos CT26 cancer cells, treatment with bsAb CD73xEGFR outperformed oleclumab (65% vs 31% tumor volume reduction). Compared with oleclumab, treatment with bsAb CD73xEGFR enhanced the intratumoral presence of CD8pos T cells and M1 macrophages. CONCLUSIONS BsAb CD73xEGFR outperforms oleclumab as it inhibits the CD73/ADO immune checkpoint in an EGFR-directed manner and concurrently counteracts several oncogenic activities of EGFR and CD73. Therefore, bsAb CD73xEGFR may be of significant clinical potential for various forms of difficult-to-treat solid cancer types.
Collapse
Affiliation(s)
- Emily Maria Ploeg
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Douwe Freerk Samplonius
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Xiao Xiong
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
- Faculty of Medical Science and Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, Guangdong, China
| | - Xiurong Ke
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | | | - Isabel Britsch
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne Paulien van Wijngaarden
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hao Zhang
- Department of General Surgery, Jinan University First Affiliated Hospital, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China
| | - Wijnand Helfrich
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
37
|
Shi E, Wu Z, Karaoglan BS, Schwenk-Zieger S, Kranz G, Abdul Razak N, Reichel CA, Canis M, Baumeister P, Zeidler R, Gires O. 5'-Ectonucleotidase CD73/NT5E supports EGFR-mediated invasion of HPV-negative head and neck carcinoma cells. J Biomed Sci 2023; 30:72. [PMID: 37620936 PMCID: PMC10463398 DOI: 10.1186/s12929-023-00968-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) of malignant cells is a driving force of disease progression in human papillomavirus-negative (HPV-negative) head and neck squamous cell carcinomas (HNSCC). Sustained hyper-activation of epidermal growth factor receptor (EGFR) induces an invasion-promoting subtype of EMT (EGFR-EMT) characterized by a gene signature ("'EGFR-EMT_Signature'") comprising 5´-ectonucleotidase CD73. Generally, CD73 promotes immune evasion via adenosine (ADO) formation and associates with EMT and metastases. However, CD73 regulation through EGFR signaling remains under-explored and targeting options are amiss. METHODS CD73 functions in EGFR-mediated tumor cell dissemination were addressed in 2D and 3D cellular models of migration and invasion. The novel antagonizing antibody 22E6 and therapeutic antibody Cetuximab served as inhibitors of CD73 and EGFR, respectively, in combinatorial treatment. Specificity for CD73 and its role as effector or regulator of EGFR-EMT were assessed upon CD73 knock-down and over-expression. CD73 correlation to tumor budding was studied in an in-house primary HNSCC cohort. Expression correlations, and prognostic and predictive values were analyzed using machine learning-based algorithms and Kaplan-Meier survival curves in single cell and bulk RNA sequencing datasets. RESULTS CD73/NT5E is induced by the EGF/EGFR-EMT-axis and blocked by Cetuximab and MEK inhibitor. Inhibition of CD73 with the novel antagonizing antibody 22E6 specifically repressed EGFR-dependent migration and invasion of HNSCC cells in 2D. Cetuximab and 22E6 alone reduced local invasion in a 3D-model. Interestingly, combining inefficient low-dose concentrations of Cetuximab and 22E6 revealed highly potent in invasion inhibition, substantially reducing the functional IC50 of Cetuximab regarding local invasion. A role for CD73 as an effector of EGFR-EMT in local invasion was further supported by knock-down and over-expression experiments in vitro and by high expression in malignant cells budding from primary tumors. CD73 expression correlated with EGFR pathway activity, EMT, and partial EMT (p-EMT) in malignant single HNSCC cells and in large patient cohorts. Contrary to published data, CD73 was not a prognostic marker of overall survival (OS) in the TCGA-HNSCC cohort when patients were stratified for HPV-status. However, CD73 prognosticated OS of oral cavity carcinomas. Furthermore, CD73 expression levels correlated with response to Cetuximab in HPV-negative advanced, metastasized HNSCC patients. CONCLUSIONS In sum, CD73 is an effector of EGF/EGFR-mediated local invasion and a potential therapeutic target and candidate predictive marker for advanced HPV-negative HNSCC.
Collapse
Affiliation(s)
- Enxian Shi
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Zhengquan Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Birnur Sinem Karaoglan
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabina Schwenk-Zieger
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Gisela Kranz
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Nilofer Abdul Razak
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christoph A Reichel
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Philipp Baumeister
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Reinhard Zeidler
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
- Institute of Structural Biology, Research Unit Therapeutic Antibodies, Helmholtz Munich, Feodor-Lynen-Str. 21, 81377, Munich, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
38
|
Bach N, Winzer R, Tolosa E, Fiedler W, Brauneck F. The Clinical Significance of CD73 in Cancer. Int J Mol Sci 2023; 24:11759. [PMID: 37511518 PMCID: PMC10380759 DOI: 10.3390/ijms241411759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The search for new and effective treatment targets for cancer immunotherapy is an ongoing challenge. Alongside the more established inhibitory immune checkpoints, a novel potential target is CD73. As one of the key enzymes in the purinergic signalling pathway CD73 is responsible for the generation of immune suppressive adenosine. The expression of CD73 is higher in tumours than in the corresponding healthy tissues and associated with a poor prognosis. CD73, mainly by the production of adenosine, is critical in the suppression of an adequate anti-tumour immune response, but also in promoting cancer cell proliferation, tumour growth, angiogenesis, and metastasis. The upregulation of CD73 and generation of adenosine by tumour or tumour-associated immune cells is a common resistance mechanism to many cancer treatments such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Therefore, the inhibition of CD73 represents a new and promising approach to increase therapy efficacy. Several CD73 inhibitors have already been developed and successfully demonstrated anti-cancer activity in preclinical studies. Currently, clinical studies evaluate CD73 inhibitors in different therapy combinations and tumour entities. The initial results suggest that inhibiting CD73 could be an effective option to augment anti-cancer immunotherapeutic strategies. This review provides an overview of the rationale behind the CD73 inhibition in different treatment combinations and the role of CD73 as a prognostic marker.
Collapse
Affiliation(s)
- Niklas Bach
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Riekje Winzer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Franziska Brauneck
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
39
|
Loh J, Low JL, Sachdeva M, Low PQ, Wong RSJ, Huang Y, Chia PL, Soo RA. Management of Oncogene Driven Locally Advanced Unresectable Non-small Cell Lung Cancer. Expert Rev Anticancer Ther 2023; 23:913-926. [PMID: 37551698 DOI: 10.1080/14737140.2023.2245140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION The current standard of care of locally advanced non-small cell lung cancer (LA-NSCLC) is concurrent chemoradiation, followed by consolidation durvalumab. However, there is evidence that the efficacy of chemoradiation and also immunotherapy in many oncogene-positive LA-NSCLC are attenuated, and dependent on the subgroup. AREAS COVERED We will firstly review the outcomes of standard-of-care therapy in oncogene-driven LA-NSCLC. We looked at various oncogene driven subgroups and the tumor microenvironment that may explain differential response. Finally, we review the role of targeted therapy in the treatment of LA-NSCLC. EXPERT OPINION Each oncogene-positive subgroup should be treated as its own entity, and continued efforts should be undertaken to incorporate targeted therapy, which is likely to yield superior survival outcomes if trial design can be optimized and toxicities can be managed.
Collapse
Affiliation(s)
- Jerold Loh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Jia Li Low
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Manavi Sachdeva
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Peter Qj Low
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Rachel Su Jen Wong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Yiqing Huang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Puey Ling Chia
- Department of Medical Oncology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| |
Collapse
|
40
|
Bendell J, LoRusso P, Overman M, Noonan AM, Kim DW, Strickler JH, Kim SW, Clarke S, George TJ, Grimison PS, Barve M, Amin M, Desai J, Wise-Draper T, Eck S, Jiang Y, Khan AA, Wu Y, Martin P, Cooper ZA, Elgeioushi N, Mueller N, Kumar R, Patel SP. First-in-human study of oleclumab, a potent, selective anti-CD73 monoclonal antibody, alone or in combination with durvalumab in patients with advanced solid tumors. Cancer Immunol Immunother 2023; 72:2443-2458. [PMID: 37016126 PMCID: PMC10264501 DOI: 10.1007/s00262-023-03430-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/19/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND CD73 upregulation in tumors leads to local immunosuppression. This phase I, first-in-human study evaluated oleclumab (MEDI9447), an anti-CD73 human IgG1λ monoclonal antibody, alone or with durvalumab in patients with advanced colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDAC), or epidermal growth factor receptor-mutant non-small-cell lung cancer (NSCLC). METHODS Patients received oleclumab 5-40 mg/kg (dose-escalation) or 40 mg/kg (dose-expansion) intravenously every 2 weeks (Q2W), alone (escalation only) or with durvalumab 10 mg/kg intravenously Q2W. RESULTS 192 patients were enrolled, 66 during escalation and 126 (42 CRC, 42 PDAC, 42 NSCLC) during expansion. No dose-limiting toxicities occurred during escalation. In the monotherapy and combination therapy escalation cohorts, treatment-related adverse events (TRAEs) occurred in 55 and 54%, respectively, the most common being fatigue (17 and 25%). In the CRC, PDAC, and NSCLC expansion cohorts, 60, 57, and 45% of patients had TRAEs, respectively; the most common were fatigue (15%), diarrhea (9%), and rash (7%). Free soluble CD73 and CD73 expression on peripheral T cells and tumor cells showed sustained decreases, accompanied by reduced CD73 enzymatic activity in tumor cells. Objective response rate during escalation was 0%. Response rates in the CRC, PDAC, and NSCLC expansion cohorts were 2.4% (1 complete response [CR]), 4.8% (1 CR, 1 partial response [PR]), and 9.5% (4 PRs), respectively; 6-month progression-free survival rates were 5.4, 13.2, and 16.0%. CONCLUSIONS Oleclumab ± durvalumab had a manageable safety profile, with pharmacodynamic activity reflecting oleclumab's mechanism of action. Evidence of antitumor activity was observed in tumor types that are generally immunotherapy resistant. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov, NCT02503774; date of registration, July 17, 2015.
Collapse
Affiliation(s)
- Johanna Bendell
- Sarah Cannon Research Institute, Nashville, TN, USA.
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | | | - Michael Overman
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne M Noonan
- Ohio State University, Wexner Medical Center, James Comprehensive Cancer Center, Columbus, OH, USA
| | - Dong-Wan Kim
- Seoul National University Hospital, Seoul, South Korea
| | | | | | - Stephen Clarke
- Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Thomas J George
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | | | - Minal Barve
- Mary Crowley Cancer Research, Dallas, TX, USA
| | - Manik Amin
- Washington University School of Medicine, St. Louis, MO, USA
- Dartmouth-Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Jayesh Desai
- Royal Melbourne Hospital, Parkville, VIC, Australia
| | | | | | - Yu Jiang
- AstraZeneca, Gaithersburg, MD, USA
| | | | | | | | | | | | | | | | - Sandip Pravin Patel
- Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, USA
| |
Collapse
|
41
|
Qi Y, Li M, Li S, Zeng D, Xiao Y, Li J, Ye Q, Bremer E, Zhang GJ. Notch1 promotes resistance to cisplatin by up-regulating Ecto-5'-nucleotidase (CD73) in triple-negative breast cancer cells. Cell Death Discov 2023; 9:204. [PMID: 37391408 DOI: 10.1038/s41420-023-01487-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive molecular subtype that due to lack of druggable targets is treated with chemotherapy as standard of care. However, TNBC is prone to chemoresistance and associates with poor survival. The aim of this study was to explore the molecular mechanisms of chemoresistance in TNBC. Firstly, we found that the mRNA expression of Notch1 and CD73 in cisplatin-treated patient material associated with poor clinical outcome. Further, both were upregulated at the protein level in cisplatin-resistant TNBC cell lines. Overexpression of Notch1 intracellular domain (termed N1ICD) increased expression of CD73, whereas knockdown of Notch1 decreased CD73 expression. Using chromatin immunoprecipitation and Dual-Luciferase assay it was identified that N1ICD directly bound the CD73 promoter and activated transcription. Taken together, these findings suggest CD73 as a direct downstream target of Notch1, providing an additional layer to the mechanisms underlying Notch1-mediated cisplatin resistance in TNBC.
Collapse
Affiliation(s)
- Yuzhu Qi
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361101, Xiamen, China
- Department Of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Meifang Li
- The first affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Shaozhong Li
- Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 516621, Shanwei, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yingsheng Xiao
- Department of Thyroid Surgery, Shantou Central Hospital, Shantou, China
| | - Jiwei Li
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qianqian Ye
- Department of Pathology, Maternal and Child Health Hospital of Ganzhou, Ganzhou, Jiangxi, China
| | - Edwin Bremer
- Department Of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Guo-Jun Zhang
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361101, Xiamen, China.
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 361101, Xiamen, China.
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 361101, Xiamen, China.
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiang'an Hospital of Xiamen University, 361101, Xiamen, China.
- Central Laboratory, Xiang'an Hospital of Xiamen University, 361101, Xiamen, China.
| |
Collapse
|
42
|
Li LC, Chen XW, Fang L, Jian CL, Yu YX, Liao XY, Sun JG. YAP1 as a Novel Negative Biomarker of Immune Checkpoint Inhibitors for EGFR-Mutant Non-Small-Cell Lung Cancer. Can Respir J 2023; 2023:4689004. [PMID: 37388902 PMCID: PMC10307059 DOI: 10.1155/2023/4689004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/10/2023] [Accepted: 05/03/2023] [Indexed: 07/01/2023] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have become a standard care in non-small-cell lung cancer (NSCLC). However, its application to epidermal growth factor receptor (EGFR)-mutant NSCLC patients is confronted with drug resistance. This study aimed to clarify the potential role of Yes1-associated transcriptional regulator (YAP1) in ICIs treatment for EGFR-mutant NSCLC population. Methods All the clinical data of NSCLC were downloaded from Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) for GSE11969 and GSE72094. Based on YAP1 expression, all the NSCLC patients including the EGFR-mutant and EGFR-wildtype (WT) patients were divided into two groups, YAP1_High and YAP1_Low. Using cBioPortal, genetic alterations were analyzed for identification of immunogenicity in EGFR-mutant NSCLC. MR analysis was used to analyze the hub gene of EGFR. The infiltration of immune cells and the expression of the identified tumor-associated antigens were identified with TIMER. By graph learning-based dimensionality reduction analysis, the immune landscape was visualized. Moreover, survival analysis was performed to verify the predictive value of YAP1 in ICIs treatment for EGFR-mutant NSCLC population using Ren's research data (NCT03513666). Results YAP1 was a poor prognostic factor of EGFR-mutant NSCLC population rather than lung adenocarcinoma (LUAD) patients. MR analysis revealed that the EGFR gene regulated YAP1 expression. YAP1 was identified as a hub gene closely associated with immunosuppressive microenvironment and poor prognosis in EGFR-mutant NSCLC population in TCGA LUAD. Tumors with YAP1_High showed an immune-"cold" and immunosuppressive phenotype, whereas those with YAP1_Low demonstrated an immune-"hot" and immunoactive phenotype. More importantly, it was verified that YAP1_High subpopulation had a significantly shorter progression-free survival (PFS) and overall survival (OS) after ICIs treatment in EGFR-mutant NSCLC patients in the clinical trial. Conclusions YAP1 mediates immunosuppressive microenvironment and poor prognosis in EGFR-mutant NSCLC population. YAP1 is a novel negative biomarker of ICIs treatment in EGFR-mutant NSCLC population. Clinical Trials. This trial is registered with NCT03513666.
Collapse
Affiliation(s)
- Ling-Chen Li
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Xie-Wan Chen
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- Medical English Department, College of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Ling Fang
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Chun-Li Jian
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yong-Xin Yu
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Xing-Yun Liao
- Department of Medical Oncology, Cancer Hospital, Chongqing University, Chongqing 400030, China
| | - Jian-Guo Sun
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
43
|
Kwok HH, Yang J, Lam DCL. Breaking the Invisible Barriers: Unleashing the Full Potential of Immune Checkpoint Inhibitors in Oncogene-Driven Lung Adenocarcinoma. Cancers (Basel) 2023; 15:2749. [PMID: 37345086 DOI: 10.3390/cancers15102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
The rapid development of targeted therapy paved the way toward personalized medicine for advanced non-small cell lung cancer (NSCLC). Lung adenocarcinoma (ADC) harboring actionable genetic alternations including epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), Kirsten rat sarcoma virus (ALK) and c-ros oncogene 1 (ROS1) treated with tyrosine kinase inhibitors (TKIs) incurred lesser treatment toxicity but better therapeutic responses compared with systemic chemotherapy. Angiogenesis inhibitors targeting vascular endothelial growth factor (VEGF) have also shown an increase in overall survival (OS) for NSCLC patients. However, acquired resistance to these targeted therapies remains a major obstacle to long-term maintenance treatment for lung ADC patients. The emergence of immune checkpoint inhibitors (ICIs) against programmed cell death protein 1 (PD-1) or programmed cell death-ligand 1 (PD-L1) has changed the treatment paradigm for NSCLC tumors without actionable genetic alternations. Clinical studies have suggested, however, that there are no survival benefits with the combination of targeted therapy and ICIs. In this review, we will summarize and discuss the current knowledge on the tumor immune microenvironment and the dynamics of immune phenotypes, which could be crucial in extending the applicability of ICIs for this subpopulation of lung ADC patients.
Collapse
Affiliation(s)
- Hoi-Hin Kwok
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jiashuang Yang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David Chi-Leung Lam
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
44
|
Horinouchi H. Another Pirate in the Red Ocean? CD73-Targeted Therapy in EGFR-Mutated NSCLC. J Thorac Oncol 2023; 18:552-555. [PMID: 37087115 DOI: 10.1016/j.jtho.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 04/24/2023]
Affiliation(s)
- Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan.
| |
Collapse
|
45
|
Fatima Z, Abonofal A, Stephen B. Targeting Cancer Metabolism to Improve Outcomes with Immune Checkpoint Inhibitors. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2023; 6:91-102. [PMID: 37214204 PMCID: PMC10195018 DOI: 10.36401/jipo-22-27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 05/24/2023]
Abstract
Immune checkpoint inhibitors have revolutionized the treatment paradigm of several cancers. However, not all patients respond to treatment. Tumor cells reprogram metabolic pathways to facilitate growth and proliferation. This shift in metabolic pathways creates fierce competition with immune cells for nutrients in the tumor microenvironment and generates by-products harmful for immune cell differentiation and growth. In this review, we discuss these metabolic alterations and the current therapeutic strategies to mitigate these alterations to metabolic pathways that can be used in combination with checkpoint blockade to offer a new path forward in cancer management.
Collapse
Affiliation(s)
- Zainab Fatima
- Department of Hospice and Palliative Care, Virginia Commonwealth University, Richmond, VA, USA
| | - Abdulrahman Abonofal
- Department of Medicine, Section of Hematology/Oncology, West Virginia University, Morgantown, WV, USA
| | - Bettzy Stephen
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
46
|
Villaruz LC, Blumenschein GR, Otterson GA, Leal TA. Emerging therapeutic strategies for enhancing sensitivity and countering resistance to programmed cell death protein 1 or programmed death-ligand 1 inhibitors in non-small cell lung cancer. Cancer 2023; 129:1319-1350. [PMID: 36848319 PMCID: PMC11234508 DOI: 10.1002/cncr.34683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/27/2022] [Accepted: 12/13/2022] [Indexed: 03/01/2023]
Abstract
The availability of agents targeting the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint has transformed treatment of advanced and/or metastatic non-small cell lung cancer (NSCLC). However, a substantial proportion of patients treated with these agents do not respond or experience only a brief period of clinical benefit. Even among those whose disease responds, many subsequently experience disease progression. Consequently, novel approaches are needed that enhance antitumor immunity and counter resistance to PD-(L)1 inhibitors, thereby improving and/or prolonging responses and patient outcomes, in both PD-(L)1 inhibitor-sensitive and inhibitor-resistant NSCLC. Mechanisms contributing to sensitivity and/or resistance to PD-(L)1 inhibitors in NSCLC include upregulation of other immune checkpoints and/or the presence of an immunosuppressive tumor microenvironment, which represent potential targets for new therapies. This review explores novel therapeutic regimens under investigation for enhancing responses to PD-(L)1 inhibitors and countering resistance, and summarizes the latest clinical evidence in NSCLC.
Collapse
Affiliation(s)
- Liza C Villaruz
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - George R Blumenschein
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gregory A Otterson
- The Ohio State University-James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Ticiana A Leal
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
47
|
Ursino C, Mouric C, Gros L, Bonnefoy N, Faget J. Intrinsic features of the cancer cell as drivers of immune checkpoint blockade response and refractoriness. Front Immunol 2023; 14:1170321. [PMID: 37180110 PMCID: PMC10169604 DOI: 10.3389/fimmu.2023.1170321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Immune checkpoint blockade represents the latest revolution in cancer treatment by substantially increasing patients' lifetime and quality of life in multiple neoplastic pathologies. However, this new avenue of cancer management appeared extremely beneficial in a minority of cancer types and the sub-population of patients that would benefit from such therapies remain difficult to predict. In this review of the literature, we have summarized important knowledge linking cancer cell characteristics with the response to immunotherapy. Mostly focused on lung cancer, our objective was to illustrate how cancer cell diversity inside a well-defined pathology might explain sensitivity and refractoriness to immunotherapies. We first discuss how genomic instability, epigenetics and innate immune signaling could explain differences in the response to immune checkpoint blockers. Then, in a second part we detailed important notions suggesting that altered cancer cell metabolism, specific oncogenic signaling, tumor suppressor loss as well as tight control of the cGAS/STING pathway in the cancer cells can be associated with resistance to immune checkpoint blockade. At the end, we discussed recent evidences that could suggest that immune checkpoint blockade as first line therapy might shape the cancer cell clones diversity and give rise to the appearance of novel resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Julien Faget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Univ Montpellier, Institut du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
48
|
Patel SA, Nilsson MB, Yang Y, Le X, Tran H, Elamin YY, Yu X, Zhang F, Poteete A, Ren X, Shen L, Wang J, Moghaddam SJ, Cascone T, Curran M, Gibbons DL, Heymach JV. IL6 Mediates Suppression of T- and NK-cell Function in EMT-associated TKI-resistant EGFR-mutant NSCLC. Clin Cancer Res 2023; 29:1292-1304. [PMID: 36595561 PMCID: PMC10290888 DOI: 10.1158/1078-0432.ccr-22-3379] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE Patients with advanced non-small cell lung cancer (NSCLC) harboring activating EGFR mutations are initially responsive to tyrosine kinase inhibitors (TKI). However, therapeutic resistance eventually emerges, often via secondary EGFR mutations or EGFR-independent mechanisms such as epithelial-to-mesenchymal transition. Treatment options after EGFR-TKI resistance are limited as anti-PD-1/PD-L1 inhibitors typically display minimal benefit. Given that IL6 is associated with worse outcomes in patients with NSCLC, we investigate whether IL6 in part contributes to this immunosuppressed phenotype. EXPERIMENTAL DESIGN We utilized a syngeneic genetically engineered mouse model (GEMM) of EGFR-mutant NSCLC to investigate the effects of IL6 on the tumor microenvironment and the combined efficacy of IL6 inhibition and anti-PD-1 therapy. Corresponding in vitro studies used EGFR-mutant human cell lines and clinical specimens. RESULTS We identified that EGFR-mutant tumors which have oncogene-independent acquired resistance to EGFR-TKIs were more mesenchymal and had markedly enhanced IL6 secretion. In EGFR-mutant GEMMs, IL6 depletion enhanced activation of infiltrating natural killer (NK)- and T-cell subpopulations and decreased immunosuppressive regulatory T and Th17 cell populations. Inhibition of IL6 increased NK- and T cell-mediated killing of human osimertinib-resistant EGFR-mutant NSCLC tumor cells in cell culture. IL6 blockade sensitized EGFR-mutant GEMM tumors to PD-1 inhibitors through an increase in tumor-infiltrating IFNγ+ CD8+ T cells. CONCLUSIONS These data indicate that IL6 is upregulated in EGFR-mutant NSCLC tumors with acquired EGFR-TKI resistance and suppressed T- and NK-cell function. IL6 blockade enhanced antitumor immunity and efficacy of anti-PD-1 therapy warranting future clinical combinatorial investigations.
Collapse
Affiliation(s)
- Sonia A. Patel
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77130
| | - Monique B. Nilsson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77130
| | - Yan Yang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77130
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77130
| | - Hai Tran
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77130
| | - Yasir Y. Elamin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77130
| | - Xiaoxing Yu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77130
| | - Fahao Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77130
| | - Alissa Poteete
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77130
| | - Xiaoyang Ren
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77130
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77130
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77130
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77130
| | - Tina Cascone
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77130
| | - Michael Curran
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77130
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77130
| | - John V. Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77130
| |
Collapse
|
49
|
Sumimoto H, Takano A, Igarashi T, Hanaoka J, Teramoto K, Daigo Y. Oncogenic epidermal growth factor receptor signal-induced histone deacetylation suppresses chemokine gene expression in human lung adenocarcinoma. Sci Rep 2023; 13:5087. [PMID: 36991099 PMCID: PMC10060241 DOI: 10.1038/s41598-023-32177-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-mutated (mt) lung adenocarcinoma (LA) is refractory to immune checkpoint inhibitors (ICIs). However, the mechanisms have not been fully elucidated. CD8+ T cell infiltration was significantly lower in EGFR-mt than in EGFR-wild-type LA, which was associated with suppression of chemokine expression. Since this T cell-deserted tumor microenvironment may lead to the refractoriness of ICIs against EGFR-mt LA, we investigated the mechanism by focusing on the regulation of chemokine expression. The expression of C-X-C motif ligand (CXCL) 9, 10 and 11, which constitute a gene cluster on chromosome 4, was suppressed under EGFR signaling. The assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) revealed open chromatin peaks near this gene cluster following EGFR-tyrosine kinase inhibitor (TKI) treatment. The histone deacetylase (HDAC) inhibitor recovered the expression of CXCL9, 10 and 11 in EGFR-mt LA. Nuclear HDAC activity, as well as histone H3 deacetylation, were dependent on oncogenic EGFR signaling. Furthermore, the Cleavage Under Targets and Tagmentation (CUT & Tag) assay revealed a histone H3K27 acetylation peak at 15 kb upstream of CXCL11 after treatment with EGFR-TKI, which corresponded to one of the open chromatin peaks detected by ATAC-seq. The data suggest that EGFR-HDAC axis mediates silencing of the chemokine gene cluster through chromatin conformational change, which might be relevant to the ICI resistance by creating T cell-deserted tumor microenvironment. Targeting this axis may develop a new therapeutic strategy to overcome the ICI resistance of EGFR-mt LA.
Collapse
Affiliation(s)
- Hidetoshi Sumimoto
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga, Japan
- Center for Advanced Medicine Against Cancer, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Atsushi Takano
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga, Japan
- Center for Advanced Medicine Against Cancer, Shiga University of Medical Science, Otsu, Shiga, Japan
- Center for Antibody and Vaccine Therapy, Institute of Medical Science, Research Hospital, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Igarashi
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jun Hanaoka
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Koji Teramoto
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga, Japan
- Center for Advanced Medicine Against Cancer, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yataro Daigo
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga, Japan.
- Center for Advanced Medicine Against Cancer, Shiga University of Medical Science, Otsu, Shiga, Japan.
- Center for Antibody and Vaccine Therapy, Institute of Medical Science, Research Hospital, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
50
|
Kowash RR, Akbay EA. Tumor intrinsic and extrinsic functions of CD73 and the adenosine pathway in lung cancer. Front Immunol 2023; 14:1130358. [PMID: 37033953 PMCID: PMC10079876 DOI: 10.3389/fimmu.2023.1130358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
The adenosine pathway is an exciting new target in the field of cancer immunotherapy. CD73 is the main producer of extracellular adenosine. Non-small cell lung cancer (NSCLC) has one of the highest CD73 expression signatures among all cancer types and the presence of common oncogenic drivers of NSCLC, such as mutant epidermal growth factor receptor (EGFR) and KRAS, correlate with increased CD73 expression. Current immune checkpoint blockade (ICB) therapies only benefit a subset of patients, and it has proved challenging to understand which patients might respond even with the current understanding of predictive biomarkers. The adenosine pathway is well known to disrupt cytotoxic function of T cells, which is currently the main target of most clinical agents. Data thus far suggests that combining ICB therapies already in the clinic with adenosine pathway inhibitors provides promise for the treatment of lung cancer. However, antigen loss or lack of good antigens limits efficacy of ICB; simultaneous activation of other cytotoxic immune cells such as natural killer (NK) cells can be explored in these tumors. Clinical trials harnessing both T and NK cell activating treatments are still in their early stages with results expected in the coming years. In this review we provide an overview of new literature on the adenosine pathway and specifically CD73. CD73 is thought of mainly for its role as an immune modulator, however recent studies have demonstrated the tumor cell intrinsic properties of CD73 are potentially as important as its role in immune suppression. We also highlight the current understanding of this pathway in lung cancer, outline ongoing studies examining therapies in combination with adenosine pathway targeting, and discuss future prospects.
Collapse
Affiliation(s)
- Ryan R Kowash
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Simmons Comprehensive Cancer Center, Dallas, TX, United States
| | - Esra A Akbay
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Simmons Comprehensive Cancer Center, Dallas, TX, United States
| |
Collapse
|